1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2011 Fujitsu. All rights reserved.
4 * Written by Miao Xie <miaox@cn.fujitsu.com>
5 */
6
7#include <linux/slab.h>
8#include <linux/iversion.h>
9#include "ctree.h"
10#include "fs.h"
11#include "messages.h"
12#include "misc.h"
13#include "delayed-inode.h"
14#include "disk-io.h"
15#include "transaction.h"
16#include "qgroup.h"
17#include "locking.h"
18#include "inode-item.h"
19#include "space-info.h"
20#include "accessors.h"
21#include "file-item.h"
22
23#define BTRFS_DELAYED_WRITEBACK 512
24#define BTRFS_DELAYED_BACKGROUND 128
25#define BTRFS_DELAYED_BATCH 16
26
27static struct kmem_cache *delayed_node_cache;
28
29int __init btrfs_delayed_inode_init(void)
30{
31 delayed_node_cache = kmem_cache_create(name: "btrfs_delayed_node",
32 size: sizeof(struct btrfs_delayed_node),
33 align: 0,
34 SLAB_MEM_SPREAD,
35 NULL);
36 if (!delayed_node_cache)
37 return -ENOMEM;
38 return 0;
39}
40
41void __cold btrfs_delayed_inode_exit(void)
42{
43 kmem_cache_destroy(s: delayed_node_cache);
44}
45
46static inline void btrfs_init_delayed_node(
47 struct btrfs_delayed_node *delayed_node,
48 struct btrfs_root *root, u64 inode_id)
49{
50 delayed_node->root = root;
51 delayed_node->inode_id = inode_id;
52 refcount_set(r: &delayed_node->refs, n: 0);
53 delayed_node->ins_root = RB_ROOT_CACHED;
54 delayed_node->del_root = RB_ROOT_CACHED;
55 mutex_init(&delayed_node->mutex);
56 INIT_LIST_HEAD(list: &delayed_node->n_list);
57 INIT_LIST_HEAD(list: &delayed_node->p_list);
58}
59
60static struct btrfs_delayed_node *btrfs_get_delayed_node(
61 struct btrfs_inode *btrfs_inode)
62{
63 struct btrfs_root *root = btrfs_inode->root;
64 u64 ino = btrfs_ino(inode: btrfs_inode);
65 struct btrfs_delayed_node *node;
66
67 node = READ_ONCE(btrfs_inode->delayed_node);
68 if (node) {
69 refcount_inc(r: &node->refs);
70 return node;
71 }
72
73 spin_lock(lock: &root->inode_lock);
74 node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
75
76 if (node) {
77 if (btrfs_inode->delayed_node) {
78 refcount_inc(r: &node->refs); /* can be accessed */
79 BUG_ON(btrfs_inode->delayed_node != node);
80 spin_unlock(lock: &root->inode_lock);
81 return node;
82 }
83
84 /*
85 * It's possible that we're racing into the middle of removing
86 * this node from the radix tree. In this case, the refcount
87 * was zero and it should never go back to one. Just return
88 * NULL like it was never in the radix at all; our release
89 * function is in the process of removing it.
90 *
91 * Some implementations of refcount_inc refuse to bump the
92 * refcount once it has hit zero. If we don't do this dance
93 * here, refcount_inc() may decide to just WARN_ONCE() instead
94 * of actually bumping the refcount.
95 *
96 * If this node is properly in the radix, we want to bump the
97 * refcount twice, once for the inode and once for this get
98 * operation.
99 */
100 if (refcount_inc_not_zero(r: &node->refs)) {
101 refcount_inc(r: &node->refs);
102 btrfs_inode->delayed_node = node;
103 } else {
104 node = NULL;
105 }
106
107 spin_unlock(lock: &root->inode_lock);
108 return node;
109 }
110 spin_unlock(lock: &root->inode_lock);
111
112 return NULL;
113}
114
115/* Will return either the node or PTR_ERR(-ENOMEM) */
116static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
117 struct btrfs_inode *btrfs_inode)
118{
119 struct btrfs_delayed_node *node;
120 struct btrfs_root *root = btrfs_inode->root;
121 u64 ino = btrfs_ino(inode: btrfs_inode);
122 int ret;
123
124again:
125 node = btrfs_get_delayed_node(btrfs_inode);
126 if (node)
127 return node;
128
129 node = kmem_cache_zalloc(k: delayed_node_cache, GFP_NOFS);
130 if (!node)
131 return ERR_PTR(error: -ENOMEM);
132 btrfs_init_delayed_node(delayed_node: node, root, inode_id: ino);
133
134 /* cached in the btrfs inode and can be accessed */
135 refcount_set(r: &node->refs, n: 2);
136
137 ret = radix_tree_preload(GFP_NOFS);
138 if (ret) {
139 kmem_cache_free(s: delayed_node_cache, objp: node);
140 return ERR_PTR(error: ret);
141 }
142
143 spin_lock(lock: &root->inode_lock);
144 ret = radix_tree_insert(&root->delayed_nodes_tree, index: ino, node);
145 if (ret == -EEXIST) {
146 spin_unlock(lock: &root->inode_lock);
147 kmem_cache_free(s: delayed_node_cache, objp: node);
148 radix_tree_preload_end();
149 goto again;
150 }
151 btrfs_inode->delayed_node = node;
152 spin_unlock(lock: &root->inode_lock);
153 radix_tree_preload_end();
154
155 return node;
156}
157
158/*
159 * Call it when holding delayed_node->mutex
160 *
161 * If mod = 1, add this node into the prepared list.
162 */
163static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
164 struct btrfs_delayed_node *node,
165 int mod)
166{
167 spin_lock(lock: &root->lock);
168 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
169 if (!list_empty(head: &node->p_list))
170 list_move_tail(list: &node->p_list, head: &root->prepare_list);
171 else if (mod)
172 list_add_tail(new: &node->p_list, head: &root->prepare_list);
173 } else {
174 list_add_tail(new: &node->n_list, head: &root->node_list);
175 list_add_tail(new: &node->p_list, head: &root->prepare_list);
176 refcount_inc(r: &node->refs); /* inserted into list */
177 root->nodes++;
178 set_bit(BTRFS_DELAYED_NODE_IN_LIST, addr: &node->flags);
179 }
180 spin_unlock(lock: &root->lock);
181}
182
183/* Call it when holding delayed_node->mutex */
184static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
185 struct btrfs_delayed_node *node)
186{
187 spin_lock(lock: &root->lock);
188 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
189 root->nodes--;
190 refcount_dec(r: &node->refs); /* not in the list */
191 list_del_init(entry: &node->n_list);
192 if (!list_empty(head: &node->p_list))
193 list_del_init(entry: &node->p_list);
194 clear_bit(BTRFS_DELAYED_NODE_IN_LIST, addr: &node->flags);
195 }
196 spin_unlock(lock: &root->lock);
197}
198
199static struct btrfs_delayed_node *btrfs_first_delayed_node(
200 struct btrfs_delayed_root *delayed_root)
201{
202 struct list_head *p;
203 struct btrfs_delayed_node *node = NULL;
204
205 spin_lock(lock: &delayed_root->lock);
206 if (list_empty(head: &delayed_root->node_list))
207 goto out;
208
209 p = delayed_root->node_list.next;
210 node = list_entry(p, struct btrfs_delayed_node, n_list);
211 refcount_inc(r: &node->refs);
212out:
213 spin_unlock(lock: &delayed_root->lock);
214
215 return node;
216}
217
218static struct btrfs_delayed_node *btrfs_next_delayed_node(
219 struct btrfs_delayed_node *node)
220{
221 struct btrfs_delayed_root *delayed_root;
222 struct list_head *p;
223 struct btrfs_delayed_node *next = NULL;
224
225 delayed_root = node->root->fs_info->delayed_root;
226 spin_lock(lock: &delayed_root->lock);
227 if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
228 /* not in the list */
229 if (list_empty(head: &delayed_root->node_list))
230 goto out;
231 p = delayed_root->node_list.next;
232 } else if (list_is_last(list: &node->n_list, head: &delayed_root->node_list))
233 goto out;
234 else
235 p = node->n_list.next;
236
237 next = list_entry(p, struct btrfs_delayed_node, n_list);
238 refcount_inc(r: &next->refs);
239out:
240 spin_unlock(lock: &delayed_root->lock);
241
242 return next;
243}
244
245static void __btrfs_release_delayed_node(
246 struct btrfs_delayed_node *delayed_node,
247 int mod)
248{
249 struct btrfs_delayed_root *delayed_root;
250
251 if (!delayed_node)
252 return;
253
254 delayed_root = delayed_node->root->fs_info->delayed_root;
255
256 mutex_lock(&delayed_node->mutex);
257 if (delayed_node->count)
258 btrfs_queue_delayed_node(root: delayed_root, node: delayed_node, mod);
259 else
260 btrfs_dequeue_delayed_node(root: delayed_root, node: delayed_node);
261 mutex_unlock(lock: &delayed_node->mutex);
262
263 if (refcount_dec_and_test(r: &delayed_node->refs)) {
264 struct btrfs_root *root = delayed_node->root;
265
266 spin_lock(lock: &root->inode_lock);
267 /*
268 * Once our refcount goes to zero, nobody is allowed to bump it
269 * back up. We can delete it now.
