1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6#include <linux/sched.h>
7#include <linux/sched/signal.h>
8#include <linux/pagemap.h>
9#include <linux/writeback.h>
10#include <linux/blkdev.h>
11#include <linux/sort.h>
12#include <linux/rcupdate.h>
13#include <linux/kthread.h>
14#include <linux/slab.h>
15#include <linux/ratelimit.h>
16#include <linux/percpu_counter.h>
17#include <linux/lockdep.h>
18#include <linux/crc32c.h>
19#include "ctree.h"
20#include "extent-tree.h"
21#include "tree-log.h"
22#include "disk-io.h"
23#include "print-tree.h"
24#include "volumes.h"
25#include "raid56.h"
26#include "locking.h"
27#include "free-space-cache.h"
28#include "free-space-tree.h"
29#include "sysfs.h"
30#include "qgroup.h"
31#include "ref-verify.h"
32#include "space-info.h"
33#include "block-rsv.h"
34#include "delalloc-space.h"
35#include "discard.h"
36#include "rcu-string.h"
37#include "zoned.h"
38#include "dev-replace.h"
39#include "fs.h"
40#include "accessors.h"
41#include "root-tree.h"
42#include "file-item.h"
43#include "orphan.h"
44#include "tree-checker.h"
45#include "raid-stripe-tree.h"
46
47#undef SCRAMBLE_DELAYED_REFS
48
49
50static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
51 struct btrfs_delayed_ref_head *href,
52 struct btrfs_delayed_ref_node *node, u64 parent,
53 u64 root_objectid, u64 owner_objectid,
54 u64 owner_offset,
55 struct btrfs_delayed_extent_op *extra_op);
56static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
57 struct extent_buffer *leaf,
58 struct btrfs_extent_item *ei);
59static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
60 u64 parent, u64 root_objectid,
61 u64 flags, u64 owner, u64 offset,
62 struct btrfs_key *ins, int ref_mod, u64 oref_root);
63static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
64 struct btrfs_delayed_ref_node *node,
65 struct btrfs_delayed_extent_op *extent_op);
66static int find_next_key(struct btrfs_path *path, int level,
67 struct btrfs_key *key);
68
69static int block_group_bits(struct btrfs_block_group *cache, u64 bits)
70{
71 return (cache->flags & bits) == bits;
72}
73
74/* simple helper to search for an existing data extent at a given offset */
75int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
76{
77 struct btrfs_root *root = btrfs_extent_root(fs_info, bytenr: start);
78 int ret;
79 struct btrfs_key key;
80 struct btrfs_path *path;
81
82 path = btrfs_alloc_path();
83 if (!path)
84 return -ENOMEM;
85
86 key.objectid = start;
87 key.offset = len;
88 key.type = BTRFS_EXTENT_ITEM_KEY;
89 ret = btrfs_search_slot(NULL, root, key: &key, p: path, ins_len: 0, cow: 0);
90 btrfs_free_path(p: path);
91 return ret;
92}
93
94/*
95 * helper function to lookup reference count and flags of a tree block.
96 *
97 * the head node for delayed ref is used to store the sum of all the
98 * reference count modifications queued up in the rbtree. the head
99 * node may also store the extent flags to set. This way you can check
100 * to see what the reference count and extent flags would be if all of
101 * the delayed refs are not processed.
102 */
103int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
104 struct btrfs_fs_info *fs_info, u64 bytenr,
105 u64 offset, int metadata, u64 *refs, u64 *flags)
106{
107 struct btrfs_root *extent_root;
108 struct btrfs_delayed_ref_head *head;
109 struct btrfs_delayed_ref_root *delayed_refs;
110 struct btrfs_path *path;
111 struct btrfs_extent_item *ei;
112 struct extent_buffer *leaf;
113 struct btrfs_key key;
114 u32 item_size;
115 u64 num_refs;
116 u64 extent_flags;
117 int ret;
118
119 /*
120 * If we don't have skinny metadata, don't bother doing anything
121 * different
122 */
123 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
124 offset = fs_info->nodesize;
125 metadata = 0;
126 }
127
128 path = btrfs_alloc_path();
129 if (!path)
130 return -ENOMEM;
131
132 if (!trans) {
133 path->skip_locking = 1;
134 path->search_commit_root = 1;
135 }
136
137search_again:
138 key.objectid = bytenr;
139 key.offset = offset;
140 if (metadata)
141 key.type = BTRFS_METADATA_ITEM_KEY;
142 else
143 key.type = BTRFS_EXTENT_ITEM_KEY;
144
145 extent_root = btrfs_extent_root(fs_info, bytenr);
146 ret = btrfs_search_slot(NULL, root: extent_root, key: &key, p: path, ins_len: 0, cow: 0);
147 if (ret < 0)
148 goto out_free;
149
150 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
151 if (path->slots[0]) {
152 path->slots[0]--;
153 btrfs_item_key_to_cpu(eb: path->nodes[0], cpu_key: &key,
154 nr: path->slots[0]);
155 if (key.objectid == bytenr &&
156 key.type == BTRFS_EXTENT_ITEM_KEY &&
157 key.offset == fs_info->nodesize)
158 ret = 0;
159 }
160 }
161
162 if (ret == 0) {
163 leaf = path->nodes[0];
164 item_size = btrfs_item_size(eb: leaf, slot: path->slots[0]);
165 if (item_size >= sizeof(*ei)) {
166 ei = btrfs_item_ptr(leaf, path->slots[0],
167 struct btrfs_extent_item);
168 num_refs = btrfs_extent_refs(eb: leaf, s: ei);
169 extent_flags = btrfs_extent_flags(eb: leaf, s: ei);
170 } else {
171 ret = -EUCLEAN;
172 btrfs_err(fs_info,
173 "unexpected extent item size, has %u expect >= %zu",
174 item_size, sizeof(*ei));
175 if (trans)
176 btrfs_abort_transaction(trans, ret);
177 else
178 btrfs_handle_fs_error(fs_info, ret, NULL);
179
180 goto out_free;
181 }
182
183 BUG_ON(num_refs == 0);
184 } else {
185 num_refs = 0;
186 extent_flags = 0;
187 ret = 0;
188 }
189
190 if (!trans)
191 goto out;
192
193 delayed_refs = &trans->transaction->delayed_refs;
194 spin_lock(lock: &delayed_refs->lock);
195 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
196 if (head) {
197 if (!mutex_trylock(lock: &head->mutex)) {
198 refcount_inc(r: &head->refs);
199 spin_unlock(lock: &delayed_refs->lock);
200
201 btrfs_release_path(p: path);
202
203 /*
204 * Mutex was contended, block until it's released and try
205 * again
206 */
207 mutex_lock(&head->mutex);
208 mutex_unlock(lock: &head->mutex);
209 btrfs_put_delayed_ref_head(head);
210 goto search_again;
211 }
212 spin_lock(lock: &head->lock);
213 if (head->extent_op && head->extent_op->update_flags)
214 extent_flags |= head->extent_op->flags_to_set;
215 else
216 BUG_ON(num_refs == 0);
217
218 num_refs += head->ref_mod;
219 spin_unlock(lock: &head->lock);
220 mutex_unlock(lock: &head->mutex);
221 }
222 spin_unlock(lock: &delayed_refs->lock);
223out:
224 WARN_ON(num_refs == 0);
225 if (refs)
226 *refs = num_refs;
227 if (flags)
228 *flags = extent_flags;
229out_free:
230 btrfs_free_path(p: path);
231 return ret;
232}
233
234/*
235 * Back reference rules. Back refs have three main goals:
236 *
237 * 1) differentiate between all holders of references to an extent so that
238 * when a reference is dropped we can make sure it was a valid reference
239 * before freeing the extent.
240 *
241 * 2) Provide enough information to quickly find the holders of an extent
242 * if we notice a given block is corrupted or bad.
243 *
244 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
245 * maintenance. This is actually the same as #2, but with a slightly
246 * different use case.
247 *
248 * There are two kinds of back refs. The implicit back refs is optimized
249 * for pointers in non-shared tree blocks. For a given pointer in a block,
250 * back refs of this kind provide information about the block's owner tree
251 * and the pointer's key. These information allow us to find the block by
252 * b-tree searching. The full back refs is for pointers in tree blocks not
253 * referenced by their owner trees. The location of tree block is recorded
254 * in the back refs. Actually the full back refs is generic, and can be
255 * used in all cases the implicit back refs is used. The major shortcoming
256 * of the full back refs is its overhead. Every time a tree block gets
257 * COWed, we have to update back refs entry for all pointers in it.
258 *
259 * For a newly allocated tree block, we use implicit back refs for
260 * pointers in it. This means most tree related operations only involve
261 * implicit back refs. For a tree block created in old transaction, the
262 * only way to drop a reference to it is COW it. So we can detect the
263 * event that tree block loses its owner tree's reference and do the
264 * back refs conversion.
265 *
266 * When a tree block is COWed through a tree, there are four cases:
267 *
268 * The reference count of the block is one and the tree is the block's
269 * owner tree. Nothing to do in this case.
270 *
271 * The reference count of the block is one and the tree is not the
272 * block's owner tree. In this case, full back refs is used for pointers
273 * in the block. Remove these full back refs, add implicit back refs for
274 * every pointers in the new block.
275 *
276 * The reference count of the block is greater than one and the tree is
277 * the block's owner tree. In this case, implicit back refs is used for
278 * pointers in the block. Add full back refs for every pointers in the
279 * block, increase lower level extents' reference counts. The original
280 * implicit back refs are entailed to the new block.
281 *
282 * The reference count of the block is greater than one and the tree is
283 * not the block's owner tree. Add implicit back refs for every pointer in
284 * the new block, increase lower level extents' reference count.
285 *
286 * Back Reference Key composing:
287 *
288 * The key objectid corresponds to the first byte in the extent,
289 * The key type is used to differentiate between types of back refs.
290 * There are different meanings of the key offset for different types
291 * of back refs.
292 *
293 * File extents can be referenced by:
294 *
295 * - multiple snapshots, subvolumes, or different generations in one subvol
296 * - different files inside a single subvolume
297 * - different offsets inside a file (bookend extents in file.c)
298 *
299 * The extent ref structure for the implicit back refs has fields for:
300 *
301 * - Objectid of the subvolume root
302 * - objectid of the file holding the reference
303 * - original offset in the file
304 * - how many bookend extents
305 *
306 * The key offset for the implicit back refs is hash of the first
307 * three fields.
308 *
309 * The extent ref structure for the full back refs has field for:
310 *
311 * - number of pointers in the tree leaf
312 *
313 * The key offset for the implicit back refs is the first byte of
314 * the tree leaf
315 *
316 * When a file extent is allocated, The implicit back refs is used.
317 * the fields are filled in:
318 *
319 * (root_key.objectid, inode objectid, offset in file, 1)
320 *
321 * When a file extent is removed file truncation, we find the
322 * corresponding implicit back refs and check the following fields:
323 *
324 * (btrfs_header_owner(leaf), inode objectid, offset in file)
325 *
326 * Btree extents can be referenced by:
327 *
328 * - Different subvolumes
329 *
330 * Both the implicit back refs and the full back refs for tree blocks
331 * only consist of key. The key offset for the implicit back refs is
332 * objectid of block's owner tree. The key offset for the full back refs
333 * is the first byte of parent block.
334 *
335 * When implicit back refs is used, information about the lowest key and
336 * level of the tree block are required. These information are stored in
337 * tree block info structure.
338 */
339
340/*
341 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
342 * is_data == BTRFS_REF_TYPE_DATA, data type is requiried,
343 * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
344 */
345int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
346 struct btrfs_extent_inline_ref *iref,
347 enum btrfs_inline_ref_type is_data)
348{
349 struct btrfs_fs_info *fs_info = eb->fs_info;
350 int type = btrfs_extent_inline_ref_type(eb, s: iref);
351 u64 offset = btrfs_extent_inline_ref_offset(eb, s: iref);
352
353 if (type == BTRFS_EXTENT_OWNER_REF_KEY) {
354 ASSERT(btrfs_fs_incompat(fs_info, SIMPLE_QUOTA));
355 return type;
356 }
357
358 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
359 type == BTRFS_SHARED_BLOCK_REF_KEY ||
360 type == BTRFS_SHARED_DATA_REF_KEY ||
361 type == BTRFS_EXTENT_DATA_REF_KEY) {
362 if (is_data == BTRFS_REF_TYPE_BLOCK) {
363 if (type == BTRFS_TREE_BLOCK_REF_KEY)
364 return type;
365 if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
366 ASSERT(fs_info);
367 /*
368 * Every shared one has parent tree block,
369 * which must be aligned to sector size.
370 */
371 if (offset && IS_ALIGNED(offset, fs_info->sectorsize))
372 return type;
373 }
374 } else if (is_data == BTRFS_REF_TYPE_DATA) {
375 if (type == BTRFS_EXTENT_DATA_REF_KEY)
376 return type;
377 if (type == BTRFS_SHARED_DATA_REF_KEY) {
378 ASSERT(fs_info);
379 /*
380 * Every shared one has parent tree block,
381 * which must be aligned to sector size.
382 */
383 if (offset &&
384 IS_ALIGNED(offset, fs_info->sectorsize))
385 return type;
386 }
387 } else {
388 ASSERT(is_data == BTRFS_REF_TYPE_ANY);
389 return type;
390 }
391 }
392
393 WARN_ON(1);
394 btrfs_print_leaf(l: eb);
395 btrfs_err(fs_info,
396 "eb %llu iref 0x%lx invalid extent inline ref type %d",
397 eb->start, (unsigned long)iref, type);
398
399 return BTRFS_REF_TYPE_INVALID;
400}
401
402u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
403{
404 u32 high_crc = ~(u32)0;
405 u32 low_crc = ~(u32)0;
406 __le64 lenum;
407
408 lenum = cpu_to_le64(root_objectid);
409 high_crc = crc32c(crc: high_crc, address: &lenum, length: sizeof(lenum));
410 lenum = cpu_to_le64(owner);
411 low_crc = crc32c(crc: low_crc, address: &lenum, length: sizeof(lenum));
412 lenum = cpu_to_le64(offset);
413 low_crc = crc32c(crc: low_crc, address: &lenum, length: sizeof(lenum));
414
415 return ((u64)high_crc << 31) ^ (u64)low_crc;
416}
417
418static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
419 struct btrfs_extent_data_ref *ref)
420{
421 return hash_extent_data_ref(root_objectid: btrfs_extent_data_ref_root(eb: leaf, s: ref),
422 owner: btrfs_extent_data_ref_objectid(eb: leaf, s: ref),
423 offset: btrfs_extent_data_ref_offset(eb: leaf, s: ref));
424}
425
426static int match_extent_data_ref(struct extent_buffer *leaf,
427 struct btrfs_extent_data_ref *ref,
428 u64 root_objectid, u64 owner, u64 offset)
429{
430 if (btrfs_extent_data_ref_root(eb: leaf, s: ref) != root_objectid ||
431 btrfs_extent_data_ref_objectid(eb: leaf, s: ref) != owner ||
432 btrfs_extent_data_ref_offset(eb: leaf, s: ref) != offset)
433 return 0;
434 return 1;
435}
436
437static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
438 struct btrfs_path *path,
439 u64 bytenr, u64 parent,
440 u64 root_objectid,
441 u64 owner, u64 offset)
442{
443 struct btrfs_root *root = btrfs_extent_root(fs_info: trans->fs_info, bytenr);
444 struct btrfs_key key;
445 struct btrfs_extent_data_ref *ref;
446 struct extent_buffer *leaf;
447 u32 nritems;
448 int ret;
449 int recow;
450 int err = -ENOENT;
451
452 key.objectid = bytenr;
453 if (parent) {
454 key.type = BTRFS_SHARED_DATA_REF_KEY;
455 key.offset = parent;
456 } else {
457 key.type = BTRFS_EXTENT_DATA_REF_KEY;
458 key.offset = hash_extent_data_ref(root_objectid,
459 owner, offset);
460 }
461again:
462 recow = 0;
463 ret = btrfs_search_slot(trans, root, key: &key, p: path, ins_len: -1, cow: 1);
464 if (ret < 0) {
465 err = ret;
466 goto fail;
467 }
468
469 if (parent) {
470 if (!ret)
471 return 0;
472 goto fail;
473 }
474
475 leaf = path->nodes[0];
476 nritems = btrfs_header_nritems(eb: leaf);
477 while (1) {
478 if (path->slots[0] >= nritems) {
479 ret = btrfs_next_leaf(root, path);
480 if (ret < 0)
481 err = ret;
482 if (ret)
483 goto fail;
484
485 leaf = path->nodes[0];
486 nritems = btrfs_header_nritems(eb: leaf);
487 recow = 1;
488 }
489
490 btrfs_item_key_to_cpu(eb: leaf, cpu_key: &key, nr: path->slots[0]);
491 if (key.objectid != bytenr ||
492 key.type != BTRFS_EXTENT_DATA_REF_KEY)
493 goto fail;
494
495 ref = btrfs_item_ptr(leaf, path->slots[0],
496 struct btrfs_extent_data_ref);
497
498 if (match_extent_data_ref(leaf, ref, root_objectid,
499 owner, offset)) {
500 if (recow) {
501 btrfs_release_path(p: path);
502 goto again;
503 }
504 err = 0;
505 break;
506 }
507 path->slots[0]++;
508 }
509fail:
510 return err;
511}
512
513static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
514 struct btrfs_path *path,
515 u64 bytenr, u64 parent,
516 u64 root_objectid, u64 owner,
517 u64 offset, int refs_to_add)
518{
519 struct btrfs_root *root = btrfs_extent_root(fs_info: trans->fs_info, bytenr);
520 struct btrfs_key key;
521 struct extent_buffer *leaf;
522 u32 size;
523 u32 num_refs;
524 int ret;
525
526 key.objectid = bytenr;
527 if (parent) {
528 key.type = BTRFS_SHARED_DATA_REF_KEY;
529 key.offset = parent;
530 size = sizeof(struct btrfs_shared_data_ref);
531 } else {
532 key.type = BTRFS_EXTENT_DATA_REF_KEY;
533 key.offset = hash_extent_data_ref(root_objectid,
534 owner, offset);
535 size = sizeof(struct btrfs_extent_data_ref);
536 }
537
538 ret = btrfs_insert_empty_item(trans, root, path, key: &key, data_size: size);
539 if (ret && ret != -EEXIST)
540 goto fail;
541
542 leaf = path->nodes[0];
543 if (parent) {
544 struct btrfs_shared_data_ref *ref;
545 ref = btrfs_item_ptr(leaf, path->slots[0],
546 struct btrfs_shared_data_ref);
547 if (ret == 0) {
548 btrfs_set_shared_data_ref_count(eb: leaf, s: ref, val: refs_to_add);
549 } else {
550 num_refs = btrfs_shared_data_ref_count(eb: leaf, s: ref);
551 num_refs += refs_to_add;
552 btrfs_set_shared_data_ref_count(eb: leaf, s: ref, val: num_refs);
553 }
554 } else {
555 struct btrfs_extent_data_ref *ref;
556 while (ret == -EEXIST) {
557 ref = btrfs_item_ptr(leaf, path->slots[0],
558 struct btrfs_extent_data_ref);
559 if (match_extent_data_ref(leaf, ref, root_objectid,
560 owner, offset))
561 break;
562 btrfs_release_path(p: path);
563 key.offset++;
564 ret = btrfs_insert_empty_item(trans, root, path, key: &key,
565 data_size: size);
566 if (ret && ret != -EEXIST)
567 goto fail;
568
569 leaf = path->nodes[0];
570 }
571 ref = btrfs_item_ptr(leaf, path->slots[0],
572 struct btrfs_extent_data_ref);
573 if (ret == 0) {
574 btrfs_set_extent_data_ref_root(eb: leaf, s: ref,
575 val: root_objectid);
576 btrfs_set_extent_data_ref_objectid(eb: leaf, s: ref, val: owner);
577 btrfs_set_extent_data_ref_offset(eb: leaf, s: ref, val: offset);
578 btrfs_set_extent_data_ref_count(eb: leaf, s: ref, val: refs_to_add);
579 } else {
580 num_refs = btrfs_extent_data_ref_count(eb: leaf, s: ref);
581 num_refs += refs_to_add;
582 btrfs_set_extent_data_ref_count(eb: leaf, s: ref, val: num_refs);
583 }
584 }
585 btrfs_mark_buffer_dirty(trans, buf: leaf);
586 ret = 0;
587fail:
588 btrfs_release_path(p: path);
589 return ret;
590}
591
592static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
593 struct btrfs_root *root,
594 struct btrfs_path *path,
595 int refs_to_drop)
596{
597 struct btrfs_key key;
598 struct btrfs_extent_data_ref *ref1 = NULL;
599 struct btrfs_shared_data_ref *ref2 = NULL;
600 struct extent_buffer *leaf;
601 u32 num_refs = 0;
602 int ret = 0;
603
604 leaf = path->nodes[0];
605 btrfs_item_key_to_cpu(eb: leaf, cpu_key: &key, nr: path->slots[0]);
606
607 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
608 ref1 = btrfs_item_ptr(leaf, path->slots[0],
609 struct btrfs_extent_data_ref);
610 num_refs = btrfs_extent_data_ref_count(eb: leaf, s: ref1);
611 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
612 ref2 = btrfs_item_ptr(leaf, path->slots[0],
613 struct btrfs_shared_data_ref);
614 num_refs = btrfs_shared_data_ref_count(eb: leaf, s: ref2);
615 } else {
616 btrfs_err(trans->fs_info,
617 "unrecognized backref key (%llu %u %llu)",
618 key.objectid, key.type, key.offset);
619 btrfs_abort_transaction(trans, -EUCLEAN);
620 return -EUCLEAN;
621 }
622
623 BUG_ON(num_refs < refs_to_drop);
624 num_refs -= refs_to_drop;
625
626 if (num_refs == 0) {
627 ret = btrfs_del_item(trans, root, path);
628 } else {
629 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
630 btrfs_set_extent_data_ref_count(eb: leaf, s: ref1, val: num_refs);
631 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
632 btrfs_set_shared_data_ref_count(eb: leaf, s: ref2, val: num_refs);
633 btrfs_mark_buffer_dirty(trans, buf: leaf);
634 }
635 return ret;
636}
637
638static noinline u32 extent_data_ref_count(struct btrfs_path *path,
639 struct btrfs_extent_inline_ref *iref)
640{
641 struct btrfs_key key;
642 struct extent_buffer *leaf;
643 struct btrfs_extent_data_ref *ref1;
644 struct btrfs_shared_data_ref *ref2;
645 u32 num_refs = 0;
646 int type;
647
648 leaf = path->nodes[0];
649 btrfs_item_key_to_cpu(eb: leaf, cpu_key: &key, nr: path->slots[0]);
650
651 if (iref) {
652 /*
653 * If type is invalid, we should have bailed out earlier than
654 * this call.
655 */
656 type = btrfs_get_extent_inline_ref_type(eb: leaf, iref, is_data: BTRFS_REF_TYPE_DATA);
657 ASSERT(type != BTRFS_REF_TYPE_INVALID);
658 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
659 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
660 num_refs = btrfs_extent_data_ref_count(eb: leaf, s: ref1);
661 } else {
662 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
663 num_refs = btrfs_shared_data_ref_count(eb: leaf, s: ref2);
664 }
665 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
666 ref1 = btrfs_item_ptr(leaf, path->slots[0],
667 struct btrfs_extent_data_ref);
668 num_refs = btrfs_extent_data_ref_count(eb: leaf, s: ref1);
669 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
670 ref2 = btrfs_item_ptr(leaf, path->slots[0],
671 struct btrfs_shared_data_ref);
672 num_refs = btrfs_shared_data_ref_count(eb: leaf, s: ref2);
673 } else {
674 WARN_ON(1);
675 }
676 return num_refs;
677}
678
679static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
680 struct btrfs_path *path,
681 u64 bytenr, u64 parent,
682 u64 root_objectid)
683{
684 struct btrfs_root *root = btrfs_extent_root(fs_info: trans->fs_info, bytenr);
685 struct btrfs_key key;
686 int ret;
687
688 key.objectid = bytenr;
689 if (parent) {
690 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
691 key.offset = parent;
692 } else {
693 key.type = BTRFS_TREE_BLOCK_REF_KEY;
694 key.offset = root_objectid;
695 }
696
697 ret = btrfs_search_slot(trans, root, key: &key, p: path, ins_len: -1, cow: 1);
698 if (ret > 0)
699 ret = -ENOENT;
700 return ret;
701}
702
703static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
704 struct btrfs_path *path,
705 u64 bytenr, u64 parent,
706 u64 root_objectid)
707{
708 struct btrfs_root *root = btrfs_extent_root(fs_info: trans->fs_info, bytenr);
709 struct btrfs_key key;
710 int ret;
711
712 key.objectid = bytenr;
713 if (parent) {
714 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
715 key.offset = parent;
716 } else {
717 key.type = BTRFS_TREE_BLOCK_REF_KEY;
718 key.offset = root_objectid;
719 }
720
721 ret = btrfs_insert_empty_item(trans, root, path, key: &key, data_size: 0);
722 btrfs_release_path(p: path);
723 return ret;
724}
725
726static inline int extent_ref_type(u64 parent, u64 owner)
727{
728 int type;
729 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
730 if (parent > 0)
731 type = BTRFS_SHARED_BLOCK_REF_KEY;
732 else
733 type = BTRFS_TREE_BLOCK_REF_KEY;
734 } else {
735 if (parent > 0)
736 type = BTRFS_SHARED_DATA_REF_KEY;
737 else
738 type = BTRFS_EXTENT_DATA_REF_KEY;
739 }
740 return type;
741}
742
743static int find_next_key(struct btrfs_path *path, int level,
744 struct btrfs_key *key)
745
746{
747 for (; level < BTRFS_MAX_LEVEL; level++) {
748 if (!path->nodes[level])
749 break;
750 if (path->slots[level] + 1 >=
751 btrfs_header_nritems(eb: path->nodes[level]))
752 continue;
753 if (level == 0)
754 btrfs_item_key_to_cpu(eb: path->nodes[level], cpu_key: key,
755 nr: path->slots[level] + 1);
756 else
757 btrfs_node_key_to_cpu(eb: path->nodes[level], cpu_key: key,
758 nr: path->slots[level] + 1);
759 return 0;
760 }
761 return 1;
762}
763
764/*
765 * look for inline back ref. if back ref is found, *ref_ret is set
766 * to the address of inline back ref, and 0 is returned.
767 *
768 * if back ref isn't found, *ref_ret is set to the address where it
769 * should be inserted, and -ENOENT is returned.
770 *
771 * if insert is true and there are too many inline back refs, the path
772 * points to the extent item, and -EAGAIN is returned.
773 *
774 * NOTE: inline back refs are ordered in the same way that back ref
775 * items in the tree are ordered.
776 */
777static noinline_for_stack
778int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
779 struct btrfs_path *path,
780 struct btrfs_extent_inline_ref **ref_ret,
781 u64 bytenr, u64 num_bytes,
782 u64 parent, u64 root_objectid,
783 u64 owner, u64 offset, int insert)
784{
785 struct btrfs_fs_info *fs_info = trans->fs_info;
786 struct btrfs_root *root = btrfs_extent_root(fs_info, bytenr);
787 struct btrfs_key key;
788 struct extent_buffer *leaf;
789 struct btrfs_extent_item *ei;
790 struct btrfs_extent_inline_ref *iref;
791 u64 flags;
792 u64 item_size;
793 unsigned long ptr;
794 unsigned long end;
795 int extra_size;
796 int type;
797 int want;
798 int ret;
799 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
800 int needed;
801
802 key.objectid = bytenr;
803 key.type = BTRFS_EXTENT_ITEM_KEY;
804 key.offset = num_bytes;
805
806 want = extent_ref_type(parent, owner);
807 if (insert) {
808 extra_size = btrfs_extent_inline_ref_size(type: want);
809 path->search_for_extension = 1;
810 path->keep_locks = 1;
811 } else
812 extra_size = -1;
813
814 /*
815 * Owner is our level, so we can just add one to get the level for the
816 * block we are interested in.
817 */
818 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
819 key.type = BTRFS_METADATA_ITEM_KEY;
820 key.offset = owner;
821 }
822
823again:
824 ret = btrfs_search_slot(trans, root, key: &key, p: path, ins_len: extra_size, cow: 1);
825 if (ret < 0)
826 goto out;
827
828 /*
829 * We may be a newly converted file system which still has the old fat
830 * extent entries for metadata, so try and see if we have one of those.
