1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6#include <crypto/hash.h>
7#include <linux/kernel.h>
8#include <linux/bio.h>
9#include <linux/blk-cgroup.h>
10#include <linux/file.h>
11#include <linux/fs.h>
12#include <linux/pagemap.h>
13#include <linux/highmem.h>
14#include <linux/time.h>
15#include <linux/init.h>
16#include <linux/string.h>
17#include <linux/backing-dev.h>
18#include <linux/writeback.h>
19#include <linux/compat.h>
20#include <linux/xattr.h>
21#include <linux/posix_acl.h>
22#include <linux/falloc.h>
23#include <linux/slab.h>
24#include <linux/ratelimit.h>
25#include <linux/btrfs.h>
26#include <linux/blkdev.h>
27#include <linux/posix_acl_xattr.h>
28#include <linux/uio.h>
29#include <linux/magic.h>
30#include <linux/iversion.h>
31#include <linux/swap.h>
32#include <linux/migrate.h>
33#include <linux/sched/mm.h>
34#include <linux/iomap.h>
35#include <asm/unaligned.h>
36#include <linux/fsverity.h>
37#include "misc.h"
38#include "ctree.h"
39#include "disk-io.h"
40#include "transaction.h"
41#include "btrfs_inode.h"
42#include "print-tree.h"
43#include "ordered-data.h"
44#include "xattr.h"
45#include "tree-log.h"
46#include "bio.h"
47#include "compression.h"
48#include "locking.h"
49#include "free-space-cache.h"
50#include "props.h"
51#include "qgroup.h"
52#include "delalloc-space.h"
53#include "block-group.h"
54#include "space-info.h"
55#include "zoned.h"
56#include "subpage.h"
57#include "inode-item.h"
58#include "fs.h"
59#include "accessors.h"
60#include "extent-tree.h"
61#include "root-tree.h"
62#include "defrag.h"
63#include "dir-item.h"
64#include "file-item.h"
65#include "uuid-tree.h"
66#include "ioctl.h"
67#include "file.h"
68#include "acl.h"
69#include "relocation.h"
70#include "verity.h"
71#include "super.h"
72#include "orphan.h"
73#include "backref.h"
74#include "raid-stripe-tree.h"
75
76struct btrfs_iget_args {
77 u64 ino;
78 struct btrfs_root *root;
79};
80
81struct btrfs_dio_data {
82 ssize_t submitted;
83 struct extent_changeset *data_reserved;
84 struct btrfs_ordered_extent *ordered;
85 bool data_space_reserved;
86 bool nocow_done;
87};
88
89struct btrfs_dio_private {
90 /* Range of I/O */
91 u64 file_offset;
92 u32 bytes;
93
94 /* This must be last */
95 struct btrfs_bio bbio;
96};
97
98static struct bio_set btrfs_dio_bioset;
99
100struct btrfs_rename_ctx {
101 /* Output field. Stores the index number of the old directory entry. */
102 u64 index;
103};
104
105/*
106 * Used by data_reloc_print_warning_inode() to pass needed info for filename
107 * resolution and output of error message.
108 */
109struct data_reloc_warn {
110 struct btrfs_path path;
111 struct btrfs_fs_info *fs_info;
112 u64 extent_item_size;
113 u64 logical;
114 int mirror_num;
115};
116
117static const struct inode_operations btrfs_dir_inode_operations;
118static const struct inode_operations btrfs_symlink_inode_operations;
119static const struct inode_operations btrfs_special_inode_operations;
120static const struct inode_operations btrfs_file_inode_operations;
121static const struct address_space_operations btrfs_aops;
122static const struct file_operations btrfs_dir_file_operations;
123
124static struct kmem_cache *btrfs_inode_cachep;
125
126static int btrfs_setsize(struct inode *inode, struct iattr *attr);
127static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback);
128
129static noinline int run_delalloc_cow(struct btrfs_inode *inode,
130 struct page *locked_page, u64 start,
131 u64 end, struct writeback_control *wbc,
132 bool pages_dirty);
133static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
134 u64 len, u64 orig_start, u64 block_start,
135 u64 block_len, u64 orig_block_len,
136 u64 ram_bytes, int compress_type,
137 int type);
138
139static int data_reloc_print_warning_inode(u64 inum, u64 offset, u64 num_bytes,
140 u64 root, void *warn_ctx)
141{
142 struct data_reloc_warn *warn = warn_ctx;
143 struct btrfs_fs_info *fs_info = warn->fs_info;
144 struct extent_buffer *eb;
145 struct btrfs_inode_item *inode_item;
146 struct inode_fs_paths *ipath = NULL;
147 struct btrfs_root *local_root;
148 struct btrfs_key key;
149 unsigned int nofs_flag;
150 u32 nlink;
151 int ret;
152
153 local_root = btrfs_get_fs_root(fs_info, objectid: root, check_ref: true);
154 if (IS_ERR(ptr: local_root)) {
155 ret = PTR_ERR(ptr: local_root);
156 goto err;
157 }
158
159 /* This makes the path point to (inum INODE_ITEM ioff). */
160 key.objectid = inum;
161 key.type = BTRFS_INODE_ITEM_KEY;
162 key.offset = 0;
163
164 ret = btrfs_search_slot(NULL, root: local_root, key: &key, p: &warn->path, ins_len: 0, cow: 0);
165 if (ret) {
166 btrfs_put_root(root: local_root);
167 btrfs_release_path(p: &warn->path);
168 goto err;
169 }
170
171 eb = warn->path.nodes[0];
172 inode_item = btrfs_item_ptr(eb, warn->path.slots[0], struct btrfs_inode_item);
173 nlink = btrfs_inode_nlink(eb, s: inode_item);
174 btrfs_release_path(p: &warn->path);
175
176 nofs_flag = memalloc_nofs_save();
177 ipath = init_ipath(total_bytes: 4096, fs_root: local_root, path: &warn->path);
178 memalloc_nofs_restore(flags: nofs_flag);
179 if (IS_ERR(ptr: ipath)) {
180 btrfs_put_root(root: local_root);
181 ret = PTR_ERR(ptr: ipath);
182 ipath = NULL;
183 /*
184 * -ENOMEM, not a critical error, just output an generic error
185 * without filename.
186 */
187 btrfs_warn(fs_info,
188"checksum error at logical %llu mirror %u root %llu, inode %llu offset %llu",
189 warn->logical, warn->mirror_num, root, inum, offset);
190 return ret;
191 }
192 ret = paths_from_inode(inum, ipath);
193 if (ret < 0)
194 goto err;
195
196 /*
197 * We deliberately ignore the bit ipath might have been too small to
198 * hold all of the paths here
199 */
200 for (int i = 0; i < ipath->fspath->elem_cnt; i++) {
201 btrfs_warn(fs_info,
202"checksum error at logical %llu mirror %u root %llu inode %llu offset %llu length %u links %u (path: %s)",
203 warn->logical, warn->mirror_num, root, inum, offset,
204 fs_info->sectorsize, nlink,
205 (char *)(unsigned long)ipath->fspath->val[i]);
206 }
207
208 btrfs_put_root(root: local_root);
209 free_ipath(ipath);
210 return 0;
211
212err:
213 btrfs_warn(fs_info,
214"checksum error at logical %llu mirror %u root %llu inode %llu offset %llu, path resolving failed with ret=%d",
215 warn->logical, warn->mirror_num, root, inum, offset, ret);
216
217 free_ipath(ipath);
218 return ret;
219}
220
221/*
222 * Do extra user-friendly error output (e.g. lookup all the affected files).
223 *
224 * Return true if we succeeded doing the backref lookup.
225 * Return false if such lookup failed, and has to fallback to the old error message.
226 */
227static void print_data_reloc_error(const struct btrfs_inode *inode, u64 file_off,
228 const u8 *csum, const u8 *csum_expected,
229 int mirror_num)
230{
231 struct btrfs_fs_info *fs_info = inode->root->fs_info;
232 struct btrfs_path path = { 0 };
233 struct btrfs_key found_key = { 0 };
234 struct extent_buffer *eb;
235 struct btrfs_extent_item *ei;
236 const u32 csum_size = fs_info->csum_size;
237 u64 logical;
238 u64 flags;
239 u32 item_size;
240 int ret;
241
242 mutex_lock(&fs_info->reloc_mutex);
243 logical = btrfs_get_reloc_bg_bytenr(fs_info);
244 mutex_unlock(lock: &fs_info->reloc_mutex);
245
246 if (logical == U64_MAX) {
247 btrfs_warn_rl(fs_info, "has data reloc tree but no running relocation");
248 btrfs_warn_rl(fs_info,
249"csum failed root %lld ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
250 inode->root->root_key.objectid, btrfs_ino(inode), file_off,
251 CSUM_FMT_VALUE(csum_size, csum),
252 CSUM_FMT_VALUE(csum_size, csum_expected),
253 mirror_num);
254 return;
255 }
256
257 logical += file_off;
258 btrfs_warn_rl(fs_info,
259"csum failed root %lld ino %llu off %llu logical %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
260 inode->root->root_key.objectid,
261 btrfs_ino(inode), file_off, logical,
262 CSUM_FMT_VALUE(csum_size, csum),
263 CSUM_FMT_VALUE(csum_size, csum_expected),
264 mirror_num);
265
266 ret = extent_from_logical(fs_info, logical, path: &path, found_key: &found_key, flags: &flags);
267 if (ret < 0) {
268 btrfs_err_rl(fs_info, "failed to lookup extent item for logical %llu: %d",
269 logical, ret);
270 return;
271 }
272 eb = path.nodes[0];
273 ei = btrfs_item_ptr(eb, path.slots[0], struct btrfs_extent_item);
274 item_size = btrfs_item_size(eb, slot: path.slots[0]);
275 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
276 unsigned long ptr = 0;
277 u64 ref_root;
278 u8 ref_level;
279
280 while (true) {
281 ret = tree_backref_for_extent(ptr: &ptr, eb, key: &found_key, ei,
282 item_size, out_root: &ref_root,
283 out_level: &ref_level);
284 if (ret < 0) {
285 btrfs_warn_rl(fs_info,
286 "failed to resolve tree backref for logical %llu: %d",
287 logical, ret);
288 break;
289 }
290 if (ret > 0)
291 break;
292
293 btrfs_warn_rl(fs_info,
294"csum error at logical %llu mirror %u: metadata %s (level %d) in tree %llu",
295 logical, mirror_num,
296 (ref_level ? "node" : "leaf"),
297 ref_level, ref_root);
298 }
299 btrfs_release_path(p: &path);
300 } else {
301 struct btrfs_backref_walk_ctx ctx = { 0 };
302 struct data_reloc_warn reloc_warn = { 0 };
303
304 btrfs_release_path(p: &path);
305
306 ctx.bytenr = found_key.objectid;
307 ctx.extent_item_pos = logical - found_key.objectid;
308 ctx.fs_info = fs_info;
309
310 reloc_warn.logical = logical;
311 reloc_warn.extent_item_size = found_key.offset;
312 reloc_warn.mirror_num = mirror_num;
313 reloc_warn.fs_info = fs_info;
314
315 iterate_extent_inodes(ctx: &ctx, search_commit_root: true,
316 iterate: data_reloc_print_warning_inode, user_ctx: &reloc_warn);
317 }
318}
319
320static void __cold btrfs_print_data_csum_error(struct btrfs_inode *inode,
321 u64 logical_start, u8 *csum, u8 *csum_expected, int mirror_num)
322{
323 struct btrfs_root *root = inode->root;
324 const u32 csum_size = root->fs_info->csum_size;
325
326 /* For data reloc tree, it's better to do a backref lookup instead. */
327 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
328 return print_data_reloc_error(inode, file_off: logical_start, csum,
329 csum_expected, mirror_num);
330
331 /* Output without objectid, which is more meaningful */
332 if (root->root_key.objectid >= BTRFS_LAST_FREE_OBJECTID) {
333 btrfs_warn_rl(root->fs_info,
334"csum failed root %lld ino %lld off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
335 root->root_key.objectid, btrfs_ino(inode),
336 logical_start,
337 CSUM_FMT_VALUE(csum_size, csum),
338 CSUM_FMT_VALUE(csum_size, csum_expected),
339 mirror_num);
340 } else {
341 btrfs_warn_rl(root->fs_info,
342"csum failed root %llu ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
343 root->root_key.objectid, btrfs_ino(inode),
344 logical_start,
345 CSUM_FMT_VALUE(csum_size, csum),
346 CSUM_FMT_VALUE(csum_size, csum_expected),
347 mirror_num);
348 }
349}
350
351/*
352 * Lock inode i_rwsem based on arguments passed.
353 *
354 * ilock_flags can have the following bit set:
355 *
356 * BTRFS_ILOCK_SHARED - acquire a shared lock on the inode
357 * BTRFS_ILOCK_TRY - try to acquire the lock, if fails on first attempt
358 * return -EAGAIN
359 * BTRFS_ILOCK_MMAP - acquire a write lock on the i_mmap_lock
360 */
361int btrfs_inode_lock(struct btrfs_inode *inode, unsigned int ilock_flags)
362{
363 if (ilock_flags & BTRFS_ILOCK_SHARED) {
364 if (ilock_flags & BTRFS_ILOCK_TRY) {
365 if (!inode_trylock_shared(inode: &inode->vfs_inode))
366 return -EAGAIN;
367 else
368 return 0;
369 }
370 inode_lock_shared(inode: &inode->vfs_inode);
371 } else {
372 if (ilock_flags & BTRFS_ILOCK_TRY) {
373 if (!inode_trylock(inode: &inode->vfs_inode))
374 return -EAGAIN;
375 else
376 return 0;
377 }
378 inode_lock(inode: &inode->vfs_inode);
379 }
380 if (ilock_flags & BTRFS_ILOCK_MMAP)
381 down_write(sem: &inode->i_mmap_lock);
382 return 0;
383}
384
385/*
386 * Unock inode i_rwsem.
387 *
388 * ilock_flags should contain the same bits set as passed to btrfs_inode_lock()
389 * to decide whether the lock acquired is shared or exclusive.
390 */
391void btrfs_inode_unlock(struct btrfs_inode *inode, unsigned int ilock_flags)
392{
393 if (ilock_flags & BTRFS_ILOCK_MMAP)
394 up_write(sem: &inode->i_mmap_lock);
395 if (ilock_flags & BTRFS_ILOCK_SHARED)
396 inode_unlock_shared(inode: &inode->vfs_inode);
397 else
398 inode_unlock(inode: &inode->vfs_inode);
399}
400
401/*
402 * Cleanup all submitted ordered extents in specified range to handle errors
403 * from the btrfs_run_delalloc_range() callback.
404 *
405 * NOTE: caller must ensure that when an error happens, it can not call
406 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
407 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
408 * to be released, which we want to happen only when finishing the ordered
409 * extent (btrfs_finish_ordered_io()).
410 */
411static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode,
412 struct page *locked_page,
413 u64 offset, u64 bytes)
414{
415 unsigned long index = offset >> PAGE_SHIFT;
416 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
417 u64 page_start = 0, page_end = 0;
418 struct page *page;
419
420 if (locked_page) {
421 page_start = page_offset(page: locked_page);
422 page_end = page_start + PAGE_SIZE - 1;
423 }
424
425 while (index <= end_index) {
426 /*
427 * For locked page, we will call btrfs_mark_ordered_io_finished
428 * through btrfs_mark_ordered_io_finished() on it
429 * in run_delalloc_range() for the error handling, which will
430 * clear page Ordered and run the ordered extent accounting.
431 *
432 * Here we can't just clear the Ordered bit, or
433 * btrfs_mark_ordered_io_finished() would skip the accounting
434 * for the page range, and the ordered extent will never finish.
435 */
436 if (locked_page && index == (page_start >> PAGE_SHIFT)) {
437 index++;
438 continue;
439 }
440 page = find_get_page(mapping: inode->vfs_inode.i_mapping, offset: index);
441 index++;
442 if (!page)
443 continue;
444
445 /*
446 * Here we just clear all Ordered bits for every page in the
447 * range, then btrfs_mark_ordered_io_finished() will handle
448 * the ordered extent accounting for the range.
449 */
450 btrfs_page_clamp_clear_ordered(fs_info: inode->root->fs_info, page,
451 start: offset, len: bytes);
452 put_page(page);
453 }
454
455 if (locked_page) {
456 /* The locked page covers the full range, nothing needs to be done */
457 if (bytes + offset <= page_start + PAGE_SIZE)
458 return;
459 /*
460 * In case this page belongs to the delalloc range being
461 * instantiated then skip it, since the first page of a range is
462 * going to be properly cleaned up by the caller of
463 * run_delalloc_range
464 */
465 if (page_start >= offset && page_end <= (offset + bytes - 1)) {
466 bytes = offset + bytes - page_offset(page: locked_page) - PAGE_SIZE;
467 offset = page_offset(page: locked_page) + PAGE_SIZE;
468 }
469 }
470
471 return btrfs_mark_ordered_io_finished(inode, NULL, file_offset: offset, num_bytes: bytes, uptodate: false);
472}
473
474static int btrfs_dirty_inode(struct btrfs_inode *inode);
475
476static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
477 struct btrfs_new_inode_args *args)
478{
479 int err;
480
481 if (args->default_acl) {
482 err = __btrfs_set_acl(trans, inode: args->inode, acl: args->default_acl,
483 ACL_TYPE_DEFAULT);
484 if (err)
485 return err;
486 }
487 if (args->acl) {
488 err = __btrfs_set_acl(trans, inode: args->inode, acl: args->acl, ACL_TYPE_ACCESS);
489 if (err)
490 return err;
491 }
492 if (!args->default_acl && !args->acl)
493 cache_no_acl(inode: args->inode);
494 return btrfs_xattr_security_init(trans, inode: args->inode, dir: args->dir,
495 qstr: &args->dentry->d_name);
496}
497
498/*
499 * this does all the hard work for inserting an inline extent into
500 * the btree. The caller should have done a btrfs_drop_extents so that
501 * no overlapping inline items exist in the btree
502 */
503static int insert_inline_extent(struct btrfs_trans_handle *trans,
504 struct btrfs_path *path,
505 struct btrfs_inode *inode, bool extent_inserted,
506 size_t size, size_t compressed_size,
507 int compress_type,
508 struct page **compressed_pages,
509 bool update_i_size)
510{
511 struct btrfs_root *root = inode->root;
512 struct extent_buffer *leaf;
513 struct page *page = NULL;
514 char *kaddr;
515 unsigned long ptr;
516 struct btrfs_file_extent_item *ei;
517 int ret;
518 size_t cur_size = size;
519 u64 i_size;
520
521 ASSERT((compressed_size > 0 && compressed_pages) ||
522 (compressed_size == 0 && !compressed_pages));
523
524 if (compressed_size && compressed_pages)
525 cur_size = compressed_size;
526
527 if (!extent_inserted) {
528 struct btrfs_key key;
529 size_t datasize;
530
531 key.objectid = btrfs_ino(inode);
532 key.offset = 0;
533 key.type = BTRFS_EXTENT_DATA_KEY;
534
535 datasize = btrfs_file_extent_calc_inline_size(datasize: cur_size);
536 ret = btrfs_insert_empty_item(trans, root, path, key: &key,
537 data_size: datasize);
538 if (ret)
539 goto fail;
540 }
541 leaf = path->nodes[0];
542 ei = btrfs_item_ptr(leaf, path->slots[0],
543 struct btrfs_file_extent_item);
544 btrfs_set_file_extent_generation(eb: leaf, s: ei, val: trans->transid);
545 btrfs_set_file_extent_type(eb: leaf, s: ei, val: BTRFS_FILE_EXTENT_INLINE);
546 btrfs_set_file_extent_encryption(eb: leaf, s: ei, val: 0);
547 btrfs_set_file_extent_other_encoding(eb: leaf, s: ei, val: 0);
548 btrfs_set_file_extent_ram_bytes(eb: leaf, s: ei, val: size);
549 ptr = btrfs_file_extent_inline_start(e: ei);
550
551 if (compress_type != BTRFS_COMPRESS_NONE) {
552 struct page *cpage;
553 int i = 0;
554 while (compressed_size > 0) {
555 cpage = compressed_pages[i];
556 cur_size = min_t(unsigned long, compressed_size,
557 PAGE_SIZE);
558
559 kaddr = kmap_local_page(page: cpage);
560 write_extent_buffer(eb: leaf, src: kaddr, start: ptr, len: cur_size);
561 kunmap_local(kaddr);
562
563 i++;
564 ptr += cur_size;
565 compressed_size -= cur_size;
566 }
567 btrfs_set_file_extent_compression(eb: leaf, s: ei,
568 val: compress_type);
569 } else {
570 page = find_get_page(mapping: inode->vfs_inode.i_mapping, offset: 0);
571 btrfs_set_file_extent_compression(eb: leaf, s: ei, val: 0);
572 kaddr = kmap_local_page(page);
573 write_extent_buffer(eb: leaf, src: kaddr, start: ptr, len: size);
574 kunmap_local(kaddr);
575 put_page(page);
576 }
577 btrfs_mark_buffer_dirty(trans, buf: leaf);
578 btrfs_release_path(p: path);
579
580 /*
581 * We align size to sectorsize for inline extents just for simplicity
582 * sake.
583 */
584 ret = btrfs_inode_set_file_extent_range(inode, start: 0,
585 ALIGN(size, root->fs_info->sectorsize));
586 if (ret)
587 goto fail;
588
589 /*
590 * We're an inline extent, so nobody can extend the file past i_size
591 * without locking a page we already have locked.
592 *
593 * We must do any i_size and inode updates before we unlock the pages.
594 * Otherwise we could end up racing with unlink.
595 */
596 i_size = i_size_read(inode: &inode->vfs_inode);
597 if (update_i_size && size > i_size) {
598 i_size_write(inode: &inode->vfs_inode, i_size: size);
599 i_size = size;
600 }
601 inode->disk_i_size = i_size;
602
603fail:
604 return ret;
605}
606
607
608/*
609 * conditionally insert an inline extent into the file. This
610 * does the checks required to make sure the data is small enough
611 * to fit as an inline extent.
612 */
613static noinline int cow_file_range_inline(struct btrfs_inode *inode, u64 size,
614 size_t compressed_size,
615 int compress_type,
616 struct page **compressed_pages,
617 bool update_i_size)
618{
619 struct btrfs_drop_extents_args drop_args = { 0 };
620 struct btrfs_root *root = inode->root;
621 struct btrfs_fs_info *fs_info = root->fs_info;
622 struct btrfs_trans_handle *trans;
623 u64 data_len = (compressed_size ?: size);
624 int ret;
625 struct btrfs_path *path;
626
627 /*
628 * We can create an inline extent if it ends at or beyond the current
629 * i_size, is no larger than a sector (decompressed), and the (possibly
630 * compressed) data fits in a leaf and the configured maximum inline
631 * size.
632 */
633 if (size < i_size_read(inode: &inode->vfs_inode) ||
634 size > fs_info->sectorsize ||
635 data_len > BTRFS_MAX_INLINE_DATA_SIZE(info: fs_info) ||
636 data_len > fs_info->max_inline)
637 return 1;
638
639 path = btrfs_alloc_path();
640 if (!path)
641 return -ENOMEM;
642
643 trans = btrfs_join_transaction(root);
644 if (IS_ERR(ptr: trans)) {
645 btrfs_free_path(p: path);
646 return PTR_ERR(ptr: trans);
647 }
648 trans->block_rsv = &inode->block_rsv;
649
650 drop_args.path = path;
651 drop_args.start = 0;
652 drop_args.end = fs_info->sectorsize;
653 drop_args.drop_cache = true;
654 drop_args.replace_extent = true;
655 drop_args.extent_item_size = btrfs_file_extent_calc_inline_size(datasize: data_len);
656 ret = btrfs_drop_extents(trans, root, inode, args: &drop_args);
657 if (ret) {
658 btrfs_abort_transaction(trans, ret);
659 goto out;
660 }
661
662 ret = insert_inline_extent(trans, path, inode, extent_inserted: drop_args.extent_inserted,
663 size, compressed_size, compress_type,
664 compressed_pages, update_i_size);
665 if (ret && ret != -ENOSPC) {
666 btrfs_abort_transaction(trans, ret);
667 goto out;
668 } else if (ret == -ENOSPC) {
669 ret = 1;
670 goto out;
671 }
672
673 btrfs_update_inode_bytes(inode, add_bytes: size, del_bytes: drop_args.bytes_found);
674 ret = btrfs_update_inode(trans, inode);
675 if (ret && ret != -ENOSPC) {
676 btrfs_abort_transaction(trans, ret);
677 goto out;
678 } else if (ret == -ENOSPC) {
679 ret = 1;
680 goto out;
681 }
682
683 btrfs_set_inode_full_sync(inode);
684out:
685 /*
686 * Don't forget to free the reserved space, as for inlined extent
687 * it won't count as data extent, free them directly here.
688 * And at reserve time, it's always aligned to page size, so
689 * just free one page here.
690 */
691 btrfs_qgroup_free_data(inode, NULL, start: 0, PAGE_SIZE);
692 btrfs_free_path(p: path);
693 btrfs_end_transaction(trans);
694 return ret;
695}
696
697struct async_extent {
698 u64 start;
699 u64 ram_size;
700 u64 compressed_size;
701 struct page **pages;
702 unsigned long nr_pages;
703 int compress_type;
704 struct list_head list;
705};
706
707struct async_chunk {
708 struct btrfs_inode *inode;
709 struct page *locked_page;
710 u64 start;
711 u64 end;
712 blk_opf_t write_flags;
713 struct list_head extents;
714 struct cgroup_subsys_state *blkcg_css;
715 struct btrfs_work work;
716 struct async_cow *async_cow;
717};
718
719struct async_cow {
720 atomic_t num_chunks;
721 struct async_chunk chunks[];
722};
723
724static noinline int add_async_extent(struct async_chunk *cow,
725 u64 start, u64 ram_size,
726 u64 compressed_size,
727 struct page **pages,
728 unsigned long nr_pages,
729 int compress_type)
730{
731 struct async_extent *async_extent;
732
733 async_extent = kmalloc(size: sizeof(*async_extent), GFP_NOFS);
734 BUG_ON(!async_extent); /* -ENOMEM */
735 async_extent->start = start;
736 async_extent->ram_size = ram_size;
737 async_extent->compressed_size = compressed_size;
738 async_extent->pages = pages;
739 async_extent->nr_pages = nr_pages;
740 async_extent->compress_type = compress_type;
741 list_add_tail(new: &async_extent->list, head: &cow->extents);
742 return 0;
743}
744
745/*
746 * Check if the inode needs to be submitted to compression, based on mount
747 * options, defragmentation, properties or heuristics.
748 */
749static inline int inode_need_compress(struct btrfs_inode *inode, u64 start,
750 u64 end)
751{
752 struct btrfs_fs_info *fs_info = inode->root->fs_info;
753
754 if (!btrfs_inode_can_compress(inode)) {
755 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
756 KERN_ERR "BTRFS: unexpected compression for ino %llu\n",
757 btrfs_ino(inode));
758 return 0;
759 }
760 /*
761 * Special check for subpage.
762 *
763 * We lock the full page then run each delalloc range in the page, thus
764 * for the following case, we will hit some subpage specific corner case:
765 *
766 * 0 32K 64K
767 * | |///////| |///////|
768 * \- A \- B
769 *
770 * In above case, both range A and range B will try to unlock the full
771 * page [0, 64K), causing the one finished later will have page
772 * unlocked already, triggering various page lock requirement BUG_ON()s.
773 *
774 * So here we add an artificial limit that subpage compression can only
775 * if the range is fully page aligned.
776 *
777 * In theory we only need to ensure the first page is fully covered, but
778 * the tailing partial page will be locked until the full compression
779 * finishes, delaying the write of other range.
780 *
781 * TODO: Make btrfs_run_delalloc_range() to lock all delalloc range
782 * first to prevent any submitted async extent to unlock the full page.
783 * By this, we can ensure for subpage case that only the last async_cow
784 * will unlock the full page.
785 */
786 if (fs_info->sectorsize < PAGE_SIZE) {
787 if (!PAGE_ALIGNED(start) ||
788 !PAGE_ALIGNED(end + 1))
789 return 0;
790 }
791
792 /* force compress */
793 if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
794 return 1;
795 /* defrag ioctl */
796 if (inode->defrag_compress)
797 return 1;
798 /* bad compression ratios */
799 if (inode->flags & BTRFS_INODE_NOCOMPRESS)
800 return 0;
801 if (btrfs_test_opt(fs_info, COMPRESS) ||
802 inode->flags & BTRFS_INODE_COMPRESS ||
803 inode->prop_compress)
804 return btrfs_compress_heuristic(inode: &inode->vfs_inode, start, end);
805 return 0;
806}
807
808static inline void inode_should_defrag(struct btrfs_inode *inode,
809 u64 start, u64 end, u64 num_bytes, u32 small_write)
810{
811 /* If this is a small write inside eof, kick off a defrag */
812 if (num_bytes < small_write &&
813 (start > 0 || end + 1 < inode->disk_i_size))
814 btrfs_add_inode_defrag(NULL, inode, extent_thresh: small_write);
815}
816
817/*
818 * Work queue call back to started compression on a file and pages.
819 *
820 * This is done inside an ordered work queue, and the compression is spread
821 * across many cpus. The actual IO submission is step two, and the ordered work
822 * queue takes care of making sure that happens in the same order things were
823 * put onto the queue by writepages and friends.
824 *
825 * If this code finds it can't get good compression, it puts an entry onto the
826 * work queue to write the uncompressed bytes. This makes sure that both
827 * compressed inodes and uncompressed inodes are written in the same order that
828 * the flusher thread sent them down.
829 */
830static void compress_file_range(struct btrfs_work *work)
831{
832 struct async_chunk *async_chunk =
833 container_of(work, struct async_chunk, work);
834 struct btrfs_inode *inode = async_chunk->inode;
835 struct btrfs_fs_info *fs_info = inode->root->fs_info;
836 struct address_space *mapping = inode->vfs_inode.i_mapping;
837 u64 blocksize = fs_info->sectorsize;
838 u64 start = async_chunk->start;
839 u64 end = async_chunk->end;
840 u64 actual_end;
841 u64 i_size;
842 int ret = 0;
843 struct page **pages;
844 unsigned long nr_pages;
845 unsigned long total_compressed = 0;
846 unsigned long total_in = 0;
847 unsigned int poff;
848 int i;
849 int compress_type = fs_info->compress_type;
850
851 inode_should_defrag(inode, start, end, num_bytes: end - start + 1, SZ_16K);
852
853 /*
854 * We need to call clear_page_dirty_for_io on each page in the range.
855 * Otherwise applications with the file mmap'd can wander in and change
856 * the page contents while we are compressing them.
857 */
858 extent_range_clear_dirty_for_io(inode: &inode->vfs_inode, start, end);
859
860 /*
861 * We need to save i_size before now because it could change in between
862 * us evaluating the size and assigning it. This is because we lock and
863 * unlock the page in truncate and fallocate, and then modify the i_size
864 * later on.
865 *
866 * The barriers are to emulate READ_ONCE, remove that once i_size_read
867 * does that for us.
868 */
869 barrier();
870 i_size = i_size_read(inode: &inode->vfs_inode);
871 barrier();
872 actual_end = min_t(u64, i_size, end + 1);
873again:
874 pages = NULL;
875 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
876 nr_pages = min_t(unsigned long, nr_pages, BTRFS_MAX_COMPRESSED_PAGES);
877
878 /*
879 * we don't want to send crud past the end of i_size through
880 * compression, that's just a waste of CPU time. So, if the
881 * end of the file is before the start of our current
882 * requested range of bytes, we bail out to the uncompressed
883 * cleanup code that can deal with all of this.
884 *
885 * It isn't really the fastest way to fix things, but this is a
886 * very uncommon corner.
887 */
888 if (actual_end <= start)
889 goto cleanup_and_bail_uncompressed;
890
891 total_compressed = actual_end - start;
892
893 /*
894 * Skip compression for a small file range(<=blocksize) that
895 * isn't an inline extent, since it doesn't save disk space at all.
896 */
897 if (total_compressed <= blocksize &&
898 (start > 0 || end + 1 < inode->disk_i_size))
899 goto cleanup_and_bail_uncompressed;
900
901 /*
902 * For subpage case, we require full page alignment for the sector
903 * aligned range.
904 * Thus we must also check against @actual_end, not just @end.
905 */
906 if (blocksize < PAGE_SIZE) {
907 if (!PAGE_ALIGNED(start) ||
908 !PAGE_ALIGNED(round_up(actual_end, blocksize)))
909 goto cleanup_and_bail_uncompressed;
910 }
911
912 total_compressed = min_t(unsigned long, total_compressed,
913 BTRFS_MAX_UNCOMPRESSED);
914 total_in = 0;
915 ret = 0;
916
917 /*
918 * We do compression for mount -o compress and when the inode has not
919 * been flagged as NOCOMPRESS. This flag can change at any time if we
920 * discover bad compression ratios.
921 */
922 if (!inode_need_compress(inode, start, end))
923 goto cleanup_and_bail_uncompressed;
924
925 pages = kcalloc(n: nr_pages, size: sizeof(struct page *), GFP_NOFS);
926 if (!pages) {
927 /*
928 * Memory allocation failure is not a fatal error, we can fall
929 * back to uncompressed code.
930 */
931 goto cleanup_and_bail_uncompressed;
932 }
933
934 if (inode->defrag_compress)
935 compress_type = inode->defrag_compress;
936 else if (inode->prop_compress)
937 compress_type = inode->prop_compress;
938
939 /* Compression level is applied here. */
940 ret = btrfs_compress_pages(type_level: compress_type | (fs_info->compress_level << 4),
941 mapping, start, pages, out_pages: &nr_pages, total_in: &total_in,
942 total_out: &total_compressed);
943 if (ret)
944 goto mark_incompressible;
945
946 /*
947 * Zero the tail end of the last page, as we might be sending it down
948 * to disk.
949 */
950 poff = offset_in_page(total_compressed);
951 if (poff)
952 memzero_page(page: pages[nr_pages - 1], offset: poff, PAGE_SIZE - poff);
953
954 /*
955 * Try to create an inline extent.
956 *
957 * If we didn't compress the entire range, try to create an uncompressed
958 * inline extent, else a compressed one.
959 *
960 * Check cow_file_range() for why we don't even try to create inline
961 * extent for the subpage case.
962 */
963 if (start == 0 && fs_info->sectorsize == PAGE_SIZE) {
964 if (total_in < actual_end) {
965 ret = cow_file_range_inline(inode, size: actual_end, compressed_size: 0,
966 compress_type: BTRFS_COMPRESS_NONE, NULL,
967 update_i_size: false);
968 } else {
969 ret = cow_file_range_inline(inode, size: actual_end,
970 compressed_size: total_compressed,
971 compress_type, compressed_pages: pages,
972 update_i_size: false);
973 }
974 if (ret <= 0) {
975 unsigned long clear_flags = EXTENT_DELALLOC |
976 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
977 EXTENT_DO_ACCOUNTING;
978
979 if (ret < 0)
980 mapping_set_error(mapping, error: -EIO);
981
982 /*
983 * inline extent creation worked or returned error,
984 * we don't need to create any more async work items.
985 * Unlock and free up our temp pages.
986 *
987 * We use DO_ACCOUNTING here because we need the
988 * delalloc_release_metadata to be done _after_ we drop
989 * our outstanding extent for clearing delalloc for this
990 * range.
991 */
992 extent_clear_unlock_delalloc(inode, start, end,
993 NULL,
994 bits_to_clear: clear_flags,
995 page_ops: PAGE_UNLOCK |
996 PAGE_START_WRITEBACK |
997 PAGE_END_WRITEBACK);
998 goto free_pages;
999 }
1000 }
1001
1002 /*
1003 * We aren't doing an inline extent. Round the compressed size up to a
1004 * block size boundary so the allocator does sane things.
1005 */
1006 total_compressed = ALIGN(total_compressed, blocksize);
1007
1008 /*
1009 * One last check to make sure the compression is really a win, compare
1010 * the page count read with the blocks on disk, compression must free at
1011 * least one sector.
1012 */
1013 total_in = round_up(total_in, fs_info->sectorsize);
1014 if (total_compressed + blocksize > total_in)
1015 goto mark_incompressible;
1016
1017 /*
1018 * The async work queues will take care of doing actual allocation on
1019 * disk for these compressed pages, and will submit the bios.
1020 */
1021 add_async_extent(cow: async_chunk, start, ram_size: total_in, compressed_size: total_compressed, pages,
1022 nr_pages, compress_type);
1023 if (start + total_in < end) {
1024 start += total_in;
1025 cond_resched();
1026 goto again;
1027 }
1028 return;
1029
1030mark_incompressible:
1031 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) && !inode->prop_compress)
1032 inode->flags |= BTRFS_INODE_NOCOMPRESS;
1033cleanup_and_bail_uncompressed:
1034 add_async_extent(cow: async_chunk, start, ram_size: end - start + 1, compressed_size: 0, NULL, nr_pages: 0,
1035 compress_type: BTRFS_COMPRESS_NONE);
1036free_pages:
1037 if (pages) {
1038 for (i = 0; i < nr_pages; i++) {
1039 WARN_ON(pages[i]->mapping);
1040 put_page(page: pages[i]);
1041 }
1042 kfree(objp: pages);
1043 }
1044}
1045
1046static void free_async_extent_pages(struct async_extent *async_extent)
1047{
1048 int i;
1049
1050 if (!async_extent->pages)
1051 return;
1052
1053 for (i = 0; i < async_extent->nr_pages; i++) {
1054 WARN_ON(async_extent->pages[i]->mapping);
1055 put_page(page: async_extent->pages[i]);
1056 }
1057 kfree(objp: async_extent->pages);
1058 async_extent->nr_pages = 0;
1059 async_extent->pages = NULL;
1060}
1061
1062static void submit_uncompressed_range(struct btrfs_inode *inode,
1063 struct async_extent *async_extent,
1064 struct page *locked_page)
1065{
1066 u64 start = async_extent->start;
1067 u64 end = async_extent->start + async_extent->ram_size - 1;
1068 int ret;
1069 struct writeback_control wbc = {
1070 .sync_mode = WB_SYNC_ALL,
1071 .range_start = start,
1072 .range_end = end,
1073 .no_cgroup_owner = 1,
1074 };
1075
1076 wbc_attach_fdatawrite_inode(wbc: &wbc, inode: &inode->vfs_inode);
1077 ret = run_delalloc_cow(inode, locked_page, start, end, wbc: &wbc, pages_dirty: false);
1078 wbc_detach_inode(wbc: &wbc);
1079 if (ret < 0) {
1080 btrfs_cleanup_ordered_extents(inode, locked_page, offset: start, bytes: end - start + 1);
1081 if (locked_page) {
1082 const u64 page_start = page_offset(page: locked_page);
1083
1084 set_page_writeback(locked_page);
1085 end_page_writeback(page: locked_page);
1086 btrfs_mark_ordered_io_finished(inode, page: locked_page,
1087 file_offset: page_start, PAGE_SIZE,
1088 uptodate: !ret);
1089 mapping_set_error(mapping: locked_page->mapping, error: ret);
1090 unlock_page(page: locked_page);
1091 }
1092 }
1093}
1094
1095static void submit_one_async_extent(struct async_chunk *async_chunk,
1096 struct async_extent *async_extent,
1097 u64 *alloc_hint)
1098{
1099 struct btrfs_inode *inode = async_chunk->inode;
1100 struct extent_io_tree *io_tree = &inode->io_tree;
1101 struct btrfs_root *root = inode->root;
1102 struct btrfs_fs_info *fs_info = root->fs_info;
1103 struct btrfs_ordered_extent *ordered;
1104 struct btrfs_key ins;
1105 struct page *locked_page = NULL;
1106 struct extent_map *em;
1107 int ret = 0;
1108 u64 start = async_extent->start;
1109 u64 end = async_extent->start + async_extent->ram_size - 1;
1110
1111 if (async_chunk->blkcg_css)
1112 kthread_associate_blkcg(css: async_chunk->blkcg_css);
1113
1114 /*
1115 * If async_chunk->locked_page is in the async_extent range, we need to
1116 * handle it.
1117 */
1118 if (async_chunk->locked_page) {
1119 u64 locked_page_start = page_offset(page: async_chunk->locked_page);
1120 u64 locked_page_end = locked_page_start + PAGE_SIZE - 1;
1121
1122 if (!(start >= locked_page_end || end <= locked_page_start))
1123 locked_page = async_chunk->locked_page;
1124 }
1125 lock_extent(tree: io_tree, start, end, NULL);
1126
1127 if (async_extent->compress_type == BTRFS_COMPRESS_NONE) {
1128 submit_uncompressed_range(inode, async_extent, locked_page);
1129 goto done;
1130 }
1131
1132 ret = btrfs_reserve_extent(root, ram_bytes: async_extent->ram_size,
1133 num_bytes: async_extent->compressed_size,
1134 min_alloc_size: async_extent->compressed_size,
1135 empty_size: 0, hint_byte: *alloc_hint, ins: &ins, is_data: 1, delalloc: 1);
1136 if (ret) {
1137 /*
1138 * Here we used to try again by going back to non-compressed
1139 * path for ENOSPC. But we can't reserve space even for
1140 * compressed size, how could it work for uncompressed size
1141 * which requires larger size? So here we directly go error
1142 * path.
1143 */
1144 goto out_free;
1145 }
1146
1147 /* Here we're doing allocation and writeback of the compressed pages */
1148 em = create_io_em(inode, start,
1149 len: async_extent->ram_size, /* len */
1150 orig_start: start, /* orig_start */
1151 block_start: ins.objectid, /* block_start */
1152 block_len: ins.offset, /* block_len */
1153 orig_block_len: ins.offset, /* orig_block_len */
1154 ram_bytes: async_extent->ram_size, /* ram_bytes */
1155 compress_type: async_extent->compress_type,
1156 type: BTRFS_ORDERED_COMPRESSED);
1157 if (IS_ERR(ptr: em)) {
1158 ret = PTR_ERR(ptr: em);
1159 goto out_free_reserve;
1160 }
1161 free_extent_map(em);
1162
1163 ordered = btrfs_alloc_ordered_extent(inode, file_offset: start, /* file_offset */
1164 num_bytes: async_extent->ram_size, /* num_bytes */
1165 ram_bytes: async_extent->ram_size, /* ram_bytes */
1166 disk_bytenr: ins.objectid, /* disk_bytenr */
1167 disk_num_bytes: ins.offset, /* disk_num_bytes */
1168 offset: 0, /* offset */
1169 flags: 1 << BTRFS_ORDERED_COMPRESSED,
1170 compress_type: async_extent->compress_type);
1171 if (IS_ERR(ptr: ordered)) {
1172 btrfs_drop_extent_map_range(inode, start, end, skip_pinned: false);
1173 ret = PTR_ERR(ptr: ordered);
1174 goto out_free_reserve;
1175 }
1176 btrfs_dec_block_group_reservations(fs_info, start: ins.objectid);
1177
1178 /* Clear dirty, set writeback and unlock the pages. */
1179 extent_clear_unlock_delalloc(inode, start, end,
1180 NULL, bits_to_clear: EXTENT_LOCKED | EXTENT_DELALLOC,
1181 page_ops: PAGE_UNLOCK | PAGE_START_WRITEBACK);
1182 btrfs_submit_compressed_write(ordered,
1183 compressed_pages: async_extent->pages, /* compressed_pages */
1184 nr_pages: async_extent->nr_pages,
1185 write_flags: async_chunk->write_flags, writeback: true);
1186 *alloc_hint = ins.objectid + ins.offset;
1187done:
1188 if (async_chunk->blkcg_css)
1189 kthread_associate_blkcg(NULL);
1190 kfree(objp: async_extent);
1191 return;
1192
1193out_free_reserve:
1194 btrfs_dec_block_group_reservations(fs_info, start: ins.objectid);
1195 btrfs_free_reserved_extent(fs_info, start: ins.objectid, len: ins.offset, delalloc: 1);
1196out_free:
1197 mapping_set_error(mapping: inode->vfs_inode.i_mapping, error: -EIO);
1198 extent_clear_unlock_delalloc(inode, start, end,
1199 NULL, bits_to_clear: EXTENT_LOCKED | EXTENT_DELALLOC |
1200 EXTENT_DELALLOC_NEW |
1201 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
1202 page_ops: PAGE_UNLOCK | PAGE_START_WRITEBACK |
1203 PAGE_END_WRITEBACK);
1204 free_async_extent_pages(async_extent);
1205 if (async_chunk->blkcg_css)
1206 kthread_associate_blkcg(NULL);
1207 btrfs_debug(fs_info,
1208"async extent submission failed root=%lld inode=%llu start=%llu len=%llu ret=%d",
1209 root->root_key.objectid, btrfs_ino(inode), start,
1210 async_extent->ram_size, ret);
1211 kfree(objp: async_extent);
1212}
1213
1214static u64 get_extent_allocation_hint(struct btrfs_inode *inode, u64 start,
1215 u64 num_bytes)
1216{
1217 struct extent_map_tree *em_tree = &inode->extent_tree;
1218 struct extent_map *em;
1219 u64 alloc_hint = 0;
1220
1221 read_lock(&em_tree->lock);
1222 em = search_extent_mapping(tree: em_tree, start, len: num_bytes);
1223 if (em) {
1224 /*
1225 * if block start isn't an actual block number then find the
1226 * first block in this inode and use that as a hint. If that
1227 * block is also bogus then just don't worry about it.
1228 */
1229 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1230 free_extent_map(em);
1231 em = search_extent_mapping(tree: em_tree, start: 0, len: 0);
1232 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
1233 alloc_hint = em->block_start;
1234 if (em)
1235 free_extent_map(em);
1236 } else {
1237 alloc_hint = em->block_start;
1238 free_extent_map(em);
1239 }
1240 }
1241 read_unlock(&em_tree->lock);
1242
1243 return alloc_hint;
1244}
1245
1246/*
1247 * when extent_io.c finds a delayed allocation range in the file,
1248 * the call backs end up in this code. The basic idea is to
1249 * allocate extents on disk for the range, and create ordered data structs
1250 * in ram to track those extents.
1251 *
1252 * locked_page is the page that writepage had locked already. We use
1253 * it to make sure we don't do extra locks or unlocks.
1254 *
1255 * When this function fails, it unlocks all pages except @locked_page.
1256 *
1257 * When this function successfully creates an inline extent, it returns 1 and
1258 * unlocks all pages including locked_page and starts I/O on them.
1259 * (In reality inline extents are limited to a single page, so locked_page is
1260 * the only page handled anyway).
1261 *
1262 * When this function succeed and creates a normal extent, the page locking
1263 * status depends on the passed in flags:
1264 *
1265 * - If @keep_locked is set, all pages are kept locked.
1266 * - Else all pages except for @locked_page are unlocked.
1267 *
1268 * When a failure happens in the second or later iteration of the
1269 * while-loop, the ordered extents created in previous iterations are kept
1270 * intact. So, the caller must clean them up by calling
1271 * btrfs_cleanup_ordered_extents(). See btrfs_run_delalloc_range() for
1272 * example.
1273 */
1274static noinline int cow_file_range(struct btrfs_inode *inode,
1275 struct page *locked_page, u64 start, u64 end,
1276 u64 *done_offset,
1277 bool keep_locked, bool no_inline)
1278{
1279 struct btrfs_root *root = inode->root;
1280 struct btrfs_fs_info *fs_info = root->fs_info;
1281 u64 alloc_hint = 0;
1282 u64 orig_start = start;
1283 u64 num_bytes;
1284 unsigned long ram_size;
1285 u64 cur_alloc_size = 0;
1286 u64 min_alloc_size;
1287 u64 blocksize = fs_info->sectorsize;
1288 struct btrfs_key ins;
1289 struct extent_map *em;
1290 unsigned clear_bits;
1291 unsigned long page_ops;
1292 bool extent_reserved = false;
1293 int ret = 0;
1294
1295 if (btrfs_is_free_space_inode(inode)) {
1296 ret = -EINVAL;
1297 goto out_unlock;
1298 }
1299
1300 num_bytes = ALIGN(end - start + 1, blocksize);
1301 num_bytes = max(blocksize, num_bytes);
1302 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
1303
1304 inode_should_defrag(inode, start, end, num_bytes, SZ_64K);
1305
1306 /*
1307 * Due to the page size limit, for subpage we can only trigger the
1308 * writeback for the dirty sectors of page, that means data writeback
1309 * is doing more writeback than what we want.
1310 *
1311 * This is especially unexpected for some call sites like fallocate,
1312 * where we only increase i_size after everything is done.
1313 * This means we can trigger inline extent even if we didn't want to.
1314 * So here we skip inline extent creation completely.
1315 */
1316 if (start == 0 && fs_info->sectorsize == PAGE_SIZE && !no_inline) {
1317 u64 actual_end = min_t(u64, i_size_read(&inode->vfs_inode),
1318 end + 1);
1319
1320 /* lets try to make an inline extent */
1321 ret = cow_file_range_inline(inode, size: actual_end, compressed_size: 0,
1322 compress_type: BTRFS_COMPRESS_NONE, NULL, update_i_size: false);
1323 if (ret == 0) {
1324 /*
1325 * We use DO_ACCOUNTING here because we need the
1326 * delalloc_release_metadata to be run _after_ we drop
1327 * our outstanding extent for clearing delalloc for this
1328 * range.
1329 */
1330 extent_clear_unlock_delalloc(inode, start, end,
1331 locked_page,
1332 bits_to_clear: EXTENT_LOCKED | EXTENT_DELALLOC |
1333 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1334 EXTENT_DO_ACCOUNTING, page_ops: PAGE_UNLOCK |
1335 PAGE_START_WRITEBACK | PAGE_END_WRITEBACK);
1336 /*
1337 * locked_page is locked by the caller of
1338 * writepage_delalloc(), not locked by
1339 * __process_pages_contig().
1340 *
1341 * We can't let __process_pages_contig() to unlock it,
1342 * as it doesn't have any subpage::writers recorded.
1343 *
1344 * Here we manually unlock the page, since the caller
1345 * can't determine if it's an inline extent or a
1346 * compressed extent.
1347 */
1348 unlock_page(page: locked_page);
1349 ret = 1;
1350 goto done;
1351 } else if (ret < 0) {
1352 goto out_unlock;
1353 }
1354 }
1355
1356 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
1357
1358 /*
1359 * Relocation relies on the relocated extents to have exactly the same
1360 * size as the original extents. Normally writeback for relocation data
1361 * extents follows a NOCOW path because relocation preallocates the
1362 * extents. However, due to an operation such as scrub turning a block
1363 * group to RO mode, it may fallback to COW mode, so we must make sure
1364 * an extent allocated during COW has exactly the requested size and can
1365 * not be split into smaller extents, otherwise relocation breaks and
1366 * fails during the stage where it updates the bytenr of file extent
1367 * items.
1368 */
1369 if (btrfs_is_data_reloc_root(root))
1370 min_alloc_size = num_bytes;
1371 else
1372 min_alloc_size = fs_info->sectorsize;
1373
1374 while (num_bytes > 0) {
1375 struct btrfs_ordered_extent *ordered;
1376
1377 cur_alloc_size = num_bytes;
1378 ret = btrfs_reserve_extent(root, ram_bytes: cur_alloc_size, num_bytes: cur_alloc_size,
1379 min_alloc_size, empty_size: 0, hint_byte: alloc_hint,
1380 ins: &ins, is_data: 1, delalloc: 1);
1381 if (ret == -EAGAIN) {
1382 /*
1383 * btrfs_reserve_extent only returns -EAGAIN for zoned
1384 * file systems, which is an indication that there are
1385 * no active zones to allocate from at the moment.
1386 *
1387 * If this is the first loop iteration, wait for at
1388 * least one zone to finish before retrying the
1389 * allocation. Otherwise ask the caller to write out
1390 * the already allocated blocks before coming back to
1391 * us, or return -ENOSPC if it can't handle retries.
1392 */
1393 ASSERT(btrfs_is_zoned(fs_info));
1394 if (start == orig_start) {
1395 wait_on_bit_io(word: &inode->root->fs_info->flags,
1396 bit: BTRFS_FS_NEED_ZONE_FINISH,
1397 TASK_UNINTERRUPTIBLE);
1398 continue;
1399 }
1400 if (done_offset) {
1401 *done_offset = start - 1;
1402 return 0;
1403 }
1404 ret = -ENOSPC;
1405 }
1406 if (ret < 0)
1407 goto out_unlock;
1408 cur_alloc_size = ins.offset;
1409 extent_reserved = true;
1410
1411 ram_size = ins.offset;
1412 em = create_io_em(inode, start, len: ins.offset, /* len */
1413 orig_start: start, /* orig_start */
1414 block_start: ins.objectid, /* block_start */
1415 block_len: ins.offset, /* block_len */
1416 orig_block_len: ins.offset, /* orig_block_len */
1417 ram_bytes: ram_size, /* ram_bytes */
1418 compress_type: BTRFS_COMPRESS_NONE, /* compress_type */
1419 type: BTRFS_ORDERED_REGULAR /* type */);
1420 if (IS_ERR(ptr: em)) {
1421 ret = PTR_ERR(ptr: em);
1422 goto out_reserve;
1423 }
1424 free_extent_map(em);
1425
1426 ordered = btrfs_alloc_ordered_extent(inode, file_offset: start, num_bytes: ram_size,
1427 ram_bytes: ram_size, disk_bytenr: ins.objectid, disk_num_bytes: cur_alloc_size,
1428 offset: 0, flags: 1 << BTRFS_ORDERED_REGULAR,
1429 compress_type: BTRFS_COMPRESS_NONE);
1430 if (IS_ERR(ptr: ordered)) {
1431 ret = PTR_ERR(ptr: ordered);
1432 goto out_drop_extent_cache;
1433 }
1434
1435 if (btrfs_is_data_reloc_root(root)) {
1436 ret = btrfs_reloc_clone_csums(ordered);
1437
1438 /*
1439 * Only drop cache here, and process as normal.