270 */
271 ASSERT(refcount_read(&delayed_node->refs) == 0);
272 radix_tree_delete(&root->delayed_nodes_tree,
273 delayed_node->inode_id);
274 spin_unlock(lock: &root->inode_lock);
275 kmem_cache_free(s: delayed_node_cache, objp: delayed_node);
276 }
277}
278
279static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
280{
281 __btrfs_release_delayed_node(delayed_node: node, mod: 0);
282}
283
284static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
285 struct btrfs_delayed_root *delayed_root)
286{
287 struct list_head *p;
288 struct btrfs_delayed_node *node = NULL;
289
290 spin_lock(lock: &delayed_root->lock);
291 if (list_empty(head: &delayed_root->prepare_list))
292 goto out;
293
294 p = delayed_root->prepare_list.next;
295 list_del_init(entry: p);
296 node = list_entry(p, struct btrfs_delayed_node, p_list);
297 refcount_inc(r: &node->refs);
298out:
299 spin_unlock(lock: &delayed_root->lock);
300
301 return node;
302}
303
304static inline void btrfs_release_prepared_delayed_node(
305 struct btrfs_delayed_node *node)
306{
307 __btrfs_release_delayed_node(delayed_node: node, mod: 1);
308}
309
310static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u16 data_len,
311 struct btrfs_delayed_node *node,
312 enum btrfs_delayed_item_type type)
313{
314 struct btrfs_delayed_item *item;
315
316 item = kmalloc(struct_size(item, data, data_len), GFP_NOFS);
317 if (item) {
318 item->data_len = data_len;
319 item->type = type;
320 item->bytes_reserved = 0;
321 item->delayed_node = node;
322 RB_CLEAR_NODE(&item->rb_node);
323 INIT_LIST_HEAD(list: &item->log_list);
324 item->logged = false;
325 refcount_set(r: &item->refs, n: 1);
326 }
327 return item;
328}
329
330/*
331 * Look up the delayed item by key.
332 *
333 * @delayed_node: pointer to the delayed node
334 * @index: the dir index value to lookup (offset of a dir index key)
335 *
336 * Note: if we don't find the right item, we will return the prev item and
337 * the next item.
338 */
339static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
340 struct rb_root *root,
341 u64 index)
342{
343 struct rb_node *node = root->rb_node;
344 struct btrfs_delayed_item *delayed_item = NULL;
345
346 while (node) {
347 delayed_item = rb_entry(node, struct btrfs_delayed_item,
348 rb_node);
349 if (delayed_item->index < index)
350 node = node->rb_right;
351 else if (delayed_item->index > index)
352 node = node->rb_left;
353 else
354 return delayed_item;
355 }
356
357 return NULL;
358}
359
360static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
361 struct btrfs_delayed_item *ins)
362{
363 struct rb_node **p, *node;
364 struct rb_node *parent_node = NULL;
365 struct rb_root_cached *root;
366 struct btrfs_delayed_item *item;
367 bool leftmost = true;
368
369 if (ins->type == BTRFS_DELAYED_INSERTION_ITEM)
370 root = &delayed_node->ins_root;
371 else
372 root = &delayed_node->del_root;
373
374 p = &root->rb_root.rb_node;
375 node = &ins->rb_node;
376
377 while (*p) {
378 parent_node = *p;
379 item = rb_entry(parent_node, struct btrfs_delayed_item,
380 rb_node);
381
382 if (item->index < ins->index) {
383 p = &(*p)->rb_right;
384 leftmost = false;
385 } else if (item->index > ins->index) {
386 p = &(*p)->rb_left;
387 } else {
388 return -EEXIST;
389 }
390 }
391
392 rb_link_node(node, parent: parent_node, rb_link: p);
393 rb_insert_color_cached(node, root, leftmost);
394
395 if (ins->type == BTRFS_DELAYED_INSERTION_ITEM &&
396 ins->index >= delayed_node->index_cnt)
397 delayed_node->index_cnt = ins->index + 1;
398
399 delayed_node->count++;
400 atomic_inc(v: &delayed_node->root->fs_info->delayed_root->items);
401 return 0;
402}
403
404static void finish_one_item(struct btrfs_delayed_root *delayed_root)
405{
406 int seq = atomic_inc_return(v: &delayed_root->items_seq);
407
408 /* atomic_dec_return implies a barrier */
409 if ((atomic_dec_return(v: &delayed_root->items) <
410 BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0))
411 cond_wake_up_nomb(wq: &delayed_root->wait);
412}
413
414static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
415{
416 struct btrfs_delayed_node *delayed_node = delayed_item->delayed_node;
417 struct rb_root_cached *root;
418 struct btrfs_delayed_root *delayed_root;
419
420 /* Not inserted, ignore it. */
421 if (RB_EMPTY_NODE(&delayed_item->rb_node))
422 return;
423
424 /* If it's in a rbtree, then we need to have delayed node locked. */
425 lockdep_assert_held(&delayed_node->mutex);
426
427 delayed_root = delayed_node->root->fs_info->delayed_root;
428
429 BUG_ON(!delayed_root);
430
431 if (delayed_item->type == BTRFS_DELAYED_INSERTION_ITEM)
432 root = &delayed_node->ins_root;
433 else
434 root = &delayed_node->del_root;
435
436 rb_erase_cached(node: &delayed_item->rb_node, root);
437 RB_CLEAR_NODE(&delayed_item->rb_node);
438 delayed_node->count--;
439
440 finish_one_item(delayed_root);
441}
442
443static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
444{
445 if (item) {
446 __btrfs_remove_delayed_item(delayed_item: item);
447 if (refcount_dec_and_test(r: &item->refs))
448 kfree(objp: item);
449 }
450}
451
452static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
453 struct btrfs_delayed_node *delayed_node)
454{
455 struct rb_node *p;
456 struct btrfs_delayed_item *item = NULL;
457
458 p = rb_first_cached(&delayed_node->ins_root);
459 if (p)
460 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
461
462 return item;
463}
464
465static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
466 struct btrfs_delayed_node *delayed_node)
467{
468 struct rb_node *p;
469 struct btrfs_delayed_item *item = NULL;
470
471 p = rb_first_cached(&delayed_node->del_root);
472 if (p)
473 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
474
475 return item;
476}
477
478static struct btrfs_delayed_item *__btrfs_next_delayed_item(
479 struct btrfs_delayed_item *item)
480{
481 struct rb_node *p;
482 struct btrfs_delayed_item *next = NULL;
483
484 p = rb_next(&item->rb_node);
485 if (p)
486 next = rb_entry(p, struct btrfs_delayed_item, rb_node);
487
488 return next;
489}
490
491static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
492 struct btrfs_delayed_item *item)
493{
494 struct btrfs_block_rsv *src_rsv;
495 struct btrfs_block_rsv *dst_rsv;
496 struct btrfs_fs_info *fs_info = trans->fs_info;
497 u64 num_bytes;
498 int ret;
499
500 if (!trans->bytes_reserved)
501 return 0;
502
503 src_rsv = trans->block_rsv;
504 dst_rsv = &fs_info->delayed_block_rsv;
505
506 num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items: 1);
507
508 /*
509 * Here we migrate space rsv from transaction rsv, since have already
510 * reserved space when starting a transaction. So no need to reserve
511 * qgroup space here.
512 */
513 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, update_size: true);
514 if (!ret) {
515 trace_btrfs_space_reservation(fs_info, type: "delayed_item",
516 val: item->delayed_node->inode_id,
517 bytes: num_bytes, reserve: 1);
518 /*
519 * For insertions we track reserved metadata space by accounting
520 * for the number of leaves that will be used, based on the delayed
521 * node's curr_index_batch_size and index_item_leaves fields.
522 */
523 if (item->type == BTRFS_DELAYED_DELETION_ITEM)
524 item->bytes_reserved = num_bytes;
525 }
526
527 return ret;
528}
529
530static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
531 struct btrfs_delayed_item *item)
532{
533 struct btrfs_block_rsv *rsv;
534 struct btrfs_fs_info *fs_info = root->fs_info;
535
536 if (!item->bytes_reserved)
537 return;
538
539 rsv = &fs_info->delayed_block_rsv;
540 /*
541 * Check btrfs_delayed_item_reserve_metadata() to see why we don't need
542 * to release/reserve qgroup space.
543 */
544 trace_btrfs_space_reservation(fs_info, type: "delayed_item",
545 val: item->delayed_node->inode_id,
546 bytes: item->bytes_reserved, reserve: 0);
547 btrfs_block_rsv_release(fs_info, block_rsv: rsv, num_bytes: item->bytes_reserved, NULL);
548}
549
550static void btrfs_delayed_item_release_leaves(struct btrfs_delayed_node *node,
551 unsigned int num_leaves)
552{
553 struct btrfs_fs_info *fs_info = node->root->fs_info;
554 const u64 bytes = btrfs_calc_insert_metadata_size(fs_info, num_items: num_leaves);
555
556 /* There are no space reservations during log replay, bail out. */
557 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
558 return;
559
560 trace_btrfs_space_reservation(fs_info, type: "delayed_item", val: node->inode_id,
561 bytes, reserve: 0);
562 btrfs_block_rsv_release(fs_info, block_rsv: &fs_info->delayed_block_rsv, num_bytes: bytes, NULL);
563}
564
565static int btrfs_delayed_inode_reserve_metadata(
566 struct btrfs_trans_handle *trans,
567 struct btrfs_root *root,
568 struct btrfs_delayed_node *node)
569{
570 struct btrfs_fs_info *fs_info = root->fs_info;
571 struct btrfs_block_rsv *src_rsv;
572 struct btrfs_block_rsv *dst_rsv;
573 u64 num_bytes;
574 int ret;
575
576 src_rsv = trans->block_rsv;
577 dst_rsv = &fs_info->delayed_block_rsv;
578
579 num_bytes = btrfs_calc_metadata_size(fs_info, num_items: 1);
580
581 /*
582 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
583 * which doesn't reserve space for speed. This is a problem since we
584 * still need to reserve space for this update, so try to reserve the
585 * space.
586 *
587 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
588 * we always reserve enough to update the inode item.