831 */
832 if (ret > 0 && skinny_metadata) {
833 skinny_metadata = false;
834 if (path->slots[0]) {
835 path->slots[0]--;
836 btrfs_item_key_to_cpu(eb: path->nodes[0], cpu_key: &key,
837 nr: path->slots[0]);
838 if (key.objectid == bytenr &&
839 key.type == BTRFS_EXTENT_ITEM_KEY &&
840 key.offset == num_bytes)
841 ret = 0;
842 }
843 if (ret) {
844 key.objectid = bytenr;
845 key.type = BTRFS_EXTENT_ITEM_KEY;
846 key.offset = num_bytes;
847 btrfs_release_path(p: path);
848 goto again;
849 }
850 }
851
852 if (ret && !insert) {
853 ret = -ENOENT;
854 goto out;
855 } else if (WARN_ON(ret)) {
856 btrfs_print_leaf(l: path->nodes[0]);
857 btrfs_err(fs_info,
858"extent item not found for insert, bytenr %llu num_bytes %llu parent %llu root_objectid %llu owner %llu offset %llu",
859 bytenr, num_bytes, parent, root_objectid, owner,
860 offset);
861 ret = -EUCLEAN;
862 goto out;
863 }
864
865 leaf = path->nodes[0];
866 item_size = btrfs_item_size(eb: leaf, slot: path->slots[0]);
867 if (unlikely(item_size < sizeof(*ei))) {
868 ret = -EUCLEAN;
869 btrfs_err(fs_info,
870 "unexpected extent item size, has %llu expect >= %zu",
871 item_size, sizeof(*ei));
872 btrfs_abort_transaction(trans, ret);
873 goto out;
874 }
875
876 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
877 flags = btrfs_extent_flags(eb: leaf, s: ei);
878
879 ptr = (unsigned long)(ei + 1);
880 end = (unsigned long)ei + item_size;
881
882 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
883 ptr += sizeof(struct btrfs_tree_block_info);
884 BUG_ON(ptr > end);
885 }
886
887 if (owner >= BTRFS_FIRST_FREE_OBJECTID)
888 needed = BTRFS_REF_TYPE_DATA;
889 else
890 needed = BTRFS_REF_TYPE_BLOCK;
891
892 ret = -ENOENT;
893 while (ptr < end) {
894 iref = (struct btrfs_extent_inline_ref *)ptr;
895 type = btrfs_get_extent_inline_ref_type(eb: leaf, iref, is_data: needed);
896 if (type == BTRFS_EXTENT_OWNER_REF_KEY) {
897 ASSERT(btrfs_fs_incompat(fs_info, SIMPLE_QUOTA));
898 ptr += btrfs_extent_inline_ref_size(type);
899 continue;
900 }
901 if (type == BTRFS_REF_TYPE_INVALID) {
902 ret = -EUCLEAN;
903 goto out;
904 }
905
906 if (want < type)
907 break;
908 if (want > type) {
909 ptr += btrfs_extent_inline_ref_size(type);
910 continue;
911 }
912
913 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
914 struct btrfs_extent_data_ref *dref;
915 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
916 if (match_extent_data_ref(leaf, ref: dref, root_objectid,
917 owner, offset)) {
918 ret = 0;
919 break;
920 }
921 if (hash_extent_data_ref_item(leaf, ref: dref) <
922 hash_extent_data_ref(root_objectid, owner, offset))
923 break;
924 } else {
925 u64 ref_offset;
926 ref_offset = btrfs_extent_inline_ref_offset(eb: leaf, s: iref);
927 if (parent > 0) {
928 if (parent == ref_offset) {
929 ret = 0;
930 break;
931 }
932 if (ref_offset < parent)
933 break;
934 } else {
935 if (root_objectid == ref_offset) {
936 ret = 0;
937 break;
938 }
939 if (ref_offset < root_objectid)
940 break;
941 }
942 }
943 ptr += btrfs_extent_inline_ref_size(type);
944 }
945
946 if (unlikely(ptr > end)) {
947 ret = -EUCLEAN;
948 btrfs_print_leaf(l: path->nodes[0]);
949 btrfs_crit(fs_info,
950"overrun extent record at slot %d while looking for inline extent for root %llu owner %llu offset %llu parent %llu",
951 path->slots[0], root_objectid, owner, offset, parent);
952 goto out;
953 }
954
955 if (ret == -ENOENT && insert) {
956 if (item_size + extra_size >=
957 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
958 ret = -EAGAIN;
959 goto out;
960 }
961 /*
962 * To add new inline back ref, we have to make sure
963 * there is no corresponding back ref item.
964 * For simplicity, we just do not add new inline back
965 * ref if there is any kind of item for this block
966 */
967 if (find_next_key(path, level: 0, key: &key) == 0 &&
968 key.objectid == bytenr &&
969 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
970 ret = -EAGAIN;
971 goto out;
972 }
973 }
974 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
975out:
976 if (insert) {
977 path->keep_locks = 0;
978 path->search_for_extension = 0;
979 btrfs_unlock_up_safe(path, level: 1);
980 }
981 return ret;
982}
983
984/*
985 * helper to add new inline back ref
986 */
987static noinline_for_stack
988void setup_inline_extent_backref(struct btrfs_trans_handle *trans,
989 struct btrfs_path *path,
990 struct btrfs_extent_inline_ref *iref,
991 u64 parent, u64 root_objectid,
992 u64 owner, u64 offset, int refs_to_add,
993 struct btrfs_delayed_extent_op *extent_op)
994{
995 struct extent_buffer *leaf;
996 struct btrfs_extent_item *ei;
997 unsigned long ptr;
998 unsigned long end;
999 unsigned long item_offset;
1000 u64 refs;
1001 int size;
1002 int type;
1003
1004 leaf = path->nodes[0];
1005 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1006 item_offset = (unsigned long)iref - (unsigned long)ei;
1007
1008 type = extent_ref_type(parent, owner);
1009 size = btrfs_extent_inline_ref_size(type);
1010
1011 btrfs_extend_item(trans, path, data_size: size);
1012
1013 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1014 refs = btrfs_extent_refs(eb: leaf, s: ei);
1015 refs += refs_to_add;
1016 btrfs_set_extent_refs(eb: leaf, s: ei, val: refs);
1017 if (extent_op)
1018 __run_delayed_extent_op(extent_op, leaf, ei);
1019
1020 ptr = (unsigned long)ei + item_offset;
1021 end = (unsigned long)ei + btrfs_item_size(eb: leaf, slot: path->slots[0]);
1022 if (ptr < end - size)
1023 memmove_extent_buffer(dst: leaf, dst_offset: ptr + size, src_offset: ptr,
1024 len: end - size - ptr);
1025
1026 iref = (struct btrfs_extent_inline_ref *)ptr;
1027 btrfs_set_extent_inline_ref_type(eb: leaf, s: iref, val: type);
1028 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1029 struct btrfs_extent_data_ref *dref;
1030 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1031 btrfs_set_extent_data_ref_root(eb: leaf, s: dref, val: root_objectid);
1032 btrfs_set_extent_data_ref_objectid(eb: leaf, s: dref, val: owner);
1033 btrfs_set_extent_data_ref_offset(eb: leaf, s: dref, val: offset);
1034 btrfs_set_extent_data_ref_count(eb: leaf, s: dref, val: refs_to_add);
1035 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1036 struct btrfs_shared_data_ref *sref;
1037 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1038 btrfs_set_shared_data_ref_count(eb: leaf, s: sref, val: refs_to_add);
1039 btrfs_set_extent_inline_ref_offset(eb: leaf, s: iref, val: parent);
1040 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1041 btrfs_set_extent_inline_ref_offset(eb: leaf, s: iref, val: parent);
1042 } else {
1043 btrfs_set_extent_inline_ref_offset(eb: leaf, s: iref, val: root_objectid);
1044 }
1045 btrfs_mark_buffer_dirty(trans, buf: leaf);
1046}
1047
1048static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1049 struct btrfs_path *path,
1050 struct btrfs_extent_inline_ref **ref_ret,
1051 u64 bytenr, u64 num_bytes, u64 parent,
1052 u64 root_objectid, u64 owner, u64 offset)
1053{
1054 int ret;
1055
1056 ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr,
1057 num_bytes, parent, root_objectid,
1058 owner, offset, insert: 0);
1059 if (ret != -ENOENT)
1060 return ret;
1061
1062 btrfs_release_path(p: path);
1063 *ref_ret = NULL;
1064
1065 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1066 ret = lookup_tree_block_ref(trans, path, bytenr, parent,
1067 root_objectid);
1068 } else {
1069 ret = lookup_extent_data_ref(trans, path, bytenr, parent,
1070 root_objectid, owner, offset);
1071 }
1072 return ret;
1073}
1074
1075/*
1076 * helper to update/remove inline back ref
1077 */
1078static noinline_for_stack int update_inline_extent_backref(
1079 struct btrfs_trans_handle *trans,
1080 struct btrfs_path *path,
1081 struct btrfs_extent_inline_ref *iref,
1082 int refs_to_mod,
1083 struct btrfs_delayed_extent_op *extent_op)
1084{
1085 struct extent_buffer *leaf = path->nodes[0];
1086 struct btrfs_fs_info *fs_info = leaf->fs_info;
1087 struct btrfs_extent_item *ei;
1088 struct btrfs_extent_data_ref *dref = NULL;
1089 struct btrfs_shared_data_ref *sref = NULL;
1090 unsigned long ptr;
1091 unsigned long end;
1092 u32 item_size;
1093 int size;
1094 int type;
1095 u64 refs;
1096
1097 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1098 refs = btrfs_extent_refs(eb: leaf, s: ei);
1099 if (unlikely(refs_to_mod < 0 && refs + refs_to_mod <= 0)) {
1100 struct btrfs_key key;
1101 u32 extent_size;
1102
1103 btrfs_item_key_to_cpu(eb: leaf, cpu_key: &key, nr: path->slots[0]);
1104 if (key.type == BTRFS_METADATA_ITEM_KEY)
1105 extent_size = fs_info->nodesize;
1106 else
1107 extent_size = key.offset;
1108 btrfs_print_leaf(l: leaf);
1109 btrfs_err(fs_info,
1110 "invalid refs_to_mod for extent %llu num_bytes %u, has %d expect >= -%llu",
1111 key.objectid, extent_size, refs_to_mod, refs);
1112 return -EUCLEAN;
1113 }
1114 refs += refs_to_mod;
1115 btrfs_set_extent_refs(eb: leaf, s: ei, val: refs);
1116 if (extent_op)
1117 __run_delayed_extent_op(extent_op, leaf, ei);
1118
1119 type = btrfs_get_extent_inline_ref_type(eb: leaf, iref, is_data: BTRFS_REF_TYPE_ANY);
1120 /*
1121 * Function btrfs_get_extent_inline_ref_type() has already printed
1122 * error messages.
1123 */
1124 if (unlikely(type == BTRFS_REF_TYPE_INVALID))
1125 return -EUCLEAN;
1126
1127 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1128 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1129 refs = btrfs_extent_data_ref_count(eb: leaf, s: dref);
1130 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1131 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1132 refs = btrfs_shared_data_ref_count(eb: leaf, s: sref);
1133 } else {
1134 refs = 1;
1135 /*
1136 * For tree blocks we can only drop one ref for it, and tree
1137 * blocks should not have refs > 1.
1138 *
1139 * Furthermore if we're inserting a new inline backref, we
1140 * won't reach this path either. That would be
1141 * setup_inline_extent_backref().
1142 */
1143 if (unlikely(refs_to_mod != -1)) {
1144 struct btrfs_key key;
1145
1146 btrfs_item_key_to_cpu(eb: leaf, cpu_key: &key, nr: path->slots[0]);
1147
1148 btrfs_print_leaf(l: leaf);
1149 btrfs_err(fs_info,
1150 "invalid refs_to_mod for tree block %llu, has %d expect -1",
1151 key.objectid, refs_to_mod);
1152 return -EUCLEAN;
1153 }
1154 }
1155
1156 if (unlikely(refs_to_mod < 0 && refs < -refs_to_mod)) {
1157 struct btrfs_key key;
1158 u32 extent_size;
1159
1160 btrfs_item_key_to_cpu(eb: leaf, cpu_key: &key, nr: path->slots[0]);
1161 if (key.type == BTRFS_METADATA_ITEM_KEY)
1162 extent_size = fs_info->nodesize;
1163 else
1164 extent_size = key.offset;
1165 btrfs_print_leaf(l: leaf);
1166 btrfs_err(fs_info,
1167"invalid refs_to_mod for backref entry, iref %lu extent %llu num_bytes %u, has %d expect >= -%llu",
1168 (unsigned long)iref, key.objectid, extent_size,
1169 refs_to_mod, refs);
1170 return -EUCLEAN;
1171 }
1172 refs += refs_to_mod;
1173
1174 if (refs > 0) {
1175 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1176 btrfs_set_extent_data_ref_count(eb: leaf, s: dref, val: refs);
1177 else
1178 btrfs_set_shared_data_ref_count(eb: leaf, s: sref, val: refs);
1179 } else {
1180 size = btrfs_extent_inline_ref_size(type);
1181 item_size = btrfs_item_size(eb: leaf, slot: path->slots[0]);
1182 ptr = (unsigned long)iref;
1183 end = (unsigned long)ei + item_size;
1184 if (ptr + size < end)
1185 memmove_extent_buffer(dst: leaf, dst_offset: ptr, src_offset: ptr + size,
1186 len: end - ptr - size);
1187 item_size -= size;
1188 btrfs_truncate_item(trans, path, new_size: item_size, from_end: 1);
1189 }
1190 btrfs_mark_buffer_dirty(trans, buf: leaf);
1191 return 0;
1192}
1193
1194static noinline_for_stack
1195int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1196 struct btrfs_path *path,
1197 u64 bytenr, u64 num_bytes, u64 parent,
1198 u64 root_objectid, u64 owner,
1199 u64 offset, int refs_to_add,
1200 struct btrfs_delayed_extent_op *extent_op)
1201{
1202 struct btrfs_extent_inline_ref *iref;
1203 int ret;
1204
1205 ret = lookup_inline_extent_backref(trans, path, ref_ret: &iref, bytenr,
1206 num_bytes, parent, root_objectid,
1207 owner, offset, insert: 1);
1208 if (ret == 0) {
1209 /*
1210 * We're adding refs to a tree block we already own, this
1211 * should not happen at all.
1212 */
1213 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1214 btrfs_print_leaf(l: path->nodes[0]);
1215 btrfs_crit(trans->fs_info,
1216"adding refs to an existing tree ref, bytenr %llu num_bytes %llu root_objectid %llu slot %u",
1217 bytenr, num_bytes, root_objectid, path->slots[0]);
1218 return -EUCLEAN;
1219 }
1220 ret = update_inline_extent_backref(trans, path, iref,
1221 refs_to_mod: refs_to_add, extent_op);
1222 } else if (ret == -ENOENT) {
1223 setup_inline_extent_backref(trans, path, iref, parent,
1224 root_objectid, owner, offset,
1225 refs_to_add, extent_op);
1226 ret = 0;
1227 }
1228 return ret;
1229}
1230
1231static int remove_extent_backref(struct btrfs_trans_handle *trans,
1232 struct btrfs_root *root,
1233 struct btrfs_path *path,
1234 struct btrfs_extent_inline_ref *iref,
1235 int refs_to_drop, int is_data)
1236{
1237 int ret = 0;
1238
1239 BUG_ON(!is_data && refs_to_drop != 1);
1240 if (iref)
1241 ret = update_inline_extent_backref(trans, path, iref,
1242 refs_to_mod: -refs_to_drop, NULL);
1243 else if (is_data)
1244 ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1245 else
1246 ret = btrfs_del_item(trans, root, path);
1247 return ret;
1248}
1249
1250static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1251 u64 *discarded_bytes)
1252{
1253 int j, ret = 0;
1254 u64 bytes_left, end;
1255 u64 aligned_start = ALIGN(start, 1 << SECTOR_SHIFT);
1256
1257 if (WARN_ON(start != aligned_start)) {
1258 len -= aligned_start - start;
1259 len = round_down(len, 1 << SECTOR_SHIFT);
1260 start = aligned_start;
1261 }
1262
1263 *discarded_bytes = 0;
1264
1265 if (!len)
1266 return 0;
1267
1268 end = start + len;
1269 bytes_left = len;
1270
1271 /* Skip any superblocks on this device. */
1272 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1273 u64 sb_start = btrfs_sb_offset(mirror: j);
1274 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1275 u64 size = sb_start - start;
1276
1277 if (!in_range(sb_start, start, bytes_left) &&
1278 !in_range(sb_end, start, bytes_left) &&
1279 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1280 continue;
1281
1282 /*
1283 * Superblock spans beginning of range. Adjust start and
1284 * try again.
1285 */
1286 if (sb_start <= start) {
1287 start += sb_end - start;
1288 if (start > end) {
1289 bytes_left = 0;
1290 break;
1291 }
1292 bytes_left = end - start;
1293 continue;
1294 }
1295
1296 if (size) {
1297 ret = blkdev_issue_discard(bdev, sector: start >> SECTOR_SHIFT,
1298 nr_sects: size >> SECTOR_SHIFT,
1299 GFP_NOFS);
1300 if (!ret)
1301 *discarded_bytes += size;
1302 else if (ret != -EOPNOTSUPP)
1303 return ret;
1304 }
1305
1306 start = sb_end;
1307 if (start > end) {
1308 bytes_left = 0;
1309 break;
1310 }
1311 bytes_left = end - start;
1312 }
1313
1314 if (bytes_left) {
1315 ret = blkdev_issue_discard(bdev, sector: start >> SECTOR_SHIFT,
1316 nr_sects: bytes_left >> SECTOR_SHIFT,
1317 GFP_NOFS);
1318 if (!ret)
1319 *discarded_bytes += bytes_left;
1320 }
1321 return ret;
1322}
1323
1324static int do_discard_extent(struct btrfs_discard_stripe *stripe, u64 *bytes)
1325{
1326 struct btrfs_device *dev = stripe->dev;
1327 struct btrfs_fs_info *fs_info = dev->fs_info;
1328 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
1329 u64 phys = stripe->physical;
1330 u64 len = stripe->length;
1331 u64 discarded = 0;
1332 int ret = 0;
1333
1334 /* Zone reset on a zoned filesystem */
1335 if (btrfs_can_zone_reset(device: dev, physical: phys, length: len)) {
1336 u64 src_disc;
1337
1338 ret = btrfs_reset_device_zone(device: dev, physical: phys, length: len, bytes: &discarded);
1339 if (ret)
1340 goto out;
1341
1342 if (!btrfs_dev_replace_is_ongoing(dev_replace) ||
1343 dev != dev_replace->srcdev)
1344 goto out;
1345
1346 src_disc = discarded;
1347
1348 /* Send to replace target as well */
1349 ret = btrfs_reset_device_zone(device: dev_replace->tgtdev, physical: phys, length: len,
1350 bytes: &discarded);
1351 discarded += src_disc;
1352 } else if (bdev_max_discard_sectors(bdev: stripe->dev->bdev)) {
1353 ret = btrfs_issue_discard(bdev: dev->bdev, start: phys, len, discarded_bytes: &discarded);
1354 } else {
1355 ret = 0;
1356 *bytes = 0;
1357 }
1358
1359out:
1360 *bytes = discarded;
1361 return ret;
1362}
1363
1364int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
1365 u64 num_bytes, u64 *actual_bytes)
1366{
1367 int ret = 0;
1368 u64 discarded_bytes = 0;
1369 u64 end = bytenr + num_bytes;
1370 u64 cur = bytenr;
1371
1372 /*
1373 * Avoid races with device replace and make sure the devices in the
1374 * stripes don't go away while we are discarding.
1375 */
1376 btrfs_bio_counter_inc_blocked(fs_info);
1377 while (cur < end) {
1378 struct btrfs_discard_stripe *stripes;
1379 unsigned int num_stripes;
1380 int i;
1381
1382 num_bytes = end - cur;
1383 stripes = btrfs_map_discard(fs_info, logical: cur, length_ret: &num_bytes, num_stripes: &num_stripes);
1384 if (IS_ERR(ptr: stripes)) {
1385 ret = PTR_ERR(ptr: stripes);
1386 if (ret == -EOPNOTSUPP)
1387 ret = 0;
1388 break;
1389 }
1390
1391 for (i = 0; i < num_stripes; i++) {
1392 struct btrfs_discard_stripe *stripe = stripes + i;
1393 u64 bytes;
1394
1395 if (!stripe->dev->bdev) {
1396 ASSERT(btrfs_test_opt(fs_info, DEGRADED));
1397 continue;
1398 }
1399
1400 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
1401 &stripe->dev->dev_state))
1402 continue;
1403
1404 ret = do_discard_extent(stripe, bytes: &bytes);
1405 if (ret) {
1406 /*
1407 * Keep going if discard is not supported by the
1408 * device.
1409 */
1410 if (ret != -EOPNOTSUPP)
1411 break;
1412 ret = 0;
1413 } else {
1414 discarded_bytes += bytes;
1415 }
1416 }
1417 kfree(objp: stripes);
1418 if (ret)
1419 break;
1420 cur += num_bytes;
1421 }
1422 btrfs_bio_counter_dec(fs_info);
1423 if (actual_bytes)
1424 *actual_bytes = discarded_bytes;
1425 return ret;
1426}
1427
1428/* Can return -ENOMEM */
1429int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1430 struct btrfs_ref *generic_ref)
1431{
1432 struct btrfs_fs_info *fs_info = trans->fs_info;
1433 int ret;
1434
1435 ASSERT(generic_ref->type != BTRFS_REF_NOT_SET &&
1436 generic_ref->action);
1437 BUG_ON(generic_ref->type == BTRFS_REF_METADATA &&
1438 generic_ref->tree_ref.ref_root == BTRFS_TREE_LOG_OBJECTID);
1439
1440 if (generic_ref->type == BTRFS_REF_METADATA)
1441 ret = btrfs_add_delayed_tree_ref(trans, generic_ref, NULL);
1442 else
1443 ret = btrfs_add_delayed_data_ref(trans, generic_ref, reserved: 0);
1444
1445 btrfs_ref_tree_mod(fs_info, generic_ref);
1446
1447 return ret;
1448}
1449
1450/*
1451 * Insert backreference for a given extent.
1452 *
1453 * The counterpart is in __btrfs_free_extent(), with examples and more details
1454 * how it works.
1455 *
1456 * @trans: Handle of transaction
1457 *
1458 * @node: The delayed ref node used to get the bytenr/length for
1459 * extent whose references are incremented.
1460 *
1461 * @parent: If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/
1462 * BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical
1463 * bytenr of the parent block. Since new extents are always
1464 * created with indirect references, this will only be the case
1465 * when relocating a shared extent. In that case, root_objectid
1466 * will be BTRFS_TREE_RELOC_OBJECTID. Otherwise, parent must
1467 * be 0
1468 *
1469 * @root_objectid: The id of the root where this modification has originated,
1470 * this can be either one of the well-known metadata trees or
1471 * the subvolume id which references this extent.
1472 *
1473 * @owner: For data extents it is the inode number of the owning file.
1474 * For metadata extents this parameter holds the level in the
1475 * tree of the extent.
1476 *
1477 * @offset: For metadata extents the offset is ignored and is currently
1478 * always passed as 0. For data extents it is the fileoffset
1479 * this extent belongs to.
1480 *
1481 * @extent_op Pointer to a structure, holding information necessary when
1482 * updating a tree block's flags
1483 *
1484 */
1485static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1486 struct btrfs_delayed_ref_node *node,
1487 u64 parent, u64 root_objectid,
1488 u64 owner, u64 offset,
1489 struct btrfs_delayed_extent_op *extent_op)
1490{
1491 struct btrfs_path *path;
1492 struct extent_buffer *leaf;
1493 struct btrfs_extent_item *item;
1494 struct btrfs_key key;
1495 u64 bytenr = node->bytenr;
1496 u64 num_bytes = node->num_bytes;
1497 u64 refs;
1498 int refs_to_add = node->ref_mod;
1499 int ret;
1500
1501 path = btrfs_alloc_path();
1502 if (!path)
1503 return -ENOMEM;
1504
1505 /* this will setup the path even if it fails to insert the back ref */
1506 ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes,
1507 parent, root_objectid, owner,
1508 offset, refs_to_add, extent_op);
1509 if ((ret < 0 && ret != -EAGAIN) || !ret)
1510 goto out;
1511
1512 /*
1513 * Ok we had -EAGAIN which means we didn't have space to insert and
1514 * inline extent ref, so just update the reference count and add a
1515 * normal backref.
1516 */
1517 leaf = path->nodes[0];
1518 btrfs_item_key_to_cpu(eb: leaf, cpu_key: &key, nr: path->slots[0]);
1519 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1520 refs = btrfs_extent_refs(eb: leaf, s: item);
1521 btrfs_set_extent_refs(eb: leaf, s: item, val: refs + refs_to_add);
1522 if (extent_op)
1523 __run_delayed_extent_op(extent_op, leaf, ei: item);
1524
1525 btrfs_mark_buffer_dirty(trans, buf: leaf);
1526 btrfs_release_path(p: path);
1527
1528 /* now insert the actual backref */
1529 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1530 ret = insert_tree_block_ref(trans, path, bytenr, parent,
1531 root_objectid);
1532 else
1533 ret = insert_extent_data_ref(trans, path, bytenr, parent,
1534 root_objectid, owner, offset,
1535 refs_to_add);
1536
1537 if (ret)
1538 btrfs_abort_transaction(trans, ret);
1539out:
1540 btrfs_free_path(p: path);
1541 return ret;
1542}
1543
1544static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1545 struct btrfs_delayed_ref_head *href,
1546 struct btrfs_delayed_ref_node *node,
1547 struct btrfs_delayed_extent_op *extent_op,
1548 bool insert_reserved)
1549{
1550 int ret = 0;
1551 struct btrfs_delayed_data_ref *ref;
1552 u64 parent = 0;
1553 u64 flags = 0;
1554
1555 ref = btrfs_delayed_node_to_data_ref(node);
1556 trace_run_delayed_data_ref(fs_info: trans->fs_info, ref: node, full_ref: ref, action: node->action);
1557
1558 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1559 parent = ref->parent;
1560
1561 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1562 struct btrfs_key key;
1563 struct btrfs_squota_delta delta = {
1564 .root = href->owning_root,
1565 .num_bytes = node->num_bytes,
1566 .rsv_bytes = href->reserved_bytes,
1567 .is_data = true,
1568 .is_inc = true,
1569 .generation = trans->transid,
1570 };
1571
1572 if (extent_op)
1573 flags |= extent_op->flags_to_set;
1574
1575 key.objectid = node->bytenr;
1576 key.type = BTRFS_EXTENT_ITEM_KEY;
1577 key.offset = node->num_bytes;
1578
1579 ret = alloc_reserved_file_extent(trans, parent, root_objectid: ref->root,
1580 flags, owner: ref->objectid,
1581 offset: ref->offset, ins: &key,
1582 ref_mod: node->ref_mod, oref_root: href->owning_root);
1583 if (!ret)
1584 ret = btrfs_record_squota_delta(fs_info: trans->fs_info, delta: &delta);
1585 else
1586 btrfs_qgroup_free_refroot(fs_info: trans->fs_info, ref_root: delta.root,
1587 num_bytes: delta.rsv_bytes, type: BTRFS_QGROUP_RSV_DATA);
1588 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
1589 ret = __btrfs_inc_extent_ref(trans, node, parent, root_objectid: ref->root,
1590 owner: ref->objectid, offset: ref->offset,
1591 extent_op);
1592 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
1593 ret = __btrfs_free_extent(trans, href, node, parent,
1594 root_objectid: ref->root, owner_objectid: ref->objectid,
1595 owner_offset: ref->offset, extra_op: extent_op);
1596 } else {
1597 BUG();
1598 }
1599 return ret;
1600}
1601
1602static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
1603 struct extent_buffer *leaf,
1604 struct btrfs_extent_item *ei)
1605{
1606 u64 flags = btrfs_extent_flags(eb: leaf, s: ei);
1607 if (extent_op->update_flags) {
1608 flags |= extent_op->flags_to_set;
1609 btrfs_set_extent_flags(eb: leaf, s: ei, val: flags);
1610 }
1611
1612 if (extent_op->update_key) {
1613 struct btrfs_tree_block_info *bi;
1614 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
1615 bi = (struct btrfs_tree_block_info *)(ei + 1);
1616 btrfs_set_tree_block_key(eb: leaf, item: bi, key: &extent_op->key);
1617 }
1618}
1619
1620static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
1621 struct btrfs_delayed_ref_head *head,
1622 struct btrfs_delayed_extent_op *extent_op)
1623{
1624 struct btrfs_fs_info *fs_info = trans->fs_info;
1625 struct btrfs_root *root;
1626 struct btrfs_key key;
1627 struct btrfs_path *path;
1628 struct btrfs_extent_item *ei;
1629 struct extent_buffer *leaf;
1630 u32 item_size;
1631 int ret;
1632 int metadata = 1;
1633
1634 if (TRANS_ABORTED(trans))
1635 return 0;
1636
1637 if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1638 metadata = 0;
1639
1640 path = btrfs_alloc_path();
1641 if (!path)
1642 return -ENOMEM;
1643
1644 key.objectid = head->bytenr;
1645
1646 if (metadata) {
1647 key.type = BTRFS_METADATA_ITEM_KEY;
1648 key.offset = extent_op->level;
1649 } else {
1650 key.type = BTRFS_EXTENT_ITEM_KEY;
1651 key.offset = head->num_bytes;
1652 }
1653
1654 root = btrfs_extent_root(fs_info, bytenr: key.objectid);
1655again:
1656 ret = btrfs_search_slot(trans, root, key: &key, p: path, ins_len: 0, cow: 1);
1657 if (ret < 0) {
1658 goto out;
1659 } else if (ret > 0) {
1660 if (metadata) {
1661 if (path->slots[0] > 0) {
1662 path->slots[0]--;
1663 btrfs_item_key_to_cpu(eb: path->nodes[0], cpu_key: &key,
1664 nr: path->slots[0]);
1665 if (key.objectid == head->bytenr &&
1666 key.type == BTRFS_EXTENT_ITEM_KEY &&
1667 key.offset == head->num_bytes)
1668 ret = 0;
1669 }
1670 if (ret > 0) {
1671 btrfs_release_path(p: path);
1672 metadata = 0;
1673
1674 key.objectid = head->bytenr;
1675 key.offset = head->num_bytes;
1676 key.type = BTRFS_EXTENT_ITEM_KEY;
1677 goto again;
1678 }
1679 } else {
1680 ret = -EUCLEAN;
1681 btrfs_err(fs_info,
1682 "missing extent item for extent %llu num_bytes %llu level %d",
1683 head->bytenr, head->num_bytes, extent_op->level);
1684 goto out;
1685 }
1686 }
1687
1688 leaf = path->nodes[0];
1689 item_size = btrfs_item_size(eb: leaf, slot: path->slots[0]);
1690
1691 if (unlikely(item_size < sizeof(*ei))) {
1692 ret = -EUCLEAN;
1693 btrfs_err(fs_info,
1694 "unexpected extent item size, has %u expect >= %zu",
1695 item_size, sizeof(*ei));
1696 btrfs_abort_transaction(trans, ret);
1697 goto out;
1698 }
1699
1700 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1701 __run_delayed_extent_op(extent_op, leaf, ei);
1702
1703 btrfs_mark_buffer_dirty(trans, buf: leaf);
1704out:
1705 btrfs_free_path(p: path);
1706 return ret;
1707}
1708
1709static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
1710 struct btrfs_delayed_ref_head *href,
1711 struct btrfs_delayed_ref_node *node,
1712 struct btrfs_delayed_extent_op *extent_op,
1713 bool insert_reserved)
1714{
1715 int ret = 0;
1716 struct btrfs_fs_info *fs_info = trans->fs_info;
1717 struct btrfs_delayed_tree_ref *ref;
1718 u64 parent = 0;
1719 u64 ref_root = 0;
1720
1721 ref = btrfs_delayed_node_to_tree_ref(node);
1722 trace_run_delayed_tree_ref(fs_info: trans->fs_info, ref: node, full_ref: ref, action: node->action);
1723
1724 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1725 parent = ref->parent;
1726 ref_root = ref->root;
1727
1728 if (unlikely(node->ref_mod != 1)) {
1729 btrfs_err(trans->fs_info,
1730 "btree block %llu has %d references rather than 1: action %d ref_root %llu parent %llu",
1731 node->bytenr, node->ref_mod, node->action, ref_root,
1732 parent);
1733 return -EUCLEAN;
1734 }
1735 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1736 struct btrfs_squota_delta delta = {
1737 .root = href->owning_root,
1738 .num_bytes = fs_info->nodesize,
1739 .rsv_bytes = 0,
1740 .is_data = false,
1741 .is_inc = true,
1742 .generation = trans->transid,
1743 };
1744
1745 BUG_ON(!extent_op || !extent_op->update_flags);
1746 ret = alloc_reserved_tree_block(trans, node, extent_op);
1747 if (!ret)
1748 btrfs_record_squota_delta(fs_info, delta: &delta);
1749 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
1750 ret = __btrfs_inc_extent_ref(trans, node, parent, root_objectid: ref_root,
1751 owner: ref->level, offset: 0, extent_op);
1752 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
1753 ret = __btrfs_free_extent(trans, href, node, parent, root_objectid: ref_root,
1754 owner_objectid: ref->level, owner_offset: 0, extra_op: extent_op);
1755 } else {
1756 BUG();
1757 }
1758 return ret;
1759}
1760
1761/* helper function to actually process a single delayed ref entry */
1762static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
1763 struct btrfs_delayed_ref_head *href,
1764 struct btrfs_delayed_ref_node *node,
1765 struct btrfs_delayed_extent_op *extent_op,
1766 bool insert_reserved)
1767{
1768 int ret = 0;
1769
1770 if (TRANS_ABORTED(trans)) {
1771 if (insert_reserved)
1772 btrfs_pin_extent(trans, bytenr: node->bytenr, num: node->num_bytes, reserved: 1);
1773 return 0;
1774 }
1775
1776 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
1777 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1778 ret = run_delayed_tree_ref(trans, href, node, extent_op,
1779 insert_reserved);
1780 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
1781 node->type == BTRFS_SHARED_DATA_REF_KEY)
1782 ret = run_delayed_data_ref(trans, href, node, extent_op,
1783 insert_reserved);
1784 else if (node->type == BTRFS_EXTENT_OWNER_REF_KEY)
1785 ret = 0;
1786 else
1787 BUG();
1788 if (ret && insert_reserved)
1789 btrfs_pin_extent(trans, bytenr: node->bytenr, num: node->num_bytes, reserved: 1);
1790 if (ret < 0)
1791 btrfs_err(trans->fs_info,
1792"failed to run delayed ref for logical %llu num_bytes %llu type %u action %u ref_mod %d: %d",
1793 node->bytenr, node->num_bytes, node->type,
1794 node->action, node->ref_mod, ret);
1795 return ret;
1796}
1797
1798static inline struct btrfs_delayed_ref_node *
1799select_delayed_ref(struct btrfs_delayed_ref_head *head)
1800{
1801 struct btrfs_delayed_ref_node *ref;
1802
1803 if (RB_EMPTY_ROOT(&head->ref_tree.rb_root))
1804 return NULL;
1805
1806 /*
1807 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
1808 * This is to prevent a ref count from going down to zero, which deletes
1809 * the extent item from the extent tree, when there still are references
1810 * to add, which would fail because they would not find the extent item.
