1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/fs/binfmt_elf.c
4 *
5 * These are the functions used to load ELF format executables as used
6 * on SVr4 machines. Information on the format may be found in the book
7 * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support
8 * Tools".
9 *
10 * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com).
11 */
12
13#include <linux/module.h>
14#include <linux/kernel.h>
15#include <linux/fs.h>
16#include <linux/log2.h>
17#include <linux/mm.h>
18#include <linux/mman.h>
19#include <linux/errno.h>
20#include <linux/signal.h>
21#include <linux/binfmts.h>
22#include <linux/string.h>
23#include <linux/file.h>
24#include <linux/slab.h>
25#include <linux/personality.h>
26#include <linux/elfcore.h>
27#include <linux/init.h>
28#include <linux/highuid.h>
29#include <linux/compiler.h>
30#include <linux/highmem.h>
31#include <linux/hugetlb.h>
32#include <linux/pagemap.h>
33#include <linux/vmalloc.h>
34#include <linux/security.h>
35#include <linux/random.h>
36#include <linux/elf.h>
37#include <linux/elf-randomize.h>
38#include <linux/utsname.h>
39#include <linux/coredump.h>
40#include <linux/sched.h>
41#include <linux/sched/coredump.h>
42#include <linux/sched/task_stack.h>
43#include <linux/sched/cputime.h>
44#include <linux/sizes.h>
45#include <linux/types.h>
46#include <linux/cred.h>
47#include <linux/dax.h>
48#include <linux/uaccess.h>
49#include <linux/rseq.h>
50#include <asm/param.h>
51#include <asm/page.h>
52
53#ifndef ELF_COMPAT
54#define ELF_COMPAT 0
55#endif
56
57#ifndef user_long_t
58#define user_long_t long
59#endif
60#ifndef user_siginfo_t
61#define user_siginfo_t siginfo_t
62#endif
63
64/* That's for binfmt_elf_fdpic to deal with */
65#ifndef elf_check_fdpic
66#define elf_check_fdpic(ex) false
67#endif
68
69static int load_elf_binary(struct linux_binprm *bprm);
70
71#ifdef CONFIG_USELIB
72static int load_elf_library(struct file *);
73#else
74#define load_elf_library NULL
75#endif
76
77/*
78 * If we don't support core dumping, then supply a NULL so we
79 * don't even try.
80 */
81#ifdef CONFIG_ELF_CORE
82static int elf_core_dump(struct coredump_params *cprm);
83#else
84#define elf_core_dump NULL
85#endif
86
87#if ELF_EXEC_PAGESIZE > PAGE_SIZE
88#define ELF_MIN_ALIGN ELF_EXEC_PAGESIZE
89#else
90#define ELF_MIN_ALIGN PAGE_SIZE
91#endif
92
93#ifndef ELF_CORE_EFLAGS
94#define ELF_CORE_EFLAGS 0
95#endif
96
97#define ELF_PAGESTART(_v) ((_v) & ~(int)(ELF_MIN_ALIGN-1))
98#define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1))
99#define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1))
100
101static struct linux_binfmt elf_format = {
102 .module = THIS_MODULE,
103 .load_binary = load_elf_binary,
104 .load_shlib = load_elf_library,
105#ifdef CONFIG_COREDUMP
106 .core_dump = elf_core_dump,
107 .min_coredump = ELF_EXEC_PAGESIZE,
108#endif
109};
110
111#define BAD_ADDR(x) (unlikely((unsigned long)(x) >= TASK_SIZE))
112
113/*
114 * We need to explicitly zero any trailing portion of the page that follows
115 * p_filesz when it ends before the page ends (e.g. bss), otherwise this
116 * memory will contain the junk from the file that should not be present.
117 */
118static int padzero(unsigned long address)
119{
120 unsigned long nbyte;
121
122 nbyte = ELF_PAGEOFFSET(address);
123 if (nbyte) {
124 nbyte = ELF_MIN_ALIGN - nbyte;
125 if (clear_user(to: (void __user *)address, n: nbyte))
126 return -EFAULT;
127 }
128 return 0;
129}
130
131/* Let's use some macros to make this stack manipulation a little clearer */
132#ifdef CONFIG_STACK_GROWSUP
133#define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items))
134#define STACK_ROUND(sp, items) \
135 ((15 + (unsigned long) ((sp) + (items))) &~ 15UL)
136#define STACK_ALLOC(sp, len) ({ \
137 elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \
138 old_sp; })
139#else
140#define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items))
141#define STACK_ROUND(sp, items) \
142 (((unsigned long) (sp - items)) &~ 15UL)
143#define STACK_ALLOC(sp, len) (sp -= len)
144#endif
145
146#ifndef ELF_BASE_PLATFORM
147/*
148 * AT_BASE_PLATFORM indicates the "real" hardware/microarchitecture.
149 * If the arch defines ELF_BASE_PLATFORM (in asm/elf.h), the value
150 * will be copied to the user stack in the same manner as AT_PLATFORM.
151 */
152#define ELF_BASE_PLATFORM NULL
153#endif
154
155static int
156create_elf_tables(struct linux_binprm *bprm, const struct elfhdr *exec,
157 unsigned long interp_load_addr,
158 unsigned long e_entry, unsigned long phdr_addr)
159{
160 struct mm_struct *mm = current->mm;
161 unsigned long p = bprm->p;
162 int argc = bprm->argc;
163 int envc = bprm->envc;
164 elf_addr_t __user *sp;
165 elf_addr_t __user *u_platform;
166 elf_addr_t __user *u_base_platform;
167 elf_addr_t __user *u_rand_bytes;
168 const char *k_platform = ELF_PLATFORM;
169 const char *k_base_platform = ELF_BASE_PLATFORM;
170 unsigned char k_rand_bytes[16];
171 int items;
172 elf_addr_t *elf_info;
173 elf_addr_t flags = 0;
174 int ei_index;
175 const struct cred *cred = current_cred();
176 struct vm_area_struct *vma;
177
178 /*
179 * In some cases (e.g. Hyper-Threading), we want to avoid L1
180 * evictions by the processes running on the same package. One
181 * thing we can do is to shuffle the initial stack for them.
182 */
183
184 p = arch_align_stack(sp: p);
185
186 /*
187 * If this architecture has a platform capability string, copy it
188 * to userspace. In some cases (Sparc), this info is impossible
189 * for userspace to get any other way, in others (i386) it is
190 * merely difficult.
191 */
192 u_platform = NULL;
193 if (k_platform) {
194 size_t len = strlen(k_platform) + 1;
195
196 u_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
197 if (copy_to_user(to: u_platform, from: k_platform, n: len))
198 return -EFAULT;
199 }
200
201 /*
202 * If this architecture has a "base" platform capability
203 * string, copy it to userspace.
204 */
205 u_base_platform = NULL;
206 if (k_base_platform) {
207 size_t len = strlen(k_base_platform) + 1;
208
209 u_base_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
210 if (copy_to_user(to: u_base_platform, from: k_base_platform, n: len))
211 return -EFAULT;
212 }
213
214 /*
215 * Generate 16 random bytes for userspace PRNG seeding.
216 */
217 get_random_bytes(buf: k_rand_bytes, len: sizeof(k_rand_bytes));
218 u_rand_bytes = (elf_addr_t __user *)
219 STACK_ALLOC(p, sizeof(k_rand_bytes));
220 if (copy_to_user(to: u_rand_bytes, from: k_rand_bytes, n: sizeof(k_rand_bytes)))
221 return -EFAULT;
222
223 /* Create the ELF interpreter info */
224 elf_info = (elf_addr_t *)mm->saved_auxv;
225 /* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */
226#define NEW_AUX_ENT(id, val) \
227 do { \
228 *elf_info++ = id; \
229 *elf_info++ = val; \
230 } while (0)
231
232#ifdef ARCH_DLINFO
233 /*
234 * ARCH_DLINFO must come first so PPC can do its special alignment of
235 * AUXV.
236 * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in
237 * ARCH_DLINFO changes
238 */
239 ARCH_DLINFO;
240#endif
241 NEW_AUX_ENT(AT_HWCAP, ELF_HWCAP);
242 NEW_AUX_ENT(AT_PAGESZ, ELF_EXEC_PAGESIZE);
243 NEW_AUX_ENT(AT_CLKTCK, CLOCKS_PER_SEC);
244 NEW_AUX_ENT(AT_PHDR, phdr_addr);
245 NEW_AUX_ENT(AT_PHENT, sizeof(struct elf_phdr));
246 NEW_AUX_ENT(AT_PHNUM, exec->e_phnum);
247 NEW_AUX_ENT(AT_BASE, interp_load_addr);
248 if (bprm->interp_flags & BINPRM_FLAGS_PRESERVE_ARGV0)
249 flags |= AT_FLAGS_PRESERVE_ARGV0;
250 NEW_AUX_ENT(AT_FLAGS, flags);
251 NEW_AUX_ENT(AT_ENTRY, e_entry);
252 NEW_AUX_ENT(AT_UID, from_kuid_munged(cred->user_ns, cred->uid));
253 NEW_AUX_ENT(AT_EUID, from_kuid_munged(cred->user_ns, cred->euid));
254 NEW_AUX_ENT(AT_GID, from_kgid_munged(cred->user_ns, cred->gid));
255 NEW_AUX_ENT(AT_EGID, from_kgid_munged(cred->user_ns, cred->egid));
256 NEW_AUX_ENT(AT_SECURE, bprm->secureexec);
257 NEW_AUX_ENT(AT_RANDOM, (elf_addr_t)(unsigned long)u_rand_bytes);
258#ifdef ELF_HWCAP2
259 NEW_AUX_ENT(AT_HWCAP2, ELF_HWCAP2);
260#endif
261 NEW_AUX_ENT(AT_EXECFN, bprm->exec);
262 if (k_platform) {
263 NEW_AUX_ENT(AT_PLATFORM,
264 (elf_addr_t)(unsigned long)u_platform);
265 }
266 if (k_base_platform) {
267 NEW_AUX_ENT(AT_BASE_PLATFORM,
268 (elf_addr_t)(unsigned long)u_base_platform);
269 }
270 if (bprm->have_execfd) {
271 NEW_AUX_ENT(AT_EXECFD, bprm->execfd);
272 }
273#ifdef CONFIG_RSEQ
274 NEW_AUX_ENT(AT_RSEQ_FEATURE_SIZE, offsetof(struct rseq, end));
275 NEW_AUX_ENT(AT_RSEQ_ALIGN, __alignof__(struct rseq));
276#endif
277#undef NEW_AUX_ENT
278 /* AT_NULL is zero; clear the rest too */
279 memset(elf_info, 0, (char *)mm->saved_auxv +
280 sizeof(mm->saved_auxv) - (char *)elf_info);
281
282 /* And advance past the AT_NULL entry. */
283 elf_info += 2;
284
285 ei_index = elf_info - (elf_addr_t *)mm->saved_auxv;
286 sp = STACK_ADD(p, ei_index);
287
288 items = (argc + 1) + (envc + 1) + 1;
289 bprm->p = STACK_ROUND(sp, items);
290
291 /* Point sp at the lowest address on the stack */
292#ifdef CONFIG_STACK_GROWSUP
293 sp = (elf_addr_t __user *)bprm->p - items - ei_index;
294 bprm->exec = (unsigned long)sp; /* XXX: PARISC HACK */
295#else
296 sp = (elf_addr_t __user *)bprm->p;
297#endif
298
299
300 /*
301 * Grow the stack manually; some architectures have a limit on how
302 * far ahead a user-space access may be in order to grow the stack.