589 */
590 if (!src_rsv || (!trans->bytes_reserved &&
591 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
592 ret = btrfs_qgroup_reserve_meta(root, num_bytes,
593 type: BTRFS_QGROUP_RSV_META_PREALLOC, enforce: true);
594 if (ret < 0)
595 return ret;
596 ret = btrfs_block_rsv_add(fs_info, block_rsv: dst_rsv, num_bytes,
597 flush: BTRFS_RESERVE_NO_FLUSH);
598 /* NO_FLUSH could only fail with -ENOSPC */
599 ASSERT(ret == 0 || ret == -ENOSPC);
600 if (ret)
601 btrfs_qgroup_free_meta_prealloc(root, num_bytes);
602 } else {
603 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, update_size: true);
604 }
605
606 if (!ret) {
607 trace_btrfs_space_reservation(fs_info, type: "delayed_inode",
608 val: node->inode_id, bytes: num_bytes, reserve: 1);
609 node->bytes_reserved = num_bytes;
610 }
611
612 return ret;
613}
614
615static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info,
616 struct btrfs_delayed_node *node,
617 bool qgroup_free)
618{
619 struct btrfs_block_rsv *rsv;
620
621 if (!node->bytes_reserved)
622 return;
623
624 rsv = &fs_info->delayed_block_rsv;
625 trace_btrfs_space_reservation(fs_info, type: "delayed_inode",
626 val: node->inode_id, bytes: node->bytes_reserved, reserve: 0);
627 btrfs_block_rsv_release(fs_info, block_rsv: rsv, num_bytes: node->bytes_reserved, NULL);
628 if (qgroup_free)
629 btrfs_qgroup_free_meta_prealloc(root: node->root,
630 num_bytes: node->bytes_reserved);
631 else
632 btrfs_qgroup_convert_reserved_meta(root: node->root,
633 num_bytes: node->bytes_reserved);
634 node->bytes_reserved = 0;
635}
636
637/*
638 * Insert a single delayed item or a batch of delayed items, as many as possible
639 * that fit in a leaf. The delayed items (dir index keys) are sorted by their key
640 * in the rbtree, and if there's a gap between two consecutive dir index items,
641 * then it means at some point we had delayed dir indexes to add but they got
642 * removed (by btrfs_delete_delayed_dir_index()) before we attempted to flush them
643 * into the subvolume tree. Dir index keys also have their offsets coming from a
644 * monotonically increasing counter, so we can't get new keys with an offset that
645 * fits within a gap between delayed dir index items.
646 */
647static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
648 struct btrfs_root *root,
649 struct btrfs_path *path,
650 struct btrfs_delayed_item *first_item)
651{
652 struct btrfs_fs_info *fs_info = root->fs_info;
653 struct btrfs_delayed_node *node = first_item->delayed_node;
654 LIST_HEAD(item_list);
655 struct btrfs_delayed_item *curr;
656 struct btrfs_delayed_item *next;
657 const int max_size = BTRFS_LEAF_DATA_SIZE(info: fs_info);
658 struct btrfs_item_batch batch;
659 struct btrfs_key first_key;
660 const u32 first_data_size = first_item->data_len;
661 int total_size;
662 char *ins_data = NULL;
663 int ret;
664 bool continuous_keys_only = false;
665
666 lockdep_assert_held(&node->mutex);
667
668 /*
669 * During normal operation the delayed index offset is continuously
670 * increasing, so we can batch insert all items as there will not be any
671 * overlapping keys in the tree.
672 *
673 * The exception to this is log replay, where we may have interleaved
674 * offsets in the tree, so our batch needs to be continuous keys only in
675 * order to ensure we do not end up with out of order items in our leaf.
676 */
677 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
678 continuous_keys_only = true;
679
680 /*
681 * For delayed items to insert, we track reserved metadata bytes based
682 * on the number of leaves that we will use.
683 * See btrfs_insert_delayed_dir_index() and
684 * btrfs_delayed_item_reserve_metadata()).
685 */
686 ASSERT(first_item->bytes_reserved == 0);
687
688 list_add_tail(new: &first_item->tree_list, head: &item_list);
689 batch.total_data_size = first_data_size;
690 batch.nr = 1;
691 total_size = first_data_size + sizeof(struct btrfs_item);
692 curr = first_item;
693
694 while (true) {
695 int next_size;
696
697 next = __btrfs_next_delayed_item(item: curr);
698 if (!next)
699 break;
700
701 /*
702 * We cannot allow gaps in the key space if we're doing log
703 * replay.
704 */
705 if (continuous_keys_only && (next->index != curr->index + 1))
706 break;
707
708 ASSERT(next->bytes_reserved == 0);
709
710 next_size = next->data_len + sizeof(struct btrfs_item);
711 if (total_size + next_size > max_size)
712 break;
713
714 list_add_tail(new: &next->tree_list, head: &item_list);
715 batch.nr++;
716 total_size += next_size;
717 batch.total_data_size += next->data_len;
718 curr = next;
719 }
720
721 if (batch.nr == 1) {
722 first_key.objectid = node->inode_id;
723 first_key.type = BTRFS_DIR_INDEX_KEY;
724 first_key.offset = first_item->index;
725 batch.keys = &first_key;
726 batch.data_sizes = &first_data_size;
727 } else {
728 struct btrfs_key *ins_keys;
729 u32 *ins_sizes;
730 int i = 0;
731
732 ins_data = kmalloc(size: batch.nr * sizeof(u32) +
733 batch.nr * sizeof(struct btrfs_key), GFP_NOFS);
734 if (!ins_data) {
735 ret = -ENOMEM;
736 goto out;
737 }
738 ins_sizes = (u32 *)ins_data;
739 ins_keys = (struct btrfs_key *)(ins_data + batch.nr * sizeof(u32));
740 batch.keys = ins_keys;
741 batch.data_sizes = ins_sizes;
742 list_for_each_entry(curr, &item_list, tree_list) {
743 ins_keys[i].objectid = node->inode_id;
744 ins_keys[i].type = BTRFS_DIR_INDEX_KEY;
745 ins_keys[i].offset = curr->index;
746 ins_sizes[i] = curr->data_len;
747 i++;
748 }
749 }
750
751 ret = btrfs_insert_empty_items(trans, root, path, batch: &batch);
752 if (ret)
753 goto out;
754
755 list_for_each_entry(curr, &item_list, tree_list) {
756 char *data_ptr;
757
758 data_ptr = btrfs_item_ptr(path->nodes[0], path->slots[0], char);
759 write_extent_buffer(eb: path->nodes[0], src: &curr->data,
760 start: (unsigned long)data_ptr, len: curr->data_len);
761 path->slots[0]++;
762 }
763
764 /*
765 * Now release our path before releasing the delayed items and their
766 * metadata reservations, so that we don't block other tasks for more
767 * time than needed.
768 */
769 btrfs_release_path(p: path);
770
771 ASSERT(node->index_item_leaves > 0);
772
773 /*
774 * For normal operations we will batch an entire leaf's worth of delayed
775 * items, so if there are more items to process we can decrement
776 * index_item_leaves by 1 as we inserted 1 leaf's worth of items.
777 *
778 * However for log replay we may not have inserted an entire leaf's
779 * worth of items, we may have not had continuous items, so decrementing
780 * here would mess up the index_item_leaves accounting. For this case
781 * only clean up the accounting when there are no items left.
782 */
783 if (next && !continuous_keys_only) {
784 /*
785 * We inserted one batch of items into a leaf a there are more
786 * items to flush in a future batch, now release one unit of
787 * metadata space from the delayed block reserve, corresponding
788 * the leaf we just flushed to.
789 */
790 btrfs_delayed_item_release_leaves(node, num_leaves: 1);
791 node->index_item_leaves--;
792 } else if (!next) {
793 /*
794 * There are no more items to insert. We can have a number of
795 * reserved leaves > 1 here - this happens when many dir index
796 * items are added and then removed before they are flushed (file
797 * names with a very short life, never span a transaction). So
798 * release all remaining leaves.
799 */
800 btrfs_delayed_item_release_leaves(node, num_leaves: node->index_item_leaves);
801 node->index_item_leaves = 0;
802 }
803
804 list_for_each_entry_safe(curr, next, &item_list, tree_list) {
805 list_del(entry: &curr->tree_list);
806 btrfs_release_delayed_item(item: curr);
807 }
808out:
809 kfree(objp: ins_data);
810 return ret;
811}
812
813static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
814 struct btrfs_path *path,
815 struct btrfs_root *root,
816 struct btrfs_delayed_node *node)
817{
818 int ret = 0;
819
820 while (ret == 0) {
821 struct btrfs_delayed_item *curr;
822
823 mutex_lock(&node->mutex);
824 curr = __btrfs_first_delayed_insertion_item(delayed_node: node);
825 if (!curr) {
826 mutex_unlock(lock: &node->mutex);
827 break;
828 }
829 ret = btrfs_insert_delayed_item(trans, root, path, first_item: curr);
830 mutex_unlock(lock: &node->mutex);
831 }
832
833 return ret;
834}
835
836static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
837 struct btrfs_root *root,
838 struct btrfs_path *path,
839 struct btrfs_delayed_item *item)
840{
841 const u64 ino = item->delayed_node->inode_id;
842 struct btrfs_fs_info *fs_info = root->fs_info;
843 struct btrfs_delayed_item *curr, *next;
844 struct extent_buffer *leaf = path->nodes[0];
845 LIST_HEAD(batch_list);
846 int nitems, slot, last_slot;
847 int ret;
848 u64 total_reserved_size = item->bytes_reserved;
849
850 ASSERT(leaf != NULL);
851
852 slot = path->slots[0];
853 last_slot = btrfs_header_nritems(eb: leaf) - 1;
854 /*
855 * Our caller always gives us a path pointing to an existing item, so
856 * this can not happen.
857 */
858 ASSERT(slot <= last_slot);
859 if (WARN_ON(slot > last_slot))
860 return -ENOENT;
861
862 nitems = 1;
863 curr = item;
864 list_add_tail(new: &curr->tree_list, head: &batch_list);
865
866 /*
867 * Keep checking if the next delayed item matches the next item in the
868 * leaf - if so, we can add it to the batch of items to delete from the
869 * leaf.