1811 */
1812 if (!list_empty(head: &head->ref_add_list))
1813 return list_first_entry(&head->ref_add_list,
1814 struct btrfs_delayed_ref_node, add_list);
1815
1816 ref = rb_entry(rb_first_cached(&head->ref_tree),
1817 struct btrfs_delayed_ref_node, ref_node);
1818 ASSERT(list_empty(&ref->add_list));
1819 return ref;
1820}
1821
1822static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
1823 struct btrfs_delayed_ref_head *head)
1824{
1825 spin_lock(lock: &delayed_refs->lock);
1826 head->processing = false;
1827 delayed_refs->num_heads_ready++;
1828 spin_unlock(lock: &delayed_refs->lock);
1829 btrfs_delayed_ref_unlock(head);
1830}
1831
1832static struct btrfs_delayed_extent_op *cleanup_extent_op(
1833 struct btrfs_delayed_ref_head *head)
1834{
1835 struct btrfs_delayed_extent_op *extent_op = head->extent_op;
1836
1837 if (!extent_op)
1838 return NULL;
1839
1840 if (head->must_insert_reserved) {
1841 head->extent_op = NULL;
1842 btrfs_free_delayed_extent_op(op: extent_op);
1843 return NULL;
1844 }
1845 return extent_op;
1846}
1847
1848static int run_and_cleanup_extent_op(struct btrfs_trans_handle *trans,
1849 struct btrfs_delayed_ref_head *head)
1850{
1851 struct btrfs_delayed_extent_op *extent_op;
1852 int ret;
1853
1854 extent_op = cleanup_extent_op(head);
1855 if (!extent_op)
1856 return 0;
1857 head->extent_op = NULL;
1858 spin_unlock(lock: &head->lock);
1859 ret = run_delayed_extent_op(trans, head, extent_op);
1860 btrfs_free_delayed_extent_op(op: extent_op);
1861 return ret ? ret : 1;
1862}
1863
1864u64 btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info,
1865 struct btrfs_delayed_ref_root *delayed_refs,
1866 struct btrfs_delayed_ref_head *head)
1867{
1868 /*
1869 * We had csum deletions accounted for in our delayed refs rsv, we need
1870 * to drop the csum leaves for this update from our delayed_refs_rsv.
1871 */
1872 if (head->total_ref_mod < 0 && head->is_data) {
1873 int nr_csums;
1874
1875 spin_lock(lock: &delayed_refs->lock);
1876 delayed_refs->pending_csums -= head->num_bytes;
1877 spin_unlock(lock: &delayed_refs->lock);
1878 nr_csums = btrfs_csum_bytes_to_leaves(fs_info, csum_bytes: head->num_bytes);
1879
1880 btrfs_delayed_refs_rsv_release(fs_info, nr_refs: 0, nr_csums);
1881
1882 return btrfs_calc_delayed_ref_csum_bytes(fs_info, num_csum_items: nr_csums);
1883 }
1884 if (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_SIMPLE &&
1885 head->must_insert_reserved && head->is_data)
1886 btrfs_qgroup_free_refroot(fs_info, ref_root: head->owning_root,
1887 num_bytes: head->reserved_bytes, type: BTRFS_QGROUP_RSV_DATA);
1888
1889 return 0;
1890}
1891
1892static int cleanup_ref_head(struct btrfs_trans_handle *trans,
1893 struct btrfs_delayed_ref_head *head,
1894 u64 *bytes_released)
1895{
1896
1897 struct btrfs_fs_info *fs_info = trans->fs_info;
1898 struct btrfs_delayed_ref_root *delayed_refs;
1899 int ret;
1900
1901 delayed_refs = &trans->transaction->delayed_refs;
1902
1903 ret = run_and_cleanup_extent_op(trans, head);
1904 if (ret < 0) {
1905 unselect_delayed_ref_head(delayed_refs, head);
1906 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
1907 return ret;
1908 } else if (ret) {
1909 return ret;
1910 }
1911
1912 /*
1913 * Need to drop our head ref lock and re-acquire the delayed ref lock
1914 * and then re-check to make sure nobody got added.
1915 */
1916 spin_unlock(lock: &head->lock);
1917 spin_lock(lock: &delayed_refs->lock);
1918 spin_lock(lock: &head->lock);
1919 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) {
1920 spin_unlock(lock: &head->lock);
1921 spin_unlock(lock: &delayed_refs->lock);
1922 return 1;
1923 }
1924 btrfs_delete_ref_head(delayed_refs, head);
1925 spin_unlock(lock: &head->lock);
1926 spin_unlock(lock: &delayed_refs->lock);
1927
1928 if (head->must_insert_reserved) {
1929 btrfs_pin_extent(trans, bytenr: head->bytenr, num: head->num_bytes, reserved: 1);
1930 if (head->is_data) {
1931 struct btrfs_root *csum_root;
1932
1933 csum_root = btrfs_csum_root(fs_info, bytenr: head->bytenr);
1934 ret = btrfs_del_csums(trans, root: csum_root, bytenr: head->bytenr,
1935 len: head->num_bytes);
1936 }
1937 }
1938
1939 *bytes_released += btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
1940
1941 trace_run_delayed_ref_head(fs_info, head_ref: head, action: 0);
1942 btrfs_delayed_ref_unlock(head);
1943 btrfs_put_delayed_ref_head(head);
1944 return ret;
1945}
1946
1947static struct btrfs_delayed_ref_head *btrfs_obtain_ref_head(
1948 struct btrfs_trans_handle *trans)
1949{
1950 struct btrfs_delayed_ref_root *delayed_refs =
1951 &trans->transaction->delayed_refs;
1952 struct btrfs_delayed_ref_head *head = NULL;
1953 int ret;
1954
1955 spin_lock(lock: &delayed_refs->lock);
1956 head = btrfs_select_ref_head(delayed_refs);
1957 if (!head) {
1958 spin_unlock(lock: &delayed_refs->lock);
1959 return head;
1960 }
1961
1962 /*
1963 * Grab the lock that says we are going to process all the refs for
1964 * this head
1965 */
1966 ret = btrfs_delayed_ref_lock(delayed_refs, head);
1967 spin_unlock(lock: &delayed_refs->lock);
1968
1969 /*
1970 * We may have dropped the spin lock to get the head mutex lock, and
1971 * that might have given someone else time to free the head. If that's
1972 * true, it has been removed from our list and we can move on.
1973 */
1974 if (ret == -EAGAIN)
1975 head = ERR_PTR(error: -EAGAIN);
1976
1977 return head;
1978}
1979
1980static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans,
1981 struct btrfs_delayed_ref_head *locked_ref,
1982 u64 *bytes_released)
1983{
1984 struct btrfs_fs_info *fs_info = trans->fs_info;
1985 struct btrfs_delayed_ref_root *delayed_refs;
1986 struct btrfs_delayed_extent_op *extent_op;
1987 struct btrfs_delayed_ref_node *ref;
1988 bool must_insert_reserved;
1989 int ret;
1990
1991 delayed_refs = &trans->transaction->delayed_refs;
1992
1993 lockdep_assert_held(&locked_ref->mutex);
1994 lockdep_assert_held(&locked_ref->lock);
1995
1996 while ((ref = select_delayed_ref(head: locked_ref))) {
1997 if (ref->seq &&
1998 btrfs_check_delayed_seq(fs_info, seq: ref->seq)) {
1999 spin_unlock(lock: &locked_ref->lock);
2000 unselect_delayed_ref_head(delayed_refs, head: locked_ref);
2001 return -EAGAIN;
2002 }
2003
2004 rb_erase_cached(node: &ref->ref_node, root: &locked_ref->ref_tree);
2005 RB_CLEAR_NODE(&ref->ref_node);
2006 if (!list_empty(head: &ref->add_list))
2007 list_del(entry: &ref->add_list);
2008 /*
2009 * When we play the delayed ref, also correct the ref_mod on
2010 * head
2011 */
2012 switch (ref->action) {
2013 case BTRFS_ADD_DELAYED_REF:
2014 case BTRFS_ADD_DELAYED_EXTENT:
2015 locked_ref->ref_mod -= ref->ref_mod;
2016 break;
2017 case BTRFS_DROP_DELAYED_REF:
2018 locked_ref->ref_mod += ref->ref_mod;
2019 break;
2020 default:
2021 WARN_ON(1);
2022 }
2023 atomic_dec(v: &delayed_refs->num_entries);
2024
2025 /*
2026 * Record the must_insert_reserved flag before we drop the
2027 * spin lock.
2028 */
2029 must_insert_reserved = locked_ref->must_insert_reserved;
2030 locked_ref->must_insert_reserved = false;
2031
2032 extent_op = locked_ref->extent_op;
2033 locked_ref->extent_op = NULL;
2034 spin_unlock(lock: &locked_ref->lock);
2035
2036 ret = run_one_delayed_ref(trans, href: locked_ref, node: ref, extent_op,
2037 insert_reserved: must_insert_reserved);
2038 btrfs_delayed_refs_rsv_release(fs_info, nr_refs: 1, nr_csums: 0);
2039 *bytes_released += btrfs_calc_delayed_ref_bytes(fs_info, num_delayed_refs: 1);
2040
2041 btrfs_free_delayed_extent_op(op: extent_op);
2042 if (ret) {
2043 unselect_delayed_ref_head(delayed_refs, head: locked_ref);
2044 btrfs_put_delayed_ref(ref);
2045 return ret;
2046 }
2047
2048 btrfs_put_delayed_ref(ref);
2049 cond_resched();
2050
2051 spin_lock(lock: &locked_ref->lock);
2052 btrfs_merge_delayed_refs(fs_info, delayed_refs, head: locked_ref);
2053 }
2054
2055 return 0;
2056}
2057
2058/*
2059 * Returns 0 on success or if called with an already aborted transaction.
2060 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2061 */
2062static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2063 u64 min_bytes)
2064{
2065 struct btrfs_fs_info *fs_info = trans->fs_info;
2066 struct btrfs_delayed_ref_root *delayed_refs;
2067 struct btrfs_delayed_ref_head *locked_ref = NULL;
2068 int ret;
2069 unsigned long count = 0;
2070 unsigned long max_count = 0;
2071 u64 bytes_processed = 0;
2072
2073 delayed_refs = &trans->transaction->delayed_refs;
2074 if (min_bytes == 0) {
2075 max_count = delayed_refs->num_heads_ready;
2076 min_bytes = U64_MAX;
2077 }
2078
2079 do {
2080 if (!locked_ref) {
2081 locked_ref = btrfs_obtain_ref_head(trans);
2082 if (IS_ERR_OR_NULL(ptr: locked_ref)) {
2083 if (PTR_ERR(ptr: locked_ref) == -EAGAIN) {
2084 continue;
2085 } else {
2086 break;
2087 }
2088 }
2089 count++;
2090 }
2091 /*
2092 * We need to try and merge add/drops of the same ref since we
2093 * can run into issues with relocate dropping the implicit ref
2094 * and then it being added back again before the drop can
2095 * finish. If we merged anything we need to re-loop so we can
2096 * get a good ref.
2097 * Or we can get node references of the same type that weren't
2098 * merged when created due to bumps in the tree mod seq, and
2099 * we need to merge them to prevent adding an inline extent
2100 * backref before dropping it (triggering a BUG_ON at
2101 * insert_inline_extent_backref()).
2102 */
2103 spin_lock(lock: &locked_ref->lock);
2104 btrfs_merge_delayed_refs(fs_info, delayed_refs, head: locked_ref);
2105
2106 ret = btrfs_run_delayed_refs_for_head(trans, locked_ref, bytes_released: &bytes_processed);
2107 if (ret < 0 && ret != -EAGAIN) {
2108 /*
2109 * Error, btrfs_run_delayed_refs_for_head already
2110 * unlocked everything so just bail out
2111 */
2112 return ret;
2113 } else if (!ret) {
2114 /*
2115 * Success, perform the usual cleanup of a processed
2116 * head
2117 */
2118 ret = cleanup_ref_head(trans, head: locked_ref, bytes_released: &bytes_processed);
2119 if (ret > 0 ) {
2120 /* We dropped our lock, we need to loop. */
2121 ret = 0;
2122 continue;
2123 } else if (ret) {
2124 return ret;
2125 }
2126 }
2127
2128 /*
2129 * Either success case or btrfs_run_delayed_refs_for_head
2130 * returned -EAGAIN, meaning we need to select another head
2131 */
2132
2133 locked_ref = NULL;
2134 cond_resched();
2135 } while ((min_bytes != U64_MAX && bytes_processed < min_bytes) ||
2136 (max_count > 0 && count < max_count) ||
2137 locked_ref);
2138
2139 return 0;
2140}
2141
2142#ifdef SCRAMBLE_DELAYED_REFS
2143/*
2144 * Normally delayed refs get processed in ascending bytenr order. This
2145 * correlates in most cases to the order added. To expose dependencies on this
2146 * order, we start to process the tree in the middle instead of the beginning
2147 */
2148static u64 find_middle(struct rb_root *root)
2149{
2150 struct rb_node *n = root->rb_node;
2151 struct btrfs_delayed_ref_node *entry;
2152 int alt = 1;
2153 u64 middle;
2154 u64 first = 0, last = 0;
2155
2156 n = rb_first(root);
2157 if (n) {
2158 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2159 first = entry->bytenr;
2160 }
2161 n = rb_last(root);
2162 if (n) {
2163 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2164 last = entry->bytenr;
2165 }
2166 n = root->rb_node;
2167
2168 while (n) {
2169 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2170 WARN_ON(!entry->in_tree);
2171
2172 middle = entry->bytenr;
2173
2174 if (alt)
2175 n = n->rb_left;
2176 else
2177 n = n->rb_right;
2178
2179 alt = 1 - alt;
2180 }
2181 return middle;
2182}
2183#endif
2184
2185/*
2186 * Start processing the delayed reference count updates and extent insertions
2187 * we have queued up so far.
2188 *
2189 * @trans: Transaction handle.
2190 * @min_bytes: How many bytes of delayed references to process. After this
2191 * many bytes we stop processing delayed references if there are
2192 * any more. If 0 it means to run all existing delayed references,
2193 * but not new ones added after running all existing ones.
2194 * Use (u64)-1 (U64_MAX) to run all existing delayed references
2195 * plus any new ones that are added.
2196 *
2197 * Returns 0 on success or if called with an aborted transaction
2198 * Returns <0 on error and aborts the transaction
2199 */
2200int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, u64 min_bytes)
2201{
2202 struct btrfs_fs_info *fs_info = trans->fs_info;
2203 struct btrfs_delayed_ref_root *delayed_refs;
2204 int ret;
2205
2206 /* We'll clean this up in btrfs_cleanup_transaction */
2207 if (TRANS_ABORTED(trans))
2208 return 0;
2209
2210 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
2211 return 0;
2212
2213 delayed_refs = &trans->transaction->delayed_refs;
2214again:
2215#ifdef SCRAMBLE_DELAYED_REFS
2216 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2217#endif
2218 ret = __btrfs_run_delayed_refs(trans, min_bytes);
2219 if (ret < 0) {
2220 btrfs_abort_transaction(trans, ret);
2221 return ret;
2222 }
2223
2224 if (min_bytes == U64_MAX) {
2225 btrfs_create_pending_block_groups(trans);
2226
2227 spin_lock(lock: &delayed_refs->lock);
2228 if (RB_EMPTY_ROOT(&delayed_refs->href_root.rb_root)) {
2229 spin_unlock(lock: &delayed_refs->lock);
2230 return 0;
2231 }
2232 spin_unlock(lock: &delayed_refs->lock);
2233
2234 cond_resched();
2235 goto again;
2236 }
2237
2238 return 0;
2239}
2240
2241int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2242 struct extent_buffer *eb, u64 flags)
2243{
2244 struct btrfs_delayed_extent_op *extent_op;
2245 int level = btrfs_header_level(eb);
2246 int ret;
2247
2248 extent_op = btrfs_alloc_delayed_extent_op();
2249 if (!extent_op)
2250 return -ENOMEM;
2251
2252 extent_op->flags_to_set = flags;
2253 extent_op->update_flags = true;
2254 extent_op->update_key = false;
2255 extent_op->level = level;
2256
2257 ret = btrfs_add_delayed_extent_op(trans, bytenr: eb->start, num_bytes: eb->len, extent_op);
2258 if (ret)
2259 btrfs_free_delayed_extent_op(op: extent_op);
2260 return ret;
2261}
2262
2263static noinline int check_delayed_ref(struct btrfs_root *root,
2264 struct btrfs_path *path,
2265 u64 objectid, u64 offset, u64 bytenr)
2266{
2267 struct btrfs_delayed_ref_head *head;
2268 struct btrfs_delayed_ref_node *ref;
2269 struct btrfs_delayed_data_ref *data_ref;
2270 struct btrfs_delayed_ref_root *delayed_refs;
2271 struct btrfs_transaction *cur_trans;
2272 struct rb_node *node;
2273 int ret = 0;
2274
2275 spin_lock(lock: &root->fs_info->trans_lock);
2276 cur_trans = root->fs_info->running_transaction;
2277 if (cur_trans)
2278 refcount_inc(r: &cur_trans->use_count);
2279 spin_unlock(lock: &root->fs_info->trans_lock);
2280 if (!cur_trans)
2281 return 0;
2282
2283 delayed_refs = &cur_trans->delayed_refs;
2284 spin_lock(lock: &delayed_refs->lock);
2285 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
2286 if (!head) {
2287 spin_unlock(lock: &delayed_refs->lock);
2288 btrfs_put_transaction(transaction: cur_trans);
2289 return 0;
2290 }
2291
2292 if (!mutex_trylock(lock: &head->mutex)) {
2293 if (path->nowait) {
2294 spin_unlock(lock: &delayed_refs->lock);
2295 btrfs_put_transaction(transaction: cur_trans);
2296 return -EAGAIN;
2297 }
2298
2299 refcount_inc(r: &head->refs);
2300 spin_unlock(lock: &delayed_refs->lock);
2301
2302 btrfs_release_path(p: path);
2303
2304 /*
2305 * Mutex was contended, block until it's released and let
2306 * caller try again
2307 */
2308 mutex_lock(&head->mutex);
2309 mutex_unlock(lock: &head->mutex);
2310 btrfs_put_delayed_ref_head(head);
2311 btrfs_put_transaction(transaction: cur_trans);
2312 return -EAGAIN;
2313 }
2314 spin_unlock(lock: &delayed_refs->lock);
2315
2316 spin_lock(lock: &head->lock);
2317 /*
2318 * XXX: We should replace this with a proper search function in the
2319 * future.
2320 */
2321 for (node = rb_first_cached(&head->ref_tree); node;
2322 node = rb_next(node)) {
2323 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
2324 /* If it's a shared ref we know a cross reference exists */
2325 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2326 ret = 1;
2327 break;
2328 }
2329
2330 data_ref = btrfs_delayed_node_to_data_ref(node: ref);
2331
2332 /*
2333 * If our ref doesn't match the one we're currently looking at
2334 * then we have a cross reference.
2335 */
2336 if (data_ref->root != root->root_key.objectid ||
2337 data_ref->objectid != objectid ||
2338 data_ref->offset != offset) {
2339 ret = 1;
2340 break;
2341 }
2342 }
2343 spin_unlock(lock: &head->lock);
2344 mutex_unlock(lock: &head->mutex);
2345 btrfs_put_transaction(transaction: cur_trans);
2346 return ret;
2347}
2348
2349static noinline int check_committed_ref(struct btrfs_root *root,
2350 struct btrfs_path *path,
2351 u64 objectid, u64 offset, u64 bytenr,
2352 bool strict)
2353{
2354 struct btrfs_fs_info *fs_info = root->fs_info;
2355 struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bytenr);
2356 struct extent_buffer *leaf;
2357 struct btrfs_extent_data_ref *ref;
2358 struct btrfs_extent_inline_ref *iref;
2359 struct btrfs_extent_item *ei;
2360 struct btrfs_key key;
2361 u32 item_size;
2362 u32 expected_size;
2363 int type;
2364 int ret;
2365
2366 key.objectid = bytenr;
2367 key.offset = (u64)-1;
2368 key.type = BTRFS_EXTENT_ITEM_KEY;
2369
2370 ret = btrfs_search_slot(NULL, root: extent_root, key: &key, p: path, ins_len: 0, cow: 0);
2371 if (ret < 0)
2372 goto out;
2373 BUG_ON(ret == 0); /* Corruption */
2374
2375 ret = -ENOENT;
2376 if (path->slots[0] == 0)
2377 goto out;
2378
2379 path->slots[0]--;
2380 leaf = path->nodes[0];
2381 btrfs_item_key_to_cpu(eb: leaf, cpu_key: &key, nr: path->slots[0]);
2382
2383 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2384 goto out;
2385
2386 ret = 1;
2387 item_size = btrfs_item_size(eb: leaf, slot: path->slots[0]);
2388 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2389 expected_size = sizeof(*ei) + btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY);
2390
2391 /* No inline refs; we need to bail before checking for owner ref. */
2392 if (item_size == sizeof(*ei))
2393 goto out;
2394
2395 /* Check for an owner ref; skip over it to the real inline refs. */
2396 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2397 type = btrfs_get_extent_inline_ref_type(eb: leaf, iref, is_data: BTRFS_REF_TYPE_DATA);
2398 if (btrfs_fs_incompat(fs_info, SIMPLE_QUOTA) && type == BTRFS_EXTENT_OWNER_REF_KEY) {
2399 expected_size += btrfs_extent_inline_ref_size(BTRFS_EXTENT_OWNER_REF_KEY);
2400 iref = (struct btrfs_extent_inline_ref *)(iref + 1);
2401 }
2402
2403 /* If extent item has more than 1 inline ref then it's shared */
2404 if (item_size != expected_size)
2405 goto out;
2406
2407 /*
2408 * If extent created before last snapshot => it's shared unless the
2409 * snapshot has been deleted. Use the heuristic if strict is false.
