1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6#include <linux/kernel.h>
7#include <linux/bio.h>
8#include <linux/file.h>
9#include <linux/fs.h>
10#include <linux/fsnotify.h>
11#include <linux/pagemap.h>
12#include <linux/highmem.h>
13#include <linux/time.h>
14#include <linux/string.h>
15#include <linux/backing-dev.h>
16#include <linux/mount.h>
17#include <linux/namei.h>
18#include <linux/writeback.h>
19#include <linux/compat.h>
20#include <linux/security.h>
21#include <linux/xattr.h>
22#include <linux/mm.h>
23#include <linux/slab.h>
24#include <linux/blkdev.h>
25#include <linux/uuid.h>
26#include <linux/btrfs.h>
27#include <linux/uaccess.h>
28#include <linux/iversion.h>
29#include <linux/fileattr.h>
30#include <linux/fsverity.h>
31#include <linux/sched/xacct.h>
32#include "ctree.h"
33#include "disk-io.h"
34#include "export.h"
35#include "transaction.h"
36#include "btrfs_inode.h"
37#include "print-tree.h"
38#include "volumes.h"
39#include "locking.h"
40#include "backref.h"
41#include "rcu-string.h"
42#include "send.h"
43#include "dev-replace.h"
44#include "props.h"
45#include "sysfs.h"
46#include "qgroup.h"
47#include "tree-log.h"
48#include "compression.h"
49#include "space-info.h"
50#include "delalloc-space.h"
51#include "block-group.h"
52#include "subpage.h"
53#include "fs.h"
54#include "accessors.h"
55#include "extent-tree.h"
56#include "root-tree.h"
57#include "defrag.h"
58#include "dir-item.h"
59#include "uuid-tree.h"
60#include "ioctl.h"
61#include "file.h"
62#include "scrub.h"
63#include "super.h"
64
65#ifdef CONFIG_64BIT
66/* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
67 * structures are incorrect, as the timespec structure from userspace
68 * is 4 bytes too small. We define these alternatives here to teach
69 * the kernel about the 32-bit struct packing.
70 */
71struct btrfs_ioctl_timespec_32 {
72 __u64 sec;
73 __u32 nsec;
74} __attribute__ ((__packed__));
75
76struct btrfs_ioctl_received_subvol_args_32 {
77 char uuid[BTRFS_UUID_SIZE]; /* in */
78 __u64 stransid; /* in */
79 __u64 rtransid; /* out */
80 struct btrfs_ioctl_timespec_32 stime; /* in */
81 struct btrfs_ioctl_timespec_32 rtime; /* out */
82 __u64 flags; /* in */
83 __u64 reserved[16]; /* in */
84} __attribute__ ((__packed__));
85
86#define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
87 struct btrfs_ioctl_received_subvol_args_32)
88#endif
89
90#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
91struct btrfs_ioctl_send_args_32 {
92 __s64 send_fd; /* in */
93 __u64 clone_sources_count; /* in */
94 compat_uptr_t clone_sources; /* in */
95 __u64 parent_root; /* in */
96 __u64 flags; /* in */
97 __u32 version; /* in */
98 __u8 reserved[28]; /* in */
99} __attribute__ ((__packed__));
100
101#define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \
102 struct btrfs_ioctl_send_args_32)
103
104struct btrfs_ioctl_encoded_io_args_32 {
105 compat_uptr_t iov;
106 compat_ulong_t iovcnt;
107 __s64 offset;
108 __u64 flags;
109 __u64 len;
110 __u64 unencoded_len;
111 __u64 unencoded_offset;
112 __u32 compression;
113 __u32 encryption;
114 __u8 reserved[64];
115};
116
117#define BTRFS_IOC_ENCODED_READ_32 _IOR(BTRFS_IOCTL_MAGIC, 64, \
118 struct btrfs_ioctl_encoded_io_args_32)
119#define BTRFS_IOC_ENCODED_WRITE_32 _IOW(BTRFS_IOCTL_MAGIC, 64, \
120 struct btrfs_ioctl_encoded_io_args_32)
121#endif
122
123/* Mask out flags that are inappropriate for the given type of inode. */
124static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode,
125 unsigned int flags)
126{
127 if (S_ISDIR(inode->i_mode))
128 return flags;
129 else if (S_ISREG(inode->i_mode))
130 return flags & ~FS_DIRSYNC_FL;
131 else
132 return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
133}
134
135/*
136 * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS
137 * ioctl.