1440 *
1441 * We must not allow extent_clear_unlock_delalloc()
1442 * at out_unlock label to free meta of this ordered
1443 * extent, as its meta should be freed by
1444 * btrfs_finish_ordered_io().
1445 *
1446 * So we must continue until @start is increased to
1447 * skip current ordered extent.
1448 */
1449 if (ret)
1450 btrfs_drop_extent_map_range(inode, start,
1451 end: start + ram_size - 1,
1452 skip_pinned: false);
1453 }
1454 btrfs_put_ordered_extent(entry: ordered);
1455
1456 btrfs_dec_block_group_reservations(fs_info, start: ins.objectid);
1457
1458 /*
1459 * We're not doing compressed IO, don't unlock the first page
1460 * (which the caller expects to stay locked), don't clear any
1461 * dirty bits and don't set any writeback bits
1462 *
1463 * Do set the Ordered (Private2) bit so we know this page was
1464 * properly setup for writepage.
1465 */
1466 page_ops = (keep_locked ? 0 : PAGE_UNLOCK);
1467 page_ops |= PAGE_SET_ORDERED;
1468
1469 extent_clear_unlock_delalloc(inode, start, end: start + ram_size - 1,
1470 locked_page,
1471 bits_to_clear: EXTENT_LOCKED | EXTENT_DELALLOC,
1472 page_ops);
1473 if (num_bytes < cur_alloc_size)
1474 num_bytes = 0;
1475 else
1476 num_bytes -= cur_alloc_size;
1477 alloc_hint = ins.objectid + ins.offset;
1478 start += cur_alloc_size;
1479 extent_reserved = false;
1480
1481 /*
1482 * btrfs_reloc_clone_csums() error, since start is increased
1483 * extent_clear_unlock_delalloc() at out_unlock label won't
1484 * free metadata of current ordered extent, we're OK to exit.
1485 */
1486 if (ret)
1487 goto out_unlock;
1488 }
1489done:
1490 if (done_offset)
1491 *done_offset = end;
1492 return ret;
1493
1494out_drop_extent_cache:
1495 btrfs_drop_extent_map_range(inode, start, end: start + ram_size - 1, skip_pinned: false);
1496out_reserve:
1497 btrfs_dec_block_group_reservations(fs_info, start: ins.objectid);
1498 btrfs_free_reserved_extent(fs_info, start: ins.objectid, len: ins.offset, delalloc: 1);
1499out_unlock:
1500 /*
1501 * Now, we have three regions to clean up:
1502 *
1503 * |-------(1)----|---(2)---|-------------(3)----------|
1504 * `- orig_start `- start `- start + cur_alloc_size `- end
1505 *
1506 * We process each region below.
1507 */
1508
1509 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1510 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
1511 page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK;
1512
1513 /*
1514 * For the range (1). We have already instantiated the ordered extents
1515 * for this region. They are cleaned up by
1516 * btrfs_cleanup_ordered_extents() in e.g,
1517 * btrfs_run_delalloc_range(). EXTENT_LOCKED | EXTENT_DELALLOC are
1518 * already cleared in the above loop. And, EXTENT_DELALLOC_NEW |
1519 * EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV are handled by the cleanup
1520 * function.
1521 *
1522 * However, in case of @keep_locked, we still need to unlock the pages
1523 * (except @locked_page) to ensure all the pages are unlocked.
1524 */
1525 if (keep_locked && orig_start < start) {
1526 if (!locked_page)
1527 mapping_set_error(mapping: inode->vfs_inode.i_mapping, error: ret);
1528 extent_clear_unlock_delalloc(inode, start: orig_start, end: start - 1,
1529 locked_page, bits_to_clear: 0, page_ops);
1530 }
1531
1532 /*
1533 * For the range (2). If we reserved an extent for our delalloc range
1534 * (or a subrange) and failed to create the respective ordered extent,
1535 * then it means that when we reserved the extent we decremented the
1536 * extent's size from the data space_info's bytes_may_use counter and
1537 * incremented the space_info's bytes_reserved counter by the same
1538 * amount. We must make sure extent_clear_unlock_delalloc() does not try
1539 * to decrement again the data space_info's bytes_may_use counter,
1540 * therefore we do not pass it the flag EXTENT_CLEAR_DATA_RESV.
1541 */
1542 if (extent_reserved) {
1543 extent_clear_unlock_delalloc(inode, start,
1544 end: start + cur_alloc_size - 1,
1545 locked_page,
1546 bits_to_clear: clear_bits,
1547 page_ops);
1548 start += cur_alloc_size;
1549 }
1550
1551 /*
1552 * For the range (3). We never touched the region. In addition to the
1553 * clear_bits above, we add EXTENT_CLEAR_DATA_RESV to release the data
1554 * space_info's bytes_may_use counter, reserved in
1555 * btrfs_check_data_free_space().
1556 */
1557 if (start < end) {
1558 clear_bits |= EXTENT_CLEAR_DATA_RESV;
1559 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1560 bits_to_clear: clear_bits, page_ops);
1561 }
1562 return ret;
1563}
1564
1565/*
1566 * Phase two of compressed writeback. This is the ordered portion of the code,
1567 * which only gets called in the order the work was queued. We walk all the
1568 * async extents created by compress_file_range and send them down to the disk.
1569 *
1570 * If called with @do_free == true then it'll try to finish the work and free
1571 * the work struct eventually.
1572 */
1573static noinline void submit_compressed_extents(struct btrfs_work *work, bool do_free)
1574{
1575 struct async_chunk *async_chunk = container_of(work, struct async_chunk,
1576 work);
1577 struct btrfs_fs_info *fs_info = btrfs_work_owner(work);
1578 struct async_extent *async_extent;
1579 unsigned long nr_pages;
1580 u64 alloc_hint = 0;
1581
1582 if (do_free) {
1583 struct async_chunk *async_chunk;
1584 struct async_cow *async_cow;
1585
1586 async_chunk = container_of(work, struct async_chunk, work);
1587 btrfs_add_delayed_iput(inode: async_chunk->inode);
1588 if (async_chunk->blkcg_css)
1589 css_put(css: async_chunk->blkcg_css);
1590
1591 async_cow = async_chunk->async_cow;
1592 if (atomic_dec_and_test(v: &async_cow->num_chunks))
1593 kvfree(addr: async_cow);
1594 return;
1595 }
1596
1597 nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >>
1598 PAGE_SHIFT;
1599
1600 while (!list_empty(head: &async_chunk->extents)) {
1601 async_extent = list_entry(async_chunk->extents.next,
1602 struct async_extent, list);
1603 list_del(entry: &async_extent->list);
1604 submit_one_async_extent(async_chunk, async_extent, alloc_hint: &alloc_hint);
1605 }
1606
1607 /* atomic_sub_return implies a barrier */
1608 if (atomic_sub_return(i: nr_pages, v: &fs_info->async_delalloc_pages) <
1609 5 * SZ_1M)
1610 cond_wake_up_nomb(wq: &fs_info->async_submit_wait);
1611}
1612
1613static bool run_delalloc_compressed(struct btrfs_inode *inode,
1614 struct page *locked_page, u64 start,
1615 u64 end, struct writeback_control *wbc)
1616{
1617 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1618 struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc);
1619 struct async_cow *ctx;
1620 struct async_chunk *async_chunk;
1621 unsigned long nr_pages;
1622 u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K);
1623 int i;
1624 unsigned nofs_flag;
1625 const blk_opf_t write_flags = wbc_to_write_flags(wbc);
1626
1627 nofs_flag = memalloc_nofs_save();
1628 ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL);
1629 memalloc_nofs_restore(flags: nofs_flag);
1630 if (!ctx)
1631 return false;
1632
1633 unlock_extent(tree: &inode->io_tree, start, end, NULL);
1634 set_bit(nr: BTRFS_INODE_HAS_ASYNC_EXTENT, addr: &inode->runtime_flags);
1635
1636 async_chunk = ctx->chunks;
1637 atomic_set(v: &ctx->num_chunks, i: num_chunks);
1638
1639 for (i = 0; i < num_chunks; i++) {
1640 u64 cur_end = min(end, start + SZ_512K - 1);
1641
1642 /*
1643 * igrab is called higher up in the call chain, take only the
1644 * lightweight reference for the callback lifetime
1645 */
1646 ihold(inode: &inode->vfs_inode);
1647 async_chunk[i].async_cow = ctx;
1648 async_chunk[i].inode = inode;
1649 async_chunk[i].start = start;
1650 async_chunk[i].end = cur_end;
1651 async_chunk[i].write_flags = write_flags;
1652 INIT_LIST_HEAD(list: &async_chunk[i].extents);
1653
1654 /*
1655 * The locked_page comes all the way from writepage and its
1656 * the original page we were actually given. As we spread
1657 * this large delalloc region across multiple async_chunk
1658 * structs, only the first struct needs a pointer to locked_page
1659 *
1660 * This way we don't need racey decisions about who is supposed
1661 * to unlock it.
1662 */
1663 if (locked_page) {
1664 /*
1665 * Depending on the compressibility, the pages might or
1666 * might not go through async. We want all of them to
1667 * be accounted against wbc once. Let's do it here
1668 * before the paths diverge. wbc accounting is used
1669 * only for foreign writeback detection and doesn't
1670 * need full accuracy. Just account the whole thing
1671 * against the first page.
1672 */
1673 wbc_account_cgroup_owner(wbc, page: locked_page,
1674 bytes: cur_end - start);
1675 async_chunk[i].locked_page = locked_page;
1676 locked_page = NULL;
1677 } else {
1678 async_chunk[i].locked_page = NULL;
1679 }
1680
1681 if (blkcg_css != blkcg_root_css) {
1682 css_get(css: blkcg_css);
1683 async_chunk[i].blkcg_css = blkcg_css;
1684 async_chunk[i].write_flags |= REQ_BTRFS_CGROUP_PUNT;
1685 } else {
1686 async_chunk[i].blkcg_css = NULL;
1687 }
1688
1689 btrfs_init_work(work: &async_chunk[i].work, func: compress_file_range,
1690 ordered_func: submit_compressed_extents);
1691
1692 nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE);
1693 atomic_add(i: nr_pages, v: &fs_info->async_delalloc_pages);
1694
1695 btrfs_queue_work(wq: fs_info->delalloc_workers, work: &async_chunk[i].work);
1696
1697 start = cur_end + 1;
1698 }
1699 return true;
1700}
1701
1702/*
1703 * Run the delalloc range from start to end, and write back any dirty pages
1704 * covered by the range.
1705 */
1706static noinline int run_delalloc_cow(struct btrfs_inode *inode,
1707 struct page *locked_page, u64 start,
1708 u64 end, struct writeback_control *wbc,
1709 bool pages_dirty)
1710{
1711 u64 done_offset = end;
1712 int ret;
1713
1714 while (start <= end) {
1715 ret = cow_file_range(inode, locked_page, start, end, done_offset: &done_offset,
1716 keep_locked: true, no_inline: false);
1717 if (ret)
1718 return ret;
1719 extent_write_locked_range(inode: &inode->vfs_inode, locked_page, start,
1720 end: done_offset, wbc, pages_dirty);
1721 start = done_offset + 1;
1722 }
1723
1724 return 1;
1725}
1726
1727static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
1728 u64 bytenr, u64 num_bytes, bool nowait)
1729{
1730 struct btrfs_root *csum_root = btrfs_csum_root(fs_info, bytenr);
1731 struct btrfs_ordered_sum *sums;
1732 int ret;
1733 LIST_HEAD(list);
1734
1735 ret = btrfs_lookup_csums_list(root: csum_root, start: bytenr, end: bytenr + num_bytes - 1,
1736 list: &list, search_commit: 0, nowait);
1737 if (ret == 0 && list_empty(head: &list))
1738 return 0;
1739
1740 while (!list_empty(head: &list)) {
1741 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1742 list_del(entry: &sums->list);
1743 kfree(objp: sums);
1744 }
1745 if (ret < 0)
1746 return ret;
1747 return 1;
1748}
1749
1750static int fallback_to_cow(struct btrfs_inode *inode, struct page *locked_page,
1751 const u64 start, const u64 end)
1752{
1753 const bool is_space_ino = btrfs_is_free_space_inode(inode);
1754 const bool is_reloc_ino = btrfs_is_data_reloc_root(root: inode->root);
1755 const u64 range_bytes = end + 1 - start;
1756 struct extent_io_tree *io_tree = &inode->io_tree;
1757 u64 range_start = start;
1758 u64 count;
1759 int ret;
1760
1761 /*
1762 * If EXTENT_NORESERVE is set it means that when the buffered write was
1763 * made we had not enough available data space and therefore we did not
1764 * reserve data space for it, since we though we could do NOCOW for the
1765 * respective file range (either there is prealloc extent or the inode
1766 * has the NOCOW bit set).
1767 *
1768 * However when we need to fallback to COW mode (because for example the
1769 * block group for the corresponding extent was turned to RO mode by a
1770 * scrub or relocation) we need to do the following:
1771 *
1772 * 1) We increment the bytes_may_use counter of the data space info.
1773 * If COW succeeds, it allocates a new data extent and after doing
1774 * that it decrements the space info's bytes_may_use counter and
1775 * increments its bytes_reserved counter by the same amount (we do
1776 * this at btrfs_add_reserved_bytes()). So we need to increment the
1777 * bytes_may_use counter to compensate (when space is reserved at
1778 * buffered write time, the bytes_may_use counter is incremented);
1779 *
1780 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so
1781 * that if the COW path fails for any reason, it decrements (through
1782 * extent_clear_unlock_delalloc()) the bytes_may_use counter of the
1783 * data space info, which we incremented in the step above.
1784 *
1785 * If we need to fallback to cow and the inode corresponds to a free
1786 * space cache inode or an inode of the data relocation tree, we must
1787 * also increment bytes_may_use of the data space_info for the same
1788 * reason. Space caches and relocated data extents always get a prealloc
1789 * extent for them, however scrub or balance may have set the block
1790 * group that contains that extent to RO mode and therefore force COW
1791 * when starting writeback.
1792 */
1793 count = count_range_bits(tree: io_tree, start: &range_start, search_end: end, max_bytes: range_bytes,
1794 bits: EXTENT_NORESERVE, contig: 0, NULL);
1795 if (count > 0 || is_space_ino || is_reloc_ino) {
1796 u64 bytes = count;
1797 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1798 struct btrfs_space_info *sinfo = fs_info->data_sinfo;
1799
1800 if (is_space_ino || is_reloc_ino)
1801 bytes = range_bytes;
1802
1803 spin_lock(lock: &sinfo->lock);
1804 btrfs_space_info_update_bytes_may_use(fs_info, sinfo, bytes);
1805 spin_unlock(lock: &sinfo->lock);
1806
1807 if (count > 0)
1808 clear_extent_bit(tree: io_tree, start, end, bits: EXTENT_NORESERVE,
1809 NULL);
1810 }
1811
1812 /*
1813 * Don't try to create inline extents, as a mix of inline extent that
1814 * is written out and unlocked directly and a normal NOCOW extent
1815 * doesn't work.
1816 */
1817 ret = cow_file_range(inode, locked_page, start, end, NULL, keep_locked: false, no_inline: true);
1818 ASSERT(ret != 1);
1819 return ret;
1820}
1821
1822struct can_nocow_file_extent_args {
1823 /* Input fields. */
1824
1825 /* Start file offset of the range we want to NOCOW. */
1826 u64 start;
1827 /* End file offset (inclusive) of the range we want to NOCOW. */
1828 u64 end;
1829 bool writeback_path;
1830 bool strict;
1831 /*
1832 * Free the path passed to can_nocow_file_extent() once it's not needed
1833 * anymore.
1834 */
1835 bool free_path;
1836
1837 /* Output fields. Only set when can_nocow_file_extent() returns 1. */
1838
1839 u64 disk_bytenr;
1840 u64 disk_num_bytes;
1841 u64 extent_offset;
1842 /* Number of bytes that can be written to in NOCOW mode. */
1843 u64 num_bytes;
1844};
1845
1846/*
1847 * Check if we can NOCOW the file extent that the path points to.
1848 * This function may return with the path released, so the caller should check
1849 * if path->nodes[0] is NULL or not if it needs to use the path afterwards.
1850 *
1851 * Returns: < 0 on error
1852 * 0 if we can not NOCOW
1853 * 1 if we can NOCOW
1854 */
1855static int can_nocow_file_extent(struct btrfs_path *path,
1856 struct btrfs_key *key,
1857 struct btrfs_inode *inode,
1858 struct can_nocow_file_extent_args *args)
1859{
1860 const bool is_freespace_inode = btrfs_is_free_space_inode(inode);
1861 struct extent_buffer *leaf = path->nodes[0];
1862 struct btrfs_root *root = inode->root;
1863 struct btrfs_file_extent_item *fi;
1864 u64 extent_end;
1865 u8 extent_type;
1866 int can_nocow = 0;
1867 int ret = 0;
1868 bool nowait = path->nowait;
1869
1870 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
1871 extent_type = btrfs_file_extent_type(eb: leaf, s: fi);
1872
1873 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
1874 goto out;
1875
1876 /* Can't access these fields unless we know it's not an inline extent. */
1877 args->disk_bytenr = btrfs_file_extent_disk_bytenr(eb: leaf, s: fi);
1878 args->disk_num_bytes = btrfs_file_extent_disk_num_bytes(eb: leaf, s: fi);
1879 args->extent_offset = btrfs_file_extent_offset(eb: leaf, s: fi);
1880
1881 if (!(inode->flags & BTRFS_INODE_NODATACOW) &&
1882 extent_type == BTRFS_FILE_EXTENT_REG)
1883 goto out;
1884
1885 /*
1886 * If the extent was created before the generation where the last snapshot
1887 * for its subvolume was created, then this implies the extent is shared,
1888 * hence we must COW.
1889 */
1890 if (!args->strict &&
1891 btrfs_file_extent_generation(eb: leaf, s: fi) <=
1892 btrfs_root_last_snapshot(s: &root->root_item))
1893 goto out;
1894
1895 /* An explicit hole, must COW. */
1896 if (args->disk_bytenr == 0)
1897 goto out;
1898
1899 /* Compressed/encrypted/encoded extents must be COWed. */
1900 if (btrfs_file_extent_compression(eb: leaf, s: fi) ||
1901 btrfs_file_extent_encryption(eb: leaf, s: fi) ||
1902 btrfs_file_extent_other_encoding(eb: leaf, s: fi))
1903 goto out;
1904
1905 extent_end = btrfs_file_extent_end(path);
1906
1907 /*
1908 * The following checks can be expensive, as they need to take other
1909 * locks and do btree or rbtree searches, so release the path to avoid
1910 * blocking other tasks for too long.
1911 */
1912 btrfs_release_path(p: path);
1913
1914 ret = btrfs_cross_ref_exist(root, objectid: btrfs_ino(inode),
1915 offset: key->offset - args->extent_offset,
1916 bytenr: args->disk_bytenr, strict: args->strict, path);
1917 WARN_ON_ONCE(ret > 0 && is_freespace_inode);
1918 if (ret != 0)
1919 goto out;
1920
1921 if (args->free_path) {
1922 /*
1923 * We don't need the path anymore, plus through the
1924 * csum_exist_in_range() call below we will end up allocating
1925 * another path. So free the path to avoid unnecessary extra
1926 * memory usage.
1927 */
1928 btrfs_free_path(p: path);
1929 path = NULL;
1930 }
1931
1932 /* If there are pending snapshots for this root, we must COW. */
1933 if (args->writeback_path && !is_freespace_inode &&
1934 atomic_read(v: &root->snapshot_force_cow))
1935 goto out;
1936
1937 args->disk_bytenr += args->extent_offset;
1938 args->disk_bytenr += args->start - key->offset;
1939 args->num_bytes = min(args->end + 1, extent_end) - args->start;
1940
1941 /*
1942 * Force COW if csums exist in the range. This ensures that csums for a
1943 * given extent are either valid or do not exist.
1944 */
1945 ret = csum_exist_in_range(fs_info: root->fs_info, bytenr: args->disk_bytenr, num_bytes: args->num_bytes,
1946 nowait);
1947 WARN_ON_ONCE(ret > 0 && is_freespace_inode);
1948 if (ret != 0)
1949 goto out;
1950
1951 can_nocow = 1;
1952 out:
1953 if (args->free_path && path)
1954 btrfs_free_path(p: path);
1955
1956 return ret < 0 ? ret : can_nocow;
1957}
1958
1959/*
1960 * when nowcow writeback call back. This checks for snapshots or COW copies
1961 * of the extents that exist in the file, and COWs the file as required.
1962 *
1963 * If no cow copies or snapshots exist, we write directly to the existing
1964 * blocks on disk
1965 */
1966static noinline int run_delalloc_nocow(struct btrfs_inode *inode,
1967 struct page *locked_page,
1968 const u64 start, const u64 end)
1969{
1970 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1971 struct btrfs_root *root = inode->root;
1972 struct btrfs_path *path;
1973 u64 cow_start = (u64)-1;
1974 u64 cur_offset = start;
1975 int ret;
1976 bool check_prev = true;
1977 u64 ino = btrfs_ino(inode);
1978 struct can_nocow_file_extent_args nocow_args = { 0 };
1979
1980 /*
1981 * Normally on a zoned device we're only doing COW writes, but in case
1982 * of relocation on a zoned filesystem serializes I/O so that we're only
1983 * writing sequentially and can end up here as well.
1984 */
1985 ASSERT(!btrfs_is_zoned(fs_info) || btrfs_is_data_reloc_root(root));
1986
1987 path = btrfs_alloc_path();
1988 if (!path) {
1989 ret = -ENOMEM;
1990 goto error;
1991 }
1992
1993 nocow_args.end = end;
1994 nocow_args.writeback_path = true;
1995
1996 while (1) {
1997 struct btrfs_block_group *nocow_bg = NULL;
1998 struct btrfs_ordered_extent *ordered;
1999 struct btrfs_key found_key;
2000 struct btrfs_file_extent_item *fi;
2001 struct extent_buffer *leaf;
2002 u64 extent_end;
2003 u64 ram_bytes;
2004 u64 nocow_end;
2005 int extent_type;
2006 bool is_prealloc;
2007
2008 ret = btrfs_lookup_file_extent(NULL, root, path, objectid: ino,
2009 bytenr: cur_offset, mod: 0);
2010 if (ret < 0)
2011 goto error;
2012
2013 /*
2014 * If there is no extent for our range when doing the initial
2015 * search, then go back to the previous slot as it will be the
2016 * one containing the search offset
2017 */
2018 if (ret > 0 && path->slots[0] > 0 && check_prev) {
2019 leaf = path->nodes[0];
2020 btrfs_item_key_to_cpu(eb: leaf, cpu_key: &found_key,
2021 nr: path->slots[0] - 1);
2022 if (found_key.objectid == ino &&
2023 found_key.type == BTRFS_EXTENT_DATA_KEY)
2024 path->slots[0]--;
2025 }
2026 check_prev = false;
2027next_slot:
2028 /* Go to next leaf if we have exhausted the current one */
2029 leaf = path->nodes[0];
2030 if (path->slots[0] >= btrfs_header_nritems(eb: leaf)) {
2031 ret = btrfs_next_leaf(root, path);
2032 if (ret < 0)
2033 goto error;
2034 if (ret > 0)
2035 break;
2036 leaf = path->nodes[0];
2037 }
2038
2039 btrfs_item_key_to_cpu(eb: leaf, cpu_key: &found_key, nr: path->slots[0]);
2040
2041 /* Didn't find anything for our INO */
2042 if (found_key.objectid > ino)
2043 break;
2044 /*
2045 * Keep searching until we find an EXTENT_ITEM or there are no
2046 * more extents for this inode
2047 */
2048 if (WARN_ON_ONCE(found_key.objectid < ino) ||
2049 found_key.type < BTRFS_EXTENT_DATA_KEY) {
2050 path->slots[0]++;
2051 goto next_slot;
2052 }
2053
2054 /* Found key is not EXTENT_DATA_KEY or starts after req range */
2055 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
2056 found_key.offset > end)
2057 break;
2058
2059 /*
2060 * If the found extent starts after requested offset, then
2061 * adjust extent_end to be right before this extent begins
2062 */
2063 if (found_key.offset > cur_offset) {
2064 extent_end = found_key.offset;
2065 extent_type = 0;
2066 goto must_cow;
2067 }
2068
2069 /*
2070 * Found extent which begins before our range and potentially
2071 * intersect it
2072 */
2073 fi = btrfs_item_ptr(leaf, path->slots[0],
2074 struct btrfs_file_extent_item);
2075 extent_type = btrfs_file_extent_type(eb: leaf, s: fi);
2076 /* If this is triggered then we have a memory corruption. */
2077 ASSERT(extent_type < BTRFS_NR_FILE_EXTENT_TYPES);
2078 if (WARN_ON(extent_type >= BTRFS_NR_FILE_EXTENT_TYPES)) {
2079 ret = -EUCLEAN;
2080 goto error;
2081 }
2082 ram_bytes = btrfs_file_extent_ram_bytes(eb: leaf, s: fi);
2083 extent_end = btrfs_file_extent_end(path);
2084
2085 /*
2086 * If the extent we got ends before our current offset, skip to
2087 * the next extent.
2088 */
2089 if (extent_end <= cur_offset) {
2090 path->slots[0]++;
2091 goto next_slot;
2092 }
2093
2094 nocow_args.start = cur_offset;
2095 ret = can_nocow_file_extent(path, key: &found_key, inode, args: &nocow_args);
2096 if (ret < 0)
2097 goto error;
2098 if (ret == 0)
2099 goto must_cow;
2100
2101 ret = 0;
2102 nocow_bg = btrfs_inc_nocow_writers(fs_info, bytenr: nocow_args.disk_bytenr);
2103 if (!nocow_bg) {
2104must_cow:
2105 /*
2106 * If we can't perform NOCOW writeback for the range,
2107 * then record the beginning of the range that needs to
2108 * be COWed. It will be written out before the next
2109 * NOCOW range if we find one, or when exiting this
2110 * loop.
2111 */
2112 if (cow_start == (u64)-1)
2113 cow_start = cur_offset;
2114 cur_offset = extent_end;
2115 if (cur_offset > end)
2116 break;
2117 if (!path->nodes[0])
2118 continue;
2119 path->slots[0]++;
2120 goto next_slot;
2121 }
2122
2123 /*
2124 * COW range from cow_start to found_key.offset - 1. As the key
2125 * will contain the beginning of the first extent that can be
2126 * NOCOW, following one which needs to be COW'ed
2127 */
2128 if (cow_start != (u64)-1) {
2129 ret = fallback_to_cow(inode, locked_page,
2130 start: cow_start, end: found_key.offset - 1);
2131 cow_start = (u64)-1;
2132 if (ret) {
2133 btrfs_dec_nocow_writers(bg: nocow_bg);
2134 goto error;
2135 }
2136 }
2137
2138 nocow_end = cur_offset + nocow_args.num_bytes - 1;
2139 is_prealloc = extent_type == BTRFS_FILE_EXTENT_PREALLOC;
2140 if (is_prealloc) {
2141 u64 orig_start = found_key.offset - nocow_args.extent_offset;
2142 struct extent_map *em;
2143
2144 em = create_io_em(inode, start: cur_offset, len: nocow_args.num_bytes,
2145 orig_start,
2146 block_start: nocow_args.disk_bytenr, /* block_start */
2147 block_len: nocow_args.num_bytes, /* block_len */
2148 orig_block_len: nocow_args.disk_num_bytes, /* orig_block_len */
2149 ram_bytes, compress_type: BTRFS_COMPRESS_NONE,
2150 type: BTRFS_ORDERED_PREALLOC);
2151 if (IS_ERR(ptr: em)) {
2152 btrfs_dec_nocow_writers(bg: nocow_bg);
2153 ret = PTR_ERR(ptr: em);
2154 goto error;
2155 }
2156 free_extent_map(em);
2157 }
2158
2159 ordered = btrfs_alloc_ordered_extent(inode, file_offset: cur_offset,
2160 num_bytes: nocow_args.num_bytes, ram_bytes: nocow_args.num_bytes,
2161 disk_bytenr: nocow_args.disk_bytenr, disk_num_bytes: nocow_args.num_bytes, offset: 0,
2162 flags: is_prealloc
2163 ? (1 << BTRFS_ORDERED_PREALLOC)
2164 : (1 << BTRFS_ORDERED_NOCOW),
2165 compress_type: BTRFS_COMPRESS_NONE);
2166 btrfs_dec_nocow_writers(bg: nocow_bg);
2167 if (IS_ERR(ptr: ordered)) {
2168 if (is_prealloc) {
2169 btrfs_drop_extent_map_range(inode, start: cur_offset,
2170 end: nocow_end, skip_pinned: false);
2171 }
2172 ret = PTR_ERR(ptr: ordered);
2173 goto error;
2174 }
2175
2176 if (btrfs_is_data_reloc_root(root))
2177 /*
2178 * Error handled later, as we must prevent
2179 * extent_clear_unlock_delalloc() in error handler
2180 * from freeing metadata of created ordered extent.
2181 */
2182 ret = btrfs_reloc_clone_csums(ordered);
2183 btrfs_put_ordered_extent(entry: ordered);
2184
2185 extent_clear_unlock_delalloc(inode, start: cur_offset, end: nocow_end,
2186 locked_page, bits_to_clear: EXTENT_LOCKED |
2187 EXTENT_DELALLOC |
2188 EXTENT_CLEAR_DATA_RESV,
2189 page_ops: PAGE_UNLOCK | PAGE_SET_ORDERED);
2190
2191 cur_offset = extent_end;
2192
2193 /*
2194 * btrfs_reloc_clone_csums() error, now we're OK to call error
2195 * handler, as metadata for created ordered extent will only
2196 * be freed by btrfs_finish_ordered_io().
2197 */
2198 if (ret)
2199 goto error;
2200 if (cur_offset > end)
2201 break;
2202 }
2203 btrfs_release_path(p: path);
2204
2205 if (cur_offset <= end && cow_start == (u64)-1)
2206 cow_start = cur_offset;
2207
2208 if (cow_start != (u64)-1) {
2209 cur_offset = end;
2210 ret = fallback_to_cow(inode, locked_page, start: cow_start, end);
2211 cow_start = (u64)-1;
2212 if (ret)
2213 goto error;
2214 }
2215
2216 btrfs_free_path(p: path);
2217 return 0;
2218
2219error:
2220 /*
2221 * If an error happened while a COW region is outstanding, cur_offset
2222 * needs to be reset to cow_start to ensure the COW region is unlocked
2223 * as well.
2224 */
2225 if (cow_start != (u64)-1)
2226 cur_offset = cow_start;
2227 if (cur_offset < end)
2228 extent_clear_unlock_delalloc(inode, start: cur_offset, end,
2229 locked_page, bits_to_clear: EXTENT_LOCKED |
2230 EXTENT_DELALLOC | EXTENT_DEFRAG |
2231 EXTENT_DO_ACCOUNTING, page_ops: PAGE_UNLOCK |
2232 PAGE_START_WRITEBACK |
2233 PAGE_END_WRITEBACK);
2234 btrfs_free_path(p: path);
2235 return ret;
2236}
2237
2238static bool should_nocow(struct btrfs_inode *inode, u64 start, u64 end)
2239{
2240 if (inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)) {
2241 if (inode->defrag_bytes &&
2242 test_range_bit_exists(tree: &inode->io_tree, start, end, bit: EXTENT_DEFRAG))
2243 return false;
2244 return true;
2245 }
2246 return false;
2247}
2248
2249/*
2250 * Function to process delayed allocation (create CoW) for ranges which are
2251 * being touched for the first time.
2252 */
2253int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page,
2254 u64 start, u64 end, struct writeback_control *wbc)
2255{
2256 const bool zoned = btrfs_is_zoned(fs_info: inode->root->fs_info);
2257 int ret;
2258
2259 /*
2260 * The range must cover part of the @locked_page, or a return of 1
2261 * can confuse the caller.
2262 */
2263 ASSERT(!(end <= page_offset(locked_page) ||
2264 start >= page_offset(locked_page) + PAGE_SIZE));
2265
2266 if (should_nocow(inode, start, end)) {
2267 ret = run_delalloc_nocow(inode, locked_page, start, end);
2268 goto out;
2269 }
2270
2271 if (btrfs_inode_can_compress(inode) &&
2272 inode_need_compress(inode, start, end) &&
2273 run_delalloc_compressed(inode, locked_page, start, end, wbc))
2274 return 1;
2275
2276 if (zoned)
2277 ret = run_delalloc_cow(inode, locked_page, start, end, wbc,
2278 pages_dirty: true);
2279 else
2280 ret = cow_file_range(inode, locked_page, start, end, NULL,
2281 keep_locked: false, no_inline: false);
2282
2283out:
2284 if (ret < 0)
2285 btrfs_cleanup_ordered_extents(inode, locked_page, offset: start,
2286 bytes: end - start + 1);
2287 return ret;
2288}
2289
2290void btrfs_split_delalloc_extent(struct btrfs_inode *inode,
2291 struct extent_state *orig, u64 split)
2292{
2293 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2294 u64 size;
2295
2296 /* not delalloc, ignore it */
2297 if (!(orig->state & EXTENT_DELALLOC))
2298 return;
2299
2300 size = orig->end - orig->start + 1;
2301 if (size > fs_info->max_extent_size) {
2302 u32 num_extents;
2303 u64 new_size;
2304
2305 /*
2306 * See the explanation in btrfs_merge_delalloc_extent, the same
2307 * applies here, just in reverse.
2308 */
2309 new_size = orig->end - split + 1;
2310 num_extents = count_max_extents(fs_info, size: new_size);
2311 new_size = split - orig->start;
2312 num_extents += count_max_extents(fs_info, size: new_size);
2313 if (count_max_extents(fs_info, size) >= num_extents)
2314 return;
2315 }
2316
2317 spin_lock(lock: &inode->lock);
2318 btrfs_mod_outstanding_extents(inode, mod: 1);
2319 spin_unlock(lock: &inode->lock);
2320}
2321
2322/*
2323 * Handle merged delayed allocation extents so we can keep track of new extents
2324 * that are just merged onto old extents, such as when we are doing sequential
2325 * writes, so we can properly account for the metadata space we'll need.
2326 */
2327void btrfs_merge_delalloc_extent(struct btrfs_inode *inode, struct extent_state *new,
2328 struct extent_state *other)
2329{
2330 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2331 u64 new_size, old_size;
2332 u32 num_extents;
2333
2334 /* not delalloc, ignore it */
2335 if (!(other->state & EXTENT_DELALLOC))
2336 return;
2337
2338 if (new->start > other->start)
2339 new_size = new->end - other->start + 1;
2340 else
2341 new_size = other->end - new->start + 1;
2342
2343 /* we're not bigger than the max, unreserve the space and go */
2344 if (new_size <= fs_info->max_extent_size) {
2345 spin_lock(lock: &inode->lock);
2346 btrfs_mod_outstanding_extents(inode, mod: -1);
2347 spin_unlock(lock: &inode->lock);
2348 return;
2349 }
2350
2351 /*
2352 * We have to add up either side to figure out how many extents were
2353 * accounted for before we merged into one big extent. If the number of
2354 * extents we accounted for is <= the amount we need for the new range
2355 * then we can return, otherwise drop. Think of it like this
2356 *
2357 * [ 4k][MAX_SIZE]
2358 *
2359 * So we've grown the extent by a MAX_SIZE extent, this would mean we
2360 * need 2 outstanding extents, on one side we have 1 and the other side
2361 * we have 1 so they are == and we can return. But in this case
2362 *
2363 * [MAX_SIZE+4k][MAX_SIZE+4k]
2364 *
2365 * Each range on their own accounts for 2 extents, but merged together
2366 * they are only 3 extents worth of accounting, so we need to drop in
2367 * this case.
2368 */
2369 old_size = other->end - other->start + 1;
2370 num_extents = count_max_extents(fs_info, size: old_size);
2371 old_size = new->end - new->start + 1;
2372 num_extents += count_max_extents(fs_info, size: old_size);
2373 if (count_max_extents(fs_info, size: new_size) >= num_extents)
2374 return;
2375
2376 spin_lock(lock: &inode->lock);
2377 btrfs_mod_outstanding_extents(inode, mod: -1);
2378 spin_unlock(lock: &inode->lock);
2379}
2380
2381static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
2382 struct btrfs_inode *inode)
2383{
2384 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2385
2386 spin_lock(lock: &root->delalloc_lock);
2387 if (list_empty(head: &inode->delalloc_inodes)) {
2388 list_add_tail(new: &inode->delalloc_inodes, head: &root->delalloc_inodes);
2389 set_bit(nr: BTRFS_INODE_IN_DELALLOC_LIST, addr: &inode->runtime_flags);
2390 root->nr_delalloc_inodes++;
2391 if (root->nr_delalloc_inodes == 1) {
2392 spin_lock(lock: &fs_info->delalloc_root_lock);
2393 BUG_ON(!list_empty(&root->delalloc_root));
2394 list_add_tail(new: &root->delalloc_root,
2395 head: &fs_info->delalloc_roots);
2396 spin_unlock(lock: &fs_info->delalloc_root_lock);
2397 }
2398 }
2399 spin_unlock(lock: &root->delalloc_lock);
2400}
2401
2402void __btrfs_del_delalloc_inode(struct btrfs_root *root,
2403 struct btrfs_inode *inode)
2404{
2405 struct btrfs_fs_info *fs_info = root->fs_info;
2406
2407 if (!list_empty(head: &inode->delalloc_inodes)) {
2408 list_del_init(entry: &inode->delalloc_inodes);
2409 clear_bit(nr: BTRFS_INODE_IN_DELALLOC_LIST,
2410 addr: &inode->runtime_flags);
2411 root->nr_delalloc_inodes--;
2412 if (!root->nr_delalloc_inodes) {
2413 ASSERT(list_empty(&root->delalloc_inodes));
2414 spin_lock(lock: &fs_info->delalloc_root_lock);
2415 BUG_ON(list_empty(&root->delalloc_root));
2416 list_del_init(entry: &root->delalloc_root);
2417 spin_unlock(lock: &fs_info->delalloc_root_lock);
2418 }
2419 }
2420}
2421
2422static void btrfs_del_delalloc_inode(struct btrfs_root *root,
2423 struct btrfs_inode *inode)
2424{
2425 spin_lock(lock: &root->delalloc_lock);
2426 __btrfs_del_delalloc_inode(root, inode);
2427 spin_unlock(lock: &root->delalloc_lock);
2428}
2429
2430/*
2431 * Properly track delayed allocation bytes in the inode and to maintain the
2432 * list of inodes that have pending delalloc work to be done.
2433 */
2434void btrfs_set_delalloc_extent(struct btrfs_inode *inode, struct extent_state *state,
2435 u32 bits)
2436{
2437 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2438
2439 if ((bits & EXTENT_DEFRAG) && !(bits & EXTENT_DELALLOC))
2440 WARN_ON(1);
2441 /*
2442 * set_bit and clear bit hooks normally require _irqsave/restore
2443 * but in this case, we are only testing for the DELALLOC
2444 * bit, which is only set or cleared with irqs on
2445 */
2446 if (!(state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
2447 struct btrfs_root *root = inode->root;
2448 u64 len = state->end + 1 - state->start;
2449 u32 num_extents = count_max_extents(fs_info, size: len);
2450 bool do_list = !btrfs_is_free_space_inode(inode);
2451
2452 spin_lock(lock: &inode->lock);
2453 btrfs_mod_outstanding_extents(inode, mod: num_extents);
2454 spin_unlock(lock: &inode->lock);
2455
2456 /* For sanity tests */
2457 if (btrfs_is_testing(fs_info))
2458 return;
2459
2460 percpu_counter_add_batch(fbc: &fs_info->delalloc_bytes, amount: len,
2461 batch: fs_info->delalloc_batch);
2462 spin_lock(lock: &inode->lock);
2463 inode->delalloc_bytes += len;
2464 if (bits & EXTENT_DEFRAG)
2465 inode->defrag_bytes += len;
2466 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2467 &inode->runtime_flags))
2468 btrfs_add_delalloc_inodes(root, inode);
2469 spin_unlock(lock: &inode->lock);
2470 }
2471
2472 if (!(state->state & EXTENT_DELALLOC_NEW) &&
2473 (bits & EXTENT_DELALLOC_NEW)) {
2474 spin_lock(lock: &inode->lock);
2475 inode->new_delalloc_bytes += state->end + 1 - state->start;
2476 spin_unlock(lock: &inode->lock);
2477 }
2478}
2479
2480/*
2481 * Once a range is no longer delalloc this function ensures that proper
2482 * accounting happens.
2483 */
2484void btrfs_clear_delalloc_extent(struct btrfs_inode *inode,
2485 struct extent_state *state, u32 bits)
2486{
2487 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2488 u64 len = state->end + 1 - state->start;
2489 u32 num_extents = count_max_extents(fs_info, size: len);
2490
2491 if ((state->state & EXTENT_DEFRAG) && (bits & EXTENT_DEFRAG)) {
2492 spin_lock(lock: &inode->lock);
2493 inode->defrag_bytes -= len;
2494 spin_unlock(lock: &inode->lock);
2495 }
2496
2497 /*
2498 * set_bit and clear bit hooks normally require _irqsave/restore
2499 * but in this case, we are only testing for the DELALLOC
2500 * bit, which is only set or cleared with irqs on
2501 */
2502 if ((state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
2503 struct btrfs_root *root = inode->root;
2504 bool do_list = !btrfs_is_free_space_inode(inode);
2505
2506 spin_lock(lock: &inode->lock);
2507 btrfs_mod_outstanding_extents(inode, mod: -num_extents);
2508 spin_unlock(lock: &inode->lock);
2509
2510 /*
2511 * We don't reserve metadata space for space cache inodes so we
2512 * don't need to call delalloc_release_metadata if there is an
2513 * error.
2514 */
2515 if (bits & EXTENT_CLEAR_META_RESV &&
2516 root != fs_info->tree_root)
2517 btrfs_delalloc_release_metadata(inode, num_bytes: len, qgroup_free: false);
2518
2519 /* For sanity tests. */
2520 if (btrfs_is_testing(fs_info))
2521 return;
2522
2523 if (!btrfs_is_data_reloc_root(root) &&
2524 do_list && !(state->state & EXTENT_NORESERVE) &&
2525 (bits & EXTENT_CLEAR_DATA_RESV))
2526 btrfs_free_reserved_data_space_noquota(fs_info, len);
2527
2528 percpu_counter_add_batch(fbc: &fs_info->delalloc_bytes, amount: -len,
2529 batch: fs_info->delalloc_batch);
2530 spin_lock(lock: &inode->lock);
2531 inode->delalloc_bytes -= len;
2532 if (do_list && inode->delalloc_bytes == 0 &&
2533 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2534 &inode->runtime_flags))
2535 btrfs_del_delalloc_inode(root, inode);
2536 spin_unlock(lock: &inode->lock);
2537 }
2538
2539 if ((state->state & EXTENT_DELALLOC_NEW) &&
2540 (bits & EXTENT_DELALLOC_NEW)) {
2541 spin_lock(lock: &inode->lock);
2542 ASSERT(inode->new_delalloc_bytes >= len);
2543 inode->new_delalloc_bytes -= len;
2544 if (bits & EXTENT_ADD_INODE_BYTES)
2545 inode_add_bytes(inode: &inode->vfs_inode, bytes: len);
2546 spin_unlock(lock: &inode->lock);
2547 }
2548}
2549
2550static int btrfs_extract_ordered_extent(struct btrfs_bio *bbio,
2551 struct btrfs_ordered_extent *ordered)
2552{
2553 u64 start = (u64)bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT;
2554 u64 len = bbio->bio.bi_iter.bi_size;
2555 struct btrfs_ordered_extent *new;
2556 int ret;
2557
2558 /* Must always be called for the beginning of an ordered extent. */
2559 if (WARN_ON_ONCE(start != ordered->disk_bytenr))
2560 return -EINVAL;
2561
2562 /* No need to split if the ordered extent covers the entire bio. */
2563 if (ordered->disk_num_bytes == len) {
2564 refcount_inc(r: &ordered->refs);
2565 bbio->ordered = ordered;
2566 return 0;
2567 }
2568
2569 /*
2570 * Don't split the extent_map for NOCOW extents, as we're writing into
2571 * a pre-existing one.
2572 */
2573 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) {
2574 ret = split_extent_map(inode: bbio->inode, start: bbio->file_offset,
2575 len: ordered->num_bytes, pre: len,
2576 new_logical: ordered->disk_bytenr);
2577 if (ret)
2578 return ret;
2579 }
2580
2581 new = btrfs_split_ordered_extent(ordered, len);
2582 if (IS_ERR(ptr: new))
2583 return PTR_ERR(ptr: new);
2584 bbio->ordered = new;
2585 return 0;
2586}
2587
2588/*
2589 * given a list of ordered sums record them in the inode. This happens
2590 * at IO completion time based on sums calculated at bio submission time.
2591 */
2592static int add_pending_csums(struct btrfs_trans_handle *trans,
2593 struct list_head *list)
2594{
2595 struct btrfs_ordered_sum *sum;
2596 struct btrfs_root *csum_root = NULL;
2597 int ret;
2598
2599 list_for_each_entry(sum, list, list) {
2600 trans->adding_csums = true;
2601 if (!csum_root)
2602 csum_root = btrfs_csum_root(fs_info: trans->fs_info,
2603 bytenr: sum->logical);
2604 ret = btrfs_csum_file_blocks(trans, root: csum_root, sums: sum);
2605 trans->adding_csums = false;
2606 if (ret)
2607 return ret;
2608 }
2609 return 0;
2610}
2611
2612static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
2613 const u64 start,
2614 const u64 len,
2615 struct extent_state **cached_state)
2616{
2617 u64 search_start = start;
2618 const u64 end = start + len - 1;
2619
2620 while (search_start < end) {
2621 const u64 search_len = end - search_start + 1;
2622 struct extent_map *em;
2623 u64 em_len;
2624 int ret = 0;
2625
2626 em = btrfs_get_extent(inode, NULL, pg_offset: 0, start: search_start, end: search_len);
2627 if (IS_ERR(ptr: em))
2628 return PTR_ERR(ptr: em);
2629
2630 if (em->block_start != EXTENT_MAP_HOLE)
2631 goto next;
2632
2633 em_len = em->len;
2634 if (em->start < search_start)
2635 em_len -= search_start - em->start;
2636 if (em_len > search_len)
2637 em_len = search_len;
2638
2639 ret = set_extent_bit(tree: &inode->io_tree, start: search_start,
2640 end: search_start + em_len - 1,
2641 bits: EXTENT_DELALLOC_NEW, cached_state);
2642next:
2643 search_start = extent_map_end(em);
2644 free_extent_map(em);
2645 if (ret)
2646 return ret;
2647 }
2648 return 0;
2649}
2650
2651int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
2652 unsigned int extra_bits,
2653 struct extent_state **cached_state)
2654{
2655 WARN_ON(PAGE_ALIGNED(end));
2656
2657 if (start >= i_size_read(inode: &inode->vfs_inode) &&
2658 !(inode->flags & BTRFS_INODE_PREALLOC)) {
2659 /*
2660 * There can't be any extents following eof in this case so just
2661 * set the delalloc new bit for the range directly.
2662 */
2663 extra_bits |= EXTENT_DELALLOC_NEW;
2664 } else {
2665 int ret;
2666
2667 ret = btrfs_find_new_delalloc_bytes(inode, start,
2668 len: end + 1 - start,
2669 cached_state);
2670 if (ret)
2671 return ret;
2672 }
2673
2674 return set_extent_bit(tree: &inode->io_tree, start, end,
2675 bits: EXTENT_DELALLOC | extra_bits, cached_state);
2676}
2677
2678/* see btrfs_writepage_start_hook for details on why this is required */
2679struct btrfs_writepage_fixup {
2680 struct page *page;
2681 struct btrfs_inode *inode;
2682 struct btrfs_work work;
2683};
2684
2685static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2686{
2687 struct btrfs_writepage_fixup *fixup =
2688 container_of(work, struct btrfs_writepage_fixup, work);
2689 struct btrfs_ordered_extent *ordered;
2690 struct extent_state *cached_state = NULL;
2691 struct extent_changeset *data_reserved = NULL;
2692 struct page *page = fixup->page;
2693 struct btrfs_inode *inode = fixup->inode;
2694 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2695 u64 page_start = page_offset(page);
2696 u64 page_end = page_offset(page) + PAGE_SIZE - 1;
2697 int ret = 0;
2698 bool free_delalloc_space = true;
2699
2700 /*
2701 * This is similar to page_mkwrite, we need to reserve the space before
2702 * we take the page lock.
2703 */
2704 ret = btrfs_delalloc_reserve_space(inode, reserved: &data_reserved, start: page_start,
2705 PAGE_SIZE);
2706again:
2707 lock_page(page);
2708
2709 /*
2710 * Before we queued this fixup, we took a reference on the page.
2711 * page->mapping may go NULL, but it shouldn't be moved to a different
2712 * address space.
2713 */
2714 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2715 /*
2716 * Unfortunately this is a little tricky, either
2717 *
2718 * 1) We got here and our page had already been dealt with and
2719 * we reserved our space, thus ret == 0, so we need to just
2720 * drop our space reservation and bail. This can happen the
2721 * first time we come into the fixup worker, or could happen
2722 * while waiting for the ordered extent.
2723 * 2) Our page was already dealt with, but we happened to get an
2724 * ENOSPC above from the btrfs_delalloc_reserve_space. In
2725 * this case we obviously don't have anything to release, but
2726 * because the page was already dealt with we don't want to
2727 * mark the page with an error, so make sure we're resetting
2728 * ret to 0. This is why we have this check _before_ the ret
2729 * check, because we do not want to have a surprise ENOSPC
2730 * when the page was already properly dealt with.
2731 */
2732 if (!ret) {
2733 btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2734 btrfs_delalloc_release_space(inode, reserved: data_reserved,
2735 start: page_start, PAGE_SIZE,
2736 qgroup_free: true);
2737 }
2738 ret = 0;
2739 goto out_page;
2740 }
2741
2742 /*
2743 * We can't mess with the page state unless it is locked, so now that
2744 * it is locked bail if we failed to make our space reservation.
2745 */
2746 if (ret)
2747 goto out_page;
2748
2749 lock_extent(tree: &inode->io_tree, start: page_start, end: page_end, cached: &cached_state);
2750
2751 /* already ordered? We're done */
2752 if (PageOrdered(page))
2753 goto out_reserved;
2754
2755 ordered = btrfs_lookup_ordered_range(inode, file_offset: page_start, PAGE_SIZE);
2756 if (ordered) {
2757 unlock_extent(tree: &inode->io_tree, start: page_start, end: page_end,
2758 cached: &cached_state);
2759 unlock_page(page);
2760 btrfs_start_ordered_extent(entry: ordered);
2761 btrfs_put_ordered_extent(entry: ordered);
2762 goto again;
2763 }
2764
2765 ret = btrfs_set_extent_delalloc(inode, start: page_start, end: page_end, extra_bits: 0,
2766 cached_state: &cached_state);
2767 if (ret)
2768 goto out_reserved;
2769
2770 /*
2771 * Everything went as planned, we're now the owner of a dirty page with
2772 * delayed allocation bits set and space reserved for our COW
2773 * destination.
2774 *
2775 * The page was dirty when we started, nothing should have cleaned it.
2776 */
2777 BUG_ON(!PageDirty(page));
2778 free_delalloc_space = false;
2779out_reserved:
2780 btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2781 if (free_delalloc_space)
2782 btrfs_delalloc_release_space(inode, reserved: data_reserved, start: page_start,
2783 PAGE_SIZE, qgroup_free: true);
2784 unlock_extent(tree: &inode->io_tree, start: page_start, end: page_end, cached: &cached_state);
2785out_page:
2786 if (ret) {
2787 /*
2788 * We hit ENOSPC or other errors. Update the mapping and page
2789 * to reflect the errors and clean the page.
2790 */
2791 mapping_set_error(mapping: page->mapping, error: ret);
2792 btrfs_mark_ordered_io_finished(inode, page, file_offset: page_start,
2793 PAGE_SIZE, uptodate: !ret);
2794 clear_page_dirty_for_io(page);
2795 }
2796 btrfs_page_clear_checked(fs_info, page, start: page_start, PAGE_SIZE);
2797 unlock_page(page);
2798 put_page(page);
2799 kfree(objp: fixup);
2800 extent_changeset_free(changeset: data_reserved);
2801 /*
2802 * As a precaution, do a delayed iput in case it would be the last iput
2803 * that could need flushing space. Recursing back to fixup worker would
2804 * deadlock.