870 */
871 while (slot < last_slot) {
872 struct btrfs_key key;
873
874 next = __btrfs_next_delayed_item(item: curr);
875 if (!next)
876 break;
877
878 slot++;
879 btrfs_item_key_to_cpu(eb: leaf, cpu_key: &key, nr: slot);
880 if (key.objectid != ino ||
881 key.type != BTRFS_DIR_INDEX_KEY ||
882 key.offset != next->index)
883 break;
884 nitems++;
885 curr = next;
886 list_add_tail(new: &curr->tree_list, head: &batch_list);
887 total_reserved_size += curr->bytes_reserved;
888 }
889
890 ret = btrfs_del_items(trans, root, path, slot: path->slots[0], nr: nitems);
891 if (ret)
892 return ret;
893
894 /* In case of BTRFS_FS_LOG_RECOVERING items won't have reserved space */
895 if (total_reserved_size > 0) {
896 /*
897 * Check btrfs_delayed_item_reserve_metadata() to see why we
898 * don't need to release/reserve qgroup space.
899 */
900 trace_btrfs_space_reservation(fs_info, type: "delayed_item", val: ino,
901 bytes: total_reserved_size, reserve: 0);
902 btrfs_block_rsv_release(fs_info, block_rsv: &fs_info->delayed_block_rsv,
903 num_bytes: total_reserved_size, NULL);
904 }
905
906 list_for_each_entry_safe(curr, next, &batch_list, tree_list) {
907 list_del(entry: &curr->tree_list);
908 btrfs_release_delayed_item(item: curr);
909 }
910
911 return 0;
912}
913
914static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
915 struct btrfs_path *path,
916 struct btrfs_root *root,
917 struct btrfs_delayed_node *node)
918{
919 struct btrfs_key key;
920 int ret = 0;
921
922 key.objectid = node->inode_id;
923 key.type = BTRFS_DIR_INDEX_KEY;
924
925 while (ret == 0) {
926 struct btrfs_delayed_item *item;
927
928 mutex_lock(&node->mutex);
929 item = __btrfs_first_delayed_deletion_item(delayed_node: node);
930 if (!item) {
931 mutex_unlock(lock: &node->mutex);
932 break;
933 }
934
935 key.offset = item->index;
936 ret = btrfs_search_slot(trans, root, key: &key, p: path, ins_len: -1, cow: 1);
937 if (ret > 0) {
938 /*
939 * There's no matching item in the leaf. This means we
940 * have already deleted this item in a past run of the
941 * delayed items. We ignore errors when running delayed
942 * items from an async context, through a work queue job
943 * running btrfs_async_run_delayed_root(), and don't
944 * release delayed items that failed to complete. This
945 * is because we will retry later, and at transaction
946 * commit time we always run delayed items and will
947 * then deal with errors if they fail to run again.
948 *
949 * So just release delayed items for which we can't find
950 * an item in the tree, and move to the next item.
951 */
952 btrfs_release_path(p: path);
953 btrfs_release_delayed_item(item);
954 ret = 0;
955 } else if (ret == 0) {
956 ret = btrfs_batch_delete_items(trans, root, path, item);
957 btrfs_release_path(p: path);
958 }
959
960 /*
961 * We unlock and relock on each iteration, this is to prevent
962 * blocking other tasks for too long while we are being run from
963 * the async context (work queue job). Those tasks are typically
964 * running system calls like creat/mkdir/rename/unlink/etc which
965 * need to add delayed items to this delayed node.
966 */
967 mutex_unlock(lock: &node->mutex);
968 }
969
970 return ret;
971}
972
973static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
974{
975 struct btrfs_delayed_root *delayed_root;
976
977 if (delayed_node &&
978 test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
979 BUG_ON(!delayed_node->root);
980 clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, addr: &delayed_node->flags);
981 delayed_node->count--;
982
983 delayed_root = delayed_node->root->fs_info->delayed_root;
984 finish_one_item(delayed_root);
985 }
986}
987
988static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
989{
990
991 if (test_and_clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, addr: &delayed_node->flags)) {
992 struct btrfs_delayed_root *delayed_root;
993
994 ASSERT(delayed_node->root);
995 delayed_node->count--;
996
997 delayed_root = delayed_node->root->fs_info->delayed_root;
998 finish_one_item(delayed_root);
999 }
1000}
1001
1002static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1003 struct btrfs_root *root,
1004 struct btrfs_path *path,
1005 struct btrfs_delayed_node *node)
1006{
1007 struct btrfs_fs_info *fs_info = root->fs_info;
1008 struct btrfs_key key;
1009 struct btrfs_inode_item *inode_item;
1010 struct extent_buffer *leaf;
1011 int mod;
1012 int ret;
1013
1014 key.objectid = node->inode_id;
1015 key.type = BTRFS_INODE_ITEM_KEY;
1016 key.offset = 0;
1017
1018 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1019 mod = -1;
1020 else
1021 mod = 1;
1022
1023 ret = btrfs_lookup_inode(trans, root, path, location: &key, mod);
1024 if (ret > 0)
1025 ret = -ENOENT;
1026 if (ret < 0)
1027 goto out;
1028
1029 leaf = path->nodes[0];
1030 inode_item = btrfs_item_ptr(leaf, path->slots[0],
1031 struct btrfs_inode_item);
1032 write_extent_buffer(eb: leaf, src: &node->inode_item, start: (unsigned long)inode_item,
1033 len: sizeof(struct btrfs_inode_item));
1034 btrfs_mark_buffer_dirty(trans, buf: leaf);
1035
1036 if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1037 goto out;
1038
1039 path->slots[0]++;
1040 if (path->slots[0] >= btrfs_header_nritems(eb: leaf))
1041 goto search;
1042again:
1043 btrfs_item_key_to_cpu(eb: leaf, cpu_key: &key, nr: path->slots[0]);
1044 if (key.objectid != node->inode_id)
1045 goto out;
1046
1047 if (key.type != BTRFS_INODE_REF_KEY &&
1048 key.type != BTRFS_INODE_EXTREF_KEY)
1049 goto out;
1050
1051 /*
1052 * Delayed iref deletion is for the inode who has only one link,
1053 * so there is only one iref. The case that several irefs are
1054 * in the same item doesn't exist.
1055 */
1056 ret = btrfs_del_item(trans, root, path);
1057out:
1058 btrfs_release_delayed_iref(delayed_node: node);
1059 btrfs_release_path(p: path);
1060err_out:
1061 btrfs_delayed_inode_release_metadata(fs_info, node, qgroup_free: (ret < 0));
1062 btrfs_release_delayed_inode(delayed_node: node);
1063
1064 /*
1065 * If we fail to update the delayed inode we need to abort the
1066 * transaction, because we could leave the inode with the improper
1067 * counts behind.
1068 */
1069 if (ret && ret != -ENOENT)
1070 btrfs_abort_transaction(trans, ret);
1071
1072 return ret;
1073
1074search:
1075 btrfs_release_path(p: path);
1076
1077 key.type = BTRFS_INODE_EXTREF_KEY;
1078 key.offset = -1;
1079
1080 ret = btrfs_search_slot(trans, root, key: &key, p: path, ins_len: -1, cow: 1);
1081 if (ret < 0)
1082 goto err_out;
1083 ASSERT(ret);
1084
1085 ret = 0;
1086 leaf = path->nodes[0];
1087 path->slots[0]--;
1088 goto again;
1089}
1090
1091static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1092 struct btrfs_root *root,
1093 struct btrfs_path *path,
1094 struct btrfs_delayed_node *node)
1095{
1096 int ret;
1097
1098 mutex_lock(&node->mutex);
1099 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
1100 mutex_unlock(lock: &node->mutex);
1101 return 0;
1102 }
1103
1104 ret = __btrfs_update_delayed_inode(trans, root, path, node);
1105 mutex_unlock(lock: &node->mutex);
1106 return ret;
1107}
1108
1109static inline int
1110__btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1111 struct btrfs_path *path,
1112 struct btrfs_delayed_node *node)
1113{
1114 int ret;
1115
1116 ret = btrfs_insert_delayed_items(trans, path, root: node->root, node);
1117 if (ret)
1118 return ret;
1119
1120 ret = btrfs_delete_delayed_items(trans, path, root: node->root, node);
1121 if (ret)
1122 return ret;
1123
1124 ret = btrfs_update_delayed_inode(trans, root: node->root, path, node);
1125 return ret;
1126}
1127
1128/*
1129 * Called when committing the transaction.
1130 * Returns 0 on success.
1131 * Returns < 0 on error and returns with an aborted transaction with any
1132 * outstanding delayed items cleaned up.
1133 */
1134static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, int nr)
1135{
1136 struct btrfs_fs_info *fs_info = trans->fs_info;
1137 struct btrfs_delayed_root *delayed_root;
1138 struct btrfs_delayed_node *curr_node, *prev_node;
1139 struct btrfs_path *path;
1140 struct btrfs_block_rsv *block_rsv;
1141 int ret = 0;
1142 bool count = (nr > 0);
1143
1144 if (TRANS_ABORTED(trans))
1145 return -EIO;
1146
1147 path = btrfs_alloc_path();
1148 if (!path)
1149 return -ENOMEM;
1150
1151 block_rsv = trans->block_rsv;
1152 trans->block_rsv = &fs_info->delayed_block_rsv;
1153
1154 delayed_root = fs_info->delayed_root;
1155
1156 curr_node = btrfs_first_delayed_node(delayed_root);
1157 while (curr_node && (!count || nr--)) {
1158 ret = __btrfs_commit_inode_delayed_items(trans, path,
1159 node: curr_node);
1160 if (ret) {
1161 btrfs_abort_transaction(trans, ret);
1162 break;
1163 }
1164
1165 prev_node = curr_node;
1166 curr_node = btrfs_next_delayed_node(node: curr_node);
1167 /*
1168 * See the comment below about releasing path before releasing
1169 * node. If the commit of delayed items was successful the path
1170 * should always be released, but in case of an error, it may
1171 * point to locked extent buffers (a leaf at the very least).