2410 */
2411 if (!strict &&
2412 (btrfs_extent_generation(eb: leaf, s: ei) <=
2413 btrfs_root_last_snapshot(s: &root->root_item)))
2414 goto out;
2415
2416 /* If this extent has SHARED_DATA_REF then it's shared */
2417 type = btrfs_get_extent_inline_ref_type(eb: leaf, iref, is_data: BTRFS_REF_TYPE_DATA);
2418 if (type != BTRFS_EXTENT_DATA_REF_KEY)
2419 goto out;
2420
2421 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2422 if (btrfs_extent_refs(eb: leaf, s: ei) !=
2423 btrfs_extent_data_ref_count(eb: leaf, s: ref) ||
2424 btrfs_extent_data_ref_root(eb: leaf, s: ref) !=
2425 root->root_key.objectid ||
2426 btrfs_extent_data_ref_objectid(eb: leaf, s: ref) != objectid ||
2427 btrfs_extent_data_ref_offset(eb: leaf, s: ref) != offset)
2428 goto out;
2429
2430 ret = 0;
2431out:
2432 return ret;
2433}
2434
2435int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
2436 u64 bytenr, bool strict, struct btrfs_path *path)
2437{
2438 int ret;
2439
2440 do {
2441 ret = check_committed_ref(root, path, objectid,
2442 offset, bytenr, strict);
2443 if (ret && ret != -ENOENT)
2444 goto out;
2445
2446 ret = check_delayed_ref(root, path, objectid, offset, bytenr);
2447 } while (ret == -EAGAIN);
2448
2449out:
2450 btrfs_release_path(p: path);
2451 if (btrfs_is_data_reloc_root(root))
2452 WARN_ON(ret > 0);
2453 return ret;
2454}
2455
2456static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2457 struct btrfs_root *root,
2458 struct extent_buffer *buf,
2459 int full_backref, int inc)
2460{
2461 struct btrfs_fs_info *fs_info = root->fs_info;
2462 u64 bytenr;
2463 u64 num_bytes;
2464 u64 parent;
2465 u64 ref_root;
2466 u32 nritems;
2467 struct btrfs_key key;
2468 struct btrfs_file_extent_item *fi;
2469 struct btrfs_ref generic_ref = { 0 };
2470 bool for_reloc = btrfs_header_flag(eb: buf, BTRFS_HEADER_FLAG_RELOC);
2471 int i;
2472 int action;
2473 int level;
2474 int ret = 0;
2475
2476 if (btrfs_is_testing(fs_info))
2477 return 0;
2478
2479 ref_root = btrfs_header_owner(eb: buf);
2480 nritems = btrfs_header_nritems(eb: buf);
2481 level = btrfs_header_level(eb: buf);
2482
2483 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && level == 0)
2484 return 0;
2485
2486 if (full_backref)
2487 parent = buf->start;
2488 else
2489 parent = 0;
2490 if (inc)
2491 action = BTRFS_ADD_DELAYED_REF;
2492 else
2493 action = BTRFS_DROP_DELAYED_REF;
2494
2495 for (i = 0; i < nritems; i++) {
2496 if (level == 0) {
2497 btrfs_item_key_to_cpu(eb: buf, cpu_key: &key, nr: i);
2498 if (key.type != BTRFS_EXTENT_DATA_KEY)
2499 continue;
2500 fi = btrfs_item_ptr(buf, i,
2501 struct btrfs_file_extent_item);
2502 if (btrfs_file_extent_type(eb: buf, s: fi) ==
2503 BTRFS_FILE_EXTENT_INLINE)
2504 continue;
2505 bytenr = btrfs_file_extent_disk_bytenr(eb: buf, s: fi);
2506 if (bytenr == 0)
2507 continue;
2508
2509 num_bytes = btrfs_file_extent_disk_num_bytes(eb: buf, s: fi);
2510 key.offset -= btrfs_file_extent_offset(eb: buf, s: fi);
2511 btrfs_init_generic_ref(generic_ref: &generic_ref, action, bytenr,
2512 len: num_bytes, parent, owning_root: ref_root);
2513 btrfs_init_data_ref(generic_ref: &generic_ref, ref_root, ino: key.objectid,
2514 offset: key.offset, mod_root: root->root_key.objectid,
2515 skip_qgroup: for_reloc);
2516 if (inc)
2517 ret = btrfs_inc_extent_ref(trans, generic_ref: &generic_ref);
2518 else
2519 ret = btrfs_free_extent(trans, ref: &generic_ref);
2520 if (ret)
2521 goto fail;
2522 } else {
2523 bytenr = btrfs_node_blockptr(eb: buf, nr: i);
2524 num_bytes = fs_info->nodesize;
2525 /* We don't know the owning_root, use 0. */
2526 btrfs_init_generic_ref(generic_ref: &generic_ref, action, bytenr,
2527 len: num_bytes, parent, owning_root: 0);
2528 btrfs_init_tree_ref(generic_ref: &generic_ref, level: level - 1, root: ref_root,
2529 mod_root: root->root_key.objectid, skip_qgroup: for_reloc);
2530 if (inc)
2531 ret = btrfs_inc_extent_ref(trans, generic_ref: &generic_ref);
2532 else
2533 ret = btrfs_free_extent(trans, ref: &generic_ref);
2534 if (ret)
2535 goto fail;
2536 }
2537 }
2538 return 0;
2539fail:
2540 return ret;
2541}
2542
2543int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2544 struct extent_buffer *buf, int full_backref)
2545{
2546 return __btrfs_mod_ref(trans, root, buf, full_backref, inc: 1);
2547}
2548
2549int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2550 struct extent_buffer *buf, int full_backref)
2551{
2552 return __btrfs_mod_ref(trans, root, buf, full_backref, inc: 0);
2553}
2554
2555static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
2556{
2557 struct btrfs_fs_info *fs_info = root->fs_info;
2558 u64 flags;
2559 u64 ret;
2560
2561 if (data)
2562 flags = BTRFS_BLOCK_GROUP_DATA;
2563 else if (root == fs_info->chunk_root)
2564 flags = BTRFS_BLOCK_GROUP_SYSTEM;
2565 else
2566 flags = BTRFS_BLOCK_GROUP_METADATA;
2567
2568 ret = btrfs_get_alloc_profile(fs_info, orig_flags: flags);
2569 return ret;
2570}
2571
2572static u64 first_logical_byte(struct btrfs_fs_info *fs_info)
2573{
2574 struct rb_node *leftmost;
2575 u64 bytenr = 0;
2576
2577 read_lock(&fs_info->block_group_cache_lock);
2578 /* Get the block group with the lowest logical start address. */
2579 leftmost = rb_first_cached(&fs_info->block_group_cache_tree);
2580 if (leftmost) {
2581 struct btrfs_block_group *bg;
2582
2583 bg = rb_entry(leftmost, struct btrfs_block_group, cache_node);
2584 bytenr = bg->start;
2585 }
2586 read_unlock(&fs_info->block_group_cache_lock);
2587
2588 return bytenr;
2589}
2590
2591static int pin_down_extent(struct btrfs_trans_handle *trans,
2592 struct btrfs_block_group *cache,
2593 u64 bytenr, u64 num_bytes, int reserved)
2594{
2595 struct btrfs_fs_info *fs_info = cache->fs_info;
2596
2597 spin_lock(lock: &cache->space_info->lock);
2598 spin_lock(lock: &cache->lock);
2599 cache->pinned += num_bytes;
2600 btrfs_space_info_update_bytes_pinned(fs_info, sinfo: cache->space_info,
2601 bytes: num_bytes);
2602 if (reserved) {
2603 cache->reserved -= num_bytes;
2604 cache->space_info->bytes_reserved -= num_bytes;
2605 }
2606 spin_unlock(lock: &cache->lock);
2607 spin_unlock(lock: &cache->space_info->lock);
2608
2609 set_extent_bit(tree: &trans->transaction->pinned_extents, start: bytenr,
2610 end: bytenr + num_bytes - 1, bits: EXTENT_DIRTY, NULL);
2611 return 0;
2612}
2613
2614int btrfs_pin_extent(struct btrfs_trans_handle *trans,
2615 u64 bytenr, u64 num_bytes, int reserved)
2616{
2617 struct btrfs_block_group *cache;
2618
2619 cache = btrfs_lookup_block_group(info: trans->fs_info, bytenr);
2620 BUG_ON(!cache); /* Logic error */
2621
2622 pin_down_extent(trans, cache, bytenr, num_bytes, reserved);
2623
2624 btrfs_put_block_group(cache);
2625 return 0;
2626}
2627
2628int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans,
2629 const struct extent_buffer *eb)
2630{
2631 struct btrfs_block_group *cache;
2632 int ret;
2633
2634 cache = btrfs_lookup_block_group(info: trans->fs_info, bytenr: eb->start);
2635 if (!cache)
2636 return -EINVAL;
2637
2638 /*
2639 * Fully cache the free space first so that our pin removes the free space
2640 * from the cache.
2641 */
2642 ret = btrfs_cache_block_group(cache, wait: true);
2643 if (ret)
2644 goto out;
2645
2646 pin_down_extent(trans, cache, bytenr: eb->start, num_bytes: eb->len, reserved: 0);
2647
2648 /* remove us from the free space cache (if we're there at all) */
2649 ret = btrfs_remove_free_space(block_group: cache, bytenr: eb->start, size: eb->len);
2650out:
2651 btrfs_put_block_group(cache);
2652 return ret;
2653}
2654
2655static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
2656 u64 start, u64 num_bytes)
2657{
2658 int ret;
2659 struct btrfs_block_group *block_group;
2660
2661 block_group = btrfs_lookup_block_group(info: fs_info, bytenr: start);
2662 if (!block_group)
2663 return -EINVAL;
2664
2665 ret = btrfs_cache_block_group(cache: block_group, wait: true);
2666 if (ret)
2667 goto out;
2668
2669 ret = btrfs_remove_free_space(block_group, bytenr: start, size: num_bytes);
2670out:
2671 btrfs_put_block_group(cache: block_group);
2672 return ret;
2673}
2674
2675int btrfs_exclude_logged_extents(struct extent_buffer *eb)
2676{
2677 struct btrfs_fs_info *fs_info = eb->fs_info;
2678 struct btrfs_file_extent_item *item;
2679 struct btrfs_key key;
2680 int found_type;
2681 int i;
2682 int ret = 0;
2683
2684 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
2685 return 0;
2686
2687 for (i = 0; i < btrfs_header_nritems(eb); i++) {
2688 btrfs_item_key_to_cpu(eb, cpu_key: &key, nr: i);
2689 if (key.type != BTRFS_EXTENT_DATA_KEY)
2690 continue;
2691 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
2692 found_type = btrfs_file_extent_type(eb, s: item);
2693 if (found_type == BTRFS_FILE_EXTENT_INLINE)
2694 continue;
2695 if (btrfs_file_extent_disk_bytenr(eb, s: item) == 0)
2696 continue;
2697 key.objectid = btrfs_file_extent_disk_bytenr(eb, s: item);
2698 key.offset = btrfs_file_extent_disk_num_bytes(eb, s: item);
2699 ret = __exclude_logged_extent(fs_info, start: key.objectid, num_bytes: key.offset);
2700 if (ret)
2701 break;
2702 }
2703
2704 return ret;
2705}
2706
2707static void
2708btrfs_inc_block_group_reservations(struct btrfs_block_group *bg)
2709{
2710 atomic_inc(v: &bg->reservations);
2711}
2712
2713/*
2714 * Returns the free cluster for the given space info and sets empty_cluster to
2715 * what it should be based on the mount options.
2716 */
2717static struct btrfs_free_cluster *
2718fetch_cluster_info(struct btrfs_fs_info *fs_info,
2719 struct btrfs_space_info *space_info, u64 *empty_cluster)
2720{
2721 struct btrfs_free_cluster *ret = NULL;
2722
2723 *empty_cluster = 0;
2724 if (btrfs_mixed_space_info(space_info))
2725 return ret;
2726
2727 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
2728 ret = &fs_info->meta_alloc_cluster;
2729 if (btrfs_test_opt(fs_info, SSD))
2730 *empty_cluster = SZ_2M;
2731 else
2732 *empty_cluster = SZ_64K;
2733 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
2734 btrfs_test_opt(fs_info, SSD_SPREAD)) {
2735 *empty_cluster = SZ_2M;
2736 ret = &fs_info->data_alloc_cluster;
2737 }
2738
2739 return ret;
2740}
2741
2742static int unpin_extent_range(struct btrfs_fs_info *fs_info,
2743 u64 start, u64 end,
2744 const bool return_free_space)
2745{
2746 struct btrfs_block_group *cache = NULL;
2747 struct btrfs_space_info *space_info;
2748 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
2749 struct btrfs_free_cluster *cluster = NULL;
2750 u64 len;
2751 u64 total_unpinned = 0;
2752 u64 empty_cluster = 0;
2753 bool readonly;
2754
2755 while (start <= end) {
2756 readonly = false;
2757 if (!cache ||
2758 start >= cache->start + cache->length) {
2759 if (cache)
2760 btrfs_put_block_group(cache);
2761 total_unpinned = 0;
2762 cache = btrfs_lookup_block_group(info: fs_info, bytenr: start);
2763 BUG_ON(!cache); /* Logic error */
2764
2765 cluster = fetch_cluster_info(fs_info,
2766 space_info: cache->space_info,
2767 empty_cluster: &empty_cluster);
2768 empty_cluster <<= 1;
2769 }
2770
2771 len = cache->start + cache->length - start;
2772 len = min(len, end + 1 - start);
2773
2774 if (return_free_space)
2775 btrfs_add_free_space(block_group: cache, bytenr: start, size: len);
2776
2777 start += len;
2778 total_unpinned += len;
2779 space_info = cache->space_info;
2780
2781 /*
2782 * If this space cluster has been marked as fragmented and we've
2783 * unpinned enough in this block group to potentially allow a
2784 * cluster to be created inside of it go ahead and clear the
2785 * fragmented check.
2786 */
2787 if (cluster && cluster->fragmented &&
2788 total_unpinned > empty_cluster) {
2789 spin_lock(lock: &cluster->lock);
2790 cluster->fragmented = 0;
2791 spin_unlock(lock: &cluster->lock);
2792 }
2793
2794 spin_lock(lock: &space_info->lock);
2795 spin_lock(lock: &cache->lock);
2796 cache->pinned -= len;
2797 btrfs_space_info_update_bytes_pinned(fs_info, sinfo: space_info, bytes: -len);
2798 space_info->max_extent_size = 0;
2799 if (cache->ro) {
2800 space_info->bytes_readonly += len;
2801 readonly = true;
2802 } else if (btrfs_is_zoned(fs_info)) {
2803 /* Need reset before reusing in a zoned block group */
2804 space_info->bytes_zone_unusable += len;
2805 readonly = true;
2806 }
2807 spin_unlock(lock: &cache->lock);
2808 if (!readonly && return_free_space &&
2809 global_rsv->space_info == space_info) {
2810 spin_lock(lock: &global_rsv->lock);
2811 if (!global_rsv->full) {
2812 u64 to_add = min(len, global_rsv->size -
2813 global_rsv->reserved);
2814
2815 global_rsv->reserved += to_add;
2816 btrfs_space_info_update_bytes_may_use(fs_info,
2817 sinfo: space_info, bytes: to_add);
2818 if (global_rsv->reserved >= global_rsv->size)
2819 global_rsv->full = 1;
2820 len -= to_add;
2821 }
2822 spin_unlock(lock: &global_rsv->lock);
2823 }
2824 /* Add to any tickets we may have */
2825 if (!readonly && return_free_space && len)
2826 btrfs_try_granting_tickets(fs_info, space_info);
2827 spin_unlock(lock: &space_info->lock);
2828 }
2829
2830 if (cache)
2831 btrfs_put_block_group(cache);
2832 return 0;
2833}
2834
2835int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans)
2836{
2837 struct btrfs_fs_info *fs_info = trans->fs_info;
2838 struct btrfs_block_group *block_group, *tmp;
2839 struct list_head *deleted_bgs;
2840 struct extent_io_tree *unpin;
2841 u64 start;
2842 u64 end;
2843 int ret;
2844
2845 unpin = &trans->transaction->pinned_extents;
2846
2847 while (!TRANS_ABORTED(trans)) {
2848 struct extent_state *cached_state = NULL;
2849
2850 mutex_lock(&fs_info->unused_bg_unpin_mutex);
2851 if (!find_first_extent_bit(tree: unpin, start: 0, start_ret: &start, end_ret: &end,
2852 bits: EXTENT_DIRTY, cached_state: &cached_state)) {
2853 mutex_unlock(lock: &fs_info->unused_bg_unpin_mutex);
2854 break;
2855 }
2856
2857 if (btrfs_test_opt(fs_info, DISCARD_SYNC))
2858 ret = btrfs_discard_extent(fs_info, bytenr: start,
2859 num_bytes: end + 1 - start, NULL);
2860
2861 clear_extent_dirty(tree: unpin, start, end, cached: &cached_state);
2862 unpin_extent_range(fs_info, start, end, return_free_space: true);
2863 mutex_unlock(lock: &fs_info->unused_bg_unpin_mutex);
2864 free_extent_state(state: cached_state);
2865 cond_resched();
2866 }
2867
2868 if (btrfs_test_opt(fs_info, DISCARD_ASYNC)) {
2869 btrfs_discard_calc_delay(discard_ctl: &fs_info->discard_ctl);
2870 btrfs_discard_schedule_work(discard_ctl: &fs_info->discard_ctl, override: true);
2871 }
2872
2873 /*
2874 * Transaction is finished. We don't need the lock anymore. We
2875 * do need to clean up the block groups in case of a transaction
2876 * abort.
2877 */
2878 deleted_bgs = &trans->transaction->deleted_bgs;
2879 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
2880 u64 trimmed = 0;
2881
2882 ret = -EROFS;
2883 if (!TRANS_ABORTED(trans))
2884 ret = btrfs_discard_extent(fs_info,
2885 bytenr: block_group->start,
2886 num_bytes: block_group->length,
2887 actual_bytes: &trimmed);
2888
2889 list_del_init(entry: &block_group->bg_list);
2890 btrfs_unfreeze_block_group(cache: block_group);
2891 btrfs_put_block_group(cache: block_group);
2892
2893 if (ret) {
2894 const char *errstr = btrfs_decode_error(error: ret);
2895 btrfs_warn(fs_info,
2896 "discard failed while removing blockgroup: errno=%d %s",
2897 ret, errstr);
2898 }
2899 }
2900
2901 return 0;
2902}
2903
2904/*
2905 * Parse an extent item's inline extents looking for a simple quotas owner ref.
2906 *
2907 * @fs_info: the btrfs_fs_info for this mount
2908 * @leaf: a leaf in the extent tree containing the extent item
2909 * @slot: the slot in the leaf where the extent item is found
2910 *
2911 * Returns the objectid of the root that originally allocated the extent item
2912 * if the inline owner ref is expected and present, otherwise 0.
2913 *
2914 * If an extent item has an owner ref item, it will be the first inline ref
2915 * item. Therefore the logic is to check whether there are any inline ref
2916 * items, then check the type of the first one.
2917 */
2918u64 btrfs_get_extent_owner_root(struct btrfs_fs_info *fs_info,
2919 struct extent_buffer *leaf, int slot)
2920{
2921 struct btrfs_extent_item *ei;
2922 struct btrfs_extent_inline_ref *iref;
2923 struct btrfs_extent_owner_ref *oref;
2924 unsigned long ptr;
2925 unsigned long end;
2926 int type;
2927
2928 if (!btrfs_fs_incompat(fs_info, SIMPLE_QUOTA))
2929 return 0;
2930
2931 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
2932 ptr = (unsigned long)(ei + 1);
2933 end = (unsigned long)ei + btrfs_item_size(eb: leaf, slot);
2934
2935 /* No inline ref items of any kind, can't check type. */
2936 if (ptr == end)
2937 return 0;
2938
2939 iref = (struct btrfs_extent_inline_ref *)ptr;
2940 type = btrfs_get_extent_inline_ref_type(eb: leaf, iref, is_data: BTRFS_REF_TYPE_ANY);
2941
2942 /* We found an owner ref, get the root out of it. */
2943 if (type == BTRFS_EXTENT_OWNER_REF_KEY) {
2944 oref = (struct btrfs_extent_owner_ref *)(&iref->offset);
2945 return btrfs_extent_owner_ref_root_id(eb: leaf, s: oref);
2946 }
2947
2948 /* We have inline refs, but not an owner ref. */
2949 return 0;
2950}
2951
2952static int do_free_extent_accounting(struct btrfs_trans_handle *trans,
2953 u64 bytenr, struct btrfs_squota_delta *delta)
2954{
2955 int ret;
2956 u64 num_bytes = delta->num_bytes;
2957
2958 if (delta->is_data) {
2959 struct btrfs_root *csum_root;
2960
2961 csum_root = btrfs_csum_root(fs_info: trans->fs_info, bytenr);
2962 ret = btrfs_del_csums(trans, root: csum_root, bytenr, len: num_bytes);
2963 if (ret) {
2964 btrfs_abort_transaction(trans, ret);
2965 return ret;
2966 }
2967
2968 ret = btrfs_delete_raid_extent(trans, start: bytenr, length: num_bytes);
2969 if (ret) {
2970 btrfs_abort_transaction(trans, ret);
2971 return ret;
2972 }
2973 }
2974
2975 ret = btrfs_record_squota_delta(fs_info: trans->fs_info, delta);
2976 if (ret) {
2977 btrfs_abort_transaction(trans, ret);
2978 return ret;
2979 }
2980
2981 ret = add_to_free_space_tree(trans, start: bytenr, size: num_bytes);
2982 if (ret) {
2983 btrfs_abort_transaction(trans, ret);
2984 return ret;
2985 }
2986
2987 ret = btrfs_update_block_group(trans, bytenr, num_bytes, alloc: false);
2988 if (ret)
2989 btrfs_abort_transaction(trans, ret);
2990
2991 return ret;
2992}
2993
2994#define abort_and_dump(trans, path, fmt, args...) \
2995({ \
2996 btrfs_abort_transaction(trans, -EUCLEAN); \
2997 btrfs_print_leaf(path->nodes[0]); \
2998 btrfs_crit(trans->fs_info, fmt, ##args); \
2999})
3000
3001/*
3002 * Drop one or more refs of @node.
3003 *
3004 * 1. Locate the extent refs.
3005 * It's either inline in EXTENT/METADATA_ITEM or in keyed SHARED_* item.
3006 * Locate it, then reduce the refs number or remove the ref line completely.
3007 *
3008 * 2. Update the refs count in EXTENT/METADATA_ITEM
3009 *
3010 * Inline backref case:
3011 *
3012 * in extent tree we have:
3013 *
3014 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82
3015 * refs 2 gen 6 flags DATA
3016 * extent data backref root FS_TREE objectid 258 offset 0 count 1
3017 * extent data backref root FS_TREE objectid 257 offset 0 count 1
3018 *
3019 * This function gets called with:
3020 *
3021 * node->bytenr = 13631488
3022 * node->num_bytes = 1048576
3023 * root_objectid = FS_TREE
3024 * owner_objectid = 257
3025 * owner_offset = 0
3026 * refs_to_drop = 1
3027 *
3028 * Then we should get some like:
3029 *
3030 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82
3031 * refs 1 gen 6 flags DATA
3032 * extent data backref root FS_TREE objectid 258 offset 0 count 1
3033 *
3034 * Keyed backref case:
3035 *
3036 * in extent tree we have:
3037 *
3038 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24
3039 * refs 754 gen 6 flags DATA
3040 * [...]
3041 * item 2 key (13631488 EXTENT_DATA_REF <HASH>) itemoff 3915 itemsize 28
3042 * extent data backref root FS_TREE objectid 866 offset 0 count 1
3043 *
3044 * This function get called with:
3045 *
3046 * node->bytenr = 13631488
3047 * node->num_bytes = 1048576
3048 * root_objectid = FS_TREE
3049 * owner_objectid = 866
3050 * owner_offset = 0
3051 * refs_to_drop = 1
3052 *
3053 * Then we should get some like:
3054 *
3055 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24
3056 * refs 753 gen 6 flags DATA
3057 *
3058 * And that (13631488 EXTENT_DATA_REF <HASH>) gets removed.
3059 */
3060static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
3061 struct btrfs_delayed_ref_head *href,
3062 struct btrfs_delayed_ref_node *node, u64 parent,
3063 u64 root_objectid, u64 owner_objectid,
3064 u64 owner_offset,
3065 struct btrfs_delayed_extent_op *extent_op)
3066{
3067 struct btrfs_fs_info *info = trans->fs_info;
3068 struct btrfs_key key;
3069 struct btrfs_path *path;
3070 struct btrfs_root *extent_root;
3071 struct extent_buffer *leaf;
3072 struct btrfs_extent_item *ei;
3073 struct btrfs_extent_inline_ref *iref;
3074 int ret;
3075 int is_data;
3076 int extent_slot = 0;
3077 int found_extent = 0;
3078 int num_to_del = 1;
3079 int refs_to_drop = node->ref_mod;
3080 u32 item_size;
3081 u64 refs;
3082 u64 bytenr = node->bytenr;
3083 u64 num_bytes = node->num_bytes;
3084 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
3085 u64 delayed_ref_root = href->owning_root;
3086
3087 extent_root = btrfs_extent_root(fs_info: info, bytenr);
3088 ASSERT(extent_root);
3089
3090 path = btrfs_alloc_path();
3091 if (!path)
3092 return -ENOMEM;
3093
3094 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
3095
3096 if (!is_data && refs_to_drop != 1) {
3097 btrfs_crit(info,
3098"invalid refs_to_drop, dropping more than 1 refs for tree block %llu refs_to_drop %u",
3099 node->bytenr, refs_to_drop);
3100 ret = -EINVAL;
3101 btrfs_abort_transaction(trans, ret);
3102 goto out;
3103 }
3104
3105 if (is_data)
3106 skinny_metadata = false;
3107
3108 ret = lookup_extent_backref(trans, path, ref_ret: &iref, bytenr, num_bytes,
3109 parent, root_objectid, owner: owner_objectid,
3110 offset: owner_offset);
3111 if (ret == 0) {
3112 /*
3113 * Either the inline backref or the SHARED_DATA_REF/
3114 * SHARED_BLOCK_REF is found
3115 *
3116 * Here is a quick path to locate EXTENT/METADATA_ITEM.
3117 * It's possible the EXTENT/METADATA_ITEM is near current slot.
3118 */
3119 extent_slot = path->slots[0];
3120 while (extent_slot >= 0) {
3121 btrfs_item_key_to_cpu(eb: path->nodes[0], cpu_key: &key,
3122 nr: extent_slot);
3123 if (key.objectid != bytenr)
3124 break;
3125 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3126 key.offset == num_bytes) {
3127 found_extent = 1;
3128 break;
3129 }
3130 if (key.type == BTRFS_METADATA_ITEM_KEY &&
3131 key.offset == owner_objectid) {
3132 found_extent = 1;
3133 break;
3134 }
3135
3136 /* Quick path didn't find the EXTEMT/METADATA_ITEM */
3137 if (path->slots[0] - extent_slot > 5)
3138 break;
3139 extent_slot--;
3140 }
3141
3142 if (!found_extent) {
3143 if (iref) {
3144 abort_and_dump(trans, path,
3145"invalid iref slot %u, no EXTENT/METADATA_ITEM found but has inline extent ref",
3146 path->slots[0]);
3147 ret = -EUCLEAN;
3148 goto out;
3149 }
3150 /* Must be SHARED_* item, remove the backref first */
3151 ret = remove_extent_backref(trans, root: extent_root, path,
3152 NULL, refs_to_drop, is_data);
3153 if (ret) {
3154 btrfs_abort_transaction(trans, ret);
3155 goto out;
3156 }
3157 btrfs_release_path(p: path);
3158
3159 /* Slow path to locate EXTENT/METADATA_ITEM */
3160 key.objectid = bytenr;
3161 key.type = BTRFS_EXTENT_ITEM_KEY;
3162 key.offset = num_bytes;
3163
3164 if (!is_data && skinny_metadata) {
3165 key.type = BTRFS_METADATA_ITEM_KEY;
3166 key.offset = owner_objectid;
3167 }
3168
3169 ret = btrfs_search_slot(trans, root: extent_root,
3170 key: &key, p: path, ins_len: -1, cow: 1);
3171 if (ret > 0 && skinny_metadata && path->slots[0]) {
3172 /*
3173 * Couldn't find our skinny metadata item,
3174 * see if we have ye olde extent item.