138 */
139static unsigned int btrfs_inode_flags_to_fsflags(struct btrfs_inode *binode)
140{
141 unsigned int iflags = 0;
142 u32 flags = binode->flags;
143 u32 ro_flags = binode->ro_flags;
144
145 if (flags & BTRFS_INODE_SYNC)
146 iflags |= FS_SYNC_FL;
147 if (flags & BTRFS_INODE_IMMUTABLE)
148 iflags |= FS_IMMUTABLE_FL;
149 if (flags & BTRFS_INODE_APPEND)
150 iflags |= FS_APPEND_FL;
151 if (flags & BTRFS_INODE_NODUMP)
152 iflags |= FS_NODUMP_FL;
153 if (flags & BTRFS_INODE_NOATIME)
154 iflags |= FS_NOATIME_FL;
155 if (flags & BTRFS_INODE_DIRSYNC)
156 iflags |= FS_DIRSYNC_FL;
157 if (flags & BTRFS_INODE_NODATACOW)
158 iflags |= FS_NOCOW_FL;
159 if (ro_flags & BTRFS_INODE_RO_VERITY)
160 iflags |= FS_VERITY_FL;
161
162 if (flags & BTRFS_INODE_NOCOMPRESS)
163 iflags |= FS_NOCOMP_FL;
164 else if (flags & BTRFS_INODE_COMPRESS)
165 iflags |= FS_COMPR_FL;
166
167 return iflags;
168}
169
170/*
171 * Update inode->i_flags based on the btrfs internal flags.
172 */
173void btrfs_sync_inode_flags_to_i_flags(struct inode *inode)
174{
175 struct btrfs_inode *binode = BTRFS_I(inode);
176 unsigned int new_fl = 0;
177
178 if (binode->flags & BTRFS_INODE_SYNC)
179 new_fl |= S_SYNC;
180 if (binode->flags & BTRFS_INODE_IMMUTABLE)
181 new_fl |= S_IMMUTABLE;
182 if (binode->flags & BTRFS_INODE_APPEND)
183 new_fl |= S_APPEND;
184 if (binode->flags & BTRFS_INODE_NOATIME)
185 new_fl |= S_NOATIME;
186 if (binode->flags & BTRFS_INODE_DIRSYNC)
187 new_fl |= S_DIRSYNC;
188 if (binode->ro_flags & BTRFS_INODE_RO_VERITY)
189 new_fl |= S_VERITY;
190
191 set_mask_bits(&inode->i_flags,
192 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC |
193 S_VERITY, new_fl);
194}
195
196/*
197 * Check if @flags are a supported and valid set of FS_*_FL flags and that
198 * the old and new flags are not conflicting
199 */
200static int check_fsflags(unsigned int old_flags, unsigned int flags)
201{
202 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
203 FS_NOATIME_FL | FS_NODUMP_FL | \
204 FS_SYNC_FL | FS_DIRSYNC_FL | \
205 FS_NOCOMP_FL | FS_COMPR_FL |
206 FS_NOCOW_FL))
207 return -EOPNOTSUPP;
208
209 /* COMPR and NOCOMP on new/old are valid */
210 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
211 return -EINVAL;
212
213 if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL))
214 return -EINVAL;
215
216 /* NOCOW and compression options are mutually exclusive */
217 if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
218 return -EINVAL;
219 if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
220 return -EINVAL;
221
222 return 0;
223}
224
225static int check_fsflags_compatible(struct btrfs_fs_info *fs_info,
226 unsigned int flags)
227{
228 if (btrfs_is_zoned(fs_info) && (flags & FS_NOCOW_FL))
229 return -EPERM;
230
231 return 0;
232}
233
234/*
235 * Set flags/xflags from the internal inode flags. The remaining items of
236 * fsxattr are zeroed.