2805 */
2806 btrfs_add_delayed_iput(inode);
2807}
2808
2809/*
2810 * There are a few paths in the higher layers of the kernel that directly
2811 * set the page dirty bit without asking the filesystem if it is a
2812 * good idea. This causes problems because we want to make sure COW
2813 * properly happens and the data=ordered rules are followed.
2814 *
2815 * In our case any range that doesn't have the ORDERED bit set
2816 * hasn't been properly setup for IO. We kick off an async process
2817 * to fix it up. The async helper will wait for ordered extents, set
2818 * the delalloc bit and make it safe to write the page.
2819 */
2820int btrfs_writepage_cow_fixup(struct page *page)
2821{
2822 struct inode *inode = page->mapping->host;
2823 struct btrfs_fs_info *fs_info = btrfs_sb(sb: inode->i_sb);
2824 struct btrfs_writepage_fixup *fixup;
2825
2826 /* This page has ordered extent covering it already */
2827 if (PageOrdered(page))
2828 return 0;
2829
2830 /*
2831 * PageChecked is set below when we create a fixup worker for this page,
2832 * don't try to create another one if we're already PageChecked()
2833 *
2834 * The extent_io writepage code will redirty the page if we send back
2835 * EAGAIN.
2836 */
2837 if (PageChecked(page))
2838 return -EAGAIN;
2839
2840 fixup = kzalloc(size: sizeof(*fixup), GFP_NOFS);
2841 if (!fixup)
2842 return -EAGAIN;
2843
2844 /*
2845 * We are already holding a reference to this inode from
2846 * write_cache_pages. We need to hold it because the space reservation
2847 * takes place outside of the page lock, and we can't trust
2848 * page->mapping outside of the page lock.
2849 */
2850 ihold(inode);
2851 btrfs_page_set_checked(fs_info, page, start: page_offset(page), PAGE_SIZE);
2852 get_page(page);
2853 btrfs_init_work(work: &fixup->work, func: btrfs_writepage_fixup_worker, NULL);
2854 fixup->page = page;
2855 fixup->inode = BTRFS_I(inode);
2856 btrfs_queue_work(wq: fs_info->fixup_workers, work: &fixup->work);
2857
2858 return -EAGAIN;
2859}
2860
2861static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2862 struct btrfs_inode *inode, u64 file_pos,
2863 struct btrfs_file_extent_item *stack_fi,
2864 const bool update_inode_bytes,
2865 u64 qgroup_reserved)
2866{
2867 struct btrfs_root *root = inode->root;
2868 const u64 sectorsize = root->fs_info->sectorsize;
2869 struct btrfs_path *path;
2870 struct extent_buffer *leaf;
2871 struct btrfs_key ins;
2872 u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(s: stack_fi);
2873 u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(s: stack_fi);
2874 u64 offset = btrfs_stack_file_extent_offset(s: stack_fi);
2875 u64 num_bytes = btrfs_stack_file_extent_num_bytes(s: stack_fi);
2876 u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(s: stack_fi);
2877 struct btrfs_drop_extents_args drop_args = { 0 };
2878 int ret;
2879
2880 path = btrfs_alloc_path();
2881 if (!path)
2882 return -ENOMEM;
2883
2884 /*
2885 * we may be replacing one extent in the tree with another.
2886 * The new extent is pinned in the extent map, and we don't want
2887 * to drop it from the cache until it is completely in the btree.
2888 *
2889 * So, tell btrfs_drop_extents to leave this extent in the cache.
2890 * the caller is expected to unpin it and allow it to be merged
2891 * with the others.
2892 */
2893 drop_args.path = path;
2894 drop_args.start = file_pos;
2895 drop_args.end = file_pos + num_bytes;
2896 drop_args.replace_extent = true;
2897 drop_args.extent_item_size = sizeof(*stack_fi);
2898 ret = btrfs_drop_extents(trans, root, inode, args: &drop_args);
2899 if (ret)
2900 goto out;
2901
2902 if (!drop_args.extent_inserted) {
2903 ins.objectid = btrfs_ino(inode);
2904 ins.offset = file_pos;
2905 ins.type = BTRFS_EXTENT_DATA_KEY;
2906
2907 ret = btrfs_insert_empty_item(trans, root, path, key: &ins,
2908 data_size: sizeof(*stack_fi));
2909 if (ret)
2910 goto out;
2911 }
2912 leaf = path->nodes[0];
2913 btrfs_set_stack_file_extent_generation(s: stack_fi, val: trans->transid);
2914 write_extent_buffer(eb: leaf, src: stack_fi,
2915 btrfs_item_ptr_offset(leaf, path->slots[0]),
2916 len: sizeof(struct btrfs_file_extent_item));
2917
2918 btrfs_mark_buffer_dirty(trans, buf: leaf);
2919 btrfs_release_path(p: path);
2920
2921 /*
2922 * If we dropped an inline extent here, we know the range where it is
2923 * was not marked with the EXTENT_DELALLOC_NEW bit, so we update the
2924 * number of bytes only for that range containing the inline extent.
2925 * The remaining of the range will be processed when clearning the
2926 * EXTENT_DELALLOC_BIT bit through the ordered extent completion.
2927 */
2928 if (file_pos == 0 && !IS_ALIGNED(drop_args.bytes_found, sectorsize)) {
2929 u64 inline_size = round_down(drop_args.bytes_found, sectorsize);
2930
2931 inline_size = drop_args.bytes_found - inline_size;
2932 btrfs_update_inode_bytes(inode, add_bytes: sectorsize, del_bytes: inline_size);
2933 drop_args.bytes_found -= inline_size;
2934 num_bytes -= sectorsize;
2935 }
2936
2937 if (update_inode_bytes)
2938 btrfs_update_inode_bytes(inode, add_bytes: num_bytes, del_bytes: drop_args.bytes_found);
2939
2940 ins.objectid = disk_bytenr;
2941 ins.offset = disk_num_bytes;
2942 ins.type = BTRFS_EXTENT_ITEM_KEY;
2943
2944 ret = btrfs_inode_set_file_extent_range(inode, start: file_pos, len: ram_bytes);
2945 if (ret)
2946 goto out;
2947
2948 ret = btrfs_alloc_reserved_file_extent(trans, root, owner: btrfs_ino(inode),
2949 offset: file_pos - offset,
2950 ram_bytes: qgroup_reserved, ins: &ins);
2951out:
2952 btrfs_free_path(p: path);
2953
2954 return ret;
2955}
2956
2957static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
2958 u64 start, u64 len)
2959{
2960 struct btrfs_block_group *cache;
2961
2962 cache = btrfs_lookup_block_group(info: fs_info, bytenr: start);
2963 ASSERT(cache);
2964
2965 spin_lock(lock: &cache->lock);
2966 cache->delalloc_bytes -= len;
2967 spin_unlock(lock: &cache->lock);
2968
2969 btrfs_put_block_group(cache);
2970}
2971
2972static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans,
2973 struct btrfs_ordered_extent *oe)
2974{
2975 struct btrfs_file_extent_item stack_fi;
2976 bool update_inode_bytes;
2977 u64 num_bytes = oe->num_bytes;
2978 u64 ram_bytes = oe->ram_bytes;
2979
2980 memset(&stack_fi, 0, sizeof(stack_fi));
2981 btrfs_set_stack_file_extent_type(s: &stack_fi, val: BTRFS_FILE_EXTENT_REG);
2982 btrfs_set_stack_file_extent_disk_bytenr(s: &stack_fi, val: oe->disk_bytenr);
2983 btrfs_set_stack_file_extent_disk_num_bytes(s: &stack_fi,
2984 val: oe->disk_num_bytes);
2985 btrfs_set_stack_file_extent_offset(s: &stack_fi, val: oe->offset);
2986 if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags)) {
2987 num_bytes = oe->truncated_len;
2988 ram_bytes = num_bytes;
2989 }
2990 btrfs_set_stack_file_extent_num_bytes(s: &stack_fi, val: num_bytes);
2991 btrfs_set_stack_file_extent_ram_bytes(s: &stack_fi, val: ram_bytes);
2992 btrfs_set_stack_file_extent_compression(s: &stack_fi, val: oe->compress_type);
2993 /* Encryption and other encoding is reserved and all 0 */
2994
2995 /*
2996 * For delalloc, when completing an ordered extent we update the inode's
2997 * bytes when clearing the range in the inode's io tree, so pass false
2998 * as the argument 'update_inode_bytes' to insert_reserved_file_extent(),
2999 * except if the ordered extent was truncated.
3000 */
3001 update_inode_bytes = test_bit(BTRFS_ORDERED_DIRECT, &oe->flags) ||
3002 test_bit(BTRFS_ORDERED_ENCODED, &oe->flags) ||
3003 test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags);
3004
3005 return insert_reserved_file_extent(trans, inode: BTRFS_I(inode: oe->inode),
3006 file_pos: oe->file_offset, stack_fi: &stack_fi,
3007 update_inode_bytes, qgroup_reserved: oe->qgroup_rsv);
3008}
3009
3010/*
3011 * As ordered data IO finishes, this gets called so we can finish
3012 * an ordered extent if the range of bytes in the file it covers are
3013 * fully written.
3014 */
3015int btrfs_finish_one_ordered(struct btrfs_ordered_extent *ordered_extent)
3016{
3017 struct btrfs_inode *inode = BTRFS_I(inode: ordered_extent->inode);
3018 struct btrfs_root *root = inode->root;
3019 struct btrfs_fs_info *fs_info = root->fs_info;
3020 struct btrfs_trans_handle *trans = NULL;
3021 struct extent_io_tree *io_tree = &inode->io_tree;
3022 struct extent_state *cached_state = NULL;
3023 u64 start, end;
3024 int compress_type = 0;
3025 int ret = 0;
3026 u64 logical_len = ordered_extent->num_bytes;
3027 bool freespace_inode;
3028 bool truncated = false;
3029 bool clear_reserved_extent = true;
3030 unsigned int clear_bits = EXTENT_DEFRAG;
3031
3032 start = ordered_extent->file_offset;
3033 end = start + ordered_extent->num_bytes - 1;
3034
3035 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3036 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
3037 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags) &&
3038 !test_bit(BTRFS_ORDERED_ENCODED, &ordered_extent->flags))
3039 clear_bits |= EXTENT_DELALLOC_NEW;
3040
3041 freespace_inode = btrfs_is_free_space_inode(inode);
3042 if (!freespace_inode)
3043 btrfs_lockdep_acquire(fs_info, btrfs_ordered_extent);
3044
3045 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
3046 ret = -EIO;
3047 goto out;
3048 }
3049
3050 if (btrfs_is_zoned(fs_info))
3051 btrfs_zone_finish_endio(fs_info, logical: ordered_extent->disk_bytenr,
3052 length: ordered_extent->disk_num_bytes);
3053
3054 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
3055 truncated = true;
3056 logical_len = ordered_extent->truncated_len;
3057 /* Truncated the entire extent, don't bother adding */
3058 if (!logical_len)
3059 goto out;
3060 }
3061
3062 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
3063 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
3064
3065 btrfs_inode_safe_disk_i_size_write(inode, new_i_size: 0);
3066 if (freespace_inode)
3067 trans = btrfs_join_transaction_spacecache(root);
3068 else
3069 trans = btrfs_join_transaction(root);
3070 if (IS_ERR(ptr: trans)) {
3071 ret = PTR_ERR(ptr: trans);
3072 trans = NULL;
3073 goto out;
3074 }
3075 trans->block_rsv = &inode->block_rsv;
3076 ret = btrfs_update_inode_fallback(trans, inode);
3077 if (ret) /* -ENOMEM or corruption */
3078 btrfs_abort_transaction(trans, ret);
3079 goto out;
3080 }
3081
3082 clear_bits |= EXTENT_LOCKED;
3083 lock_extent(tree: io_tree, start, end, cached: &cached_state);
3084
3085 if (freespace_inode)
3086 trans = btrfs_join_transaction_spacecache(root);
3087 else
3088 trans = btrfs_join_transaction(root);
3089 if (IS_ERR(ptr: trans)) {
3090 ret = PTR_ERR(ptr: trans);
3091 trans = NULL;
3092 goto out;
3093 }
3094
3095 trans->block_rsv = &inode->block_rsv;
3096
3097 ret = btrfs_insert_raid_extent(trans, ordered_extent);
3098 if (ret)
3099 goto out;
3100
3101 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
3102 compress_type = ordered_extent->compress_type;
3103 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3104 BUG_ON(compress_type);
3105 ret = btrfs_mark_extent_written(trans, inode,
3106 start: ordered_extent->file_offset,
3107 end: ordered_extent->file_offset +
3108 logical_len);
3109 btrfs_zoned_release_data_reloc_bg(fs_info, logical: ordered_extent->disk_bytenr,
3110 length: ordered_extent->disk_num_bytes);
3111 } else {
3112 BUG_ON(root == fs_info->tree_root);
3113 ret = insert_ordered_extent_file_extent(trans, oe: ordered_extent);
3114 if (!ret) {
3115 clear_reserved_extent = false;
3116 btrfs_release_delalloc_bytes(fs_info,
3117 start: ordered_extent->disk_bytenr,
3118 len: ordered_extent->disk_num_bytes);
3119 }
3120 }
3121 unpin_extent_cache(tree: &inode->extent_tree, start: ordered_extent->file_offset,
3122 len: ordered_extent->num_bytes, gen: trans->transid);
3123 if (ret < 0) {
3124 btrfs_abort_transaction(trans, ret);
3125 goto out;
3126 }
3127
3128 ret = add_pending_csums(trans, list: &ordered_extent->list);
3129 if (ret) {
3130 btrfs_abort_transaction(trans, ret);
3131 goto out;
3132 }
3133
3134 /*
3135 * If this is a new delalloc range, clear its new delalloc flag to
3136 * update the inode's number of bytes. This needs to be done first
3137 * before updating the inode item.
3138 */
3139 if ((clear_bits & EXTENT_DELALLOC_NEW) &&
3140 !test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags))
3141 clear_extent_bit(tree: &inode->io_tree, start, end,
3142 bits: EXTENT_DELALLOC_NEW | EXTENT_ADD_INODE_BYTES,
3143 cached: &cached_state);
3144
3145 btrfs_inode_safe_disk_i_size_write(inode, new_i_size: 0);
3146 ret = btrfs_update_inode_fallback(trans, inode);
3147 if (ret) { /* -ENOMEM or corruption */
3148 btrfs_abort_transaction(trans, ret);
3149 goto out;
3150 }
3151 ret = 0;
3152out:
3153 clear_extent_bit(tree: &inode->io_tree, start, end, bits: clear_bits,
3154 cached: &cached_state);
3155
3156 if (trans)
3157 btrfs_end_transaction(trans);
3158
3159 if (ret || truncated) {
3160 u64 unwritten_start = start;
3161
3162 /*
3163 * If we failed to finish this ordered extent for any reason we
3164 * need to make sure BTRFS_ORDERED_IOERR is set on the ordered
3165 * extent, and mark the inode with the error if it wasn't
3166 * already set. Any error during writeback would have already
3167 * set the mapping error, so we need to set it if we're the ones
3168 * marking this ordered extent as failed.
3169 */
3170 if (ret && !test_and_set_bit(nr: BTRFS_ORDERED_IOERR,
3171 addr: &ordered_extent->flags))
3172 mapping_set_error(mapping: ordered_extent->inode->i_mapping, error: -EIO);
3173
3174 if (truncated)
3175 unwritten_start += logical_len;
3176 clear_extent_uptodate(tree: io_tree, start: unwritten_start, end, NULL);
3177
3178 /* Drop extent maps for the part of the extent we didn't write. */
3179 btrfs_drop_extent_map_range(inode, start: unwritten_start, end, skip_pinned: false);
3180
3181 /*
3182 * If the ordered extent had an IOERR or something else went
3183 * wrong we need to return the space for this ordered extent
3184 * back to the allocator. We only free the extent in the
3185 * truncated case if we didn't write out the extent at all.
3186 *
3187 * If we made it past insert_reserved_file_extent before we
3188 * errored out then we don't need to do this as the accounting
3189 * has already been done.
3190 */
3191 if ((ret || !logical_len) &&
3192 clear_reserved_extent &&
3193 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3194 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3195 /*
3196 * Discard the range before returning it back to the
3197 * free space pool
3198 */
3199 if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC))
3200 btrfs_discard_extent(fs_info,
3201 bytenr: ordered_extent->disk_bytenr,
3202 num_bytes: ordered_extent->disk_num_bytes,
3203 NULL);
3204 btrfs_free_reserved_extent(fs_info,
3205 start: ordered_extent->disk_bytenr,
3206 len: ordered_extent->disk_num_bytes, delalloc: 1);
3207 /*
3208 * Actually free the qgroup rsv which was released when
3209 * the ordered extent was created.
3210 */
3211 btrfs_qgroup_free_refroot(fs_info, ref_root: inode->root->root_key.objectid,
3212 num_bytes: ordered_extent->qgroup_rsv,
3213 type: BTRFS_QGROUP_RSV_DATA);
3214 }
3215 }
3216
3217 /*
3218 * This needs to be done to make sure anybody waiting knows we are done
3219 * updating everything for this ordered extent.
3220 */
3221 btrfs_remove_ordered_extent(btrfs_inode: inode, entry: ordered_extent);
3222
3223 /* once for us */
3224 btrfs_put_ordered_extent(entry: ordered_extent);
3225 /* once for the tree */
3226 btrfs_put_ordered_extent(entry: ordered_extent);
3227
3228 return ret;
3229}
3230
3231int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered)
3232{
3233 if (btrfs_is_zoned(fs_info: btrfs_sb(sb: ordered->inode->i_sb)) &&
3234 !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags) &&
3235 list_empty(head: &ordered->bioc_list))
3236 btrfs_finish_ordered_zoned(ordered);
3237 return btrfs_finish_one_ordered(ordered_extent: ordered);
3238}
3239
3240/*
3241 * Verify the checksum for a single sector without any extra action that depend
3242 * on the type of I/O.
3243 */
3244int btrfs_check_sector_csum(struct btrfs_fs_info *fs_info, struct page *page,
3245 u32 pgoff, u8 *csum, const u8 * const csum_expected)
3246{
3247 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3248 char *kaddr;
3249
3250 ASSERT(pgoff + fs_info->sectorsize <= PAGE_SIZE);
3251
3252 shash->tfm = fs_info->csum_shash;
3253
3254 kaddr = kmap_local_page(page) + pgoff;
3255 crypto_shash_digest(desc: shash, data: kaddr, len: fs_info->sectorsize, out: csum);
3256 kunmap_local(kaddr);
3257
3258 if (memcmp(p: csum, q: csum_expected, size: fs_info->csum_size))
3259 return -EIO;
3260 return 0;
3261}
3262
3263/*
3264 * Verify the checksum of a single data sector.
3265 *
3266 * @bbio: btrfs_io_bio which contains the csum
3267 * @dev: device the sector is on
3268 * @bio_offset: offset to the beginning of the bio (in bytes)
3269 * @bv: bio_vec to check
3270 *
3271 * Check if the checksum on a data block is valid. When a checksum mismatch is
3272 * detected, report the error and fill the corrupted range with zero.
3273 *
3274 * Return %true if the sector is ok or had no checksum to start with, else %false.
3275 */
3276bool btrfs_data_csum_ok(struct btrfs_bio *bbio, struct btrfs_device *dev,
3277 u32 bio_offset, struct bio_vec *bv)
3278{
3279 struct btrfs_inode *inode = bbio->inode;
3280 struct btrfs_fs_info *fs_info = inode->root->fs_info;
3281 u64 file_offset = bbio->file_offset + bio_offset;
3282 u64 end = file_offset + bv->bv_len - 1;
3283 u8 *csum_expected;
3284 u8 csum[BTRFS_CSUM_SIZE];
3285
3286 ASSERT(bv->bv_len == fs_info->sectorsize);
3287
3288 if (!bbio->csum)
3289 return true;
3290
3291 if (btrfs_is_data_reloc_root(root: inode->root) &&
3292 test_range_bit(tree: &inode->io_tree, start: file_offset, end, bit: EXTENT_NODATASUM,
3293 NULL)) {
3294 /* Skip the range without csum for data reloc inode */
3295 clear_extent_bits(tree: &inode->io_tree, start: file_offset, end,
3296 bits: EXTENT_NODATASUM);
3297 return true;
3298 }
3299
3300 csum_expected = bbio->csum + (bio_offset >> fs_info->sectorsize_bits) *
3301 fs_info->csum_size;
3302 if (btrfs_check_sector_csum(fs_info, page: bv->bv_page, pgoff: bv->bv_offset, csum,
3303 csum_expected))
3304 goto zeroit;
3305 return true;
3306
3307zeroit:
3308 btrfs_print_data_csum_error(inode, logical_start: file_offset, csum, csum_expected,
3309 mirror_num: bbio->mirror_num);
3310 if (dev)
3311 btrfs_dev_stat_inc_and_print(dev, index: BTRFS_DEV_STAT_CORRUPTION_ERRS);
3312 memzero_bvec(bvec: bv);
3313 return false;
3314}
3315
3316/*
3317 * Perform a delayed iput on @inode.
3318 *
3319 * @inode: The inode we want to perform iput on
3320 *
3321 * This function uses the generic vfs_inode::i_count to track whether we should
3322 * just decrement it (in case it's > 1) or if this is the last iput then link
3323 * the inode to the delayed iput machinery. Delayed iputs are processed at
3324 * transaction commit time/superblock commit/cleaner kthread.
3325 */
3326void btrfs_add_delayed_iput(struct btrfs_inode *inode)
3327{
3328 struct btrfs_fs_info *fs_info = inode->root->fs_info;
3329 unsigned long flags;
3330
3331 if (atomic_add_unless(v: &inode->vfs_inode.i_count, a: -1, u: 1))
3332 return;
3333
3334 atomic_inc(v: &fs_info->nr_delayed_iputs);
3335 /*
3336 * Need to be irq safe here because we can be called from either an irq
3337 * context (see bio.c and btrfs_put_ordered_extent()) or a non-irq
3338 * context.
3339 */
3340 spin_lock_irqsave(&fs_info->delayed_iput_lock, flags);
3341 ASSERT(list_empty(&inode->delayed_iput));
3342 list_add_tail(new: &inode->delayed_iput, head: &fs_info->delayed_iputs);
3343 spin_unlock_irqrestore(lock: &fs_info->delayed_iput_lock, flags);
3344 if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags))
3345 wake_up_process(tsk: fs_info->cleaner_kthread);
3346}
3347
3348static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info,
3349 struct btrfs_inode *inode)
3350{
3351 list_del_init(entry: &inode->delayed_iput);
3352 spin_unlock_irq(lock: &fs_info->delayed_iput_lock);
3353 iput(&inode->vfs_inode);
3354 if (atomic_dec_and_test(v: &fs_info->nr_delayed_iputs))
3355 wake_up(&fs_info->delayed_iputs_wait);
3356 spin_lock_irq(lock: &fs_info->delayed_iput_lock);
3357}
3358
3359static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info,
3360 struct btrfs_inode *inode)
3361{
3362 if (!list_empty(head: &inode->delayed_iput)) {
3363 spin_lock_irq(lock: &fs_info->delayed_iput_lock);
3364 if (!list_empty(head: &inode->delayed_iput))
3365 run_delayed_iput_locked(fs_info, inode);
3366 spin_unlock_irq(lock: &fs_info->delayed_iput_lock);
3367 }
3368}
3369
3370void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
3371{
3372 /*
3373 * btrfs_put_ordered_extent() can run in irq context (see bio.c), which
3374 * calls btrfs_add_delayed_iput() and that needs to lock
3375 * fs_info->delayed_iput_lock. So we need to disable irqs here to
3376 * prevent a deadlock.
3377 */
3378 spin_lock_irq(lock: &fs_info->delayed_iput_lock);
3379 while (!list_empty(head: &fs_info->delayed_iputs)) {
3380 struct btrfs_inode *inode;
3381
3382 inode = list_first_entry(&fs_info->delayed_iputs,
3383 struct btrfs_inode, delayed_iput);
3384 run_delayed_iput_locked(fs_info, inode);
3385 if (need_resched()) {
3386 spin_unlock_irq(lock: &fs_info->delayed_iput_lock);
3387 cond_resched();
3388 spin_lock_irq(lock: &fs_info->delayed_iput_lock);
3389 }
3390 }
3391 spin_unlock_irq(lock: &fs_info->delayed_iput_lock);
3392}
3393
3394/*
3395 * Wait for flushing all delayed iputs
3396 *
3397 * @fs_info: the filesystem
3398 *
3399 * This will wait on any delayed iputs that are currently running with KILLABLE
3400 * set. Once they are all done running we will return, unless we are killed in
3401 * which case we return EINTR. This helps in user operations like fallocate etc
3402 * that might get blocked on the iputs.
3403 *
3404 * Return EINTR if we were killed, 0 if nothing's pending
3405 */
3406int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info)
3407{
3408 int ret = wait_event_killable(fs_info->delayed_iputs_wait,
3409 atomic_read(&fs_info->nr_delayed_iputs) == 0);
3410 if (ret)
3411 return -EINTR;
3412 return 0;
3413}
3414
3415/*
3416 * This creates an orphan entry for the given inode in case something goes wrong
3417 * in the middle of an unlink.
3418 */
3419int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3420 struct btrfs_inode *inode)
3421{
3422 int ret;
3423
3424 ret = btrfs_insert_orphan_item(trans, root: inode->root, offset: btrfs_ino(inode));
3425 if (ret && ret != -EEXIST) {
3426 btrfs_abort_transaction(trans, ret);
3427 return ret;
3428 }
3429
3430 return 0;
3431}
3432
3433/*
3434 * We have done the delete so we can go ahead and remove the orphan item for
3435 * this particular inode.
3436 */
3437static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3438 struct btrfs_inode *inode)
3439{
3440 return btrfs_del_orphan_item(trans, root: inode->root, offset: btrfs_ino(inode));
3441}
3442
3443/*
3444 * this cleans up any orphans that may be left on the list from the last use
3445 * of this root.
3446 */
3447int btrfs_orphan_cleanup(struct btrfs_root *root)
3448{
3449 struct btrfs_fs_info *fs_info = root->fs_info;
3450 struct btrfs_path *path;
3451 struct extent_buffer *leaf;
3452 struct btrfs_key key, found_key;
3453 struct btrfs_trans_handle *trans;
3454 struct inode *inode;
3455 u64 last_objectid = 0;
3456 int ret = 0, nr_unlink = 0;
3457
3458 if (test_and_set_bit(nr: BTRFS_ROOT_ORPHAN_CLEANUP, addr: &root->state))
3459 return 0;
3460
3461 path = btrfs_alloc_path();
3462 if (!path) {
3463 ret = -ENOMEM;
3464 goto out;
3465 }
3466 path->reada = READA_BACK;
3467
3468 key.objectid = BTRFS_ORPHAN_OBJECTID;
3469 key.type = BTRFS_ORPHAN_ITEM_KEY;
3470 key.offset = (u64)-1;
3471
3472 while (1) {
3473 ret = btrfs_search_slot(NULL, root, key: &key, p: path, ins_len: 0, cow: 0);
3474 if (ret < 0)
3475 goto out;
3476
3477 /*
3478 * if ret == 0 means we found what we were searching for, which
3479 * is weird, but possible, so only screw with path if we didn't
3480 * find the key and see if we have stuff that matches
3481 */
3482 if (ret > 0) {
3483 ret = 0;
3484 if (path->slots[0] == 0)
3485 break;
3486 path->slots[0]--;
3487 }
3488
3489 /* pull out the item */
3490 leaf = path->nodes[0];
3491 btrfs_item_key_to_cpu(eb: leaf, cpu_key: &found_key, nr: path->slots[0]);
3492
3493 /* make sure the item matches what we want */
3494 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3495 break;
3496 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3497 break;
3498
3499 /* release the path since we're done with it */
3500 btrfs_release_path(p: path);
3501
3502 /*
3503 * this is where we are basically btrfs_lookup, without the
3504 * crossing root thing. we store the inode number in the
3505 * offset of the orphan item.
3506 */
3507
3508 if (found_key.offset == last_objectid) {
3509 /*
3510 * We found the same inode as before. This means we were
3511 * not able to remove its items via eviction triggered
3512 * by an iput(). A transaction abort may have happened,
3513 * due to -ENOSPC for example, so try to grab the error
3514 * that lead to a transaction abort, if any.
3515 */
3516 btrfs_err(fs_info,
3517 "Error removing orphan entry, stopping orphan cleanup");
3518 ret = BTRFS_FS_ERROR(fs_info) ?: -EINVAL;
3519 goto out;
3520 }
3521
3522 last_objectid = found_key.offset;
3523
3524 found_key.objectid = found_key.offset;
3525 found_key.type = BTRFS_INODE_ITEM_KEY;
3526 found_key.offset = 0;
3527 inode = btrfs_iget(s: fs_info->sb, ino: last_objectid, root);
3528 if (IS_ERR(ptr: inode)) {
3529 ret = PTR_ERR(ptr: inode);
3530 inode = NULL;
3531 if (ret != -ENOENT)
3532 goto out;
3533 }
3534
3535 if (!inode && root == fs_info->tree_root) {
3536 struct btrfs_root *dead_root;
3537 int is_dead_root = 0;
3538
3539 /*
3540 * This is an orphan in the tree root. Currently these
3541 * could come from 2 sources:
3542 * a) a root (snapshot/subvolume) deletion in progress
3543 * b) a free space cache inode
3544 * We need to distinguish those two, as the orphan item
3545 * for a root must not get deleted before the deletion
3546 * of the snapshot/subvolume's tree completes.
3547 *
3548 * btrfs_find_orphan_roots() ran before us, which has
3549 * found all deleted roots and loaded them into
3550 * fs_info->fs_roots_radix. So here we can find if an
3551 * orphan item corresponds to a deleted root by looking
3552 * up the root from that radix tree.
3553 */
3554
3555 spin_lock(lock: &fs_info->fs_roots_radix_lock);
3556 dead_root = radix_tree_lookup(&fs_info->fs_roots_radix,
3557 (unsigned long)found_key.objectid);
3558 if (dead_root && btrfs_root_refs(s: &dead_root->root_item) == 0)
3559 is_dead_root = 1;
3560 spin_unlock(lock: &fs_info->fs_roots_radix_lock);
3561
3562 if (is_dead_root) {
3563 /* prevent this orphan from being found again */
3564 key.offset = found_key.objectid - 1;
3565 continue;
3566 }
3567
3568 }
3569
3570 /*
3571 * If we have an inode with links, there are a couple of
3572 * possibilities:
3573 *
3574 * 1. We were halfway through creating fsverity metadata for the
3575 * file. In that case, the orphan item represents incomplete
3576 * fsverity metadata which must be cleaned up with
3577 * btrfs_drop_verity_items and deleting the orphan item.
3578
3579 * 2. Old kernels (before v3.12) used to create an
3580 * orphan item for truncate indicating that there were possibly
3581 * extent items past i_size that needed to be deleted. In v3.12,
3582 * truncate was changed to update i_size in sync with the extent
3583 * items, but the (useless) orphan item was still created. Since
3584 * v4.18, we don't create the orphan item for truncate at all.
3585 *
3586 * So, this item could mean that we need to do a truncate, but
3587 * only if this filesystem was last used on a pre-v3.12 kernel
3588 * and was not cleanly unmounted. The odds of that are quite
3589 * slim, and it's a pain to do the truncate now, so just delete
3590 * the orphan item.
3591 *
3592 * It's also possible that this orphan item was supposed to be
3593 * deleted but wasn't. The inode number may have been reused,
3594 * but either way, we can delete the orphan item.
3595 */
3596 if (!inode || inode->i_nlink) {
3597 if (inode) {
3598 ret = btrfs_drop_verity_items(inode: BTRFS_I(inode));
3599 iput(inode);
3600 inode = NULL;
3601 if (ret)
3602 goto out;
3603 }
3604 trans = btrfs_start_transaction(root, num_items: 1);
3605 if (IS_ERR(ptr: trans)) {
3606 ret = PTR_ERR(ptr: trans);
3607 goto out;
3608 }
3609 btrfs_debug(fs_info, "auto deleting %Lu",
3610 found_key.objectid);
3611 ret = btrfs_del_orphan_item(trans, root,
3612 offset: found_key.objectid);
3613 btrfs_end_transaction(trans);
3614 if (ret)
3615 goto out;
3616 continue;
3617 }
3618
3619 nr_unlink++;
3620
3621 /* this will do delete_inode and everything for us */
3622 iput(inode);
3623 }
3624 /* release the path since we're done with it */
3625 btrfs_release_path(p: path);
3626
3627 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3628 trans = btrfs_join_transaction(root);
3629 if (!IS_ERR(ptr: trans))
3630 btrfs_end_transaction(trans);
3631 }
3632
3633 if (nr_unlink)
3634 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
3635
3636out:
3637 if (ret)
3638 btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
3639 btrfs_free_path(p: path);
3640 return ret;
3641}
3642
3643/*
3644 * very simple check to peek ahead in the leaf looking for xattrs. If we
3645 * don't find any xattrs, we know there can't be any acls.
3646 *
3647 * slot is the slot the inode is in, objectid is the objectid of the inode
3648 */
3649static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3650 int slot, u64 objectid,
3651 int *first_xattr_slot)
3652{
3653 u32 nritems = btrfs_header_nritems(eb: leaf);
3654 struct btrfs_key found_key;
3655 static u64 xattr_access = 0;
3656 static u64 xattr_default = 0;
3657 int scanned = 0;
3658
3659 if (!xattr_access) {
3660 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3661 strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3662 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3663 strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3664 }
3665
3666 slot++;
3667 *first_xattr_slot = -1;
3668 while (slot < nritems) {
3669 btrfs_item_key_to_cpu(eb: leaf, cpu_key: &found_key, nr: slot);
3670
3671 /* we found a different objectid, there must not be acls */
3672 if (found_key.objectid != objectid)
3673 return 0;
3674
3675 /* we found an xattr, assume we've got an acl */
3676 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3677 if (*first_xattr_slot == -1)
3678 *first_xattr_slot = slot;
3679 if (found_key.offset == xattr_access ||
3680 found_key.offset == xattr_default)
3681 return 1;
3682 }
3683
3684 /*
3685 * we found a key greater than an xattr key, there can't
3686 * be any acls later on
3687 */
3688 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3689 return 0;
3690
3691 slot++;
3692 scanned++;
3693
3694 /*
3695 * it goes inode, inode backrefs, xattrs, extents,
3696 * so if there are a ton of hard links to an inode there can
3697 * be a lot of backrefs. Don't waste time searching too hard,
3698 * this is just an optimization
3699 */
3700 if (scanned >= 8)
3701 break;
3702 }
3703 /* we hit the end of the leaf before we found an xattr or
3704 * something larger than an xattr. We have to assume the inode
3705 * has acls
3706 */
3707 if (*first_xattr_slot == -1)
3708 *first_xattr_slot = slot;
3709 return 1;
3710}
3711
3712/*
3713 * read an inode from the btree into the in-memory inode
3714 */
3715static int btrfs_read_locked_inode(struct inode *inode,
3716 struct btrfs_path *in_path)
3717{
3718 struct btrfs_fs_info *fs_info = btrfs_sb(sb: inode->i_sb);
3719 struct btrfs_path *path = in_path;
3720 struct extent_buffer *leaf;
3721 struct btrfs_inode_item *inode_item;
3722 struct btrfs_root *root = BTRFS_I(inode)->root;
3723 struct btrfs_key location;
3724 unsigned long ptr;
3725 int maybe_acls;
3726 u32 rdev;
3727 int ret;
3728 bool filled = false;
3729 int first_xattr_slot;
3730
3731 ret = btrfs_fill_inode(inode, rdev: &rdev);
3732 if (!ret)
3733 filled = true;
3734
3735 if (!path) {
3736 path = btrfs_alloc_path();
3737 if (!path)
3738 return -ENOMEM;
3739 }
3740
3741 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3742
3743 ret = btrfs_lookup_inode(NULL, root, path, location: &location, mod: 0);
3744 if (ret) {
3745 if (path != in_path)
3746 btrfs_free_path(p: path);
3747 return ret;
3748 }
3749
3750 leaf = path->nodes[0];
3751
3752 if (filled)
3753 goto cache_index;
3754
3755 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3756 struct btrfs_inode_item);
3757 inode->i_mode = btrfs_inode_mode(eb: leaf, s: inode_item);
3758 set_nlink(inode, nlink: btrfs_inode_nlink(eb: leaf, s: inode_item));
3759 i_uid_write(inode, uid: btrfs_inode_uid(eb: leaf, s: inode_item));
3760 i_gid_write(inode, gid: btrfs_inode_gid(eb: leaf, s: inode_item));
3761 btrfs_i_size_write(inode: BTRFS_I(inode), size: btrfs_inode_size(eb: leaf, s: inode_item));
3762 btrfs_inode_set_file_extent_range(inode: BTRFS_I(inode), start: 0,
3763 round_up(i_size_read(inode), fs_info->sectorsize));
3764
3765 inode_set_atime(inode, sec: btrfs_timespec_sec(eb: leaf, s: &inode_item->atime),
3766 nsec: btrfs_timespec_nsec(eb: leaf, s: &inode_item->atime));
3767
3768 inode_set_mtime(inode, sec: btrfs_timespec_sec(eb: leaf, s: &inode_item->mtime),
3769 nsec: btrfs_timespec_nsec(eb: leaf, s: &inode_item->mtime));
3770
3771 inode_set_ctime(inode, sec: btrfs_timespec_sec(eb: leaf, s: &inode_item->ctime),
3772 nsec: btrfs_timespec_nsec(eb: leaf, s: &inode_item->ctime));
3773
3774 BTRFS_I(inode)->i_otime_sec = btrfs_timespec_sec(eb: leaf, s: &inode_item->otime);
3775 BTRFS_I(inode)->i_otime_nsec = btrfs_timespec_nsec(eb: leaf, s: &inode_item->otime);
3776
3777 inode_set_bytes(inode, bytes: btrfs_inode_nbytes(eb: leaf, s: inode_item));
3778 BTRFS_I(inode)->generation = btrfs_inode_generation(eb: leaf, s: inode_item);
3779 BTRFS_I(inode)->last_trans = btrfs_inode_transid(eb: leaf, s: inode_item);
3780
3781 inode_set_iversion_queried(inode,
3782 val: btrfs_inode_sequence(eb: leaf, s: inode_item));
3783 inode->i_generation = BTRFS_I(inode)->generation;
3784 inode->i_rdev = 0;
3785 rdev = btrfs_inode_rdev(eb: leaf, s: inode_item);
3786
3787 BTRFS_I(inode)->index_cnt = (u64)-1;
3788 btrfs_inode_split_flags(inode_item_flags: btrfs_inode_flags(eb: leaf, s: inode_item),
3789 flags: &BTRFS_I(inode)->flags, ro_flags: &BTRFS_I(inode)->ro_flags);
3790
3791cache_index:
3792 /*
3793 * If we were modified in the current generation and evicted from memory
3794 * and then re-read we need to do a full sync since we don't have any
3795 * idea about which extents were modified before we were evicted from
3796 * cache.
3797 *
3798 * This is required for both inode re-read from disk and delayed inode
3799 * in delayed_nodes_tree.
3800 */
3801 if (BTRFS_I(inode)->last_trans == btrfs_get_fs_generation(fs_info))
3802 set_bit(nr: BTRFS_INODE_NEEDS_FULL_SYNC,
3803 addr: &BTRFS_I(inode)->runtime_flags);
3804
3805 /*
3806 * We don't persist the id of the transaction where an unlink operation
3807 * against the inode was last made. So here we assume the inode might
3808 * have been evicted, and therefore the exact value of last_unlink_trans
3809 * lost, and set it to last_trans to avoid metadata inconsistencies
3810 * between the inode and its parent if the inode is fsync'ed and the log
3811 * replayed. For example, in the scenario:
3812 *
3813 * touch mydir/foo
3814 * ln mydir/foo mydir/bar
3815 * sync
3816 * unlink mydir/bar
3817 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3818 * xfs_io -c fsync mydir/foo
3819 * <power failure>
3820 * mount fs, triggers fsync log replay
3821 *
3822 * We must make sure that when we fsync our inode foo we also log its
3823 * parent inode, otherwise after log replay the parent still has the
3824 * dentry with the "bar" name but our inode foo has a link count of 1
3825 * and doesn't have an inode ref with the name "bar" anymore.
3826 *
3827 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3828 * but it guarantees correctness at the expense of occasional full
3829 * transaction commits on fsync if our inode is a directory, or if our
3830 * inode is not a directory, logging its parent unnecessarily.
3831 */
3832 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3833
3834 /*
3835 * Same logic as for last_unlink_trans. We don't persist the generation
3836 * of the last transaction where this inode was used for a reflink
3837 * operation, so after eviction and reloading the inode we must be
3838 * pessimistic and assume the last transaction that modified the inode.
3839 */
3840 BTRFS_I(inode)->last_reflink_trans = BTRFS_I(inode)->last_trans;
3841
3842 path->slots[0]++;
3843 if (inode->i_nlink != 1 ||
3844 path->slots[0] >= btrfs_header_nritems(eb: leaf))
3845 goto cache_acl;
3846
3847 btrfs_item_key_to_cpu(eb: leaf, cpu_key: &location, nr: path->slots[0]);
3848 if (location.objectid != btrfs_ino(inode: BTRFS_I(inode)))
3849 goto cache_acl;
3850
3851 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3852 if (location.type == BTRFS_INODE_REF_KEY) {
3853 struct btrfs_inode_ref *ref;
3854
3855 ref = (struct btrfs_inode_ref *)ptr;
3856 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(eb: leaf, s: ref);
3857 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3858 struct btrfs_inode_extref *extref;
3859
3860 extref = (struct btrfs_inode_extref *)ptr;
3861 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(eb: leaf,
3862 s: extref);
3863 }
3864cache_acl:
3865 /*
3866 * try to precache a NULL acl entry for files that don't have
3867 * any xattrs or acls
3868 */
3869 maybe_acls = acls_after_inode_item(leaf, slot: path->slots[0],
3870 objectid: btrfs_ino(inode: BTRFS_I(inode)), first_xattr_slot: &first_xattr_slot);
3871 if (first_xattr_slot != -1) {
3872 path->slots[0] = first_xattr_slot;
3873 ret = btrfs_load_inode_props(inode, path);
3874 if (ret)
3875 btrfs_err(fs_info,
3876 "error loading props for ino %llu (root %llu): %d",
3877 btrfs_ino(BTRFS_I(inode)),
3878 root->root_key.objectid, ret);
3879 }
3880 if (path != in_path)
3881 btrfs_free_path(p: path);
3882
3883 if (!maybe_acls)
3884 cache_no_acl(inode);
3885
3886 switch (inode->i_mode & S_IFMT) {
3887 case S_IFREG:
3888 inode->i_mapping->a_ops = &btrfs_aops;
3889 inode->i_fop = &btrfs_file_operations;
3890 inode->i_op = &btrfs_file_inode_operations;
3891 break;
3892 case S_IFDIR:
3893 inode->i_fop = &btrfs_dir_file_operations;
3894 inode->i_op = &btrfs_dir_inode_operations;
3895 break;
3896 case S_IFLNK:
3897 inode->i_op = &btrfs_symlink_inode_operations;
3898 inode_nohighmem(inode);
3899 inode->i_mapping->a_ops = &btrfs_aops;
3900 break;
3901 default:
3902 inode->i_op = &btrfs_special_inode_operations;
3903 init_special_inode(inode, inode->i_mode, rdev);
3904 break;
3905 }
3906
3907 btrfs_sync_inode_flags_to_i_flags(inode);
3908 return 0;
3909}
3910
3911/*
3912 * given a leaf and an inode, copy the inode fields into the leaf
3913 */
3914static void fill_inode_item(struct btrfs_trans_handle *trans,
3915 struct extent_buffer *leaf,
3916 struct btrfs_inode_item *item,
3917 struct inode *inode)
3918{
3919 struct btrfs_map_token token;
3920 u64 flags;
3921
3922 btrfs_init_map_token(token: &token, eb: leaf);
3923
3924 btrfs_set_token_inode_uid(token: &token, s: item, val: i_uid_read(inode));
3925 btrfs_set_token_inode_gid(token: &token, s: item, val: i_gid_read(inode));
3926 btrfs_set_token_inode_size(token: &token, s: item, val: BTRFS_I(inode)->disk_i_size);
3927 btrfs_set_token_inode_mode(token: &token, s: item, val: inode->i_mode);
3928 btrfs_set_token_inode_nlink(token: &token, s: item, val: inode->i_nlink);
3929
3930 btrfs_set_token_timespec_sec(token: &token, s: &item->atime,
3931 val: inode_get_atime_sec(inode));
3932 btrfs_set_token_timespec_nsec(token: &token, s: &item->atime,
3933 val: inode_get_atime_nsec(inode));
3934
3935 btrfs_set_token_timespec_sec(token: &token, s: &item->mtime,
3936 val: inode_get_mtime_sec(inode));
3937 btrfs_set_token_timespec_nsec(token: &token, s: &item->mtime,
3938 val: inode_get_mtime_nsec(inode));
3939
3940 btrfs_set_token_timespec_sec(token: &token, s: &item->ctime,
3941 val: inode_get_ctime_sec(inode));
3942 btrfs_set_token_timespec_nsec(token: &token, s: &item->ctime,
3943 val: inode_get_ctime_nsec(inode));
3944
3945 btrfs_set_token_timespec_sec(token: &token, s: &item->otime, val: BTRFS_I(inode)->i_otime_sec);
3946 btrfs_set_token_timespec_nsec(token: &token, s: &item->otime, val: BTRFS_I(inode)->i_otime_nsec);
3947
3948 btrfs_set_token_inode_nbytes(token: &token, s: item, val: inode_get_bytes(inode));
3949 btrfs_set_token_inode_generation(token: &token, s: item,
3950 val: BTRFS_I(inode)->generation);
3951 btrfs_set_token_inode_sequence(token: &token, s: item, val: inode_peek_iversion(inode));
3952 btrfs_set_token_inode_transid(token: &token, s: item, val: trans->transid);
3953 btrfs_set_token_inode_rdev(token: &token, s: item, val: inode->i_rdev);
3954 flags = btrfs_inode_combine_flags(flags: BTRFS_I(inode)->flags,
3955 ro_flags: BTRFS_I(inode)->ro_flags);
3956 btrfs_set_token_inode_flags(token: &token, s: item, val: flags);
3957 btrfs_set_token_inode_block_group(token: &token, s: item, val: 0);
3958}
3959
3960/*
3961 * copy everything in the in-memory inode into the btree.
3962 */
3963static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3964 struct btrfs_inode *inode)
3965{
3966 struct btrfs_inode_item *inode_item;
3967 struct btrfs_path *path;
3968 struct extent_buffer *leaf;
3969 int ret;
3970
3971 path = btrfs_alloc_path();
3972 if (!path)
3973 return -ENOMEM;
3974
3975 ret = btrfs_lookup_inode(trans, root: inode->root, path, location: &inode->location, mod: 1);
3976 if (ret) {
3977 if (ret > 0)
3978 ret = -ENOENT;
3979 goto failed;
3980 }
3981
3982 leaf = path->nodes[0];
3983 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3984 struct btrfs_inode_item);
3985
3986 fill_inode_item(trans, leaf, item: inode_item, inode: &inode->vfs_inode);
3987 btrfs_mark_buffer_dirty(trans, buf: leaf);
3988 btrfs_set_inode_last_trans(trans, inode);
3989 ret = 0;
3990failed:
3991 btrfs_free_path(p: path);
3992 return ret;
3993}
3994
3995/*
3996 * copy everything in the in-memory inode into the btree.
3997 */
3998int btrfs_update_inode(struct btrfs_trans_handle *trans,
3999 struct btrfs_inode *inode)
4000{
4001 struct btrfs_root *root = inode->root;
4002 struct btrfs_fs_info *fs_info = root->fs_info;
4003 int ret;
4004
4005 /*
4006 * If the inode is a free space inode, we can deadlock during commit
4007 * if we put it into the delayed code.
4008 *
4009 * The data relocation inode should also be directly updated
4010 * without delay
4011 */
4012 if (!btrfs_is_free_space_inode(inode)
4013 && !btrfs_is_data_reloc_root(root)
4014 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
4015 btrfs_update_root_times(trans, root);
4016
4017 ret = btrfs_delayed_update_inode(trans, inode);
4018 if (!ret)
4019 btrfs_set_inode_last_trans(trans, inode);
4020 return ret;
4021 }
4022
4023 return btrfs_update_inode_item(trans, inode);
4024}
4025
4026int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
4027 struct btrfs_inode *inode)
4028{
4029 int ret;
4030
4031 ret = btrfs_update_inode(trans, inode);
4032 if (ret == -ENOSPC)
4033 return btrfs_update_inode_item(trans, inode);
4034 return ret;
4035}
4036
4037/*
4038 * unlink helper that gets used here in inode.c and in the tree logging
4039 * recovery code. It remove a link in a directory with a given name, and
4040 * also drops the back refs in the inode to the directory
4041 */
4042static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4043 struct btrfs_inode *dir,
4044 struct btrfs_inode *inode,
4045 const struct fscrypt_str *name,
4046 struct btrfs_rename_ctx *rename_ctx)
4047{
4048 struct btrfs_root *root = dir->root;
4049 struct btrfs_fs_info *fs_info = root->fs_info;
4050 struct btrfs_path *path;
4051 int ret = 0;
4052 struct btrfs_dir_item *di;
4053 u64 index;
4054 u64 ino = btrfs_ino(inode);
4055 u64 dir_ino = btrfs_ino(inode: dir);
4056
4057 path = btrfs_alloc_path();
4058 if (!path) {
4059 ret = -ENOMEM;
4060 goto out;
4061 }
4062
4063 di = btrfs_lookup_dir_item(trans, root, path, dir: dir_ino, name, mod: -1);
4064 if (IS_ERR_OR_NULL(ptr: di)) {
4065 ret = di ? PTR_ERR(ptr: di) : -ENOENT;
4066 goto err;
4067 }
4068 ret = btrfs_delete_one_dir_name(trans, root, path, di);
4069 if (ret)
4070 goto err;
4071 btrfs_release_path(p: path);
4072
4073 /*
4074 * If we don't have dir index, we have to get it by looking up
4075 * the inode ref, since we get the inode ref, remove it directly,
4076 * it is unnecessary to do delayed deletion.
4077 *
4078 * But if we have dir index, needn't search inode ref to get it.
4079 * Since the inode ref is close to the inode item, it is better
4080 * that we delay to delete it, and just do this deletion when
4081 * we update the inode item.
4082 */
4083 if (inode->dir_index) {
4084 ret = btrfs_delayed_delete_inode_ref(inode);
4085 if (!ret) {
4086 index = inode->dir_index;
4087 goto skip_backref;
4088 }
4089 }
4090
4091 ret = btrfs_del_inode_ref(trans, root, name, inode_objectid: ino, ref_objectid: dir_ino, index: &index);
4092 if (ret) {
4093 btrfs_info(fs_info,
4094 "failed to delete reference to %.*s, inode %llu parent %llu",
4095 name->len, name->name, ino, dir_ino);
4096 btrfs_abort_transaction(trans, ret);
4097 goto err;
4098 }
4099skip_backref:
4100 if (rename_ctx)
4101 rename_ctx->index = index;
4102
4103 ret = btrfs_delete_delayed_dir_index(trans, dir, index);
4104 if (ret) {
4105 btrfs_abort_transaction(trans, ret);
4106 goto err;
4107 }
4108
4109 /*
4110 * If we are in a rename context, we don't need to update anything in the
4111 * log. That will be done later during the rename by btrfs_log_new_name().
4112 * Besides that, doing it here would only cause extra unnecessary btree
4113 * operations on the log tree, increasing latency for applications.
4114 */
4115 if (!rename_ctx) {
4116 btrfs_del_inode_ref_in_log(trans, root, name, inode, dirid: dir_ino);
4117 btrfs_del_dir_entries_in_log(trans, root, name, dir, index);
4118 }
4119
4120 /*
4121 * If we have a pending delayed iput we could end up with the final iput
4122 * being run in btrfs-cleaner context. If we have enough of these built
4123 * up we can end up burning a lot of time in btrfs-cleaner without any
4124 * way to throttle the unlinks. Since we're currently holding a ref on
4125 * the inode we can run the delayed iput here without any issues as the
4126 * final iput won't be done until after we drop the ref we're currently
4127 * holding.
4128 */
4129 btrfs_run_delayed_iput(fs_info, inode);
4130err:
4131 btrfs_free_path(p: path);
4132 if (ret)
4133 goto out;
4134
4135 btrfs_i_size_write(inode: dir, size: dir->vfs_inode.i_size - name->len * 2);
4136 inode_inc_iversion(inode: &inode->vfs_inode);
4137 inode_inc_iversion(inode: &dir->vfs_inode);
4138 inode_set_mtime_to_ts(inode: &dir->vfs_inode, ts: inode_set_ctime_current(inode: &dir->vfs_inode));
4139 ret = btrfs_update_inode(trans, inode: dir);
4140out:
4141 return ret;
4142}
4143
4144int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4145 struct btrfs_inode *dir, struct btrfs_inode *inode,
4146 const struct fscrypt_str *name)
4147{
4148 int ret;
4149
4150 ret = __btrfs_unlink_inode(trans, dir, inode, name, NULL);
4151 if (!ret) {
4152 drop_nlink(inode: &inode->vfs_inode);
4153 ret = btrfs_update_inode(trans, inode);
4154 }
4155 return ret;
4156}
4157
4158/*
4159 * helper to start transaction for unlink and rmdir.