3175 */
3176 path->slots[0]--;
3177 btrfs_item_key_to_cpu(eb: path->nodes[0], cpu_key: &key,
3178 nr: path->slots[0]);
3179 if (key.objectid == bytenr &&
3180 key.type == BTRFS_EXTENT_ITEM_KEY &&
3181 key.offset == num_bytes)
3182 ret = 0;
3183 }
3184
3185 if (ret > 0 && skinny_metadata) {
3186 skinny_metadata = false;
3187 key.objectid = bytenr;
3188 key.type = BTRFS_EXTENT_ITEM_KEY;
3189 key.offset = num_bytes;
3190 btrfs_release_path(p: path);
3191 ret = btrfs_search_slot(trans, root: extent_root,
3192 key: &key, p: path, ins_len: -1, cow: 1);
3193 }
3194
3195 if (ret) {
3196 if (ret > 0)
3197 btrfs_print_leaf(l: path->nodes[0]);
3198 btrfs_err(info,
3199 "umm, got %d back from search, was looking for %llu, slot %d",
3200 ret, bytenr, path->slots[0]);
3201 }
3202 if (ret < 0) {
3203 btrfs_abort_transaction(trans, ret);
3204 goto out;
3205 }
3206 extent_slot = path->slots[0];
3207 }
3208 } else if (WARN_ON(ret == -ENOENT)) {
3209 abort_and_dump(trans, path,
3210"unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu slot %d",
3211 bytenr, parent, root_objectid, owner_objectid,
3212 owner_offset, path->slots[0]);
3213 goto out;
3214 } else {
3215 btrfs_abort_transaction(trans, ret);
3216 goto out;
3217 }
3218
3219 leaf = path->nodes[0];
3220 item_size = btrfs_item_size(eb: leaf, slot: extent_slot);
3221 if (unlikely(item_size < sizeof(*ei))) {
3222 ret = -EUCLEAN;
3223 btrfs_err(trans->fs_info,
3224 "unexpected extent item size, has %u expect >= %zu",
3225 item_size, sizeof(*ei));
3226 btrfs_abort_transaction(trans, ret);
3227 goto out;
3228 }
3229 ei = btrfs_item_ptr(leaf, extent_slot,
3230 struct btrfs_extent_item);
3231 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
3232 key.type == BTRFS_EXTENT_ITEM_KEY) {
3233 struct btrfs_tree_block_info *bi;
3234
3235 if (item_size < sizeof(*ei) + sizeof(*bi)) {
3236 abort_and_dump(trans, path,
3237"invalid extent item size for key (%llu, %u, %llu) slot %u owner %llu, has %u expect >= %zu",
3238 key.objectid, key.type, key.offset,
3239 path->slots[0], owner_objectid, item_size,
3240 sizeof(*ei) + sizeof(*bi));
3241 ret = -EUCLEAN;
3242 goto out;
3243 }
3244 bi = (struct btrfs_tree_block_info *)(ei + 1);
3245 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
3246 }
3247
3248 refs = btrfs_extent_refs(eb: leaf, s: ei);
3249 if (refs < refs_to_drop) {
3250 abort_and_dump(trans, path,
3251 "trying to drop %d refs but we only have %llu for bytenr %llu slot %u",
3252 refs_to_drop, refs, bytenr, path->slots[0]);
3253 ret = -EUCLEAN;
3254 goto out;
3255 }
3256 refs -= refs_to_drop;
3257
3258 if (refs > 0) {
3259 if (extent_op)
3260 __run_delayed_extent_op(extent_op, leaf, ei);
3261 /*
3262 * In the case of inline back ref, reference count will
3263 * be updated by remove_extent_backref
3264 */
3265 if (iref) {
3266 if (!found_extent) {
3267 abort_and_dump(trans, path,
3268"invalid iref, got inlined extent ref but no EXTENT/METADATA_ITEM found, slot %u",
3269 path->slots[0]);
3270 ret = -EUCLEAN;
3271 goto out;
3272 }
3273 } else {
3274 btrfs_set_extent_refs(eb: leaf, s: ei, val: refs);
3275 btrfs_mark_buffer_dirty(trans, buf: leaf);
3276 }
3277 if (found_extent) {
3278 ret = remove_extent_backref(trans, root: extent_root, path,
3279 iref, refs_to_drop, is_data);
3280 if (ret) {
3281 btrfs_abort_transaction(trans, ret);
3282 goto out;
3283 }
3284 }
3285 } else {
3286 struct btrfs_squota_delta delta = {
3287 .root = delayed_ref_root,
3288 .num_bytes = num_bytes,
3289 .rsv_bytes = 0,
3290 .is_data = is_data,
3291 .is_inc = false,
3292 .generation = btrfs_extent_generation(eb: leaf, s: ei),
3293 };
3294
3295 /* In this branch refs == 1 */
3296 if (found_extent) {
3297 if (is_data && refs_to_drop !=
3298 extent_data_ref_count(path, iref)) {
3299 abort_and_dump(trans, path,
3300 "invalid refs_to_drop, current refs %u refs_to_drop %u slot %u",
3301 extent_data_ref_count(path, iref),
3302 refs_to_drop, path->slots[0]);
3303 ret = -EUCLEAN;
3304 goto out;
3305 }
3306 if (iref) {
3307 if (path->slots[0] != extent_slot) {
3308 abort_and_dump(trans, path,
3309"invalid iref, extent item key (%llu %u %llu) slot %u doesn't have wanted iref",
3310 key.objectid, key.type,
3311 key.offset, path->slots[0]);
3312 ret = -EUCLEAN;
3313 goto out;
3314 }
3315 } else {
3316 /*
3317 * No inline ref, we must be at SHARED_* item,
3318 * And it's single ref, it must be:
3319 * | extent_slot ||extent_slot + 1|
3320 * [ EXTENT/METADATA_ITEM ][ SHARED_* ITEM ]
3321 */
3322 if (path->slots[0] != extent_slot + 1) {
3323 abort_and_dump(trans, path,
3324 "invalid SHARED_* item slot %u, previous item is not EXTENT/METADATA_ITEM",
3325 path->slots[0]);
3326 ret = -EUCLEAN;
3327 goto out;
3328 }
3329 path->slots[0] = extent_slot;
3330 num_to_del = 2;
3331 }
3332 }
3333 /*
3334 * We can't infer the data owner from the delayed ref, so we need
3335 * to try to get it from the owning ref item.
3336 *
3337 * If it is not present, then that extent was not written under
3338 * simple quotas mode, so we don't need to account for its deletion.
3339 */
3340 if (is_data)
3341 delta.root = btrfs_get_extent_owner_root(fs_info: trans->fs_info,
3342 leaf, slot: extent_slot);
3343
3344 ret = btrfs_del_items(trans, root: extent_root, path, slot: path->slots[0],
3345 nr: num_to_del);
3346 if (ret) {
3347 btrfs_abort_transaction(trans, ret);
3348 goto out;
3349 }
3350 btrfs_release_path(p: path);
3351
3352 ret = do_free_extent_accounting(trans, bytenr, delta: &delta);
3353 }
3354 btrfs_release_path(p: path);
3355
3356out:
3357 btrfs_free_path(p: path);
3358 return ret;
3359}
3360
3361/*
3362 * when we free an block, it is possible (and likely) that we free the last
3363 * delayed ref for that extent as well. This searches the delayed ref tree for
3364 * a given extent, and if there are no other delayed refs to be processed, it
3365 * removes it from the tree.
3366 */
3367static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
3368 u64 bytenr)
3369{
3370 struct btrfs_delayed_ref_head *head;
3371 struct btrfs_delayed_ref_root *delayed_refs;
3372 int ret = 0;
3373
3374 delayed_refs = &trans->transaction->delayed_refs;
3375 spin_lock(lock: &delayed_refs->lock);
3376 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
3377 if (!head)
3378 goto out_delayed_unlock;
3379
3380 spin_lock(lock: &head->lock);
3381 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root))
3382 goto out;
3383
3384 if (cleanup_extent_op(head) != NULL)
3385 goto out;
3386
3387 /*
3388 * waiting for the lock here would deadlock. If someone else has it
3389 * locked they are already in the process of dropping it anyway
3390 */
3391 if (!mutex_trylock(lock: &head->mutex))
3392 goto out;
3393
3394 btrfs_delete_ref_head(delayed_refs, head);
3395 head->processing = false;
3396
3397 spin_unlock(lock: &head->lock);
3398 spin_unlock(lock: &delayed_refs->lock);
3399
3400 BUG_ON(head->extent_op);
3401 if (head->must_insert_reserved)
3402 ret = 1;
3403
3404 btrfs_cleanup_ref_head_accounting(fs_info: trans->fs_info, delayed_refs, head);
3405 mutex_unlock(lock: &head->mutex);
3406 btrfs_put_delayed_ref_head(head);
3407 return ret;
3408out:
3409 spin_unlock(lock: &head->lock);
3410
3411out_delayed_unlock:
3412 spin_unlock(lock: &delayed_refs->lock);
3413 return 0;
3414}
3415
3416void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
3417 u64 root_id,
3418 struct extent_buffer *buf,
3419 u64 parent, int last_ref)
3420{
3421 struct btrfs_fs_info *fs_info = trans->fs_info;
3422 struct btrfs_ref generic_ref = { 0 };
3423 int ret;
3424
3425 btrfs_init_generic_ref(generic_ref: &generic_ref, action: BTRFS_DROP_DELAYED_REF,
3426 bytenr: buf->start, len: buf->len, parent, owning_root: btrfs_header_owner(eb: buf));
3427 btrfs_init_tree_ref(generic_ref: &generic_ref, level: btrfs_header_level(eb: buf),
3428 root: root_id, mod_root: 0, skip_qgroup: false);
3429
3430 if (root_id != BTRFS_TREE_LOG_OBJECTID) {
3431 btrfs_ref_tree_mod(fs_info, generic_ref: &generic_ref);
3432 ret = btrfs_add_delayed_tree_ref(trans, generic_ref: &generic_ref, NULL);
3433 BUG_ON(ret); /* -ENOMEM */
3434 }
3435
3436 if (last_ref && btrfs_header_generation(eb: buf) == trans->transid) {
3437 struct btrfs_block_group *cache;
3438 bool must_pin = false;
3439
3440 if (root_id != BTRFS_TREE_LOG_OBJECTID) {
3441 ret = check_ref_cleanup(trans, bytenr: buf->start);
3442 if (!ret) {
3443 btrfs_redirty_list_add(trans: trans->transaction, eb: buf);
3444 goto out;
3445 }
3446 }
3447
3448 cache = btrfs_lookup_block_group(info: fs_info, bytenr: buf->start);
3449
3450 if (btrfs_header_flag(eb: buf, BTRFS_HEADER_FLAG_WRITTEN)) {
3451 pin_down_extent(trans, cache, bytenr: buf->start, num_bytes: buf->len, reserved: 1);
3452 btrfs_put_block_group(cache);
3453 goto out;
3454 }
3455
3456 /*
3457 * If there are tree mod log users we may have recorded mod log
3458 * operations for this node. If we re-allocate this node we
3459 * could replay operations on this node that happened when it
3460 * existed in a completely different root. For example if it
3461 * was part of root A, then was reallocated to root B, and we
3462 * are doing a btrfs_old_search_slot(root b), we could replay
3463 * operations that happened when the block was part of root A,
3464 * giving us an inconsistent view of the btree.
3465 *
3466 * We are safe from races here because at this point no other
3467 * node or root points to this extent buffer, so if after this
3468 * check a new tree mod log user joins we will not have an
3469 * existing log of operations on this node that we have to
3470 * contend with.
3471 */
3472 if (test_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags))
3473 must_pin = true;
3474
3475 if (must_pin || btrfs_is_zoned(fs_info)) {
3476 btrfs_redirty_list_add(trans: trans->transaction, eb: buf);
3477 pin_down_extent(trans, cache, bytenr: buf->start, num_bytes: buf->len, reserved: 1);
3478 btrfs_put_block_group(cache);
3479 goto out;
3480 }
3481
3482 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
3483
3484 btrfs_add_free_space(block_group: cache, bytenr: buf->start, size: buf->len);
3485 btrfs_free_reserved_bytes(cache, num_bytes: buf->len, delalloc: 0);
3486 btrfs_put_block_group(cache);
3487 trace_btrfs_reserved_extent_free(fs_info, start: buf->start, len: buf->len);
3488 }
3489out:
3490 if (last_ref) {
3491 /*
3492 * Deleting the buffer, clear the corrupt flag since it doesn't
3493 * matter anymore.
3494 */
3495 clear_bit(nr: EXTENT_BUFFER_CORRUPT, addr: &buf->bflags);
3496 }
3497}
3498
3499/* Can return -ENOMEM */
3500int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref)
3501{
3502 struct btrfs_fs_info *fs_info = trans->fs_info;
3503 int ret;
3504
3505 if (btrfs_is_testing(fs_info))
3506 return 0;
3507
3508 /*
3509 * tree log blocks never actually go into the extent allocation
3510 * tree, just update pinning info and exit early.
3511 */
3512 if ((ref->type == BTRFS_REF_METADATA &&
3513 ref->tree_ref.ref_root == BTRFS_TREE_LOG_OBJECTID) ||
3514 (ref->type == BTRFS_REF_DATA &&
3515 ref->data_ref.ref_root == BTRFS_TREE_LOG_OBJECTID)) {
3516 btrfs_pin_extent(trans, bytenr: ref->bytenr, num_bytes: ref->len, reserved: 1);
3517 ret = 0;
3518 } else if (ref->type == BTRFS_REF_METADATA) {
3519 ret = btrfs_add_delayed_tree_ref(trans, generic_ref: ref, NULL);
3520 } else {
3521 ret = btrfs_add_delayed_data_ref(trans, generic_ref: ref, reserved: 0);
3522 }
3523
3524 if (!((ref->type == BTRFS_REF_METADATA &&
3525 ref->tree_ref.ref_root == BTRFS_TREE_LOG_OBJECTID) ||
3526 (ref->type == BTRFS_REF_DATA &&
3527 ref->data_ref.ref_root == BTRFS_TREE_LOG_OBJECTID)))
3528 btrfs_ref_tree_mod(fs_info, generic_ref: ref);
3529
3530 return ret;
3531}
3532
3533enum btrfs_loop_type {
3534 /*
3535 * Start caching block groups but do not wait for progress or for them
3536 * to be done.
3537 */
3538 LOOP_CACHING_NOWAIT,
3539
3540 /*
3541 * Wait for the block group free_space >= the space we're waiting for if
3542 * the block group isn't cached.
3543 */
3544 LOOP_CACHING_WAIT,
3545
3546 /*
3547 * Allow allocations to happen from block groups that do not yet have a
3548 * size classification.
3549 */
3550 LOOP_UNSET_SIZE_CLASS,
3551
3552 /*
3553 * Allocate a chunk and then retry the allocation.
3554 */
3555 LOOP_ALLOC_CHUNK,
3556
3557 /*
3558 * Ignore the size class restrictions for this allocation.
3559 */
3560 LOOP_WRONG_SIZE_CLASS,
3561
3562 /*
3563 * Ignore the empty size, only try to allocate the number of bytes
3564 * needed for this allocation.
3565 */
3566 LOOP_NO_EMPTY_SIZE,
3567};
3568
3569static inline void
3570btrfs_lock_block_group(struct btrfs_block_group *cache,
3571 int delalloc)
3572{
3573 if (delalloc)
3574 down_read(sem: &cache->data_rwsem);
3575}
3576
3577static inline void btrfs_grab_block_group(struct btrfs_block_group *cache,
3578 int delalloc)
3579{
3580 btrfs_get_block_group(cache);
3581 if (delalloc)
3582 down_read(sem: &cache->data_rwsem);
3583}
3584
3585static struct btrfs_block_group *btrfs_lock_cluster(
3586 struct btrfs_block_group *block_group,
3587 struct btrfs_free_cluster *cluster,
3588 int delalloc)
3589 __acquires(&cluster->refill_lock)
3590{
3591 struct btrfs_block_group *used_bg = NULL;
3592
3593 spin_lock(lock: &cluster->refill_lock);
3594 while (1) {
3595 used_bg = cluster->block_group;
3596 if (!used_bg)
3597 return NULL;
3598
3599 if (used_bg == block_group)
3600 return used_bg;
3601
3602 btrfs_get_block_group(cache: used_bg);
3603
3604 if (!delalloc)
3605 return used_bg;
3606
3607 if (down_read_trylock(sem: &used_bg->data_rwsem))
3608 return used_bg;
3609
3610 spin_unlock(lock: &cluster->refill_lock);
3611
3612 /* We should only have one-level nested. */
3613 down_read_nested(sem: &used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
3614
3615 spin_lock(lock: &cluster->refill_lock);
3616 if (used_bg == cluster->block_group)
3617 return used_bg;
3618
3619 up_read(sem: &used_bg->data_rwsem);
3620 btrfs_put_block_group(cache: used_bg);
3621 }
3622}
3623
3624static inline void
3625btrfs_release_block_group(struct btrfs_block_group *cache,
3626 int delalloc)
3627{
3628 if (delalloc)
3629 up_read(sem: &cache->data_rwsem);
3630 btrfs_put_block_group(cache);
3631}
3632
3633/*
3634 * Helper function for find_free_extent().
3635 *
3636 * Return -ENOENT to inform caller that we need fallback to unclustered mode.
3637 * Return >0 to inform caller that we find nothing
3638 * Return 0 means we have found a location and set ffe_ctl->found_offset.
3639 */
3640static int find_free_extent_clustered(struct btrfs_block_group *bg,
3641 struct find_free_extent_ctl *ffe_ctl,
3642 struct btrfs_block_group **cluster_bg_ret)
3643{
3644 struct btrfs_block_group *cluster_bg;
3645 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3646 u64 aligned_cluster;
3647 u64 offset;
3648 int ret;
3649
3650 cluster_bg = btrfs_lock_cluster(block_group: bg, cluster: last_ptr, delalloc: ffe_ctl->delalloc);
3651 if (!cluster_bg)
3652 goto refill_cluster;
3653 if (cluster_bg != bg && (cluster_bg->ro ||
3654 !block_group_bits(cache: cluster_bg, bits: ffe_ctl->flags)))
3655 goto release_cluster;
3656
3657 offset = btrfs_alloc_from_cluster(block_group: cluster_bg, cluster: last_ptr,
3658 bytes: ffe_ctl->num_bytes, min_start: cluster_bg->start,
3659 max_extent_size: &ffe_ctl->max_extent_size);
3660 if (offset) {
3661 /* We have a block, we're done */
3662 spin_unlock(lock: &last_ptr->refill_lock);
3663 trace_btrfs_reserve_extent_cluster(block_group: cluster_bg, ffe_ctl);
3664 *cluster_bg_ret = cluster_bg;
3665 ffe_ctl->found_offset = offset;
3666 return 0;
3667 }
3668 WARN_ON(last_ptr->block_group != cluster_bg);
3669
3670release_cluster:
3671 /*
3672 * If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so
3673 * lets just skip it and let the allocator find whatever block it can
3674 * find. If we reach this point, we will have tried the cluster
3675 * allocator plenty of times and not have found anything, so we are
3676 * likely way too fragmented for the clustering stuff to find anything.
3677 *
3678 * However, if the cluster is taken from the current block group,
3679 * release the cluster first, so that we stand a better chance of
3680 * succeeding in the unclustered allocation.
3681 */
3682 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE && cluster_bg != bg) {
3683 spin_unlock(lock: &last_ptr->refill_lock);
3684 btrfs_release_block_group(cache: cluster_bg, delalloc: ffe_ctl->delalloc);
3685 return -ENOENT;
3686 }
3687
3688 /* This cluster didn't work out, free it and start over */
3689 btrfs_return_cluster_to_free_space(NULL, cluster: last_ptr);
3690
3691 if (cluster_bg != bg)
3692 btrfs_release_block_group(cache: cluster_bg, delalloc: ffe_ctl->delalloc);
3693
3694refill_cluster:
3695 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE) {
3696 spin_unlock(lock: &last_ptr->refill_lock);
3697 return -ENOENT;
3698 }
3699
3700 aligned_cluster = max_t(u64,
3701 ffe_ctl->empty_cluster + ffe_ctl->empty_size,
3702 bg->full_stripe_len);
3703 ret = btrfs_find_space_cluster(block_group: bg, cluster: last_ptr, offset: ffe_ctl->search_start,
3704 bytes: ffe_ctl->num_bytes, empty_size: aligned_cluster);
3705 if (ret == 0) {
3706 /* Now pull our allocation out of this cluster */
3707 offset = btrfs_alloc_from_cluster(block_group: bg, cluster: last_ptr,
3708 bytes: ffe_ctl->num_bytes, min_start: ffe_ctl->search_start,
3709 max_extent_size: &ffe_ctl->max_extent_size);
3710 if (offset) {
3711 /* We found one, proceed */
3712 spin_unlock(lock: &last_ptr->refill_lock);
3713 ffe_ctl->found_offset = offset;
3714 trace_btrfs_reserve_extent_cluster(block_group: bg, ffe_ctl);
3715 return 0;
3716 }
3717 }
3718 /*
3719 * At this point we either didn't find a cluster or we weren't able to
3720 * allocate a block from our cluster. Free the cluster we've been
3721 * trying to use, and go to the next block group.
3722 */
3723 btrfs_return_cluster_to_free_space(NULL, cluster: last_ptr);
3724 spin_unlock(lock: &last_ptr->refill_lock);
3725 return 1;
3726}
3727
3728/*
3729 * Return >0 to inform caller that we find nothing
3730 * Return 0 when we found an free extent and set ffe_ctrl->found_offset
3731 */
3732static int find_free_extent_unclustered(struct btrfs_block_group *bg,
3733 struct find_free_extent_ctl *ffe_ctl)
3734{
3735 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3736 u64 offset;
3737
3738 /*
3739 * We are doing an unclustered allocation, set the fragmented flag so
3740 * we don't bother trying to setup a cluster again until we get more
3741 * space.
3742 */
3743 if (unlikely(last_ptr)) {
3744 spin_lock(lock: &last_ptr->lock);
3745 last_ptr->fragmented = 1;
3746 spin_unlock(lock: &last_ptr->lock);
3747 }
3748 if (ffe_ctl->cached) {
3749 struct btrfs_free_space_ctl *free_space_ctl;
3750
3751 free_space_ctl = bg->free_space_ctl;
3752 spin_lock(lock: &free_space_ctl->tree_lock);
3753 if (free_space_ctl->free_space <
3754 ffe_ctl->num_bytes + ffe_ctl->empty_cluster +
3755 ffe_ctl->empty_size) {
3756 ffe_ctl->total_free_space = max_t(u64,
3757 ffe_ctl->total_free_space,
3758 free_space_ctl->free_space);
3759 spin_unlock(lock: &free_space_ctl->tree_lock);
3760 return 1;
3761 }
3762 spin_unlock(lock: &free_space_ctl->tree_lock);
3763 }
3764
3765 offset = btrfs_find_space_for_alloc(block_group: bg, offset: ffe_ctl->search_start,
3766 bytes: ffe_ctl->num_bytes, empty_size: ffe_ctl->empty_size,
3767 max_extent_size: &ffe_ctl->max_extent_size);
3768 if (!offset)
3769 return 1;
3770 ffe_ctl->found_offset = offset;
3771 return 0;
3772}
3773
3774static int do_allocation_clustered(struct btrfs_block_group *block_group,
3775 struct find_free_extent_ctl *ffe_ctl,
3776 struct btrfs_block_group **bg_ret)
3777{
3778 int ret;
3779
3780 /* We want to try and use the cluster allocator, so lets look there */
3781 if (ffe_ctl->last_ptr && ffe_ctl->use_cluster) {
3782 ret = find_free_extent_clustered(bg: block_group, ffe_ctl, cluster_bg_ret: bg_ret);
3783 if (ret >= 0)
3784 return ret;
3785 /* ret == -ENOENT case falls through */
3786 }
3787
3788 return find_free_extent_unclustered(bg: block_group, ffe_ctl);
3789}
3790
3791/*
3792 * Tree-log block group locking
3793 * ============================
3794 *
3795 * fs_info::treelog_bg_lock protects the fs_info::treelog_bg which
3796 * indicates the starting address of a block group, which is reserved only
3797 * for tree-log metadata.
3798 *
3799 * Lock nesting
3800 * ============
3801 *
3802 * space_info::lock
3803 * block_group::lock
3804 * fs_info::treelog_bg_lock
3805 */
3806
3807/*
3808 * Simple allocator for sequential-only block group. It only allows sequential
3809 * allocation. No need to play with trees. This function also reserves the
3810 * bytes as in btrfs_add_reserved_bytes.
3811 */
3812static int do_allocation_zoned(struct btrfs_block_group *block_group,
3813 struct find_free_extent_ctl *ffe_ctl,
3814 struct btrfs_block_group **bg_ret)
3815{
3816 struct btrfs_fs_info *fs_info = block_group->fs_info;
3817 struct btrfs_space_info *space_info = block_group->space_info;
3818 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3819 u64 start = block_group->start;
3820 u64 num_bytes = ffe_ctl->num_bytes;
3821 u64 avail;
3822 u64 bytenr = block_group->start;
3823 u64 log_bytenr;
3824 u64 data_reloc_bytenr;
3825 int ret = 0;
3826 bool skip = false;
3827
3828 ASSERT(btrfs_is_zoned(block_group->fs_info));
3829
3830 /*
3831 * Do not allow non-tree-log blocks in the dedicated tree-log block
3832 * group, and vice versa.
3833 */
3834 spin_lock(lock: &fs_info->treelog_bg_lock);
3835 log_bytenr = fs_info->treelog_bg;
3836 if (log_bytenr && ((ffe_ctl->for_treelog && bytenr != log_bytenr) ||
3837 (!ffe_ctl->for_treelog && bytenr == log_bytenr)))
3838 skip = true;
3839 spin_unlock(lock: &fs_info->treelog_bg_lock);
3840 if (skip)
3841 return 1;
3842
3843 /*
3844 * Do not allow non-relocation blocks in the dedicated relocation block
3845 * group, and vice versa.
3846 */
3847 spin_lock(lock: &fs_info->relocation_bg_lock);
3848 data_reloc_bytenr = fs_info->data_reloc_bg;
3849 if (data_reloc_bytenr &&
3850 ((ffe_ctl->for_data_reloc && bytenr != data_reloc_bytenr) ||
3851 (!ffe_ctl->for_data_reloc && bytenr == data_reloc_bytenr)))
3852 skip = true;
3853 spin_unlock(lock: &fs_info->relocation_bg_lock);
3854 if (skip)
3855 return 1;
3856
3857 /* Check RO and no space case before trying to activate it */
3858 spin_lock(lock: &block_group->lock);
3859 if (block_group->ro || btrfs_zoned_bg_is_full(bg: block_group)) {
3860 ret = 1;
3861 /*
3862 * May need to clear fs_info->{treelog,data_reloc}_bg.
3863 * Return the error after taking the locks.
3864 */
3865 }
3866 spin_unlock(lock: &block_group->lock);
3867
3868 /* Metadata block group is activated at write time. */
3869 if (!ret && (block_group->flags & BTRFS_BLOCK_GROUP_DATA) &&
3870 !btrfs_zone_activate(block_group)) {
3871 ret = 1;
3872 /*
3873 * May need to clear fs_info->{treelog,data_reloc}_bg.
3874 * Return the error after taking the locks.
3875 */
3876 }
3877
3878 spin_lock(lock: &space_info->lock);
3879 spin_lock(lock: &block_group->lock);
3880 spin_lock(lock: &fs_info->treelog_bg_lock);
3881 spin_lock(lock: &fs_info->relocation_bg_lock);
3882
3883 if (ret)
3884 goto out;
3885
3886 ASSERT(!ffe_ctl->for_treelog ||
3887 block_group->start == fs_info->treelog_bg ||
3888 fs_info->treelog_bg == 0);
3889 ASSERT(!ffe_ctl->for_data_reloc ||
3890 block_group->start == fs_info->data_reloc_bg ||
3891 fs_info->data_reloc_bg == 0);
3892
3893 if (block_group->ro ||
3894 (!ffe_ctl->for_data_reloc &&
3895 test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags))) {
3896 ret = 1;
3897 goto out;
3898 }
3899
3900 /*
3901 * Do not allow currently using block group to be tree-log dedicated
3902 * block group.
3903 */
3904 if (ffe_ctl->for_treelog && !fs_info->treelog_bg &&
3905 (block_group->used || block_group->reserved)) {
3906 ret = 1;
3907 goto out;
3908 }
3909
3910 /*
3911 * Do not allow currently used block group to be the data relocation
3912 * dedicated block group.
3913 */
3914 if (ffe_ctl->for_data_reloc && !fs_info->data_reloc_bg &&
3915 (block_group->used || block_group->reserved)) {
3916 ret = 1;
3917 goto out;
3918 }
3919
3920 WARN_ON_ONCE(block_group->alloc_offset > block_group->zone_capacity);
3921 avail = block_group->zone_capacity - block_group->alloc_offset;
3922 if (avail < num_bytes) {
3923 if (ffe_ctl->max_extent_size < avail) {
3924 /*
3925 * With sequential allocator, free space is always
3926 * contiguous
3927 */
3928 ffe_ctl->max_extent_size = avail;
3929 ffe_ctl->total_free_space = avail;
3930 }
3931 ret = 1;
3932 goto out;
3933 }
3934
3935 if (ffe_ctl->for_treelog && !fs_info->treelog_bg)
3936 fs_info->treelog_bg = block_group->start;
3937
3938 if (ffe_ctl->for_data_reloc) {
3939 if (!fs_info->data_reloc_bg)
3940 fs_info->data_reloc_bg = block_group->start;
3941 /*
3942 * Do not allow allocations from this block group, unless it is
3943 * for data relocation. Compared to increasing the ->ro, setting
3944 * the ->zoned_data_reloc_ongoing flag still allows nocow
3945 * writers to come in. See btrfs_inc_nocow_writers().
3946 *
3947 * We need to disable an allocation to avoid an allocation of
3948 * regular (non-relocation data) extent. With mix of relocation
3949 * extents and regular extents, we can dispatch WRITE commands
3950 * (for relocation extents) and ZONE APPEND commands (for
3951 * regular extents) at the same time to the same zone, which
3952 * easily break the write pointer.
3953 *
3954 * Also, this flag avoids this block group to be zone finished.
3955 */
3956 set_bit(nr: BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, addr: &block_group->runtime_flags);
3957 }
3958
3959 ffe_ctl->found_offset = start + block_group->alloc_offset;
3960 block_group->alloc_offset += num_bytes;
3961 spin_lock(lock: &ctl->tree_lock);
3962 ctl->free_space -= num_bytes;
3963 spin_unlock(lock: &ctl->tree_lock);
3964
3965 /*
3966 * We do not check if found_offset is aligned to stripesize. The
3967 * address is anyway rewritten when using zone append writing.