237 */
238int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa)
239{
240 struct btrfs_inode *binode = BTRFS_I(inode: d_inode(dentry));
241
242 fileattr_fill_flags(fa, flags: btrfs_inode_flags_to_fsflags(binode));
243 return 0;
244}
245
246int btrfs_fileattr_set(struct mnt_idmap *idmap,
247 struct dentry *dentry, struct fileattr *fa)
248{
249 struct inode *inode = d_inode(dentry);
250 struct btrfs_fs_info *fs_info = btrfs_sb(sb: inode->i_sb);
251 struct btrfs_inode *binode = BTRFS_I(inode);
252 struct btrfs_root *root = binode->root;
253 struct btrfs_trans_handle *trans;
254 unsigned int fsflags, old_fsflags;
255 int ret;
256 const char *comp = NULL;
257 u32 binode_flags;
258
259 if (btrfs_root_readonly(root))
260 return -EROFS;
261
262 if (fileattr_has_fsx(fa))
263 return -EOPNOTSUPP;
264
265 fsflags = btrfs_mask_fsflags_for_type(inode, flags: fa->flags);
266 old_fsflags = btrfs_inode_flags_to_fsflags(binode);
267 ret = check_fsflags(old_flags: old_fsflags, flags: fsflags);
268 if (ret)
269 return ret;
270
271 ret = check_fsflags_compatible(fs_info, flags: fsflags);
272 if (ret)
273 return ret;
274
275 binode_flags = binode->flags;
276 if (fsflags & FS_SYNC_FL)
277 binode_flags |= BTRFS_INODE_SYNC;
278 else
279 binode_flags &= ~BTRFS_INODE_SYNC;
280 if (fsflags & FS_IMMUTABLE_FL)
281 binode_flags |= BTRFS_INODE_IMMUTABLE;
282 else
283 binode_flags &= ~BTRFS_INODE_IMMUTABLE;
284 if (fsflags & FS_APPEND_FL)
285 binode_flags |= BTRFS_INODE_APPEND;
286 else
287 binode_flags &= ~BTRFS_INODE_APPEND;
288 if (fsflags & FS_NODUMP_FL)
289 binode_flags |= BTRFS_INODE_NODUMP;
290 else
291 binode_flags &= ~BTRFS_INODE_NODUMP;
292 if (fsflags & FS_NOATIME_FL)
293 binode_flags |= BTRFS_INODE_NOATIME;
294 else
295 binode_flags &= ~BTRFS_INODE_NOATIME;
296
297 /* If coming from FS_IOC_FSSETXATTR then skip unconverted flags */
298 if (!fa->flags_valid) {
299 /* 1 item for the inode */
300 trans = btrfs_start_transaction(root, num_items: 1);
301 if (IS_ERR(ptr: trans))
302 return PTR_ERR(ptr: trans);
303 goto update_flags;
304 }
305
306 if (fsflags & FS_DIRSYNC_FL)
307 binode_flags |= BTRFS_INODE_DIRSYNC;
308 else
309 binode_flags &= ~BTRFS_INODE_DIRSYNC;
310 if (fsflags & FS_NOCOW_FL) {
311 if (S_ISREG(inode->i_mode)) {
312 /*
313 * It's safe to turn csums off here, no extents exist.
314 * Otherwise we want the flag to reflect the real COW
315 * status of the file and will not set it.
316 */
317 if (inode->i_size == 0)
318 binode_flags |= BTRFS_INODE_NODATACOW |
319 BTRFS_INODE_NODATASUM;
320 } else {
321 binode_flags |= BTRFS_INODE_NODATACOW;
322 }
323 } else {
324 /*
325 * Revert back under same assumptions as above
326 */
327 if (S_ISREG(inode->i_mode)) {
328 if (inode->i_size == 0)
329 binode_flags &= ~(BTRFS_INODE_NODATACOW |
330 BTRFS_INODE_NODATASUM);
331 } else {
332 binode_flags &= ~BTRFS_INODE_NODATACOW;
333 }
334 }
335
336 /*
337 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
338 * flag may be changed automatically if compression code won't make
339 * things smaller.