303 */
304 if (mmap_write_lock_killable(mm))
305 return -EINTR;
306 vma = find_extend_vma_locked(mm, addr: bprm->p);
307 mmap_write_unlock(mm);
308 if (!vma)
309 return -EFAULT;
310
311 /* Now, let's put argc (and argv, envp if appropriate) on the stack */
312 if (put_user(argc, sp++))
313 return -EFAULT;
314
315 /* Populate list of argv pointers back to argv strings. */
316 p = mm->arg_end = mm->arg_start;
317 while (argc-- > 0) {
318 size_t len;
319 if (put_user((elf_addr_t)p, sp++))
320 return -EFAULT;
321 len = strnlen_user(str: (void __user *)p, MAX_ARG_STRLEN);
322 if (!len || len > MAX_ARG_STRLEN)
323 return -EINVAL;
324 p += len;
325 }
326 if (put_user(0, sp++))
327 return -EFAULT;
328 mm->arg_end = p;
329
330 /* Populate list of envp pointers back to envp strings. */
331 mm->env_end = mm->env_start = p;
332 while (envc-- > 0) {
333 size_t len;
334 if (put_user((elf_addr_t)p, sp++))
335 return -EFAULT;
336 len = strnlen_user(str: (void __user *)p, MAX_ARG_STRLEN);
337 if (!len || len > MAX_ARG_STRLEN)
338 return -EINVAL;
339 p += len;
340 }
341 if (put_user(0, sp++))
342 return -EFAULT;
343 mm->env_end = p;
344
345 /* Put the elf_info on the stack in the right place. */
346 if (copy_to_user(to: sp, from: mm->saved_auxv, n: ei_index * sizeof(elf_addr_t)))
347 return -EFAULT;
348 return 0;
349}
350
351/*
352 * Map "eppnt->p_filesz" bytes from "filep" offset "eppnt->p_offset"
353 * into memory at "addr". (Note that p_filesz is rounded up to the
354 * next page, so any extra bytes from the file must be wiped.)
355 */
356static unsigned long elf_map(struct file *filep, unsigned long addr,
357 const struct elf_phdr *eppnt, int prot, int type,
358 unsigned long total_size)
359{
360 unsigned long map_addr;
361 unsigned long size = eppnt->p_filesz + ELF_PAGEOFFSET(eppnt->p_vaddr);
362 unsigned long off = eppnt->p_offset - ELF_PAGEOFFSET(eppnt->p_vaddr);
363 addr = ELF_PAGESTART(addr);
364 size = ELF_PAGEALIGN(size);
365
366 /* mmap() will return -EINVAL if given a zero size, but a
367 * segment with zero filesize is perfectly valid */
368 if (!size)
369 return addr;
370
371 /*
372 * total_size is the size of the ELF (interpreter) image.
373 * The _first_ mmap needs to know the full size, otherwise
374 * randomization might put this image into an overlapping
375 * position with the ELF binary image. (since size < total_size)
376 * So we first map the 'big' image - and unmap the remainder at
377 * the end. (which unmap is needed for ELF images with holes.)
378 */
379 if (total_size) {
380 total_size = ELF_PAGEALIGN(total_size);
381 map_addr = vm_mmap(filep, addr, total_size, prot, type, off);
382 if (!BAD_ADDR(map_addr))
383 vm_munmap(map_addr+size, total_size-size);
384 } else
385 map_addr = vm_mmap(filep, addr, size, prot, type, off);
386
387 if ((type & MAP_FIXED_NOREPLACE) &&
388 PTR_ERR(ptr: (void *)map_addr) == -EEXIST)
389 pr_info("%d (%s): Uhuuh, elf segment at %px requested but the memory is mapped already\n",
390 task_pid_nr(current), current->comm, (void *)addr);
391
392 return(map_addr);
393}
394
395/*
396 * Map "eppnt->p_filesz" bytes from "filep" offset "eppnt->p_offset"
397 * into memory at "addr". Memory from "p_filesz" through "p_memsz"
398 * rounded up to the next page is zeroed.
399 */
400static unsigned long elf_load(struct file *filep, unsigned long addr,
401 const struct elf_phdr *eppnt, int prot, int type,
402 unsigned long total_size)
403{
404 unsigned long zero_start, zero_end;
405 unsigned long map_addr;
406
407 if (eppnt->p_filesz) {
408 map_addr = elf_map(filep, addr, eppnt, prot, type, total_size);
409 if (BAD_ADDR(map_addr))
410 return map_addr;
411 if (eppnt->p_memsz > eppnt->p_filesz) {
412 zero_start = map_addr + ELF_PAGEOFFSET(eppnt->p_vaddr) +
413 eppnt->p_filesz;
414 zero_end = map_addr + ELF_PAGEOFFSET(eppnt->p_vaddr) +
415 eppnt->p_memsz;
416
417 /*
418 * Zero the end of the last mapped page but ignore
419 * any errors if the segment isn't writable.
420 */
421 if (padzero(address: zero_start) && (prot & PROT_WRITE))
422 return -EFAULT;
423 }
424 } else {
425 map_addr = zero_start = ELF_PAGESTART(addr);
426 zero_end = zero_start + ELF_PAGEOFFSET(eppnt->p_vaddr) +
427 eppnt->p_memsz;
428 }
429 if (eppnt->p_memsz > eppnt->p_filesz) {
430 /*
431 * Map the last of the segment.
432 * If the header is requesting these pages to be
433 * executable, honour that (ppc32 needs this).
434 */
435 int error;
436
437 zero_start = ELF_PAGEALIGN(zero_start);
438 zero_end = ELF_PAGEALIGN(zero_end);
439
440 error = vm_brk_flags(zero_start, zero_end - zero_start,
441 prot & PROT_EXEC ? VM_EXEC : 0);
442 if (error)
443 map_addr = error;
444 }
445 return map_addr;
446}
447
448
449static unsigned long total_mapping_size(const struct elf_phdr *phdr, int nr)
450{
451 elf_addr_t min_addr = -1;
452 elf_addr_t max_addr = 0;
453 bool pt_load = false;
454 int i;
455
456 for (i = 0; i < nr; i++) {
457 if (phdr[i].p_type == PT_LOAD) {
458 min_addr = min(min_addr, ELF_PAGESTART(phdr[i].p_vaddr));
459 max_addr = max(max_addr, phdr[i].p_vaddr + phdr[i].p_memsz);
460 pt_load = true;
461 }
462 }
463 return pt_load ? (max_addr - min_addr) : 0;
464}
465
466static int elf_read(struct file *file, void *buf, size_t len, loff_t pos)
467{
468 ssize_t rv;
469
470 rv = kernel_read(file, buf, len, &pos);
471 if (unlikely(rv != len)) {
472 return (rv < 0) ? rv : -EIO;
473 }
474 return 0;
475}
476
477static unsigned long maximum_alignment(struct elf_phdr *cmds, int nr)
478{
479 unsigned long alignment = 0;
480 int i;
481
482 for (i = 0; i < nr; i++) {
483 if (cmds[i].p_type == PT_LOAD) {
484 unsigned long p_align = cmds[i].p_align;
485
486 /* skip non-power of two alignments as invalid */
487 if (!is_power_of_2(n: p_align))
488 continue;
489 alignment = max(alignment, p_align);
490 }
491 }
492
493 /* ensure we align to at least one page */
494 return ELF_PAGEALIGN(alignment);
495}
496
497/**
498 * load_elf_phdrs() - load ELF program headers
499 * @elf_ex: ELF header of the binary whose program headers should be loaded
500 * @elf_file: the opened ELF binary file
501 *
502 * Loads ELF program headers from the binary file elf_file, which has the ELF
503 * header pointed to by elf_ex, into a newly allocated array. The caller is
504 * responsible for freeing the allocated data. Returns NULL upon failure.
505 */
506static struct elf_phdr *load_elf_phdrs(const struct elfhdr *elf_ex,
507 struct file *elf_file)
508{
509 struct elf_phdr *elf_phdata = NULL;
510 int retval = -1;
511 unsigned int size;
512
513 /*
514 * If the size of this structure has changed, then punt, since
515 * we will be doing the wrong thing.