3968 */
3969
3970 ffe_ctl->search_start = ffe_ctl->found_offset;
3971
3972out:
3973 if (ret && ffe_ctl->for_treelog)
3974 fs_info->treelog_bg = 0;
3975 if (ret && ffe_ctl->for_data_reloc)
3976 fs_info->data_reloc_bg = 0;
3977 spin_unlock(lock: &fs_info->relocation_bg_lock);
3978 spin_unlock(lock: &fs_info->treelog_bg_lock);
3979 spin_unlock(lock: &block_group->lock);
3980 spin_unlock(lock: &space_info->lock);
3981 return ret;
3982}
3983
3984static int do_allocation(struct btrfs_block_group *block_group,
3985 struct find_free_extent_ctl *ffe_ctl,
3986 struct btrfs_block_group **bg_ret)
3987{
3988 switch (ffe_ctl->policy) {
3989 case BTRFS_EXTENT_ALLOC_CLUSTERED:
3990 return do_allocation_clustered(block_group, ffe_ctl, bg_ret);
3991 case BTRFS_EXTENT_ALLOC_ZONED:
3992 return do_allocation_zoned(block_group, ffe_ctl, bg_ret);
3993 default:
3994 BUG();
3995 }
3996}
3997
3998static void release_block_group(struct btrfs_block_group *block_group,
3999 struct find_free_extent_ctl *ffe_ctl,
4000 int delalloc)
4001{
4002 switch (ffe_ctl->policy) {
4003 case BTRFS_EXTENT_ALLOC_CLUSTERED:
4004 ffe_ctl->retry_uncached = false;
4005 break;
4006 case BTRFS_EXTENT_ALLOC_ZONED:
4007 /* Nothing to do */
4008 break;
4009 default:
4010 BUG();
4011 }
4012
4013 BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) !=
4014 ffe_ctl->index);
4015 btrfs_release_block_group(cache: block_group, delalloc);
4016}
4017
4018static void found_extent_clustered(struct find_free_extent_ctl *ffe_ctl,
4019 struct btrfs_key *ins)
4020{
4021 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
4022
4023 if (!ffe_ctl->use_cluster && last_ptr) {
4024 spin_lock(lock: &last_ptr->lock);
4025 last_ptr->window_start = ins->objectid;
4026 spin_unlock(lock: &last_ptr->lock);
4027 }
4028}
4029
4030static void found_extent(struct find_free_extent_ctl *ffe_ctl,
4031 struct btrfs_key *ins)
4032{
4033 switch (ffe_ctl->policy) {
4034 case BTRFS_EXTENT_ALLOC_CLUSTERED:
4035 found_extent_clustered(ffe_ctl, ins);
4036 break;
4037 case BTRFS_EXTENT_ALLOC_ZONED:
4038 /* Nothing to do */
4039 break;
4040 default:
4041 BUG();
4042 }
4043}
4044
4045static int can_allocate_chunk_zoned(struct btrfs_fs_info *fs_info,
4046 struct find_free_extent_ctl *ffe_ctl)
4047{
4048 /* Block group's activeness is not a requirement for METADATA block groups. */
4049 if (!(ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA))
4050 return 0;
4051
4052 /* If we can activate new zone, just allocate a chunk and use it */
4053 if (btrfs_can_activate_zone(fs_devices: fs_info->fs_devices, flags: ffe_ctl->flags))
4054 return 0;
4055
4056 /*
4057 * We already reached the max active zones. Try to finish one block
4058 * group to make a room for a new block group. This is only possible
4059 * for a data block group because btrfs_zone_finish() may need to wait
4060 * for a running transaction which can cause a deadlock for metadata
4061 * allocation.
4062 */
4063 if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) {
4064 int ret = btrfs_zone_finish_one_bg(fs_info);
4065
4066 if (ret == 1)
4067 return 0;
4068 else if (ret < 0)
4069 return ret;
4070 }
4071
4072 /*
4073 * If we have enough free space left in an already active block group
4074 * and we can't activate any other zone now, do not allow allocating a
4075 * new chunk and let find_free_extent() retry with a smaller size.
4076 */
4077 if (ffe_ctl->max_extent_size >= ffe_ctl->min_alloc_size)
4078 return -ENOSPC;
4079
4080 /*
4081 * Even min_alloc_size is not left in any block groups. Since we cannot
4082 * activate a new block group, allocating it may not help. Let's tell a
4083 * caller to try again and hope it progress something by writing some
4084 * parts of the region. That is only possible for data block groups,
4085 * where a part of the region can be written.
4086 */
4087 if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA)
4088 return -EAGAIN;
4089
4090 /*
4091 * We cannot activate a new block group and no enough space left in any
4092 * block groups. So, allocating a new block group may not help. But,
4093 * there is nothing to do anyway, so let's go with it.
4094 */
4095 return 0;
4096}
4097
4098static int can_allocate_chunk(struct btrfs_fs_info *fs_info,
4099 struct find_free_extent_ctl *ffe_ctl)
4100{
4101 switch (ffe_ctl->policy) {
4102 case BTRFS_EXTENT_ALLOC_CLUSTERED:
4103 return 0;
4104 case BTRFS_EXTENT_ALLOC_ZONED:
4105 return can_allocate_chunk_zoned(fs_info, ffe_ctl);
4106 default:
4107 BUG();
4108 }
4109}
4110
4111/*
4112 * Return >0 means caller needs to re-search for free extent
4113 * Return 0 means we have the needed free extent.
4114 * Return <0 means we failed to locate any free extent.
4115 */
4116static int find_free_extent_update_loop(struct btrfs_fs_info *fs_info,
4117 struct btrfs_key *ins,
4118 struct find_free_extent_ctl *ffe_ctl,
4119 bool full_search)
4120{
4121 struct btrfs_root *root = fs_info->chunk_root;
4122 int ret;
4123
4124 if ((ffe_ctl->loop == LOOP_CACHING_NOWAIT) &&
4125 ffe_ctl->have_caching_bg && !ffe_ctl->orig_have_caching_bg)
4126 ffe_ctl->orig_have_caching_bg = true;
4127
4128 if (ins->objectid) {
4129 found_extent(ffe_ctl, ins);
4130 return 0;
4131 }
4132
4133 if (ffe_ctl->loop >= LOOP_CACHING_WAIT && ffe_ctl->have_caching_bg)
4134 return 1;
4135
4136 ffe_ctl->index++;
4137 if (ffe_ctl->index < BTRFS_NR_RAID_TYPES)
4138 return 1;
4139
4140 /* See the comments for btrfs_loop_type for an explanation of the phases. */
4141 if (ffe_ctl->loop < LOOP_NO_EMPTY_SIZE) {
4142 ffe_ctl->index = 0;
4143 /*
4144 * We want to skip the LOOP_CACHING_WAIT step if we don't have
4145 * any uncached bgs and we've already done a full search
4146 * through.
4147 */
4148 if (ffe_ctl->loop == LOOP_CACHING_NOWAIT &&
4149 (!ffe_ctl->orig_have_caching_bg && full_search))
4150 ffe_ctl->loop++;
4151 ffe_ctl->loop++;
4152
4153 if (ffe_ctl->loop == LOOP_ALLOC_CHUNK) {
4154 struct btrfs_trans_handle *trans;
4155 int exist = 0;
4156
4157 /* Check if allocation policy allows to create a new chunk */
4158 ret = can_allocate_chunk(fs_info, ffe_ctl);
4159 if (ret)
4160 return ret;
4161
4162 trans = current->journal_info;
4163 if (trans)
4164 exist = 1;
4165 else
4166 trans = btrfs_join_transaction(root);
4167
4168 if (IS_ERR(ptr: trans)) {
4169 ret = PTR_ERR(ptr: trans);
4170 return ret;
4171 }
4172
4173 ret = btrfs_chunk_alloc(trans, flags: ffe_ctl->flags,
4174 force: CHUNK_ALLOC_FORCE_FOR_EXTENT);
4175
4176 /* Do not bail out on ENOSPC since we can do more. */
4177 if (ret == -ENOSPC) {
4178 ret = 0;
4179 ffe_ctl->loop++;
4180 }
4181 else if (ret < 0)
4182 btrfs_abort_transaction(trans, ret);
4183 else
4184 ret = 0;
4185 if (!exist)
4186 btrfs_end_transaction(trans);
4187 if (ret)
4188 return ret;
4189 }
4190
4191 if (ffe_ctl->loop == LOOP_NO_EMPTY_SIZE) {
4192 if (ffe_ctl->policy != BTRFS_EXTENT_ALLOC_CLUSTERED)
4193 return -ENOSPC;
4194
4195 /*
4196 * Don't loop again if we already have no empty_size and
4197 * no empty_cluster.
4198 */
4199 if (ffe_ctl->empty_size == 0 &&
4200 ffe_ctl->empty_cluster == 0)
4201 return -ENOSPC;
4202 ffe_ctl->empty_size = 0;
4203 ffe_ctl->empty_cluster = 0;
4204 }
4205 return 1;
4206 }
4207 return -ENOSPC;
4208}
4209
4210static bool find_free_extent_check_size_class(struct find_free_extent_ctl *ffe_ctl,
4211 struct btrfs_block_group *bg)
4212{
4213 if (ffe_ctl->policy == BTRFS_EXTENT_ALLOC_ZONED)
4214 return true;
4215 if (!btrfs_block_group_should_use_size_class(bg))
4216 return true;
4217 if (ffe_ctl->loop >= LOOP_WRONG_SIZE_CLASS)
4218 return true;
4219 if (ffe_ctl->loop >= LOOP_UNSET_SIZE_CLASS &&
4220 bg->size_class == BTRFS_BG_SZ_NONE)
4221 return true;
4222 return ffe_ctl->size_class == bg->size_class;
4223}
4224
4225static int prepare_allocation_clustered(struct btrfs_fs_info *fs_info,
4226 struct find_free_extent_ctl *ffe_ctl,
4227 struct btrfs_space_info *space_info,
4228 struct btrfs_key *ins)
4229{
4230 /*
4231 * If our free space is heavily fragmented we may not be able to make
4232 * big contiguous allocations, so instead of doing the expensive search
4233 * for free space, simply return ENOSPC with our max_extent_size so we
4234 * can go ahead and search for a more manageable chunk.
4235 *
4236 * If our max_extent_size is large enough for our allocation simply
4237 * disable clustering since we will likely not be able to find enough
4238 * space to create a cluster and induce latency trying.
4239 */
4240 if (space_info->max_extent_size) {
4241 spin_lock(lock: &space_info->lock);
4242 if (space_info->max_extent_size &&
4243 ffe_ctl->num_bytes > space_info->max_extent_size) {
4244 ins->offset = space_info->max_extent_size;
4245 spin_unlock(lock: &space_info->lock);
4246 return -ENOSPC;
4247 } else if (space_info->max_extent_size) {
4248 ffe_ctl->use_cluster = false;
4249 }
4250 spin_unlock(lock: &space_info->lock);
4251 }
4252
4253 ffe_ctl->last_ptr = fetch_cluster_info(fs_info, space_info,
4254 empty_cluster: &ffe_ctl->empty_cluster);
4255 if (ffe_ctl->last_ptr) {
4256 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
4257
4258 spin_lock(lock: &last_ptr->lock);
4259 if (last_ptr->block_group)
4260 ffe_ctl->hint_byte = last_ptr->window_start;
4261 if (last_ptr->fragmented) {
4262 /*
4263 * We still set window_start so we can keep track of the
4264 * last place we found an allocation to try and save
4265 * some time.
4266 */
4267 ffe_ctl->hint_byte = last_ptr->window_start;
4268 ffe_ctl->use_cluster = false;
4269 }
4270 spin_unlock(lock: &last_ptr->lock);
4271 }
4272
4273 return 0;
4274}
4275
4276static int prepare_allocation(struct btrfs_fs_info *fs_info,
4277 struct find_free_extent_ctl *ffe_ctl,
4278 struct btrfs_space_info *space_info,
4279 struct btrfs_key *ins)
4280{
4281 switch (ffe_ctl->policy) {
4282 case BTRFS_EXTENT_ALLOC_CLUSTERED:
4283 return prepare_allocation_clustered(fs_info, ffe_ctl,
4284 space_info, ins);
4285 case BTRFS_EXTENT_ALLOC_ZONED:
4286 if (ffe_ctl->for_treelog) {
4287 spin_lock(lock: &fs_info->treelog_bg_lock);
4288 if (fs_info->treelog_bg)
4289 ffe_ctl->hint_byte = fs_info->treelog_bg;
4290 spin_unlock(lock: &fs_info->treelog_bg_lock);
4291 }
4292 if (ffe_ctl->for_data_reloc) {
4293 spin_lock(lock: &fs_info->relocation_bg_lock);
4294 if (fs_info->data_reloc_bg)
4295 ffe_ctl->hint_byte = fs_info->data_reloc_bg;
4296 spin_unlock(lock: &fs_info->relocation_bg_lock);
4297 }
4298 return 0;
4299 default:
4300 BUG();
4301 }
4302}
4303
4304/*
4305 * walks the btree of allocated extents and find a hole of a given size.
4306 * The key ins is changed to record the hole:
4307 * ins->objectid == start position
4308 * ins->flags = BTRFS_EXTENT_ITEM_KEY
4309 * ins->offset == the size of the hole.
4310 * Any available blocks before search_start are skipped.
4311 *
4312 * If there is no suitable free space, we will record the max size of
4313 * the free space extent currently.
4314 *
4315 * The overall logic and call chain:
4316 *
4317 * find_free_extent()
4318 * |- Iterate through all block groups
4319 * | |- Get a valid block group
4320 * | |- Try to do clustered allocation in that block group
4321 * | |- Try to do unclustered allocation in that block group
4322 * | |- Check if the result is valid
4323 * | | |- If valid, then exit
4324 * | |- Jump to next block group
4325 * |
4326 * |- Push harder to find free extents
4327 * |- If not found, re-iterate all block groups
4328 */
4329static noinline int find_free_extent(struct btrfs_root *root,
4330 struct btrfs_key *ins,
4331 struct find_free_extent_ctl *ffe_ctl)
4332{
4333 struct btrfs_fs_info *fs_info = root->fs_info;
4334 int ret = 0;
4335 int cache_block_group_error = 0;
4336 struct btrfs_block_group *block_group = NULL;
4337 struct btrfs_space_info *space_info;
4338 bool full_search = false;
4339
4340 WARN_ON(ffe_ctl->num_bytes < fs_info->sectorsize);
4341
4342 ffe_ctl->search_start = 0;
4343 /* For clustered allocation */
4344 ffe_ctl->empty_cluster = 0;
4345 ffe_ctl->last_ptr = NULL;
4346 ffe_ctl->use_cluster = true;
4347 ffe_ctl->have_caching_bg = false;
4348 ffe_ctl->orig_have_caching_bg = false;
4349 ffe_ctl->index = btrfs_bg_flags_to_raid_index(flags: ffe_ctl->flags);
4350 ffe_ctl->loop = 0;
4351 ffe_ctl->retry_uncached = false;
4352 ffe_ctl->cached = 0;
4353 ffe_ctl->max_extent_size = 0;
4354 ffe_ctl->total_free_space = 0;
4355 ffe_ctl->found_offset = 0;
4356 ffe_ctl->policy = BTRFS_EXTENT_ALLOC_CLUSTERED;
4357 ffe_ctl->size_class = btrfs_calc_block_group_size_class(size: ffe_ctl->num_bytes);
4358
4359 if (btrfs_is_zoned(fs_info))
4360 ffe_ctl->policy = BTRFS_EXTENT_ALLOC_ZONED;
4361
4362 ins->type = BTRFS_EXTENT_ITEM_KEY;
4363 ins->objectid = 0;
4364 ins->offset = 0;
4365
4366 trace_find_free_extent(root, ffe_ctl);
4367
4368 space_info = btrfs_find_space_info(info: fs_info, flags: ffe_ctl->flags);
4369 if (!space_info) {
4370 btrfs_err(fs_info, "No space info for %llu", ffe_ctl->flags);
4371 return -ENOSPC;
4372 }
4373
4374 ret = prepare_allocation(fs_info, ffe_ctl, space_info, ins);
4375 if (ret < 0)
4376 return ret;
4377
4378 ffe_ctl->search_start = max(ffe_ctl->search_start,
4379 first_logical_byte(fs_info));
4380 ffe_ctl->search_start = max(ffe_ctl->search_start, ffe_ctl->hint_byte);
4381 if (ffe_ctl->search_start == ffe_ctl->hint_byte) {
4382 block_group = btrfs_lookup_block_group(info: fs_info,
4383 bytenr: ffe_ctl->search_start);
4384 /*
4385 * we don't want to use the block group if it doesn't match our
4386 * allocation bits, or if its not cached.
4387 *
4388 * However if we are re-searching with an ideal block group
4389 * picked out then we don't care that the block group is cached.
4390 */
4391 if (block_group && block_group_bits(cache: block_group, bits: ffe_ctl->flags) &&
4392 block_group->cached != BTRFS_CACHE_NO) {
4393 down_read(sem: &space_info->groups_sem);
4394 if (list_empty(head: &block_group->list) ||
4395 block_group->ro) {
4396 /*
4397 * someone is removing this block group,
4398 * we can't jump into the have_block_group
4399 * target because our list pointers are not
4400 * valid
4401 */
4402 btrfs_put_block_group(cache: block_group);
4403 up_read(sem: &space_info->groups_sem);
4404 } else {
4405 ffe_ctl->index = btrfs_bg_flags_to_raid_index(
4406 flags: block_group->flags);
4407 btrfs_lock_block_group(cache: block_group,
4408 delalloc: ffe_ctl->delalloc);
4409 ffe_ctl->hinted = true;
4410 goto have_block_group;
4411 }
4412 } else if (block_group) {
4413 btrfs_put_block_group(cache: block_group);
4414 }
4415 }
4416search:
4417 trace_find_free_extent_search_loop(root, ffe_ctl);
4418 ffe_ctl->have_caching_bg = false;
4419 if (ffe_ctl->index == btrfs_bg_flags_to_raid_index(flags: ffe_ctl->flags) ||
4420 ffe_ctl->index == 0)
4421 full_search = true;
4422 down_read(sem: &space_info->groups_sem);
4423 list_for_each_entry(block_group,
4424 &space_info->block_groups[ffe_ctl->index], list) {
4425 struct btrfs_block_group *bg_ret;
4426
4427 ffe_ctl->hinted = false;
4428 /* If the block group is read-only, we can skip it entirely. */
4429 if (unlikely(block_group->ro)) {
4430 if (ffe_ctl->for_treelog)
4431 btrfs_clear_treelog_bg(bg: block_group);
4432 if (ffe_ctl->for_data_reloc)
4433 btrfs_clear_data_reloc_bg(bg: block_group);
4434 continue;
4435 }
4436
4437 btrfs_grab_block_group(cache: block_group, delalloc: ffe_ctl->delalloc);
4438 ffe_ctl->search_start = block_group->start;
4439
4440 /*
4441 * this can happen if we end up cycling through all the
4442 * raid types, but we want to make sure we only allocate
4443 * for the proper type.
4444 */
4445 if (!block_group_bits(cache: block_group, bits: ffe_ctl->flags)) {
4446 u64 extra = BTRFS_BLOCK_GROUP_DUP |
4447 BTRFS_BLOCK_GROUP_RAID1_MASK |
4448 BTRFS_BLOCK_GROUP_RAID56_MASK |
4449 BTRFS_BLOCK_GROUP_RAID10;
4450
4451 /*
4452 * if they asked for extra copies and this block group
4453 * doesn't provide them, bail. This does allow us to
4454 * fill raid0 from raid1.
4455 */
4456 if ((ffe_ctl->flags & extra) && !(block_group->flags & extra))
4457 goto loop;
4458
4459 /*
4460 * This block group has different flags than we want.
4461 * It's possible that we have MIXED_GROUP flag but no
4462 * block group is mixed. Just skip such block group.
4463 */
4464 btrfs_release_block_group(cache: block_group, delalloc: ffe_ctl->delalloc);
4465 continue;
4466 }
4467
4468have_block_group:
4469 trace_find_free_extent_have_block_group(root, ffe_ctl, block_group);
4470 ffe_ctl->cached = btrfs_block_group_done(cache: block_group);
4471 if (unlikely(!ffe_ctl->cached)) {
4472 ffe_ctl->have_caching_bg = true;
4473 ret = btrfs_cache_block_group(cache: block_group, wait: false);
4474
4475 /*
4476 * If we get ENOMEM here or something else we want to
4477 * try other block groups, because it may not be fatal.
4478 * However if we can't find anything else we need to
4479 * save our return here so that we return the actual
4480 * error that caused problems, not ENOSPC.
4481 */
4482 if (ret < 0) {
4483 if (!cache_block_group_error)
4484 cache_block_group_error = ret;
4485 ret = 0;
4486 goto loop;
4487 }
4488 ret = 0;
4489 }
4490
4491 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR)) {
4492 if (!cache_block_group_error)
4493 cache_block_group_error = -EIO;
4494 goto loop;
4495 }
4496
4497 if (!find_free_extent_check_size_class(ffe_ctl, bg: block_group))
4498 goto loop;
4499
4500 bg_ret = NULL;
4501 ret = do_allocation(block_group, ffe_ctl, bg_ret: &bg_ret);
4502 if (ret > 0)
4503 goto loop;
4504
4505 if (bg_ret && bg_ret != block_group) {
4506 btrfs_release_block_group(cache: block_group, delalloc: ffe_ctl->delalloc);
4507 block_group = bg_ret;
4508 }
4509
4510 /* Checks */
4511 ffe_ctl->search_start = round_up(ffe_ctl->found_offset,
4512 fs_info->stripesize);
4513
4514 /* move on to the next group */
4515 if (ffe_ctl->search_start + ffe_ctl->num_bytes >
4516 block_group->start + block_group->length) {
4517 btrfs_add_free_space_unused(block_group,
4518 bytenr: ffe_ctl->found_offset,
4519 size: ffe_ctl->num_bytes);
4520 goto loop;
4521 }
4522
4523 if (ffe_ctl->found_offset < ffe_ctl->search_start)
4524 btrfs_add_free_space_unused(block_group,
4525 bytenr: ffe_ctl->found_offset,
4526 size: ffe_ctl->search_start - ffe_ctl->found_offset);
4527
4528 ret = btrfs_add_reserved_bytes(cache: block_group, ram_bytes: ffe_ctl->ram_bytes,
4529 num_bytes: ffe_ctl->num_bytes,
4530 delalloc: ffe_ctl->delalloc,
4531 force_wrong_size_class: ffe_ctl->loop >= LOOP_WRONG_SIZE_CLASS);
4532 if (ret == -EAGAIN) {
4533 btrfs_add_free_space_unused(block_group,
4534 bytenr: ffe_ctl->found_offset,
4535 size: ffe_ctl->num_bytes);
4536 goto loop;
4537 }
4538 btrfs_inc_block_group_reservations(bg: block_group);
4539
4540 /* we are all good, lets return */
4541 ins->objectid = ffe_ctl->search_start;
4542 ins->offset = ffe_ctl->num_bytes;
4543
4544 trace_btrfs_reserve_extent(block_group, ffe_ctl);
4545 btrfs_release_block_group(cache: block_group, delalloc: ffe_ctl->delalloc);
4546 break;
4547loop:
4548 if (!ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT &&
4549 !ffe_ctl->retry_uncached) {
4550 ffe_ctl->retry_uncached = true;
4551 btrfs_wait_block_group_cache_progress(cache: block_group,
4552 num_bytes: ffe_ctl->num_bytes +
4553 ffe_ctl->empty_cluster +
4554 ffe_ctl->empty_size);
4555 goto have_block_group;
4556 }
4557 release_block_group(block_group, ffe_ctl, delalloc: ffe_ctl->delalloc);
4558 cond_resched();
4559 }
4560 up_read(sem: &space_info->groups_sem);
4561
4562 ret = find_free_extent_update_loop(fs_info, ins, ffe_ctl, full_search);
4563 if (ret > 0)
4564 goto search;
4565
4566 if (ret == -ENOSPC && !cache_block_group_error) {
4567 /*
4568 * Use ffe_ctl->total_free_space as fallback if we can't find
4569 * any contiguous hole.
4570 */
4571 if (!ffe_ctl->max_extent_size)
4572 ffe_ctl->max_extent_size = ffe_ctl->total_free_space;
4573 spin_lock(lock: &space_info->lock);
4574 space_info->max_extent_size = ffe_ctl->max_extent_size;
4575 spin_unlock(lock: &space_info->lock);
4576 ins->offset = ffe_ctl->max_extent_size;
4577 } else if (ret == -ENOSPC) {
4578 ret = cache_block_group_error;
4579 }
4580 return ret;
4581}
4582
4583/*
4584 * Entry point to the extent allocator. Tries to find a hole that is at least
4585 * as big as @num_bytes.
4586 *
4587 * @root - The root that will contain this extent
4588 *
4589 * @ram_bytes - The amount of space in ram that @num_bytes take. This
4590 * is used for accounting purposes. This value differs
4591 * from @num_bytes only in the case of compressed extents.
4592 *
4593 * @num_bytes - Number of bytes to allocate on-disk.
4594 *
4595 * @min_alloc_size - Indicates the minimum amount of space that the
4596 * allocator should try to satisfy. In some cases
4597 * @num_bytes may be larger than what is required and if
4598 * the filesystem is fragmented then allocation fails.
4599 * However, the presence of @min_alloc_size gives a
4600 * chance to try and satisfy the smaller allocation.
4601 *
4602 * @empty_size - A hint that you plan on doing more COW. This is the
4603 * size in bytes the allocator should try to find free
4604 * next to the block it returns. This is just a hint and
4605 * may be ignored by the allocator.
4606 *
4607 * @hint_byte - Hint to the allocator to start searching above the byte
4608 * address passed. It might be ignored.
4609 *
4610 * @ins - This key is modified to record the found hole. It will
4611 * have the following values:
4612 * ins->objectid == start position
4613 * ins->flags = BTRFS_EXTENT_ITEM_KEY
4614 * ins->offset == the size of the hole.
4615 *
4616 * @is_data - Boolean flag indicating whether an extent is
4617 * allocated for data (true) or metadata (false)
4618 *
4619 * @delalloc - Boolean flag indicating whether this allocation is for
4620 * delalloc or not. If 'true' data_rwsem of block groups
4621 * is going to be acquired.
4622 *
4623 *
4624 * Returns 0 when an allocation succeeded or < 0 when an error occurred. In
4625 * case -ENOSPC is returned then @ins->offset will contain the size of the
4626 * largest available hole the allocator managed to find.