340 */
341 if (fsflags & FS_NOCOMP_FL) {
342 binode_flags &= ~BTRFS_INODE_COMPRESS;
343 binode_flags |= BTRFS_INODE_NOCOMPRESS;
344 } else if (fsflags & FS_COMPR_FL) {
345
346 if (IS_SWAPFILE(inode))
347 return -ETXTBSY;
348
349 binode_flags |= BTRFS_INODE_COMPRESS;
350 binode_flags &= ~BTRFS_INODE_NOCOMPRESS;
351
352 comp = btrfs_compress_type2str(type: fs_info->compress_type);
353 if (!comp || comp[0] == 0)
354 comp = btrfs_compress_type2str(type: BTRFS_COMPRESS_ZLIB);
355 } else {
356 binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
357 }
358
359 /*
360 * 1 for inode item
361 * 2 for properties
362 */
363 trans = btrfs_start_transaction(root, num_items: 3);
364 if (IS_ERR(ptr: trans))
365 return PTR_ERR(ptr: trans);
366
367 if (comp) {
368 ret = btrfs_set_prop(trans, inode, name: "btrfs.compression", value: comp,
369 strlen(comp), flags: 0);
370 if (ret) {
371 btrfs_abort_transaction(trans, ret);
372 goto out_end_trans;
373 }
374 } else {
375 ret = btrfs_set_prop(trans, inode, name: "btrfs.compression", NULL,
376 value_len: 0, flags: 0);
377 if (ret && ret != -ENODATA) {
378 btrfs_abort_transaction(trans, ret);
379 goto out_end_trans;
380 }
381 }
382
383update_flags:
384 binode->flags = binode_flags;
385 btrfs_sync_inode_flags_to_i_flags(inode);
386 inode_inc_iversion(inode);
387 inode_set_ctime_current(inode);
388 ret = btrfs_update_inode(trans, inode: BTRFS_I(inode));
389
390 out_end_trans:
391 btrfs_end_transaction(trans);
392 return ret;
393}
394
395/*
396 * Start exclusive operation @type, return true on success
397 */
398bool btrfs_exclop_start(struct btrfs_fs_info *fs_info,
399 enum btrfs_exclusive_operation type)
400{
401 bool ret = false;
402
403 spin_lock(lock: &fs_info->super_lock);
404 if (fs_info->exclusive_operation == BTRFS_EXCLOP_NONE) {
405 fs_info->exclusive_operation = type;
406 ret = true;
407 }
408 spin_unlock(lock: &fs_info->super_lock);
409
410 return ret;
411}
412
413/*
414 * Conditionally allow to enter the exclusive operation in case it's compatible
415 * with the running one. This must be paired with btrfs_exclop_start_unlock and
416 * btrfs_exclop_finish.
417 *
418 * Compatibility:
419 * - the same type is already running
420 * - when trying to add a device and balance has been paused
421 * - not BTRFS_EXCLOP_NONE - this is intentionally incompatible and the caller
422 * must check the condition first that would allow none -> @type
423 */
424bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info,
425 enum btrfs_exclusive_operation type)
426{
427 spin_lock(lock: &fs_info->super_lock);
428 if (fs_info->exclusive_operation == type ||
429 (fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED &&
430 type == BTRFS_EXCLOP_DEV_ADD))
431 return true;
432
433 spin_unlock(lock: &fs_info->super_lock);
434 return false;
435}
436
437void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info)
438{
439 spin_unlock(lock: &fs_info->super_lock);
440}
441
442void btrfs_exclop_finish(struct btrfs_fs_info *fs_info)
443{
444 spin_lock(lock: &fs_info->super_lock);
445 WRITE_ONCE(fs_info->exclusive_operation, BTRFS_EXCLOP_NONE);
446 spin_unlock(lock: &fs_info->super_lock);
447 sysfs_notify(kobj: &fs_info->fs_devices->fsid_kobj, NULL, attr: "exclusive_operation");
448}
449
450void btrfs_exclop_balance(struct btrfs_fs_info *fs_info,
451 enum btrfs_exclusive_operation op)
452{
453 switch (op) {
454 case BTRFS_EXCLOP_BALANCE_PAUSED:
455 spin_lock(lock: &fs_info->super_lock);
456 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE ||
457 fs_info->exclusive_operation == BTRFS_EXCLOP_DEV_ADD ||
458 fs_info->exclusive_operation == BTRFS_EXCLOP_NONE ||
459 fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
460 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE_PAUSED;
461 spin_unlock(lock: &fs_info->super_lock);
462 break;
463 case BTRFS_EXCLOP_BALANCE:
464 spin_lock(lock: &fs_info->super_lock);
465 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
466 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE;
467 spin_unlock(lock: &fs_info->super_lock);
468 break;
469 default:
470 btrfs_warn(fs_info,
471 "invalid exclop balance operation %d requested", op);
472 }
473}
474
475static int btrfs_ioctl_getversion(struct inode *inode, int __user *arg)
476{
477 return put_user(inode->i_generation, arg);
478}
479
480static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info,
481 void __user *arg)
482{
483 struct btrfs_device *device;
484 struct fstrim_range range;
485 u64 minlen = ULLONG_MAX;
486 u64 num_devices = 0;
487 int ret;
488
489 if (!capable(CAP_SYS_ADMIN))
490 return -EPERM;
491
492 /*
493 * btrfs_trim_block_group() depends on space cache, which is not
494 * available in zoned filesystem. So, disallow fitrim on a zoned
495 * filesystem for now.