516 */
517 if (elf_ex->e_phentsize != sizeof(struct elf_phdr))
518 goto out;
519
520 /* Sanity check the number of program headers... */
521 /* ...and their total size. */
522 size = sizeof(struct elf_phdr) * elf_ex->e_phnum;
523 if (size == 0 || size > 65536 || size > ELF_MIN_ALIGN)
524 goto out;
525
526 elf_phdata = kmalloc(size, GFP_KERNEL);
527 if (!elf_phdata)
528 goto out;
529
530 /* Read in the program headers */
531 retval = elf_read(file: elf_file, buf: elf_phdata, len: size, pos: elf_ex->e_phoff);
532
533out:
534 if (retval) {
535 kfree(objp: elf_phdata);
536 elf_phdata = NULL;
537 }
538 return elf_phdata;
539}
540
541#ifndef CONFIG_ARCH_BINFMT_ELF_STATE
542
543/**
544 * struct arch_elf_state - arch-specific ELF loading state
545 *
546 * This structure is used to preserve architecture specific data during
547 * the loading of an ELF file, throughout the checking of architecture
548 * specific ELF headers & through to the point where the ELF load is
549 * known to be proceeding (ie. SET_PERSONALITY).
550 *
551 * This implementation is a dummy for architectures which require no
552 * specific state.
553 */
554struct arch_elf_state {
555};
556
557#define INIT_ARCH_ELF_STATE {}
558
559/**
560 * arch_elf_pt_proc() - check a PT_LOPROC..PT_HIPROC ELF program header
561 * @ehdr: The main ELF header
562 * @phdr: The program header to check
563 * @elf: The open ELF file
564 * @is_interp: True if the phdr is from the interpreter of the ELF being
565 * loaded, else false.
566 * @state: Architecture-specific state preserved throughout the process
567 * of loading the ELF.
568 *
569 * Inspects the program header phdr to validate its correctness and/or
570 * suitability for the system. Called once per ELF program header in the
571 * range PT_LOPROC to PT_HIPROC, for both the ELF being loaded and its
572 * interpreter.
573 *
574 * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
575 * with that return code.
576 */
577static inline int arch_elf_pt_proc(struct elfhdr *ehdr,
578 struct elf_phdr *phdr,
579 struct file *elf, bool is_interp,
580 struct arch_elf_state *state)
581{
582 /* Dummy implementation, always proceed */
583 return 0;
584}
585
586/**
587 * arch_check_elf() - check an ELF executable
588 * @ehdr: The main ELF header
589 * @has_interp: True if the ELF has an interpreter, else false.
590 * @interp_ehdr: The interpreter's ELF header
591 * @state: Architecture-specific state preserved throughout the process
592 * of loading the ELF.
593 *
594 * Provides a final opportunity for architecture code to reject the loading
595 * of the ELF & cause an exec syscall to return an error. This is called after
596 * all program headers to be checked by arch_elf_pt_proc have been.
597 *
598 * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
599 * with that return code.
600 */
601static inline int arch_check_elf(struct elfhdr *ehdr, bool has_interp,
602 struct elfhdr *interp_ehdr,
603 struct arch_elf_state *state)
604{
605 /* Dummy implementation, always proceed */
606 return 0;
607}
608
609#endif /* !CONFIG_ARCH_BINFMT_ELF_STATE */
610
611static inline int make_prot(u32 p_flags, struct arch_elf_state *arch_state,
612 bool has_interp, bool is_interp)
613{
614 int prot = 0;
615
616 if (p_flags & PF_R)
617 prot |= PROT_READ;
618 if (p_flags & PF_W)
619 prot |= PROT_WRITE;
620 if (p_flags & PF_X)
621 prot |= PROT_EXEC;
622
623 return arch_elf_adjust_prot(prot, state: arch_state, has_interp, is_interp);
624}
625
626/* This is much more generalized than the library routine read function,
627 so we keep this separate. Technically the library read function
628 is only provided so that we can read a.out libraries that have
629 an ELF header */
630
631static unsigned long load_elf_interp(struct elfhdr *interp_elf_ex,
632 struct file *interpreter,
633 unsigned long no_base, struct elf_phdr *interp_elf_phdata,
634 struct arch_elf_state *arch_state)
635{
636 struct elf_phdr *eppnt;
637 unsigned long load_addr = 0;
638 int load_addr_set = 0;
639 unsigned long error = ~0UL;
640 unsigned long total_size;
641 int i;
642
643 /* First of all, some simple consistency checks */
644 if (interp_elf_ex->e_type != ET_EXEC &&
645 interp_elf_ex->e_type != ET_DYN)
646 goto out;
647 if (!elf_check_arch(interp_elf_ex) ||
648 elf_check_fdpic(interp_elf_ex))
649 goto out;
650 if (!interpreter->f_op->mmap)
651 goto out;
652
653 total_size = total_mapping_size(phdr: interp_elf_phdata,
654 nr: interp_elf_ex->e_phnum);
655 if (!total_size) {
656 error = -EINVAL;
657 goto out;
658 }
659
660 eppnt = interp_elf_phdata;
661 for (i = 0; i < interp_elf_ex->e_phnum; i++, eppnt++) {
662 if (eppnt->p_type == PT_LOAD) {
663 int elf_type = MAP_PRIVATE;
664 int elf_prot = make_prot(p_flags: eppnt->p_flags, arch_state,
665 has_interp: true, is_interp: true);
666 unsigned long vaddr = 0;
667 unsigned long k, map_addr;
668
669 vaddr = eppnt->p_vaddr;
670 if (interp_elf_ex->e_type == ET_EXEC || load_addr_set)
671 elf_type |= MAP_FIXED;
672 else if (no_base && interp_elf_ex->e_type == ET_DYN)
673 load_addr = -vaddr;
674
675 map_addr = elf_load(filep: interpreter, addr: load_addr + vaddr,
676 eppnt, prot: elf_prot, type: elf_type, total_size);
677 total_size = 0;
678 error = map_addr;
679 if (BAD_ADDR(map_addr))
680 goto out;
681
682 if (!load_addr_set &&
683 interp_elf_ex->e_type == ET_DYN) {
684 load_addr = map_addr - ELF_PAGESTART(vaddr);
685 load_addr_set = 1;
686 }
687
688 /*
689 * Check to see if the section's size will overflow the
690 * allowed task size. Note that p_filesz must always be
691 * <= p_memsize so it's only necessary to check p_memsz.
692 */
693 k = load_addr + eppnt->p_vaddr;
694 if (BAD_ADDR(k) ||
695 eppnt->p_filesz > eppnt->p_memsz ||
696 eppnt->p_memsz > TASK_SIZE ||
697 TASK_SIZE - eppnt->p_memsz < k) {
698 error = -ENOMEM;
699 goto out;
700 }
701 }
702 }
703
704 error = load_addr;
705out:
706 return error;
707}
708
709/*
710 * These are the functions used to load ELF style executables and shared
711 * libraries. There is no binary dependent code anywhere else.
712 */
713
714static int parse_elf_property(const char *data, size_t *off, size_t datasz,
715 struct arch_elf_state *arch,
716 bool have_prev_type, u32 *prev_type)
717{
718 size_t o, step;
719 const struct gnu_property *pr;
720 int ret;
721
722 if (*off == datasz)
723 return -ENOENT;
724
725 if (WARN_ON_ONCE(*off > datasz || *off % ELF_GNU_PROPERTY_ALIGN))
726 return -EIO;
727 o = *off;
728 datasz -= *off;
729
730 if (datasz < sizeof(*pr))
731 return -ENOEXEC;
732 pr = (const struct gnu_property *)(data + o);
733 o += sizeof(*pr);
734 datasz -= sizeof(*pr);
735
736 if (pr->pr_datasz > datasz)
737 return -ENOEXEC;
738
739 WARN_ON_ONCE(o % ELF_GNU_PROPERTY_ALIGN);
740 step = round_up(pr->pr_datasz, ELF_GNU_PROPERTY_ALIGN);
741 if (step > datasz)
742 return -ENOEXEC;
743
744 /* Properties are supposed to be unique and sorted on pr_type: */
745 if (have_prev_type && pr->pr_type <= *prev_type)
746 return -ENOEXEC;
747 *prev_type = pr->pr_type;
748
749 ret = arch_parse_elf_property(type: pr->pr_type, data: data + o,
750 datasz: pr->pr_datasz, ELF_COMPAT, arch);
751 if (ret)
752 return ret;
753
754 *off = o + step;
755 return 0;
756}
757
758#define NOTE_DATA_SZ SZ_1K
759#define GNU_PROPERTY_TYPE_0_NAME "GNU"
760#define NOTE_NAME_SZ (sizeof(GNU_PROPERTY_TYPE_0_NAME))
761
762static int parse_elf_properties(struct file *f, const struct elf_phdr *phdr,
763 struct arch_elf_state *arch)
764{
765 union {
766 struct elf_note nhdr;
767 char data[NOTE_DATA_SZ];
768 } note;
769 loff_t pos;
770 ssize_t n;
771 size_t off, datasz;
772 int ret;
773 bool have_prev_type;
774 u32 prev_type;
775
776 if (!IS_ENABLED(CONFIG_ARCH_USE_GNU_PROPERTY) || !phdr)
777 return 0;
778
779 /* load_elf_binary() shouldn't call us unless this is true... */
780 if (WARN_ON_ONCE(phdr->p_type != PT_GNU_PROPERTY))
781 return -ENOEXEC;
782
783 /* If the properties are crazy large, that's too bad (for now): */
784 if (phdr->p_filesz > sizeof(note))
785 return -ENOEXEC;
786
787 pos = phdr->p_offset;
788 n = kernel_read(f, &note, phdr->p_filesz, &pos);
789
790 BUILD_BUG_ON(sizeof(note) < sizeof(note.nhdr) + NOTE_NAME_SZ);
791 if (n < 0 || n < sizeof(note.nhdr) + NOTE_NAME_SZ)
792 return -EIO;
793
794 if (note.nhdr.n_type != NT_GNU_PROPERTY_TYPE_0 ||
795 note.nhdr.n_namesz != NOTE_NAME_SZ ||
796 strncmp(note.data + sizeof(note.nhdr),
797 GNU_PROPERTY_TYPE_0_NAME, n - sizeof(note.nhdr)))
798 return -ENOEXEC;
799
800 off = round_up(sizeof(note.nhdr) + NOTE_NAME_SZ,
801 ELF_GNU_PROPERTY_ALIGN);
802 if (off > n)
803 return -ENOEXEC;
804
805 if (note.nhdr.n_descsz > n - off)
806 return -ENOEXEC;
807 datasz = off + note.nhdr.n_descsz;
808
809 have_prev_type = false;
810 do {
811 ret = parse_elf_property(data: note.data, off: &off, datasz, arch,
812 have_prev_type, prev_type: &prev_type);
813 have_prev_type = true;
814 } while (!ret);
815
816 return ret == -ENOENT ? 0 : ret;
817}
818
819static int load_elf_binary(struct linux_binprm *bprm)
820{
821 struct file *interpreter = NULL; /* to shut gcc up */
822 unsigned long load_bias = 0, phdr_addr = 0;
823 int first_pt_load = 1;
824 unsigned long error;
825 struct elf_phdr *elf_ppnt, *elf_phdata, *interp_elf_phdata = NULL;
826 struct elf_phdr *elf_property_phdata = NULL;
827 unsigned long elf_brk;
828 int retval, i;
829 unsigned long elf_entry;
830 unsigned long e_entry;
831 unsigned long interp_load_addr = 0;
832 unsigned long start_code, end_code, start_data, end_data;
833 unsigned long reloc_func_desc __maybe_unused = 0;
834 int executable_stack = EXSTACK_DEFAULT;
835 struct elfhdr *elf_ex = (struct elfhdr *)bprm->buf;
836 struct elfhdr *interp_elf_ex = NULL;
837 struct arch_elf_state arch_state = INIT_ARCH_ELF_STATE;
838 struct mm_struct *mm;
839 struct pt_regs *regs;
840
841 retval = -ENOEXEC;
842 /* First of all, some simple consistency checks */
843 if (memcmp(p: elf_ex->e_ident, ELFMAG, SELFMAG) != 0)
844 goto out;
845
846 if (elf_ex->e_type != ET_EXEC && elf_ex->e_type != ET_DYN)
847 goto out;
848 if (!elf_check_arch(elf_ex))
849 goto out;
850 if (elf_check_fdpic(elf_ex))
851 goto out;
852 if (!bprm->file->f_op->mmap)
853 goto out;
854
855 elf_phdata = load_elf_phdrs(elf_ex, elf_file: bprm->file);
856 if (!elf_phdata)
857 goto out;
858
859 elf_ppnt = elf_phdata;
860 for (i = 0; i < elf_ex->e_phnum; i++, elf_ppnt++) {
861 char *elf_interpreter;
862
863 if (elf_ppnt->p_type == PT_GNU_PROPERTY) {
864 elf_property_phdata = elf_ppnt;
865 continue;
866 }
867
868 if (elf_ppnt->p_type != PT_INTERP)
869 continue;
870
871 /*
872 * This is the program interpreter used for shared libraries -
873 * for now assume that this is an a.out format binary.