4160 *
4161 * unlink and rmdir are special in btrfs, they do not always free space, so
4162 * if we cannot make our reservations the normal way try and see if there is
4163 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4164 * allow the unlink to occur.
4165 */
4166static struct btrfs_trans_handle *__unlink_start_trans(struct btrfs_inode *dir)
4167{
4168 struct btrfs_root *root = dir->root;
4169
4170 return btrfs_start_transaction_fallback_global_rsv(root,
4171 BTRFS_UNLINK_METADATA_UNITS);
4172}
4173
4174static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4175{
4176 struct btrfs_trans_handle *trans;
4177 struct inode *inode = d_inode(dentry);
4178 int ret;
4179 struct fscrypt_name fname;
4180
4181 ret = fscrypt_setup_filename(inode: dir, iname: &dentry->d_name, lookup: 1, fname: &fname);
4182 if (ret)
4183 return ret;
4184
4185 /* This needs to handle no-key deletions later on */
4186
4187 trans = __unlink_start_trans(dir: BTRFS_I(inode: dir));
4188 if (IS_ERR(ptr: trans)) {
4189 ret = PTR_ERR(ptr: trans);
4190 goto fscrypt_free;
4191 }
4192
4193 btrfs_record_unlink_dir(trans, dir: BTRFS_I(inode: dir), inode: BTRFS_I(inode: d_inode(dentry)),
4194 for_rename: false);
4195
4196 ret = btrfs_unlink_inode(trans, dir: BTRFS_I(inode: dir), inode: BTRFS_I(inode: d_inode(dentry)),
4197 name: &fname.disk_name);
4198 if (ret)
4199 goto end_trans;
4200
4201 if (inode->i_nlink == 0) {
4202 ret = btrfs_orphan_add(trans, inode: BTRFS_I(inode));
4203 if (ret)
4204 goto end_trans;
4205 }
4206
4207end_trans:
4208 btrfs_end_transaction(trans);
4209 btrfs_btree_balance_dirty(fs_info: BTRFS_I(inode: dir)->root->fs_info);
4210fscrypt_free:
4211 fscrypt_free_filename(fname: &fname);
4212 return ret;
4213}
4214
4215static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4216 struct btrfs_inode *dir, struct dentry *dentry)
4217{
4218 struct btrfs_root *root = dir->root;
4219 struct btrfs_inode *inode = BTRFS_I(inode: d_inode(dentry));
4220 struct btrfs_path *path;
4221 struct extent_buffer *leaf;
4222 struct btrfs_dir_item *di;
4223 struct btrfs_key key;
4224 u64 index;
4225 int ret;
4226 u64 objectid;
4227 u64 dir_ino = btrfs_ino(inode: dir);
4228 struct fscrypt_name fname;
4229
4230 ret = fscrypt_setup_filename(inode: &dir->vfs_inode, iname: &dentry->d_name, lookup: 1, fname: &fname);
4231 if (ret)
4232 return ret;
4233
4234 /* This needs to handle no-key deletions later on */
4235
4236 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) {
4237 objectid = inode->root->root_key.objectid;
4238 } else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4239 objectid = inode->location.objectid;
4240 } else {
4241 WARN_ON(1);
4242 fscrypt_free_filename(fname: &fname);
4243 return -EINVAL;
4244 }
4245
4246 path = btrfs_alloc_path();
4247 if (!path) {
4248 ret = -ENOMEM;
4249 goto out;
4250 }
4251
4252 di = btrfs_lookup_dir_item(trans, root, path, dir: dir_ino,
4253 name: &fname.disk_name, mod: -1);
4254 if (IS_ERR_OR_NULL(ptr: di)) {
4255 ret = di ? PTR_ERR(ptr: di) : -ENOENT;
4256 goto out;
4257 }
4258
4259 leaf = path->nodes[0];
4260 btrfs_dir_item_key_to_cpu(eb: leaf, item: di, cpu_key: &key);
4261 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4262 ret = btrfs_delete_one_dir_name(trans, root, path, di);
4263 if (ret) {
4264 btrfs_abort_transaction(trans, ret);
4265 goto out;
4266 }
4267 btrfs_release_path(p: path);
4268
4269 /*
4270 * This is a placeholder inode for a subvolume we didn't have a
4271 * reference to at the time of the snapshot creation. In the meantime
4272 * we could have renamed the real subvol link into our snapshot, so
4273 * depending on btrfs_del_root_ref to return -ENOENT here is incorrect.
4274 * Instead simply lookup the dir_index_item for this entry so we can
4275 * remove it. Otherwise we know we have a ref to the root and we can
4276 * call btrfs_del_root_ref, and it _shouldn't_ fail.
4277 */
4278 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4279 di = btrfs_search_dir_index_item(root, path, dirid: dir_ino, name: &fname.disk_name);
4280 if (IS_ERR_OR_NULL(ptr: di)) {
4281 if (!di)
4282 ret = -ENOENT;
4283 else
4284 ret = PTR_ERR(ptr: di);
4285 btrfs_abort_transaction(trans, ret);
4286 goto out;
4287 }
4288
4289 leaf = path->nodes[0];
4290 btrfs_item_key_to_cpu(eb: leaf, cpu_key: &key, nr: path->slots[0]);
4291 index = key.offset;
4292 btrfs_release_path(p: path);
4293 } else {
4294 ret = btrfs_del_root_ref(trans, root_id: objectid,
4295 ref_id: root->root_key.objectid, dirid: dir_ino,
4296 sequence: &index, name: &fname.disk_name);
4297 if (ret) {
4298 btrfs_abort_transaction(trans, ret);
4299 goto out;
4300 }
4301 }
4302
4303 ret = btrfs_delete_delayed_dir_index(trans, dir, index);
4304 if (ret) {
4305 btrfs_abort_transaction(trans, ret);
4306 goto out;
4307 }
4308
4309 btrfs_i_size_write(inode: dir, size: dir->vfs_inode.i_size - fname.disk_name.len * 2);
4310 inode_inc_iversion(inode: &dir->vfs_inode);
4311 inode_set_mtime_to_ts(inode: &dir->vfs_inode, ts: inode_set_ctime_current(inode: &dir->vfs_inode));
4312 ret = btrfs_update_inode_fallback(trans, inode: dir);
4313 if (ret)
4314 btrfs_abort_transaction(trans, ret);
4315out:
4316 btrfs_free_path(p: path);
4317 fscrypt_free_filename(fname: &fname);
4318 return ret;
4319}
4320
4321/*
4322 * Helper to check if the subvolume references other subvolumes or if it's
4323 * default.
4324 */
4325static noinline int may_destroy_subvol(struct btrfs_root *root)
4326{
4327 struct btrfs_fs_info *fs_info = root->fs_info;
4328 struct btrfs_path *path;
4329 struct btrfs_dir_item *di;
4330 struct btrfs_key key;
4331 struct fscrypt_str name = FSTR_INIT("default", 7);
4332 u64 dir_id;
4333 int ret;
4334
4335 path = btrfs_alloc_path();
4336 if (!path)
4337 return -ENOMEM;
4338
4339 /* Make sure this root isn't set as the default subvol */
4340 dir_id = btrfs_super_root_dir(s: fs_info->super_copy);
4341 di = btrfs_lookup_dir_item(NULL, root: fs_info->tree_root, path,
4342 dir: dir_id, name: &name, mod: 0);
4343 if (di && !IS_ERR(ptr: di)) {
4344 btrfs_dir_item_key_to_cpu(eb: path->nodes[0], item: di, cpu_key: &key);
4345 if (key.objectid == root->root_key.objectid) {
4346 ret = -EPERM;
4347 btrfs_err(fs_info,
4348 "deleting default subvolume %llu is not allowed",
4349 key.objectid);
4350 goto out;
4351 }
4352 btrfs_release_path(p: path);
4353 }
4354
4355 key.objectid = root->root_key.objectid;
4356 key.type = BTRFS_ROOT_REF_KEY;
4357 key.offset = (u64)-1;
4358
4359 ret = btrfs_search_slot(NULL, root: fs_info->tree_root, key: &key, p: path, ins_len: 0, cow: 0);
4360 if (ret < 0)
4361 goto out;
4362 BUG_ON(ret == 0);
4363
4364 ret = 0;
4365 if (path->slots[0] > 0) {
4366 path->slots[0]--;
4367 btrfs_item_key_to_cpu(eb: path->nodes[0], cpu_key: &key, nr: path->slots[0]);
4368 if (key.objectid == root->root_key.objectid &&
4369 key.type == BTRFS_ROOT_REF_KEY)
4370 ret = -ENOTEMPTY;
4371 }
4372out:
4373 btrfs_free_path(p: path);
4374 return ret;
4375}
4376
4377/* Delete all dentries for inodes belonging to the root */
4378static void btrfs_prune_dentries(struct btrfs_root *root)
4379{
4380 struct btrfs_fs_info *fs_info = root->fs_info;
4381 struct rb_node *node;
4382 struct rb_node *prev;
4383 struct btrfs_inode *entry;
4384 struct inode *inode;
4385 u64 objectid = 0;
4386
4387 if (!BTRFS_FS_ERROR(fs_info))
4388 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4389
4390 spin_lock(lock: &root->inode_lock);
4391again:
4392 node = root->inode_tree.rb_node;
4393 prev = NULL;
4394 while (node) {
4395 prev = node;
4396 entry = rb_entry(node, struct btrfs_inode, rb_node);
4397
4398 if (objectid < btrfs_ino(inode: entry))
4399 node = node->rb_left;
4400 else if (objectid > btrfs_ino(inode: entry))
4401 node = node->rb_right;
4402 else
4403 break;
4404 }
4405 if (!node) {
4406 while (prev) {
4407 entry = rb_entry(prev, struct btrfs_inode, rb_node);
4408 if (objectid <= btrfs_ino(inode: entry)) {
4409 node = prev;
4410 break;
4411 }
4412 prev = rb_next(prev);
4413 }
4414 }
4415 while (node) {
4416 entry = rb_entry(node, struct btrfs_inode, rb_node);
4417 objectid = btrfs_ino(inode: entry) + 1;
4418 inode = igrab(&entry->vfs_inode);
4419 if (inode) {
4420 spin_unlock(lock: &root->inode_lock);
4421 if (atomic_read(v: &inode->i_count) > 1)
4422 d_prune_aliases(inode);
4423 /*
4424 * btrfs_drop_inode will have it removed from the inode
4425 * cache when its usage count hits zero.
4426 */
4427 iput(inode);
4428 cond_resched();
4429 spin_lock(lock: &root->inode_lock);
4430 goto again;
4431 }
4432
4433 if (cond_resched_lock(&root->inode_lock))
4434 goto again;
4435
4436 node = rb_next(node);
4437 }
4438 spin_unlock(lock: &root->inode_lock);
4439}
4440
4441int btrfs_delete_subvolume(struct btrfs_inode *dir, struct dentry *dentry)
4442{
4443 struct btrfs_fs_info *fs_info = btrfs_sb(sb: dentry->d_sb);
4444 struct btrfs_root *root = dir->root;
4445 struct inode *inode = d_inode(dentry);
4446 struct btrfs_root *dest = BTRFS_I(inode)->root;
4447 struct btrfs_trans_handle *trans;
4448 struct btrfs_block_rsv block_rsv;
4449 u64 root_flags;
4450 int ret;
4451
4452 /*
4453 * Don't allow to delete a subvolume with send in progress. This is
4454 * inside the inode lock so the error handling that has to drop the bit
4455 * again is not run concurrently.
4456 */
4457 spin_lock(lock: &dest->root_item_lock);
4458 if (dest->send_in_progress) {
4459 spin_unlock(lock: &dest->root_item_lock);
4460 btrfs_warn(fs_info,
4461 "attempt to delete subvolume %llu during send",
4462 dest->root_key.objectid);
4463 return -EPERM;
4464 }
4465 if (atomic_read(v: &dest->nr_swapfiles)) {
4466 spin_unlock(lock: &dest->root_item_lock);
4467 btrfs_warn(fs_info,
4468 "attempt to delete subvolume %llu with active swapfile",
4469 root->root_key.objectid);
4470 return -EPERM;
4471 }
4472 root_flags = btrfs_root_flags(s: &dest->root_item);
4473 btrfs_set_root_flags(s: &dest->root_item,
4474 val: root_flags | BTRFS_ROOT_SUBVOL_DEAD);
4475 spin_unlock(lock: &dest->root_item_lock);
4476
4477 down_write(sem: &fs_info->subvol_sem);
4478
4479 ret = may_destroy_subvol(root: dest);
4480 if (ret)
4481 goto out_up_write;
4482
4483 btrfs_init_block_rsv(rsv: &block_rsv, type: BTRFS_BLOCK_RSV_TEMP);
4484 /*
4485 * One for dir inode,
4486 * two for dir entries,
4487 * two for root ref/backref.
4488 */
4489 ret = btrfs_subvolume_reserve_metadata(root, rsv: &block_rsv, nitems: 5, use_global_rsv: true);
4490 if (ret)
4491 goto out_up_write;
4492
4493 trans = btrfs_start_transaction(root, num_items: 0);
4494 if (IS_ERR(ptr: trans)) {
4495 ret = PTR_ERR(ptr: trans);
4496 goto out_release;
4497 }
4498 trans->block_rsv = &block_rsv;
4499 trans->bytes_reserved = block_rsv.size;
4500
4501 btrfs_record_snapshot_destroy(trans, dir);
4502
4503 ret = btrfs_unlink_subvol(trans, dir, dentry);
4504 if (ret) {
4505 btrfs_abort_transaction(trans, ret);
4506 goto out_end_trans;
4507 }
4508
4509 ret = btrfs_record_root_in_trans(trans, root: dest);
4510 if (ret) {
4511 btrfs_abort_transaction(trans, ret);
4512 goto out_end_trans;
4513 }
4514
4515 memset(&dest->root_item.drop_progress, 0,
4516 sizeof(dest->root_item.drop_progress));
4517 btrfs_set_root_drop_level(s: &dest->root_item, val: 0);
4518 btrfs_set_root_refs(s: &dest->root_item, val: 0);
4519
4520 if (!test_and_set_bit(nr: BTRFS_ROOT_ORPHAN_ITEM_INSERTED, addr: &dest->state)) {
4521 ret = btrfs_insert_orphan_item(trans,
4522 root: fs_info->tree_root,
4523 offset: dest->root_key.objectid);
4524 if (ret) {
4525 btrfs_abort_transaction(trans, ret);
4526 goto out_end_trans;
4527 }
4528 }
4529
4530 ret = btrfs_uuid_tree_remove(trans, uuid: dest->root_item.uuid,
4531 BTRFS_UUID_KEY_SUBVOL,
4532 subid: dest->root_key.objectid);
4533 if (ret && ret != -ENOENT) {
4534 btrfs_abort_transaction(trans, ret);
4535 goto out_end_trans;
4536 }
4537 if (!btrfs_is_empty_uuid(uuid: dest->root_item.received_uuid)) {
4538 ret = btrfs_uuid_tree_remove(trans,
4539 uuid: dest->root_item.received_uuid,
4540 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4541 subid: dest->root_key.objectid);
4542 if (ret && ret != -ENOENT) {
4543 btrfs_abort_transaction(trans, ret);
4544 goto out_end_trans;
4545 }
4546 }
4547
4548 free_anon_bdev(dest->anon_dev);
4549 dest->anon_dev = 0;
4550out_end_trans:
4551 trans->block_rsv = NULL;
4552 trans->bytes_reserved = 0;
4553 ret = btrfs_end_transaction(trans);
4554 inode->i_flags |= S_DEAD;
4555out_release:
4556 btrfs_subvolume_release_metadata(root, rsv: &block_rsv);
4557out_up_write:
4558 up_write(sem: &fs_info->subvol_sem);
4559 if (ret) {
4560 spin_lock(lock: &dest->root_item_lock);
4561 root_flags = btrfs_root_flags(s: &dest->root_item);
4562 btrfs_set_root_flags(s: &dest->root_item,
4563 val: root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4564 spin_unlock(lock: &dest->root_item_lock);
4565 } else {
4566 d_invalidate(dentry);
4567 btrfs_prune_dentries(root: dest);
4568 ASSERT(dest->send_in_progress == 0);
4569 }
4570
4571 return ret;
4572}
4573
4574static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4575{
4576 struct inode *inode = d_inode(dentry);
4577 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
4578 int err = 0;
4579 struct btrfs_trans_handle *trans;
4580 u64 last_unlink_trans;
4581 struct fscrypt_name fname;
4582
4583 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4584 return -ENOTEMPTY;
4585 if (btrfs_ino(inode: BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID) {
4586 if (unlikely(btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))) {
4587 btrfs_err(fs_info,
4588 "extent tree v2 doesn't support snapshot deletion yet");
4589 return -EOPNOTSUPP;
4590 }
4591 return btrfs_delete_subvolume(dir: BTRFS_I(inode: dir), dentry);
4592 }
4593
4594 err = fscrypt_setup_filename(inode: dir, iname: &dentry->d_name, lookup: 1, fname: &fname);
4595 if (err)
4596 return err;
4597
4598 /* This needs to handle no-key deletions later on */
4599
4600 trans = __unlink_start_trans(dir: BTRFS_I(inode: dir));
4601 if (IS_ERR(ptr: trans)) {
4602 err = PTR_ERR(ptr: trans);
4603 goto out_notrans;
4604 }
4605
4606 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4607 err = btrfs_unlink_subvol(trans, dir: BTRFS_I(inode: dir), dentry);
4608 goto out;
4609 }
4610
4611 err = btrfs_orphan_add(trans, inode: BTRFS_I(inode));
4612 if (err)
4613 goto out;
4614
4615 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4616
4617 /* now the directory is empty */
4618 err = btrfs_unlink_inode(trans, dir: BTRFS_I(inode: dir), inode: BTRFS_I(inode: d_inode(dentry)),
4619 name: &fname.disk_name);
4620 if (!err) {
4621 btrfs_i_size_write(inode: BTRFS_I(inode), size: 0);
4622 /*
4623 * Propagate the last_unlink_trans value of the deleted dir to
4624 * its parent directory. This is to prevent an unrecoverable
4625 * log tree in the case we do something like this:
4626 * 1) create dir foo
4627 * 2) create snapshot under dir foo
4628 * 3) delete the snapshot
4629 * 4) rmdir foo
4630 * 5) mkdir foo
4631 * 6) fsync foo or some file inside foo
4632 */
4633 if (last_unlink_trans >= trans->transid)
4634 BTRFS_I(inode: dir)->last_unlink_trans = last_unlink_trans;
4635 }
4636out:
4637 btrfs_end_transaction(trans);
4638out_notrans:
4639 btrfs_btree_balance_dirty(fs_info);
4640 fscrypt_free_filename(fname: &fname);
4641
4642 return err;
4643}
4644
4645/*
4646 * Read, zero a chunk and write a block.
4647 *
4648 * @inode - inode that we're zeroing
4649 * @from - the offset to start zeroing
4650 * @len - the length to zero, 0 to zero the entire range respective to the
4651 * offset
4652 * @front - zero up to the offset instead of from the offset on
4653 *
4654 * This will find the block for the "from" offset and cow the block and zero the
4655 * part we want to zero. This is used with truncate and hole punching.
4656 */
4657int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len,
4658 int front)
4659{
4660 struct btrfs_fs_info *fs_info = inode->root->fs_info;
4661 struct address_space *mapping = inode->vfs_inode.i_mapping;
4662 struct extent_io_tree *io_tree = &inode->io_tree;
4663 struct btrfs_ordered_extent *ordered;
4664 struct extent_state *cached_state = NULL;
4665 struct extent_changeset *data_reserved = NULL;
4666 bool only_release_metadata = false;
4667 u32 blocksize = fs_info->sectorsize;
4668 pgoff_t index = from >> PAGE_SHIFT;
4669 unsigned offset = from & (blocksize - 1);
4670 struct page *page;
4671 gfp_t mask = btrfs_alloc_write_mask(mapping);
4672 size_t write_bytes = blocksize;
4673 int ret = 0;
4674 u64 block_start;
4675 u64 block_end;
4676
4677 if (IS_ALIGNED(offset, blocksize) &&
4678 (!len || IS_ALIGNED(len, blocksize)))
4679 goto out;
4680
4681 block_start = round_down(from, blocksize);
4682 block_end = block_start + blocksize - 1;
4683
4684 ret = btrfs_check_data_free_space(inode, reserved: &data_reserved, start: block_start,
4685 len: blocksize, noflush: false);
4686 if (ret < 0) {
4687 if (btrfs_check_nocow_lock(inode, pos: block_start, write_bytes: &write_bytes, nowait: false) > 0) {
4688 /* For nocow case, no need to reserve data space */
4689 only_release_metadata = true;
4690 } else {
4691 goto out;
4692 }
4693 }
4694 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes: blocksize, disk_num_bytes: blocksize, noflush: false);
4695 if (ret < 0) {
4696 if (!only_release_metadata)
4697 btrfs_free_reserved_data_space(inode, reserved: data_reserved,
4698 start: block_start, len: blocksize);
4699 goto out;
4700 }
4701again:
4702 page = find_or_create_page(mapping, index, gfp_mask: mask);
4703 if (!page) {
4704 btrfs_delalloc_release_space(inode, reserved: data_reserved, start: block_start,
4705 len: blocksize, qgroup_free: true);
4706 btrfs_delalloc_release_extents(inode, num_bytes: blocksize);
4707 ret = -ENOMEM;
4708 goto out;
4709 }
4710
4711 if (!PageUptodate(page)) {
4712 ret = btrfs_read_folio(NULL, page_folio(page));
4713 lock_page(page);
4714 if (page->mapping != mapping) {
4715 unlock_page(page);
4716 put_page(page);
4717 goto again;
4718 }
4719 if (!PageUptodate(page)) {
4720 ret = -EIO;
4721 goto out_unlock;
4722 }
4723 }
4724
4725 /*
4726 * We unlock the page after the io is completed and then re-lock it
4727 * above. release_folio() could have come in between that and cleared
4728 * PagePrivate(), but left the page in the mapping. Set the page mapped
4729 * here to make sure it's properly set for the subpage stuff.
4730 */
4731 ret = set_page_extent_mapped(page);
4732 if (ret < 0)
4733 goto out_unlock;
4734
4735 wait_on_page_writeback(page);
4736
4737 lock_extent(tree: io_tree, start: block_start, end: block_end, cached: &cached_state);
4738
4739 ordered = btrfs_lookup_ordered_extent(inode, file_offset: block_start);
4740 if (ordered) {
4741 unlock_extent(tree: io_tree, start: block_start, end: block_end, cached: &cached_state);
4742 unlock_page(page);
4743 put_page(page);
4744 btrfs_start_ordered_extent(entry: ordered);
4745 btrfs_put_ordered_extent(entry: ordered);
4746 goto again;
4747 }
4748
4749 clear_extent_bit(tree: &inode->io_tree, start: block_start, end: block_end,
4750 bits: EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4751 cached: &cached_state);
4752
4753 ret = btrfs_set_extent_delalloc(inode, start: block_start, end: block_end, extra_bits: 0,
4754 cached_state: &cached_state);
4755 if (ret) {
4756 unlock_extent(tree: io_tree, start: block_start, end: block_end, cached: &cached_state);
4757 goto out_unlock;
4758 }
4759
4760 if (offset != blocksize) {
4761 if (!len)
4762 len = blocksize - offset;
4763 if (front)
4764 memzero_page(page, offset: (block_start - page_offset(page)),
4765 len: offset);
4766 else
4767 memzero_page(page, offset: (block_start - page_offset(page)) + offset,
4768 len);
4769 }
4770 btrfs_page_clear_checked(fs_info, page, start: block_start,
4771 len: block_end + 1 - block_start);
4772 btrfs_page_set_dirty(fs_info, page, start: block_start, len: block_end + 1 - block_start);
4773 unlock_extent(tree: io_tree, start: block_start, end: block_end, cached: &cached_state);
4774
4775 if (only_release_metadata)
4776 set_extent_bit(tree: &inode->io_tree, start: block_start, end: block_end,
4777 bits: EXTENT_NORESERVE, NULL);
4778
4779out_unlock:
4780 if (ret) {
4781 if (only_release_metadata)
4782 btrfs_delalloc_release_metadata(inode, num_bytes: blocksize, qgroup_free: true);
4783 else
4784 btrfs_delalloc_release_space(inode, reserved: data_reserved,
4785 start: block_start, len: blocksize, qgroup_free: true);
4786 }
4787 btrfs_delalloc_release_extents(inode, num_bytes: blocksize);
4788 unlock_page(page);
4789 put_page(page);
4790out:
4791 if (only_release_metadata)
4792 btrfs_check_nocow_unlock(inode);
4793 extent_changeset_free(changeset: data_reserved);
4794 return ret;
4795}
4796
4797static int maybe_insert_hole(struct btrfs_inode *inode, u64 offset, u64 len)
4798{
4799 struct btrfs_root *root = inode->root;
4800 struct btrfs_fs_info *fs_info = root->fs_info;
4801 struct btrfs_trans_handle *trans;
4802 struct btrfs_drop_extents_args drop_args = { 0 };
4803 int ret;
4804
4805 /*
4806 * If NO_HOLES is enabled, we don't need to do anything.
4807 * Later, up in the call chain, either btrfs_set_inode_last_sub_trans()
4808 * or btrfs_update_inode() will be called, which guarantee that the next
4809 * fsync will know this inode was changed and needs to be logged.
4810 */
4811 if (btrfs_fs_incompat(fs_info, NO_HOLES))
4812 return 0;
4813
4814 /*
4815 * 1 - for the one we're dropping
4816 * 1 - for the one we're adding
4817 * 1 - for updating the inode.
4818 */
4819 trans = btrfs_start_transaction(root, num_items: 3);
4820 if (IS_ERR(ptr: trans))
4821 return PTR_ERR(ptr: trans);
4822
4823 drop_args.start = offset;
4824 drop_args.end = offset + len;
4825 drop_args.drop_cache = true;
4826
4827 ret = btrfs_drop_extents(trans, root, inode, args: &drop_args);
4828 if (ret) {
4829 btrfs_abort_transaction(trans, ret);
4830 btrfs_end_transaction(trans);
4831 return ret;
4832 }
4833
4834 ret = btrfs_insert_hole_extent(trans, root, objectid: btrfs_ino(inode), pos: offset, num_bytes: len);
4835 if (ret) {
4836 btrfs_abort_transaction(trans, ret);
4837 } else {
4838 btrfs_update_inode_bytes(inode, add_bytes: 0, del_bytes: drop_args.bytes_found);
4839 btrfs_update_inode(trans, inode);
4840 }
4841 btrfs_end_transaction(trans);
4842 return ret;
4843}
4844
4845/*
4846 * This function puts in dummy file extents for the area we're creating a hole
4847 * for. So if we are truncating this file to a larger size we need to insert
4848 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4849 * the range between oldsize and size
4850 */
4851int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size)
4852{
4853 struct btrfs_root *root = inode->root;
4854 struct btrfs_fs_info *fs_info = root->fs_info;
4855 struct extent_io_tree *io_tree = &inode->io_tree;
4856 struct extent_map *em = NULL;
4857 struct extent_state *cached_state = NULL;
4858 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
4859 u64 block_end = ALIGN(size, fs_info->sectorsize);
4860 u64 last_byte;
4861 u64 cur_offset;
4862 u64 hole_size;
4863 int err = 0;
4864
4865 /*
4866 * If our size started in the middle of a block we need to zero out the
4867 * rest of the block before we expand the i_size, otherwise we could
4868 * expose stale data.
4869 */
4870 err = btrfs_truncate_block(inode, from: oldsize, len: 0, front: 0);
4871 if (err)
4872 return err;
4873
4874 if (size <= hole_start)
4875 return 0;
4876
4877 btrfs_lock_and_flush_ordered_range(inode, start: hole_start, end: block_end - 1,
4878 cached_state: &cached_state);
4879 cur_offset = hole_start;
4880 while (1) {
4881 em = btrfs_get_extent(inode, NULL, pg_offset: 0, start: cur_offset,
4882 end: block_end - cur_offset);
4883 if (IS_ERR(ptr: em)) {
4884 err = PTR_ERR(ptr: em);
4885 em = NULL;
4886 break;
4887 }
4888 last_byte = min(extent_map_end(em), block_end);
4889 last_byte = ALIGN(last_byte, fs_info->sectorsize);
4890 hole_size = last_byte - cur_offset;
4891
4892 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
4893 struct extent_map *hole_em;
4894
4895 err = maybe_insert_hole(inode, offset: cur_offset, len: hole_size);
4896 if (err)
4897 break;
4898
4899 err = btrfs_inode_set_file_extent_range(inode,
4900 start: cur_offset, len: hole_size);
4901 if (err)
4902 break;
4903
4904 hole_em = alloc_extent_map();
4905 if (!hole_em) {
4906 btrfs_drop_extent_map_range(inode, start: cur_offset,
4907 end: cur_offset + hole_size - 1,
4908 skip_pinned: false);
4909 btrfs_set_inode_full_sync(inode);
4910 goto next;
4911 }
4912 hole_em->start = cur_offset;
4913 hole_em->len = hole_size;
4914 hole_em->orig_start = cur_offset;
4915
4916 hole_em->block_start = EXTENT_MAP_HOLE;
4917 hole_em->block_len = 0;
4918 hole_em->orig_block_len = 0;
4919 hole_em->ram_bytes = hole_size;
4920 hole_em->compress_type = BTRFS_COMPRESS_NONE;
4921 hole_em->generation = btrfs_get_fs_generation(fs_info);
4922
4923 err = btrfs_replace_extent_map_range(inode, new_em: hole_em, modified: true);
4924 free_extent_map(em: hole_em);
4925 } else {
4926 err = btrfs_inode_set_file_extent_range(inode,
4927 start: cur_offset, len: hole_size);
4928 if (err)
4929 break;
4930 }
4931next:
4932 free_extent_map(em);
4933 em = NULL;
4934 cur_offset = last_byte;
4935 if (cur_offset >= block_end)
4936 break;
4937 }
4938 free_extent_map(em);
4939 unlock_extent(tree: io_tree, start: hole_start, end: block_end - 1, cached: &cached_state);
4940 return err;
4941}
4942
4943static int btrfs_setsize(struct inode *inode, struct iattr *attr)
4944{
4945 struct btrfs_root *root = BTRFS_I(inode)->root;
4946 struct btrfs_trans_handle *trans;
4947 loff_t oldsize = i_size_read(inode);
4948 loff_t newsize = attr->ia_size;
4949 int mask = attr->ia_valid;
4950 int ret;
4951
4952 /*
4953 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4954 * special case where we need to update the times despite not having
4955 * these flags set. For all other operations the VFS set these flags
4956 * explicitly if it wants a timestamp update.
4957 */
4958 if (newsize != oldsize) {
4959 inode_inc_iversion(inode);
4960 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) {
4961 inode_set_mtime_to_ts(inode,
4962 ts: inode_set_ctime_current(inode));
4963 }
4964 }
4965
4966 if (newsize > oldsize) {
4967 /*
4968 * Don't do an expanding truncate while snapshotting is ongoing.
4969 * This is to ensure the snapshot captures a fully consistent
4970 * state of this file - if the snapshot captures this expanding
4971 * truncation, it must capture all writes that happened before
4972 * this truncation.
4973 */
4974 btrfs_drew_write_lock(lock: &root->snapshot_lock);
4975 ret = btrfs_cont_expand(inode: BTRFS_I(inode), oldsize, size: newsize);
4976 if (ret) {
4977 btrfs_drew_write_unlock(lock: &root->snapshot_lock);
4978 return ret;
4979 }
4980
4981 trans = btrfs_start_transaction(root, num_items: 1);
4982 if (IS_ERR(ptr: trans)) {
4983 btrfs_drew_write_unlock(lock: &root->snapshot_lock);
4984 return PTR_ERR(ptr: trans);
4985 }
4986
4987 i_size_write(inode, i_size: newsize);
4988 btrfs_inode_safe_disk_i_size_write(inode: BTRFS_I(inode), new_i_size: 0);
4989 pagecache_isize_extended(inode, from: oldsize, to: newsize);
4990 ret = btrfs_update_inode(trans, inode: BTRFS_I(inode));
4991 btrfs_drew_write_unlock(lock: &root->snapshot_lock);
4992 btrfs_end_transaction(trans);
4993 } else {
4994 struct btrfs_fs_info *fs_info = btrfs_sb(sb: inode->i_sb);
4995
4996 if (btrfs_is_zoned(fs_info)) {
4997 ret = btrfs_wait_ordered_range(inode,
4998 ALIGN(newsize, fs_info->sectorsize),
4999 len: (u64)-1);
5000 if (ret)
5001 return ret;
5002 }
5003
5004 /*
5005 * We're truncating a file that used to have good data down to
5006 * zero. Make sure any new writes to the file get on disk
5007 * on close.
5008 */
5009 if (newsize == 0)
5010 set_bit(nr: BTRFS_INODE_FLUSH_ON_CLOSE,
5011 addr: &BTRFS_I(inode)->runtime_flags);
5012
5013 truncate_setsize(inode, newsize);
5014
5015 inode_dio_wait(inode);
5016
5017 ret = btrfs_truncate(inode: BTRFS_I(inode), skip_writeback: newsize == oldsize);
5018 if (ret && inode->i_nlink) {
5019 int err;
5020
5021 /*
5022 * Truncate failed, so fix up the in-memory size. We
5023 * adjusted disk_i_size down as we removed extents, so
5024 * wait for disk_i_size to be stable and then update the
5025 * in-memory size to match.
5026 */
5027 err = btrfs_wait_ordered_range(inode, start: 0, len: (u64)-1);
5028 if (err)
5029 return err;
5030 i_size_write(inode, i_size: BTRFS_I(inode)->disk_i_size);
5031 }
5032 }
5033
5034 return ret;
5035}
5036
5037static int btrfs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
5038 struct iattr *attr)
5039{
5040 struct inode *inode = d_inode(dentry);
5041 struct btrfs_root *root = BTRFS_I(inode)->root;
5042 int err;
5043
5044 if (btrfs_root_readonly(root))
5045 return -EROFS;
5046
5047 err = setattr_prepare(idmap, dentry, attr);
5048 if (err)
5049 return err;
5050
5051 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5052 err = btrfs_setsize(inode, attr);
5053 if (err)
5054 return err;
5055 }
5056
5057 if (attr->ia_valid) {
5058 setattr_copy(idmap, inode, attr);
5059 inode_inc_iversion(inode);
5060 err = btrfs_dirty_inode(inode: BTRFS_I(inode));
5061
5062 if (!err && attr->ia_valid & ATTR_MODE)
5063 err = posix_acl_chmod(idmap, dentry, inode->i_mode);
5064 }
5065
5066 return err;
5067}
5068
5069/*
5070 * While truncating the inode pages during eviction, we get the VFS
5071 * calling btrfs_invalidate_folio() against each folio of the inode. This
5072 * is slow because the calls to btrfs_invalidate_folio() result in a
5073 * huge amount of calls to lock_extent() and clear_extent_bit(),
5074 * which keep merging and splitting extent_state structures over and over,
5075 * wasting lots of time.
5076 *
5077 * Therefore if the inode is being evicted, let btrfs_invalidate_folio()
5078 * skip all those expensive operations on a per folio basis and do only
5079 * the ordered io finishing, while we release here the extent_map and
5080 * extent_state structures, without the excessive merging and splitting.
5081 */
5082static void evict_inode_truncate_pages(struct inode *inode)
5083{
5084 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5085 struct rb_node *node;
5086
5087 ASSERT(inode->i_state & I_FREEING);
5088 truncate_inode_pages_final(&inode->i_data);
5089
5090 btrfs_drop_extent_map_range(inode: BTRFS_I(inode), start: 0, end: (u64)-1, skip_pinned: false);
5091
5092 /*
5093 * Keep looping until we have no more ranges in the io tree.
5094 * We can have ongoing bios started by readahead that have
5095 * their endio callback (extent_io.c:end_bio_extent_readpage)
5096 * still in progress (unlocked the pages in the bio but did not yet
5097 * unlocked the ranges in the io tree). Therefore this means some
5098 * ranges can still be locked and eviction started because before
5099 * submitting those bios, which are executed by a separate task (work
5100 * queue kthread), inode references (inode->i_count) were not taken
5101 * (which would be dropped in the end io callback of each bio).
5102 * Therefore here we effectively end up waiting for those bios and
5103 * anyone else holding locked ranges without having bumped the inode's
5104 * reference count - if we don't do it, when they access the inode's
5105 * io_tree to unlock a range it may be too late, leading to an
5106 * use-after-free issue.
5107 */
5108 spin_lock(lock: &io_tree->lock);
5109 while (!RB_EMPTY_ROOT(&io_tree->state)) {
5110 struct extent_state *state;
5111 struct extent_state *cached_state = NULL;
5112 u64 start;
5113 u64 end;
5114 unsigned state_flags;
5115
5116 node = rb_first(&io_tree->state);
5117 state = rb_entry(node, struct extent_state, rb_node);
5118 start = state->start;
5119 end = state->end;
5120 state_flags = state->state;
5121 spin_unlock(lock: &io_tree->lock);
5122
5123 lock_extent(tree: io_tree, start, end, cached: &cached_state);
5124
5125 /*
5126 * If still has DELALLOC flag, the extent didn't reach disk,
5127 * and its reserved space won't be freed by delayed_ref.
5128 * So we need to free its reserved space here.
5129 * (Refer to comment in btrfs_invalidate_folio, case 2)
5130 *
5131 * Note, end is the bytenr of last byte, so we need + 1 here.
5132 */
5133 if (state_flags & EXTENT_DELALLOC)
5134 btrfs_qgroup_free_data(inode: BTRFS_I(inode), NULL, start,
5135 len: end - start + 1);
5136
5137 clear_extent_bit(tree: io_tree, start, end,
5138 bits: EXTENT_CLEAR_ALL_BITS | EXTENT_DO_ACCOUNTING,
5139 cached: &cached_state);
5140
5141 cond_resched();
5142 spin_lock(lock: &io_tree->lock);
5143 }
5144 spin_unlock(lock: &io_tree->lock);
5145}
5146
5147static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
5148 struct btrfs_block_rsv *rsv)
5149{
5150 struct btrfs_fs_info *fs_info = root->fs_info;
5151 struct btrfs_trans_handle *trans;
5152 u64 delayed_refs_extra = btrfs_calc_delayed_ref_bytes(fs_info, num_delayed_refs: 1);
5153 int ret;
5154
5155 /*
5156 * Eviction should be taking place at some place safe because of our
5157 * delayed iputs. However the normal flushing code will run delayed
5158 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock.
5159 *
5160 * We reserve the delayed_refs_extra here again because we can't use
5161 * btrfs_start_transaction(root, 0) for the same deadlocky reason as
5162 * above. We reserve our extra bit here because we generate a ton of
5163 * delayed refs activity by truncating.
5164 *
5165 * BTRFS_RESERVE_FLUSH_EVICT will steal from the global_rsv if it can,
5166 * if we fail to make this reservation we can re-try without the
5167 * delayed_refs_extra so we can make some forward progress.
5168 */
5169 ret = btrfs_block_rsv_refill(fs_info, block_rsv: rsv, num_bytes: rsv->size + delayed_refs_extra,
5170 flush: BTRFS_RESERVE_FLUSH_EVICT);
5171 if (ret) {
5172 ret = btrfs_block_rsv_refill(fs_info, block_rsv: rsv, num_bytes: rsv->size,
5173 flush: BTRFS_RESERVE_FLUSH_EVICT);
5174 if (ret) {
5175 btrfs_warn(fs_info,
5176 "could not allocate space for delete; will truncate on mount");
5177 return ERR_PTR(error: -ENOSPC);
5178 }
5179 delayed_refs_extra = 0;
5180 }
5181
5182 trans = btrfs_join_transaction(root);
5183 if (IS_ERR(ptr: trans))
5184 return trans;
5185
5186 if (delayed_refs_extra) {
5187 trans->block_rsv = &fs_info->trans_block_rsv;
5188 trans->bytes_reserved = delayed_refs_extra;
5189 btrfs_block_rsv_migrate(src_rsv: rsv, dst_rsv: trans->block_rsv,
5190 num_bytes: delayed_refs_extra, update_size: true);
5191 }
5192 return trans;
5193}
5194
5195void btrfs_evict_inode(struct inode *inode)
5196{
5197 struct btrfs_fs_info *fs_info = btrfs_sb(sb: inode->i_sb);
5198 struct btrfs_trans_handle *trans;
5199 struct btrfs_root *root = BTRFS_I(inode)->root;
5200 struct btrfs_block_rsv *rsv = NULL;
5201 int ret;
5202
5203 trace_btrfs_inode_evict(inode);
5204
5205 if (!root) {
5206 fsverity_cleanup_inode(inode);
5207 clear_inode(inode);
5208 return;
5209 }
5210
5211 evict_inode_truncate_pages(inode);
5212
5213 if (inode->i_nlink &&
5214 ((btrfs_root_refs(s: &root->root_item) != 0 &&
5215 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5216 btrfs_is_free_space_inode(inode: BTRFS_I(inode))))
5217 goto out;
5218
5219 if (is_bad_inode(inode))
5220 goto out;
5221
5222 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
5223 goto out;
5224
5225 if (inode->i_nlink > 0) {
5226 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5227 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5228 goto out;
5229 }
5230
5231 /*
5232 * This makes sure the inode item in tree is uptodate and the space for
5233 * the inode update is released.
5234 */
5235 ret = btrfs_commit_inode_delayed_inode(inode: BTRFS_I(inode));
5236 if (ret)
5237 goto out;
5238
5239 /*
5240 * This drops any pending insert or delete operations we have for this
5241 * inode. We could have a delayed dir index deletion queued up, but
5242 * we're removing the inode completely so that'll be taken care of in
5243 * the truncate.
5244 */
5245 btrfs_kill_delayed_inode_items(inode: BTRFS_I(inode));
5246
5247 rsv = btrfs_alloc_block_rsv(fs_info, type: BTRFS_BLOCK_RSV_TEMP);
5248 if (!rsv)
5249 goto out;
5250 rsv->size = btrfs_calc_metadata_size(fs_info, num_items: 1);
5251 rsv->failfast = true;
5252
5253 btrfs_i_size_write(inode: BTRFS_I(inode), size: 0);
5254
5255 while (1) {
5256 struct btrfs_truncate_control control = {
5257 .inode = BTRFS_I(inode),
5258 .ino = btrfs_ino(inode: BTRFS_I(inode)),
5259 .new_size = 0,
5260 .min_type = 0,
5261 };
5262
5263 trans = evict_refill_and_join(root, rsv);
5264 if (IS_ERR(ptr: trans))
5265 goto out;
5266
5267 trans->block_rsv = rsv;
5268
5269 ret = btrfs_truncate_inode_items(trans, root, control: &control);
5270 trans->block_rsv = &fs_info->trans_block_rsv;
5271 btrfs_end_transaction(trans);
5272 /*
5273 * We have not added new delayed items for our inode after we
5274 * have flushed its delayed items, so no need to throttle on
5275 * delayed items. However we have modified extent buffers.
5276 */
5277 btrfs_btree_balance_dirty_nodelay(fs_info);
5278 if (ret && ret != -ENOSPC && ret != -EAGAIN)
5279 goto out;
5280 else if (!ret)
5281 break;
5282 }
5283
5284 /*
5285 * Errors here aren't a big deal, it just means we leave orphan items in
5286 * the tree. They will be cleaned up on the next mount. If the inode
5287 * number gets reused, cleanup deletes the orphan item without doing
5288 * anything, and unlink reuses the existing orphan item.
5289 *
5290 * If it turns out that we are dropping too many of these, we might want
5291 * to add a mechanism for retrying these after a commit.
5292 */
5293 trans = evict_refill_and_join(root, rsv);
5294 if (!IS_ERR(ptr: trans)) {
5295 trans->block_rsv = rsv;
5296 btrfs_orphan_del(trans, inode: BTRFS_I(inode));
5297 trans->block_rsv = &fs_info->trans_block_rsv;
5298 btrfs_end_transaction(trans);
5299 }
5300
5301out:
5302 btrfs_free_block_rsv(fs_info, rsv);
5303 /*
5304 * If we didn't successfully delete, the orphan item will still be in
5305 * the tree and we'll retry on the next mount. Again, we might also want
5306 * to retry these periodically in the future.
5307 */
5308 btrfs_remove_delayed_node(inode: BTRFS_I(inode));
5309 fsverity_cleanup_inode(inode);
5310 clear_inode(inode);
5311}
5312
5313/*
5314 * Return the key found in the dir entry in the location pointer, fill @type
5315 * with BTRFS_FT_*, and return 0.
5316 *
5317 * If no dir entries were found, returns -ENOENT.
5318 * If found a corrupted location in dir entry, returns -EUCLEAN.
5319 */
5320static int btrfs_inode_by_name(struct btrfs_inode *dir, struct dentry *dentry,
5321 struct btrfs_key *location, u8 *type)
5322{
5323 struct btrfs_dir_item *di;
5324 struct btrfs_path *path;
5325 struct btrfs_root *root = dir->root;
5326 int ret = 0;
5327 struct fscrypt_name fname;
5328
5329 path = btrfs_alloc_path();
5330 if (!path)
5331 return -ENOMEM;
5332
5333 ret = fscrypt_setup_filename(inode: &dir->vfs_inode, iname: &dentry->d_name, lookup: 1, fname: &fname);
5334 if (ret < 0)
5335 goto out;
5336 /*
5337 * fscrypt_setup_filename() should never return a positive value, but
5338 * gcc on sparc/parisc thinks it can, so assert that doesn't happen.
5339 */
5340 ASSERT(ret == 0);
5341
5342 /* This needs to handle no-key deletions later on */
5343
5344 di = btrfs_lookup_dir_item(NULL, root, path, dir: btrfs_ino(inode: dir),
5345 name: &fname.disk_name, mod: 0);
5346 if (IS_ERR_OR_NULL(ptr: di)) {
5347 ret = di ? PTR_ERR(ptr: di) : -ENOENT;
5348 goto out;
5349 }
5350
5351 btrfs_dir_item_key_to_cpu(eb: path->nodes[0], item: di, cpu_key: location);
5352 if (location->type != BTRFS_INODE_ITEM_KEY &&
5353 location->type != BTRFS_ROOT_ITEM_KEY) {
5354 ret = -EUCLEAN;
5355 btrfs_warn(root->fs_info,
5356"%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5357 __func__, fname.disk_name.name, btrfs_ino(dir),
5358 location->objectid, location->type, location->offset);
5359 }
5360 if (!ret)
5361 *type = btrfs_dir_ftype(eb: path->nodes[0], item: di);
5362out:
5363 fscrypt_free_filename(fname: &fname);
5364 btrfs_free_path(p: path);
5365 return ret;
5366}
5367
5368/*
5369 * when we hit a tree root in a directory, the btrfs part of the inode
5370 * needs to be changed to reflect the root directory of the tree root. This
5371 * is kind of like crossing a mount point.
5372 */
5373static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
5374 struct btrfs_inode *dir,
5375 struct dentry *dentry,
5376 struct btrfs_key *location,
5377 struct btrfs_root **sub_root)
5378{
5379 struct btrfs_path *path;
5380 struct btrfs_root *new_root;
5381 struct btrfs_root_ref *ref;
5382 struct extent_buffer *leaf;
5383 struct btrfs_key key;
5384 int ret;
5385 int err = 0;
5386 struct fscrypt_name fname;
5387
5388 ret = fscrypt_setup_filename(inode: &dir->vfs_inode, iname: &dentry->d_name, lookup: 0, fname: &fname);
5389 if (ret)
5390 return ret;
5391
5392 path = btrfs_alloc_path();
5393 if (!path) {
5394 err = -ENOMEM;
5395 goto out;
5396 }
5397
5398 err = -ENOENT;
5399 key.objectid = dir->root->root_key.objectid;
5400 key.type = BTRFS_ROOT_REF_KEY;
5401 key.offset = location->objectid;
5402
5403 ret = btrfs_search_slot(NULL, root: fs_info->tree_root, key: &key, p: path, ins_len: 0, cow: 0);
5404 if (ret) {
5405 if (ret < 0)
5406 err = ret;
5407 goto out;
5408 }
5409
5410 leaf = path->nodes[0];
5411 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5412 if (btrfs_root_ref_dirid(eb: leaf, s: ref) != btrfs_ino(inode: dir) ||
5413 btrfs_root_ref_name_len(eb: leaf, s: ref) != fname.disk_name.len)
5414 goto out;
5415
5416 ret = memcmp_extent_buffer(eb: leaf, ptrv: fname.disk_name.name,
5417 start: (unsigned long)(ref + 1), len: fname.disk_name.len);
5418 if (ret)
5419 goto out;
5420
5421 btrfs_release_path(p: path);
5422
5423 new_root = btrfs_get_fs_root(fs_info, objectid: location->objectid, check_ref: true);
5424 if (IS_ERR(ptr: new_root)) {
5425 err = PTR_ERR(ptr: new_root);
5426 goto out;
5427 }
5428
5429 *sub_root = new_root;
5430 location->objectid = btrfs_root_dirid(s: &new_root->root_item);
5431 location->type = BTRFS_INODE_ITEM_KEY;
5432 location->offset = 0;
5433 err = 0;
5434out:
5435 btrfs_free_path(p: path);
5436 fscrypt_free_filename(fname: &fname);
5437 return err;
5438}
5439
5440static void inode_tree_add(struct btrfs_inode *inode)
5441{
5442 struct btrfs_root *root = inode->root;
5443 struct btrfs_inode *entry;
5444 struct rb_node **p;
5445 struct rb_node *parent;
5446 struct rb_node *new = &inode->rb_node;
5447 u64 ino = btrfs_ino(inode);
5448
5449 if (inode_unhashed(inode: &inode->vfs_inode))
5450 return;
5451 parent = NULL;
5452 spin_lock(lock: &root->inode_lock);
5453 p = &root->inode_tree.rb_node;
5454 while (*p) {
5455 parent = *p;
5456 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5457
5458 if (ino < btrfs_ino(inode: entry))
5459 p = &parent->rb_left;
5460 else if (ino > btrfs_ino(inode: entry))
5461 p = &parent->rb_right;
5462 else {
5463 WARN_ON(!(entry->vfs_inode.i_state &
5464 (I_WILL_FREE | I_FREEING)));
5465 rb_replace_node(victim: parent, new, root: &root->inode_tree);
5466 RB_CLEAR_NODE(parent);
5467 spin_unlock(lock: &root->inode_lock);
5468 return;
5469 }
5470 }
5471 rb_link_node(node: new, parent, rb_link: p);
5472 rb_insert_color(new, &root->inode_tree);
5473 spin_unlock(lock: &root->inode_lock);
5474}
5475
5476static void inode_tree_del(struct btrfs_inode *inode)
5477{
5478 struct btrfs_root *root = inode->root;
5479 int empty = 0;
5480
5481 spin_lock(lock: &root->inode_lock);
5482 if (!RB_EMPTY_NODE(&inode->rb_node)) {
5483 rb_erase(&inode->rb_node, &root->inode_tree);
5484 RB_CLEAR_NODE(&inode->rb_node);
5485 empty = RB_EMPTY_ROOT(&root->inode_tree);
5486 }
5487 spin_unlock(lock: &root->inode_lock);
5488
5489 if (empty && btrfs_root_refs(s: &root->root_item) == 0) {
5490 spin_lock(lock: &root->inode_lock);
5491 empty = RB_EMPTY_ROOT(&root->inode_tree);
5492 spin_unlock(lock: &root->inode_lock);
5493 if (empty)
5494 btrfs_add_dead_root(root);
5495 }
5496}
5497
5498
5499static int btrfs_init_locked_inode(struct inode *inode, void *p)
5500{
5501 struct btrfs_iget_args *args = p;
5502
5503 inode->i_ino = args->ino;
5504 BTRFS_I(inode)->location.objectid = args->ino;
5505 BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
5506 BTRFS_I(inode)->location.offset = 0;
5507 BTRFS_I(inode)->root = btrfs_grab_root(root: args->root);
5508 BUG_ON(args->root && !BTRFS_I(inode)->root);
5509
5510 if (args->root && args->root == args->root->fs_info->tree_root &&
5511 args->ino != BTRFS_BTREE_INODE_OBJECTID)
5512 set_bit(nr: BTRFS_INODE_FREE_SPACE_INODE,
5513 addr: &BTRFS_I(inode)->runtime_flags);
5514 return 0;
5515}
5516
5517static int btrfs_find_actor(struct inode *inode, void *opaque)
5518{
5519 struct btrfs_iget_args *args = opaque;
5520
5521 return args->ino == BTRFS_I(inode)->location.objectid &&
5522 args->root == BTRFS_I(inode)->root;
5523}
5524
5525static struct inode *btrfs_iget_locked(struct super_block *s, u64 ino,
5526 struct btrfs_root *root)
5527{
5528 struct inode *inode;
5529 struct btrfs_iget_args args;
5530 unsigned long hashval = btrfs_inode_hash(objectid: ino, root);
5531
5532 args.ino = ino;
5533 args.root = root;
5534
5535 inode = iget5_locked(s, hashval, test: btrfs_find_actor,
5536 set: btrfs_init_locked_inode,
5537 (void *)&args);
5538 return inode;
5539}
5540
5541/*
5542 * Get an inode object given its inode number and corresponding root.