1172 */
1173 ASSERT(path->nodes[0] == NULL);
1174 btrfs_release_delayed_node(node: prev_node);
1175 }
1176
1177 /*
1178 * Release the path to avoid a potential deadlock and lockdep splat when
1179 * releasing the delayed node, as that requires taking the delayed node's
1180 * mutex. If another task starts running delayed items before we take
1181 * the mutex, it will first lock the mutex and then it may try to lock
1182 * the same btree path (leaf).
1183 */
1184 btrfs_free_path(p: path);
1185
1186 if (curr_node)
1187 btrfs_release_delayed_node(node: curr_node);
1188 trans->block_rsv = block_rsv;
1189
1190 return ret;
1191}
1192
1193int btrfs_run_delayed_items(struct btrfs_trans_handle *trans)
1194{
1195 return __btrfs_run_delayed_items(trans, nr: -1);
1196}
1197
1198int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, int nr)
1199{
1200 return __btrfs_run_delayed_items(trans, nr);
1201}
1202
1203int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1204 struct btrfs_inode *inode)
1205{
1206 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(btrfs_inode: inode);
1207 struct btrfs_path *path;
1208 struct btrfs_block_rsv *block_rsv;
1209 int ret;
1210
1211 if (!delayed_node)
1212 return 0;
1213
1214 mutex_lock(&delayed_node->mutex);
1215 if (!delayed_node->count) {
1216 mutex_unlock(lock: &delayed_node->mutex);
1217 btrfs_release_delayed_node(node: delayed_node);
1218 return 0;
1219 }
1220 mutex_unlock(lock: &delayed_node->mutex);
1221
1222 path = btrfs_alloc_path();
1223 if (!path) {
1224 btrfs_release_delayed_node(node: delayed_node);
1225 return -ENOMEM;
1226 }
1227
1228 block_rsv = trans->block_rsv;
1229 trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1230
1231 ret = __btrfs_commit_inode_delayed_items(trans, path, node: delayed_node);
1232
1233 btrfs_release_delayed_node(node: delayed_node);
1234 btrfs_free_path(p: path);
1235 trans->block_rsv = block_rsv;
1236
1237 return ret;
1238}
1239
1240int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode)
1241{
1242 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1243 struct btrfs_trans_handle *trans;
1244 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(btrfs_inode: inode);
1245 struct btrfs_path *path;
1246 struct btrfs_block_rsv *block_rsv;
1247 int ret;
1248
1249 if (!delayed_node)
1250 return 0;
1251
1252 mutex_lock(&delayed_node->mutex);
1253 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1254 mutex_unlock(lock: &delayed_node->mutex);
1255 btrfs_release_delayed_node(node: delayed_node);
1256 return 0;
1257 }
1258 mutex_unlock(lock: &delayed_node->mutex);
1259
1260 trans = btrfs_join_transaction(root: delayed_node->root);
1261 if (IS_ERR(ptr: trans)) {
1262 ret = PTR_ERR(ptr: trans);
1263 goto out;
1264 }
1265
1266 path = btrfs_alloc_path();
1267 if (!path) {
1268 ret = -ENOMEM;
1269 goto trans_out;
1270 }
1271
1272 block_rsv = trans->block_rsv;
1273 trans->block_rsv = &fs_info->delayed_block_rsv;
1274
1275 mutex_lock(&delayed_node->mutex);
1276 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
1277 ret = __btrfs_update_delayed_inode(trans, root: delayed_node->root,
1278 path, node: delayed_node);
1279 else
1280 ret = 0;
1281 mutex_unlock(lock: &delayed_node->mutex);
1282
1283 btrfs_free_path(p: path);
1284 trans->block_rsv = block_rsv;
1285trans_out:
1286 btrfs_end_transaction(trans);
1287 btrfs_btree_balance_dirty(fs_info);
1288out:
1289 btrfs_release_delayed_node(node: delayed_node);
1290
1291 return ret;
1292}
1293
1294void btrfs_remove_delayed_node(struct btrfs_inode *inode)
1295{
1296 struct btrfs_delayed_node *delayed_node;
1297
1298 delayed_node = READ_ONCE(inode->delayed_node);
1299 if (!delayed_node)
1300 return;
1301
1302 inode->delayed_node = NULL;
1303 btrfs_release_delayed_node(node: delayed_node);
1304}
1305
1306struct btrfs_async_delayed_work {
1307 struct btrfs_delayed_root *delayed_root;
1308 int nr;
1309 struct btrfs_work work;
1310};
1311
1312static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1313{
1314 struct btrfs_async_delayed_work *async_work;
1315 struct btrfs_delayed_root *delayed_root;
1316 struct btrfs_trans_handle *trans;
1317 struct btrfs_path *path;
1318 struct btrfs_delayed_node *delayed_node = NULL;
1319 struct btrfs_root *root;
1320 struct btrfs_block_rsv *block_rsv;
1321 int total_done = 0;
1322
1323 async_work = container_of(work, struct btrfs_async_delayed_work, work);
1324 delayed_root = async_work->delayed_root;
1325
1326 path = btrfs_alloc_path();
1327 if (!path)
1328 goto out;
1329
1330 do {
1331 if (atomic_read(v: &delayed_root->items) <
1332 BTRFS_DELAYED_BACKGROUND / 2)
1333 break;
1334
1335 delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
1336 if (!delayed_node)
1337 break;
1338
1339 root = delayed_node->root;
1340
1341 trans = btrfs_join_transaction(root);
1342 if (IS_ERR(ptr: trans)) {
1343 btrfs_release_path(p: path);
1344 btrfs_release_prepared_delayed_node(node: delayed_node);
1345 total_done++;
1346 continue;
1347 }
1348
1349 block_rsv = trans->block_rsv;
1350 trans->block_rsv = &root->fs_info->delayed_block_rsv;
1351
1352 __btrfs_commit_inode_delayed_items(trans, path, node: delayed_node);
1353
1354 trans->block_rsv = block_rsv;
1355 btrfs_end_transaction(trans);
1356 btrfs_btree_balance_dirty_nodelay(fs_info: root->fs_info);
1357
1358 btrfs_release_path(p: path);
1359 btrfs_release_prepared_delayed_node(node: delayed_node);
1360 total_done++;
1361
1362 } while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK)
1363 || total_done < async_work->nr);
1364
1365 btrfs_free_path(p: path);
1366out:
1367 wake_up(&delayed_root->wait);
1368 kfree(objp: async_work);
1369}
1370
1371
1372static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1373 struct btrfs_fs_info *fs_info, int nr)
1374{
1375 struct btrfs_async_delayed_work *async_work;
1376
1377 async_work = kmalloc(size: sizeof(*async_work), GFP_NOFS);
1378 if (!async_work)
1379 return -ENOMEM;
1380
1381 async_work->delayed_root = delayed_root;
1382 btrfs_init_work(work: &async_work->work, func: btrfs_async_run_delayed_root, NULL);
1383 async_work->nr = nr;
1384
1385 btrfs_queue_work(wq: fs_info->delayed_workers, work: &async_work->work);
1386 return 0;
1387}
1388
1389void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info)
1390{
1391 WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root));
1392}
1393
1394static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
1395{
1396 int val = atomic_read(v: &delayed_root->items_seq);
1397
1398 if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
1399 return 1;
1400
1401 if (atomic_read(v: &delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1402 return 1;
1403
1404 return 0;
1405}
1406
1407void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info)
1408{
1409 struct btrfs_delayed_root *delayed_root = fs_info->delayed_root;
1410
1411 if ((atomic_read(v: &delayed_root->items) < BTRFS_DELAYED_BACKGROUND) ||
1412 btrfs_workqueue_normal_congested(wq: fs_info->delayed_workers))
1413 return;
1414
1415 if (atomic_read(v: &delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1416 int seq;
1417 int ret;
1418
1419 seq = atomic_read(v: &delayed_root->items_seq);
1420
1421 ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, nr: 0);
1422 if (ret)
1423 return;
1424
1425 wait_event_interruptible(delayed_root->wait,
1426 could_end_wait(delayed_root, seq));
1427 return;
1428 }
1429
1430 btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
1431}
1432
1433static void btrfs_release_dir_index_item_space(struct btrfs_trans_handle *trans)
1434{
1435 struct btrfs_fs_info *fs_info = trans->fs_info;
1436 const u64 bytes = btrfs_calc_insert_metadata_size(fs_info, num_items: 1);
1437
1438 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1439 return;
1440
1441 /*
1442 * Adding the new dir index item does not require touching another
1443 * leaf, so we can release 1 unit of metadata that was previously
1444 * reserved when starting the transaction. This applies only to
1445 * the case where we had a transaction start and excludes the
1446 * transaction join case (when replaying log trees).