874 */
875 retval = -ENOEXEC;
876 if (elf_ppnt->p_filesz > PATH_MAX || elf_ppnt->p_filesz < 2)
877 goto out_free_ph;
878
879 retval = -ENOMEM;
880 elf_interpreter = kmalloc(size: elf_ppnt->p_filesz, GFP_KERNEL);
881 if (!elf_interpreter)
882 goto out_free_ph;
883
884 retval = elf_read(file: bprm->file, buf: elf_interpreter, len: elf_ppnt->p_filesz,
885 pos: elf_ppnt->p_offset);
886 if (retval < 0)
887 goto out_free_interp;
888 /* make sure path is NULL terminated */
889 retval = -ENOEXEC;
890 if (elf_interpreter[elf_ppnt->p_filesz - 1] != '\0')
891 goto out_free_interp;
892
893 interpreter = open_exec(elf_interpreter);
894 kfree(objp: elf_interpreter);
895 retval = PTR_ERR(ptr: interpreter);
896 if (IS_ERR(ptr: interpreter))
897 goto out_free_ph;
898
899 /*
900 * If the binary is not readable then enforce mm->dumpable = 0
901 * regardless of the interpreter's permissions.
902 */
903 would_dump(bprm, interpreter);
904
905 interp_elf_ex = kmalloc(size: sizeof(*interp_elf_ex), GFP_KERNEL);
906 if (!interp_elf_ex) {
907 retval = -ENOMEM;
908 goto out_free_file;
909 }
910
911 /* Get the exec headers */
912 retval = elf_read(file: interpreter, buf: interp_elf_ex,
913 len: sizeof(*interp_elf_ex), pos: 0);
914 if (retval < 0)
915 goto out_free_dentry;
916
917 break;
918
919out_free_interp:
920 kfree(objp: elf_interpreter);
921 goto out_free_ph;
922 }
923
924 elf_ppnt = elf_phdata;
925 for (i = 0; i < elf_ex->e_phnum; i++, elf_ppnt++)
926 switch (elf_ppnt->p_type) {
927 case PT_GNU_STACK:
928 if (elf_ppnt->p_flags & PF_X)
929 executable_stack = EXSTACK_ENABLE_X;
930 else
931 executable_stack = EXSTACK_DISABLE_X;
932 break;
933
934 case PT_LOPROC ... PT_HIPROC:
935 retval = arch_elf_pt_proc(ehdr: elf_ex, phdr: elf_ppnt,
936 elf: bprm->file, is_interp: false,
937 state: &arch_state);
938 if (retval)
939 goto out_free_dentry;
940 break;
941 }
942
943 /* Some simple consistency checks for the interpreter */
944 if (interpreter) {
945 retval = -ELIBBAD;
946 /* Not an ELF interpreter */
947 if (memcmp(p: interp_elf_ex->e_ident, ELFMAG, SELFMAG) != 0)
948 goto out_free_dentry;
949 /* Verify the interpreter has a valid arch */
950 if (!elf_check_arch(interp_elf_ex) ||
951 elf_check_fdpic(interp_elf_ex))
952 goto out_free_dentry;
953
954 /* Load the interpreter program headers */
955 interp_elf_phdata = load_elf_phdrs(elf_ex: interp_elf_ex,
956 elf_file: interpreter);
957 if (!interp_elf_phdata)
958 goto out_free_dentry;
959
960 /* Pass PT_LOPROC..PT_HIPROC headers to arch code */
961 elf_property_phdata = NULL;
962 elf_ppnt = interp_elf_phdata;
963 for (i = 0; i < interp_elf_ex->e_phnum; i++, elf_ppnt++)
964 switch (elf_ppnt->p_type) {
965 case PT_GNU_PROPERTY:
966 elf_property_phdata = elf_ppnt;
967 break;
968
969 case PT_LOPROC ... PT_HIPROC:
970 retval = arch_elf_pt_proc(ehdr: interp_elf_ex,
971 phdr: elf_ppnt, elf: interpreter,
972 is_interp: true, state: &arch_state);
973 if (retval)
974 goto out_free_dentry;
975 break;
976 }
977 }
978
979 retval = parse_elf_properties(f: interpreter ?: bprm->file,
980 phdr: elf_property_phdata, arch: &arch_state);
981 if (retval)
982 goto out_free_dentry;
983
984 /*
985 * Allow arch code to reject the ELF at this point, whilst it's
986 * still possible to return an error to the code that invoked
987 * the exec syscall.
988 */
989 retval = arch_check_elf(ehdr: elf_ex,
990 has_interp: !!interpreter, interp_ehdr: interp_elf_ex,
991 state: &arch_state);
992 if (retval)
993 goto out_free_dentry;
994
995 /* Flush all traces of the currently running executable */
996 retval = begin_new_exec(bprm);
997 if (retval)
998 goto out_free_dentry;
999
1000 /* Do this immediately, since STACK_TOP as used in setup_arg_pages
1001 may depend on the personality. */
1002 SET_PERSONALITY2(*elf_ex, &arch_state);
1003 if (elf_read_implies_exec(*elf_ex, executable_stack))
1004 current->personality |= READ_IMPLIES_EXEC;
1005
1006 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1007 current->flags |= PF_RANDOMIZE;
1008
1009 setup_new_exec(bprm);
1010
1011 /* Do this so that we can load the interpreter, if need be. We will
1012 change some of these later */
1013 retval = setup_arg_pages(bprm, stack_top: randomize_stack_top(STACK_TOP),
1014 executable_stack);
1015 if (retval < 0)
1016 goto out_free_dentry;
1017
1018 elf_brk = 0;
1019
1020 start_code = ~0UL;
1021 end_code = 0;
1022 start_data = 0;
1023 end_data = 0;
1024
1025 /* Now we do a little grungy work by mmapping the ELF image into
1026 the correct location in memory. */
1027 for(i = 0, elf_ppnt = elf_phdata;
1028 i < elf_ex->e_phnum; i++, elf_ppnt++) {
1029 int elf_prot, elf_flags;
1030 unsigned long k, vaddr;
1031 unsigned long total_size = 0;
1032 unsigned long alignment;
1033
1034 if (elf_ppnt->p_type != PT_LOAD)
1035 continue;
1036
1037 elf_prot = make_prot(p_flags: elf_ppnt->p_flags, arch_state: &arch_state,
1038 has_interp: !!interpreter, is_interp: false);
1039
1040 elf_flags = MAP_PRIVATE;
1041
1042 vaddr = elf_ppnt->p_vaddr;
1043 /*
1044 * The first time through the loop, first_pt_load is true:
1045 * layout will be calculated. Once set, use MAP_FIXED since
1046 * we know we've already safely mapped the entire region with
1047 * MAP_FIXED_NOREPLACE in the once-per-binary logic following.
1048 */
1049 if (!first_pt_load) {
1050 elf_flags |= MAP_FIXED;
1051 } else if (elf_ex->e_type == ET_EXEC) {
1052 /*
1053 * This logic is run once for the first LOAD Program
1054 * Header for ET_EXEC binaries. No special handling
1055 * is needed.
1056 */
1057 elf_flags |= MAP_FIXED_NOREPLACE;
1058 } else if (elf_ex->e_type == ET_DYN) {
1059 /*
1060 * This logic is run once for the first LOAD Program
1061 * Header for ET_DYN binaries to calculate the
1062 * randomization (load_bias) for all the LOAD
1063 * Program Headers.