5543 * Path can be preallocated to prevent recursing back to iget through
5544 * allocator. NULL is also valid but may require an additional allocation
5545 * later.
5546 */
5547struct inode *btrfs_iget_path(struct super_block *s, u64 ino,
5548 struct btrfs_root *root, struct btrfs_path *path)
5549{
5550 struct inode *inode;
5551
5552 inode = btrfs_iget_locked(s, ino, root);
5553 if (!inode)
5554 return ERR_PTR(error: -ENOMEM);
5555
5556 if (inode->i_state & I_NEW) {
5557 int ret;
5558
5559 ret = btrfs_read_locked_inode(inode, in_path: path);
5560 if (!ret) {
5561 inode_tree_add(inode: BTRFS_I(inode));
5562 unlock_new_inode(inode);
5563 } else {
5564 iget_failed(inode);
5565 /*
5566 * ret > 0 can come from btrfs_search_slot called by
5567 * btrfs_read_locked_inode, this means the inode item
5568 * was not found.
5569 */
5570 if (ret > 0)
5571 ret = -ENOENT;
5572 inode = ERR_PTR(error: ret);
5573 }
5574 }
5575
5576 return inode;
5577}
5578
5579struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root)
5580{
5581 return btrfs_iget_path(s, ino, root, NULL);
5582}
5583
5584static struct inode *new_simple_dir(struct inode *dir,
5585 struct btrfs_key *key,
5586 struct btrfs_root *root)
5587{
5588 struct timespec64 ts;
5589 struct inode *inode = new_inode(sb: dir->i_sb);
5590
5591 if (!inode)
5592 return ERR_PTR(error: -ENOMEM);
5593
5594 BTRFS_I(inode)->root = btrfs_grab_root(root);
5595 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5596 set_bit(nr: BTRFS_INODE_DUMMY, addr: &BTRFS_I(inode)->runtime_flags);
5597
5598 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5599 /*
5600 * We only need lookup, the rest is read-only and there's no inode
5601 * associated with the dentry
5602 */
5603 inode->i_op = &simple_dir_inode_operations;
5604 inode->i_opflags &= ~IOP_XATTR;
5605 inode->i_fop = &simple_dir_operations;
5606 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5607
5608 ts = inode_set_ctime_current(inode);
5609 inode_set_mtime_to_ts(inode, ts);
5610 inode_set_atime_to_ts(inode, ts: inode_get_atime(inode: dir));
5611 BTRFS_I(inode)->i_otime_sec = ts.tv_sec;
5612 BTRFS_I(inode)->i_otime_nsec = ts.tv_nsec;
5613
5614 inode->i_uid = dir->i_uid;
5615 inode->i_gid = dir->i_gid;
5616
5617 return inode;
5618}
5619
5620static_assert(BTRFS_FT_UNKNOWN == FT_UNKNOWN);
5621static_assert(BTRFS_FT_REG_FILE == FT_REG_FILE);
5622static_assert(BTRFS_FT_DIR == FT_DIR);
5623static_assert(BTRFS_FT_CHRDEV == FT_CHRDEV);
5624static_assert(BTRFS_FT_BLKDEV == FT_BLKDEV);
5625static_assert(BTRFS_FT_FIFO == FT_FIFO);
5626static_assert(BTRFS_FT_SOCK == FT_SOCK);
5627static_assert(BTRFS_FT_SYMLINK == FT_SYMLINK);
5628
5629static inline u8 btrfs_inode_type(struct inode *inode)
5630{
5631 return fs_umode_to_ftype(mode: inode->i_mode);
5632}
5633
5634struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5635{
5636 struct btrfs_fs_info *fs_info = btrfs_sb(sb: dir->i_sb);
5637 struct inode *inode;
5638 struct btrfs_root *root = BTRFS_I(inode: dir)->root;
5639 struct btrfs_root *sub_root = root;
5640 struct btrfs_key location;
5641 u8 di_type = 0;
5642 int ret = 0;
5643
5644 if (dentry->d_name.len > BTRFS_NAME_LEN)
5645 return ERR_PTR(error: -ENAMETOOLONG);
5646
5647 ret = btrfs_inode_by_name(dir: BTRFS_I(inode: dir), dentry, location: &location, type: &di_type);
5648 if (ret < 0)
5649 return ERR_PTR(error: ret);
5650
5651 if (location.type == BTRFS_INODE_ITEM_KEY) {
5652 inode = btrfs_iget(s: dir->i_sb, ino: location.objectid, root);
5653 if (IS_ERR(ptr: inode))
5654 return inode;
5655
5656 /* Do extra check against inode mode with di_type */
5657 if (btrfs_inode_type(inode) != di_type) {
5658 btrfs_crit(fs_info,
5659"inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u",
5660 inode->i_mode, btrfs_inode_type(inode),
5661 di_type);
5662 iput(inode);
5663 return ERR_PTR(error: -EUCLEAN);
5664 }
5665 return inode;
5666 }
5667
5668 ret = fixup_tree_root_location(fs_info, dir: BTRFS_I(inode: dir), dentry,
5669 location: &location, sub_root: &sub_root);
5670 if (ret < 0) {
5671 if (ret != -ENOENT)
5672 inode = ERR_PTR(error: ret);
5673 else
5674 inode = new_simple_dir(dir, key: &location, root);
5675 } else {
5676 inode = btrfs_iget(s: dir->i_sb, ino: location.objectid, root: sub_root);
5677 btrfs_put_root(root: sub_root);
5678
5679 if (IS_ERR(ptr: inode))
5680 return inode;
5681
5682 down_read(sem: &fs_info->cleanup_work_sem);
5683 if (!sb_rdonly(sb: inode->i_sb))
5684 ret = btrfs_orphan_cleanup(root: sub_root);
5685 up_read(sem: &fs_info->cleanup_work_sem);
5686 if (ret) {
5687 iput(inode);
5688 inode = ERR_PTR(error: ret);
5689 }
5690 }
5691
5692 return inode;
5693}
5694
5695static int btrfs_dentry_delete(const struct dentry *dentry)
5696{
5697 struct btrfs_root *root;
5698 struct inode *inode = d_inode(dentry);
5699
5700 if (!inode && !IS_ROOT(dentry))
5701 inode = d_inode(dentry: dentry->d_parent);
5702
5703 if (inode) {
5704 root = BTRFS_I(inode)->root;
5705 if (btrfs_root_refs(s: &root->root_item) == 0)
5706 return 1;
5707
5708 if (btrfs_ino(inode: BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5709 return 1;
5710 }
5711 return 0;
5712}
5713
5714static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5715 unsigned int flags)
5716{
5717 struct inode *inode = btrfs_lookup_dentry(dir, dentry);
5718
5719 if (inode == ERR_PTR(error: -ENOENT))
5720 inode = NULL;
5721 return d_splice_alias(inode, dentry);
5722}
5723
5724/*
5725 * Find the highest existing sequence number in a directory and then set the
5726 * in-memory index_cnt variable to the first free sequence number.
5727 */
5728static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
5729{
5730 struct btrfs_root *root = inode->root;
5731 struct btrfs_key key, found_key;
5732 struct btrfs_path *path;
5733 struct extent_buffer *leaf;
5734 int ret;
5735
5736 key.objectid = btrfs_ino(inode);
5737 key.type = BTRFS_DIR_INDEX_KEY;
5738 key.offset = (u64)-1;
5739
5740 path = btrfs_alloc_path();
5741 if (!path)
5742 return -ENOMEM;
5743
5744 ret = btrfs_search_slot(NULL, root, key: &key, p: path, ins_len: 0, cow: 0);
5745 if (ret < 0)
5746 goto out;
5747 /* FIXME: we should be able to handle this */
5748 if (ret == 0)
5749 goto out;
5750 ret = 0;
5751
5752 if (path->slots[0] == 0) {
5753 inode->index_cnt = BTRFS_DIR_START_INDEX;
5754 goto out;
5755 }
5756
5757 path->slots[0]--;
5758
5759 leaf = path->nodes[0];
5760 btrfs_item_key_to_cpu(eb: leaf, cpu_key: &found_key, nr: path->slots[0]);
5761
5762 if (found_key.objectid != btrfs_ino(inode) ||
5763 found_key.type != BTRFS_DIR_INDEX_KEY) {
5764 inode->index_cnt = BTRFS_DIR_START_INDEX;
5765 goto out;
5766 }
5767
5768 inode->index_cnt = found_key.offset + 1;
5769out:
5770 btrfs_free_path(p: path);
5771 return ret;
5772}
5773
5774static int btrfs_get_dir_last_index(struct btrfs_inode *dir, u64 *index)
5775{
5776 int ret = 0;
5777
5778 btrfs_inode_lock(inode: dir, ilock_flags: 0);
5779 if (dir->index_cnt == (u64)-1) {
5780 ret = btrfs_inode_delayed_dir_index_count(inode: dir);
5781 if (ret) {
5782 ret = btrfs_set_inode_index_count(inode: dir);
5783 if (ret)
5784 goto out;
5785 }
5786 }
5787
5788 /* index_cnt is the index number of next new entry, so decrement it. */
5789 *index = dir->index_cnt - 1;
5790out:
5791 btrfs_inode_unlock(inode: dir, ilock_flags: 0);
5792
5793 return ret;
5794}
5795
5796/*
5797 * All this infrastructure exists because dir_emit can fault, and we are holding
5798 * the tree lock when doing readdir. For now just allocate a buffer and copy
5799 * our information into that, and then dir_emit from the buffer. This is
5800 * similar to what NFS does, only we don't keep the buffer around in pagecache
5801 * because I'm afraid I'll mess that up. Long term we need to make filldir do
5802 * copy_to_user_inatomic so we don't have to worry about page faulting under the
5803 * tree lock.
5804 */
5805static int btrfs_opendir(struct inode *inode, struct file *file)
5806{
5807 struct btrfs_file_private *private;
5808 u64 last_index;
5809 int ret;
5810
5811 ret = btrfs_get_dir_last_index(dir: BTRFS_I(inode), index: &last_index);
5812 if (ret)
5813 return ret;
5814
5815 private = kzalloc(size: sizeof(struct btrfs_file_private), GFP_KERNEL);
5816 if (!private)
5817 return -ENOMEM;
5818 private->last_index = last_index;
5819 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5820 if (!private->filldir_buf) {
5821 kfree(objp: private);
5822 return -ENOMEM;
5823 }
5824 file->private_data = private;
5825 return 0;
5826}
5827
5828static loff_t btrfs_dir_llseek(struct file *file, loff_t offset, int whence)
5829{
5830 struct btrfs_file_private *private = file->private_data;
5831 int ret;
5832
5833 ret = btrfs_get_dir_last_index(dir: BTRFS_I(inode: file_inode(f: file)),
5834 index: &private->last_index);
5835 if (ret)
5836 return ret;
5837
5838 return generic_file_llseek(file, offset, whence);
5839}
5840
5841struct dir_entry {
5842 u64 ino;
5843 u64 offset;
5844 unsigned type;
5845 int name_len;
5846};
5847
5848static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
5849{
5850 while (entries--) {
5851 struct dir_entry *entry = addr;
5852 char *name = (char *)(entry + 1);
5853
5854 ctx->pos = get_unaligned(&entry->offset);
5855 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
5856 get_unaligned(&entry->ino),
5857 get_unaligned(&entry->type)))
5858 return 1;
5859 addr += sizeof(struct dir_entry) +
5860 get_unaligned(&entry->name_len);
5861 ctx->pos++;
5862 }
5863 return 0;
5864}
5865
5866static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5867{
5868 struct inode *inode = file_inode(f: file);
5869 struct btrfs_root *root = BTRFS_I(inode)->root;
5870 struct btrfs_file_private *private = file->private_data;
5871 struct btrfs_dir_item *di;
5872 struct btrfs_key key;
5873 struct btrfs_key found_key;
5874 struct btrfs_path *path;
5875 void *addr;
5876 LIST_HEAD(ins_list);
5877 LIST_HEAD(del_list);
5878 int ret;
5879 char *name_ptr;
5880 int name_len;
5881 int entries = 0;
5882 int total_len = 0;
5883 bool put = false;
5884 struct btrfs_key location;
5885
5886 if (!dir_emit_dots(file, ctx))
5887 return 0;
5888
5889 path = btrfs_alloc_path();
5890 if (!path)
5891 return -ENOMEM;
5892
5893 addr = private->filldir_buf;
5894 path->reada = READA_FORWARD;
5895
5896 put = btrfs_readdir_get_delayed_items(inode, last_index: private->last_index,
5897 ins_list: &ins_list, del_list: &del_list);
5898
5899again:
5900 key.type = BTRFS_DIR_INDEX_KEY;
5901 key.offset = ctx->pos;
5902 key.objectid = btrfs_ino(inode: BTRFS_I(inode));
5903
5904 btrfs_for_each_slot(root, &key, &found_key, path, ret) {
5905 struct dir_entry *entry;
5906 struct extent_buffer *leaf = path->nodes[0];
5907 u8 ftype;
5908
5909 if (found_key.objectid != key.objectid)
5910 break;
5911 if (found_key.type != BTRFS_DIR_INDEX_KEY)
5912 break;
5913 if (found_key.offset < ctx->pos)
5914 continue;
5915 if (found_key.offset > private->last_index)
5916 break;
5917 if (btrfs_should_delete_dir_index(del_list: &del_list, index: found_key.offset))
5918 continue;
5919 di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item);
5920 name_len = btrfs_dir_name_len(eb: leaf, s: di);
5921 if ((total_len + sizeof(struct dir_entry) + name_len) >=
5922 PAGE_SIZE) {
5923 btrfs_release_path(p: path);
5924 ret = btrfs_filldir(addr: private->filldir_buf, entries, ctx);
5925 if (ret)
5926 goto nopos;
5927 addr = private->filldir_buf;
5928 entries = 0;
5929 total_len = 0;
5930 goto again;
5931 }
5932
5933 ftype = btrfs_dir_flags_to_ftype(flags: btrfs_dir_flags(eb: leaf, s: di));
5934 entry = addr;
5935 name_ptr = (char *)(entry + 1);
5936 read_extent_buffer(eb: leaf, dst: name_ptr,
5937 start: (unsigned long)(di + 1), len: name_len);
5938 put_unaligned(name_len, &entry->name_len);
5939 put_unaligned(fs_ftype_to_dtype(ftype), &entry->type);
5940 btrfs_dir_item_key_to_cpu(eb: leaf, item: di, cpu_key: &location);
5941 put_unaligned(location.objectid, &entry->ino);
5942 put_unaligned(found_key.offset, &entry->offset);
5943 entries++;
5944 addr += sizeof(struct dir_entry) + name_len;
5945 total_len += sizeof(struct dir_entry) + name_len;
5946 }
5947 /* Catch error encountered during iteration */
5948 if (ret < 0)
5949 goto err;
5950
5951 btrfs_release_path(p: path);
5952
5953 ret = btrfs_filldir(addr: private->filldir_buf, entries, ctx);
5954 if (ret)
5955 goto nopos;
5956
5957 ret = btrfs_readdir_delayed_dir_index(ctx, ins_list: &ins_list);
5958 if (ret)
5959 goto nopos;
5960
5961 /*
5962 * Stop new entries from being returned after we return the last
5963 * entry.
5964 *
5965 * New directory entries are assigned a strictly increasing
5966 * offset. This means that new entries created during readdir
5967 * are *guaranteed* to be seen in the future by that readdir.
5968 * This has broken buggy programs which operate on names as
5969 * they're returned by readdir. Until we re-use freed offsets
5970 * we have this hack to stop new entries from being returned
5971 * under the assumption that they'll never reach this huge
5972 * offset.
5973 *
5974 * This is being careful not to overflow 32bit loff_t unless the
5975 * last entry requires it because doing so has broken 32bit apps
5976 * in the past.
5977 */
5978 if (ctx->pos >= INT_MAX)
5979 ctx->pos = LLONG_MAX;
5980 else
5981 ctx->pos = INT_MAX;
5982nopos:
5983 ret = 0;
5984err:
5985 if (put)
5986 btrfs_readdir_put_delayed_items(inode, ins_list: &ins_list, del_list: &del_list);
5987 btrfs_free_path(p: path);
5988 return ret;
5989}
5990
5991/*
5992 * This is somewhat expensive, updating the tree every time the
5993 * inode changes. But, it is most likely to find the inode in cache.
5994 * FIXME, needs more benchmarking...there are no reasons other than performance
5995 * to keep or drop this code.
5996 */
5997static int btrfs_dirty_inode(struct btrfs_inode *inode)
5998{
5999 struct btrfs_root *root = inode->root;
6000 struct btrfs_fs_info *fs_info = root->fs_info;
6001 struct btrfs_trans_handle *trans;
6002 int ret;
6003
6004 if (test_bit(BTRFS_INODE_DUMMY, &inode->runtime_flags))
6005 return 0;
6006
6007 trans = btrfs_join_transaction(root);
6008 if (IS_ERR(ptr: trans))
6009 return PTR_ERR(ptr: trans);
6010
6011 ret = btrfs_update_inode(trans, inode);
6012 if (ret == -ENOSPC || ret == -EDQUOT) {
6013 /* whoops, lets try again with the full transaction */
6014 btrfs_end_transaction(trans);
6015 trans = btrfs_start_transaction(root, num_items: 1);
6016 if (IS_ERR(ptr: trans))
6017 return PTR_ERR(ptr: trans);
6018
6019 ret = btrfs_update_inode(trans, inode);
6020 }
6021 btrfs_end_transaction(trans);
6022 if (inode->delayed_node)
6023 btrfs_balance_delayed_items(fs_info);
6024
6025 return ret;
6026}
6027
6028/*
6029 * This is a copy of file_update_time. We need this so we can return error on
6030 * ENOSPC for updating the inode in the case of file write and mmap writes.
6031 */
6032static int btrfs_update_time(struct inode *inode, int flags)
6033{
6034 struct btrfs_root *root = BTRFS_I(inode)->root;
6035 bool dirty;
6036
6037 if (btrfs_root_readonly(root))
6038 return -EROFS;
6039
6040 dirty = inode_update_timestamps(inode, flags);
6041 return dirty ? btrfs_dirty_inode(inode: BTRFS_I(inode)) : 0;
6042}
6043
6044/*
6045 * helper to find a free sequence number in a given directory. This current
6046 * code is very simple, later versions will do smarter things in the btree
6047 */
6048int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
6049{
6050 int ret = 0;
6051
6052 if (dir->index_cnt == (u64)-1) {
6053 ret = btrfs_inode_delayed_dir_index_count(inode: dir);
6054 if (ret) {
6055 ret = btrfs_set_inode_index_count(inode: dir);
6056 if (ret)
6057 return ret;
6058 }
6059 }
6060
6061 *index = dir->index_cnt;
6062 dir->index_cnt++;
6063
6064 return ret;
6065}
6066
6067static int btrfs_insert_inode_locked(struct inode *inode)
6068{
6069 struct btrfs_iget_args args;
6070
6071 args.ino = BTRFS_I(inode)->location.objectid;
6072 args.root = BTRFS_I(inode)->root;
6073
6074 return insert_inode_locked4(inode,
6075 btrfs_inode_hash(objectid: inode->i_ino, root: BTRFS_I(inode)->root),
6076 test: btrfs_find_actor, &args);
6077}
6078
6079int btrfs_new_inode_prepare(struct btrfs_new_inode_args *args,
6080 unsigned int *trans_num_items)
6081{
6082 struct inode *dir = args->dir;
6083 struct inode *inode = args->inode;
6084 int ret;
6085
6086 if (!args->orphan) {
6087 ret = fscrypt_setup_filename(inode: dir, iname: &args->dentry->d_name, lookup: 0,
6088 fname: &args->fname);
6089 if (ret)
6090 return ret;
6091 }
6092
6093 ret = posix_acl_create(dir, &inode->i_mode, &args->default_acl, &args->acl);
6094 if (ret) {
6095 fscrypt_free_filename(fname: &args->fname);
6096 return ret;
6097 }
6098
6099 /* 1 to add inode item */
6100 *trans_num_items = 1;
6101 /* 1 to add compression property */
6102 if (BTRFS_I(inode: dir)->prop_compress)
6103 (*trans_num_items)++;
6104 /* 1 to add default ACL xattr */
6105 if (args->default_acl)
6106 (*trans_num_items)++;
6107 /* 1 to add access ACL xattr */
6108 if (args->acl)
6109 (*trans_num_items)++;
6110#ifdef CONFIG_SECURITY
6111 /* 1 to add LSM xattr */
6112 if (dir->i_security)
6113 (*trans_num_items)++;
6114#endif
6115 if (args->orphan) {
6116 /* 1 to add orphan item */
6117 (*trans_num_items)++;
6118 } else {
6119 /*
6120 * 1 to add dir item
6121 * 1 to add dir index
6122 * 1 to update parent inode item
6123 *
6124 * No need for 1 unit for the inode ref item because it is
6125 * inserted in a batch together with the inode item at
6126 * btrfs_create_new_inode().
6127 */
6128 *trans_num_items += 3;
6129 }
6130 return 0;
6131}
6132
6133void btrfs_new_inode_args_destroy(struct btrfs_new_inode_args *args)
6134{
6135 posix_acl_release(acl: args->acl);
6136 posix_acl_release(acl: args->default_acl);
6137 fscrypt_free_filename(fname: &args->fname);
6138}
6139
6140/*
6141 * Inherit flags from the parent inode.
6142 *
6143 * Currently only the compression flags and the cow flags are inherited.
6144 */
6145static void btrfs_inherit_iflags(struct btrfs_inode *inode, struct btrfs_inode *dir)
6146{
6147 unsigned int flags;
6148
6149 flags = dir->flags;
6150
6151 if (flags & BTRFS_INODE_NOCOMPRESS) {
6152 inode->flags &= ~BTRFS_INODE_COMPRESS;
6153 inode->flags |= BTRFS_INODE_NOCOMPRESS;
6154 } else if (flags & BTRFS_INODE_COMPRESS) {
6155 inode->flags &= ~BTRFS_INODE_NOCOMPRESS;
6156 inode->flags |= BTRFS_INODE_COMPRESS;
6157 }
6158
6159 if (flags & BTRFS_INODE_NODATACOW) {
6160 inode->flags |= BTRFS_INODE_NODATACOW;
6161 if (S_ISREG(inode->vfs_inode.i_mode))
6162 inode->flags |= BTRFS_INODE_NODATASUM;
6163 }
6164
6165 btrfs_sync_inode_flags_to_i_flags(inode: &inode->vfs_inode);
6166}
6167
6168int btrfs_create_new_inode(struct btrfs_trans_handle *trans,
6169 struct btrfs_new_inode_args *args)
6170{
6171 struct timespec64 ts;
6172 struct inode *dir = args->dir;
6173 struct inode *inode = args->inode;
6174 const struct fscrypt_str *name = args->orphan ? NULL : &args->fname.disk_name;
6175 struct btrfs_fs_info *fs_info = btrfs_sb(sb: dir->i_sb);
6176 struct btrfs_root *root;
6177 struct btrfs_inode_item *inode_item;
6178 struct btrfs_key *location;
6179 struct btrfs_path *path;
6180 u64 objectid;
6181 struct btrfs_inode_ref *ref;
6182 struct btrfs_key key[2];
6183 u32 sizes[2];
6184 struct btrfs_item_batch batch;
6185 unsigned long ptr;
6186 int ret;
6187
6188 path = btrfs_alloc_path();
6189 if (!path)
6190 return -ENOMEM;
6191
6192 if (!args->subvol)
6193 BTRFS_I(inode)->root = btrfs_grab_root(root: BTRFS_I(inode: dir)->root);
6194 root = BTRFS_I(inode)->root;
6195
6196 ret = btrfs_get_free_objectid(root, objectid: &objectid);
6197 if (ret)
6198 goto out;
6199 inode->i_ino = objectid;
6200
6201 if (args->orphan) {
6202 /*
6203 * O_TMPFILE, set link count to 0, so that after this point, we
6204 * fill in an inode item with the correct link count.
6205 */
6206 set_nlink(inode, nlink: 0);
6207 } else {
6208 trace_btrfs_inode_request(inode: dir);
6209
6210 ret = btrfs_set_inode_index(dir: BTRFS_I(inode: dir), index: &BTRFS_I(inode)->dir_index);
6211 if (ret)
6212 goto out;
6213 }
6214 /* index_cnt is ignored for everything but a dir. */
6215 BTRFS_I(inode)->index_cnt = BTRFS_DIR_START_INDEX;
6216 BTRFS_I(inode)->generation = trans->transid;
6217 inode->i_generation = BTRFS_I(inode)->generation;
6218
6219 /*
6220 * Subvolumes don't inherit flags from their parent directory.
6221 * Originally this was probably by accident, but we probably can't
6222 * change it now without compatibility issues.
6223 */
6224 if (!args->subvol)
6225 btrfs_inherit_iflags(inode: BTRFS_I(inode), dir: BTRFS_I(inode: dir));
6226
6227 if (S_ISREG(inode->i_mode)) {
6228 if (btrfs_test_opt(fs_info, NODATASUM))
6229 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6230 if (btrfs_test_opt(fs_info, NODATACOW))
6231 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6232 BTRFS_INODE_NODATASUM;
6233 }
6234
6235 location = &BTRFS_I(inode)->location;
6236 location->objectid = objectid;
6237 location->offset = 0;
6238 location->type = BTRFS_INODE_ITEM_KEY;
6239
6240 ret = btrfs_insert_inode_locked(inode);
6241 if (ret < 0) {
6242 if (!args->orphan)
6243 BTRFS_I(inode: dir)->index_cnt--;
6244 goto out;
6245 }
6246
6247 /*
6248 * We could have gotten an inode number from somebody who was fsynced
6249 * and then removed in this same transaction, so let's just set full
6250 * sync since it will be a full sync anyway and this will blow away the
6251 * old info in the log.
6252 */
6253 btrfs_set_inode_full_sync(inode: BTRFS_I(inode));
6254
6255 key[0].objectid = objectid;
6256 key[0].type = BTRFS_INODE_ITEM_KEY;
6257 key[0].offset = 0;
6258
6259 sizes[0] = sizeof(struct btrfs_inode_item);
6260
6261 if (!args->orphan) {
6262 /*
6263 * Start new inodes with an inode_ref. This is slightly more
6264 * efficient for small numbers of hard links since they will
6265 * be packed into one item. Extended refs will kick in if we
6266 * add more hard links than can fit in the ref item.
6267 */
6268 key[1].objectid = objectid;
6269 key[1].type = BTRFS_INODE_REF_KEY;
6270 if (args->subvol) {
6271 key[1].offset = objectid;
6272 sizes[1] = 2 + sizeof(*ref);
6273 } else {
6274 key[1].offset = btrfs_ino(inode: BTRFS_I(inode: dir));
6275 sizes[1] = name->len + sizeof(*ref);
6276 }
6277 }
6278
6279 batch.keys = &key[0];
6280 batch.data_sizes = &sizes[0];
6281 batch.total_data_size = sizes[0] + (args->orphan ? 0 : sizes[1]);
6282 batch.nr = args->orphan ? 1 : 2;
6283 ret = btrfs_insert_empty_items(trans, root, path, batch: &batch);
6284 if (ret != 0) {
6285 btrfs_abort_transaction(trans, ret);
6286 goto discard;
6287 }
6288
6289 ts = simple_inode_init_ts(inode);
6290 BTRFS_I(inode)->i_otime_sec = ts.tv_sec;
6291 BTRFS_I(inode)->i_otime_nsec = ts.tv_nsec;
6292
6293 /*
6294 * We're going to fill the inode item now, so at this point the inode
6295 * must be fully initialized.
6296 */
6297
6298 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6299 struct btrfs_inode_item);
6300 memzero_extent_buffer(eb: path->nodes[0], start: (unsigned long)inode_item,
6301 len: sizeof(*inode_item));
6302 fill_inode_item(trans, leaf: path->nodes[0], item: inode_item, inode);
6303
6304 if (!args->orphan) {
6305 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6306 struct btrfs_inode_ref);
6307 ptr = (unsigned long)(ref + 1);
6308 if (args->subvol) {
6309 btrfs_set_inode_ref_name_len(eb: path->nodes[0], s: ref, val: 2);
6310 btrfs_set_inode_ref_index(eb: path->nodes[0], s: ref, val: 0);
6311 write_extent_buffer(eb: path->nodes[0], src: "..", start: ptr, len: 2);
6312 } else {
6313 btrfs_set_inode_ref_name_len(eb: path->nodes[0], s: ref,
6314 val: name->len);
6315 btrfs_set_inode_ref_index(eb: path->nodes[0], s: ref,
6316 val: BTRFS_I(inode)->dir_index);
6317 write_extent_buffer(eb: path->nodes[0], src: name->name, start: ptr,
6318 len: name->len);
6319 }
6320 }
6321
6322 btrfs_mark_buffer_dirty(trans, buf: path->nodes[0]);
6323 /*
6324 * We don't need the path anymore, plus inheriting properties, adding
6325 * ACLs, security xattrs, orphan item or adding the link, will result in
6326 * allocating yet another path. So just free our path.
6327 */
6328 btrfs_free_path(p: path);
6329 path = NULL;
6330
6331 if (args->subvol) {
6332 struct inode *parent;
6333
6334 /*
6335 * Subvolumes inherit properties from their parent subvolume,
6336 * not the directory they were created in.
6337 */
6338 parent = btrfs_iget(s: fs_info->sb, BTRFS_FIRST_FREE_OBJECTID,
6339 root: BTRFS_I(inode: dir)->root);
6340 if (IS_ERR(ptr: parent)) {
6341 ret = PTR_ERR(ptr: parent);
6342 } else {
6343 ret = btrfs_inode_inherit_props(trans, inode, dir: parent);
6344 iput(parent);
6345 }
6346 } else {
6347 ret = btrfs_inode_inherit_props(trans, inode, dir);
6348 }
6349 if (ret) {
6350 btrfs_err(fs_info,
6351 "error inheriting props for ino %llu (root %llu): %d",
6352 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid,
6353 ret);
6354 }
6355
6356 /*
6357 * Subvolumes don't inherit ACLs or get passed to the LSM. This is
6358 * probably a bug.
6359 */
6360 if (!args->subvol) {
6361 ret = btrfs_init_inode_security(trans, args);
6362 if (ret) {
6363 btrfs_abort_transaction(trans, ret);
6364 goto discard;
6365 }
6366 }
6367
6368 inode_tree_add(inode: BTRFS_I(inode));
6369
6370 trace_btrfs_inode_new(inode);
6371 btrfs_set_inode_last_trans(trans, inode: BTRFS_I(inode));
6372
6373 btrfs_update_root_times(trans, root);
6374
6375 if (args->orphan) {
6376 ret = btrfs_orphan_add(trans, inode: BTRFS_I(inode));
6377 } else {
6378 ret = btrfs_add_link(trans, parent_inode: BTRFS_I(inode: dir), inode: BTRFS_I(inode), name,
6379 add_backref: 0, index: BTRFS_I(inode)->dir_index);
6380 }
6381 if (ret) {
6382 btrfs_abort_transaction(trans, ret);
6383 goto discard;
6384 }
6385
6386 return 0;
6387
6388discard:
6389 /*
6390 * discard_new_inode() calls iput(), but the caller owns the reference
6391 * to the inode.
6392 */
6393 ihold(inode);
6394 discard_new_inode(inode);
6395out:
6396 btrfs_free_path(p: path);
6397 return ret;
6398}
6399
6400/*
6401 * utility function to add 'inode' into 'parent_inode' with
6402 * a give name and a given sequence number.
6403 * if 'add_backref' is true, also insert a backref from the
6404 * inode to the parent directory.
6405 */
6406int btrfs_add_link(struct btrfs_trans_handle *trans,
6407 struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
6408 const struct fscrypt_str *name, int add_backref, u64 index)
6409{
6410 int ret = 0;
6411 struct btrfs_key key;
6412 struct btrfs_root *root = parent_inode->root;
6413 u64 ino = btrfs_ino(inode);
6414 u64 parent_ino = btrfs_ino(inode: parent_inode);
6415
6416 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6417 memcpy(&key, &inode->root->root_key, sizeof(key));
6418 } else {
6419 key.objectid = ino;
6420 key.type = BTRFS_INODE_ITEM_KEY;
6421 key.offset = 0;
6422 }
6423
6424 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6425 ret = btrfs_add_root_ref(trans, root_id: key.objectid,
6426 ref_id: root->root_key.objectid, dirid: parent_ino,
6427 sequence: index, name);
6428 } else if (add_backref) {
6429 ret = btrfs_insert_inode_ref(trans, root, name,
6430 inode_objectid: ino, ref_objectid: parent_ino, index);
6431 }
6432
6433 /* Nothing to clean up yet */
6434 if (ret)
6435 return ret;
6436
6437 ret = btrfs_insert_dir_item(trans, name, dir: parent_inode, location: &key,
6438 type: btrfs_inode_type(inode: &inode->vfs_inode), index);
6439 if (ret == -EEXIST || ret == -EOVERFLOW)
6440 goto fail_dir_item;
6441 else if (ret) {
6442 btrfs_abort_transaction(trans, ret);
6443 return ret;
6444 }
6445
6446 btrfs_i_size_write(inode: parent_inode, size: parent_inode->vfs_inode.i_size +
6447 name->len * 2);
6448 inode_inc_iversion(inode: &parent_inode->vfs_inode);
6449 /*
6450 * If we are replaying a log tree, we do not want to update the mtime
6451 * and ctime of the parent directory with the current time, since the
6452 * log replay procedure is responsible for setting them to their correct
6453 * values (the ones it had when the fsync was done).
6454 */
6455 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags))
6456 inode_set_mtime_to_ts(inode: &parent_inode->vfs_inode,
6457 ts: inode_set_ctime_current(inode: &parent_inode->vfs_inode));
6458
6459 ret = btrfs_update_inode(trans, inode: parent_inode);
6460 if (ret)
6461 btrfs_abort_transaction(trans, ret);
6462 return ret;
6463
6464fail_dir_item:
6465 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6466 u64 local_index;
6467 int err;
6468 err = btrfs_del_root_ref(trans, root_id: key.objectid,
6469 ref_id: root->root_key.objectid, dirid: parent_ino,
6470 sequence: &local_index, name);
6471 if (err)
6472 btrfs_abort_transaction(trans, err);
6473 } else if (add_backref) {
6474 u64 local_index;
6475 int err;
6476
6477 err = btrfs_del_inode_ref(trans, root, name, inode_objectid: ino, ref_objectid: parent_ino,
6478 index: &local_index);
6479 if (err)
6480 btrfs_abort_transaction(trans, err);
6481 }
6482
6483 /* Return the original error code */
6484 return ret;
6485}
6486
6487static int btrfs_create_common(struct inode *dir, struct dentry *dentry,
6488 struct inode *inode)
6489{
6490 struct btrfs_fs_info *fs_info = btrfs_sb(sb: dir->i_sb);
6491 struct btrfs_root *root = BTRFS_I(inode: dir)->root;
6492 struct btrfs_new_inode_args new_inode_args = {
6493 .dir = dir,
6494 .dentry = dentry,
6495 .inode = inode,
6496 };
6497 unsigned int trans_num_items;
6498 struct btrfs_trans_handle *trans;
6499 int err;
6500
6501 err = btrfs_new_inode_prepare(args: &new_inode_args, trans_num_items: &trans_num_items);
6502 if (err)
6503 goto out_inode;
6504
6505 trans = btrfs_start_transaction(root, num_items: trans_num_items);
6506 if (IS_ERR(ptr: trans)) {
6507 err = PTR_ERR(ptr: trans);
6508 goto out_new_inode_args;
6509 }
6510
6511 err = btrfs_create_new_inode(trans, args: &new_inode_args);
6512 if (!err)
6513 d_instantiate_new(dentry, inode);
6514
6515 btrfs_end_transaction(trans);
6516 btrfs_btree_balance_dirty(fs_info);
6517out_new_inode_args:
6518 btrfs_new_inode_args_destroy(args: &new_inode_args);
6519out_inode:
6520 if (err)
6521 iput(inode);
6522 return err;
6523}
6524
6525static int btrfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
6526 struct dentry *dentry, umode_t mode, dev_t rdev)
6527{
6528 struct inode *inode;
6529
6530 inode = new_inode(sb: dir->i_sb);
6531 if (!inode)
6532 return -ENOMEM;
6533 inode_init_owner(idmap, inode, dir, mode);
6534 inode->i_op = &btrfs_special_inode_operations;
6535 init_special_inode(inode, inode->i_mode, rdev);
6536 return btrfs_create_common(dir, dentry, inode);
6537}
6538
6539static int btrfs_create(struct mnt_idmap *idmap, struct inode *dir,
6540 struct dentry *dentry, umode_t mode, bool excl)
6541{
6542 struct inode *inode;
6543
6544 inode = new_inode(sb: dir->i_sb);
6545 if (!inode)
6546 return -ENOMEM;
6547 inode_init_owner(idmap, inode, dir, mode);
6548 inode->i_fop = &btrfs_file_operations;
6549 inode->i_op = &btrfs_file_inode_operations;
6550 inode->i_mapping->a_ops = &btrfs_aops;
6551 return btrfs_create_common(dir, dentry, inode);
6552}
6553
6554static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6555 struct dentry *dentry)
6556{
6557 struct btrfs_trans_handle *trans = NULL;
6558 struct btrfs_root *root = BTRFS_I(inode: dir)->root;
6559 struct inode *inode = d_inode(dentry: old_dentry);
6560 struct btrfs_fs_info *fs_info = btrfs_sb(sb: inode->i_sb);
6561 struct fscrypt_name fname;
6562 u64 index;
6563 int err;
6564 int drop_inode = 0;
6565
6566 /* do not allow sys_link's with other subvols of the same device */
6567 if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid)
6568 return -EXDEV;
6569
6570 if (inode->i_nlink >= BTRFS_LINK_MAX)
6571 return -EMLINK;
6572
6573 err = fscrypt_setup_filename(inode: dir, iname: &dentry->d_name, lookup: 0, fname: &fname);
6574 if (err)
6575 goto fail;
6576
6577 err = btrfs_set_inode_index(dir: BTRFS_I(inode: dir), index: &index);
6578 if (err)
6579 goto fail;
6580
6581 /*
6582 * 2 items for inode and inode ref
6583 * 2 items for dir items
6584 * 1 item for parent inode
6585 * 1 item for orphan item deletion if O_TMPFILE
6586 */
6587 trans = btrfs_start_transaction(root, num_items: inode->i_nlink ? 5 : 6);
6588 if (IS_ERR(ptr: trans)) {
6589 err = PTR_ERR(ptr: trans);
6590 trans = NULL;
6591 goto fail;
6592 }
6593
6594 /* There are several dir indexes for this inode, clear the cache. */
6595 BTRFS_I(inode)->dir_index = 0ULL;
6596 inc_nlink(inode);
6597 inode_inc_iversion(inode);
6598 inode_set_ctime_current(inode);
6599 ihold(inode);
6600 set_bit(nr: BTRFS_INODE_COPY_EVERYTHING, addr: &BTRFS_I(inode)->runtime_flags);
6601
6602 err = btrfs_add_link(trans, parent_inode: BTRFS_I(inode: dir), inode: BTRFS_I(inode),
6603 name: &fname.disk_name, add_backref: 1, index);
6604
6605 if (err) {
6606 drop_inode = 1;
6607 } else {
6608 struct dentry *parent = dentry->d_parent;
6609
6610 err = btrfs_update_inode(trans, inode: BTRFS_I(inode));
6611 if (err)
6612 goto fail;
6613 if (inode->i_nlink == 1) {
6614 /*
6615 * If new hard link count is 1, it's a file created
6616 * with open(2) O_TMPFILE flag.
6617 */
6618 err = btrfs_orphan_del(trans, inode: BTRFS_I(inode));
6619 if (err)
6620 goto fail;
6621 }
6622 d_instantiate(dentry, inode);
6623 btrfs_log_new_name(trans, old_dentry, NULL, old_dir_index: 0, parent);
6624 }
6625
6626fail:
6627 fscrypt_free_filename(fname: &fname);
6628 if (trans)
6629 btrfs_end_transaction(trans);
6630 if (drop_inode) {
6631 inode_dec_link_count(inode);
6632 iput(inode);
6633 }
6634 btrfs_btree_balance_dirty(fs_info);
6635 return err;
6636}
6637
6638static int btrfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
6639 struct dentry *dentry, umode_t mode)
6640{
6641 struct inode *inode;
6642
6643 inode = new_inode(sb: dir->i_sb);
6644 if (!inode)
6645 return -ENOMEM;
6646 inode_init_owner(idmap, inode, dir, S_IFDIR | mode);
6647 inode->i_op = &btrfs_dir_inode_operations;
6648 inode->i_fop = &btrfs_dir_file_operations;
6649 return btrfs_create_common(dir, dentry, inode);
6650}
6651
6652static noinline int uncompress_inline(struct btrfs_path *path,
6653 struct page *page,
6654 struct btrfs_file_extent_item *item)
6655{
6656 int ret;
6657 struct extent_buffer *leaf = path->nodes[0];
6658 char *tmp;
6659 size_t max_size;
6660 unsigned long inline_size;
6661 unsigned long ptr;
6662 int compress_type;
6663
6664 compress_type = btrfs_file_extent_compression(eb: leaf, s: item);
6665 max_size = btrfs_file_extent_ram_bytes(eb: leaf, s: item);
6666 inline_size = btrfs_file_extent_inline_item_len(eb: leaf, nr: path->slots[0]);
6667 tmp = kmalloc(size: inline_size, GFP_NOFS);
6668 if (!tmp)
6669 return -ENOMEM;
6670 ptr = btrfs_file_extent_inline_start(e: item);
6671
6672 read_extent_buffer(eb: leaf, dst: tmp, start: ptr, len: inline_size);
6673
6674 max_size = min_t(unsigned long, PAGE_SIZE, max_size);
6675 ret = btrfs_decompress(type: compress_type, data_in: tmp, dest_page: page, start_byte: 0, srclen: inline_size, destlen: max_size);
6676
6677 /*
6678 * decompression code contains a memset to fill in any space between the end
6679 * of the uncompressed data and the end of max_size in case the decompressed
6680 * data ends up shorter than ram_bytes. That doesn't cover the hole between
6681 * the end of an inline extent and the beginning of the next block, so we
6682 * cover that region here.
6683 */
6684
6685 if (max_size < PAGE_SIZE)
6686 memzero_page(page, offset: max_size, PAGE_SIZE - max_size);
6687 kfree(objp: tmp);
6688 return ret;
6689}
6690
6691static int read_inline_extent(struct btrfs_inode *inode, struct btrfs_path *path,
6692 struct page *page)
6693{
6694 struct btrfs_file_extent_item *fi;
6695 void *kaddr;
6696 size_t copy_size;
6697
6698 if (!page || PageUptodate(page))
6699 return 0;
6700
6701 ASSERT(page_offset(page) == 0);
6702
6703 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
6704 struct btrfs_file_extent_item);
6705 if (btrfs_file_extent_compression(eb: path->nodes[0], s: fi) != BTRFS_COMPRESS_NONE)
6706 return uncompress_inline(path, page, item: fi);
6707
6708 copy_size = min_t(u64, PAGE_SIZE,
6709 btrfs_file_extent_ram_bytes(path->nodes[0], fi));
6710 kaddr = kmap_local_page(page);
6711 read_extent_buffer(eb: path->nodes[0], dst: kaddr,
6712 start: btrfs_file_extent_inline_start(e: fi), len: copy_size);
6713 kunmap_local(kaddr);
6714 if (copy_size < PAGE_SIZE)
6715 memzero_page(page, offset: copy_size, PAGE_SIZE - copy_size);
6716 return 0;
6717}
6718
6719/*
6720 * Lookup the first extent overlapping a range in a file.
6721 *
6722 * @inode: file to search in
6723 * @page: page to read extent data into if the extent is inline
6724 * @pg_offset: offset into @page to copy to
6725 * @start: file offset
6726 * @len: length of range starting at @start
6727 *
6728 * Return the first &struct extent_map which overlaps the given range, reading
6729 * it from the B-tree and caching it if necessary. Note that there may be more
6730 * extents which overlap the given range after the returned extent_map.
6731 *
6732 * If @page is not NULL and the extent is inline, this also reads the extent
6733 * data directly into the page and marks the extent up to date in the io_tree.
6734 *
6735 * Return: ERR_PTR on error, non-NULL extent_map on success.
6736 */
6737struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6738 struct page *page, size_t pg_offset,
6739 u64 start, u64 len)
6740{
6741 struct btrfs_fs_info *fs_info = inode->root->fs_info;
6742 int ret = 0;
6743 u64 extent_start = 0;
6744 u64 extent_end = 0;
6745 u64 objectid = btrfs_ino(inode);
6746 int extent_type = -1;
6747 struct btrfs_path *path = NULL;
6748 struct btrfs_root *root = inode->root;
6749 struct btrfs_file_extent_item *item;
6750 struct extent_buffer *leaf;
6751 struct btrfs_key found_key;
6752 struct extent_map *em = NULL;
6753 struct extent_map_tree *em_tree = &inode->extent_tree;
6754
6755 read_lock(&em_tree->lock);
6756 em = lookup_extent_mapping(tree: em_tree, start, len);
6757 read_unlock(&em_tree->lock);
6758
6759 if (em) {
6760 if (em->start > start || em->start + em->len <= start)
6761 free_extent_map(em);
6762 else if (em->block_start == EXTENT_MAP_INLINE && page)
6763 free_extent_map(em);
6764 else
6765 goto out;
6766 }
6767 em = alloc_extent_map();
6768 if (!em) {
6769 ret = -ENOMEM;
6770 goto out;
6771 }
6772 em->start = EXTENT_MAP_HOLE;
6773 em->orig_start = EXTENT_MAP_HOLE;
6774 em->len = (u64)-1;
6775 em->block_len = (u64)-1;
6776
6777 path = btrfs_alloc_path();
6778 if (!path) {
6779 ret = -ENOMEM;
6780 goto out;
6781 }
6782
6783 /* Chances are we'll be called again, so go ahead and do readahead */
6784 path->reada = READA_FORWARD;
6785
6786 /*
6787 * The same explanation in load_free_space_cache applies here as well,
6788 * we only read when we're loading the free space cache, and at that
6789 * point the commit_root has everything we need.
6790 */
6791 if (btrfs_is_free_space_inode(inode)) {
6792 path->search_commit_root = 1;
6793 path->skip_locking = 1;
6794 }
6795
6796 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, bytenr: start, mod: 0);
6797 if (ret < 0) {
6798 goto out;
6799 } else if (ret > 0) {
6800 if (path->slots[0] == 0)
6801 goto not_found;
6802 path->slots[0]--;
6803 ret = 0;
6804 }
6805
6806 leaf = path->nodes[0];
6807 item = btrfs_item_ptr(leaf, path->slots[0],
6808 struct btrfs_file_extent_item);
6809 btrfs_item_key_to_cpu(eb: leaf, cpu_key: &found_key, nr: path->slots[0]);
6810 if (found_key.objectid != objectid ||
6811 found_key.type != BTRFS_EXTENT_DATA_KEY) {
6812 /*
6813 * If we backup past the first extent we want to move forward
6814 * and see if there is an extent in front of us, otherwise we'll
6815 * say there is a hole for our whole search range which can
6816 * cause problems.
6817 */
6818 extent_end = start;
6819 goto next;
6820 }
6821
6822 extent_type = btrfs_file_extent_type(eb: leaf, s: item);
6823 extent_start = found_key.offset;
6824 extent_end = btrfs_file_extent_end(path);
6825 if (extent_type == BTRFS_FILE_EXTENT_REG ||
6826 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6827 /* Only regular file could have regular/prealloc extent */
6828 if (!S_ISREG(inode->vfs_inode.i_mode)) {
6829 ret = -EUCLEAN;
6830 btrfs_crit(fs_info,
6831 "regular/prealloc extent found for non-regular inode %llu",
6832 btrfs_ino(inode));
6833 goto out;
6834 }
6835 trace_btrfs_get_extent_show_fi_regular(bi: inode, l: leaf, fi: item,
6836 start: extent_start);
6837 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
6838 trace_btrfs_get_extent_show_fi_inline(bi: inode, l: leaf, fi: item,
6839 slot: path->slots[0],
6840 start: extent_start);
6841 }
6842next:
6843 if (start >= extent_end) {
6844 path->slots[0]++;
6845 if (path->slots[0] >= btrfs_header_nritems(eb: leaf)) {
6846 ret = btrfs_next_leaf(root, path);
6847 if (ret < 0)
6848 goto out;
6849 else if (ret > 0)
6850 goto not_found;
6851
6852 leaf = path->nodes[0];
6853 }
6854 btrfs_item_key_to_cpu(eb: leaf, cpu_key: &found_key, nr: path->slots[0]);
6855 if (found_key.objectid != objectid ||
6856 found_key.type != BTRFS_EXTENT_DATA_KEY)
6857 goto not_found;
6858 if (start + len <= found_key.offset)
6859 goto not_found;
6860 if (start > found_key.offset)
6861 goto next;
6862
6863 /* New extent overlaps with existing one */
6864 em->start = start;
6865 em->orig_start = start;
6866 em->len = found_key.offset - start;
6867 em->block_start = EXTENT_MAP_HOLE;
6868 goto insert;
6869 }
6870
6871 btrfs_extent_item_to_extent_map(inode, path, fi: item, em);
6872
6873 if (extent_type == BTRFS_FILE_EXTENT_REG ||
6874 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6875 goto insert;
6876 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
6877 /*
6878 * Inline extent can only exist at file offset 0. This is
6879 * ensured by tree-checker and inline extent creation path.
6880 * Thus all members representing file offsets should be zero.
6881 */
6882 ASSERT(pg_offset == 0);
6883 ASSERT(extent_start == 0);
6884 ASSERT(em->start == 0);
6885
6886 /*
6887 * btrfs_extent_item_to_extent_map() should have properly
6888 * initialized em members already.
6889 *
6890 * Other members are not utilized for inline extents.
6891 */
6892 ASSERT(em->block_start == EXTENT_MAP_INLINE);
6893 ASSERT(em->len == fs_info->sectorsize);
6894
6895 ret = read_inline_extent(inode, path, page);
6896 if (ret < 0)
6897 goto out;
6898 goto insert;
6899 }
6900not_found:
6901 em->start = start;
6902 em->orig_start = start;
6903 em->len = len;
6904 em->block_start = EXTENT_MAP_HOLE;
6905insert:
6906 ret = 0;
6907 btrfs_release_path(p: path);
6908 if (em->start > start || extent_map_end(em) <= start) {
6909 btrfs_err(fs_info,
6910 "bad extent! em: [%llu %llu] passed [%llu %llu]",
6911 em->start, em->len, start, len);
6912 ret = -EIO;
6913 goto out;
6914 }
6915
6916 write_lock(&em_tree->lock);
6917 ret = btrfs_add_extent_mapping(fs_info, em_tree, em_in: &em, start, len);
6918 write_unlock(&em_tree->lock);
6919out:
6920 btrfs_free_path(p: path);
6921
6922 trace_btrfs_get_extent(root, inode, map: em);
6923
6924 if (ret) {
6925 free_extent_map(em);
6926 return ERR_PTR(error: ret);
6927 }
6928 return em;
6929}
6930
6931static struct extent_map *btrfs_create_dio_extent(struct btrfs_inode *inode,
6932 struct btrfs_dio_data *dio_data,
6933 const u64 start,
6934 const u64 len,
6935 const u64 orig_start,
6936 const u64 block_start,
6937 const u64 block_len,
6938 const u64 orig_block_len,
6939 const u64 ram_bytes,
6940 const int type)
6941{
6942 struct extent_map *em = NULL;
6943 struct btrfs_ordered_extent *ordered;
6944
6945 if (type != BTRFS_ORDERED_NOCOW) {
6946 em = create_io_em(inode, start, len, orig_start, block_start,
6947 block_len, orig_block_len, ram_bytes,
6948 compress_type: BTRFS_COMPRESS_NONE, /* compress_type */
6949 type);
6950 if (IS_ERR(ptr: em))
6951 goto out;
6952 }
6953 ordered = btrfs_alloc_ordered_extent(inode, file_offset: start, num_bytes: len, ram_bytes: len,
6954 disk_bytenr: block_start, disk_num_bytes: block_len, offset: 0,
6955 flags: (1 << type) |
6956 (1 << BTRFS_ORDERED_DIRECT),
6957 compress_type: BTRFS_COMPRESS_NONE);
6958 if (IS_ERR(ptr: ordered)) {
6959 if (em) {
6960 free_extent_map(em);
6961 btrfs_drop_extent_map_range(inode, start,
6962 end: start + len - 1, skip_pinned: false);
6963 }
6964 em = ERR_CAST(ptr: ordered);
6965 } else {
6966 ASSERT(!dio_data->ordered);
6967 dio_data->ordered = ordered;
6968 }
6969 out:
6970
6971 return em;
6972}
6973
6974static struct extent_map *btrfs_new_extent_direct(struct btrfs_inode *inode,
6975 struct btrfs_dio_data *dio_data,
6976 u64 start, u64 len)
6977{
6978 struct btrfs_root *root = inode->root;
6979 struct btrfs_fs_info *fs_info = root->fs_info;
6980 struct extent_map *em;
6981 struct btrfs_key ins;
6982 u64 alloc_hint;
6983 int ret;
6984
6985 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes: len);
6986 ret = btrfs_reserve_extent(root, ram_bytes: len, num_bytes: len, min_alloc_size: fs_info->sectorsize,
6987 empty_size: 0, hint_byte: alloc_hint, ins: &ins, is_data: 1, delalloc: 1);
6988 if (ret)
6989 return ERR_PTR(error: ret);
6990
6991 em = btrfs_create_dio_extent(inode, dio_data, start, len: ins.offset, orig_start: start,
6992 block_start: ins.objectid, block_len: ins.offset, orig_block_len: ins.offset,
6993 ram_bytes: ins.offset, type: BTRFS_ORDERED_REGULAR);
6994 btrfs_dec_block_group_reservations(fs_info, start: ins.objectid);
6995 if (IS_ERR(ptr: em))
6996 btrfs_free_reserved_extent(fs_info, start: ins.objectid, len: ins.offset,
6997 delalloc: 1);
6998
6999 return em;
7000}
7001
7002static bool btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
7003{
7004 struct btrfs_block_group *block_group;
7005 bool readonly = false;
7006
7007 block_group = btrfs_lookup_block_group(info: fs_info, bytenr);
7008 if (!block_group || block_group->ro)
7009 readonly = true;
7010 if (block_group)
7011 btrfs_put_block_group(cache: block_group);
7012 return readonly;
7013}
7014
7015/*
7016 * Check if we can do nocow write into the range [@offset, @offset + @len)
7017 *
7018 * @offset: File offset
7019 * @len: The length to write, will be updated to the nocow writeable
7020 * range
7021 * @orig_start: (optional) Return the original file offset of the file extent
7022 * @orig_len: (optional) Return the original on-disk length of the file extent
7023 * @ram_bytes: (optional) Return the ram_bytes of the file extent
7024 * @strict: if true, omit optimizations that might force us into unnecessary
7025 * cow. e.g., don't trust generation number.