1447 */
1448 trace_btrfs_space_reservation(fs_info, type: "transaction",
1449 val: trans->transid, bytes, reserve: 0);
1450 btrfs_block_rsv_release(fs_info, block_rsv: trans->block_rsv, num_bytes: bytes, NULL);
1451 ASSERT(trans->bytes_reserved >= bytes);
1452 trans->bytes_reserved -= bytes;
1453}
1454
1455/* Will return 0, -ENOMEM or -EEXIST (index number collision, unexpected). */
1456int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1457 const char *name, int name_len,
1458 struct btrfs_inode *dir,
1459 struct btrfs_disk_key *disk_key, u8 flags,
1460 u64 index)
1461{
1462 struct btrfs_fs_info *fs_info = trans->fs_info;
1463 const unsigned int leaf_data_size = BTRFS_LEAF_DATA_SIZE(info: fs_info);
1464 struct btrfs_delayed_node *delayed_node;
1465 struct btrfs_delayed_item *delayed_item;
1466 struct btrfs_dir_item *dir_item;
1467 bool reserve_leaf_space;
1468 u32 data_len;
1469 int ret;
1470
1471 delayed_node = btrfs_get_or_create_delayed_node(btrfs_inode: dir);
1472 if (IS_ERR(ptr: delayed_node))
1473 return PTR_ERR(ptr: delayed_node);
1474
1475 delayed_item = btrfs_alloc_delayed_item(data_len: sizeof(*dir_item) + name_len,
1476 node: delayed_node,
1477 type: BTRFS_DELAYED_INSERTION_ITEM);
1478 if (!delayed_item) {
1479 ret = -ENOMEM;
1480 goto release_node;
1481 }
1482
1483 delayed_item->index = index;
1484
1485 dir_item = (struct btrfs_dir_item *)delayed_item->data;
1486 dir_item->location = *disk_key;
1487 btrfs_set_stack_dir_transid(s: dir_item, val: trans->transid);
1488 btrfs_set_stack_dir_data_len(s: dir_item, val: 0);
1489 btrfs_set_stack_dir_name_len(s: dir_item, val: name_len);
1490 btrfs_set_stack_dir_flags(s: dir_item, val: flags);
1491 memcpy((char *)(dir_item + 1), name, name_len);
1492
1493 data_len = delayed_item->data_len + sizeof(struct btrfs_item);
1494
1495 mutex_lock(&delayed_node->mutex);
1496
1497 /*
1498 * First attempt to insert the delayed item. This is to make the error
1499 * handling path simpler in case we fail (-EEXIST). There's no risk of
1500 * any other task coming in and running the delayed item before we do
1501 * the metadata space reservation below, because we are holding the
1502 * delayed node's mutex and that mutex must also be locked before the
1503 * node's delayed items can be run.
1504 */
1505 ret = __btrfs_add_delayed_item(delayed_node, ins: delayed_item);
1506 if (unlikely(ret)) {
1507 btrfs_err(trans->fs_info,
1508"error adding delayed dir index item, name: %.*s, index: %llu, root: %llu, dir: %llu, dir->index_cnt: %llu, delayed_node->index_cnt: %llu, error: %d",
1509 name_len, name, index, btrfs_root_id(delayed_node->root),
1510 delayed_node->inode_id, dir->index_cnt,
1511 delayed_node->index_cnt, ret);
1512 btrfs_release_delayed_item(item: delayed_item);
1513 btrfs_release_dir_index_item_space(trans);
1514 mutex_unlock(lock: &delayed_node->mutex);
1515 goto release_node;
1516 }
1517
1518 if (delayed_node->index_item_leaves == 0 ||
1519 delayed_node->curr_index_batch_size + data_len > leaf_data_size) {
1520 delayed_node->curr_index_batch_size = data_len;
1521 reserve_leaf_space = true;
1522 } else {
1523 delayed_node->curr_index_batch_size += data_len;
1524 reserve_leaf_space = false;
1525 }
1526
1527 if (reserve_leaf_space) {
1528 ret = btrfs_delayed_item_reserve_metadata(trans, item: delayed_item);
1529 /*
1530 * Space was reserved for a dir index item insertion when we
1531 * started the transaction, so getting a failure here should be
1532 * impossible.
1533 */
1534 if (WARN_ON(ret)) {
1535 btrfs_release_delayed_item(item: delayed_item);
1536 mutex_unlock(lock: &delayed_node->mutex);
1537 goto release_node;
1538 }
1539
1540 delayed_node->index_item_leaves++;
1541 } else {
1542 btrfs_release_dir_index_item_space(trans);
1543 }
1544 mutex_unlock(lock: &delayed_node->mutex);
1545
1546release_node:
1547 btrfs_release_delayed_node(node: delayed_node);
1548 return ret;
1549}
1550
1551static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info,
1552 struct btrfs_delayed_node *node,
1553 u64 index)
1554{
1555 struct btrfs_delayed_item *item;
1556
1557 mutex_lock(&node->mutex);
1558 item = __btrfs_lookup_delayed_item(root: &node->ins_root.rb_root, index);
1559 if (!item) {
1560 mutex_unlock(lock: &node->mutex);
1561 return 1;
1562 }
1563
1564 /*
1565 * For delayed items to insert, we track reserved metadata bytes based
1566 * on the number of leaves that we will use.
1567 * See btrfs_insert_delayed_dir_index() and
1568 * btrfs_delayed_item_reserve_metadata()).
1569 */
1570 ASSERT(item->bytes_reserved == 0);
1571 ASSERT(node->index_item_leaves > 0);
1572
1573 /*
1574 * If there's only one leaf reserved, we can decrement this item from the
1575 * current batch, otherwise we can not because we don't know which leaf
1576 * it belongs to. With the current limit on delayed items, we rarely
1577 * accumulate enough dir index items to fill more than one leaf (even
1578 * when using a leaf size of 4K).
1579 */
1580 if (node->index_item_leaves == 1) {
1581 const u32 data_len = item->data_len + sizeof(struct btrfs_item);
1582
1583 ASSERT(node->curr_index_batch_size >= data_len);
1584 node->curr_index_batch_size -= data_len;
1585 }
1586
1587 btrfs_release_delayed_item(item);
1588
1589 /* If we now have no more dir index items, we can release all leaves. */
1590 if (RB_EMPTY_ROOT(&node->ins_root.rb_root)) {
1591 btrfs_delayed_item_release_leaves(node, num_leaves: node->index_item_leaves);
1592 node->index_item_leaves = 0;
1593 }
1594
1595 mutex_unlock(lock: &node->mutex);
1596 return 0;
1597}
1598
1599int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1600 struct btrfs_inode *dir, u64 index)
1601{
1602 struct btrfs_delayed_node *node;
1603 struct btrfs_delayed_item *item;
1604 int ret;
1605
1606 node = btrfs_get_or_create_delayed_node(btrfs_inode: dir);
1607 if (IS_ERR(ptr: node))
1608 return PTR_ERR(ptr: node);
1609
1610 ret = btrfs_delete_delayed_insertion_item(fs_info: trans->fs_info, node, index);
1611 if (!ret)
1612 goto end;
1613
1614 item = btrfs_alloc_delayed_item(data_len: 0, node, type: BTRFS_DELAYED_DELETION_ITEM);
1615 if (!item) {
1616 ret = -ENOMEM;
1617 goto end;
1618 }
1619
1620 item->index = index;
1621
1622 ret = btrfs_delayed_item_reserve_metadata(trans, item);
1623 /*
1624 * we have reserved enough space when we start a new transaction,
1625 * so reserving metadata failure is impossible.
1626 */
1627 if (ret < 0) {
1628 btrfs_err(trans->fs_info,
1629"metadata reservation failed for delayed dir item deltiona, should have been reserved");
1630 btrfs_release_delayed_item(item);
1631 goto end;
1632 }
1633
1634 mutex_lock(&node->mutex);
1635 ret = __btrfs_add_delayed_item(delayed_node: node, ins: item);
1636 if (unlikely(ret)) {
1637 btrfs_err(trans->fs_info,
1638 "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1639 index, node->root->root_key.objectid,
1640 node->inode_id, ret);
1641 btrfs_delayed_item_release_metadata(root: dir->root, item);
1642 btrfs_release_delayed_item(item);
1643 }
1644 mutex_unlock(lock: &node->mutex);
1645end:
1646 btrfs_release_delayed_node(node);
1647 return ret;
1648}
1649
1650int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode)
1651{
1652 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(btrfs_inode: inode);
1653
1654 if (!delayed_node)
1655 return -ENOENT;
1656
1657 /*
1658 * Since we have held i_mutex of this directory, it is impossible that
1659 * a new directory index is added into the delayed node and index_cnt
1660 * is updated now. So we needn't lock the delayed node.
1661 */
1662 if (!delayed_node->index_cnt) {
1663 btrfs_release_delayed_node(node: delayed_node);
1664 return -EINVAL;
1665 }
1666
1667 inode->index_cnt = delayed_node->index_cnt;
1668 btrfs_release_delayed_node(node: delayed_node);
1669 return 0;
1670}
1671
1672bool btrfs_readdir_get_delayed_items(struct inode *inode,
1673 u64 last_index,
1674 struct list_head *ins_list,
1675 struct list_head *del_list)
1676{
1677 struct btrfs_delayed_node *delayed_node;
1678 struct btrfs_delayed_item *item;
1679
1680 delayed_node = btrfs_get_delayed_node(btrfs_inode: BTRFS_I(inode));
1681 if (!delayed_node)
1682 return false;
1683
1684 /*
1685 * We can only do one readdir with delayed items at a time because of
1686 * item->readdir_list.
1687 */
1688 btrfs_inode_unlock(inode: BTRFS_I(inode), ilock_flags: BTRFS_ILOCK_SHARED);
1689 btrfs_inode_lock(inode: BTRFS_I(inode), ilock_flags: 0);
1690
1691 mutex_lock(&delayed_node->mutex);
1692 item = __btrfs_first_delayed_insertion_item(delayed_node);
1693 while (item && item->index <= last_index) {
1694 refcount_inc(r: &item->refs);
1695 list_add_tail(new: &item->readdir_list, head: ins_list);
1696 item = __btrfs_next_delayed_item(item);
1697 }
1698
1699 item = __btrfs_first_delayed_deletion_item(delayed_node);
1700 while (item && item->index <= last_index) {
1701 refcount_inc(r: &item->refs);
1702 list_add_tail(new: &item->readdir_list, head: del_list);
1703 item = __btrfs_next_delayed_item(item);
1704 }
1705 mutex_unlock(lock: &delayed_node->mutex);
1706 /*
1707 * This delayed node is still cached in the btrfs inode, so refs
1708 * must be > 1 now, and we needn't check it is going to be freed
1709 * or not.
1710 *
1711 * Besides that, this function is used to read dir, we do not
1712 * insert/delete delayed items in this period. So we also needn't
1713 * requeue or dequeue this delayed node.