496 */
497 if (btrfs_is_zoned(fs_info))
498 return -EOPNOTSUPP;
499
500 /*
501 * If the fs is mounted with nologreplay, which requires it to be
502 * mounted in RO mode as well, we can not allow discard on free space
503 * inside block groups, because log trees refer to extents that are not
504 * pinned in a block group's free space cache (pinning the extents is
505 * precisely the first phase of replaying a log tree).
506 */
507 if (btrfs_test_opt(fs_info, NOLOGREPLAY))
508 return -EROFS;
509
510 rcu_read_lock();
511 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
512 dev_list) {
513 if (!device->bdev || !bdev_max_discard_sectors(bdev: device->bdev))
514 continue;
515 num_devices++;
516 minlen = min_t(u64, bdev_discard_granularity(device->bdev),
517 minlen);
518 }
519 rcu_read_unlock();
520
521 if (!num_devices)
522 return -EOPNOTSUPP;
523 if (copy_from_user(to: &range, from: arg, n: sizeof(range)))
524 return -EFAULT;
525
526 /*
527 * NOTE: Don't truncate the range using super->total_bytes. Bytenr of
528 * block group is in the logical address space, which can be any
529 * sectorsize aligned bytenr in the range [0, U64_MAX].
530 */
531 if (range.len < fs_info->sb->s_blocksize)
532 return -EINVAL;
533
534 range.minlen = max(range.minlen, minlen);
535 ret = btrfs_trim_fs(fs_info, range: &range);
536 if (ret < 0)
537 return ret;
538
539 if (copy_to_user(to: arg, from: &range, n: sizeof(range)))
540 return -EFAULT;
541
542 return 0;
543}
544
545int __pure btrfs_is_empty_uuid(u8 *uuid)
546{
547 int i;
548
549 for (i = 0; i < BTRFS_UUID_SIZE; i++) {
550 if (uuid[i])
551 return 0;
552 }
553 return 1;
554}
555
556/*
557 * Calculate the number of transaction items to reserve for creating a subvolume
558 * or snapshot, not including the inode, directory entries, or parent directory.
559 */
560static unsigned int create_subvol_num_items(struct btrfs_qgroup_inherit *inherit)
561{
562 /*
563 * 1 to add root block
564 * 1 to add root item
565 * 1 to add root ref
566 * 1 to add root backref
567 * 1 to add UUID item
568 * 1 to add qgroup info
569 * 1 to add qgroup limit
570 *
571 * Ideally the last two would only be accounted if qgroups are enabled,
572 * but that can change between now and the time we would insert them.