1064 *
1065 * There are effectively two types of ET_DYN
1066 * binaries: programs (i.e. PIE: ET_DYN with INTERP)
1067 * and loaders (ET_DYN without INTERP, since they
1068 * _are_ the ELF interpreter). The loaders must
1069 * be loaded away from programs since the program
1070 * may otherwise collide with the loader (especially
1071 * for ET_EXEC which does not have a randomized
1072 * position). For example to handle invocations of
1073 * "./ld.so someprog" to test out a new version of
1074 * the loader, the subsequent program that the
1075 * loader loads must avoid the loader itself, so
1076 * they cannot share the same load range. Sufficient
1077 * room for the brk must be allocated with the
1078 * loader as well, since brk must be available with
1079 * the loader.
1080 *
1081 * Therefore, programs are loaded offset from
1082 * ELF_ET_DYN_BASE and loaders are loaded into the
1083 * independently randomized mmap region (0 load_bias
1084 * without MAP_FIXED nor MAP_FIXED_NOREPLACE).
1085 */
1086 if (interpreter) {
1087 load_bias = ELF_ET_DYN_BASE;
1088 if (current->flags & PF_RANDOMIZE)
1089 load_bias += arch_mmap_rnd();
1090 alignment = maximum_alignment(cmds: elf_phdata, nr: elf_ex->e_phnum);
1091 if (alignment)
1092 load_bias &= ~(alignment - 1);
1093 elf_flags |= MAP_FIXED_NOREPLACE;
1094 } else
1095 load_bias = 0;
1096
1097 /*
1098 * Since load_bias is used for all subsequent loading
1099 * calculations, we must lower it by the first vaddr
1100 * so that the remaining calculations based on the
1101 * ELF vaddrs will be correctly offset. The result
1102 * is then page aligned.
1103 */
1104 load_bias = ELF_PAGESTART(load_bias - vaddr);
1105
1106 /*
1107 * Calculate the entire size of the ELF mapping
1108 * (total_size), used for the initial mapping,
1109 * due to load_addr_set which is set to true later
1110 * once the initial mapping is performed.
1111 *
1112 * Note that this is only sensible when the LOAD
1113 * segments are contiguous (or overlapping). If
1114 * used for LOADs that are far apart, this would
1115 * cause the holes between LOADs to be mapped,
1116 * running the risk of having the mapping fail,
1117 * as it would be larger than the ELF file itself.
1118 *
1119 * As a result, only ET_DYN does this, since
1120 * some ET_EXEC (e.g. ia64) may have large virtual
1121 * memory holes between LOADs.
1122 *
1123 */
1124 total_size = total_mapping_size(phdr: elf_phdata,
1125 nr: elf_ex->e_phnum);
1126 if (!total_size) {
1127 retval = -EINVAL;
1128 goto out_free_dentry;
1129 }
1130 }
1131
1132 error = elf_load(filep: bprm->file, addr: load_bias + vaddr, eppnt: elf_ppnt,
1133 prot: elf_prot, type: elf_flags, total_size);
1134 if (BAD_ADDR(error)) {
1135 retval = IS_ERR_VALUE(error) ?
1136 PTR_ERR(ptr: (void*)error) : -EINVAL;
1137 goto out_free_dentry;
1138 }
1139
1140 if (first_pt_load) {
1141 first_pt_load = 0;
1142 if (elf_ex->e_type == ET_DYN) {
1143 load_bias += error -
1144 ELF_PAGESTART(load_bias + vaddr);
1145 reloc_func_desc = load_bias;
1146 }
1147 }
1148
1149 /*
1150 * Figure out which segment in the file contains the Program
1151 * Header table, and map to the associated memory address.
1152 */
1153 if (elf_ppnt->p_offset <= elf_ex->e_phoff &&
1154 elf_ex->e_phoff < elf_ppnt->p_offset + elf_ppnt->p_filesz) {
1155 phdr_addr = elf_ex->e_phoff - elf_ppnt->p_offset +
1156 elf_ppnt->p_vaddr;
1157 }
1158
1159 k = elf_ppnt->p_vaddr;
1160 if ((elf_ppnt->p_flags & PF_X) && k < start_code)
1161 start_code = k;
1162 if (start_data < k)
1163 start_data = k;
1164
1165 /*
1166 * Check to see if the section's size will overflow the
1167 * allowed task size. Note that p_filesz must always be
1168 * <= p_memsz so it is only necessary to check p_memsz.
1169 */
1170 if (BAD_ADDR(k) || elf_ppnt->p_filesz > elf_ppnt->p_memsz ||
1171 elf_ppnt->p_memsz > TASK_SIZE ||
1172 TASK_SIZE - elf_ppnt->p_memsz < k) {
1173 /* set_brk can never work. Avoid overflows. */
1174 retval = -EINVAL;
1175 goto out_free_dentry;
1176 }
1177
1178 k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz;
1179
1180 if ((elf_ppnt->p_flags & PF_X) && end_code < k)
1181 end_code = k;
1182 if (end_data < k)
1183 end_data = k;
1184 k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz;
1185 if (k > elf_brk)
1186 elf_brk = k;
1187 }
1188
1189 e_entry = elf_ex->e_entry + load_bias;
1190 phdr_addr += load_bias;
1191 elf_brk += load_bias;
1192 start_code += load_bias;
1193 end_code += load_bias;
1194 start_data += load_bias;
1195 end_data += load_bias;
1196
1197 current->mm->start_brk = current->mm->brk = ELF_PAGEALIGN(elf_brk);
1198
1199 if (interpreter) {
1200 elf_entry = load_elf_interp(interp_elf_ex,
1201 interpreter,
1202 no_base: load_bias, interp_elf_phdata,
1203 arch_state: &arch_state);
1204 if (!IS_ERR_VALUE(elf_entry)) {
1205 /*
1206 * load_elf_interp() returns relocation
1207 * adjustment
1208 */
1209 interp_load_addr = elf_entry;
1210 elf_entry += interp_elf_ex->e_entry;
1211 }
1212 if (BAD_ADDR(elf_entry)) {
1213 retval = IS_ERR_VALUE(elf_entry) ?
1214 (int)elf_entry : -EINVAL;
1215 goto out_free_dentry;
1216 }
1217 reloc_func_desc = interp_load_addr;
1218
1219 allow_write_access(file: interpreter);
1220 fput(interpreter);
1221
1222 kfree(objp: interp_elf_ex);
1223 kfree(objp: interp_elf_phdata);
1224 } else {
1225 elf_entry = e_entry;
1226 if (BAD_ADDR(elf_entry)) {
1227 retval = -EINVAL;
1228 goto out_free_dentry;
1229 }
1230 }
1231
1232 kfree(objp: elf_phdata);
1233
1234 set_binfmt(&elf_format);
1235
1236#ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES
1237 retval = ARCH_SETUP_ADDITIONAL_PAGES(bprm, elf_ex, !!interpreter);
1238 if (retval < 0)
1239 goto out;
1240#endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */
1241
1242 retval = create_elf_tables(bprm, exec: elf_ex, interp_load_addr,
1243 e_entry, phdr_addr);
1244 if (retval < 0)
1245 goto out;
1246
1247 mm = current->mm;
1248 mm->end_code = end_code;
1249 mm->start_code = start_code;
1250 mm->start_data = start_data;
1251 mm->end_data = end_data;
1252 mm->start_stack = bprm->p;
1253
1254 if ((current->flags & PF_RANDOMIZE) && (randomize_va_space > 1)) {
1255 /*
1256 * For architectures with ELF randomization, when executing
1257 * a loader directly (i.e. no interpreter listed in ELF
1258 * headers), move the brk area out of the mmap region
1259 * (since it grows up, and may collide early with the stack
1260 * growing down), and into the unused ELF_ET_DYN_BASE region.
1261 */
1262 if (IS_ENABLED(CONFIG_ARCH_HAS_ELF_RANDOMIZE) &&
1263 elf_ex->e_type == ET_DYN && !interpreter) {
1264 mm->brk = mm->start_brk = ELF_ET_DYN_BASE;
1265 }
1266
1267 mm->brk = mm->start_brk = arch_randomize_brk(mm);
1268#ifdef compat_brk_randomized
1269 current->brk_randomized = 1;
1270#endif
1271 }
1272
1273 if (current->personality & MMAP_PAGE_ZERO) {
1274 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
1275 and some applications "depend" upon this behavior.
1276 Since we do not have the power to recompile these, we
1277 emulate the SVr4 behavior. Sigh. */
1278 error = vm_mmap(NULL, 0, PAGE_SIZE, PROT_READ | PROT_EXEC,
1279 MAP_FIXED | MAP_PRIVATE, 0);
1280 }
1281
1282 regs = current_pt_regs();
1283#ifdef ELF_PLAT_INIT
1284 /*
1285 * The ABI may specify that certain registers be set up in special
1286 * ways (on i386 %edx is the address of a DT_FINI function, for
1287 * example. In addition, it may also specify (eg, PowerPC64 ELF)
1288 * that the e_entry field is the address of the function descriptor
1289 * for the startup routine, rather than the address of the startup
1290 * routine itself. This macro performs whatever initialization to
1291 * the regs structure is required as well as any relocations to the
1292 * function descriptor entries when executing dynamically links apps.