1714 */
1715 refcount_dec(r: &delayed_node->refs);
1716
1717 return true;
1718}
1719
1720void btrfs_readdir_put_delayed_items(struct inode *inode,
1721 struct list_head *ins_list,
1722 struct list_head *del_list)
1723{
1724 struct btrfs_delayed_item *curr, *next;
1725
1726 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1727 list_del(entry: &curr->readdir_list);
1728 if (refcount_dec_and_test(r: &curr->refs))
1729 kfree(objp: curr);
1730 }
1731
1732 list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1733 list_del(entry: &curr->readdir_list);
1734 if (refcount_dec_and_test(r: &curr->refs))
1735 kfree(objp: curr);
1736 }
1737
1738 /*
1739 * The VFS is going to do up_read(), so we need to downgrade back to a
1740 * read lock.
1741 */
1742 downgrade_write(sem: &inode->i_rwsem);
1743}
1744
1745int btrfs_should_delete_dir_index(struct list_head *del_list,
1746 u64 index)
1747{
1748 struct btrfs_delayed_item *curr;
1749 int ret = 0;
1750
1751 list_for_each_entry(curr, del_list, readdir_list) {
1752 if (curr->index > index)
1753 break;
1754 if (curr->index == index) {
1755 ret = 1;
1756 break;
1757 }
1758 }
1759 return ret;
1760}
1761
1762/*
1763 * Read dir info stored in the delayed tree.
1764 */
1765int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
1766 struct list_head *ins_list)
1767{
1768 struct btrfs_dir_item *di;
1769 struct btrfs_delayed_item *curr, *next;
1770 struct btrfs_key location;
1771 char *name;
1772 int name_len;
1773 int over = 0;
1774 unsigned char d_type;
1775
1776 /*
1777 * Changing the data of the delayed item is impossible. So
1778 * we needn't lock them. And we have held i_mutex of the
1779 * directory, nobody can delete any directory indexes now.
1780 */
1781 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1782 list_del(entry: &curr->readdir_list);
1783
1784 if (curr->index < ctx->pos) {
1785 if (refcount_dec_and_test(r: &curr->refs))
1786 kfree(objp: curr);
1787 continue;
1788 }
1789
1790 ctx->pos = curr->index;
1791
1792 di = (struct btrfs_dir_item *)curr->data;
1793 name = (char *)(di + 1);
1794 name_len = btrfs_stack_dir_name_len(s: di);
1795
1796 d_type = fs_ftype_to_dtype(filetype: btrfs_dir_flags_to_ftype(flags: di->type));
1797 btrfs_disk_key_to_cpu(cpu_key: &location, disk_key: &di->location);
1798
1799 over = !dir_emit(ctx, name, namelen: name_len,
1800 ino: location.objectid, type: d_type);
1801
1802 if (refcount_dec_and_test(r: &curr->refs))
1803 kfree(objp: curr);
1804
1805 if (over)
1806 return 1;
1807 ctx->pos++;
1808 }
1809 return 0;
1810}
1811
1812static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1813 struct btrfs_inode_item *inode_item,
1814 struct inode *inode)
1815{
1816 u64 flags;
1817
1818 btrfs_set_stack_inode_uid(s: inode_item, val: i_uid_read(inode));
1819 btrfs_set_stack_inode_gid(s: inode_item, val: i_gid_read(inode));
1820 btrfs_set_stack_inode_size(s: inode_item, val: BTRFS_I(inode)->disk_i_size);
1821 btrfs_set_stack_inode_mode(s: inode_item, val: inode->i_mode);
1822 btrfs_set_stack_inode_nlink(s: inode_item, val: inode->i_nlink);
1823 btrfs_set_stack_inode_nbytes(s: inode_item, val: inode_get_bytes(inode));
1824 btrfs_set_stack_inode_generation(s: inode_item,
1825 val: BTRFS_I(inode)->generation);
1826 btrfs_set_stack_inode_sequence(s: inode_item,
1827 val: inode_peek_iversion(inode));
1828 btrfs_set_stack_inode_transid(s: inode_item, val: trans->transid);
1829 btrfs_set_stack_inode_rdev(s: inode_item, val: inode->i_rdev);
1830 flags = btrfs_inode_combine_flags(flags: BTRFS_I(inode)->flags,
1831 ro_flags: BTRFS_I(inode)->ro_flags);
1832 btrfs_set_stack_inode_flags(s: inode_item, val: flags);
1833 btrfs_set_stack_inode_block_group(s: inode_item, val: 0);
1834
1835 btrfs_set_stack_timespec_sec(s: &inode_item->atime,
1836 val: inode_get_atime_sec(inode));
1837 btrfs_set_stack_timespec_nsec(s: &inode_item->atime,
1838 val: inode_get_atime_nsec(inode));
1839
1840 btrfs_set_stack_timespec_sec(s: &inode_item->mtime,
1841 val: inode_get_mtime_sec(inode));
1842 btrfs_set_stack_timespec_nsec(s: &inode_item->mtime,
1843 val: inode_get_mtime_nsec(inode));
1844
1845 btrfs_set_stack_timespec_sec(s: &inode_item->ctime,
1846 val: inode_get_ctime_sec(inode));
1847 btrfs_set_stack_timespec_nsec(s: &inode_item->ctime,
1848 val: inode_get_ctime_nsec(inode));
1849
1850 btrfs_set_stack_timespec_sec(s: &inode_item->otime, val: BTRFS_I(inode)->i_otime_sec);
1851 btrfs_set_stack_timespec_nsec(s: &inode_item->otime, val: BTRFS_I(inode)->i_otime_nsec);
1852}
1853
1854int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1855{
1856 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1857 struct btrfs_delayed_node *delayed_node;
1858 struct btrfs_inode_item *inode_item;
1859
1860 delayed_node = btrfs_get_delayed_node(btrfs_inode: BTRFS_I(inode));
1861 if (!delayed_node)
1862 return -ENOENT;
1863
1864 mutex_lock(&delayed_node->mutex);
1865 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1866 mutex_unlock(lock: &delayed_node->mutex);
1867 btrfs_release_delayed_node(node: delayed_node);
1868 return -ENOENT;
1869 }
1870
1871 inode_item = &delayed_node->inode_item;
1872
1873 i_uid_write(inode, uid: btrfs_stack_inode_uid(s: inode_item));
1874 i_gid_write(inode, gid: btrfs_stack_inode_gid(s: inode_item));
1875 btrfs_i_size_write(inode: BTRFS_I(inode), size: btrfs_stack_inode_size(s: inode_item));
1876 btrfs_inode_set_file_extent_range(inode: BTRFS_I(inode), start: 0,
1877 round_up(i_size_read(inode), fs_info->sectorsize));
1878 inode->i_mode = btrfs_stack_inode_mode(s: inode_item);
1879 set_nlink(inode, nlink: btrfs_stack_inode_nlink(s: inode_item));
1880 inode_set_bytes(inode, bytes: btrfs_stack_inode_nbytes(s: inode_item));
1881 BTRFS_I(inode)->generation = btrfs_stack_inode_generation(s: inode_item);
1882 BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(s: inode_item);
1883
1884 inode_set_iversion_queried(inode,
1885 val: btrfs_stack_inode_sequence(s: inode_item));
1886 inode->i_rdev = 0;
1887 *rdev = btrfs_stack_inode_rdev(s: inode_item);
1888 btrfs_inode_split_flags(inode_item_flags: btrfs_stack_inode_flags(s: inode_item),
1889 flags: &BTRFS_I(inode)->flags, ro_flags: &BTRFS_I(inode)->ro_flags);
1890
1891 inode_set_atime(inode, sec: btrfs_stack_timespec_sec(s: &inode_item->atime),
1892 nsec: btrfs_stack_timespec_nsec(s: &inode_item->atime));
1893
1894 inode_set_mtime(inode, sec: btrfs_stack_timespec_sec(s: &inode_item->mtime),
1895 nsec: btrfs_stack_timespec_nsec(s: &inode_item->mtime));
1896
1897 inode_set_ctime(inode, sec: btrfs_stack_timespec_sec(s: &inode_item->ctime),
1898 nsec: btrfs_stack_timespec_nsec(s: &inode_item->ctime));
1899
1900 BTRFS_I(inode)->i_otime_sec = btrfs_stack_timespec_sec(s: &inode_item->otime);
1901 BTRFS_I(inode)->i_otime_nsec = btrfs_stack_timespec_nsec(s: &inode_item->otime);
1902
1903 inode->i_generation = BTRFS_I(inode)->generation;
1904 BTRFS_I(inode)->index_cnt = (u64)-1;
1905
1906 mutex_unlock(lock: &delayed_node->mutex);
1907 btrfs_release_delayed_node(node: delayed_node);
1908 return 0;
1909}
1910
1911int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1912 struct btrfs_inode *inode)
1913{
1914 struct btrfs_root *root = inode->root;
1915 struct btrfs_delayed_node *delayed_node;
1916 int ret = 0;
1917
1918 delayed_node = btrfs_get_or_create_delayed_node(btrfs_inode: inode);
1919 if (IS_ERR(ptr: delayed_node))
1920 return PTR_ERR(ptr: delayed_node);
1921
1922 mutex_lock(&delayed_node->mutex);
1923 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1924 fill_stack_inode_item(trans, inode_item: &delayed_node->inode_item,
1925 inode: &inode->vfs_inode);
1926 goto release_node;
1927 }
1928
1929 ret = btrfs_delayed_inode_reserve_metadata(trans, root, node: delayed_node);
1930 if (ret)
1931 goto release_node;
1932
1933 fill_stack_inode_item(trans, inode_item: &delayed_node->inode_item, inode: &inode->vfs_inode);
1934 set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, addr: &delayed_node->flags);
1935 delayed_node->count++;
1936 atomic_inc(v: &root->fs_info->delayed_root->items);
1937release_node:
1938 mutex_unlock(lock: &delayed_node->mutex);
1939 btrfs_release_delayed_node(node: delayed_node);
1940 return ret;
1941}
1942
1943int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode)
1944{
1945 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1946 struct btrfs_delayed_node *delayed_node;
1947
1948 /*
1949 * we don't do delayed inode updates during log recovery because it
1950 * leads to enospc problems. This means we also can't do
1951 * delayed inode refs
1952 */
1953 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1954 return -EAGAIN;
1955
1956 delayed_node = btrfs_get_or_create_delayed_node(btrfs_inode: inode);
1957 if (IS_ERR(ptr: delayed_node))
1958 return PTR_ERR(ptr: delayed_node);
1959
1960 /*
1961 * We don't reserve space for inode ref deletion is because:
1962 * - We ONLY do async inode ref deletion for the inode who has only
1963 * one link(i_nlink == 1), it means there is only one inode ref.