573 */
574 unsigned int num_items = 7;
575
576 if (inherit) {
577 /* 2 to add qgroup relations for each inherited qgroup */
578 num_items += 2 * inherit->num_qgroups;
579 }
580 return num_items;
581}
582
583static noinline int create_subvol(struct mnt_idmap *idmap,
584 struct inode *dir, struct dentry *dentry,
585 struct btrfs_qgroup_inherit *inherit)
586{
587 struct btrfs_fs_info *fs_info = btrfs_sb(sb: dir->i_sb);
588 struct btrfs_trans_handle *trans;
589 struct btrfs_key key;
590 struct btrfs_root_item *root_item;
591 struct btrfs_inode_item *inode_item;
592 struct extent_buffer *leaf;
593 struct btrfs_root *root = BTRFS_I(inode: dir)->root;
594 struct btrfs_root *new_root;
595 struct btrfs_block_rsv block_rsv;
596 struct timespec64 cur_time = current_time(inode: dir);
597 struct btrfs_new_inode_args new_inode_args = {
598 .dir = dir,
599 .dentry = dentry,
600 .subvol = true,
601 };
602 unsigned int trans_num_items;
603 int ret;
604 dev_t anon_dev;
605 u64 objectid;
606
607 root_item = kzalloc(size: sizeof(*root_item), GFP_KERNEL);
608 if (!root_item)
609 return -ENOMEM;
610
611 ret = btrfs_get_free_objectid(root: fs_info->tree_root, objectid: &objectid);
612 if (ret)
613 goto out_root_item;
614
615 /*
616 * Don't create subvolume whose level is not zero. Or qgroup will be
617 * screwed up since it assumes subvolume qgroup's level to be 0.
618 */
619 if (btrfs_qgroup_level(qgroupid: objectid)) {
620 ret = -ENOSPC;
621 goto out_root_item;
622 }
623
624 ret = get_anon_bdev(&anon_dev);
625 if (ret < 0)
626 goto out_root_item;
627
628 new_inode_args.inode = btrfs_new_subvol_inode(idmap, dir);
629 if (!new_inode_args.inode) {
630 ret = -ENOMEM;
631 goto out_anon_dev;
632 }
633 ret = btrfs_new_inode_prepare(args: &new_inode_args, trans_num_items: &trans_num_items);
634 if (ret)
635 goto out_inode;
636 trans_num_items += create_subvol_num_items(inherit);
637
638 btrfs_init_block_rsv(rsv: &block_rsv, type: BTRFS_BLOCK_RSV_TEMP);
639 ret = btrfs_subvolume_reserve_metadata(root, rsv: &block_rsv,
640 nitems: trans_num_items, use_global_rsv: false);
641 if (ret)
642 goto out_new_inode_args;
643
644 trans = btrfs_start_transaction(root, num_items: 0);
645 if (IS_ERR(ptr: trans)) {
646 ret = PTR_ERR(ptr: trans);
647 btrfs_subvolume_release_metadata(root, rsv: &block_rsv);
648 goto out_new_inode_args;
649 }
650 trans->block_rsv = &block_rsv;
651 trans->bytes_reserved = block_rsv.size;
652 /* Tree log can't currently deal with an inode which is a new root. */
653 btrfs_set_log_full_commit(trans);
654
655 ret = btrfs_qgroup_inherit(trans, srcid: 0, objectid, inode_rootid: root->root_key.objectid, inherit);
656 if (ret)
657 goto out;
658
659 leaf = btrfs_alloc_tree_block(trans, root, parent: 0, root_objectid: objectid, NULL, level: 0, hint: 0, empty_size: 0,
660 reloc_src_root: 0, nest: BTRFS_NESTING_NORMAL);
661 if (IS_ERR(ptr: leaf)) {
662 ret = PTR_ERR(ptr: leaf);
663 goto out;
664 }
665
666 btrfs_mark_buffer_dirty(trans, buf: leaf);
667
668 inode_item = &root_item->inode;
669 btrfs_set_stack_inode_generation(s: inode_item, val: 1);
670 btrfs_set_stack_inode_size(s: inode_item, val: 3);
671 btrfs_set_stack_inode_nlink(s: inode_item, val: 1);
672 btrfs_set_stack_inode_nbytes(s: inode_item,
673 val: fs_info->nodesize);
674 btrfs_set_stack_inode_mode(s: inode_item, S_IFDIR | 0755);
675