7026 *
7027 * Return:
7028 * >0 and update @len if we can do nocow write
7029 * 0 if we can't do nocow write
7030 * <0 if error happened
7031 *
7032 * NOTE: This only checks the file extents, caller is responsible to wait for
7033 * any ordered extents.
7034 */
7035noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7036 u64 *orig_start, u64 *orig_block_len,
7037 u64 *ram_bytes, bool nowait, bool strict)
7038{
7039 struct btrfs_fs_info *fs_info = btrfs_sb(sb: inode->i_sb);
7040 struct can_nocow_file_extent_args nocow_args = { 0 };
7041 struct btrfs_path *path;
7042 int ret;
7043 struct extent_buffer *leaf;
7044 struct btrfs_root *root = BTRFS_I(inode)->root;
7045 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7046 struct btrfs_file_extent_item *fi;
7047 struct btrfs_key key;
7048 int found_type;
7049
7050 path = btrfs_alloc_path();
7051 if (!path)
7052 return -ENOMEM;
7053 path->nowait = nowait;
7054
7055 ret = btrfs_lookup_file_extent(NULL, root, path,
7056 objectid: btrfs_ino(inode: BTRFS_I(inode)), bytenr: offset, mod: 0);
7057 if (ret < 0)
7058 goto out;
7059
7060 if (ret == 1) {
7061 if (path->slots[0] == 0) {
7062 /* can't find the item, must cow */
7063 ret = 0;
7064 goto out;
7065 }
7066 path->slots[0]--;
7067 }
7068 ret = 0;
7069 leaf = path->nodes[0];
7070 btrfs_item_key_to_cpu(eb: leaf, cpu_key: &key, nr: path->slots[0]);
7071 if (key.objectid != btrfs_ino(inode: BTRFS_I(inode)) ||
7072 key.type != BTRFS_EXTENT_DATA_KEY) {
7073 /* not our file or wrong item type, must cow */
7074 goto out;
7075 }
7076
7077 if (key.offset > offset) {
7078 /* Wrong offset, must cow */
7079 goto out;
7080 }
7081
7082 if (btrfs_file_extent_end(path) <= offset)
7083 goto out;
7084
7085 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
7086 found_type = btrfs_file_extent_type(eb: leaf, s: fi);
7087 if (ram_bytes)
7088 *ram_bytes = btrfs_file_extent_ram_bytes(eb: leaf, s: fi);
7089
7090 nocow_args.start = offset;
7091 nocow_args.end = offset + *len - 1;
7092 nocow_args.strict = strict;
7093 nocow_args.free_path = true;
7094
7095 ret = can_nocow_file_extent(path, key: &key, inode: BTRFS_I(inode), args: &nocow_args);
7096 /* can_nocow_file_extent() has freed the path. */
7097 path = NULL;
7098
7099 if (ret != 1) {
7100 /* Treat errors as not being able to NOCOW. */
7101 ret = 0;
7102 goto out;
7103 }
7104
7105 ret = 0;
7106 if (btrfs_extent_readonly(fs_info, bytenr: nocow_args.disk_bytenr))
7107 goto out;
7108
7109 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7110 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7111 u64 range_end;
7112
7113 range_end = round_up(offset + nocow_args.num_bytes,
7114 root->fs_info->sectorsize) - 1;
7115 ret = test_range_bit_exists(tree: io_tree, start: offset, end: range_end, bit: EXTENT_DELALLOC);
7116 if (ret) {
7117 ret = -EAGAIN;
7118 goto out;
7119 }
7120 }
7121
7122 if (orig_start)
7123 *orig_start = key.offset - nocow_args.extent_offset;
7124 if (orig_block_len)
7125 *orig_block_len = nocow_args.disk_num_bytes;
7126
7127 *len = nocow_args.num_bytes;
7128 ret = 1;
7129out:
7130 btrfs_free_path(p: path);
7131 return ret;
7132}
7133
7134static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7135 struct extent_state **cached_state,
7136 unsigned int iomap_flags)
7137{
7138 const bool writing = (iomap_flags & IOMAP_WRITE);
7139 const bool nowait = (iomap_flags & IOMAP_NOWAIT);
7140 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7141 struct btrfs_ordered_extent *ordered;
7142 int ret = 0;
7143
7144 while (1) {
7145 if (nowait) {
7146 if (!try_lock_extent(tree: io_tree, start: lockstart, end: lockend,
7147 cached: cached_state))
7148 return -EAGAIN;
7149 } else {
7150 lock_extent(tree: io_tree, start: lockstart, end: lockend, cached: cached_state);
7151 }
7152 /*
7153 * We're concerned with the entire range that we're going to be
7154 * doing DIO to, so we need to make sure there's no ordered
7155 * extents in this range.
7156 */
7157 ordered = btrfs_lookup_ordered_range(inode: BTRFS_I(inode), file_offset: lockstart,
7158 len: lockend - lockstart + 1);
7159
7160 /*
7161 * We need to make sure there are no buffered pages in this
7162 * range either, we could have raced between the invalidate in
7163 * generic_file_direct_write and locking the extent. The
7164 * invalidate needs to happen so that reads after a write do not
7165 * get stale data.
7166 */
7167 if (!ordered &&
7168 (!writing || !filemap_range_has_page(inode->i_mapping,
7169 lstart: lockstart, lend: lockend)))
7170 break;
7171
7172 unlock_extent(tree: io_tree, start: lockstart, end: lockend, cached: cached_state);
7173
7174 if (ordered) {
7175 if (nowait) {
7176 btrfs_put_ordered_extent(entry: ordered);
7177 ret = -EAGAIN;
7178 break;
7179 }
7180 /*
7181 * If we are doing a DIO read and the ordered extent we
7182 * found is for a buffered write, we can not wait for it
7183 * to complete and retry, because if we do so we can
7184 * deadlock with concurrent buffered writes on page
7185 * locks. This happens only if our DIO read covers more
7186 * than one extent map, if at this point has already
7187 * created an ordered extent for a previous extent map
7188 * and locked its range in the inode's io tree, and a
7189 * concurrent write against that previous extent map's
7190 * range and this range started (we unlock the ranges
7191 * in the io tree only when the bios complete and
7192 * buffered writes always lock pages before attempting
7193 * to lock range in the io tree).
7194 */
7195 if (writing ||
7196 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7197 btrfs_start_ordered_extent(entry: ordered);
7198 else
7199 ret = nowait ? -EAGAIN : -ENOTBLK;
7200 btrfs_put_ordered_extent(entry: ordered);
7201 } else {
7202 /*
7203 * We could trigger writeback for this range (and wait
7204 * for it to complete) and then invalidate the pages for
7205 * this range (through invalidate_inode_pages2_range()),
7206 * but that can lead us to a deadlock with a concurrent
7207 * call to readahead (a buffered read or a defrag call
7208 * triggered a readahead) on a page lock due to an
7209 * ordered dio extent we created before but did not have
7210 * yet a corresponding bio submitted (whence it can not
7211 * complete), which makes readahead wait for that
7212 * ordered extent to complete while holding a lock on
7213 * that page.
7214 */
7215 ret = nowait ? -EAGAIN : -ENOTBLK;
7216 }
7217
7218 if (ret)
7219 break;
7220
7221 cond_resched();
7222 }
7223
7224 return ret;
7225}
7226
7227/* The callers of this must take lock_extent() */
7228static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
7229 u64 len, u64 orig_start, u64 block_start,
7230 u64 block_len, u64 orig_block_len,
7231 u64 ram_bytes, int compress_type,
7232 int type)
7233{
7234 struct extent_map *em;
7235 int ret;
7236
7237 ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7238 type == BTRFS_ORDERED_COMPRESSED ||
7239 type == BTRFS_ORDERED_NOCOW ||
7240 type == BTRFS_ORDERED_REGULAR);
7241
7242 em = alloc_extent_map();
7243 if (!em)
7244 return ERR_PTR(error: -ENOMEM);
7245
7246 em->start = start;
7247 em->orig_start = orig_start;
7248 em->len = len;
7249 em->block_len = block_len;
7250 em->block_start = block_start;
7251 em->orig_block_len = orig_block_len;
7252 em->ram_bytes = ram_bytes;
7253 em->generation = -1;
7254 set_bit(nr: EXTENT_FLAG_PINNED, addr: &em->flags);
7255 if (type == BTRFS_ORDERED_PREALLOC) {
7256 set_bit(nr: EXTENT_FLAG_FILLING, addr: &em->flags);
7257 } else if (type == BTRFS_ORDERED_COMPRESSED) {
7258 set_bit(nr: EXTENT_FLAG_COMPRESSED, addr: &em->flags);
7259 em->compress_type = compress_type;
7260 }
7261
7262 ret = btrfs_replace_extent_map_range(inode, new_em: em, modified: true);
7263 if (ret) {
7264 free_extent_map(em);
7265 return ERR_PTR(error: ret);
7266 }
7267
7268 /* em got 2 refs now, callers needs to do free_extent_map once. */
7269 return em;
7270}
7271
7272
7273static int btrfs_get_blocks_direct_write(struct extent_map **map,
7274 struct inode *inode,
7275 struct btrfs_dio_data *dio_data,
7276 u64 start, u64 *lenp,
7277 unsigned int iomap_flags)
7278{
7279 const bool nowait = (iomap_flags & IOMAP_NOWAIT);
7280 struct btrfs_fs_info *fs_info = btrfs_sb(sb: inode->i_sb);
7281 struct extent_map *em = *map;
7282 int type;
7283 u64 block_start, orig_start, orig_block_len, ram_bytes;
7284 struct btrfs_block_group *bg;
7285 bool can_nocow = false;
7286 bool space_reserved = false;
7287 u64 len = *lenp;
7288 u64 prev_len;
7289 int ret = 0;
7290
7291 /*
7292 * We don't allocate a new extent in the following cases
7293 *
7294 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7295 * existing extent.
7296 * 2) The extent is marked as PREALLOC. We're good to go here and can
7297 * just use the extent.
7298 *
7299 */
7300 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7301 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7302 em->block_start != EXTENT_MAP_HOLE)) {
7303 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7304 type = BTRFS_ORDERED_PREALLOC;
7305 else
7306 type = BTRFS_ORDERED_NOCOW;
7307 len = min(len, em->len - (start - em->start));
7308 block_start = em->block_start + (start - em->start);
7309
7310 if (can_nocow_extent(inode, offset: start, len: &len, orig_start: &orig_start,
7311 orig_block_len: &orig_block_len, ram_bytes: &ram_bytes, nowait: false, strict: false) == 1) {
7312 bg = btrfs_inc_nocow_writers(fs_info, bytenr: block_start);
7313 if (bg)
7314 can_nocow = true;
7315 }
7316 }
7317
7318 prev_len = len;
7319 if (can_nocow) {
7320 struct extent_map *em2;
7321
7322 /* We can NOCOW, so only need to reserve metadata space. */
7323 ret = btrfs_delalloc_reserve_metadata(inode: BTRFS_I(inode), num_bytes: len, disk_num_bytes: len,
7324 noflush: nowait);
7325 if (ret < 0) {
7326 /* Our caller expects us to free the input extent map. */
7327 free_extent_map(em);
7328 *map = NULL;
7329 btrfs_dec_nocow_writers(bg);
7330 if (nowait && (ret == -ENOSPC || ret == -EDQUOT))
7331 ret = -EAGAIN;
7332 goto out;
7333 }
7334 space_reserved = true;
7335
7336 em2 = btrfs_create_dio_extent(inode: BTRFS_I(inode), dio_data, start, len,
7337 orig_start, block_start,
7338 block_len: len, orig_block_len,
7339 ram_bytes, type);
7340 btrfs_dec_nocow_writers(bg);
7341 if (type == BTRFS_ORDERED_PREALLOC) {
7342 free_extent_map(em);
7343 *map = em2;
7344 em = em2;
7345 }
7346
7347 if (IS_ERR(ptr: em2)) {
7348 ret = PTR_ERR(ptr: em2);
7349 goto out;
7350 }
7351
7352 dio_data->nocow_done = true;
7353 } else {
7354 /* Our caller expects us to free the input extent map. */
7355 free_extent_map(em);
7356 *map = NULL;
7357
7358 if (nowait) {
7359 ret = -EAGAIN;
7360 goto out;
7361 }
7362
7363 /*
7364 * If we could not allocate data space before locking the file
7365 * range and we can't do a NOCOW write, then we have to fail.
7366 */
7367 if (!dio_data->data_space_reserved) {
7368 ret = -ENOSPC;
7369 goto out;
7370 }
7371
7372 /*
7373 * We have to COW and we have already reserved data space before,
7374 * so now we reserve only metadata.
7375 */
7376 ret = btrfs_delalloc_reserve_metadata(inode: BTRFS_I(inode), num_bytes: len, disk_num_bytes: len,
7377 noflush: false);
7378 if (ret < 0)
7379 goto out;
7380 space_reserved = true;
7381
7382 em = btrfs_new_extent_direct(inode: BTRFS_I(inode), dio_data, start, len);
7383 if (IS_ERR(ptr: em)) {
7384 ret = PTR_ERR(ptr: em);
7385 goto out;
7386 }
7387 *map = em;
7388 len = min(len, em->len - (start - em->start));
7389 if (len < prev_len)
7390 btrfs_delalloc_release_metadata(inode: BTRFS_I(inode),
7391 num_bytes: prev_len - len, qgroup_free: true);
7392 }
7393
7394 /*
7395 * We have created our ordered extent, so we can now release our reservation
7396 * for an outstanding extent.
7397 */
7398 btrfs_delalloc_release_extents(inode: BTRFS_I(inode), num_bytes: prev_len);
7399
7400 /*
7401 * Need to update the i_size under the extent lock so buffered
7402 * readers will get the updated i_size when we unlock.
7403 */
7404 if (start + len > i_size_read(inode))
7405 i_size_write(inode, i_size: start + len);
7406out:
7407 if (ret && space_reserved) {
7408 btrfs_delalloc_release_extents(inode: BTRFS_I(inode), num_bytes: len);
7409 btrfs_delalloc_release_metadata(inode: BTRFS_I(inode), num_bytes: len, qgroup_free: true);
7410 }
7411 *lenp = len;
7412 return ret;
7413}
7414
7415static int btrfs_dio_iomap_begin(struct inode *inode, loff_t start,
7416 loff_t length, unsigned int flags, struct iomap *iomap,
7417 struct iomap *srcmap)
7418{
7419 struct iomap_iter *iter = container_of(iomap, struct iomap_iter, iomap);
7420 struct btrfs_fs_info *fs_info = btrfs_sb(sb: inode->i_sb);
7421 struct extent_map *em;
7422 struct extent_state *cached_state = NULL;
7423 struct btrfs_dio_data *dio_data = iter->private;
7424 u64 lockstart, lockend;
7425 const bool write = !!(flags & IOMAP_WRITE);
7426 int ret = 0;
7427 u64 len = length;
7428 const u64 data_alloc_len = length;
7429 bool unlock_extents = false;
7430
7431 /*
7432 * We could potentially fault if we have a buffer > PAGE_SIZE, and if
7433 * we're NOWAIT we may submit a bio for a partial range and return
7434 * EIOCBQUEUED, which would result in an errant short read.
7435 *
7436 * The best way to handle this would be to allow for partial completions
7437 * of iocb's, so we could submit the partial bio, return and fault in
7438 * the rest of the pages, and then submit the io for the rest of the
7439 * range. However we don't have that currently, so simply return
7440 * -EAGAIN at this point so that the normal path is used.
7441 */
7442 if (!write && (flags & IOMAP_NOWAIT) && length > PAGE_SIZE)
7443 return -EAGAIN;
7444
7445 /*
7446 * Cap the size of reads to that usually seen in buffered I/O as we need
7447 * to allocate a contiguous array for the checksums.
7448 */
7449 if (!write)
7450 len = min_t(u64, len, fs_info->sectorsize * BTRFS_MAX_BIO_SECTORS);
7451
7452 lockstart = start;
7453 lockend = start + len - 1;
7454
7455 /*
7456 * iomap_dio_rw() only does filemap_write_and_wait_range(), which isn't
7457 * enough if we've written compressed pages to this area, so we need to
7458 * flush the dirty pages again to make absolutely sure that any
7459 * outstanding dirty pages are on disk - the first flush only starts
7460 * compression on the data, while keeping the pages locked, so by the
7461 * time the second flush returns we know bios for the compressed pages
7462 * were submitted and finished, and the pages no longer under writeback.
7463 *
7464 * If we have a NOWAIT request and we have any pages in the range that
7465 * are locked, likely due to compression still in progress, we don't want
7466 * to block on page locks. We also don't want to block on pages marked as
7467 * dirty or under writeback (same as for the non-compression case).
7468 * iomap_dio_rw() did the same check, but after that and before we got
7469 * here, mmap'ed writes may have happened or buffered reads started
7470 * (readpage() and readahead(), which lock pages), as we haven't locked
7471 * the file range yet.
7472 */
7473 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
7474 &BTRFS_I(inode)->runtime_flags)) {
7475 if (flags & IOMAP_NOWAIT) {
7476 if (filemap_range_needs_writeback(mapping: inode->i_mapping,
7477 start_byte: lockstart, end_byte: lockend))
7478 return -EAGAIN;
7479 } else {
7480 ret = filemap_fdatawrite_range(mapping: inode->i_mapping, start,
7481 end: start + length - 1);
7482 if (ret)
7483 return ret;
7484 }
7485 }
7486
7487 memset(dio_data, 0, sizeof(*dio_data));
7488
7489 /*
7490 * We always try to allocate data space and must do it before locking
7491 * the file range, to avoid deadlocks with concurrent writes to the same
7492 * range if the range has several extents and the writes don't expand the
7493 * current i_size (the inode lock is taken in shared mode). If we fail to
7494 * allocate data space here we continue and later, after locking the
7495 * file range, we fail with ENOSPC only if we figure out we can not do a
7496 * NOCOW write.
7497 */
7498 if (write && !(flags & IOMAP_NOWAIT)) {
7499 ret = btrfs_check_data_free_space(inode: BTRFS_I(inode),
7500 reserved: &dio_data->data_reserved,
7501 start, len: data_alloc_len, noflush: false);
7502 if (!ret)
7503 dio_data->data_space_reserved = true;
7504 else if (ret && !(BTRFS_I(inode)->flags &
7505 (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
7506 goto err;
7507 }
7508
7509 /*
7510 * If this errors out it's because we couldn't invalidate pagecache for
7511 * this range and we need to fallback to buffered IO, or we are doing a
7512 * NOWAIT read/write and we need to block.
7513 */
7514 ret = lock_extent_direct(inode, lockstart, lockend, cached_state: &cached_state, iomap_flags: flags);
7515 if (ret < 0)
7516 goto err;
7517
7518 em = btrfs_get_extent(inode: BTRFS_I(inode), NULL, pg_offset: 0, start, len);
7519 if (IS_ERR(ptr: em)) {
7520 ret = PTR_ERR(ptr: em);
7521 goto unlock_err;
7522 }
7523
7524 /*
7525 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7526 * io. INLINE is special, and we could probably kludge it in here, but
7527 * it's still buffered so for safety lets just fall back to the generic
7528 * buffered path.
7529 *
7530 * For COMPRESSED we _have_ to read the entire extent in so we can
7531 * decompress it, so there will be buffering required no matter what we
7532 * do, so go ahead and fallback to buffered.
7533 *
7534 * We return -ENOTBLK because that's what makes DIO go ahead and go back
7535 * to buffered IO. Don't blame me, this is the price we pay for using
7536 * the generic code.
7537 */
7538 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7539 em->block_start == EXTENT_MAP_INLINE) {
7540 free_extent_map(em);
7541 /*
7542 * If we are in a NOWAIT context, return -EAGAIN in order to
7543 * fallback to buffered IO. This is not only because we can
7544 * block with buffered IO (no support for NOWAIT semantics at
7545 * the moment) but also to avoid returning short reads to user
7546 * space - this happens if we were able to read some data from
7547 * previous non-compressed extents and then when we fallback to
7548 * buffered IO, at btrfs_file_read_iter() by calling
7549 * filemap_read(), we fail to fault in pages for the read buffer,
7550 * in which case filemap_read() returns a short read (the number
7551 * of bytes previously read is > 0, so it does not return -EFAULT).
7552 */
7553 ret = (flags & IOMAP_NOWAIT) ? -EAGAIN : -ENOTBLK;
7554 goto unlock_err;
7555 }
7556
7557 len = min(len, em->len - (start - em->start));
7558
7559 /*
7560 * If we have a NOWAIT request and the range contains multiple extents
7561 * (or a mix of extents and holes), then we return -EAGAIN to make the
7562 * caller fallback to a context where it can do a blocking (without
7563 * NOWAIT) request. This way we avoid doing partial IO and returning
7564 * success to the caller, which is not optimal for writes and for reads
7565 * it can result in unexpected behaviour for an application.
7566 *
7567 * When doing a read, because we use IOMAP_DIO_PARTIAL when calling
7568 * iomap_dio_rw(), we can end up returning less data then what the caller
7569 * asked for, resulting in an unexpected, and incorrect, short read.
7570 * That is, the caller asked to read N bytes and we return less than that,
7571 * which is wrong unless we are crossing EOF. This happens if we get a
7572 * page fault error when trying to fault in pages for the buffer that is
7573 * associated to the struct iov_iter passed to iomap_dio_rw(), and we
7574 * have previously submitted bios for other extents in the range, in
7575 * which case iomap_dio_rw() may return us EIOCBQUEUED if not all of
7576 * those bios have completed by the time we get the page fault error,
7577 * which we return back to our caller - we should only return EIOCBQUEUED
7578 * after we have submitted bios for all the extents in the range.
7579 */
7580 if ((flags & IOMAP_NOWAIT) && len < length) {
7581 free_extent_map(em);
7582 ret = -EAGAIN;
7583 goto unlock_err;
7584 }
7585
7586 if (write) {
7587 ret = btrfs_get_blocks_direct_write(map: &em, inode, dio_data,
7588 start, lenp: &len, iomap_flags: flags);
7589 if (ret < 0)
7590 goto unlock_err;
7591 unlock_extents = true;
7592 /* Recalc len in case the new em is smaller than requested */
7593 len = min(len, em->len - (start - em->start));
7594 if (dio_data->data_space_reserved) {
7595 u64 release_offset;
7596 u64 release_len = 0;
7597
7598 if (dio_data->nocow_done) {
7599 release_offset = start;
7600 release_len = data_alloc_len;
7601 } else if (len < data_alloc_len) {
7602 release_offset = start + len;
7603 release_len = data_alloc_len - len;
7604 }
7605
7606 if (release_len > 0)
7607 btrfs_free_reserved_data_space(inode: BTRFS_I(inode),
7608 reserved: dio_data->data_reserved,
7609 start: release_offset,
7610 len: release_len);
7611 }
7612 } else {
7613 /*
7614 * We need to unlock only the end area that we aren't using.
7615 * The rest is going to be unlocked by the endio routine.
7616 */
7617 lockstart = start + len;
7618 if (lockstart < lockend)
7619 unlock_extents = true;
7620 }
7621
7622 if (unlock_extents)
7623 unlock_extent(tree: &BTRFS_I(inode)->io_tree, start: lockstart, end: lockend,
7624 cached: &cached_state);
7625 else
7626 free_extent_state(state: cached_state);
7627
7628 /*
7629 * Translate extent map information to iomap.
7630 * We trim the extents (and move the addr) even though iomap code does
7631 * that, since we have locked only the parts we are performing I/O in.
7632 */
7633 if ((em->block_start == EXTENT_MAP_HOLE) ||
7634 (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) && !write)) {
7635 iomap->addr = IOMAP_NULL_ADDR;
7636 iomap->type = IOMAP_HOLE;
7637 } else {
7638 iomap->addr = em->block_start + (start - em->start);
7639 iomap->type = IOMAP_MAPPED;
7640 }
7641 iomap->offset = start;
7642 iomap->bdev = fs_info->fs_devices->latest_dev->bdev;
7643 iomap->length = len;
7644 free_extent_map(em);
7645
7646 return 0;
7647
7648unlock_err:
7649 unlock_extent(tree: &BTRFS_I(inode)->io_tree, start: lockstart, end: lockend,
7650 cached: &cached_state);
7651err:
7652 if (dio_data->data_space_reserved) {
7653 btrfs_free_reserved_data_space(inode: BTRFS_I(inode),
7654 reserved: dio_data->data_reserved,
7655 start, len: data_alloc_len);
7656 extent_changeset_free(changeset: dio_data->data_reserved);
7657 }
7658
7659 return ret;
7660}
7661
7662static int btrfs_dio_iomap_end(struct inode *inode, loff_t pos, loff_t length,
7663 ssize_t written, unsigned int flags, struct iomap *iomap)
7664{
7665 struct iomap_iter *iter = container_of(iomap, struct iomap_iter, iomap);
7666 struct btrfs_dio_data *dio_data = iter->private;
7667 size_t submitted = dio_data->submitted;
7668 const bool write = !!(flags & IOMAP_WRITE);
7669 int ret = 0;
7670
7671 if (!write && (iomap->type == IOMAP_HOLE)) {
7672 /* If reading from a hole, unlock and return */
7673 unlock_extent(tree: &BTRFS_I(inode)->io_tree, start: pos, end: pos + length - 1,
7674 NULL);
7675 return 0;
7676 }
7677
7678 if (submitted < length) {
7679 pos += submitted;
7680 length -= submitted;
7681 if (write)
7682 btrfs_finish_ordered_extent(ordered: dio_data->ordered, NULL,
7683 file_offset: pos, len: length, uptodate: false);
7684 else
7685 unlock_extent(tree: &BTRFS_I(inode)->io_tree, start: pos,
7686 end: pos + length - 1, NULL);
7687 ret = -ENOTBLK;
7688 }
7689 if (write) {
7690 btrfs_put_ordered_extent(entry: dio_data->ordered);
7691 dio_data->ordered = NULL;
7692 }
7693
7694 if (write)
7695 extent_changeset_free(changeset: dio_data->data_reserved);
7696 return ret;
7697}
7698
7699static void btrfs_dio_end_io(struct btrfs_bio *bbio)
7700{
7701 struct btrfs_dio_private *dip =
7702 container_of(bbio, struct btrfs_dio_private, bbio);
7703 struct btrfs_inode *inode = bbio->inode;
7704 struct bio *bio = &bbio->bio;
7705
7706 if (bio->bi_status) {
7707 btrfs_warn(inode->root->fs_info,
7708 "direct IO failed ino %llu op 0x%0x offset %#llx len %u err no %d",
7709 btrfs_ino(inode), bio->bi_opf,
7710 dip->file_offset, dip->bytes, bio->bi_status);
7711 }
7712
7713 if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
7714 btrfs_finish_ordered_extent(ordered: bbio->ordered, NULL,
7715 file_offset: dip->file_offset, len: dip->bytes,
7716 uptodate: !bio->bi_status);
7717 } else {
7718 unlock_extent(tree: &inode->io_tree, start: dip->file_offset,
7719 end: dip->file_offset + dip->bytes - 1, NULL);
7720 }
7721
7722 bbio->bio.bi_private = bbio->private;
7723 iomap_dio_bio_end_io(bio);
7724}
7725
7726static void btrfs_dio_submit_io(const struct iomap_iter *iter, struct bio *bio,
7727 loff_t file_offset)
7728{
7729 struct btrfs_bio *bbio = btrfs_bio(bio);
7730 struct btrfs_dio_private *dip =
7731 container_of(bbio, struct btrfs_dio_private, bbio);
7732 struct btrfs_dio_data *dio_data = iter->private;
7733
7734 btrfs_bio_init(bbio, fs_info: BTRFS_I(inode: iter->inode)->root->fs_info,
7735 end_io: btrfs_dio_end_io, private: bio->bi_private);
7736 bbio->inode = BTRFS_I(inode: iter->inode);
7737 bbio->file_offset = file_offset;
7738
7739 dip->file_offset = file_offset;
7740 dip->bytes = bio->bi_iter.bi_size;
7741
7742 dio_data->submitted += bio->bi_iter.bi_size;
7743
7744 /*
7745 * Check if we are doing a partial write. If we are, we need to split
7746 * the ordered extent to match the submitted bio. Hang on to the
7747 * remaining unfinishable ordered_extent in dio_data so that it can be
7748 * cancelled in iomap_end to avoid a deadlock wherein faulting the
7749 * remaining pages is blocked on the outstanding ordered extent.
7750 */
7751 if (iter->flags & IOMAP_WRITE) {
7752 int ret;
7753
7754 ret = btrfs_extract_ordered_extent(bbio, ordered: dio_data->ordered);
7755 if (ret) {
7756 btrfs_finish_ordered_extent(ordered: dio_data->ordered, NULL,
7757 file_offset, len: dip->bytes,
7758 uptodate: !ret);
7759 bio->bi_status = errno_to_blk_status(errno: ret);
7760 iomap_dio_bio_end_io(bio);
7761 return;
7762 }
7763 }
7764
7765 btrfs_submit_bio(bbio, mirror_num: 0);
7766}
7767
7768static const struct iomap_ops btrfs_dio_iomap_ops = {
7769 .iomap_begin = btrfs_dio_iomap_begin,
7770 .iomap_end = btrfs_dio_iomap_end,
7771};
7772
7773static const struct iomap_dio_ops btrfs_dio_ops = {
7774 .submit_io = btrfs_dio_submit_io,
7775 .bio_set = &btrfs_dio_bioset,
7776};
7777
7778ssize_t btrfs_dio_read(struct kiocb *iocb, struct iov_iter *iter, size_t done_before)
7779{
7780 struct btrfs_dio_data data = { 0 };
7781
7782 return iomap_dio_rw(iocb, iter, ops: &btrfs_dio_iomap_ops, dops: &btrfs_dio_ops,
7783 IOMAP_DIO_PARTIAL, private: &data, done_before);
7784}
7785
7786struct iomap_dio *btrfs_dio_write(struct kiocb *iocb, struct iov_iter *iter,
7787 size_t done_before)
7788{
7789 struct btrfs_dio_data data = { 0 };
7790
7791 return __iomap_dio_rw(iocb, iter, ops: &btrfs_dio_iomap_ops, dops: &btrfs_dio_ops,
7792 IOMAP_DIO_PARTIAL, private: &data, done_before);
7793}
7794
7795static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
7796 u64 start, u64 len)
7797{
7798 int ret;
7799
7800 ret = fiemap_prep(inode, fieinfo, start, len: &len, supported_flags: 0);
7801 if (ret)
7802 return ret;
7803
7804 /*
7805 * fiemap_prep() called filemap_write_and_wait() for the whole possible
7806 * file range (0 to LLONG_MAX), but that is not enough if we have
7807 * compression enabled. The first filemap_fdatawrite_range() only kicks
7808 * in the compression of data (in an async thread) and will return
7809 * before the compression is done and writeback is started. A second
7810 * filemap_fdatawrite_range() is needed to wait for the compression to
7811 * complete and writeback to start. We also need to wait for ordered
7812 * extents to complete, because our fiemap implementation uses mainly
7813 * file extent items to list the extents, searching for extent maps
7814 * only for file ranges with holes or prealloc extents to figure out
7815 * if we have delalloc in those ranges.
7816 */
7817 if (fieinfo->fi_flags & FIEMAP_FLAG_SYNC) {
7818 ret = btrfs_wait_ordered_range(inode, start: 0, LLONG_MAX);
7819 if (ret)
7820 return ret;
7821 }
7822
7823 return extent_fiemap(inode: BTRFS_I(inode), fieinfo, start, len);
7824}
7825
7826static int btrfs_writepages(struct address_space *mapping,
7827 struct writeback_control *wbc)
7828{
7829 return extent_writepages(mapping, wbc);
7830}
7831
7832static void btrfs_readahead(struct readahead_control *rac)
7833{
7834 extent_readahead(rac);
7835}
7836
7837/*
7838 * For release_folio() and invalidate_folio() we have a race window where
7839 * folio_end_writeback() is called but the subpage spinlock is not yet released.
7840 * If we continue to release/invalidate the page, we could cause use-after-free
7841 * for subpage spinlock. So this function is to spin and wait for subpage
7842 * spinlock.
7843 */
7844static void wait_subpage_spinlock(struct page *page)
7845{
7846 struct btrfs_fs_info *fs_info = btrfs_sb(sb: page->mapping->host->i_sb);
7847 struct btrfs_subpage *subpage;
7848
7849 if (!btrfs_is_subpage(fs_info, page))
7850 return;
7851
7852 ASSERT(PagePrivate(page) && page->private);
7853 subpage = (struct btrfs_subpage *)page->private;
7854
7855 /*
7856 * This may look insane as we just acquire the spinlock and release it,
7857 * without doing anything. But we just want to make sure no one is
7858 * still holding the subpage spinlock.
7859 * And since the page is not dirty nor writeback, and we have page
7860 * locked, the only possible way to hold a spinlock is from the endio
7861 * function to clear page writeback.
7862 *
7863 * Here we just acquire the spinlock so that all existing callers
7864 * should exit and we're safe to release/invalidate the page.
7865 */
7866 spin_lock_irq(lock: &subpage->lock);
7867 spin_unlock_irq(lock: &subpage->lock);
7868}
7869
7870static bool __btrfs_release_folio(struct folio *folio, gfp_t gfp_flags)
7871{
7872 int ret = try_release_extent_mapping(page: &folio->page, mask: gfp_flags);
7873
7874 if (ret == 1) {
7875 wait_subpage_spinlock(page: &folio->page);
7876 clear_page_extent_mapped(page: &folio->page);
7877 }
7878 return ret;
7879}
7880
7881static bool btrfs_release_folio(struct folio *folio, gfp_t gfp_flags)
7882{
7883 if (folio_test_writeback(folio) || folio_test_dirty(folio))
7884 return false;
7885 return __btrfs_release_folio(folio, gfp_flags);
7886}
7887
7888#ifdef CONFIG_MIGRATION
7889static int btrfs_migrate_folio(struct address_space *mapping,
7890 struct folio *dst, struct folio *src,
7891 enum migrate_mode mode)
7892{
7893 int ret = filemap_migrate_folio(mapping, dst, src, mode);
7894
7895 if (ret != MIGRATEPAGE_SUCCESS)
7896 return ret;
7897
7898 if (folio_test_ordered(src)) {
7899 folio_clear_ordered(src);
7900 folio_set_ordered(dst);
7901 }
7902
7903 return MIGRATEPAGE_SUCCESS;
7904}
7905#else
7906#define btrfs_migrate_folio NULL
7907#endif
7908
7909static void btrfs_invalidate_folio(struct folio *folio, size_t offset,
7910 size_t length)
7911{
7912 struct btrfs_inode *inode = BTRFS_I(inode: folio->mapping->host);
7913 struct btrfs_fs_info *fs_info = inode->root->fs_info;
7914 struct extent_io_tree *tree = &inode->io_tree;
7915 struct extent_state *cached_state = NULL;
7916 u64 page_start = folio_pos(folio);
7917 u64 page_end = page_start + folio_size(folio) - 1;
7918 u64 cur;
7919 int inode_evicting = inode->vfs_inode.i_state & I_FREEING;
7920
7921 /*
7922 * We have folio locked so no new ordered extent can be created on this
7923 * page, nor bio can be submitted for this folio.
7924 *
7925 * But already submitted bio can still be finished on this folio.
7926 * Furthermore, endio function won't skip folio which has Ordered
7927 * (Private2) already cleared, so it's possible for endio and
7928 * invalidate_folio to do the same ordered extent accounting twice
7929 * on one folio.
7930 *
7931 * So here we wait for any submitted bios to finish, so that we won't
7932 * do double ordered extent accounting on the same folio.
7933 */
7934 folio_wait_writeback(folio);
7935 wait_subpage_spinlock(page: &folio->page);
7936
7937 /*
7938 * For subpage case, we have call sites like
7939 * btrfs_punch_hole_lock_range() which passes range not aligned to
7940 * sectorsize.
7941 * If the range doesn't cover the full folio, we don't need to and
7942 * shouldn't clear page extent mapped, as folio->private can still
7943 * record subpage dirty bits for other part of the range.
7944 *
7945 * For cases that invalidate the full folio even the range doesn't
7946 * cover the full folio, like invalidating the last folio, we're
7947 * still safe to wait for ordered extent to finish.
7948 */
7949 if (!(offset == 0 && length == folio_size(folio))) {
7950 btrfs_release_folio(folio, GFP_NOFS);
7951 return;
7952 }
7953
7954 if (!inode_evicting)
7955 lock_extent(tree, start: page_start, end: page_end, cached: &cached_state);
7956
7957 cur = page_start;
7958 while (cur < page_end) {
7959 struct btrfs_ordered_extent *ordered;
7960 u64 range_end;
7961 u32 range_len;
7962 u32 extra_flags = 0;
7963
7964 ordered = btrfs_lookup_first_ordered_range(inode, file_offset: cur,
7965 len: page_end + 1 - cur);
7966 if (!ordered) {
7967 range_end = page_end;
7968 /*
7969 * No ordered extent covering this range, we are safe
7970 * to delete all extent states in the range.
7971 */
7972 extra_flags = EXTENT_CLEAR_ALL_BITS;
7973 goto next;
7974 }
7975 if (ordered->file_offset > cur) {
7976 /*
7977 * There is a range between [cur, oe->file_offset) not
7978 * covered by any ordered extent.
7979 * We are safe to delete all extent states, and handle
7980 * the ordered extent in the next iteration.
7981 */
7982 range_end = ordered->file_offset - 1;
7983 extra_flags = EXTENT_CLEAR_ALL_BITS;
7984 goto next;
7985 }
7986
7987 range_end = min(ordered->file_offset + ordered->num_bytes - 1,
7988 page_end);
7989 ASSERT(range_end + 1 - cur < U32_MAX);
7990 range_len = range_end + 1 - cur;
7991 if (!btrfs_page_test_ordered(fs_info, page: &folio->page, start: cur, len: range_len)) {
7992 /*
7993 * If Ordered (Private2) is cleared, it means endio has
7994 * already been executed for the range.
7995 * We can't delete the extent states as
7996 * btrfs_finish_ordered_io() may still use some of them.
7997 */
7998 goto next;
7999 }
8000 btrfs_page_clear_ordered(fs_info, page: &folio->page, start: cur, len: range_len);
8001
8002 /*
8003 * IO on this page will never be started, so we need to account
8004 * for any ordered extents now. Don't clear EXTENT_DELALLOC_NEW
8005 * here, must leave that up for the ordered extent completion.
8006 *
8007 * This will also unlock the range for incoming
8008 * btrfs_finish_ordered_io().
8009 */
8010 if (!inode_evicting)
8011 clear_extent_bit(tree, start: cur, end: range_end,
8012 bits: EXTENT_DELALLOC |
8013 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8014 EXTENT_DEFRAG, cached: &cached_state);
8015
8016 spin_lock_irq(lock: &inode->ordered_tree_lock);
8017 set_bit(nr: BTRFS_ORDERED_TRUNCATED, addr: &ordered->flags);
8018 ordered->truncated_len = min(ordered->truncated_len,
8019 cur - ordered->file_offset);
8020 spin_unlock_irq(lock: &inode->ordered_tree_lock);
8021
8022 /*
8023 * If the ordered extent has finished, we're safe to delete all
8024 * the extent states of the range, otherwise
8025 * btrfs_finish_ordered_io() will get executed by endio for
8026 * other pages, so we can't delete extent states.
8027 */
8028 if (btrfs_dec_test_ordered_pending(inode, cached: &ordered,
8029 file_offset: cur, io_size: range_end + 1 - cur)) {
8030 btrfs_finish_ordered_io(ordered);
8031 /*
8032 * The ordered extent has finished, now we're again
8033 * safe to delete all extent states of the range.
8034 */
8035 extra_flags = EXTENT_CLEAR_ALL_BITS;
8036 }
8037next:
8038 if (ordered)
8039 btrfs_put_ordered_extent(entry: ordered);
8040 /*
8041 * Qgroup reserved space handler
8042 * Sector(s) here will be either:
8043 *
8044 * 1) Already written to disk or bio already finished
8045 * Then its QGROUP_RESERVED bit in io_tree is already cleared.
8046 * Qgroup will be handled by its qgroup_record then.
8047 * btrfs_qgroup_free_data() call will do nothing here.
8048 *
8049 * 2) Not written to disk yet
8050 * Then btrfs_qgroup_free_data() call will clear the
8051 * QGROUP_RESERVED bit of its io_tree, and free the qgroup
8052 * reserved data space.
8053 * Since the IO will never happen for this page.
8054 */
8055 btrfs_qgroup_free_data(inode, NULL, start: cur, len: range_end + 1 - cur);
8056 if (!inode_evicting) {
8057 clear_extent_bit(tree, start: cur, end: range_end, bits: EXTENT_LOCKED |
8058 EXTENT_DELALLOC | EXTENT_UPTODATE |
8059 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG |
8060 extra_flags, cached: &cached_state);
8061 }
8062 cur = range_end + 1;
8063 }
8064 /*
8065 * We have iterated through all ordered extents of the page, the page
8066 * should not have Ordered (Private2) anymore, or the above iteration
8067 * did something wrong.
8068 */
8069 ASSERT(!folio_test_ordered(folio));
8070 btrfs_page_clear_checked(fs_info, page: &folio->page, start: folio_pos(folio), len: folio_size(folio));
8071 if (!inode_evicting)
8072 __btrfs_release_folio(folio, GFP_NOFS);
8073 clear_page_extent_mapped(page: &folio->page);
8074}
8075
8076/*
8077 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8078 * called from a page fault handler when a page is first dirtied. Hence we must
8079 * be careful to check for EOF conditions here. We set the page up correctly
8080 * for a written page which means we get ENOSPC checking when writing into
8081 * holes and correct delalloc and unwritten extent mapping on filesystems that
8082 * support these features.
8083 *
8084 * We are not allowed to take the i_mutex here so we have to play games to
8085 * protect against truncate races as the page could now be beyond EOF. Because
8086 * truncate_setsize() writes the inode size before removing pages, once we have
8087 * the page lock we can determine safely if the page is beyond EOF. If it is not
8088 * beyond EOF, then the page is guaranteed safe against truncation until we
8089 * unlock the page.
8090 */
8091vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
8092{
8093 struct page *page = vmf->page;
8094 struct inode *inode = file_inode(f: vmf->vma->vm_file);
8095 struct btrfs_fs_info *fs_info = btrfs_sb(sb: inode->i_sb);
8096 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8097 struct btrfs_ordered_extent *ordered;
8098 struct extent_state *cached_state = NULL;
8099 struct extent_changeset *data_reserved = NULL;
8100 unsigned long zero_start;
8101 loff_t size;
8102 vm_fault_t ret;
8103 int ret2;
8104 int reserved = 0;
8105 u64 reserved_space;
8106 u64 page_start;
8107 u64 page_end;
8108 u64 end;
8109
8110 reserved_space = PAGE_SIZE;
8111
8112 sb_start_pagefault(sb: inode->i_sb);
8113 page_start = page_offset(page);
8114 page_end = page_start + PAGE_SIZE - 1;
8115 end = page_end;
8116
8117 /*
8118 * Reserving delalloc space after obtaining the page lock can lead to
8119 * deadlock. For example, if a dirty page is locked by this function
8120 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8121 * dirty page write out, then the btrfs_writepages() function could
8122 * end up waiting indefinitely to get a lock on the page currently
8123 * being processed by btrfs_page_mkwrite() function.
8124 */
8125 ret2 = btrfs_delalloc_reserve_space(inode: BTRFS_I(inode), reserved: &data_reserved,
8126 start: page_start, len: reserved_space);
8127 if (!ret2) {
8128 ret2 = file_update_time(file: vmf->vma->vm_file);
8129 reserved = 1;
8130 }
8131 if (ret2) {
8132 ret = vmf_error(err: ret2);
8133 if (reserved)
8134 goto out;
8135 goto out_noreserve;
8136 }
8137
8138 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
8139again:
8140 down_read(sem: &BTRFS_I(inode)->i_mmap_lock);
8141 lock_page(page);
8142 size = i_size_read(inode);
8143
8144 if ((page->mapping != inode->i_mapping) ||
8145 (page_start >= size)) {
8146 /* page got truncated out from underneath us */
8147 goto out_unlock;
8148 }
8149 wait_on_page_writeback(page);
8150
8151 lock_extent(tree: io_tree, start: page_start, end: page_end, cached: &cached_state);
8152 ret2 = set_page_extent_mapped(page);
8153 if (ret2 < 0) {
8154 ret = vmf_error(err: ret2);
8155 unlock_extent(tree: io_tree, start: page_start, end: page_end, cached: &cached_state);
8156 goto out_unlock;
8157 }
8158
8159 /*
8160 * we can't set the delalloc bits if there are pending ordered
8161 * extents. Drop our locks and wait for them to finish
8162 */
8163 ordered = btrfs_lookup_ordered_range(inode: BTRFS_I(inode), file_offset: page_start,
8164 PAGE_SIZE);
8165 if (ordered) {
8166 unlock_extent(tree: io_tree, start: page_start, end: page_end, cached: &cached_state);
8167 unlock_page(page);
8168 up_read(sem: &BTRFS_I(inode)->i_mmap_lock);
8169 btrfs_start_ordered_extent(entry: ordered);
8170 btrfs_put_ordered_extent(entry: ordered);
8171 goto again;
8172 }
8173
8174 if (page->index == ((size - 1) >> PAGE_SHIFT)) {
8175 reserved_space = round_up(size - page_start,
8176 fs_info->sectorsize);
8177 if (reserved_space < PAGE_SIZE) {
8178 end = page_start + reserved_space - 1;
8179 btrfs_delalloc_release_space(inode: BTRFS_I(inode),
8180 reserved: data_reserved, start: page_start,
8181 PAGE_SIZE - reserved_space, qgroup_free: true);
8182 }
8183 }
8184
8185 /*
8186 * page_mkwrite gets called when the page is firstly dirtied after it's
8187 * faulted in, but write(2) could also dirty a page and set delalloc
8188 * bits, thus in this case for space account reason, we still need to
8189 * clear any delalloc bits within this page range since we have to
8190 * reserve data&meta space before lock_page() (see above comments).
8191 */
8192 clear_extent_bit(tree: &BTRFS_I(inode)->io_tree, start: page_start, end,
8193 bits: EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8194 EXTENT_DEFRAG, cached: &cached_state);
8195
8196 ret2 = btrfs_set_extent_delalloc(inode: BTRFS_I(inode), start: page_start, end, extra_bits: 0,
8197 cached_state: &cached_state);
8198 if (ret2) {
8199 unlock_extent(tree: io_tree, start: page_start, end: page_end, cached: &cached_state);
8200 ret = VM_FAULT_SIGBUS;
8201 goto out_unlock;
8202 }
8203
8204 /* page is wholly or partially inside EOF */
8205 if (page_start + PAGE_SIZE > size)
8206 zero_start = offset_in_page(size);
8207 else
8208 zero_start = PAGE_SIZE;
8209
8210 if (zero_start != PAGE_SIZE)
8211 memzero_page(page, offset: zero_start, PAGE_SIZE - zero_start);
8212
8213 btrfs_page_clear_checked(fs_info, page, start: page_start, PAGE_SIZE);
8214 btrfs_page_set_dirty(fs_info, page, start: page_start, len: end + 1 - page_start);
8215 btrfs_page_set_uptodate(fs_info, page, start: page_start, len: end + 1 - page_start);
8216
8217 btrfs_set_inode_last_sub_trans(inode: BTRFS_I(inode));
8218
8219 unlock_extent(tree: io_tree, start: page_start, end: page_end, cached: &cached_state);
8220 up_read(sem: &BTRFS_I(inode)->i_mmap_lock);
8221
8222 btrfs_delalloc_release_extents(inode: BTRFS_I(inode), PAGE_SIZE);
8223 sb_end_pagefault(sb: inode->i_sb);
8224 extent_changeset_free(changeset: data_reserved);
8225 return VM_FAULT_LOCKED;
8226
8227out_unlock:
8228 unlock_page(page);
8229 up_read(sem: &BTRFS_I(inode)->i_mmap_lock);
8230out:
8231 btrfs_delalloc_release_extents(inode: BTRFS_I(inode), PAGE_SIZE);
8232 btrfs_delalloc_release_space(inode: BTRFS_I(inode), reserved: data_reserved, start: page_start,
8233 len: reserved_space, qgroup_free: (ret != 0));
8234out_noreserve:
8235 sb_end_pagefault(sb: inode->i_sb);
8236 extent_changeset_free(changeset: data_reserved);
8237 return ret;
8238}
8239
8240static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback)
8241{
8242 struct btrfs_truncate_control control = {
8243 .inode = inode,
8244 .ino = btrfs_ino(inode),
8245 .min_type = BTRFS_EXTENT_DATA_KEY,
8246 .clear_extent_range = true,
8247 };
8248 struct btrfs_root *root = inode->root;
8249 struct btrfs_fs_info *fs_info = root->fs_info;
8250 struct btrfs_block_rsv *rsv;
8251 int ret;
8252 struct btrfs_trans_handle *trans;
8253 u64 mask = fs_info->sectorsize - 1;
8254 const u64 min_size = btrfs_calc_metadata_size(fs_info, num_items: 1);
8255
8256 if (!skip_writeback) {
8257 ret = btrfs_wait_ordered_range(inode: &inode->vfs_inode,
8258 start: inode->vfs_inode.i_size & (~mask),
8259 len: (u64)-1);
8260 if (ret)
8261 return ret;
8262 }
8263
8264 /*
8265 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of
8266 * things going on here:
8267 *
8268 * 1) We need to reserve space to update our inode.
8269 *
8270 * 2) We need to have something to cache all the space that is going to
8271 * be free'd up by the truncate operation, but also have some slack
8272 * space reserved in case it uses space during the truncate (thank you
8273 * very much snapshotting).
8274 *
8275 * And we need these to be separate. The fact is we can use a lot of
8276 * space doing the truncate, and we have no earthly idea how much space
8277 * we will use, so we need the truncate reservation to be separate so it
8278 * doesn't end up using space reserved for updating the inode. We also
8279 * need to be able to stop the transaction and start a new one, which
8280 * means we need to be able to update the inode several times, and we
8281 * have no idea of knowing how many times that will be, so we can't just
8282 * reserve 1 item for the entirety of the operation, so that has to be
8283 * done separately as well.
8284 *
8285 * So that leaves us with
8286 *
8287 * 1) rsv - for the truncate reservation, which we will steal from the
8288 * transaction reservation.
8289 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
8290 * updating the inode.
8291 */
8292 rsv = btrfs_alloc_block_rsv(fs_info, type: BTRFS_BLOCK_RSV_TEMP);
8293 if (!rsv)
8294 return -ENOMEM;
8295 rsv->size = min_size;
8296 rsv->failfast = true;
8297
8298 /*
8299 * 1 for the truncate slack space
8300 * 1 for updating the inode.