1964 * And in most case, the inode ref and the inode item are in the
1965 * same leaf, and we will deal with them at the same time.
1966 * Since we are sure we will reserve the space for the inode item,
1967 * it is unnecessary to reserve space for inode ref deletion.
1968 * - If the inode ref and the inode item are not in the same leaf,
1969 * We also needn't worry about enospc problem, because we reserve
1970 * much more space for the inode update than it needs.
1971 * - At the worst, we can steal some space from the global reservation.
1972 * It is very rare.
1973 */
1974 mutex_lock(&delayed_node->mutex);
1975 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1976 goto release_node;
1977
1978 set_bit(BTRFS_DELAYED_NODE_DEL_IREF, addr: &delayed_node->flags);
1979 delayed_node->count++;
1980 atomic_inc(v: &fs_info->delayed_root->items);
1981release_node:
1982 mutex_unlock(lock: &delayed_node->mutex);
1983 btrfs_release_delayed_node(node: delayed_node);
1984 return 0;
1985}
1986
1987static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1988{
1989 struct btrfs_root *root = delayed_node->root;
1990 struct btrfs_fs_info *fs_info = root->fs_info;
1991 struct btrfs_delayed_item *curr_item, *prev_item;
1992
1993 mutex_lock(&delayed_node->mutex);
1994 curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1995 while (curr_item) {
1996 prev_item = curr_item;
1997 curr_item = __btrfs_next_delayed_item(item: prev_item);
1998 btrfs_release_delayed_item(item: prev_item);
1999 }
2000
2001 if (delayed_node->index_item_leaves > 0) {
2002 btrfs_delayed_item_release_leaves(node: delayed_node,
2003 num_leaves: delayed_node->index_item_leaves);
2004 delayed_node->index_item_leaves = 0;
2005 }
2006
2007 curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
2008 while (curr_item) {
2009 btrfs_delayed_item_release_metadata(root, item: curr_item);
2010 prev_item = curr_item;
2011 curr_item = __btrfs_next_delayed_item(item: prev_item);
2012 btrfs_release_delayed_item(item: prev_item);
2013 }
2014
2015 btrfs_release_delayed_iref(delayed_node);
2016
2017 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
2018 btrfs_delayed_inode_release_metadata(fs_info, node: delayed_node, qgroup_free: false);
2019 btrfs_release_delayed_inode(delayed_node);
2020 }
2021 mutex_unlock(lock: &delayed_node->mutex);
2022}
2023
2024void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode)
2025{
2026 struct btrfs_delayed_node *delayed_node;
2027
2028 delayed_node = btrfs_get_delayed_node(btrfs_inode: inode);
2029 if (!delayed_node)
2030 return;
2031
2032 __btrfs_kill_delayed_node(delayed_node);
2033 btrfs_release_delayed_node(node: delayed_node);
2034}
2035
2036void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
2037{
2038 u64 inode_id = 0;
2039 struct btrfs_delayed_node *delayed_nodes[8];
2040 int i, n;
2041
2042 while (1) {
2043 spin_lock(lock: &root->inode_lock);
2044 n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
2045 results: (void **)delayed_nodes, first_index: inode_id,
2046 ARRAY_SIZE(delayed_nodes));
2047 if (!n) {
2048 spin_unlock(lock: &root->inode_lock);
2049 break;
2050 }
2051
2052 inode_id = delayed_nodes[n - 1]->inode_id + 1;
2053 for (i = 0; i < n; i++) {
2054 /*
2055 * Don't increase refs in case the node is dead and
2056 * about to be removed from the tree in the loop below
2057 */
2058 if (!refcount_inc_not_zero(r: &delayed_nodes[i]->refs))
2059 delayed_nodes[i] = NULL;
2060 }
2061 spin_unlock(lock: &root->inode_lock);
2062
2063 for (i = 0; i < n; i++) {
2064 if (!delayed_nodes[i])
2065 continue;
2066 __btrfs_kill_delayed_node(delayed_node: delayed_nodes[i]);
2067 btrfs_release_delayed_node(node: delayed_nodes[i]);
2068 }
2069 }
2070}
2071
2072void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info)
2073{
2074 struct btrfs_delayed_node *curr_node, *prev_node;
2075
2076 curr_node = btrfs_first_delayed_node(delayed_root: fs_info->delayed_root);
2077 while (curr_node) {
2078 __btrfs_kill_delayed_node(delayed_node: curr_node);
2079
2080 prev_node = curr_node;
2081 curr_node = btrfs_next_delayed_node(node: curr_node);
2082 btrfs_release_delayed_node(node: prev_node);
2083 }
2084}
2085
2086void btrfs_log_get_delayed_items(struct btrfs_inode *inode,
2087 struct list_head *ins_list,
2088 struct list_head *del_list)
2089{
2090 struct btrfs_delayed_node *node;
2091 struct btrfs_delayed_item *item;
2092
2093 node = btrfs_get_delayed_node(btrfs_inode: inode);
2094 if (!node)
2095 return;
2096
2097 mutex_lock(&node->mutex);
2098 item = __btrfs_first_delayed_insertion_item(delayed_node: node);
2099 while (item) {
2100 /*
2101 * It's possible that the item is already in a log list. This
2102 * can happen in case two tasks are trying to log the same
2103 * directory. For example if we have tasks A and task B:
2104 *
2105 * Task A collected the delayed items into a log list while
2106 * under the inode's log_mutex (at btrfs_log_inode()), but it
2107 * only releases the items after logging the inodes they point
2108 * to (if they are new inodes), which happens after unlocking
2109 * the log mutex;
2110 *
2111 * Task B enters btrfs_log_inode() and acquires the log_mutex
2112 * of the same directory inode, before task B releases the
2113 * delayed items. This can happen for example when logging some
2114 * inode we need to trigger logging of its parent directory, so
2115 * logging two files that have the same parent directory can
2116 * lead to this.
2117 *
2118 * If this happens, just ignore delayed items already in a log
2119 * list. All the tasks logging the directory are under a log
2120 * transaction and whichever finishes first can not sync the log
2121 * before the other completes and leaves the log transaction.
2122 */
2123 if (!item->logged && list_empty(head: &item->log_list)) {
2124 refcount_inc(r: &item->refs);
2125 list_add_tail(new: &item->log_list, head: ins_list);
2126 }
2127 item = __btrfs_next_delayed_item(item);
2128 }
2129
2130 item = __btrfs_first_delayed_deletion_item(delayed_node: node);
2131 while (item) {
2132 /* It may be non-empty, for the same reason mentioned above. */
2133 if (!item->logged && list_empty(head: &item->log_list)) {
2134 refcount_inc(r: &item->refs);
2135 list_add_tail(new: &item->log_list, head: del_list);
2136 }
2137 item = __btrfs_next_delayed_item(item);
2138 }
2139 mutex_unlock(lock: &node->mutex);
2140
2141 /*
2142 * We are called during inode logging, which means the inode is in use
2143 * and can not be evicted before we finish logging the inode. So we never
2144 * have the last reference on the delayed inode.
2145 * Also, we don't use btrfs_release_delayed_node() because that would
2146 * requeue the delayed inode (change its order in the list of prepared
2147 * nodes) and we don't want to do such change because we don't create or
2148 * delete delayed items.
2149 */
2150 ASSERT(refcount_read(&node->refs) > 1);
2151 refcount_dec(r: &node->refs);
2152}
2153
2154void btrfs_log_put_delayed_items(struct btrfs_inode *inode,
2155 struct list_head *ins_list,
2156 struct list_head *del_list)
2157{
2158 struct btrfs_delayed_node *node;
2159 struct btrfs_delayed_item *item;
2160 struct btrfs_delayed_item *next;
2161
2162 node = btrfs_get_delayed_node(btrfs_inode: inode);
2163 if (!node)
2164 return;
2165
2166 mutex_lock(&node->mutex);
2167
2168 list_for_each_entry_safe(item, next, ins_list, log_list) {
2169 item->logged = true;
2170 list_del_init(entry: &item->log_list);
2171 if (refcount_dec_and_test(r: &item->refs))
2172 kfree(objp: item);
2173 }
2174
2175 list_for_each_entry_safe(item, next, del_list, log_list) {
2176 item->logged = true;
2177 list_del_init(entry: &item->log_list);
2178 if (refcount_dec_and_test(r: &item->refs))
2179 kfree(objp: item);
2180 }
2181
2182 mutex_unlock(lock: &node->mutex);
2183
2184 /*
2185 * We are called during inode logging, which means the inode is in use
2186 * and can not be evicted before we finish logging the inode. So we never
2187 * have the last reference on the delayed inode.
2188 * Also, we don't use btrfs_release_delayed_node() because that would
2189 * requeue the delayed inode (change its order in the list of prepared
2190 * nodes) and we don't want to do such change because we don't create or
2191 * delete delayed items.
2192 */
2193 ASSERT(refcount_read(&node->refs) > 1);
2194 refcount_dec(r: &node->refs);
2195}
2196

source code of linux/fs/btrfs/delayed-inode.c