1293 */
1294 ELF_PLAT_INIT(regs, reloc_func_desc);
1295#endif
1296
1297 finalize_exec(bprm);
1298 START_THREAD(elf_ex, regs, elf_entry, bprm->p);
1299 retval = 0;
1300out:
1301 return retval;
1302
1303 /* error cleanup */
1304out_free_dentry:
1305 kfree(objp: interp_elf_ex);
1306 kfree(objp: interp_elf_phdata);
1307out_free_file:
1308 allow_write_access(file: interpreter);
1309 if (interpreter)
1310 fput(interpreter);
1311out_free_ph:
1312 kfree(objp: elf_phdata);
1313 goto out;
1314}
1315
1316#ifdef CONFIG_USELIB
1317/* This is really simpleminded and specialized - we are loading an
1318 a.out library that is given an ELF header. */
1319static int load_elf_library(struct file *file)
1320{
1321 struct elf_phdr *elf_phdata;
1322 struct elf_phdr *eppnt;
1323 int retval, error, i, j;
1324 struct elfhdr elf_ex;
1325
1326 error = -ENOEXEC;
1327 retval = elf_read(file, buf: &elf_ex, len: sizeof(elf_ex), pos: 0);
1328 if (retval < 0)
1329 goto out;
1330
1331 if (memcmp(p: elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
1332 goto out;
1333
1334 /* First of all, some simple consistency checks */
1335 if (elf_ex.e_type != ET_EXEC || elf_ex.e_phnum > 2 ||
1336 !elf_check_arch(&elf_ex) || !file->f_op->mmap)
1337 goto out;
1338 if (elf_check_fdpic(&elf_ex))
1339 goto out;
1340
1341 /* Now read in all of the header information */
1342
1343 j = sizeof(struct elf_phdr) * elf_ex.e_phnum;
1344 /* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */
1345
1346 error = -ENOMEM;
1347 elf_phdata = kmalloc(size: j, GFP_KERNEL);
1348 if (!elf_phdata)
1349 goto out;
1350
1351 eppnt = elf_phdata;
1352 error = -ENOEXEC;
1353 retval = elf_read(file, buf: eppnt, len: j, pos: elf_ex.e_phoff);
1354 if (retval < 0)
1355 goto out_free_ph;
1356
1357 for (j = 0, i = 0; i<elf_ex.e_phnum; i++)
1358 if ((eppnt + i)->p_type == PT_LOAD)
1359 j++;
1360 if (j != 1)
1361 goto out_free_ph;
1362
1363 while (eppnt->p_type != PT_LOAD)
1364 eppnt++;
1365
1366 /* Now use mmap to map the library into memory. */
1367 error = elf_load(filep: file, ELF_PAGESTART(eppnt->p_vaddr),
1368 eppnt,
1369 PROT_READ | PROT_WRITE | PROT_EXEC,
1370 MAP_FIXED_NOREPLACE | MAP_PRIVATE,
1371 total_size: 0);
1372
1373 if (error != ELF_PAGESTART(eppnt->p_vaddr))
1374 goto out_free_ph;
1375
1376 error = 0;
1377
1378out_free_ph:
1379 kfree(objp: elf_phdata);
1380out:
1381 return error;
1382}
1383#endif /* #ifdef CONFIG_USELIB */
1384
1385#ifdef CONFIG_ELF_CORE
1386/*
1387 * ELF core dumper
1388 *
1389 * Modelled on fs/exec.c:aout_core_dump()
1390 * Jeremy Fitzhardinge <jeremy@sw.oz.au>
1391 */
1392
1393/* An ELF note in memory */
1394struct memelfnote
1395{
1396 const char *name;
1397 int type;
1398 unsigned int datasz;
1399 void *data;
1400};
1401
1402static int notesize(struct memelfnote *en)
1403{
1404 int sz;
1405
1406 sz = sizeof(struct elf_note);
1407 sz += roundup(strlen(en->name) + 1, 4);
1408 sz += roundup(en->datasz, 4);
1409
1410 return sz;
1411}
1412
1413static int writenote(struct memelfnote *men, struct coredump_params *cprm)
1414{
1415 struct elf_note en;
1416 en.n_namesz = strlen(men->name) + 1;
1417 en.n_descsz = men->datasz;
1418 en.n_type = men->type;
1419
1420 return dump_emit(cprm, addr: &en, nr: sizeof(en)) &&
1421 dump_emit(cprm, addr: men->name, nr: en.n_namesz) && dump_align(cprm, align: 4) &&
1422 dump_emit(cprm, addr: men->data, nr: men->datasz) && dump_align(cprm, align: 4);
1423}
1424
1425static void fill_elf_header(struct elfhdr *elf, int segs,
1426 u16 machine, u32 flags)
1427{
1428 memset(elf, 0, sizeof(*elf));
1429
1430 memcpy(elf->e_ident, ELFMAG, SELFMAG);
1431 elf->e_ident[EI_CLASS] = ELF_CLASS;
1432 elf->e_ident[EI_DATA] = ELF_DATA;
1433 elf->e_ident[EI_VERSION] = EV_CURRENT;
1434 elf->e_ident[EI_OSABI] = ELF_OSABI;
1435
1436 elf->e_type = ET_CORE;
1437 elf->e_machine = machine;
1438 elf->e_version = EV_CURRENT;
1439 elf->e_phoff = sizeof(struct elfhdr);
1440 elf->e_flags = flags;
1441 elf->e_ehsize = sizeof(struct elfhdr);
1442 elf->e_phentsize = sizeof(struct elf_phdr);
1443 elf->e_phnum = segs;
1444}
1445
1446static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, loff_t offset)
1447{
1448 phdr->p_type = PT_NOTE;
1449 phdr->p_offset = offset;
1450 phdr->p_vaddr = 0;
1451 phdr->p_paddr = 0;
1452 phdr->p_filesz = sz;
1453 phdr->p_memsz = 0;
1454 phdr->p_flags = 0;
1455 phdr->p_align = 4;
1456}
1457
1458static void fill_note(struct memelfnote *note, const char *name, int type,
1459 unsigned int sz, void *data)
1460{
1461 note->name = name;
1462 note->type = type;
1463 note->datasz = sz;
1464 note->data = data;
1465}
1466
1467/*
1468 * fill up all the fields in prstatus from the given task struct, except
1469 * registers which need to be filled up separately.
1470 */
1471static void fill_prstatus(struct elf_prstatus_common *prstatus,
1472 struct task_struct *p, long signr)
1473{
1474 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
1475 prstatus->pr_sigpend = p->pending.signal.sig[0];
1476 prstatus->pr_sighold = p->blocked.sig[0];
1477 rcu_read_lock();
1478 prstatus->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1479 rcu_read_unlock();
1480 prstatus->pr_pid = task_pid_vnr(tsk: p);
1481 prstatus->pr_pgrp = task_pgrp_vnr(tsk: p);
1482 prstatus->pr_sid = task_session_vnr(tsk: p);
1483 if (thread_group_leader(p)) {
1484 struct task_cputime cputime;
1485
1486 /*
1487 * This is the record for the group leader. It shows the
1488 * group-wide total, not its individual thread total.
1489 */
1490 thread_group_cputime(tsk: p, times: &cputime);
1491 prstatus->pr_utime = ns_to_kernel_old_timeval(nsec: cputime.utime);
1492 prstatus->pr_stime = ns_to_kernel_old_timeval(nsec: cputime.stime);
1493 } else {
1494 u64 utime, stime;
1495
1496 task_cputime(t: p, utime: &utime, stime: &stime);
1497 prstatus->pr_utime = ns_to_kernel_old_timeval(nsec: utime);
1498 prstatus->pr_stime = ns_to_kernel_old_timeval(nsec: stime);
1499 }
1500
1501 prstatus->pr_cutime = ns_to_kernel_old_timeval(nsec: p->signal->cutime);
1502 prstatus->pr_cstime = ns_to_kernel_old_timeval(nsec: p->signal->cstime);
1503}
1504
1505static int fill_psinfo(struct elf_prpsinfo *psinfo, struct task_struct *p,
1506 struct mm_struct *mm)
1507{
1508 const struct cred *cred;
1509 unsigned int i, len;
1510 unsigned int state;
1511
1512 /* first copy the parameters from user space */
1513 memset(psinfo, 0, sizeof(struct elf_prpsinfo));
1514
1515 len = mm->arg_end - mm->arg_start;
1516 if (len >= ELF_PRARGSZ)
1517 len = ELF_PRARGSZ-1;
1518 if (copy_from_user(to: &psinfo->pr_psargs,
1519 from: (const char __user *)mm->arg_start, n: len))
1520 return -EFAULT;
1521 for(i = 0; i < len; i++)
1522 if (psinfo->pr_psargs[i] == 0)
1523 psinfo->pr_psargs[i] = ' ';
1524 psinfo->pr_psargs[len] = 0;
1525
1526 rcu_read_lock();
1527 psinfo->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1528 rcu_read_unlock();
1529 psinfo->pr_pid = task_pid_vnr(tsk: p);
1530 psinfo->pr_pgrp = task_pgrp_vnr(tsk: p);
1531 psinfo->pr_sid = task_session_vnr(tsk: p);
1532
1533 state = READ_ONCE(p->__state);
1534 i = state ? ffz(~state) + 1 : 0;
1535 psinfo->pr_state = i;
1536 psinfo->pr_sname = (i > 5) ? '.' : "RSDTZW"[i];
1537 psinfo->pr_zomb = psinfo->pr_sname == 'Z';
1538 psinfo->pr_nice = task_nice(p);
1539 psinfo->pr_flag = p->flags;
1540 rcu_read_lock();
1541 cred = __task_cred(p);
1542 SET_UID(psinfo->pr_uid, from_kuid_munged(cred->user_ns, cred->uid));
1543 SET_GID(psinfo->pr_gid, from_kgid_munged(cred->user_ns, cred->gid));
1544 rcu_read_unlock();
1545 get_task_comm(psinfo->pr_fname, p);
1546
1547 return 0;
1548}
1549
1550static void fill_auxv_note(struct memelfnote *note, struct mm_struct *mm)
1551{
1552 elf_addr_t *auxv = (elf_addr_t *) mm->saved_auxv;
1553 int i = 0;
1554 do
1555 i += 2;
1556 while (auxv[i - 2] != AT_NULL);
1557 fill_note(note, name: "CORE", NT_AUXV, sz: i * sizeof(elf_addr_t), data: auxv);
1558}
1559
1560static void fill_siginfo_note(struct memelfnote *note, user_siginfo_t *csigdata,
1561 const kernel_siginfo_t *siginfo)
1562{
1563 copy_siginfo_to_external(to: csigdata, from: siginfo);
1564 fill_note(note, name: "CORE", NT_SIGINFO, sz: sizeof(*csigdata), data: csigdata);
1565}
1566
1567#define MAX_FILE_NOTE_SIZE (4*1024*1024)
1568/*
1569 * Format of NT_FILE note:
1570 *
1571 * long count -- how many files are mapped
1572 * long page_size -- units for file_ofs
1573 * array of [COUNT] elements of
1574 * long start
1575 * long end
1576 * long file_ofs
1577 * followed by COUNT filenames in ASCII: "FILE1" NUL "FILE2" NUL...