8301 */
8302 trans = btrfs_start_transaction(root, num_items: 2);
8303 if (IS_ERR(ptr: trans)) {
8304 ret = PTR_ERR(ptr: trans);
8305 goto out;
8306 }
8307
8308 /* Migrate the slack space for the truncate to our reserve */
8309 ret = btrfs_block_rsv_migrate(src_rsv: &fs_info->trans_block_rsv, dst_rsv: rsv,
8310 num_bytes: min_size, update_size: false);
8311 /*
8312 * We have reserved 2 metadata units when we started the transaction and
8313 * min_size matches 1 unit, so this should never fail, but if it does,
8314 * it's not critical we just fail truncation.
8315 */
8316 if (WARN_ON(ret)) {
8317 btrfs_end_transaction(trans);
8318 goto out;
8319 }
8320
8321 trans->block_rsv = rsv;
8322
8323 while (1) {
8324 struct extent_state *cached_state = NULL;
8325 const u64 new_size = inode->vfs_inode.i_size;
8326 const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize);
8327
8328 control.new_size = new_size;
8329 lock_extent(tree: &inode->io_tree, start: lock_start, end: (u64)-1, cached: &cached_state);
8330 /*
8331 * We want to drop from the next block forward in case this new
8332 * size is not block aligned since we will be keeping the last
8333 * block of the extent just the way it is.
8334 */
8335 btrfs_drop_extent_map_range(inode,
8336 ALIGN(new_size, fs_info->sectorsize),
8337 end: (u64)-1, skip_pinned: false);
8338
8339 ret = btrfs_truncate_inode_items(trans, root, control: &control);
8340
8341 inode_sub_bytes(inode: &inode->vfs_inode, bytes: control.sub_bytes);
8342 btrfs_inode_safe_disk_i_size_write(inode, new_i_size: control.last_size);
8343
8344 unlock_extent(tree: &inode->io_tree, start: lock_start, end: (u64)-1, cached: &cached_state);
8345
8346 trans->block_rsv = &fs_info->trans_block_rsv;
8347 if (ret != -ENOSPC && ret != -EAGAIN)
8348 break;
8349
8350 ret = btrfs_update_inode(trans, inode);
8351 if (ret)
8352 break;
8353
8354 btrfs_end_transaction(trans);
8355 btrfs_btree_balance_dirty(fs_info);
8356
8357 trans = btrfs_start_transaction(root, num_items: 2);
8358 if (IS_ERR(ptr: trans)) {
8359 ret = PTR_ERR(ptr: trans);
8360 trans = NULL;
8361 break;
8362 }
8363
8364 btrfs_block_rsv_release(fs_info, block_rsv: rsv, num_bytes: -1, NULL);
8365 ret = btrfs_block_rsv_migrate(src_rsv: &fs_info->trans_block_rsv,
8366 dst_rsv: rsv, num_bytes: min_size, update_size: false);
8367 /*
8368 * We have reserved 2 metadata units when we started the
8369 * transaction and min_size matches 1 unit, so this should never
8370 * fail, but if it does, it's not critical we just fail truncation.
8371 */
8372 if (WARN_ON(ret))
8373 break;
8374
8375 trans->block_rsv = rsv;
8376 }
8377
8378 /*
8379 * We can't call btrfs_truncate_block inside a trans handle as we could
8380 * deadlock with freeze, if we got BTRFS_NEED_TRUNCATE_BLOCK then we
8381 * know we've truncated everything except the last little bit, and can
8382 * do btrfs_truncate_block and then update the disk_i_size.
8383 */
8384 if (ret == BTRFS_NEED_TRUNCATE_BLOCK) {
8385 btrfs_end_transaction(trans);
8386 btrfs_btree_balance_dirty(fs_info);
8387
8388 ret = btrfs_truncate_block(inode, from: inode->vfs_inode.i_size, len: 0, front: 0);
8389 if (ret)
8390 goto out;
8391 trans = btrfs_start_transaction(root, num_items: 1);
8392 if (IS_ERR(ptr: trans)) {
8393 ret = PTR_ERR(ptr: trans);
8394 goto out;
8395 }
8396 btrfs_inode_safe_disk_i_size_write(inode, new_i_size: 0);
8397 }
8398
8399 if (trans) {
8400 int ret2;
8401
8402 trans->block_rsv = &fs_info->trans_block_rsv;
8403 ret2 = btrfs_update_inode(trans, inode);
8404 if (ret2 && !ret)
8405 ret = ret2;
8406
8407 ret2 = btrfs_end_transaction(trans);
8408 if (ret2 && !ret)
8409 ret = ret2;
8410 btrfs_btree_balance_dirty(fs_info);
8411 }
8412out:
8413 btrfs_free_block_rsv(fs_info, rsv);
8414 /*
8415 * So if we truncate and then write and fsync we normally would just
8416 * write the extents that changed, which is a problem if we need to
8417 * first truncate that entire inode. So set this flag so we write out
8418 * all of the extents in the inode to the sync log so we're completely
8419 * safe.
8420 *
8421 * If no extents were dropped or trimmed we don't need to force the next
8422 * fsync to truncate all the inode's items from the log and re-log them
8423 * all. This means the truncate operation did not change the file size,
8424 * or changed it to a smaller size but there was only an implicit hole
8425 * between the old i_size and the new i_size, and there were no prealloc
8426 * extents beyond i_size to drop.
8427 */
8428 if (control.extents_found > 0)
8429 btrfs_set_inode_full_sync(inode);
8430
8431 return ret;
8432}
8433
8434struct inode *btrfs_new_subvol_inode(struct mnt_idmap *idmap,
8435 struct inode *dir)
8436{
8437 struct inode *inode;
8438
8439 inode = new_inode(sb: dir->i_sb);
8440 if (inode) {
8441 /*
8442 * Subvolumes don't inherit the sgid bit or the parent's gid if
8443 * the parent's sgid bit is set. This is probably a bug.
8444 */
8445 inode_init_owner(idmap, inode, NULL,
8446 S_IFDIR | (~current_umask() & S_IRWXUGO));
8447 inode->i_op = &btrfs_dir_inode_operations;
8448 inode->i_fop = &btrfs_dir_file_operations;
8449 }
8450 return inode;
8451}
8452
8453struct inode *btrfs_alloc_inode(struct super_block *sb)
8454{
8455 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
8456 struct btrfs_inode *ei;
8457 struct inode *inode;
8458
8459 ei = alloc_inode_sb(sb, cache: btrfs_inode_cachep, GFP_KERNEL);
8460 if (!ei)
8461 return NULL;
8462
8463 ei->root = NULL;
8464 ei->generation = 0;
8465 ei->last_trans = 0;
8466 ei->last_sub_trans = 0;
8467 ei->logged_trans = 0;
8468 ei->delalloc_bytes = 0;
8469 ei->new_delalloc_bytes = 0;
8470 ei->defrag_bytes = 0;
8471 ei->disk_i_size = 0;
8472 ei->flags = 0;
8473 ei->ro_flags = 0;
8474 ei->csum_bytes = 0;
8475 ei->index_cnt = (u64)-1;
8476 ei->dir_index = 0;
8477 ei->last_unlink_trans = 0;
8478 ei->last_reflink_trans = 0;
8479 ei->last_log_commit = 0;
8480
8481 spin_lock_init(&ei->lock);
8482 ei->outstanding_extents = 0;
8483 if (sb->s_magic != BTRFS_TEST_MAGIC)
8484 btrfs_init_metadata_block_rsv(fs_info, rsv: &ei->block_rsv,
8485 type: BTRFS_BLOCK_RSV_DELALLOC);
8486 ei->runtime_flags = 0;
8487 ei->prop_compress = BTRFS_COMPRESS_NONE;
8488 ei->defrag_compress = BTRFS_COMPRESS_NONE;
8489
8490 ei->delayed_node = NULL;
8491
8492 ei->i_otime_sec = 0;
8493 ei->i_otime_nsec = 0;
8494
8495 inode = &ei->vfs_inode;
8496 extent_map_tree_init(tree: &ei->extent_tree);
8497 extent_io_tree_init(fs_info, tree: &ei->io_tree, owner: IO_TREE_INODE_IO);
8498 ei->io_tree.inode = ei;
8499 extent_io_tree_init(fs_info, tree: &ei->file_extent_tree,
8500 owner: IO_TREE_INODE_FILE_EXTENT);
8501 mutex_init(&ei->log_mutex);
8502 spin_lock_init(&ei->ordered_tree_lock);
8503 ei->ordered_tree = RB_ROOT;
8504 ei->ordered_tree_last = NULL;
8505 INIT_LIST_HEAD(list: &ei->delalloc_inodes);
8506 INIT_LIST_HEAD(list: &ei->delayed_iput);
8507 RB_CLEAR_NODE(&ei->rb_node);
8508 init_rwsem(&ei->i_mmap_lock);
8509
8510 return inode;
8511}
8512
8513#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8514void btrfs_test_destroy_inode(struct inode *inode)
8515{
8516 btrfs_drop_extent_map_range(inode: BTRFS_I(inode), start: 0, end: (u64)-1, skip_pinned: false);
8517 kmem_cache_free(s: btrfs_inode_cachep, objp: BTRFS_I(inode));
8518}
8519#endif
8520
8521void btrfs_free_inode(struct inode *inode)
8522{
8523 kmem_cache_free(s: btrfs_inode_cachep, objp: BTRFS_I(inode));
8524}
8525
8526void btrfs_destroy_inode(struct inode *vfs_inode)
8527{
8528 struct btrfs_ordered_extent *ordered;
8529 struct btrfs_inode *inode = BTRFS_I(inode: vfs_inode);
8530 struct btrfs_root *root = inode->root;
8531 bool freespace_inode;
8532
8533 WARN_ON(!hlist_empty(&vfs_inode->i_dentry));
8534 WARN_ON(vfs_inode->i_data.nrpages);
8535 WARN_ON(inode->block_rsv.reserved);
8536 WARN_ON(inode->block_rsv.size);
8537 WARN_ON(inode->outstanding_extents);
8538 if (!S_ISDIR(vfs_inode->i_mode)) {
8539 WARN_ON(inode->delalloc_bytes);
8540 WARN_ON(inode->new_delalloc_bytes);
8541 }
8542 WARN_ON(inode->csum_bytes);
8543 WARN_ON(inode->defrag_bytes);
8544
8545 /*
8546 * This can happen where we create an inode, but somebody else also
8547 * created the same inode and we need to destroy the one we already
8548 * created.
8549 */
8550 if (!root)
8551 return;
8552
8553 /*
8554 * If this is a free space inode do not take the ordered extents lockdep
8555 * map.
8556 */
8557 freespace_inode = btrfs_is_free_space_inode(inode);
8558
8559 while (1) {
8560 ordered = btrfs_lookup_first_ordered_extent(inode, file_offset: (u64)-1);
8561 if (!ordered)
8562 break;
8563 else {
8564 btrfs_err(root->fs_info,
8565 "found ordered extent %llu %llu on inode cleanup",
8566 ordered->file_offset, ordered->num_bytes);
8567
8568 if (!freespace_inode)
8569 btrfs_lockdep_acquire(root->fs_info, btrfs_ordered_extent);
8570
8571 btrfs_remove_ordered_extent(btrfs_inode: inode, entry: ordered);
8572 btrfs_put_ordered_extent(entry: ordered);
8573 btrfs_put_ordered_extent(entry: ordered);
8574 }
8575 }
8576 btrfs_qgroup_check_reserved_leak(inode);
8577 inode_tree_del(inode);
8578 btrfs_drop_extent_map_range(inode, start: 0, end: (u64)-1, skip_pinned: false);
8579 btrfs_inode_clear_file_extent_range(inode, start: 0, len: (u64)-1);
8580 btrfs_put_root(root: inode->root);
8581}
8582
8583int btrfs_drop_inode(struct inode *inode)
8584{
8585 struct btrfs_root *root = BTRFS_I(inode)->root;
8586
8587 if (root == NULL)
8588 return 1;
8589
8590 /* the snap/subvol tree is on deleting */
8591 if (btrfs_root_refs(s: &root->root_item) == 0)
8592 return 1;
8593 else
8594 return generic_drop_inode(inode);
8595}
8596
8597static void init_once(void *foo)
8598{
8599 struct btrfs_inode *ei = foo;
8600
8601 inode_init_once(&ei->vfs_inode);
8602}
8603
8604void __cold btrfs_destroy_cachep(void)
8605{
8606 /*
8607 * Make sure all delayed rcu free inodes are flushed before we
8608 * destroy cache.
8609 */
8610 rcu_barrier();
8611 bioset_exit(&btrfs_dio_bioset);
8612 kmem_cache_destroy(s: btrfs_inode_cachep);
8613}
8614
8615int __init btrfs_init_cachep(void)
8616{
8617 btrfs_inode_cachep = kmem_cache_create(name: "btrfs_inode",
8618 size: sizeof(struct btrfs_inode), align: 0,
8619 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
8620 ctor: init_once);
8621 if (!btrfs_inode_cachep)
8622 goto fail;
8623
8624 if (bioset_init(&btrfs_dio_bioset, BIO_POOL_SIZE,
8625 offsetof(struct btrfs_dio_private, bbio.bio),
8626 flags: BIOSET_NEED_BVECS))
8627 goto fail;
8628
8629 return 0;
8630fail:
8631 btrfs_destroy_cachep();
8632 return -ENOMEM;
8633}
8634
8635static int btrfs_getattr(struct mnt_idmap *idmap,
8636 const struct path *path, struct kstat *stat,
8637 u32 request_mask, unsigned int flags)
8638{
8639 u64 delalloc_bytes;
8640 u64 inode_bytes;
8641 struct inode *inode = d_inode(dentry: path->dentry);
8642 u32 blocksize = inode->i_sb->s_blocksize;
8643 u32 bi_flags = BTRFS_I(inode)->flags;
8644 u32 bi_ro_flags = BTRFS_I(inode)->ro_flags;
8645
8646 stat->result_mask |= STATX_BTIME;
8647 stat->btime.tv_sec = BTRFS_I(inode)->i_otime_sec;
8648 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime_nsec;
8649 if (bi_flags & BTRFS_INODE_APPEND)
8650 stat->attributes |= STATX_ATTR_APPEND;
8651 if (bi_flags & BTRFS_INODE_COMPRESS)
8652 stat->attributes |= STATX_ATTR_COMPRESSED;
8653 if (bi_flags & BTRFS_INODE_IMMUTABLE)
8654 stat->attributes |= STATX_ATTR_IMMUTABLE;
8655 if (bi_flags & BTRFS_INODE_NODUMP)
8656 stat->attributes |= STATX_ATTR_NODUMP;
8657 if (bi_ro_flags & BTRFS_INODE_RO_VERITY)
8658 stat->attributes |= STATX_ATTR_VERITY;
8659
8660 stat->attributes_mask |= (STATX_ATTR_APPEND |
8661 STATX_ATTR_COMPRESSED |
8662 STATX_ATTR_IMMUTABLE |
8663 STATX_ATTR_NODUMP);
8664
8665 generic_fillattr(idmap, request_mask, inode, stat);
8666 stat->dev = BTRFS_I(inode)->root->anon_dev;
8667
8668 spin_lock(lock: &BTRFS_I(inode)->lock);
8669 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
8670 inode_bytes = inode_get_bytes(inode);
8671 spin_unlock(lock: &BTRFS_I(inode)->lock);
8672 stat->blocks = (ALIGN(inode_bytes, blocksize) +
8673 ALIGN(delalloc_bytes, blocksize)) >> SECTOR_SHIFT;
8674 return 0;
8675}
8676
8677static int btrfs_rename_exchange(struct inode *old_dir,
8678 struct dentry *old_dentry,
8679 struct inode *new_dir,
8680 struct dentry *new_dentry)
8681{
8682 struct btrfs_fs_info *fs_info = btrfs_sb(sb: old_dir->i_sb);
8683 struct btrfs_trans_handle *trans;
8684 unsigned int trans_num_items;
8685 struct btrfs_root *root = BTRFS_I(inode: old_dir)->root;
8686 struct btrfs_root *dest = BTRFS_I(inode: new_dir)->root;
8687 struct inode *new_inode = new_dentry->d_inode;
8688 struct inode *old_inode = old_dentry->d_inode;
8689 struct btrfs_rename_ctx old_rename_ctx;
8690 struct btrfs_rename_ctx new_rename_ctx;
8691 u64 old_ino = btrfs_ino(inode: BTRFS_I(inode: old_inode));
8692 u64 new_ino = btrfs_ino(inode: BTRFS_I(inode: new_inode));
8693 u64 old_idx = 0;
8694 u64 new_idx = 0;
8695 int ret;
8696 int ret2;
8697 bool need_abort = false;
8698 struct fscrypt_name old_fname, new_fname;
8699 struct fscrypt_str *old_name, *new_name;
8700
8701 /*
8702 * For non-subvolumes allow exchange only within one subvolume, in the
8703 * same inode namespace. Two subvolumes (represented as directory) can
8704 * be exchanged as they're a logical link and have a fixed inode number.
8705 */
8706 if (root != dest &&
8707 (old_ino != BTRFS_FIRST_FREE_OBJECTID ||
8708 new_ino != BTRFS_FIRST_FREE_OBJECTID))
8709 return -EXDEV;
8710
8711 ret = fscrypt_setup_filename(inode: old_dir, iname: &old_dentry->d_name, lookup: 0, fname: &old_fname);
8712 if (ret)
8713 return ret;
8714
8715 ret = fscrypt_setup_filename(inode: new_dir, iname: &new_dentry->d_name, lookup: 0, fname: &new_fname);
8716 if (ret) {
8717 fscrypt_free_filename(fname: &old_fname);
8718 return ret;
8719 }
8720
8721 old_name = &old_fname.disk_name;
8722 new_name = &new_fname.disk_name;
8723
8724 /* close the race window with snapshot create/destroy ioctl */
8725 if (old_ino == BTRFS_FIRST_FREE_OBJECTID ||
8726 new_ino == BTRFS_FIRST_FREE_OBJECTID)
8727 down_read(sem: &fs_info->subvol_sem);
8728
8729 /*
8730 * For each inode:
8731 * 1 to remove old dir item
8732 * 1 to remove old dir index
8733 * 1 to add new dir item
8734 * 1 to add new dir index
8735 * 1 to update parent inode
8736 *
8737 * If the parents are the same, we only need to account for one
8738 */
8739 trans_num_items = (old_dir == new_dir ? 9 : 10);
8740 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8741 /*
8742 * 1 to remove old root ref
8743 * 1 to remove old root backref
8744 * 1 to add new root ref
8745 * 1 to add new root backref
8746 */
8747 trans_num_items += 4;
8748 } else {
8749 /*
8750 * 1 to update inode item
8751 * 1 to remove old inode ref
8752 * 1 to add new inode ref
8753 */
8754 trans_num_items += 3;
8755 }
8756 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
8757 trans_num_items += 4;
8758 else
8759 trans_num_items += 3;
8760 trans = btrfs_start_transaction(root, num_items: trans_num_items);
8761 if (IS_ERR(ptr: trans)) {
8762 ret = PTR_ERR(ptr: trans);
8763 goto out_notrans;
8764 }
8765
8766 if (dest != root) {
8767 ret = btrfs_record_root_in_trans(trans, root: dest);
8768 if (ret)
8769 goto out_fail;
8770 }
8771
8772 /*
8773 * We need to find a free sequence number both in the source and
8774 * in the destination directory for the exchange.
8775 */
8776 ret = btrfs_set_inode_index(dir: BTRFS_I(inode: new_dir), index: &old_idx);
8777 if (ret)
8778 goto out_fail;
8779 ret = btrfs_set_inode_index(dir: BTRFS_I(inode: old_dir), index: &new_idx);
8780 if (ret)
8781 goto out_fail;
8782
8783 BTRFS_I(inode: old_inode)->dir_index = 0ULL;
8784 BTRFS_I(inode: new_inode)->dir_index = 0ULL;
8785
8786 /* Reference for the source. */
8787 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8788 /* force full log commit if subvolume involved. */
8789 btrfs_set_log_full_commit(trans);
8790 } else {
8791 ret = btrfs_insert_inode_ref(trans, root: dest, name: new_name, inode_objectid: old_ino,
8792 ref_objectid: btrfs_ino(inode: BTRFS_I(inode: new_dir)),
8793 index: old_idx);
8794 if (ret)
8795 goto out_fail;
8796 need_abort = true;
8797 }
8798
8799 /* And now for the dest. */
8800 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
8801 /* force full log commit if subvolume involved. */
8802 btrfs_set_log_full_commit(trans);
8803 } else {
8804 ret = btrfs_insert_inode_ref(trans, root, name: old_name, inode_objectid: new_ino,
8805 ref_objectid: btrfs_ino(inode: BTRFS_I(inode: old_dir)),
8806 index: new_idx);
8807 if (ret) {
8808 if (need_abort)
8809 btrfs_abort_transaction(trans, ret);
8810 goto out_fail;
8811 }
8812 }
8813
8814 /* Update inode version and ctime/mtime. */
8815 inode_inc_iversion(inode: old_dir);
8816 inode_inc_iversion(inode: new_dir);
8817 inode_inc_iversion(inode: old_inode);
8818 inode_inc_iversion(inode: new_inode);
8819 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
8820
8821 if (old_dentry->d_parent != new_dentry->d_parent) {
8822 btrfs_record_unlink_dir(trans, dir: BTRFS_I(inode: old_dir),
8823 inode: BTRFS_I(inode: old_inode), for_rename: true);
8824 btrfs_record_unlink_dir(trans, dir: BTRFS_I(inode: new_dir),
8825 inode: BTRFS_I(inode: new_inode), for_rename: true);
8826 }
8827
8828 /* src is a subvolume */
8829 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8830 ret = btrfs_unlink_subvol(trans, dir: BTRFS_I(inode: old_dir), dentry: old_dentry);
8831 } else { /* src is an inode */
8832 ret = __btrfs_unlink_inode(trans, dir: BTRFS_I(inode: old_dir),
8833 inode: BTRFS_I(inode: old_dentry->d_inode),
8834 name: old_name, rename_ctx: &old_rename_ctx);
8835 if (!ret)
8836 ret = btrfs_update_inode(trans, inode: BTRFS_I(inode: old_inode));
8837 }
8838 if (ret) {
8839 btrfs_abort_transaction(trans, ret);
8840 goto out_fail;
8841 }
8842
8843 /* dest is a subvolume */
8844 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
8845 ret = btrfs_unlink_subvol(trans, dir: BTRFS_I(inode: new_dir), dentry: new_dentry);
8846 } else { /* dest is an inode */
8847 ret = __btrfs_unlink_inode(trans, dir: BTRFS_I(inode: new_dir),
8848 inode: BTRFS_I(inode: new_dentry->d_inode),
8849 name: new_name, rename_ctx: &new_rename_ctx);
8850 if (!ret)
8851 ret = btrfs_update_inode(trans, inode: BTRFS_I(inode: new_inode));
8852 }
8853 if (ret) {
8854 btrfs_abort_transaction(trans, ret);
8855 goto out_fail;
8856 }
8857
8858 ret = btrfs_add_link(trans, parent_inode: BTRFS_I(inode: new_dir), inode: BTRFS_I(inode: old_inode),
8859 name: new_name, add_backref: 0, index: old_idx);
8860 if (ret) {
8861 btrfs_abort_transaction(trans, ret);
8862 goto out_fail;
8863 }
8864
8865 ret = btrfs_add_link(trans, parent_inode: BTRFS_I(inode: old_dir), inode: BTRFS_I(inode: new_inode),
8866 name: old_name, add_backref: 0, index: new_idx);
8867 if (ret) {
8868 btrfs_abort_transaction(trans, ret);
8869 goto out_fail;
8870 }
8871
8872 if (old_inode->i_nlink == 1)
8873 BTRFS_I(inode: old_inode)->dir_index = old_idx;
8874 if (new_inode->i_nlink == 1)
8875 BTRFS_I(inode: new_inode)->dir_index = new_idx;
8876
8877 /*
8878 * Now pin the logs of the roots. We do it to ensure that no other task
8879 * can sync the logs while we are in progress with the rename, because
8880 * that could result in an inconsistency in case any of the inodes that
8881 * are part of this rename operation were logged before.
8882 */
8883 if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
8884 btrfs_pin_log_trans(root);
8885 if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
8886 btrfs_pin_log_trans(root: dest);
8887
8888 /* Do the log updates for all inodes. */
8889 if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
8890 btrfs_log_new_name(trans, old_dentry, old_dir: BTRFS_I(inode: old_dir),
8891 old_dir_index: old_rename_ctx.index, parent: new_dentry->d_parent);
8892 if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
8893 btrfs_log_new_name(trans, old_dentry: new_dentry, old_dir: BTRFS_I(inode: new_dir),
8894 old_dir_index: new_rename_ctx.index, parent: old_dentry->d_parent);
8895
8896 /* Now unpin the logs. */
8897 if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
8898 btrfs_end_log_trans(root);
8899 if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
8900 btrfs_end_log_trans(root: dest);
8901out_fail:
8902 ret2 = btrfs_end_transaction(trans);
8903 ret = ret ? ret : ret2;
8904out_notrans:
8905 if (new_ino == BTRFS_FIRST_FREE_OBJECTID ||
8906 old_ino == BTRFS_FIRST_FREE_OBJECTID)
8907 up_read(sem: &fs_info->subvol_sem);
8908
8909 fscrypt_free_filename(fname: &new_fname);
8910 fscrypt_free_filename(fname: &old_fname);
8911 return ret;
8912}
8913
8914static struct inode *new_whiteout_inode(struct mnt_idmap *idmap,
8915 struct inode *dir)
8916{
8917 struct inode *inode;
8918
8919 inode = new_inode(sb: dir->i_sb);
8920 if (inode) {
8921 inode_init_owner(idmap, inode, dir,
8922 S_IFCHR | WHITEOUT_MODE);
8923 inode->i_op = &btrfs_special_inode_operations;
8924 init_special_inode(inode, inode->i_mode, WHITEOUT_DEV);
8925 }
8926 return inode;
8927}
8928
8929static int btrfs_rename(struct mnt_idmap *idmap,
8930 struct inode *old_dir, struct dentry *old_dentry,
8931 struct inode *new_dir, struct dentry *new_dentry,
8932 unsigned int flags)
8933{
8934 struct btrfs_fs_info *fs_info = btrfs_sb(sb: old_dir->i_sb);
8935 struct btrfs_new_inode_args whiteout_args = {
8936 .dir = old_dir,
8937 .dentry = old_dentry,
8938 };
8939 struct btrfs_trans_handle *trans;
8940 unsigned int trans_num_items;
8941 struct btrfs_root *root = BTRFS_I(inode: old_dir)->root;
8942 struct btrfs_root *dest = BTRFS_I(inode: new_dir)->root;
8943 struct inode *new_inode = d_inode(dentry: new_dentry);
8944 struct inode *old_inode = d_inode(dentry: old_dentry);
8945 struct btrfs_rename_ctx rename_ctx;
8946 u64 index = 0;
8947 int ret;
8948 int ret2;
8949 u64 old_ino = btrfs_ino(inode: BTRFS_I(inode: old_inode));
8950 struct fscrypt_name old_fname, new_fname;
8951
8952 if (btrfs_ino(inode: BTRFS_I(inode: new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
8953 return -EPERM;
8954
8955 /* we only allow rename subvolume link between subvolumes */
8956 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
8957 return -EXDEV;
8958
8959 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
8960 (new_inode && btrfs_ino(inode: BTRFS_I(inode: new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
8961 return -ENOTEMPTY;
8962
8963 if (S_ISDIR(old_inode->i_mode) && new_inode &&
8964 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
8965 return -ENOTEMPTY;
8966
8967 ret = fscrypt_setup_filename(inode: old_dir, iname: &old_dentry->d_name, lookup: 0, fname: &old_fname);
8968 if (ret)
8969 return ret;
8970
8971 ret = fscrypt_setup_filename(inode: new_dir, iname: &new_dentry->d_name, lookup: 0, fname: &new_fname);
8972 if (ret) {
8973 fscrypt_free_filename(fname: &old_fname);
8974 return ret;
8975 }
8976
8977 /* check for collisions, even if the name isn't there */
8978 ret = btrfs_check_dir_item_collision(root: dest, dir: new_dir->i_ino, name: &new_fname.disk_name);
8979 if (ret) {
8980 if (ret == -EEXIST) {
8981 /* we shouldn't get
8982 * eexist without a new_inode */
8983 if (WARN_ON(!new_inode)) {
8984 goto out_fscrypt_names;
8985 }
8986 } else {
8987 /* maybe -EOVERFLOW */
8988 goto out_fscrypt_names;
8989 }
8990 }
8991 ret = 0;
8992
8993 /*
8994 * we're using rename to replace one file with another. Start IO on it
8995 * now so we don't add too much work to the end of the transaction
8996 */
8997 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
8998 filemap_flush(old_inode->i_mapping);
8999
9000 if (flags & RENAME_WHITEOUT) {
9001 whiteout_args.inode = new_whiteout_inode(idmap, dir: old_dir);
9002 if (!whiteout_args.inode) {
9003 ret = -ENOMEM;
9004 goto out_fscrypt_names;
9005 }
9006 ret = btrfs_new_inode_prepare(args: &whiteout_args, trans_num_items: &trans_num_items);
9007 if (ret)
9008 goto out_whiteout_inode;
9009 } else {
9010 /* 1 to update the old parent inode. */
9011 trans_num_items = 1;
9012 }
9013
9014 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9015 /* Close the race window with snapshot create/destroy ioctl */
9016 down_read(sem: &fs_info->subvol_sem);
9017 /*
9018 * 1 to remove old root ref
9019 * 1 to remove old root backref
9020 * 1 to add new root ref
9021 * 1 to add new root backref
9022 */
9023 trans_num_items += 4;
9024 } else {
9025 /*
9026 * 1 to update inode
9027 * 1 to remove old inode ref
9028 * 1 to add new inode ref
9029 */
9030 trans_num_items += 3;
9031 }
9032 /*
9033 * 1 to remove old dir item
9034 * 1 to remove old dir index
9035 * 1 to add new dir item
9036 * 1 to add new dir index
9037 */
9038 trans_num_items += 4;
9039 /* 1 to update new parent inode if it's not the same as the old parent */
9040 if (new_dir != old_dir)
9041 trans_num_items++;
9042 if (new_inode) {
9043 /*
9044 * 1 to update inode
9045 * 1 to remove inode ref
9046 * 1 to remove dir item
9047 * 1 to remove dir index
9048 * 1 to possibly add orphan item
9049 */
9050 trans_num_items += 5;
9051 }
9052 trans = btrfs_start_transaction(root, num_items: trans_num_items);
9053 if (IS_ERR(ptr: trans)) {
9054 ret = PTR_ERR(ptr: trans);
9055 goto out_notrans;
9056 }
9057
9058 if (dest != root) {
9059 ret = btrfs_record_root_in_trans(trans, root: dest);
9060 if (ret)
9061 goto out_fail;
9062 }
9063
9064 ret = btrfs_set_inode_index(dir: BTRFS_I(inode: new_dir), index: &index);
9065 if (ret)
9066 goto out_fail;
9067
9068 BTRFS_I(inode: old_inode)->dir_index = 0ULL;
9069 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9070 /* force full log commit if subvolume involved. */
9071 btrfs_set_log_full_commit(trans);
9072 } else {
9073 ret = btrfs_insert_inode_ref(trans, root: dest, name: &new_fname.disk_name,
9074 inode_objectid: old_ino, ref_objectid: btrfs_ino(inode: BTRFS_I(inode: new_dir)),
9075 index);
9076 if (ret)
9077 goto out_fail;
9078 }
9079
9080 inode_inc_iversion(inode: old_dir);
9081 inode_inc_iversion(inode: new_dir);
9082 inode_inc_iversion(inode: old_inode);
9083 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
9084
9085 if (old_dentry->d_parent != new_dentry->d_parent)
9086 btrfs_record_unlink_dir(trans, dir: BTRFS_I(inode: old_dir),
9087 inode: BTRFS_I(inode: old_inode), for_rename: true);
9088
9089 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9090 ret = btrfs_unlink_subvol(trans, dir: BTRFS_I(inode: old_dir), dentry: old_dentry);
9091 } else {
9092 ret = __btrfs_unlink_inode(trans, dir: BTRFS_I(inode: old_dir),
9093 inode: BTRFS_I(inode: d_inode(dentry: old_dentry)),
9094 name: &old_fname.disk_name, rename_ctx: &rename_ctx);
9095 if (!ret)
9096 ret = btrfs_update_inode(trans, inode: BTRFS_I(inode: old_inode));
9097 }
9098 if (ret) {
9099 btrfs_abort_transaction(trans, ret);
9100 goto out_fail;
9101 }
9102
9103 if (new_inode) {
9104 inode_inc_iversion(inode: new_inode);
9105 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
9106 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9107 ret = btrfs_unlink_subvol(trans, dir: BTRFS_I(inode: new_dir), dentry: new_dentry);
9108 BUG_ON(new_inode->i_nlink == 0);
9109 } else {
9110 ret = btrfs_unlink_inode(trans, dir: BTRFS_I(inode: new_dir),
9111 inode: BTRFS_I(inode: d_inode(dentry: new_dentry)),
9112 name: &new_fname.disk_name);
9113 }
9114 if (!ret && new_inode->i_nlink == 0)
9115 ret = btrfs_orphan_add(trans,
9116 inode: BTRFS_I(inode: d_inode(dentry: new_dentry)));
9117 if (ret) {
9118 btrfs_abort_transaction(trans, ret);
9119 goto out_fail;
9120 }
9121 }
9122
9123 ret = btrfs_add_link(trans, parent_inode: BTRFS_I(inode: new_dir), inode: BTRFS_I(inode: old_inode),
9124 name: &new_fname.disk_name, add_backref: 0, index);
9125 if (ret) {
9126 btrfs_abort_transaction(trans, ret);
9127 goto out_fail;
9128 }
9129
9130 if (old_inode->i_nlink == 1)
9131 BTRFS_I(inode: old_inode)->dir_index = index;
9132
9133 if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
9134 btrfs_log_new_name(trans, old_dentry, old_dir: BTRFS_I(inode: old_dir),
9135 old_dir_index: rename_ctx.index, parent: new_dentry->d_parent);
9136
9137 if (flags & RENAME_WHITEOUT) {
9138 ret = btrfs_create_new_inode(trans, args: &whiteout_args);
9139 if (ret) {
9140 btrfs_abort_transaction(trans, ret);
9141 goto out_fail;
9142 } else {
9143 unlock_new_inode(whiteout_args.inode);
9144 iput(whiteout_args.inode);
9145 whiteout_args.inode = NULL;
9146 }
9147 }
9148out_fail:
9149 ret2 = btrfs_end_transaction(trans);
9150 ret = ret ? ret : ret2;
9151out_notrans:
9152 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9153 up_read(sem: &fs_info->subvol_sem);
9154 if (flags & RENAME_WHITEOUT)
9155 btrfs_new_inode_args_destroy(args: &whiteout_args);
9156out_whiteout_inode:
9157 if (flags & RENAME_WHITEOUT)
9158 iput(whiteout_args.inode);
9159out_fscrypt_names:
9160 fscrypt_free_filename(fname: &old_fname);
9161 fscrypt_free_filename(fname: &new_fname);
9162 return ret;
9163}
9164
9165static int btrfs_rename2(struct mnt_idmap *idmap, struct inode *old_dir,
9166 struct dentry *old_dentry, struct inode *new_dir,
9167 struct dentry *new_dentry, unsigned int flags)
9168{
9169 int ret;
9170
9171 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
9172 return -EINVAL;
9173
9174 if (flags & RENAME_EXCHANGE)
9175 ret = btrfs_rename_exchange(old_dir, old_dentry, new_dir,
9176 new_dentry);
9177 else
9178 ret = btrfs_rename(idmap, old_dir, old_dentry, new_dir,
9179 new_dentry, flags);
9180
9181 btrfs_btree_balance_dirty(fs_info: BTRFS_I(inode: new_dir)->root->fs_info);
9182
9183 return ret;
9184}
9185
9186struct btrfs_delalloc_work {
9187 struct inode *inode;
9188 struct completion completion;
9189 struct list_head list;
9190 struct btrfs_work work;
9191};
9192
9193static void btrfs_run_delalloc_work(struct btrfs_work *work)
9194{
9195 struct btrfs_delalloc_work *delalloc_work;
9196 struct inode *inode;
9197
9198 delalloc_work = container_of(work, struct btrfs_delalloc_work,
9199 work);
9200 inode = delalloc_work->inode;
9201 filemap_flush(inode->i_mapping);
9202 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9203 &BTRFS_I(inode)->runtime_flags))
9204 filemap_flush(inode->i_mapping);
9205
9206 iput(inode);
9207 complete(&delalloc_work->completion);
9208}
9209
9210static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
9211{
9212 struct btrfs_delalloc_work *work;
9213
9214 work = kmalloc(size: sizeof(*work), GFP_NOFS);
9215 if (!work)
9216 return NULL;
9217
9218 init_completion(x: &work->completion);
9219 INIT_LIST_HEAD(list: &work->list);
9220 work->inode = inode;
9221 btrfs_init_work(work: &work->work, func: btrfs_run_delalloc_work, NULL);
9222
9223 return work;
9224}
9225
9226/*
9227 * some fairly slow code that needs optimization. This walks the list
9228 * of all the inodes with pending delalloc and forces them to disk.
9229 */
9230static int start_delalloc_inodes(struct btrfs_root *root,
9231 struct writeback_control *wbc, bool snapshot,
9232 bool in_reclaim_context)
9233{
9234 struct btrfs_inode *binode;
9235 struct inode *inode;
9236 struct btrfs_delalloc_work *work, *next;
9237 LIST_HEAD(works);
9238 LIST_HEAD(splice);
9239 int ret = 0;
9240 bool full_flush = wbc->nr_to_write == LONG_MAX;
9241
9242 mutex_lock(&root->delalloc_mutex);
9243 spin_lock(lock: &root->delalloc_lock);
9244 list_splice_init(list: &root->delalloc_inodes, head: &splice);
9245 while (!list_empty(head: &splice)) {
9246 binode = list_entry(splice.next, struct btrfs_inode,
9247 delalloc_inodes);
9248
9249 list_move_tail(list: &binode->delalloc_inodes,
9250 head: &root->delalloc_inodes);
9251
9252 if (in_reclaim_context &&
9253 test_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &binode->runtime_flags))
9254 continue;
9255
9256 inode = igrab(&binode->vfs_inode);
9257 if (!inode) {
9258 cond_resched_lock(&root->delalloc_lock);
9259 continue;
9260 }
9261 spin_unlock(lock: &root->delalloc_lock);
9262
9263 if (snapshot)
9264 set_bit(nr: BTRFS_INODE_SNAPSHOT_FLUSH,
9265 addr: &binode->runtime_flags);
9266 if (full_flush) {
9267 work = btrfs_alloc_delalloc_work(inode);
9268 if (!work) {
9269 iput(inode);
9270 ret = -ENOMEM;
9271 goto out;
9272 }
9273 list_add_tail(new: &work->list, head: &works);
9274 btrfs_queue_work(wq: root->fs_info->flush_workers,
9275 work: &work->work);
9276 } else {
9277 ret = filemap_fdatawrite_wbc(mapping: inode->i_mapping, wbc);
9278 btrfs_add_delayed_iput(inode: BTRFS_I(inode));
9279 if (ret || wbc->nr_to_write <= 0)
9280 goto out;
9281 }
9282 cond_resched();
9283 spin_lock(lock: &root->delalloc_lock);
9284 }
9285 spin_unlock(lock: &root->delalloc_lock);
9286
9287out:
9288 list_for_each_entry_safe(work, next, &works, list) {
9289 list_del_init(entry: &work->list);
9290 wait_for_completion(&work->completion);
9291 kfree(objp: work);
9292 }
9293
9294 if (!list_empty(head: &splice)) {
9295 spin_lock(lock: &root->delalloc_lock);
9296 list_splice_tail(list: &splice, head: &root->delalloc_inodes);
9297 spin_unlock(lock: &root->delalloc_lock);
9298 }
9299 mutex_unlock(lock: &root->delalloc_mutex);
9300 return ret;
9301}
9302
9303int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context)
9304{
9305 struct writeback_control wbc = {
9306 .nr_to_write = LONG_MAX,
9307 .sync_mode = WB_SYNC_NONE,
9308 .range_start = 0,
9309 .range_end = LLONG_MAX,
9310 };
9311 struct btrfs_fs_info *fs_info = root->fs_info;
9312
9313 if (BTRFS_FS_ERROR(fs_info))
9314 return -EROFS;
9315
9316 return start_delalloc_inodes(root, wbc: &wbc, snapshot: true, in_reclaim_context);
9317}
9318
9319int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr,
9320 bool in_reclaim_context)
9321{
9322 struct writeback_control wbc = {
9323 .nr_to_write = nr,
9324 .sync_mode = WB_SYNC_NONE,
9325 .range_start = 0,
9326 .range_end = LLONG_MAX,
9327 };
9328 struct btrfs_root *root;
9329 LIST_HEAD(splice);
9330 int ret;
9331
9332 if (BTRFS_FS_ERROR(fs_info))
9333 return -EROFS;
9334
9335 mutex_lock(&fs_info->delalloc_root_mutex);
9336 spin_lock(lock: &fs_info->delalloc_root_lock);
9337 list_splice_init(list: &fs_info->delalloc_roots, head: &splice);
9338 while (!list_empty(head: &splice)) {
9339 /*
9340 * Reset nr_to_write here so we know that we're doing a full
9341 * flush.
9342 */
9343 if (nr == LONG_MAX)
9344 wbc.nr_to_write = LONG_MAX;
9345
9346 root = list_first_entry(&splice, struct btrfs_root,
9347 delalloc_root);
9348 root = btrfs_grab_root(root);
9349 BUG_ON(!root);
9350 list_move_tail(list: &root->delalloc_root,
9351 head: &fs_info->delalloc_roots);
9352 spin_unlock(lock: &fs_info->delalloc_root_lock);
9353
9354 ret = start_delalloc_inodes(root, wbc: &wbc, snapshot: false, in_reclaim_context);
9355 btrfs_put_root(root);
9356 if (ret < 0 || wbc.nr_to_write <= 0)
9357 goto out;
9358 spin_lock(lock: &fs_info->delalloc_root_lock);
9359 }
9360 spin_unlock(lock: &fs_info->delalloc_root_lock);
9361
9362 ret = 0;
9363out:
9364 if (!list_empty(head: &splice)) {
9365 spin_lock(lock: &fs_info->delalloc_root_lock);
9366 list_splice_tail(list: &splice, head: &fs_info->delalloc_roots);
9367 spin_unlock(lock: &fs_info->delalloc_root_lock);
9368 }
9369 mutex_unlock(lock: &fs_info->delalloc_root_mutex);
9370 return ret;
9371}
9372
9373static int btrfs_symlink(struct mnt_idmap *idmap, struct inode *dir,
9374 struct dentry *dentry, const char *symname)
9375{
9376 struct btrfs_fs_info *fs_info = btrfs_sb(sb: dir->i_sb);
9377 struct btrfs_trans_handle *trans;
9378 struct btrfs_root *root = BTRFS_I(inode: dir)->root;
9379 struct btrfs_path *path;
9380 struct btrfs_key key;
9381 struct inode *inode;
9382 struct btrfs_new_inode_args new_inode_args = {
9383 .dir = dir,
9384 .dentry = dentry,
9385 };
9386 unsigned int trans_num_items;
9387 int err;
9388 int name_len;
9389 int datasize;
9390 unsigned long ptr;
9391 struct btrfs_file_extent_item *ei;
9392 struct extent_buffer *leaf;
9393
9394 name_len = strlen(symname);
9395 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(info: fs_info))
9396 return -ENAMETOOLONG;
9397
9398 inode = new_inode(sb: dir->i_sb);
9399 if (!inode)
9400 return -ENOMEM;
9401 inode_init_owner(idmap, inode, dir, S_IFLNK | S_IRWXUGO);
9402 inode->i_op = &btrfs_symlink_inode_operations;
9403 inode_nohighmem(inode);
9404 inode->i_mapping->a_ops = &btrfs_aops;
9405 btrfs_i_size_write(inode: BTRFS_I(inode), size: name_len);
9406 inode_set_bytes(inode, bytes: name_len);
9407
9408 new_inode_args.inode = inode;
9409 err = btrfs_new_inode_prepare(args: &new_inode_args, trans_num_items: &trans_num_items);
9410 if (err)
9411 goto out_inode;
9412 /* 1 additional item for the inline extent */
9413 trans_num_items++;
9414
9415 trans = btrfs_start_transaction(root, num_items: trans_num_items);
9416 if (IS_ERR(ptr: trans)) {
9417 err = PTR_ERR(ptr: trans);
9418 goto out_new_inode_args;
9419 }
9420
9421 err = btrfs_create_new_inode(trans, args: &new_inode_args);
9422 if (err)
9423 goto out;
9424
9425 path = btrfs_alloc_path();
9426 if (!path) {
9427 err = -ENOMEM;
9428 btrfs_abort_transaction(trans, err);
9429 discard_new_inode(inode);
9430 inode = NULL;
9431 goto out;
9432 }
9433 key.objectid = btrfs_ino(inode: BTRFS_I(inode));
9434 key.offset = 0;
9435 key.type = BTRFS_EXTENT_DATA_KEY;
9436 datasize = btrfs_file_extent_calc_inline_size(datasize: name_len);
9437 err = btrfs_insert_empty_item(trans, root, path, key: &key,
9438 data_size: datasize);
9439 if (err) {
9440 btrfs_abort_transaction(trans, err);
9441 btrfs_free_path(p: path);
9442 discard_new_inode(inode);
9443 inode = NULL;
9444 goto out;
9445 }
9446 leaf = path->nodes[0];
9447 ei = btrfs_item_ptr(leaf, path->slots[0],
9448 struct btrfs_file_extent_item);
9449 btrfs_set_file_extent_generation(eb: leaf, s: ei, val: trans->transid);
9450 btrfs_set_file_extent_type(eb: leaf, s: ei,
9451 val: BTRFS_FILE_EXTENT_INLINE);
9452 btrfs_set_file_extent_encryption(eb: leaf, s: ei, val: 0);
9453 btrfs_set_file_extent_compression(eb: leaf, s: ei, val: 0);
9454 btrfs_set_file_extent_other_encoding(eb: leaf, s: ei, val: 0);
9455 btrfs_set_file_extent_ram_bytes(eb: leaf, s: ei, val: name_len);
9456
9457 ptr = btrfs_file_extent_inline_start(e: ei);
9458 write_extent_buffer(eb: leaf, src: symname, start: ptr, len: name_len);
9459 btrfs_mark_buffer_dirty(trans, buf: leaf);
9460 btrfs_free_path(p: path);
9461
9462 d_instantiate_new(dentry, inode);
9463 err = 0;
9464out:
9465 btrfs_end_transaction(trans);
9466 btrfs_btree_balance_dirty(fs_info);
9467out_new_inode_args:
9468 btrfs_new_inode_args_destroy(args: &new_inode_args);
9469out_inode:
9470 if (err)
9471 iput(inode);
9472 return err;
9473}
9474
9475static struct btrfs_trans_handle *insert_prealloc_file_extent(
9476 struct btrfs_trans_handle *trans_in,
9477 struct btrfs_inode *inode,
9478 struct btrfs_key *ins,
9479 u64 file_offset)
9480{
9481 struct btrfs_file_extent_item stack_fi;
9482 struct btrfs_replace_extent_info extent_info;
9483 struct btrfs_trans_handle *trans = trans_in;
9484 struct btrfs_path *path;
9485 u64 start = ins->objectid;
9486 u64 len = ins->offset;
9487 int qgroup_released;
9488 int ret;
9489
9490 memset(&stack_fi, 0, sizeof(stack_fi));
9491
9492 btrfs_set_stack_file_extent_type(s: &stack_fi, val: BTRFS_FILE_EXTENT_PREALLOC);
9493 btrfs_set_stack_file_extent_disk_bytenr(s: &stack_fi, val: start);
9494 btrfs_set_stack_file_extent_disk_num_bytes(s: &stack_fi, val: len);
9495 btrfs_set_stack_file_extent_num_bytes(s: &stack_fi, val: len);
9496 btrfs_set_stack_file_extent_ram_bytes(s: &stack_fi, val: len);
9497 btrfs_set_stack_file_extent_compression(s: &stack_fi, val: BTRFS_COMPRESS_NONE);
9498 /* Encryption and other encoding is reserved and all 0 */
9499
9500 qgroup_released = btrfs_qgroup_release_data(inode, start: file_offset, len);
9501 if (qgroup_released < 0)
9502 return ERR_PTR(error: qgroup_released);
9503
9504 if (trans) {
9505 ret = insert_reserved_file_extent(trans, inode,
9506 file_pos: file_offset, stack_fi: &stack_fi,
9507 update_inode_bytes: true, qgroup_reserved: qgroup_released);
9508 if (ret)
9509 goto free_qgroup;
9510 return trans;
9511 }
9512
9513 extent_info.disk_offset = start;
9514 extent_info.disk_len = len;
9515 extent_info.data_offset = 0;
9516 extent_info.data_len = len;
9517 extent_info.file_offset = file_offset;
9518 extent_info.extent_buf = (char *)&stack_fi;
9519 extent_info.is_new_extent = true;
9520 extent_info.update_times = true;
9521 extent_info.qgroup_reserved = qgroup_released;
9522 extent_info.insertions = 0;
9523
9524 path = btrfs_alloc_path();
9525 if (!path) {
9526 ret = -ENOMEM;
9527 goto free_qgroup;
9528 }
9529
9530 ret = btrfs_replace_file_extents(inode, path, start: file_offset,
9531 end: file_offset + len - 1, extent_info: &extent_info,
9532 trans_out: &trans);
9533 btrfs_free_path(p: path);
9534 if (ret)
9535 goto free_qgroup;
9536 return trans;
9537
9538free_qgroup:
9539 /*
9540 * We have released qgroup data range at the beginning of the function,
9541 * and normally qgroup_released bytes will be freed when committing
9542 * transaction.
9543 * But if we error out early, we have to free what we have released
9544 * or we leak qgroup data reservation.
9545 */
9546 btrfs_qgroup_free_refroot(fs_info: inode->root->fs_info,
9547 ref_root: inode->root->root_key.objectid, num_bytes: qgroup_released,
9548 type: BTRFS_QGROUP_RSV_DATA);
9549 return ERR_PTR(error: ret);
9550}
9551
9552static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
9553 u64 start, u64 num_bytes, u64 min_size,
9554 loff_t actual_len, u64 *alloc_hint,
9555 struct btrfs_trans_handle *trans)
9556{
9557 struct btrfs_fs_info *fs_info = btrfs_sb(sb: inode->i_sb);
9558 struct extent_map *em;
9559 struct btrfs_root *root = BTRFS_I(inode)->root;
9560 struct btrfs_key ins;
9561 u64 cur_offset = start;
9562 u64 clear_offset = start;
9563 u64 i_size;
9564 u64 cur_bytes;
9565 u64 last_alloc = (u64)-1;
9566 int ret = 0;
9567 bool own_trans = true;
9568 u64 end = start + num_bytes - 1;
9569
9570 if (trans)
9571 own_trans = false;
9572 while (num_bytes > 0) {
9573 cur_bytes = min_t(u64, num_bytes, SZ_256M);
9574 cur_bytes = max(cur_bytes, min_size);
9575 /*
9576 * If we are severely fragmented we could end up with really
9577 * small allocations, so if the allocator is returning small
9578 * chunks lets make its job easier by only searching for those
9579 * sized chunks.
9580 */
9581 cur_bytes = min(cur_bytes, last_alloc);
9582 ret = btrfs_reserve_extent(root, ram_bytes: cur_bytes, num_bytes: cur_bytes,
9583 min_alloc_size: min_size, empty_size: 0, hint_byte: *alloc_hint, ins: &ins, is_data: 1, delalloc: 0);
9584 if (ret)
9585 break;
9586
9587 /*
9588 * We've reserved this space, and thus converted it from
9589 * ->bytes_may_use to ->bytes_reserved. Any error that happens
9590 * from here on out we will only need to clear our reservation
9591 * for the remaining unreserved area, so advance our
9592 * clear_offset by our extent size.
9593 */
9594 clear_offset += ins.offset;
9595
9596 last_alloc = ins.offset;
9597 trans = insert_prealloc_file_extent(trans_in: trans, inode: BTRFS_I(inode),
9598 ins: &ins, file_offset: cur_offset);
9599 /*
9600 * Now that we inserted the prealloc extent we can finally
9601 * decrement the number of reservations in the block group.
9602 * If we did it before, we could race with relocation and have
9603 * relocation miss the reserved extent, making it fail later.