4627 */
4628int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
4629 u64 num_bytes, u64 min_alloc_size,
4630 u64 empty_size, u64 hint_byte,
4631 struct btrfs_key *ins, int is_data, int delalloc)
4632{
4633 struct btrfs_fs_info *fs_info = root->fs_info;
4634 struct find_free_extent_ctl ffe_ctl = {};
4635 bool final_tried = num_bytes == min_alloc_size;
4636 u64 flags;
4637 int ret;
4638 bool for_treelog = (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
4639 bool for_data_reloc = (btrfs_is_data_reloc_root(root) && is_data);
4640
4641 flags = get_alloc_profile_by_root(root, data: is_data);
4642again:
4643 WARN_ON(num_bytes < fs_info->sectorsize);
4644
4645 ffe_ctl.ram_bytes = ram_bytes;
4646 ffe_ctl.num_bytes = num_bytes;
4647 ffe_ctl.min_alloc_size = min_alloc_size;
4648 ffe_ctl.empty_size = empty_size;
4649 ffe_ctl.flags = flags;
4650 ffe_ctl.delalloc = delalloc;
4651 ffe_ctl.hint_byte = hint_byte;
4652 ffe_ctl.for_treelog = for_treelog;
4653 ffe_ctl.for_data_reloc = for_data_reloc;
4654
4655 ret = find_free_extent(root, ins, ffe_ctl: &ffe_ctl);
4656 if (!ret && !is_data) {
4657 btrfs_dec_block_group_reservations(fs_info, start: ins->objectid);
4658 } else if (ret == -ENOSPC) {
4659 if (!final_tried && ins->offset) {
4660 num_bytes = min(num_bytes >> 1, ins->offset);
4661 num_bytes = round_down(num_bytes,
4662 fs_info->sectorsize);
4663 num_bytes = max(num_bytes, min_alloc_size);
4664 ram_bytes = num_bytes;
4665 if (num_bytes == min_alloc_size)
4666 final_tried = true;
4667 goto again;
4668 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4669 struct btrfs_space_info *sinfo;
4670
4671 sinfo = btrfs_find_space_info(info: fs_info, flags);
4672 btrfs_err(fs_info,
4673 "allocation failed flags %llu, wanted %llu tree-log %d, relocation: %d",
4674 flags, num_bytes, for_treelog, for_data_reloc);
4675 if (sinfo)
4676 btrfs_dump_space_info(fs_info, info: sinfo,
4677 bytes: num_bytes, dump_block_groups: 1);
4678 }
4679 }
4680
4681 return ret;
4682}
4683
4684int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
4685 u64 start, u64 len, int delalloc)
4686{
4687 struct btrfs_block_group *cache;
4688
4689 cache = btrfs_lookup_block_group(info: fs_info, bytenr: start);
4690 if (!cache) {
4691 btrfs_err(fs_info, "Unable to find block group for %llu",
4692 start);
4693 return -ENOSPC;
4694 }
4695
4696 btrfs_add_free_space(block_group: cache, bytenr: start, size: len);
4697 btrfs_free_reserved_bytes(cache, num_bytes: len, delalloc);
4698 trace_btrfs_reserved_extent_free(fs_info, start, len);
4699
4700 btrfs_put_block_group(cache);
4701 return 0;
4702}
4703
4704int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans,
4705 const struct extent_buffer *eb)
4706{
4707 struct btrfs_block_group *cache;
4708 int ret = 0;
4709
4710 cache = btrfs_lookup_block_group(info: trans->fs_info, bytenr: eb->start);
4711 if (!cache) {
4712 btrfs_err(trans->fs_info, "unable to find block group for %llu",
4713 eb->start);
4714 return -ENOSPC;
4715 }
4716
4717 ret = pin_down_extent(trans, cache, bytenr: eb->start, num_bytes: eb->len, reserved: 1);
4718 btrfs_put_block_group(cache);
4719 return ret;
4720}
4721
4722static int alloc_reserved_extent(struct btrfs_trans_handle *trans, u64 bytenr,
4723 u64 num_bytes)
4724{
4725 struct btrfs_fs_info *fs_info = trans->fs_info;
4726 int ret;
4727
4728 ret = remove_from_free_space_tree(trans, start: bytenr, size: num_bytes);
4729 if (ret)
4730 return ret;
4731
4732 ret = btrfs_update_block_group(trans, bytenr, num_bytes, alloc: true);
4733 if (ret) {
4734 ASSERT(!ret);
4735 btrfs_err(fs_info, "update block group failed for %llu %llu",
4736 bytenr, num_bytes);
4737 return ret;
4738 }
4739
4740 trace_btrfs_reserved_extent_alloc(fs_info, start: bytenr, len: num_bytes);
4741 return 0;
4742}
4743
4744static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4745 u64 parent, u64 root_objectid,
4746 u64 flags, u64 owner, u64 offset,
4747 struct btrfs_key *ins, int ref_mod, u64 oref_root)
4748{
4749 struct btrfs_fs_info *fs_info = trans->fs_info;
4750 struct btrfs_root *extent_root;
4751 int ret;
4752 struct btrfs_extent_item *extent_item;
4753 struct btrfs_extent_owner_ref *oref;
4754 struct btrfs_extent_inline_ref *iref;
4755 struct btrfs_path *path;
4756 struct extent_buffer *leaf;
4757 int type;
4758 u32 size;
4759 const bool simple_quota = (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_SIMPLE);
4760
4761 if (parent > 0)
4762 type = BTRFS_SHARED_DATA_REF_KEY;
4763 else
4764 type = BTRFS_EXTENT_DATA_REF_KEY;
4765
4766 size = sizeof(*extent_item);
4767 if (simple_quota)
4768 size += btrfs_extent_inline_ref_size(BTRFS_EXTENT_OWNER_REF_KEY);
4769 size += btrfs_extent_inline_ref_size(type);
4770
4771 path = btrfs_alloc_path();
4772 if (!path)
4773 return -ENOMEM;
4774
4775 extent_root = btrfs_extent_root(fs_info, bytenr: ins->objectid);
4776 ret = btrfs_insert_empty_item(trans, root: extent_root, path, key: ins, data_size: size);
4777 if (ret) {
4778 btrfs_free_path(p: path);
4779 return ret;
4780 }
4781
4782 leaf = path->nodes[0];
4783 extent_item = btrfs_item_ptr(leaf, path->slots[0],
4784 struct btrfs_extent_item);
4785 btrfs_set_extent_refs(eb: leaf, s: extent_item, val: ref_mod);
4786 btrfs_set_extent_generation(eb: leaf, s: extent_item, val: trans->transid);
4787 btrfs_set_extent_flags(eb: leaf, s: extent_item,
4788 val: flags | BTRFS_EXTENT_FLAG_DATA);
4789
4790 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4791 if (simple_quota) {
4792 btrfs_set_extent_inline_ref_type(eb: leaf, s: iref, BTRFS_EXTENT_OWNER_REF_KEY);
4793 oref = (struct btrfs_extent_owner_ref *)(&iref->offset);
4794 btrfs_set_extent_owner_ref_root_id(eb: leaf, s: oref, val: oref_root);
4795 iref = (struct btrfs_extent_inline_ref *)(oref + 1);
4796 }
4797 btrfs_set_extent_inline_ref_type(eb: leaf, s: iref, val: type);
4798
4799 if (parent > 0) {
4800 struct btrfs_shared_data_ref *ref;
4801 ref = (struct btrfs_shared_data_ref *)(iref + 1);
4802 btrfs_set_extent_inline_ref_offset(eb: leaf, s: iref, val: parent);
4803 btrfs_set_shared_data_ref_count(eb: leaf, s: ref, val: ref_mod);
4804 } else {
4805 struct btrfs_extent_data_ref *ref;
4806 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
4807 btrfs_set_extent_data_ref_root(eb: leaf, s: ref, val: root_objectid);
4808 btrfs_set_extent_data_ref_objectid(eb: leaf, s: ref, val: owner);
4809 btrfs_set_extent_data_ref_offset(eb: leaf, s: ref, val: offset);
4810 btrfs_set_extent_data_ref_count(eb: leaf, s: ref, val: ref_mod);
4811 }
4812
4813 btrfs_mark_buffer_dirty(trans, buf: path->nodes[0]);
4814 btrfs_free_path(p: path);
4815
4816 return alloc_reserved_extent(trans, bytenr: ins->objectid, num_bytes: ins->offset);
4817}
4818
4819static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
4820 struct btrfs_delayed_ref_node *node,
4821 struct btrfs_delayed_extent_op *extent_op)
4822{
4823 struct btrfs_fs_info *fs_info = trans->fs_info;
4824 struct btrfs_root *extent_root;
4825 int ret;
4826 struct btrfs_extent_item *extent_item;
4827 struct btrfs_key extent_key;
4828 struct btrfs_tree_block_info *block_info;
4829 struct btrfs_extent_inline_ref *iref;
4830 struct btrfs_path *path;
4831 struct extent_buffer *leaf;
4832 struct btrfs_delayed_tree_ref *ref;
4833 u32 size = sizeof(*extent_item) + sizeof(*iref);
4834 u64 flags = extent_op->flags_to_set;
4835 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
4836
4837 ref = btrfs_delayed_node_to_tree_ref(node);
4838
4839 extent_key.objectid = node->bytenr;
4840 if (skinny_metadata) {
4841 extent_key.offset = ref->level;
4842 extent_key.type = BTRFS_METADATA_ITEM_KEY;
4843 } else {
4844 extent_key.offset = node->num_bytes;
4845 extent_key.type = BTRFS_EXTENT_ITEM_KEY;
4846 size += sizeof(*block_info);
4847 }
4848
4849 path = btrfs_alloc_path();
4850 if (!path)
4851 return -ENOMEM;
4852
4853 extent_root = btrfs_extent_root(fs_info, bytenr: extent_key.objectid);
4854 ret = btrfs_insert_empty_item(trans, root: extent_root, path, key: &extent_key,
4855 data_size: size);
4856 if (ret) {
4857 btrfs_free_path(p: path);
4858 return ret;
4859 }
4860
4861 leaf = path->nodes[0];
4862 extent_item = btrfs_item_ptr(leaf, path->slots[0],
4863 struct btrfs_extent_item);
4864 btrfs_set_extent_refs(eb: leaf, s: extent_item, val: 1);
4865 btrfs_set_extent_generation(eb: leaf, s: extent_item, val: trans->transid);
4866 btrfs_set_extent_flags(eb: leaf, s: extent_item,
4867 val: flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
4868
4869 if (skinny_metadata) {
4870 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4871 } else {
4872 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
4873 btrfs_set_tree_block_key(eb: leaf, item: block_info, key: &extent_op->key);
4874 btrfs_set_tree_block_level(eb: leaf, s: block_info, val: ref->level);
4875 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
4876 }
4877
4878 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) {
4879 btrfs_set_extent_inline_ref_type(eb: leaf, s: iref,
4880 BTRFS_SHARED_BLOCK_REF_KEY);
4881 btrfs_set_extent_inline_ref_offset(eb: leaf, s: iref, val: ref->parent);
4882 } else {
4883 btrfs_set_extent_inline_ref_type(eb: leaf, s: iref,
4884 BTRFS_TREE_BLOCK_REF_KEY);
4885 btrfs_set_extent_inline_ref_offset(eb: leaf, s: iref, val: ref->root);
4886 }
4887
4888 btrfs_mark_buffer_dirty(trans, buf: leaf);
4889 btrfs_free_path(p: path);
4890
4891 return alloc_reserved_extent(trans, bytenr: node->bytenr, num_bytes: fs_info->nodesize);
4892}
4893
4894int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4895 struct btrfs_root *root, u64 owner,
4896 u64 offset, u64 ram_bytes,
4897 struct btrfs_key *ins)
4898{
4899 struct btrfs_ref generic_ref = { 0 };
4900 u64 root_objectid = root->root_key.objectid;
4901 u64 owning_root = root_objectid;
4902
4903 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
4904
4905 if (btrfs_is_data_reloc_root(root) && is_fstree(rootid: root->relocation_src_root))
4906 owning_root = root->relocation_src_root;
4907
4908 btrfs_init_generic_ref(generic_ref: &generic_ref, action: BTRFS_ADD_DELAYED_EXTENT,
4909 bytenr: ins->objectid, len: ins->offset, parent: 0, owning_root);
4910 btrfs_init_data_ref(generic_ref: &generic_ref, ref_root: root_objectid, ino: owner,
4911 offset, mod_root: 0, skip_qgroup: false);
4912 btrfs_ref_tree_mod(fs_info: root->fs_info, generic_ref: &generic_ref);
4913
4914 return btrfs_add_delayed_data_ref(trans, generic_ref: &generic_ref, reserved: ram_bytes);
4915}
4916
4917/*
4918 * this is used by the tree logging recovery code. It records that
4919 * an extent has been allocated and makes sure to clear the free
4920 * space cache bits as well
4921 */
4922int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
4923 u64 root_objectid, u64 owner, u64 offset,
4924 struct btrfs_key *ins)
4925{
4926 struct btrfs_fs_info *fs_info = trans->fs_info;
4927 int ret;
4928 struct btrfs_block_group *block_group;
4929 struct btrfs_space_info *space_info;
4930 struct btrfs_squota_delta delta = {
4931 .root = root_objectid,
4932 .num_bytes = ins->offset,
4933 .generation = trans->transid,
4934 .rsv_bytes = 0,
4935 .is_data = true,
4936 .is_inc = true,
4937 };
4938
4939 /*
4940 * Mixed block groups will exclude before processing the log so we only
4941 * need to do the exclude dance if this fs isn't mixed.
4942 */
4943 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
4944 ret = __exclude_logged_extent(fs_info, start: ins->objectid,
4945 num_bytes: ins->offset);
4946 if (ret)
4947 return ret;
4948 }
4949
4950 block_group = btrfs_lookup_block_group(info: fs_info, bytenr: ins->objectid);
4951 if (!block_group)
4952 return -EINVAL;
4953
4954 space_info = block_group->space_info;
4955 spin_lock(lock: &space_info->lock);
4956 spin_lock(lock: &block_group->lock);
4957 space_info->bytes_reserved += ins->offset;
4958 block_group->reserved += ins->offset;
4959 spin_unlock(lock: &block_group->lock);
4960 spin_unlock(lock: &space_info->lock);
4961
4962 ret = alloc_reserved_file_extent(trans, parent: 0, root_objectid, flags: 0, owner,
4963 offset, ins, ref_mod: 1, oref_root: root_objectid);
4964 if (ret)
4965 btrfs_pin_extent(trans, bytenr: ins->objectid, num_bytes: ins->offset, reserved: 1);
4966 ret = btrfs_record_squota_delta(fs_info, delta: &delta);
4967 btrfs_put_block_group(cache: block_group);
4968 return ret;
4969}
4970
4971#ifdef CONFIG_BTRFS_DEBUG
4972/*
4973 * Extra safety check in case the extent tree is corrupted and extent allocator
4974 * chooses to use a tree block which is already used and locked.
4975 */
4976static bool check_eb_lock_owner(const struct extent_buffer *eb)
4977{
4978 if (eb->lock_owner == current->pid) {
4979 btrfs_err_rl(eb->fs_info,
4980"tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected",
4981 eb->start, btrfs_header_owner(eb), current->pid);
4982 return true;
4983 }
4984 return false;
4985}
4986#else
4987static bool check_eb_lock_owner(struct extent_buffer *eb)
4988{
4989 return false;
4990}
4991#endif
4992
4993static struct extent_buffer *
4994btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4995 u64 bytenr, int level, u64 owner,
4996 enum btrfs_lock_nesting nest)
4997{
4998 struct btrfs_fs_info *fs_info = root->fs_info;
4999 struct extent_buffer *buf;
5000 u64 lockdep_owner = owner;
5001
5002 buf = btrfs_find_create_tree_block(fs_info, bytenr, owner_root: owner, level);
5003 if (IS_ERR(ptr: buf))
5004 return buf;
5005
5006 if (check_eb_lock_owner(eb: buf)) {
5007 free_extent_buffer(eb: buf);
5008 return ERR_PTR(error: -EUCLEAN);
5009 }
5010
5011 /*
5012 * The reloc trees are just snapshots, so we need them to appear to be
5013 * just like any other fs tree WRT lockdep.
5014 *
5015 * The exception however is in replace_path() in relocation, where we
5016 * hold the lock on the original fs root and then search for the reloc
5017 * root. At that point we need to make sure any reloc root buffers are
5018 * set to the BTRFS_TREE_RELOC_OBJECTID lockdep class in order to make
5019 * lockdep happy.
5020 */
5021 if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID &&
5022 !test_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &root->state))
5023 lockdep_owner = BTRFS_FS_TREE_OBJECTID;
5024
5025 /* btrfs_clear_buffer_dirty() accesses generation field. */
5026 btrfs_set_header_generation(eb: buf, val: trans->transid);
5027
5028 /*
5029 * This needs to stay, because we could allocate a freed block from an
5030 * old tree into a new tree, so we need to make sure this new block is
5031 * set to the appropriate level and owner.
5032 */
5033 btrfs_set_buffer_lockdep_class(objectid: lockdep_owner, eb: buf, level);
5034
5035 __btrfs_tree_lock(eb: buf, nest);
5036 btrfs_clear_buffer_dirty(trans, buf);
5037 clear_bit(nr: EXTENT_BUFFER_STALE, addr: &buf->bflags);
5038 clear_bit(nr: EXTENT_BUFFER_NO_CHECK, addr: &buf->bflags);
5039
5040 set_extent_buffer_uptodate(buf);
5041
5042 memzero_extent_buffer(eb: buf, start: 0, len: sizeof(struct btrfs_header));
5043 btrfs_set_header_level(eb: buf, val: level);
5044 btrfs_set_header_bytenr(eb: buf, val: buf->start);
5045 btrfs_set_header_generation(eb: buf, val: trans->transid);
5046 btrfs_set_header_backref_rev(eb: buf, BTRFS_MIXED_BACKREF_REV);
5047 btrfs_set_header_owner(eb: buf, val: owner);
5048 write_extent_buffer_fsid(eb: buf, fsid: fs_info->fs_devices->metadata_uuid);
5049 write_extent_buffer_chunk_tree_uuid(eb: buf, chunk_tree_uuid: fs_info->chunk_tree_uuid);
5050 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
5051 buf->log_index = root->log_transid % 2;
5052 /*
5053 * we allow two log transactions at a time, use different
5054 * EXTENT bit to differentiate dirty pages.
5055 */
5056 if (buf->log_index == 0)
5057 set_extent_bit(tree: &root->dirty_log_pages, start: buf->start,
5058 end: buf->start + buf->len - 1,
5059 bits: EXTENT_DIRTY, NULL);
5060 else
5061 set_extent_bit(tree: &root->dirty_log_pages, start: buf->start,
5062 end: buf->start + buf->len - 1,
5063 bits: EXTENT_NEW, NULL);
5064 } else {
5065 buf->log_index = -1;
5066 set_extent_bit(tree: &trans->transaction->dirty_pages, start: buf->start,
5067 end: buf->start + buf->len - 1, bits: EXTENT_DIRTY, NULL);
5068 }
5069 /* this returns a buffer locked for blocking */
5070 return buf;
5071}
5072
5073/*
5074 * finds a free extent and does all the dirty work required for allocation
5075 * returns the tree buffer or an ERR_PTR on error.
5076 */
5077struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
5078 struct btrfs_root *root,
5079 u64 parent, u64 root_objectid,
5080 const struct btrfs_disk_key *key,
5081 int level, u64 hint,
5082 u64 empty_size,
5083 u64 reloc_src_root,
5084 enum btrfs_lock_nesting nest)
5085{
5086 struct btrfs_fs_info *fs_info = root->fs_info;
5087 struct btrfs_key ins;
5088 struct btrfs_block_rsv *block_rsv;
5089 struct extent_buffer *buf;
5090 struct btrfs_delayed_extent_op *extent_op;
5091 struct btrfs_ref generic_ref = { 0 };
5092 u64 flags = 0;
5093 int ret;
5094 u32 blocksize = fs_info->nodesize;
5095 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
5096 u64 owning_root;
5097
5098#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5099 if (btrfs_is_testing(fs_info)) {
5100 buf = btrfs_init_new_buffer(trans, root, bytenr: root->alloc_bytenr,
5101 level, owner: root_objectid, nest);
5102 if (!IS_ERR(ptr: buf))
5103 root->alloc_bytenr += blocksize;
5104 return buf;
5105 }
5106#endif
5107
5108 block_rsv = btrfs_use_block_rsv(trans, root, blocksize);
5109 if (IS_ERR(ptr: block_rsv))
5110 return ERR_CAST(ptr: block_rsv);
5111
5112 ret = btrfs_reserve_extent(root, ram_bytes: blocksize, num_bytes: blocksize, min_alloc_size: blocksize,
5113 empty_size, hint_byte: hint, ins: &ins, is_data: 0, delalloc: 0);
5114 if (ret)
5115 goto out_unuse;
5116
5117 buf = btrfs_init_new_buffer(trans, root, bytenr: ins.objectid, level,
5118 owner: root_objectid, nest);
5119 if (IS_ERR(ptr: buf)) {
5120 ret = PTR_ERR(ptr: buf);
5121 goto out_free_reserved;
5122 }
5123 owning_root = btrfs_header_owner(eb: buf);
5124
5125 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
5126 if (parent == 0)
5127 parent = ins.objectid;
5128 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
5129 owning_root = reloc_src_root;
5130 } else
5131 BUG_ON(parent > 0);
5132
5133 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
5134 extent_op = btrfs_alloc_delayed_extent_op();
5135 if (!extent_op) {
5136 ret = -ENOMEM;
5137 goto out_free_buf;
5138 }
5139 if (key)
5140 memcpy(&extent_op->key, key, sizeof(extent_op->key));
5141 else
5142 memset(&extent_op->key, 0, sizeof(extent_op->key));
5143 extent_op->flags_to_set = flags;
5144 extent_op->update_key = skinny_metadata ? false : true;
5145 extent_op->update_flags = true;
5146 extent_op->level = level;
5147
5148 btrfs_init_generic_ref(generic_ref: &generic_ref, action: BTRFS_ADD_DELAYED_EXTENT,
5149 bytenr: ins.objectid, len: ins.offset, parent, owning_root);
5150 btrfs_init_tree_ref(generic_ref: &generic_ref, level, root: root_objectid,
5151 mod_root: root->root_key.objectid, skip_qgroup: false);
5152 btrfs_ref_tree_mod(fs_info, generic_ref: &generic_ref);
5153 ret = btrfs_add_delayed_tree_ref(trans, generic_ref: &generic_ref, extent_op);
5154 if (ret)
5155 goto out_free_delayed;
5156 }
5157 return buf;
5158
5159out_free_delayed:
5160 btrfs_free_delayed_extent_op(op: extent_op);
5161out_free_buf:
5162 btrfs_tree_unlock(eb: buf);
5163 free_extent_buffer(eb: buf);
5164out_free_reserved:
5165 btrfs_free_reserved_extent(fs_info, start: ins.objectid, len: ins.offset, delalloc: 0);
5166out_unuse:
5167 btrfs_unuse_block_rsv(fs_info, block_rsv, blocksize);
5168 return ERR_PTR(error: ret);
5169}
5170
5171struct walk_control {
5172 u64 refs[BTRFS_MAX_LEVEL];
5173 u64 flags[BTRFS_MAX_LEVEL];
5174 struct btrfs_key update_progress;
5175 struct btrfs_key drop_progress;
5176 int drop_level;
5177 int stage;
5178 int level;
5179 int shared_level;
5180 int update_ref;
5181 int keep_locks;
5182 int reada_slot;
5183 int reada_count;
5184 int restarted;
5185};
5186
5187#define DROP_REFERENCE 1
5188#define UPDATE_BACKREF 2
5189
5190static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
5191 struct btrfs_root *root,
5192 struct walk_control *wc,
5193 struct btrfs_path *path)
5194{
5195 struct btrfs_fs_info *fs_info = root->fs_info;
5196 u64 bytenr;
5197 u64 generation;
5198 u64 refs;
5199 u64 flags;
5200 u32 nritems;
5201 struct btrfs_key key;
5202 struct extent_buffer *eb;
5203 int ret;
5204 int slot;
5205 int nread = 0;
5206
5207 if (path->slots[wc->level] < wc->reada_slot) {
5208 wc->reada_count = wc->reada_count * 2 / 3;
5209 wc->reada_count = max(wc->reada_count, 2);
5210 } else {
5211 wc->reada_count = wc->reada_count * 3 / 2;
5212 wc->reada_count = min_t(int, wc->reada_count,
5213 BTRFS_NODEPTRS_PER_BLOCK(fs_info));
5214 }
5215
5216 eb = path->nodes[wc->level];
5217 nritems = btrfs_header_nritems(eb);
5218
5219 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
5220 if (nread >= wc->reada_count)
5221 break;
5222
5223 cond_resched();
5224 bytenr = btrfs_node_blockptr(eb, nr: slot);
5225 generation = btrfs_node_ptr_generation(eb, nr: slot);
5226
5227 if (slot == path->slots[wc->level])
5228 goto reada;
5229
5230 if (wc->stage == UPDATE_BACKREF &&
5231 generation <= root->root_key.offset)
5232 continue;
5233
5234 /* We don't lock the tree block, it's OK to be racy here */
5235 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
5236 offset: wc->level - 1, metadata: 1, refs: &refs,
5237 flags: &flags);
5238 /* We don't care about errors in readahead. */
5239 if (ret < 0)
5240 continue;
5241 BUG_ON(refs == 0);
5242
5243 if (wc->stage == DROP_REFERENCE) {
5244 if (refs == 1)
5245 goto reada;
5246
5247 if (wc->level == 1 &&
5248 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5249 continue;
5250 if (!wc->update_ref ||
5251 generation <= root->root_key.offset)
5252 continue;
5253 btrfs_node_key_to_cpu(eb, cpu_key: &key, nr: slot);
5254 ret = btrfs_comp_cpu_keys(k1: &key,
5255 k2: &wc->update_progress);
5256 if (ret < 0)
5257 continue;
5258 } else {
5259 if (wc->level == 1 &&
5260 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5261 continue;
5262 }
5263reada:
5264 btrfs_readahead_node_child(node: eb, slot);
5265 nread++;
5266 }
5267 wc->reada_slot = slot;
5268}
5269
5270/*
5271 * helper to process tree block while walking down the tree.
5272 *
5273 * when wc->stage == UPDATE_BACKREF, this function updates
5274 * back refs for pointers in the block.
5275 *
5276 * NOTE: return value 1 means we should stop walking down.
5277 */
5278static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5279 struct btrfs_root *root,
5280 struct btrfs_path *path,
5281 struct walk_control *wc, int lookup_info)
5282{
5283 struct btrfs_fs_info *fs_info = root->fs_info;
5284 int level = wc->level;
5285 struct extent_buffer *eb = path->nodes[level];
5286 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
5287 int ret;
5288
5289 if (wc->stage == UPDATE_BACKREF &&
5290 btrfs_header_owner(eb) != root->root_key.objectid)
5291 return 1;
5292
5293 /*
5294 * when reference count of tree block is 1, it won't increase
5295 * again. once full backref flag is set, we never clear it.
5296 */
5297 if (lookup_info &&
5298 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
5299 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
5300 BUG_ON(!path->locks[level]);
5301 ret = btrfs_lookup_extent_info(trans, fs_info,
5302 bytenr: eb->start, offset: level, metadata: 1,
5303 refs: &wc->refs[level],
5304 flags: &wc->flags[level]);
5305 BUG_ON(ret == -ENOMEM);
5306 if (ret)
5307 return ret;
5308 BUG_ON(wc->refs[level] == 0);
5309 }
5310
5311 if (wc->stage == DROP_REFERENCE) {
5312 if (wc->refs[level] > 1)
5313 return 1;
5314
5315 if (path->locks[level] && !wc->keep_locks) {
5316 btrfs_tree_unlock_rw(eb, rw: path->locks[level]);
5317 path->locks[level] = 0;
5318 }
5319 return 0;
5320 }
5321
5322 /* wc->stage == UPDATE_BACKREF */
5323 if (!(wc->flags[level] & flag)) {
5324 BUG_ON(!path->locks[level]);
5325 ret = btrfs_inc_ref(trans, root, buf: eb, full_backref: 1);
5326 BUG_ON(ret); /* -ENOMEM */
5327 ret = btrfs_dec_ref(trans, root, buf: eb, full_backref: 0);
5328 BUG_ON(ret); /* -ENOMEM */
5329 ret = btrfs_set_disk_extent_flags(trans, eb, flags: flag);
5330 BUG_ON(ret); /* -ENOMEM */
5331 wc->flags[level] |= flag;
5332 }
5333
5334 /*
5335 * the block is shared by multiple trees, so it's not good to
5336 * keep the tree lock
5337 */
5338 if (path->locks[level] && level > 0) {
5339 btrfs_tree_unlock_rw(eb, rw: path->locks[level]);
5340 path->locks[level] = 0;
5341 }
5342 return 0;
5343}
5344
5345/*
5346 * This is used to verify a ref exists for this root to deal with a bug where we
5347 * would have a drop_progress key that hadn't been updated properly.
5348 */
5349static int check_ref_exists(struct btrfs_trans_handle *trans,
5350 struct btrfs_root *root, u64 bytenr, u64 parent,
5351 int level)
5352{
5353 struct btrfs_path *path;
5354 struct btrfs_extent_inline_ref *iref;
5355 int ret;
5356
5357 path = btrfs_alloc_path();
5358 if (!path)
5359 return -ENOMEM;
5360
5361 ret = lookup_extent_backref(trans, path, ref_ret: &iref, bytenr,
5362 num_bytes: root->fs_info->nodesize, parent,
5363 root_objectid: root->root_key.objectid, owner: level, offset: 0);
5364 btrfs_free_path(p: path);
5365 if (ret == -ENOENT)
5366 return 0;
5367 if (ret < 0)
5368 return ret;
5369 return 1;
5370}
5371
5372/*
5373 * helper to process tree block pointer.
5374 *
5375 * when wc->stage == DROP_REFERENCE, this function checks
5376 * reference count of the block pointed to. if the block
5377 * is shared and we need update back refs for the subtree
5378 * rooted at the block, this function changes wc->stage to
5379 * UPDATE_BACKREF. if the block is shared and there is no
5380 * need to update back, this function drops the reference
5381 * to the block.
5382 *
5383 * NOTE: return value 1 means we should stop walking down.
5384 */
5385static noinline int do_walk_down(struct btrfs_trans_handle *trans,
5386 struct btrfs_root *root,
5387 struct btrfs_path *path,
5388 struct walk_control *wc, int *lookup_info)
5389{
5390 struct btrfs_fs_info *fs_info = root->fs_info;
5391 u64 bytenr;
5392 u64 generation;
5393 u64 parent;
5394 struct btrfs_tree_parent_check check = { 0 };
5395 struct btrfs_key key;
5396 struct btrfs_ref ref = { 0 };
5397 struct extent_buffer *next;
5398 int level = wc->level;
5399 int reada = 0;
5400 int ret = 0;
5401 bool need_account = false;
5402
5403 generation = btrfs_node_ptr_generation(eb: path->nodes[level],
5404 nr: path->slots[level]);
5405 /*
5406 * if the lower level block was created before the snapshot
5407 * was created, we know there is no need to update back refs
5408 * for the subtree
5409 */
5410 if (wc->stage == UPDATE_BACKREF &&
5411 generation <= root->root_key.offset) {
5412 *lookup_info = 1;
5413 return 1;
5414 }
5415
5416 bytenr = btrfs_node_blockptr(eb: path->nodes[level], nr: path->slots[level]);
5417
5418 check.level = level - 1;
5419 check.transid = generation;
5420 check.owner_root = root->root_key.objectid;
5421 check.has_first_key = true;
5422 btrfs_node_key_to_cpu(eb: path->nodes[level], cpu_key: &check.first_key,
5423 nr: path->slots[level]);
5424
5425 next = find_extent_buffer(fs_info, start: bytenr);
5426 if (!next) {
5427 next = btrfs_find_create_tree_block(fs_info, bytenr,
5428 owner_root: root->root_key.objectid, level: level - 1);
5429 if (IS_ERR(ptr: next))
5430 return PTR_ERR(ptr: next);
5431 reada = 1;
5432 }
5433 btrfs_tree_lock(eb: next);
5434
5435 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, offset: level - 1, metadata: 1,
5436 refs: &wc->refs[level - 1],
5437 flags: &wc->flags[level - 1]);
5438 if (ret < 0)
5439 goto out_unlock;
5440
5441 if (unlikely(wc->refs[level - 1] == 0)) {
5442 btrfs_err(fs_info, "Missing references.");
5443 ret = -EIO;
5444 goto out_unlock;
5445 }
5446 *lookup_info = 0;
5447
5448 if (wc->stage == DROP_REFERENCE) {
5449 if (wc->refs[level - 1] > 1) {
5450 need_account = true;
5451 if (level == 1 &&
5452 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5453 goto skip;
5454
5455 if (!wc->update_ref ||
5456 generation <= root->root_key.offset)
5457 goto skip;
5458
5459 btrfs_node_key_to_cpu(eb: path->nodes[level], cpu_key: &key,
5460 nr: path->slots[level]);
5461 ret = btrfs_comp_cpu_keys(k1: &key, k2: &wc->update_progress);
5462 if (ret < 0)
5463 goto skip;
5464
5465 wc->stage = UPDATE_BACKREF;
5466 wc->shared_level = level - 1;
5467 }
5468 } else {
5469 if (level == 1 &&
5470 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5471 goto skip;
5472 }
5473
5474 if (!btrfs_buffer_uptodate(buf: next, parent_transid: generation, atomic: 0)) {
5475 btrfs_tree_unlock(eb: next);
5476 free_extent_buffer(eb: next);
5477 next = NULL;
5478 *lookup_info = 1;
5479 }
5480
5481 if (!next) {
5482 if (reada && level == 1)
5483 reada_walk_down(trans, root, wc, path);
5484 next = read_tree_block(fs_info, bytenr, check: &check);
5485 if (IS_ERR(ptr: next)) {
5486 return PTR_ERR(ptr: next);
5487 } else if (!extent_buffer_uptodate(eb: next)) {
5488 free_extent_buffer(eb: next);
5489 return -EIO;
5490 }
5491 btrfs_tree_lock(eb: next);
5492 }
5493
5494 level--;
5495 ASSERT(level == btrfs_header_level(next));
5496 if (level != btrfs_header_level(eb: next)) {
5497 btrfs_err(root->fs_info, "mismatched level");
5498 ret = -EIO;
5499 goto out_unlock;
5500 }
5501 path->nodes[level] = next;
5502 path->slots[level] = 0;
5503 path->locks[level] = BTRFS_WRITE_LOCK;
5504 wc->level = level;
5505 if (wc->level == 1)
5506 wc->reada_slot = 0;
5507 return 0;
5508skip:
5509 wc->refs[level - 1] = 0;
5510 wc->flags[level - 1] = 0;
5511 if (wc->stage == DROP_REFERENCE) {
5512 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
5513 parent = path->nodes[level]->start;
5514 } else {
5515 ASSERT(root->root_key.objectid ==
5516 btrfs_header_owner(path->nodes[level]));
5517 if (root->root_key.objectid !=
5518 btrfs_header_owner(eb: path->nodes[level])) {
5519 btrfs_err(root->fs_info,
5520 "mismatched block owner");
5521 ret = -EIO;
5522 goto out_unlock;
5523 }
5524 parent = 0;
5525 }
5526
5527 /*
5528 * If we had a drop_progress we need to verify the refs are set
5529 * as expected. If we find our ref then we know that from here
5530 * on out everything should be correct, and we can clear the
5531 * ->restarted flag.