1578 */
1579static int fill_files_note(struct memelfnote *note, struct coredump_params *cprm)
1580{
1581 unsigned count, size, names_ofs, remaining, n;
1582 user_long_t *data;
1583 user_long_t *start_end_ofs;
1584 char *name_base, *name_curpos;
1585 int i;
1586
1587 /* *Estimated* file count and total data size needed */
1588 count = cprm->vma_count;
1589 if (count > UINT_MAX / 64)
1590 return -EINVAL;
1591 size = count * 64;
1592
1593 names_ofs = (2 + 3 * count) * sizeof(data[0]);
1594 alloc:
1595 if (size >= MAX_FILE_NOTE_SIZE) /* paranoia check */
1596 return -EINVAL;
1597 size = round_up(size, PAGE_SIZE);
1598 /*
1599 * "size" can be 0 here legitimately.
1600 * Let it ENOMEM and omit NT_FILE section which will be empty anyway.
1601 */
1602 data = kvmalloc(size, GFP_KERNEL);
1603 if (ZERO_OR_NULL_PTR(data))
1604 return -ENOMEM;
1605
1606 start_end_ofs = data + 2;
1607 name_base = name_curpos = ((char *)data) + names_ofs;
1608 remaining = size - names_ofs;
1609 count = 0;
1610 for (i = 0; i < cprm->vma_count; i++) {
1611 struct core_vma_metadata *m = &cprm->vma_meta[i];
1612 struct file *file;
1613 const char *filename;
1614
1615 file = m->file;
1616 if (!file)
1617 continue;
1618 filename = file_path(file, name_curpos, remaining);
1619 if (IS_ERR(ptr: filename)) {
1620 if (PTR_ERR(ptr: filename) == -ENAMETOOLONG) {
1621 kvfree(addr: data);
1622 size = size * 5 / 4;
1623 goto alloc;
1624 }
1625 continue;
1626 }
1627
1628 /* file_path() fills at the end, move name down */
1629 /* n = strlen(filename) + 1: */
1630 n = (name_curpos + remaining) - filename;
1631 remaining = filename - name_curpos;
1632 memmove(name_curpos, filename, n);
1633 name_curpos += n;
1634
1635 *start_end_ofs++ = m->start;
1636 *start_end_ofs++ = m->end;
1637 *start_end_ofs++ = m->pgoff;
1638 count++;
1639 }
1640
1641 /* Now we know exact count of files, can store it */
1642 data[0] = count;
1643 data[1] = PAGE_SIZE;
1644 /*
1645 * Count usually is less than mm->map_count,
1646 * we need to move filenames down.
1647 */
1648 n = cprm->vma_count - count;
1649 if (n != 0) {
1650 unsigned shift_bytes = n * 3 * sizeof(data[0]);
1651 memmove(name_base - shift_bytes, name_base,
1652 name_curpos - name_base);
1653 name_curpos -= shift_bytes;
1654 }
1655
1656 size = name_curpos - (char *)data;
1657 fill_note(note, name: "CORE", NT_FILE, sz: size, data);
1658 return 0;
1659}
1660
1661#include <linux/regset.h>
1662
1663struct elf_thread_core_info {
1664 struct elf_thread_core_info *next;
1665 struct task_struct *task;
1666 struct elf_prstatus prstatus;
1667 struct memelfnote notes[];
1668};
1669
1670struct elf_note_info {
1671 struct elf_thread_core_info *thread;
1672 struct memelfnote psinfo;
1673 struct memelfnote signote;
1674 struct memelfnote auxv;
1675 struct memelfnote files;
1676 user_siginfo_t csigdata;
1677 size_t size;
1678 int thread_notes;
1679};
1680
1681#ifdef CORE_DUMP_USE_REGSET
1682/*
1683 * When a regset has a writeback hook, we call it on each thread before
1684 * dumping user memory. On register window machines, this makes sure the
1685 * user memory backing the register data is up to date before we read it.
1686 */
1687static void do_thread_regset_writeback(struct task_struct *task,
1688 const struct user_regset *regset)
1689{
1690 if (regset->writeback)
1691 regset->writeback(task, regset, 1);
1692}
1693
1694#ifndef PRSTATUS_SIZE
1695#define PRSTATUS_SIZE sizeof(struct elf_prstatus)
1696#endif
1697
1698#ifndef SET_PR_FPVALID
1699#define SET_PR_FPVALID(S) ((S)->pr_fpvalid = 1)
1700#endif
1701
1702static int fill_thread_core_info(struct elf_thread_core_info *t,
1703 const struct user_regset_view *view,
1704 long signr, struct elf_note_info *info)
1705{
1706 unsigned int note_iter, view_iter;
1707
1708 /*
1709 * NT_PRSTATUS is the one special case, because the regset data
1710 * goes into the pr_reg field inside the note contents, rather
1711 * than being the whole note contents. We fill the regset in here.
1712 * We assume that regset 0 is NT_PRSTATUS.
1713 */
1714 fill_prstatus(prstatus: &t->prstatus.common, p: t->task, signr);
1715 regset_get(target: t->task, regset: &view->regsets[0],
1716 size: sizeof(t->prstatus.pr_reg), data: &t->prstatus.pr_reg);
1717
1718 fill_note(note: &t->notes[0], name: "CORE", NT_PRSTATUS,
1719 PRSTATUS_SIZE, data: &t->prstatus);
1720 info->size += notesize(en: &t->notes[0]);
1721
1722 do_thread_regset_writeback(task: t->task, regset: &view->regsets[0]);
1723
1724 /*
1725 * Each other regset might generate a note too. For each regset
1726 * that has no core_note_type or is inactive, skip it.
1727 */
1728 note_iter = 1;
1729 for (view_iter = 1; view_iter < view->n; ++view_iter) {
1730 const struct user_regset *regset = &view->regsets[view_iter];
1731 int note_type = regset->core_note_type;
1732 bool is_fpreg = note_type == NT_PRFPREG;
1733 void *data;
1734 int ret;
1735
1736 do_thread_regset_writeback(task: t->task, regset);
1737 if (!note_type) // not for coredumps
1738 continue;
1739 if (regset->active && regset->active(t->task, regset) <= 0)
1740 continue;
1741
1742 ret = regset_get_alloc(target: t->task, regset, size: ~0U, data: &data);
1743 if (ret < 0)
1744 continue;
1745
1746 if (WARN_ON_ONCE(note_iter >= info->thread_notes))
1747 break;
1748
1749 if (is_fpreg)
1750 SET_PR_FPVALID(&t->prstatus);
1751
1752 fill_note(note: &t->notes[note_iter], name: is_fpreg ? "CORE" : "LINUX",
1753 type: note_type, sz: ret, data);
1754
1755 info->size += notesize(en: &t->notes[note_iter]);
1756 note_iter++;
1757 }
1758
1759 return 1;
1760}
1761#else
1762static int fill_thread_core_info(struct elf_thread_core_info *t,
1763 const struct user_regset_view *view,
1764 long signr, struct elf_note_info *info)
1765{
1766 struct task_struct *p = t->task;
1767 elf_fpregset_t *fpu;
1768
1769 fill_prstatus(&t->prstatus.common, p, signr);
1770 elf_core_copy_task_regs(p, &t->prstatus.pr_reg);
1771
1772 fill_note(&t->notes[0], "CORE", NT_PRSTATUS, sizeof(t->prstatus),
1773 &(t->prstatus));
1774 info->size += notesize(&t->notes[0]);
1775
1776 fpu = kzalloc(sizeof(elf_fpregset_t), GFP_KERNEL);
1777 if (!fpu || !elf_core_copy_task_fpregs(p, fpu)) {
1778 kfree(fpu);
1779 return 1;
1780 }
1781
1782 t->prstatus.pr_fpvalid = 1;
1783 fill_note(&t->notes[1], "CORE", NT_PRFPREG, sizeof(*fpu), fpu);
1784 info->size += notesize(&t->notes[1]);
1785
1786 return 1;
1787}
1788#endif
1789
1790static int fill_note_info(struct elfhdr *elf, int phdrs,
1791 struct elf_note_info *info,
1792 struct coredump_params *cprm)
1793{
1794 struct task_struct *dump_task = current;
1795 const struct user_regset_view *view;
1796 struct elf_thread_core_info *t;
1797 struct elf_prpsinfo *psinfo;
1798 struct core_thread *ct;
1799
1800 psinfo = kmalloc(size: sizeof(*psinfo), GFP_KERNEL);
1801 if (!psinfo)
1802 return 0;
1803 fill_note(note: &info->psinfo, name: "CORE", NT_PRPSINFO, sz: sizeof(*psinfo), data: psinfo);
1804
1805#ifdef CORE_DUMP_USE_REGSET
1806 view = task_user_regset_view(tsk: dump_task);
1807
1808 /*
1809 * Figure out how many notes we're going to need for each thread.
1810 */
1811 info->thread_notes = 0;
1812 for (int i = 0; i < view->n; ++i)
1813 if (view->regsets[i].core_note_type != 0)
1814 ++info->thread_notes;
1815
1816 /*
1817 * Sanity check. We rely on regset 0 being in NT_PRSTATUS,
1818 * since it is our one special case.
1819 */
1820 if (unlikely(info->thread_notes == 0) ||
1821 unlikely(view->regsets[0].core_note_type != NT_PRSTATUS)) {
1822 WARN_ON(1);
1823 return 0;
1824 }
1825
1826 /*
1827 * Initialize the ELF file header.
1828 */
1829 fill_elf_header(elf, segs: phdrs,
1830 machine: view->e_machine, flags: view->e_flags);
1831#else
1832 view = NULL;
1833 info->thread_notes = 2;
1834 fill_elf_header(elf, phdrs, ELF_ARCH, ELF_CORE_EFLAGS);
1835#endif
1836
1837 /*
1838 * Allocate a structure for each thread.