9604 */
9605 btrfs_dec_block_group_reservations(fs_info, start: ins.objectid);
9606 if (IS_ERR(ptr: trans)) {
9607 ret = PTR_ERR(ptr: trans);
9608 btrfs_free_reserved_extent(fs_info, start: ins.objectid,
9609 len: ins.offset, delalloc: 0);
9610 break;
9611 }
9612
9613 em = alloc_extent_map();
9614 if (!em) {
9615 btrfs_drop_extent_map_range(inode: BTRFS_I(inode), start: cur_offset,
9616 end: cur_offset + ins.offset - 1, skip_pinned: false);
9617 btrfs_set_inode_full_sync(inode: BTRFS_I(inode));
9618 goto next;
9619 }
9620
9621 em->start = cur_offset;
9622 em->orig_start = cur_offset;
9623 em->len = ins.offset;
9624 em->block_start = ins.objectid;
9625 em->block_len = ins.offset;
9626 em->orig_block_len = ins.offset;
9627 em->ram_bytes = ins.offset;
9628 set_bit(nr: EXTENT_FLAG_PREALLOC, addr: &em->flags);
9629 em->generation = trans->transid;
9630
9631 ret = btrfs_replace_extent_map_range(inode: BTRFS_I(inode), new_em: em, modified: true);
9632 free_extent_map(em);
9633next:
9634 num_bytes -= ins.offset;
9635 cur_offset += ins.offset;
9636 *alloc_hint = ins.objectid + ins.offset;
9637
9638 inode_inc_iversion(inode);
9639 inode_set_ctime_current(inode);
9640 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
9641 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
9642 (actual_len > inode->i_size) &&
9643 (cur_offset > inode->i_size)) {
9644 if (cur_offset > actual_len)
9645 i_size = actual_len;
9646 else
9647 i_size = cur_offset;
9648 i_size_write(inode, i_size);
9649 btrfs_inode_safe_disk_i_size_write(inode: BTRFS_I(inode), new_i_size: 0);
9650 }
9651
9652 ret = btrfs_update_inode(trans, inode: BTRFS_I(inode));
9653
9654 if (ret) {
9655 btrfs_abort_transaction(trans, ret);
9656 if (own_trans)
9657 btrfs_end_transaction(trans);
9658 break;
9659 }
9660
9661 if (own_trans) {
9662 btrfs_end_transaction(trans);
9663 trans = NULL;
9664 }
9665 }
9666 if (clear_offset < end)
9667 btrfs_free_reserved_data_space(inode: BTRFS_I(inode), NULL, start: clear_offset,
9668 len: end - clear_offset + 1);
9669 return ret;
9670}
9671
9672int btrfs_prealloc_file_range(struct inode *inode, int mode,
9673 u64 start, u64 num_bytes, u64 min_size,
9674 loff_t actual_len, u64 *alloc_hint)
9675{
9676 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9677 min_size, actual_len, alloc_hint,
9678 NULL);
9679}
9680
9681int btrfs_prealloc_file_range_trans(struct inode *inode,
9682 struct btrfs_trans_handle *trans, int mode,
9683 u64 start, u64 num_bytes, u64 min_size,
9684 loff_t actual_len, u64 *alloc_hint)
9685{
9686 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9687 min_size, actual_len, alloc_hint, trans);
9688}
9689
9690static int btrfs_permission(struct mnt_idmap *idmap,
9691 struct inode *inode, int mask)
9692{
9693 struct btrfs_root *root = BTRFS_I(inode)->root;
9694 umode_t mode = inode->i_mode;
9695
9696 if (mask & MAY_WRITE &&
9697 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
9698 if (btrfs_root_readonly(root))
9699 return -EROFS;
9700 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
9701 return -EACCES;
9702 }
9703 return generic_permission(idmap, inode, mask);
9704}
9705
9706static int btrfs_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
9707 struct file *file, umode_t mode)
9708{
9709 struct btrfs_fs_info *fs_info = btrfs_sb(sb: dir->i_sb);
9710 struct btrfs_trans_handle *trans;
9711 struct btrfs_root *root = BTRFS_I(inode: dir)->root;
9712 struct inode *inode;
9713 struct btrfs_new_inode_args new_inode_args = {
9714 .dir = dir,
9715 .dentry = file->f_path.dentry,
9716 .orphan = true,
9717 };
9718 unsigned int trans_num_items;
9719 int ret;
9720
9721 inode = new_inode(sb: dir->i_sb);
9722 if (!inode)
9723 return -ENOMEM;
9724 inode_init_owner(idmap, inode, dir, mode);
9725 inode->i_fop = &btrfs_file_operations;
9726 inode->i_op = &btrfs_file_inode_operations;
9727 inode->i_mapping->a_ops = &btrfs_aops;
9728
9729 new_inode_args.inode = inode;
9730 ret = btrfs_new_inode_prepare(args: &new_inode_args, trans_num_items: &trans_num_items);
9731 if (ret)
9732 goto out_inode;
9733
9734 trans = btrfs_start_transaction(root, num_items: trans_num_items);
9735 if (IS_ERR(ptr: trans)) {
9736 ret = PTR_ERR(ptr: trans);
9737 goto out_new_inode_args;
9738 }
9739
9740 ret = btrfs_create_new_inode(trans, args: &new_inode_args);
9741
9742 /*
9743 * We set number of links to 0 in btrfs_create_new_inode(), and here we
9744 * set it to 1 because d_tmpfile() will issue a warning if the count is
9745 * 0, through:
9746 *
9747 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
9748 */
9749 set_nlink(inode, nlink: 1);
9750
9751 if (!ret) {
9752 d_tmpfile(file, inode);
9753 unlock_new_inode(inode);
9754 mark_inode_dirty(inode);
9755 }
9756
9757 btrfs_end_transaction(trans);
9758 btrfs_btree_balance_dirty(fs_info);
9759out_new_inode_args:
9760 btrfs_new_inode_args_destroy(args: &new_inode_args);
9761out_inode:
9762 if (ret)
9763 iput(inode);
9764 return finish_open_simple(file, error: ret);
9765}
9766
9767void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end)
9768{
9769 struct btrfs_fs_info *fs_info = inode->root->fs_info;
9770 unsigned long index = start >> PAGE_SHIFT;
9771 unsigned long end_index = end >> PAGE_SHIFT;
9772 struct page *page;
9773 u32 len;
9774
9775 ASSERT(end + 1 - start <= U32_MAX);
9776 len = end + 1 - start;
9777 while (index <= end_index) {
9778 page = find_get_page(mapping: inode->vfs_inode.i_mapping, offset: index);
9779 ASSERT(page); /* Pages should be in the extent_io_tree */
9780
9781 btrfs_page_set_writeback(fs_info, page, start, len);
9782 put_page(page);
9783 index++;
9784 }
9785}
9786
9787int btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info *fs_info,
9788 int compress_type)
9789{
9790 switch (compress_type) {
9791 case BTRFS_COMPRESS_NONE:
9792 return BTRFS_ENCODED_IO_COMPRESSION_NONE;
9793 case BTRFS_COMPRESS_ZLIB:
9794 return BTRFS_ENCODED_IO_COMPRESSION_ZLIB;
9795 case BTRFS_COMPRESS_LZO:
9796 /*
9797 * The LZO format depends on the sector size. 64K is the maximum
9798 * sector size that we support.
9799 */
9800 if (fs_info->sectorsize < SZ_4K || fs_info->sectorsize > SZ_64K)
9801 return -EINVAL;
9802 return BTRFS_ENCODED_IO_COMPRESSION_LZO_4K +
9803 (fs_info->sectorsize_bits - 12);
9804 case BTRFS_COMPRESS_ZSTD:
9805 return BTRFS_ENCODED_IO_COMPRESSION_ZSTD;
9806 default:
9807 return -EUCLEAN;
9808 }
9809}
9810
9811static ssize_t btrfs_encoded_read_inline(
9812 struct kiocb *iocb,
9813 struct iov_iter *iter, u64 start,
9814 u64 lockend,
9815 struct extent_state **cached_state,
9816 u64 extent_start, size_t count,
9817 struct btrfs_ioctl_encoded_io_args *encoded,
9818 bool *unlocked)
9819{
9820 struct btrfs_inode *inode = BTRFS_I(inode: file_inode(f: iocb->ki_filp));
9821 struct btrfs_root *root = inode->root;
9822 struct btrfs_fs_info *fs_info = root->fs_info;
9823 struct extent_io_tree *io_tree = &inode->io_tree;
9824 struct btrfs_path *path;
9825 struct extent_buffer *leaf;
9826 struct btrfs_file_extent_item *item;
9827 u64 ram_bytes;
9828 unsigned long ptr;
9829 void *tmp;
9830 ssize_t ret;
9831
9832 path = btrfs_alloc_path();
9833 if (!path) {
9834 ret = -ENOMEM;
9835 goto out;
9836 }
9837 ret = btrfs_lookup_file_extent(NULL, root, path, objectid: btrfs_ino(inode),
9838 bytenr: extent_start, mod: 0);
9839 if (ret) {
9840 if (ret > 0) {
9841 /* The extent item disappeared? */
9842 ret = -EIO;
9843 }
9844 goto out;
9845 }
9846 leaf = path->nodes[0];
9847 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
9848
9849 ram_bytes = btrfs_file_extent_ram_bytes(eb: leaf, s: item);
9850 ptr = btrfs_file_extent_inline_start(e: item);
9851
9852 encoded->len = min_t(u64, extent_start + ram_bytes,
9853 inode->vfs_inode.i_size) - iocb->ki_pos;
9854 ret = btrfs_encoded_io_compression_from_extent(fs_info,
9855 compress_type: btrfs_file_extent_compression(eb: leaf, s: item));
9856 if (ret < 0)
9857 goto out;
9858 encoded->compression = ret;
9859 if (encoded->compression) {
9860 size_t inline_size;
9861
9862 inline_size = btrfs_file_extent_inline_item_len(eb: leaf,
9863 nr: path->slots[0]);
9864 if (inline_size > count) {
9865 ret = -ENOBUFS;
9866 goto out;
9867 }
9868 count = inline_size;
9869 encoded->unencoded_len = ram_bytes;
9870 encoded->unencoded_offset = iocb->ki_pos - extent_start;
9871 } else {
9872 count = min_t(u64, count, encoded->len);
9873 encoded->len = count;
9874 encoded->unencoded_len = count;
9875 ptr += iocb->ki_pos - extent_start;
9876 }
9877
9878 tmp = kmalloc(size: count, GFP_NOFS);
9879 if (!tmp) {
9880 ret = -ENOMEM;
9881 goto out;
9882 }
9883 read_extent_buffer(eb: leaf, dst: tmp, start: ptr, len: count);
9884 btrfs_release_path(p: path);
9885 unlock_extent(tree: io_tree, start, end: lockend, cached: cached_state);
9886 btrfs_inode_unlock(inode, ilock_flags: BTRFS_ILOCK_SHARED);
9887 *unlocked = true;
9888
9889 ret = copy_to_iter(addr: tmp, bytes: count, i: iter);
9890 if (ret != count)
9891 ret = -EFAULT;
9892 kfree(objp: tmp);
9893out:
9894 btrfs_free_path(p: path);
9895 return ret;
9896}
9897
9898struct btrfs_encoded_read_private {
9899 wait_queue_head_t wait;
9900 atomic_t pending;
9901 blk_status_t status;
9902};
9903
9904static void btrfs_encoded_read_endio(struct btrfs_bio *bbio)
9905{
9906 struct btrfs_encoded_read_private *priv = bbio->private;
9907
9908 if (bbio->bio.bi_status) {
9909 /*
9910 * The memory barrier implied by the atomic_dec_return() here
9911 * pairs with the memory barrier implied by the
9912 * atomic_dec_return() or io_wait_event() in
9913 * btrfs_encoded_read_regular_fill_pages() to ensure that this
9914 * write is observed before the load of status in
9915 * btrfs_encoded_read_regular_fill_pages().
9916 */
9917 WRITE_ONCE(priv->status, bbio->bio.bi_status);
9918 }
9919 if (!atomic_dec_return(v: &priv->pending))
9920 wake_up(&priv->wait);
9921 bio_put(&bbio->bio);
9922}
9923
9924int btrfs_encoded_read_regular_fill_pages(struct btrfs_inode *inode,
9925 u64 file_offset, u64 disk_bytenr,
9926 u64 disk_io_size, struct page **pages)
9927{
9928 struct btrfs_fs_info *fs_info = inode->root->fs_info;
9929 struct btrfs_encoded_read_private priv = {
9930 .pending = ATOMIC_INIT(1),
9931 };
9932 unsigned long i = 0;
9933 struct btrfs_bio *bbio;
9934
9935 init_waitqueue_head(&priv.wait);
9936
9937 bbio = btrfs_bio_alloc(BIO_MAX_VECS, opf: REQ_OP_READ, fs_info,
9938 end_io: btrfs_encoded_read_endio, private: &priv);
9939 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
9940 bbio->inode = inode;
9941
9942 do {
9943 size_t bytes = min_t(u64, disk_io_size, PAGE_SIZE);
9944
9945 if (bio_add_page(bio: &bbio->bio, page: pages[i], len: bytes, off: 0) < bytes) {
9946 atomic_inc(v: &priv.pending);
9947 btrfs_submit_bio(bbio, mirror_num: 0);
9948
9949 bbio = btrfs_bio_alloc(BIO_MAX_VECS, opf: REQ_OP_READ, fs_info,
9950 end_io: btrfs_encoded_read_endio, private: &priv);
9951 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
9952 bbio->inode = inode;
9953 continue;
9954 }
9955
9956 i++;
9957 disk_bytenr += bytes;
9958 disk_io_size -= bytes;
9959 } while (disk_io_size);
9960
9961 atomic_inc(v: &priv.pending);
9962 btrfs_submit_bio(bbio, mirror_num: 0);
9963
9964 if (atomic_dec_return(v: &priv.pending))
9965 io_wait_event(priv.wait, !atomic_read(&priv.pending));
9966 /* See btrfs_encoded_read_endio() for ordering. */
9967 return blk_status_to_errno(READ_ONCE(priv.status));
9968}
9969
9970static ssize_t btrfs_encoded_read_regular(struct kiocb *iocb,
9971 struct iov_iter *iter,
9972 u64 start, u64 lockend,
9973 struct extent_state **cached_state,
9974 u64 disk_bytenr, u64 disk_io_size,
9975 size_t count, bool compressed,
9976 bool *unlocked)
9977{
9978 struct btrfs_inode *inode = BTRFS_I(inode: file_inode(f: iocb->ki_filp));
9979 struct extent_io_tree *io_tree = &inode->io_tree;
9980 struct page **pages;
9981 unsigned long nr_pages, i;
9982 u64 cur;
9983 size_t page_offset;
9984 ssize_t ret;
9985
9986 nr_pages = DIV_ROUND_UP(disk_io_size, PAGE_SIZE);
9987 pages = kcalloc(n: nr_pages, size: sizeof(struct page *), GFP_NOFS);
9988 if (!pages)
9989 return -ENOMEM;
9990 ret = btrfs_alloc_page_array(nr_pages, page_array: pages);
9991 if (ret) {
9992 ret = -ENOMEM;
9993 goto out;
9994 }
9995
9996 ret = btrfs_encoded_read_regular_fill_pages(inode, file_offset: start, disk_bytenr,
9997 disk_io_size, pages);
9998 if (ret)
9999 goto out;
10000
10001 unlock_extent(tree: io_tree, start, end: lockend, cached: cached_state);
10002 btrfs_inode_unlock(inode, ilock_flags: BTRFS_ILOCK_SHARED);
10003 *unlocked = true;
10004
10005 if (compressed) {
10006 i = 0;
10007 page_offset = 0;
10008 } else {
10009 i = (iocb->ki_pos - start) >> PAGE_SHIFT;
10010 page_offset = (iocb->ki_pos - start) & (PAGE_SIZE - 1);
10011 }
10012 cur = 0;
10013 while (cur < count) {
10014 size_t bytes = min_t(size_t, count - cur,
10015 PAGE_SIZE - page_offset);
10016
10017 if (copy_page_to_iter(page: pages[i], offset: page_offset, bytes,
10018 i: iter) != bytes) {
10019 ret = -EFAULT;
10020 goto out;
10021 }
10022 i++;
10023 cur += bytes;
10024 page_offset = 0;
10025 }
10026 ret = count;
10027out:
10028 for (i = 0; i < nr_pages; i++) {
10029 if (pages[i])
10030 __free_page(pages[i]);
10031 }
10032 kfree(objp: pages);
10033 return ret;
10034}
10035
10036ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter,
10037 struct btrfs_ioctl_encoded_io_args *encoded)
10038{
10039 struct btrfs_inode *inode = BTRFS_I(inode: file_inode(f: iocb->ki_filp));
10040 struct btrfs_fs_info *fs_info = inode->root->fs_info;
10041 struct extent_io_tree *io_tree = &inode->io_tree;
10042 ssize_t ret;
10043 size_t count = iov_iter_count(i: iter);
10044 u64 start, lockend, disk_bytenr, disk_io_size;
10045 struct extent_state *cached_state = NULL;
10046 struct extent_map *em;
10047 bool unlocked = false;
10048
10049 file_accessed(file: iocb->ki_filp);
10050
10051 btrfs_inode_lock(inode, ilock_flags: BTRFS_ILOCK_SHARED);
10052
10053 if (iocb->ki_pos >= inode->vfs_inode.i_size) {
10054 btrfs_inode_unlock(inode, ilock_flags: BTRFS_ILOCK_SHARED);
10055 return 0;
10056 }
10057 start = ALIGN_DOWN(iocb->ki_pos, fs_info->sectorsize);
10058 /*
10059 * We don't know how long the extent containing iocb->ki_pos is, but if
10060 * it's compressed we know that it won't be longer than this.
10061 */
10062 lockend = start + BTRFS_MAX_UNCOMPRESSED - 1;
10063
10064 for (;;) {
10065 struct btrfs_ordered_extent *ordered;
10066
10067 ret = btrfs_wait_ordered_range(inode: &inode->vfs_inode, start,
10068 len: lockend - start + 1);
10069 if (ret)
10070 goto out_unlock_inode;
10071 lock_extent(tree: io_tree, start, end: lockend, cached: &cached_state);
10072 ordered = btrfs_lookup_ordered_range(inode, file_offset: start,
10073 len: lockend - start + 1);
10074 if (!ordered)
10075 break;
10076 btrfs_put_ordered_extent(entry: ordered);
10077 unlock_extent(tree: io_tree, start, end: lockend, cached: &cached_state);
10078 cond_resched();
10079 }
10080
10081 em = btrfs_get_extent(inode, NULL, pg_offset: 0, start, len: lockend - start + 1);
10082 if (IS_ERR(ptr: em)) {
10083 ret = PTR_ERR(ptr: em);
10084 goto out_unlock_extent;
10085 }
10086
10087 if (em->block_start == EXTENT_MAP_INLINE) {
10088 u64 extent_start = em->start;
10089
10090 /*
10091 * For inline extents we get everything we need out of the
10092 * extent item.
10093 */
10094 free_extent_map(em);
10095 em = NULL;
10096 ret = btrfs_encoded_read_inline(iocb, iter, start, lockend,
10097 cached_state: &cached_state, extent_start,
10098 count, encoded, unlocked: &unlocked);
10099 goto out;
10100 }
10101
10102 /*
10103 * We only want to return up to EOF even if the extent extends beyond
10104 * that.
10105 */
10106 encoded->len = min_t(u64, extent_map_end(em),
10107 inode->vfs_inode.i_size) - iocb->ki_pos;
10108 if (em->block_start == EXTENT_MAP_HOLE ||
10109 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
10110 disk_bytenr = EXTENT_MAP_HOLE;
10111 count = min_t(u64, count, encoded->len);
10112 encoded->len = count;
10113 encoded->unencoded_len = count;
10114 } else if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
10115 disk_bytenr = em->block_start;
10116 /*
10117 * Bail if the buffer isn't large enough to return the whole
10118 * compressed extent.
10119 */
10120 if (em->block_len > count) {
10121 ret = -ENOBUFS;
10122 goto out_em;
10123 }
10124 disk_io_size = em->block_len;
10125 count = em->block_len;
10126 encoded->unencoded_len = em->ram_bytes;
10127 encoded->unencoded_offset = iocb->ki_pos - em->orig_start;
10128 ret = btrfs_encoded_io_compression_from_extent(fs_info,
10129 compress_type: em->compress_type);
10130 if (ret < 0)
10131 goto out_em;
10132 encoded->compression = ret;
10133 } else {
10134 disk_bytenr = em->block_start + (start - em->start);
10135 if (encoded->len > count)
10136 encoded->len = count;
10137 /*
10138 * Don't read beyond what we locked. This also limits the page
10139 * allocations that we'll do.
10140 */
10141 disk_io_size = min(lockend + 1, iocb->ki_pos + encoded->len) - start;
10142 count = start + disk_io_size - iocb->ki_pos;
10143 encoded->len = count;
10144 encoded->unencoded_len = count;
10145 disk_io_size = ALIGN(disk_io_size, fs_info->sectorsize);
10146 }
10147 free_extent_map(em);
10148 em = NULL;
10149
10150 if (disk_bytenr == EXTENT_MAP_HOLE) {
10151 unlock_extent(tree: io_tree, start, end: lockend, cached: &cached_state);
10152 btrfs_inode_unlock(inode, ilock_flags: BTRFS_ILOCK_SHARED);
10153 unlocked = true;
10154 ret = iov_iter_zero(bytes: count, iter);
10155 if (ret != count)
10156 ret = -EFAULT;
10157 } else {
10158 ret = btrfs_encoded_read_regular(iocb, iter, start, lockend,
10159 cached_state: &cached_state, disk_bytenr,
10160 disk_io_size, count,
10161 compressed: encoded->compression,
10162 unlocked: &unlocked);
10163 }
10164
10165out:
10166 if (ret >= 0)
10167 iocb->ki_pos += encoded->len;
10168out_em:
10169 free_extent_map(em);
10170out_unlock_extent:
10171 if (!unlocked)
10172 unlock_extent(tree: io_tree, start, end: lockend, cached: &cached_state);
10173out_unlock_inode:
10174 if (!unlocked)
10175 btrfs_inode_unlock(inode, ilock_flags: BTRFS_ILOCK_SHARED);
10176 return ret;
10177}
10178
10179ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from,
10180 const struct btrfs_ioctl_encoded_io_args *encoded)
10181{
10182 struct btrfs_inode *inode = BTRFS_I(inode: file_inode(f: iocb->ki_filp));
10183 struct btrfs_root *root = inode->root;
10184 struct btrfs_fs_info *fs_info = root->fs_info;
10185 struct extent_io_tree *io_tree = &inode->io_tree;
10186 struct extent_changeset *data_reserved = NULL;
10187 struct extent_state *cached_state = NULL;
10188 struct btrfs_ordered_extent *ordered;
10189 int compression;
10190 size_t orig_count;
10191 u64 start, end;
10192 u64 num_bytes, ram_bytes, disk_num_bytes;
10193 unsigned long nr_pages, i;
10194 struct page **pages;
10195 struct btrfs_key ins;
10196 bool extent_reserved = false;
10197 struct extent_map *em;
10198 ssize_t ret;
10199
10200 switch (encoded->compression) {
10201 case BTRFS_ENCODED_IO_COMPRESSION_ZLIB:
10202 compression = BTRFS_COMPRESS_ZLIB;
10203 break;
10204 case BTRFS_ENCODED_IO_COMPRESSION_ZSTD:
10205 compression = BTRFS_COMPRESS_ZSTD;
10206 break;
10207 case BTRFS_ENCODED_IO_COMPRESSION_LZO_4K:
10208 case BTRFS_ENCODED_IO_COMPRESSION_LZO_8K:
10209 case BTRFS_ENCODED_IO_COMPRESSION_LZO_16K:
10210 case BTRFS_ENCODED_IO_COMPRESSION_LZO_32K:
10211 case BTRFS_ENCODED_IO_COMPRESSION_LZO_64K:
10212 /* The sector size must match for LZO. */
10213 if (encoded->compression -
10214 BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 12 !=
10215 fs_info->sectorsize_bits)
10216 return -EINVAL;
10217 compression = BTRFS_COMPRESS_LZO;
10218 break;
10219 default:
10220 return -EINVAL;
10221 }
10222 if (encoded->encryption != BTRFS_ENCODED_IO_ENCRYPTION_NONE)
10223 return -EINVAL;
10224
10225 orig_count = iov_iter_count(i: from);
10226
10227 /* The extent size must be sane. */
10228 if (encoded->unencoded_len > BTRFS_MAX_UNCOMPRESSED ||
10229 orig_count > BTRFS_MAX_COMPRESSED || orig_count == 0)
10230 return -EINVAL;
10231
10232 /*
10233 * The compressed data must be smaller than the decompressed data.
10234 *
10235 * It's of course possible for data to compress to larger or the same
10236 * size, but the buffered I/O path falls back to no compression for such
10237 * data, and we don't want to break any assumptions by creating these
10238 * extents.
10239 *
10240 * Note that this is less strict than the current check we have that the
10241 * compressed data must be at least one sector smaller than the
10242 * decompressed data. We only want to enforce the weaker requirement
10243 * from old kernels that it is at least one byte smaller.
10244 */
10245 if (orig_count >= encoded->unencoded_len)
10246 return -EINVAL;
10247
10248 /* The extent must start on a sector boundary. */
10249 start = iocb->ki_pos;
10250 if (!IS_ALIGNED(start, fs_info->sectorsize))
10251 return -EINVAL;
10252
10253 /*
10254 * The extent must end on a sector boundary. However, we allow a write
10255 * which ends at or extends i_size to have an unaligned length; we round
10256 * up the extent size and set i_size to the unaligned end.
10257 */
10258 if (start + encoded->len < inode->vfs_inode.i_size &&
10259 !IS_ALIGNED(start + encoded->len, fs_info->sectorsize))
10260 return -EINVAL;
10261
10262 /* Finally, the offset in the unencoded data must be sector-aligned. */
10263 if (!IS_ALIGNED(encoded->unencoded_offset, fs_info->sectorsize))
10264 return -EINVAL;
10265
10266 num_bytes = ALIGN(encoded->len, fs_info->sectorsize);
10267 ram_bytes = ALIGN(encoded->unencoded_len, fs_info->sectorsize);
10268 end = start + num_bytes - 1;
10269
10270 /*
10271 * If the extent cannot be inline, the compressed data on disk must be
10272 * sector-aligned. For convenience, we extend it with zeroes if it
10273 * isn't.
10274 */
10275 disk_num_bytes = ALIGN(orig_count, fs_info->sectorsize);
10276 nr_pages = DIV_ROUND_UP(disk_num_bytes, PAGE_SIZE);
10277 pages = kvcalloc(n: nr_pages, size: sizeof(struct page *), GFP_KERNEL_ACCOUNT);
10278 if (!pages)
10279 return -ENOMEM;
10280 for (i = 0; i < nr_pages; i++) {
10281 size_t bytes = min_t(size_t, PAGE_SIZE, iov_iter_count(from));
10282 char *kaddr;
10283
10284 pages[i] = alloc_page(GFP_KERNEL_ACCOUNT);
10285 if (!pages[i]) {
10286 ret = -ENOMEM;
10287 goto out_pages;
10288 }
10289 kaddr = kmap_local_page(page: pages[i]);
10290 if (copy_from_iter(addr: kaddr, bytes, i: from) != bytes) {
10291 kunmap_local(kaddr);
10292 ret = -EFAULT;
10293 goto out_pages;
10294 }
10295 if (bytes < PAGE_SIZE)
10296 memset(kaddr + bytes, 0, PAGE_SIZE - bytes);
10297 kunmap_local(kaddr);
10298 }
10299
10300 for (;;) {
10301 struct btrfs_ordered_extent *ordered;
10302
10303 ret = btrfs_wait_ordered_range(inode: &inode->vfs_inode, start, len: num_bytes);
10304 if (ret)
10305 goto out_pages;
10306 ret = invalidate_inode_pages2_range(mapping: inode->vfs_inode.i_mapping,
10307 start: start >> PAGE_SHIFT,
10308 end: end >> PAGE_SHIFT);
10309 if (ret)
10310 goto out_pages;
10311 lock_extent(tree: io_tree, start, end, cached: &cached_state);
10312 ordered = btrfs_lookup_ordered_range(inode, file_offset: start, len: num_bytes);
10313 if (!ordered &&
10314 !filemap_range_has_page(inode->vfs_inode.i_mapping, lstart: start, lend: end))
10315 break;
10316 if (ordered)
10317 btrfs_put_ordered_extent(entry: ordered);
10318 unlock_extent(tree: io_tree, start, end, cached: &cached_state);
10319 cond_resched();
10320 }
10321
10322 /*
10323 * We don't use the higher-level delalloc space functions because our
10324 * num_bytes and disk_num_bytes are different.
10325 */
10326 ret = btrfs_alloc_data_chunk_ondemand(inode, bytes: disk_num_bytes);
10327 if (ret)
10328 goto out_unlock;
10329 ret = btrfs_qgroup_reserve_data(inode, reserved: &data_reserved, start, len: num_bytes);
10330 if (ret)
10331 goto out_free_data_space;
10332 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes, disk_num_bytes,
10333 noflush: false);
10334 if (ret)
10335 goto out_qgroup_free_data;
10336
10337 /* Try an inline extent first. */
10338 if (start == 0 && encoded->unencoded_len == encoded->len &&
10339 encoded->unencoded_offset == 0) {
10340 ret = cow_file_range_inline(inode, size: encoded->len, compressed_size: orig_count,
10341 compress_type: compression, compressed_pages: pages, update_i_size: true);
10342 if (ret <= 0) {
10343 if (ret == 0)
10344 ret = orig_count;
10345 goto out_delalloc_release;
10346 }
10347 }
10348
10349 ret = btrfs_reserve_extent(root, ram_bytes: disk_num_bytes, num_bytes: disk_num_bytes,
10350 min_alloc_size: disk_num_bytes, empty_size: 0, hint_byte: 0, ins: &ins, is_data: 1, delalloc: 1);
10351 if (ret)
10352 goto out_delalloc_release;
10353 extent_reserved = true;
10354
10355 em = create_io_em(inode, start, len: num_bytes,
10356 orig_start: start - encoded->unencoded_offset, block_start: ins.objectid,
10357 block_len: ins.offset, orig_block_len: ins.offset, ram_bytes, compress_type: compression,
10358 type: BTRFS_ORDERED_COMPRESSED);
10359 if (IS_ERR(ptr: em)) {
10360 ret = PTR_ERR(ptr: em);
10361 goto out_free_reserved;
10362 }
10363 free_extent_map(em);
10364
10365 ordered = btrfs_alloc_ordered_extent(inode, file_offset: start, num_bytes, ram_bytes,
10366 disk_bytenr: ins.objectid, disk_num_bytes: ins.offset,
10367 offset: encoded->unencoded_offset,
10368 flags: (1 << BTRFS_ORDERED_ENCODED) |
10369 (1 << BTRFS_ORDERED_COMPRESSED),
10370 compress_type: compression);
10371 if (IS_ERR(ptr: ordered)) {
10372 btrfs_drop_extent_map_range(inode, start, end, skip_pinned: false);
10373 ret = PTR_ERR(ptr: ordered);
10374 goto out_free_reserved;
10375 }
10376 btrfs_dec_block_group_reservations(fs_info, start: ins.objectid);
10377
10378 if (start + encoded->len > inode->vfs_inode.i_size)
10379 i_size_write(inode: &inode->vfs_inode, i_size: start + encoded->len);
10380
10381 unlock_extent(tree: io_tree, start, end, cached: &cached_state);
10382
10383 btrfs_delalloc_release_extents(inode, num_bytes);
10384
10385 btrfs_submit_compressed_write(ordered, compressed_pages: pages, nr_pages, write_flags: 0, writeback: false);
10386 ret = orig_count;
10387 goto out;
10388
10389out_free_reserved:
10390 btrfs_dec_block_group_reservations(fs_info, start: ins.objectid);
10391 btrfs_free_reserved_extent(fs_info, start: ins.objectid, len: ins.offset, delalloc: 1);
10392out_delalloc_release:
10393 btrfs_delalloc_release_extents(inode, num_bytes);
10394 btrfs_delalloc_release_metadata(inode, num_bytes: disk_num_bytes, qgroup_free: ret < 0);
10395out_qgroup_free_data:
10396 if (ret < 0)
10397 btrfs_qgroup_free_data(inode, reserved: data_reserved, start, len: num_bytes);
10398out_free_data_space:
10399 /*
10400 * If btrfs_reserve_extent() succeeded, then we already decremented
10401 * bytes_may_use.
10402 */
10403 if (!extent_reserved)
10404 btrfs_free_reserved_data_space_noquota(fs_info, len: disk_num_bytes);
10405out_unlock:
10406 unlock_extent(tree: io_tree, start, end, cached: &cached_state);
10407out_pages:
10408 for (i = 0; i < nr_pages; i++) {
10409 if (pages[i])
10410 __free_page(pages[i]);
10411 }
10412 kvfree(addr: pages);
10413out:
10414 if (ret >= 0)
10415 iocb->ki_pos += encoded->len;
10416 return ret;
10417}
10418
10419#ifdef CONFIG_SWAP
10420/*
10421 * Add an entry indicating a block group or device which is pinned by a
10422 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a
10423 * negative errno on failure.
10424 */
10425static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr,
10426 bool is_block_group)
10427{
10428 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10429 struct btrfs_swapfile_pin *sp, *entry;
10430 struct rb_node **p;
10431 struct rb_node *parent = NULL;
10432
10433 sp = kmalloc(size: sizeof(*sp), GFP_NOFS);
10434 if (!sp)
10435 return -ENOMEM;
10436 sp->ptr = ptr;
10437 sp->inode = inode;
10438 sp->is_block_group = is_block_group;
10439 sp->bg_extent_count = 1;
10440
10441 spin_lock(lock: &fs_info->swapfile_pins_lock);
10442 p = &fs_info->swapfile_pins.rb_node;
10443 while (*p) {
10444 parent = *p;
10445 entry = rb_entry(parent, struct btrfs_swapfile_pin, node);
10446 if (sp->ptr < entry->ptr ||
10447 (sp->ptr == entry->ptr && sp->inode < entry->inode)) {
10448 p = &(*p)->rb_left;
10449 } else if (sp->ptr > entry->ptr ||
10450 (sp->ptr == entry->ptr && sp->inode > entry->inode)) {
10451 p = &(*p)->rb_right;
10452 } else {
10453 if (is_block_group)
10454 entry->bg_extent_count++;
10455 spin_unlock(lock: &fs_info->swapfile_pins_lock);
10456 kfree(objp: sp);
10457 return 1;
10458 }
10459 }
10460 rb_link_node(node: &sp->node, parent, rb_link: p);
10461 rb_insert_color(&sp->node, &fs_info->swapfile_pins);
10462 spin_unlock(lock: &fs_info->swapfile_pins_lock);
10463 return 0;
10464}
10465
10466/* Free all of the entries pinned by this swapfile. */
10467static void btrfs_free_swapfile_pins(struct inode *inode)
10468{
10469 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10470 struct btrfs_swapfile_pin *sp;
10471 struct rb_node *node, *next;
10472
10473 spin_lock(lock: &fs_info->swapfile_pins_lock);
10474 node = rb_first(&fs_info->swapfile_pins);
10475 while (node) {
10476 next = rb_next(node);
10477 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
10478 if (sp->inode == inode) {
10479 rb_erase(&sp->node, &fs_info->swapfile_pins);
10480 if (sp->is_block_group) {
10481 btrfs_dec_block_group_swap_extents(bg: sp->ptr,
10482 amount: sp->bg_extent_count);
10483 btrfs_put_block_group(cache: sp->ptr);
10484 }
10485 kfree(objp: sp);
10486 }
10487 node = next;
10488 }
10489 spin_unlock(lock: &fs_info->swapfile_pins_lock);
10490}
10491
10492struct btrfs_swap_info {
10493 u64 start;
10494 u64 block_start;
10495 u64 block_len;
10496 u64 lowest_ppage;
10497 u64 highest_ppage;
10498 unsigned long nr_pages;
10499 int nr_extents;
10500};
10501
10502static int btrfs_add_swap_extent(struct swap_info_struct *sis,
10503 struct btrfs_swap_info *bsi)
10504{
10505 unsigned long nr_pages;
10506 unsigned long max_pages;
10507 u64 first_ppage, first_ppage_reported, next_ppage;
10508 int ret;
10509
10510 /*
10511 * Our swapfile may have had its size extended after the swap header was
10512 * written. In that case activating the swapfile should not go beyond
10513 * the max size set in the swap header.
10514 */
10515 if (bsi->nr_pages >= sis->max)
10516 return 0;
10517
10518 max_pages = sis->max - bsi->nr_pages;
10519 first_ppage = PAGE_ALIGN(bsi->block_start) >> PAGE_SHIFT;
10520 next_ppage = PAGE_ALIGN_DOWN(bsi->block_start + bsi->block_len) >> PAGE_SHIFT;
10521
10522 if (first_ppage >= next_ppage)
10523 return 0;
10524 nr_pages = next_ppage - first_ppage;
10525 nr_pages = min(nr_pages, max_pages);
10526
10527 first_ppage_reported = first_ppage;
10528 if (bsi->start == 0)
10529 first_ppage_reported++;
10530 if (bsi->lowest_ppage > first_ppage_reported)
10531 bsi->lowest_ppage = first_ppage_reported;
10532 if (bsi->highest_ppage < (next_ppage - 1))
10533 bsi->highest_ppage = next_ppage - 1;
10534
10535 ret = add_swap_extent(sis, start_page: bsi->nr_pages, nr_pages, start_block: first_ppage);
10536 if (ret < 0)
10537 return ret;
10538 bsi->nr_extents += ret;
10539 bsi->nr_pages += nr_pages;
10540 return 0;
10541}
10542
10543static void btrfs_swap_deactivate(struct file *file)
10544{
10545 struct inode *inode = file_inode(f: file);
10546
10547 btrfs_free_swapfile_pins(inode);
10548 atomic_dec(v: &BTRFS_I(inode)->root->nr_swapfiles);
10549}
10550
10551static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10552 sector_t *span)
10553{
10554 struct inode *inode = file_inode(f: file);
10555 struct btrfs_root *root = BTRFS_I(inode)->root;
10556 struct btrfs_fs_info *fs_info = root->fs_info;
10557 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
10558 struct extent_state *cached_state = NULL;
10559 struct extent_map *em = NULL;
10560 struct btrfs_device *device = NULL;
10561 struct btrfs_swap_info bsi = {
10562 .lowest_ppage = (sector_t)-1ULL,
10563 };
10564 int ret = 0;
10565 u64 isize;
10566 u64 start;
10567
10568 /*
10569 * If the swap file was just created, make sure delalloc is done. If the
10570 * file changes again after this, the user is doing something stupid and
10571 * we don't really care.
10572 */
10573 ret = btrfs_wait_ordered_range(inode, start: 0, len: (u64)-1);
10574 if (ret)
10575 return ret;
10576
10577 /*
10578 * The inode is locked, so these flags won't change after we check them.
10579 */
10580 if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) {
10581 btrfs_warn(fs_info, "swapfile must not be compressed");
10582 return -EINVAL;
10583 }
10584 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) {
10585 btrfs_warn(fs_info, "swapfile must not be copy-on-write");
10586 return -EINVAL;
10587 }
10588 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
10589 btrfs_warn(fs_info, "swapfile must not be checksummed");
10590 return -EINVAL;
10591 }
10592
10593 /*
10594 * Balance or device remove/replace/resize can move stuff around from
10595 * under us. The exclop protection makes sure they aren't running/won't
10596 * run concurrently while we are mapping the swap extents, and
10597 * fs_info->swapfile_pins prevents them from running while the swap
10598 * file is active and moving the extents. Note that this also prevents
10599 * a concurrent device add which isn't actually necessary, but it's not
10600 * really worth the trouble to allow it.
10601 */
10602 if (!btrfs_exclop_start(fs_info, type: BTRFS_EXCLOP_SWAP_ACTIVATE)) {
10603 btrfs_warn(fs_info,
10604 "cannot activate swapfile while exclusive operation is running");
10605 return -EBUSY;
10606 }
10607
10608 /*
10609 * Prevent snapshot creation while we are activating the swap file.
10610 * We do not want to race with snapshot creation. If snapshot creation
10611 * already started before we bumped nr_swapfiles from 0 to 1 and
10612 * completes before the first write into the swap file after it is
10613 * activated, than that write would fallback to COW.
10614 */
10615 if (!btrfs_drew_try_write_lock(lock: &root->snapshot_lock)) {
10616 btrfs_exclop_finish(fs_info);
10617 btrfs_warn(fs_info,
10618 "cannot activate swapfile because snapshot creation is in progress");
10619 return -EINVAL;
10620 }
10621 /*
10622 * Snapshots can create extents which require COW even if NODATACOW is
10623 * set. We use this counter to prevent snapshots. We must increment it
10624 * before walking the extents because we don't want a concurrent
10625 * snapshot to run after we've already checked the extents.
10626 *
10627 * It is possible that subvolume is marked for deletion but still not
10628 * removed yet. To prevent this race, we check the root status before
10629 * activating the swapfile.
10630 */
10631 spin_lock(lock: &root->root_item_lock);
10632 if (btrfs_root_dead(root)) {
10633 spin_unlock(lock: &root->root_item_lock);
10634
10635 btrfs_exclop_finish(fs_info);
10636 btrfs_warn(fs_info,
10637 "cannot activate swapfile because subvolume %llu is being deleted",
10638 root->root_key.objectid);
10639 return -EPERM;
10640 }
10641 atomic_inc(v: &root->nr_swapfiles);
10642 spin_unlock(lock: &root->root_item_lock);
10643
10644 isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize);
10645
10646 lock_extent(tree: io_tree, start: 0, end: isize - 1, cached: &cached_state);
10647 start = 0;
10648 while (start < isize) {
10649 u64 logical_block_start, physical_block_start;
10650 struct btrfs_block_group *bg;
10651 u64 len = isize - start;
10652
10653 em = btrfs_get_extent(inode: BTRFS_I(inode), NULL, pg_offset: 0, start, len);
10654 if (IS_ERR(ptr: em)) {
10655 ret = PTR_ERR(ptr: em);
10656 goto out;
10657 }
10658
10659 if (em->block_start == EXTENT_MAP_HOLE) {
10660 btrfs_warn(fs_info, "swapfile must not have holes");
10661 ret = -EINVAL;
10662 goto out;
10663 }
10664 if (em->block_start == EXTENT_MAP_INLINE) {
10665 /*
10666 * It's unlikely we'll ever actually find ourselves
10667 * here, as a file small enough to fit inline won't be
10668 * big enough to store more than the swap header, but in
10669 * case something changes in the future, let's catch it
10670 * here rather than later.
10671 */
10672 btrfs_warn(fs_info, "swapfile must not be inline");
10673 ret = -EINVAL;
10674 goto out;
10675 }
10676 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
10677 btrfs_warn(fs_info, "swapfile must not be compressed");
10678 ret = -EINVAL;
10679 goto out;
10680 }
10681
10682 logical_block_start = em->block_start + (start - em->start);
10683 len = min(len, em->len - (start - em->start));
10684 free_extent_map(em);
10685 em = NULL;
10686
10687 ret = can_nocow_extent(inode, offset: start, len: &len, NULL, NULL, NULL, nowait: false, strict: true);
10688 if (ret < 0) {
10689 goto out;
10690 } else if (ret) {
10691 ret = 0;
10692 } else {
10693 btrfs_warn(fs_info,
10694 "swapfile must not be copy-on-write");
10695 ret = -EINVAL;
10696 goto out;
10697 }
10698
10699 em = btrfs_get_chunk_map(fs_info, logical: logical_block_start, length: len);
10700 if (IS_ERR(ptr: em)) {
10701 ret = PTR_ERR(ptr: em);
10702 goto out;
10703 }
10704
10705 if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
10706 btrfs_warn(fs_info,
10707 "swapfile must have single data profile");
10708 ret = -EINVAL;
10709 goto out;
10710 }
10711
10712 if (device == NULL) {
10713 device = em->map_lookup->stripes[0].dev;
10714 ret = btrfs_add_swapfile_pin(inode, ptr: device, is_block_group: false);
10715 if (ret == 1)
10716 ret = 0;
10717 else if (ret)
10718 goto out;
10719 } else if (device != em->map_lookup->stripes[0].dev) {
10720 btrfs_warn(fs_info, "swapfile must be on one device");
10721 ret = -EINVAL;
10722 goto out;
10723 }
10724
10725 physical_block_start = (em->map_lookup->stripes[0].physical +
10726 (logical_block_start - em->start));
10727 len = min(len, em->len - (logical_block_start - em->start));
10728 free_extent_map(em);
10729 em = NULL;
10730
10731 bg = btrfs_lookup_block_group(info: fs_info, bytenr: logical_block_start);
10732 if (!bg) {
10733 btrfs_warn(fs_info,
10734 "could not find block group containing swapfile");
10735 ret = -EINVAL;
10736 goto out;
10737 }
10738
10739 if (!btrfs_inc_block_group_swap_extents(bg)) {
10740 btrfs_warn(fs_info,
10741 "block group for swapfile at %llu is read-only%s",
10742 bg->start,
10743 atomic_read(&fs_info->scrubs_running) ?
10744 " (scrub running)" : "");
10745 btrfs_put_block_group(cache: bg);
10746 ret = -EINVAL;
10747 goto out;
10748 }
10749
10750 ret = btrfs_add_swapfile_pin(inode, ptr: bg, is_block_group: true);
10751 if (ret) {
10752 btrfs_put_block_group(cache: bg);
10753 if (ret == 1)
10754 ret = 0;
10755 else
10756 goto out;
10757 }
10758
10759 if (bsi.block_len &&
10760 bsi.block_start + bsi.block_len == physical_block_start) {
10761 bsi.block_len += len;
10762 } else {
10763 if (bsi.block_len) {
10764 ret = btrfs_add_swap_extent(sis, bsi: &bsi);
10765 if (ret)
10766 goto out;
10767 }
10768 bsi.start = start;
10769 bsi.block_start = physical_block_start;
10770 bsi.block_len = len;
10771 }
10772
10773 start += len;
10774 }
10775
10776 if (bsi.block_len)
10777 ret = btrfs_add_swap_extent(sis, bsi: &bsi);
10778
10779out:
10780 if (!IS_ERR_OR_NULL(ptr: em))
10781 free_extent_map(em);
10782
10783 unlock_extent(tree: io_tree, start: 0, end: isize - 1, cached: &cached_state);
10784
10785 if (ret)
10786 btrfs_swap_deactivate(file);
10787
10788 btrfs_drew_write_unlock(lock: &root->snapshot_lock);
10789
10790 btrfs_exclop_finish(fs_info);
10791
10792 if (ret)
10793 return ret;
10794
10795 if (device)
10796 sis->bdev = device->bdev;
10797 *span = bsi.highest_ppage - bsi.lowest_ppage + 1;
10798 sis->max = bsi.nr_pages;
10799 sis->pages = bsi.nr_pages - 1;
10800 sis->highest_bit = bsi.nr_pages - 1;
10801 return bsi.nr_extents;
10802}
10803#else
10804static void btrfs_swap_deactivate(struct file *file)
10805{
10806}
10807
10808static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10809 sector_t *span)
10810{
10811 return -EOPNOTSUPP;
10812}
10813#endif
10814
10815/*
10816 * Update the number of bytes used in the VFS' inode. When we replace extents in
10817 * a range (clone, dedupe, fallocate's zero range), we must update the number of
10818 * bytes used by the inode in an atomic manner, so that concurrent stat(2) calls
10819 * always get a correct value.
10820 */
10821void btrfs_update_inode_bytes(struct btrfs_inode *inode,
10822 const u64 add_bytes,
10823 const u64 del_bytes)
10824{
10825 if (add_bytes == del_bytes)
10826 return;
10827
10828 spin_lock(lock: &inode->lock);
10829 if (del_bytes > 0)
10830 inode_sub_bytes(inode: &inode->vfs_inode, bytes: del_bytes);
10831 if (add_bytes > 0)
10832 inode_add_bytes(inode: &inode->vfs_inode, bytes: add_bytes);
10833 spin_unlock(lock: &inode->lock);
10834}
10835
10836/*
10837 * Verify that there are no ordered extents for a given file range.
10838 *
10839 * @inode: The target inode.
10840 * @start: Start offset of the file range, should be sector size aligned.
10841 * @end: End offset (inclusive) of the file range, its value +1 should be
10842 * sector size aligned.
10843 *
10844 * This should typically be used for cases where we locked an inode's VFS lock in
10845 * exclusive mode, we have also locked the inode's i_mmap_lock in exclusive mode,
10846 * we have flushed all delalloc in the range, we have waited for all ordered
10847 * extents in the range to complete and finally we have locked the file range in
10848 * the inode's io_tree.
10849 */
10850void btrfs_assert_inode_range_clean(struct btrfs_inode *inode, u64 start, u64 end)
10851{
10852 struct btrfs_root *root = inode->root;
10853 struct btrfs_ordered_extent *ordered;
10854
10855 if (!IS_ENABLED(CONFIG_BTRFS_ASSERT))
10856 return;
10857
10858 ordered = btrfs_lookup_first_ordered_range(inode, file_offset: start, len: end + 1 - start);
10859 if (ordered) {
10860 btrfs_err(root->fs_info,
10861"found unexpected ordered extent in file range [%llu, %llu] for inode %llu root %llu (ordered range [%llu, %llu])",
10862 start, end, btrfs_ino(inode), root->root_key.objectid,
10863 ordered->file_offset,
10864 ordered->file_offset + ordered->num_bytes - 1);
10865 btrfs_put_ordered_extent(entry: ordered);
10866 }
10867
10868 ASSERT(ordered == NULL);
10869}
10870
10871static const struct inode_operations btrfs_dir_inode_operations = {
10872 .getattr = btrfs_getattr,
10873 .lookup = btrfs_lookup,
10874 .create = btrfs_create,
10875 .unlink = btrfs_unlink,
10876 .link = btrfs_link,
10877 .mkdir = btrfs_mkdir,
10878 .rmdir = btrfs_rmdir,
10879 .rename = btrfs_rename2,
10880 .symlink = btrfs_symlink,
10881 .setattr = btrfs_setattr,
10882 .mknod = btrfs_mknod,
10883 .listxattr = btrfs_listxattr,
10884 .permission = btrfs_permission,
10885 .get_inode_acl = btrfs_get_acl,
10886 .set_acl = btrfs_set_acl,
10887 .update_time = btrfs_update_time,
10888 .tmpfile = btrfs_tmpfile,
10889 .fileattr_get = btrfs_fileattr_get,
10890 .fileattr_set = btrfs_fileattr_set,
10891};
10892
10893static const struct file_operations btrfs_dir_file_operations = {
10894 .llseek = btrfs_dir_llseek,
10895 .read = generic_read_dir,
10896 .iterate_shared = btrfs_real_readdir,
10897 .open = btrfs_opendir,
10898 .unlocked_ioctl = btrfs_ioctl,
10899#ifdef CONFIG_COMPAT
10900 .compat_ioctl = btrfs_compat_ioctl,
10901#endif
10902 .release = btrfs_release_file,
10903 .fsync = btrfs_sync_file,
10904};
10905
10906/*
10907 * btrfs doesn't support the bmap operation because swapfiles
10908 * use bmap to make a mapping of extents in the file. They assume
10909 * these extents won't change over the life of the file and they
10910 * use the bmap result to do IO directly to the drive.
10911 *
10912 * the btrfs bmap call would return logical addresses that aren't
10913 * suitable for IO and they also will change frequently as COW
10914 * operations happen. So, swapfile + btrfs == corruption.
10915 *
10916 * For now we're avoiding this by dropping bmap.
10917 */
10918static const struct address_space_operations btrfs_aops = {
10919 .read_folio = btrfs_read_folio,
10920 .writepages = btrfs_writepages,
10921 .readahead = btrfs_readahead,
10922 .invalidate_folio = btrfs_invalidate_folio,
10923 .release_folio = btrfs_release_folio,
10924 .migrate_folio = btrfs_migrate_folio,
10925 .dirty_folio = filemap_dirty_folio,
10926 .error_remove_page = generic_error_remove_page,
10927 .swap_activate = btrfs_swap_activate,
10928 .swap_deactivate = btrfs_swap_deactivate,
10929};
10930
10931static const struct inode_operations btrfs_file_inode_operations = {
10932 .getattr = btrfs_getattr,
10933 .setattr = btrfs_setattr,
10934 .listxattr = btrfs_listxattr,
10935 .permission = btrfs_permission,
10936 .fiemap = btrfs_fiemap,
10937 .get_inode_acl = btrfs_get_acl,
10938 .set_acl = btrfs_set_acl,
10939 .update_time = btrfs_update_time,
10940 .fileattr_get = btrfs_fileattr_get,
10941 .fileattr_set = btrfs_fileattr_set,
10942};
10943static const struct inode_operations btrfs_special_inode_operations = {
10944 .getattr = btrfs_getattr,
10945 .setattr = btrfs_setattr,
10946 .permission = btrfs_permission,
10947 .listxattr = btrfs_listxattr,
10948 .get_inode_acl = btrfs_get_acl,
10949 .set_acl = btrfs_set_acl,
10950 .update_time = btrfs_update_time,
10951};
10952static const struct inode_operations btrfs_symlink_inode_operations = {
10953 .get_link = page_get_link,
10954 .getattr = btrfs_getattr,
10955 .setattr = btrfs_setattr,
10956 .permission = btrfs_permission,
10957 .listxattr = btrfs_listxattr,
10958 .update_time = btrfs_update_time,
10959};
10960
10961const struct dentry_operations btrfs_dentry_operations = {
10962 .d_delete = btrfs_dentry_delete,
10963};
10964

source code of linux/fs/btrfs/inode.c