5532 */
5533 if (wc->restarted) {
5534 ret = check_ref_exists(trans, root, bytenr, parent,
5535 level: level - 1);
5536 if (ret < 0)
5537 goto out_unlock;
5538 if (ret == 0)
5539 goto no_delete;
5540 ret = 0;
5541 wc->restarted = 0;
5542 }
5543
5544 /*
5545 * Reloc tree doesn't contribute to qgroup numbers, and we have
5546 * already accounted them at merge time (replace_path),
5547 * thus we could skip expensive subtree trace here.
5548 */
5549 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
5550 need_account) {
5551 ret = btrfs_qgroup_trace_subtree(trans, root_eb: next,
5552 root_gen: generation, root_level: level - 1);
5553 if (ret) {
5554 btrfs_err_rl(fs_info,
5555 "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
5556 ret);
5557 }
5558 }
5559
5560 /*
5561 * We need to update the next key in our walk control so we can
5562 * update the drop_progress key accordingly. We don't care if
5563 * find_next_key doesn't find a key because that means we're at
5564 * the end and are going to clean up now.
5565 */
5566 wc->drop_level = level;
5567 find_next_key(path, level, key: &wc->drop_progress);
5568
5569 btrfs_init_generic_ref(generic_ref: &ref, action: BTRFS_DROP_DELAYED_REF, bytenr,
5570 len: fs_info->nodesize, parent,
5571 owning_root: btrfs_header_owner(eb: next));
5572 btrfs_init_tree_ref(generic_ref: &ref, level: level - 1, root: root->root_key.objectid,
5573 mod_root: 0, skip_qgroup: false);
5574 ret = btrfs_free_extent(trans, ref: &ref);
5575 if (ret)
5576 goto out_unlock;
5577 }
5578no_delete:
5579 *lookup_info = 1;
5580 ret = 1;
5581
5582out_unlock:
5583 btrfs_tree_unlock(eb: next);
5584 free_extent_buffer(eb: next);
5585
5586 return ret;
5587}
5588
5589/*
5590 * helper to process tree block while walking up the tree.
5591 *
5592 * when wc->stage == DROP_REFERENCE, this function drops
5593 * reference count on the block.
5594 *
5595 * when wc->stage == UPDATE_BACKREF, this function changes
5596 * wc->stage back to DROP_REFERENCE if we changed wc->stage
5597 * to UPDATE_BACKREF previously while processing the block.
5598 *
5599 * NOTE: return value 1 means we should stop walking up.
5600 */
5601static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
5602 struct btrfs_root *root,
5603 struct btrfs_path *path,
5604 struct walk_control *wc)
5605{
5606 struct btrfs_fs_info *fs_info = root->fs_info;
5607 int ret;
5608 int level = wc->level;
5609 struct extent_buffer *eb = path->nodes[level];
5610 u64 parent = 0;
5611
5612 if (wc->stage == UPDATE_BACKREF) {
5613 BUG_ON(wc->shared_level < level);
5614 if (level < wc->shared_level)
5615 goto out;
5616
5617 ret = find_next_key(path, level: level + 1, key: &wc->update_progress);
5618 if (ret > 0)
5619 wc->update_ref = 0;
5620
5621 wc->stage = DROP_REFERENCE;
5622 wc->shared_level = -1;
5623 path->slots[level] = 0;
5624
5625 /*
5626 * check reference count again if the block isn't locked.
5627 * we should start walking down the tree again if reference
5628 * count is one.
5629 */
5630 if (!path->locks[level]) {
5631 BUG_ON(level == 0);
5632 btrfs_tree_lock(eb);
5633 path->locks[level] = BTRFS_WRITE_LOCK;
5634
5635 ret = btrfs_lookup_extent_info(trans, fs_info,
5636 bytenr: eb->start, offset: level, metadata: 1,
5637 refs: &wc->refs[level],
5638 flags: &wc->flags[level]);
5639 if (ret < 0) {
5640 btrfs_tree_unlock_rw(eb, rw: path->locks[level]);
5641 path->locks[level] = 0;
5642 return ret;
5643 }
5644 BUG_ON(wc->refs[level] == 0);
5645 if (wc->refs[level] == 1) {
5646 btrfs_tree_unlock_rw(eb, rw: path->locks[level]);
5647 path->locks[level] = 0;
5648 return 1;
5649 }
5650 }
5651 }
5652
5653 /* wc->stage == DROP_REFERENCE */
5654 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
5655
5656 if (wc->refs[level] == 1) {
5657 if (level == 0) {
5658 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5659 ret = btrfs_dec_ref(trans, root, buf: eb, full_backref: 1);
5660 else
5661 ret = btrfs_dec_ref(trans, root, buf: eb, full_backref: 0);
5662 BUG_ON(ret); /* -ENOMEM */
5663 if (is_fstree(rootid: root->root_key.objectid)) {
5664 ret = btrfs_qgroup_trace_leaf_items(trans, eb);
5665 if (ret) {
5666 btrfs_err_rl(fs_info,
5667 "error %d accounting leaf items, quota is out of sync, rescan required",
5668 ret);
5669 }
5670 }
5671 }
5672 /* Make block locked assertion in btrfs_clear_buffer_dirty happy. */
5673 if (!path->locks[level]) {
5674 btrfs_tree_lock(eb);
5675 path->locks[level] = BTRFS_WRITE_LOCK;
5676 }
5677 btrfs_clear_buffer_dirty(trans, buf: eb);
5678 }
5679
5680 if (eb == root->node) {
5681 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5682 parent = eb->start;
5683 else if (root->root_key.objectid != btrfs_header_owner(eb))
5684 goto owner_mismatch;
5685 } else {
5686 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5687 parent = path->nodes[level + 1]->start;
5688 else if (root->root_key.objectid !=
5689 btrfs_header_owner(eb: path->nodes[level + 1]))
5690 goto owner_mismatch;
5691 }
5692
5693 btrfs_free_tree_block(trans, root_id: btrfs_root_id(root), buf: eb, parent,
5694 last_ref: wc->refs[level] == 1);
5695out:
5696 wc->refs[level] = 0;
5697 wc->flags[level] = 0;
5698 return 0;
5699
5700owner_mismatch:
5701 btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu",
5702 btrfs_header_owner(eb), root->root_key.objectid);
5703 return -EUCLEAN;
5704}
5705
5706static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
5707 struct btrfs_root *root,
5708 struct btrfs_path *path,
5709 struct walk_control *wc)
5710{
5711 int level = wc->level;
5712 int lookup_info = 1;
5713 int ret = 0;
5714
5715 while (level >= 0) {
5716 ret = walk_down_proc(trans, root, path, wc, lookup_info);
5717 if (ret)
5718 break;
5719
5720 if (level == 0)
5721 break;
5722
5723 if (path->slots[level] >=
5724 btrfs_header_nritems(eb: path->nodes[level]))
5725 break;
5726
5727 ret = do_walk_down(trans, root, path, wc, lookup_info: &lookup_info);
5728 if (ret > 0) {
5729 path->slots[level]++;
5730 continue;
5731 } else if (ret < 0)
5732 break;
5733 level = wc->level;
5734 }
5735 return (ret == 1) ? 0 : ret;
5736}
5737
5738static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
5739 struct btrfs_root *root,
5740 struct btrfs_path *path,
5741 struct walk_control *wc, int max_level)
5742{
5743 int level = wc->level;
5744 int ret;
5745
5746 path->slots[level] = btrfs_header_nritems(eb: path->nodes[level]);
5747 while (level < max_level && path->nodes[level]) {
5748 wc->level = level;
5749 if (path->slots[level] + 1 <
5750 btrfs_header_nritems(eb: path->nodes[level])) {
5751 path->slots[level]++;
5752 return 0;
5753 } else {
5754 ret = walk_up_proc(trans, root, path, wc);
5755 if (ret > 0)
5756 return 0;
5757 if (ret < 0)
5758 return ret;
5759
5760 if (path->locks[level]) {
5761 btrfs_tree_unlock_rw(eb: path->nodes[level],
5762 rw: path->locks[level]);
5763 path->locks[level] = 0;
5764 }
5765 free_extent_buffer(eb: path->nodes[level]);
5766 path->nodes[level] = NULL;
5767 level++;
5768 }
5769 }
5770 return 1;
5771}
5772
5773/*
5774 * drop a subvolume tree.
5775 *
5776 * this function traverses the tree freeing any blocks that only
5777 * referenced by the tree.
5778 *
5779 * when a shared tree block is found. this function decreases its
5780 * reference count by one. if update_ref is true, this function
5781 * also make sure backrefs for the shared block and all lower level
5782 * blocks are properly updated.
5783 *
5784 * If called with for_reloc == 0, may exit early with -EAGAIN
5785 */
5786int btrfs_drop_snapshot(struct btrfs_root *root, int update_ref, int for_reloc)
5787{
5788 const bool is_reloc_root = (root->root_key.objectid ==
5789 BTRFS_TREE_RELOC_OBJECTID);
5790 struct btrfs_fs_info *fs_info = root->fs_info;
5791 struct btrfs_path *path;
5792 struct btrfs_trans_handle *trans;
5793 struct btrfs_root *tree_root = fs_info->tree_root;
5794 struct btrfs_root_item *root_item = &root->root_item;
5795 struct walk_control *wc;
5796 struct btrfs_key key;
5797 int err = 0;
5798 int ret;
5799 int level;
5800 bool root_dropped = false;
5801 bool unfinished_drop = false;
5802
5803 btrfs_debug(fs_info, "Drop subvolume %llu", root->root_key.objectid);
5804
5805 path = btrfs_alloc_path();
5806 if (!path) {
5807 err = -ENOMEM;
5808 goto out;
5809 }
5810
5811 wc = kzalloc(size: sizeof(*wc), GFP_NOFS);
5812 if (!wc) {
5813 btrfs_free_path(p: path);
5814 err = -ENOMEM;
5815 goto out;
5816 }
5817
5818 /*
5819 * Use join to avoid potential EINTR from transaction start. See
5820 * wait_reserve_ticket and the whole reservation callchain.
5821 */
5822 if (for_reloc)
5823 trans = btrfs_join_transaction(root: tree_root);
5824 else
5825 trans = btrfs_start_transaction(root: tree_root, num_items: 0);
5826 if (IS_ERR(ptr: trans)) {
5827 err = PTR_ERR(ptr: trans);
5828 goto out_free;
5829 }
5830
5831 err = btrfs_run_delayed_items(trans);
5832 if (err)
5833 goto out_end_trans;
5834
5835 /*
5836 * This will help us catch people modifying the fs tree while we're
5837 * dropping it. It is unsafe to mess with the fs tree while it's being
5838 * dropped as we unlock the root node and parent nodes as we walk down
5839 * the tree, assuming nothing will change. If something does change
5840 * then we'll have stale information and drop references to blocks we've
5841 * already dropped.
5842 */
5843 set_bit(nr: BTRFS_ROOT_DELETING, addr: &root->state);
5844 unfinished_drop = test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state);
5845
5846 if (btrfs_disk_key_objectid(s: &root_item->drop_progress) == 0) {
5847 level = btrfs_header_level(eb: root->node);
5848 path->nodes[level] = btrfs_lock_root_node(root);
5849 path->slots[level] = 0;
5850 path->locks[level] = BTRFS_WRITE_LOCK;
5851 memset(&wc->update_progress, 0,
5852 sizeof(wc->update_progress));
5853 } else {
5854 btrfs_disk_key_to_cpu(cpu_key: &key, disk_key: &root_item->drop_progress);
5855 memcpy(&wc->update_progress, &key,
5856 sizeof(wc->update_progress));
5857
5858 level = btrfs_root_drop_level(s: root_item);
5859 BUG_ON(level == 0);
5860 path->lowest_level = level;
5861 ret = btrfs_search_slot(NULL, root, key: &key, p: path, ins_len: 0, cow: 0);
5862 path->lowest_level = 0;
5863 if (ret < 0) {
5864 err = ret;
5865 goto out_end_trans;
5866 }
5867 WARN_ON(ret > 0);
5868
5869 /*
5870 * unlock our path, this is safe because only this
5871 * function is allowed to delete this snapshot
5872 */
5873 btrfs_unlock_up_safe(path, level: 0);
5874
5875 level = btrfs_header_level(eb: root->node);
5876 while (1) {
5877 btrfs_tree_lock(eb: path->nodes[level]);
5878 path->locks[level] = BTRFS_WRITE_LOCK;
5879
5880 ret = btrfs_lookup_extent_info(trans, fs_info,
5881 bytenr: path->nodes[level]->start,
5882 offset: level, metadata: 1, refs: &wc->refs[level],
5883 flags: &wc->flags[level]);
5884 if (ret < 0) {
5885 err = ret;
5886 goto out_end_trans;
5887 }
5888 BUG_ON(wc->refs[level] == 0);
5889
5890 if (level == btrfs_root_drop_level(s: root_item))
5891 break;
5892
5893 btrfs_tree_unlock(eb: path->nodes[level]);
5894 path->locks[level] = 0;
5895 WARN_ON(wc->refs[level] != 1);
5896 level--;
5897 }
5898 }
5899
5900 wc->restarted = test_bit(BTRFS_ROOT_DEAD_TREE, &root->state);
5901 wc->level = level;
5902 wc->shared_level = -1;
5903 wc->stage = DROP_REFERENCE;
5904 wc->update_ref = update_ref;
5905 wc->keep_locks = 0;
5906 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(info: fs_info);
5907
5908 while (1) {
5909
5910 ret = walk_down_tree(trans, root, path, wc);
5911 if (ret < 0) {
5912 btrfs_abort_transaction(trans, ret);
5913 err = ret;
5914 break;
5915 }
5916
5917 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
5918 if (ret < 0) {
5919 btrfs_abort_transaction(trans, ret);
5920 err = ret;
5921 break;
5922 }
5923
5924 if (ret > 0) {
5925 BUG_ON(wc->stage != DROP_REFERENCE);
5926 break;
5927 }
5928
5929 if (wc->stage == DROP_REFERENCE) {
5930 wc->drop_level = wc->level;
5931 btrfs_node_key_to_cpu(eb: path->nodes[wc->drop_level],
5932 cpu_key: &wc->drop_progress,
5933 nr: path->slots[wc->drop_level]);
5934 }
5935 btrfs_cpu_key_to_disk(disk_key: &root_item->drop_progress,
5936 cpu_key: &wc->drop_progress);
5937 btrfs_set_root_drop_level(s: root_item, val: wc->drop_level);
5938
5939 BUG_ON(wc->level == 0);
5940 if (btrfs_should_end_transaction(trans) ||
5941 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
5942 ret = btrfs_update_root(trans, root: tree_root,
5943 key: &root->root_key,
5944 item: root_item);
5945 if (ret) {
5946 btrfs_abort_transaction(trans, ret);
5947 err = ret;
5948 goto out_end_trans;
5949 }
5950
5951 if (!is_reloc_root)
5952 btrfs_set_last_root_drop_gen(fs_info, gen: trans->transid);
5953
5954 btrfs_end_transaction_throttle(trans);
5955 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
5956 btrfs_debug(fs_info,
5957 "drop snapshot early exit");
5958 err = -EAGAIN;
5959 goto out_free;
5960 }
5961
5962 /*
5963 * Use join to avoid potential EINTR from transaction
5964 * start. See wait_reserve_ticket and the whole
5965 * reservation callchain.
5966 */
5967 if (for_reloc)
5968 trans = btrfs_join_transaction(root: tree_root);
5969 else
5970 trans = btrfs_start_transaction(root: tree_root, num_items: 0);
5971 if (IS_ERR(ptr: trans)) {
5972 err = PTR_ERR(ptr: trans);
5973 goto out_free;
5974 }
5975 }
5976 }
5977 btrfs_release_path(p: path);
5978 if (err)
5979 goto out_end_trans;
5980
5981 ret = btrfs_del_root(trans, key: &root->root_key);
5982 if (ret) {
5983 btrfs_abort_transaction(trans, ret);
5984 err = ret;
5985 goto out_end_trans;
5986 }
5987
5988 if (!is_reloc_root) {
5989 ret = btrfs_find_root(root: tree_root, search_key: &root->root_key, path,
5990 NULL, NULL);
5991 if (ret < 0) {
5992 btrfs_abort_transaction(trans, ret);
5993 err = ret;
5994 goto out_end_trans;
5995 } else if (ret > 0) {
5996 /* if we fail to delete the orphan item this time
5997 * around, it'll get picked up the next time.
5998 *
5999 * The most common failure here is just -ENOENT.
6000 */
6001 btrfs_del_orphan_item(trans, root: tree_root,
6002 offset: root->root_key.objectid);
6003 }
6004 }
6005
6006 /*
6007 * This subvolume is going to be completely dropped, and won't be
6008 * recorded as dirty roots, thus pertrans meta rsv will not be freed at
6009 * commit transaction time. So free it here manually.
6010 */
6011 btrfs_qgroup_convert_reserved_meta(root, INT_MAX);
6012 btrfs_qgroup_free_meta_all_pertrans(root);
6013
6014 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state))
6015 btrfs_add_dropped_root(trans, root);
6016 else
6017 btrfs_put_root(root);
6018 root_dropped = true;
6019out_end_trans:
6020 if (!is_reloc_root)
6021 btrfs_set_last_root_drop_gen(fs_info, gen: trans->transid);
6022
6023 btrfs_end_transaction_throttle(trans);
6024out_free:
6025 kfree(objp: wc);
6026 btrfs_free_path(p: path);
6027out:
6028 /*
6029 * We were an unfinished drop root, check to see if there are any
6030 * pending, and if not clear and wake up any waiters.
6031 */
6032 if (!err && unfinished_drop)
6033 btrfs_maybe_wake_unfinished_drop(fs_info);
6034
6035 /*
6036 * So if we need to stop dropping the snapshot for whatever reason we
6037 * need to make sure to add it back to the dead root list so that we
6038 * keep trying to do the work later. This also cleans up roots if we
6039 * don't have it in the radix (like when we recover after a power fail
6040 * or unmount) so we don't leak memory.
6041 */
6042 if (!for_reloc && !root_dropped)
6043 btrfs_add_dead_root(root);
6044 return err;
6045}
6046
6047/*
6048 * drop subtree rooted at tree block 'node'.
6049 *
6050 * NOTE: this function will unlock and release tree block 'node'
6051 * only used by relocation code
6052 */
6053int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
6054 struct btrfs_root *root,
6055 struct extent_buffer *node,
6056 struct extent_buffer *parent)
6057{
6058 struct btrfs_fs_info *fs_info = root->fs_info;
6059 struct btrfs_path *path;
6060 struct walk_control *wc;
6061 int level;
6062 int parent_level;
6063 int ret = 0;
6064 int wret;
6065
6066 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
6067
6068 path = btrfs_alloc_path();
6069 if (!path)
6070 return -ENOMEM;
6071
6072 wc = kzalloc(size: sizeof(*wc), GFP_NOFS);
6073 if (!wc) {
6074 btrfs_free_path(p: path);
6075 return -ENOMEM;
6076 }
6077
6078 btrfs_assert_tree_write_locked(eb: parent);
6079 parent_level = btrfs_header_level(eb: parent);
6080 atomic_inc(v: &parent->refs);
6081 path->nodes[parent_level] = parent;
6082 path->slots[parent_level] = btrfs_header_nritems(eb: parent);
6083
6084 btrfs_assert_tree_write_locked(eb: node);
6085 level = btrfs_header_level(eb: node);
6086 path->nodes[level] = node;
6087 path->slots[level] = 0;
6088 path->locks[level] = BTRFS_WRITE_LOCK;
6089
6090 wc->refs[parent_level] = 1;
6091 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
6092 wc->level = level;
6093 wc->shared_level = -1;
6094 wc->stage = DROP_REFERENCE;
6095 wc->update_ref = 0;
6096 wc->keep_locks = 1;
6097 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(info: fs_info);
6098
6099 while (1) {
6100 wret = walk_down_tree(trans, root, path, wc);
6101 if (wret < 0) {
6102 ret = wret;
6103 break;
6104 }
6105
6106 wret = walk_up_tree(trans, root, path, wc, max_level: parent_level);
6107 if (wret < 0)
6108 ret = wret;
6109 if (wret != 0)
6110 break;
6111 }
6112
6113 kfree(objp: wc);
6114 btrfs_free_path(p: path);
6115 return ret;
6116}
6117
6118int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
6119 u64 start, u64 end)
6120{
6121 return unpin_extent_range(fs_info, start, end, return_free_space: false);
6122}
6123
6124/*
6125 * It used to be that old block groups would be left around forever.
6126 * Iterating over them would be enough to trim unused space. Since we
6127 * now automatically remove them, we also need to iterate over unallocated
6128 * space.
6129 *
6130 * We don't want a transaction for this since the discard may take a
6131 * substantial amount of time. We don't require that a transaction be
6132 * running, but we do need to take a running transaction into account
6133 * to ensure that we're not discarding chunks that were released or
6134 * allocated in the current transaction.
6135 *
6136 * Holding the chunks lock will prevent other threads from allocating
6137 * or releasing chunks, but it won't prevent a running transaction
6138 * from committing and releasing the memory that the pending chunks
6139 * list head uses. For that, we need to take a reference to the
6140 * transaction and hold the commit root sem. We only need to hold
6141 * it while performing the free space search since we have already
6142 * held back allocations.
6143 */
6144static int btrfs_trim_free_extents(struct btrfs_device *device, u64 *trimmed)
6145{
6146 u64 start = BTRFS_DEVICE_RANGE_RESERVED, len = 0, end = 0;
6147 int ret;
6148
6149 *trimmed = 0;
6150
6151 /* Discard not supported = nothing to do. */
6152 if (!bdev_max_discard_sectors(bdev: device->bdev))
6153 return 0;
6154
6155 /* Not writable = nothing to do. */
6156 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
6157 return 0;
6158
6159 /* No free space = nothing to do. */
6160 if (device->total_bytes <= device->bytes_used)
6161 return 0;
6162
6163 ret = 0;
6164
6165 while (1) {
6166 struct btrfs_fs_info *fs_info = device->fs_info;
6167 u64 bytes;
6168
6169 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
6170 if (ret)
6171 break;
6172
6173 find_first_clear_extent_bit(tree: &device->alloc_state, start,
6174 start_ret: &start, end_ret: &end,
6175 CHUNK_TRIMMED | CHUNK_ALLOCATED);
6176
6177 /* Check if there are any CHUNK_* bits left */
6178 if (start > device->total_bytes) {
6179 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
6180 btrfs_warn_in_rcu(fs_info,
6181"ignoring attempt to trim beyond device size: offset %llu length %llu device %s device size %llu",
6182 start, end - start + 1,
6183 btrfs_dev_name(device),
6184 device->total_bytes);
6185 mutex_unlock(lock: &fs_info->chunk_mutex);
6186 ret = 0;
6187 break;
6188 }
6189
6190 /* Ensure we skip the reserved space on each device. */
6191 start = max_t(u64, start, BTRFS_DEVICE_RANGE_RESERVED);
6192
6193 /*
6194 * If find_first_clear_extent_bit find a range that spans the
6195 * end of the device it will set end to -1, in this case it's up
6196 * to the caller to trim the value to the size of the device.
6197 */
6198 end = min(end, device->total_bytes - 1);
6199
6200 len = end - start + 1;
6201
6202 /* We didn't find any extents */
6203 if (!len) {
6204 mutex_unlock(lock: &fs_info->chunk_mutex);
6205 ret = 0;
6206 break;
6207 }
6208
6209 ret = btrfs_issue_discard(bdev: device->bdev, start, len,
6210 discarded_bytes: &bytes);
6211 if (!ret)
6212 set_extent_bit(tree: &device->alloc_state, start,
6213 end: start + bytes - 1, CHUNK_TRIMMED, NULL);
6214 mutex_unlock(lock: &fs_info->chunk_mutex);
6215
6216 if (ret)
6217 break;
6218
6219 start += len;
6220 *trimmed += bytes;
6221
6222 if (fatal_signal_pending(current)) {
6223 ret = -ERESTARTSYS;
6224 break;
6225 }
6226
6227 cond_resched();
6228 }
6229
6230 return ret;
6231}
6232
6233/*
6234 * Trim the whole filesystem by:
6235 * 1) trimming the free space in each block group
6236 * 2) trimming the unallocated space on each device
6237 *
6238 * This will also continue trimming even if a block group or device encounters
6239 * an error. The return value will be the last error, or 0 if nothing bad
6240 * happens.
6241 */
6242int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
6243{
6244 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6245 struct btrfs_block_group *cache = NULL;
6246 struct btrfs_device *device;
6247 u64 group_trimmed;
6248 u64 range_end = U64_MAX;
6249 u64 start;
6250 u64 end;
6251 u64 trimmed = 0;
6252 u64 bg_failed = 0;
6253 u64 dev_failed = 0;
6254 int bg_ret = 0;
6255 int dev_ret = 0;
6256 int ret = 0;
6257
6258 if (range->start == U64_MAX)
6259 return -EINVAL;
6260
6261 /*
6262 * Check range overflow if range->len is set.
6263 * The default range->len is U64_MAX.
6264 */
6265 if (range->len != U64_MAX &&
6266 check_add_overflow(range->start, range->len, &range_end))
6267 return -EINVAL;
6268
6269 cache = btrfs_lookup_first_block_group(info: fs_info, bytenr: range->start);
6270 for (; cache; cache = btrfs_next_block_group(cache)) {
6271 if (cache->start >= range_end) {
6272 btrfs_put_block_group(cache);
6273 break;
6274 }
6275
6276 start = max(range->start, cache->start);
6277 end = min(range_end, cache->start + cache->length);
6278
6279 if (end - start >= range->minlen) {
6280 if (!btrfs_block_group_done(cache)) {
6281 ret = btrfs_cache_block_group(cache, wait: true);
6282 if (ret) {
6283 bg_failed++;
6284 bg_ret = ret;
6285 continue;
6286 }
6287 }
6288 ret = btrfs_trim_block_group(block_group: cache,
6289 trimmed: &group_trimmed,
6290 start,
6291 end,
6292 minlen: range->minlen);
6293
6294 trimmed += group_trimmed;
6295 if (ret) {
6296 bg_failed++;
6297 bg_ret = ret;
6298 continue;
6299 }
6300 }
6301 }
6302
6303 if (bg_failed)
6304 btrfs_warn(fs_info,
6305 "failed to trim %llu block group(s), last error %d",
6306 bg_failed, bg_ret);
6307
6308 mutex_lock(&fs_devices->device_list_mutex);
6309 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6310 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
6311 continue;
6312
6313 ret = btrfs_trim_free_extents(device, trimmed: &group_trimmed);
6314 if (ret) {
6315 dev_failed++;
6316 dev_ret = ret;
6317 break;
6318 }
6319
6320 trimmed += group_trimmed;
6321 }
6322 mutex_unlock(lock: &fs_devices->device_list_mutex);
6323
6324 if (dev_failed)
6325 btrfs_warn(fs_info,
6326 "failed to trim %llu device(s), last error %d",
6327 dev_failed, dev_ret);
6328 range->len = trimmed;
6329 if (bg_ret)
6330 return bg_ret;
6331 return dev_ret;
6332}
6333

source code of linux/fs/btrfs/extent-tree.c