1839 */
1840 info->thread = kzalloc(offsetof(struct elf_thread_core_info,
1841 notes[info->thread_notes]),
1842 GFP_KERNEL);
1843 if (unlikely(!info->thread))
1844 return 0;
1845
1846 info->thread->task = dump_task;
1847 for (ct = dump_task->signal->core_state->dumper.next; ct; ct = ct->next) {
1848 t = kzalloc(offsetof(struct elf_thread_core_info,
1849 notes[info->thread_notes]),
1850 GFP_KERNEL);
1851 if (unlikely(!t))
1852 return 0;
1853
1854 t->task = ct->task;
1855 t->next = info->thread->next;
1856 info->thread->next = t;
1857 }
1858
1859 /*
1860 * Now fill in each thread's information.
1861 */
1862 for (t = info->thread; t != NULL; t = t->next)
1863 if (!fill_thread_core_info(t, view, signr: cprm->siginfo->si_signo, info))
1864 return 0;
1865
1866 /*
1867 * Fill in the two process-wide notes.
1868 */
1869 fill_psinfo(psinfo, p: dump_task->group_leader, mm: dump_task->mm);
1870 info->size += notesize(en: &info->psinfo);
1871
1872 fill_siginfo_note(note: &info->signote, csigdata: &info->csigdata, siginfo: cprm->siginfo);
1873 info->size += notesize(en: &info->signote);
1874
1875 fill_auxv_note(note: &info->auxv, current->mm);
1876 info->size += notesize(en: &info->auxv);
1877
1878 if (fill_files_note(note: &info->files, cprm) == 0)
1879 info->size += notesize(en: &info->files);
1880
1881 return 1;
1882}
1883
1884/*
1885 * Write all the notes for each thread. When writing the first thread, the
1886 * process-wide notes are interleaved after the first thread-specific note.
1887 */
1888static int write_note_info(struct elf_note_info *info,
1889 struct coredump_params *cprm)
1890{
1891 bool first = true;
1892 struct elf_thread_core_info *t = info->thread;
1893
1894 do {
1895 int i;
1896
1897 if (!writenote(men: &t->notes[0], cprm))
1898 return 0;
1899
1900 if (first && !writenote(men: &info->psinfo, cprm))
1901 return 0;
1902 if (first && !writenote(men: &info->signote, cprm))
1903 return 0;
1904 if (first && !writenote(men: &info->auxv, cprm))
1905 return 0;
1906 if (first && info->files.data &&
1907 !writenote(men: &info->files, cprm))
1908 return 0;
1909
1910 for (i = 1; i < info->thread_notes; ++i)
1911 if (t->notes[i].data &&
1912 !writenote(men: &t->notes[i], cprm))
1913 return 0;
1914
1915 first = false;
1916 t = t->next;
1917 } while (t);
1918
1919 return 1;
1920}
1921
1922static void free_note_info(struct elf_note_info *info)
1923{
1924 struct elf_thread_core_info *threads = info->thread;
1925 while (threads) {
1926 unsigned int i;
1927 struct elf_thread_core_info *t = threads;
1928 threads = t->next;
1929 WARN_ON(t->notes[0].data && t->notes[0].data != &t->prstatus);
1930 for (i = 1; i < info->thread_notes; ++i)
1931 kfree(objp: t->notes[i].data);
1932 kfree(objp: t);
1933 }
1934 kfree(objp: info->psinfo.data);
1935 kvfree(addr: info->files.data);
1936}
1937
1938static void fill_extnum_info(struct elfhdr *elf, struct elf_shdr *shdr4extnum,
1939 elf_addr_t e_shoff, int segs)
1940{
1941 elf->e_shoff = e_shoff;
1942 elf->e_shentsize = sizeof(*shdr4extnum);
1943 elf->e_shnum = 1;
1944 elf->e_shstrndx = SHN_UNDEF;
1945
1946 memset(shdr4extnum, 0, sizeof(*shdr4extnum));
1947
1948 shdr4extnum->sh_type = SHT_NULL;
1949 shdr4extnum->sh_size = elf->e_shnum;
1950 shdr4extnum->sh_link = elf->e_shstrndx;
1951 shdr4extnum->sh_info = segs;
1952}
1953
1954/*
1955 * Actual dumper
1956 *
1957 * This is a two-pass process; first we find the offsets of the bits,
1958 * and then they are actually written out. If we run out of core limit
1959 * we just truncate.
1960 */
1961static int elf_core_dump(struct coredump_params *cprm)
1962{
1963 int has_dumped = 0;
1964 int segs, i;
1965 struct elfhdr elf;
1966 loff_t offset = 0, dataoff;
1967 struct elf_note_info info = { };
1968 struct elf_phdr *phdr4note = NULL;
1969 struct elf_shdr *shdr4extnum = NULL;
1970 Elf_Half e_phnum;
1971 elf_addr_t e_shoff;
1972
1973 /*
1974 * The number of segs are recored into ELF header as 16bit value.
1975 * Please check DEFAULT_MAX_MAP_COUNT definition when you modify here.
1976 */
1977 segs = cprm->vma_count + elf_core_extra_phdrs(cprm);
1978
1979 /* for notes section */
1980 segs++;
1981
1982 /* If segs > PN_XNUM(0xffff), then e_phnum overflows. To avoid
1983 * this, kernel supports extended numbering. Have a look at
1984 * include/linux/elf.h for further information. */
1985 e_phnum = segs > PN_XNUM ? PN_XNUM : segs;
1986
1987 /*
1988 * Collect all the non-memory information about the process for the
1989 * notes. This also sets up the file header.
1990 */
1991 if (!fill_note_info(elf: &elf, phdrs: e_phnum, info: &info, cprm))
1992 goto end_coredump;
1993
1994 has_dumped = 1;
1995
1996 offset += sizeof(elf); /* ELF header */
1997 offset += segs * sizeof(struct elf_phdr); /* Program headers */
1998
1999 /* Write notes phdr entry */
2000 {
2001 size_t sz = info.size;
2002
2003 /* For cell spufs */
2004 sz += elf_coredump_extra_notes_size();
2005
2006 phdr4note = kmalloc(size: sizeof(*phdr4note), GFP_KERNEL);
2007 if (!phdr4note)
2008 goto end_coredump;
2009
2010 fill_elf_note_phdr(phdr: phdr4note, sz, offset);
2011 offset += sz;
2012 }
2013
2014 dataoff = offset = roundup(offset, ELF_EXEC_PAGESIZE);
2015
2016 offset += cprm->vma_data_size;
2017 offset += elf_core_extra_data_size(cprm);
2018 e_shoff = offset;
2019
2020 if (e_phnum == PN_XNUM) {
2021 shdr4extnum = kmalloc(size: sizeof(*shdr4extnum), GFP_KERNEL);
2022 if (!shdr4extnum)
2023 goto end_coredump;
2024 fill_extnum_info(elf: &elf, shdr4extnum, e_shoff, segs);
2025 }
2026
2027 offset = dataoff;
2028
2029 if (!dump_emit(cprm, addr: &elf, nr: sizeof(elf)))
2030 goto end_coredump;
2031
2032 if (!dump_emit(cprm, addr: phdr4note, nr: sizeof(*phdr4note)))
2033 goto end_coredump;
2034
2035 /* Write program headers for segments dump */
2036 for (i = 0; i < cprm->vma_count; i++) {
2037 struct core_vma_metadata *meta = cprm->vma_meta + i;
2038 struct elf_phdr phdr;
2039
2040 phdr.p_type = PT_LOAD;
2041 phdr.p_offset = offset;
2042 phdr.p_vaddr = meta->start;
2043 phdr.p_paddr = 0;
2044 phdr.p_filesz = meta->dump_size;
2045 phdr.p_memsz = meta->end - meta->start;
2046 offset += phdr.p_filesz;
2047 phdr.p_flags = 0;
2048 if (meta->flags & VM_READ)
2049 phdr.p_flags |= PF_R;
2050 if (meta->flags & VM_WRITE)
2051 phdr.p_flags |= PF_W;
2052 if (meta->flags & VM_EXEC)
2053 phdr.p_flags |= PF_X;
2054 phdr.p_align = ELF_EXEC_PAGESIZE;
2055
2056 if (!dump_emit(cprm, addr: &phdr, nr: sizeof(phdr)))
2057 goto end_coredump;
2058 }
2059
2060 if (!elf_core_write_extra_phdrs(cprm, offset))
2061 goto end_coredump;
2062
2063 /* write out the notes section */
2064 if (!write_note_info(info: &info, cprm))
2065 goto end_coredump;
2066
2067 /* For cell spufs */
2068 if (elf_coredump_extra_notes_write(cprm))
2069 goto end_coredump;
2070
2071 /* Align to page */
2072 dump_skip_to(cprm, to: dataoff);
2073
2074 for (i = 0; i < cprm->vma_count; i++) {
2075 struct core_vma_metadata *meta = cprm->vma_meta + i;
2076
2077 if (!dump_user_range(cprm, start: meta->start, len: meta->dump_size))
2078 goto end_coredump;
2079 }
2080
2081 if (!elf_core_write_extra_data(cprm))
2082 goto end_coredump;
2083
2084 if (e_phnum == PN_XNUM) {
2085 if (!dump_emit(cprm, addr: shdr4extnum, nr: sizeof(*shdr4extnum)))
2086 goto end_coredump;
2087 }
2088
2089end_coredump:
2090 free_note_info(info: &info);
2091 kfree(objp: shdr4extnum);
2092 kfree(objp: phdr4note);
2093 return has_dumped;
2094}
2095
2096#endif /* CONFIG_ELF_CORE */
2097
2098static int __init init_elf_binfmt(void)
2099{
2100 register_binfmt(fmt: &elf_format);
2101 return 0;
2102}
2103
2104static void __exit exit_elf_binfmt(void)
2105{
2106 /* Remove the COFF and ELF loaders. */
2107 unregister_binfmt(&elf_format);
2108}
2109
2110core_initcall(init_elf_binfmt);
2111module_exit(exit_elf_binfmt);
2112
2113#ifdef CONFIG_BINFMT_ELF_KUNIT_TEST
2114#include "binfmt_elf_test.c"
2115#endif
2116

source code of linux/fs/binfmt_elf.c