676 btrfs_set_root_flags(s: root_item, val: 0);
677 btrfs_set_root_limit(s: root_item, val: 0);
678 btrfs_set_stack_inode_flags(s: inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
679
680 btrfs_set_root_bytenr(s: root_item, val: leaf->start);
681 btrfs_set_root_generation(s: root_item, val: trans->transid);
682 btrfs_set_root_level(s: root_item, val: 0);
683 btrfs_set_root_refs(s: root_item, val: 1);
684 btrfs_set_root_used(s: root_item, val: leaf->len);
685 btrfs_set_root_last_snapshot(s: root_item, val: 0);
686
687 btrfs_set_root_generation_v2(s: root_item,
688 val: btrfs_root_generation(s: root_item));
689 generate_random_guid(guid: root_item->uuid);
690 btrfs_set_stack_timespec_sec(s: &root_item->otime, val: cur_time.tv_sec);
691 btrfs_set_stack_timespec_nsec(s: &root_item->otime, val: cur_time.tv_nsec);
692 root_item->ctime = root_item->otime;
693 btrfs_set_root_ctransid(s: root_item, val: trans->transid);
694 btrfs_set_root_otransid(s: root_item, val: trans->transid);
695
696 btrfs_tree_unlock(eb: leaf);
697
698 btrfs_set_root_dirid(s: root_item, BTRFS_FIRST_FREE_OBJECTID);
699
700 key.objectid = objectid;
701 key.offset = 0;
702 key.type = BTRFS_ROOT_ITEM_KEY;
703 ret = btrfs_insert_root(trans, root: fs_info->tree_root, key: &key,
704 item: root_item);
705 if (ret) {
706 /*
707 * Since we don't abort the transaction in this case, free the
708 * tree block so that we don't leak space and leave the
709 * filesystem in an inconsistent state (an extent item in the
710 * extent tree with a backreference for a root that does not
711 * exists).
712 */
713 btrfs_tree_lock(eb: leaf);
714 btrfs_clear_buffer_dirty(trans, buf: leaf);
715 btrfs_tree_unlock(eb: leaf);
716 btrfs_free_tree_block(trans, root_id: objectid, buf: leaf, parent: 0, last_ref: 1);
717 free_extent_buffer(eb: leaf);
718 goto out;
719 }
720
721 free_extent_buffer(eb: leaf);
722 leaf = NULL;
723
724 new_root = btrfs_get_new_fs_root(fs_info, objectid, anon_dev);
725 if (IS_ERR(ptr: new_root)) {
726 ret = PTR_ERR(ptr: new_root);
727 btrfs_abort_transaction(trans, ret);
728 goto out;
729 }
730 /* anon_dev is owned by new_root now. */
731 anon_dev = 0;
732 BTRFS_I(inode: new_inode_args.inode)->root = new_root;
733 /* ... and new_root is owned by new_inode_args.inode now. */
734
735 ret = btrfs_record_root_in_trans(trans, root: new_root);
736 if (ret) {
737 btrfs_abort_transaction(trans, ret);
738 goto out;
739 }
740
741 ret = btrfs_uuid_tree_add(trans, uuid: root_item->uuid,
742 BTRFS_UUID_KEY_SUBVOL, subid: objectid);
743 if (ret) {
744 btrfs_abort_transaction(trans, ret);
745 goto out;
746 }
747
748 ret = btrfs_create_new_inode(trans, args: &new_inode_args);
749 if (ret) {
750 btrfs_abort_transaction(trans, ret);
751 goto out;
752 }
753
754 d_instantiate_new(dentry, new_inode_args.inode);
755 new_inode_args.inode = NULL;
756
757out:
758 trans->block_rsv = NULL;
759 trans->bytes_reserved = 0;
760 btrfs_subvolume_release_metadata(root, rsv: &block_rsv);
761
762 btrfs_end_transaction(trans);
763out_new_inode_args:
764 btrfs_new_inode_args_destroy(args: &new_inode_args);
765out_inode:
766 iput(new_inode_args.inode);
767out_anon_dev:
768 if (anon_dev)
769 free_anon_bdev(anon_dev);
770out_root_item:
771 kfree(objp: root_item);
772 return ret;
773}
774
775static int create_snapshot(struct btrfs_root *root, struct inode *dir,
776 struct dentry *dentry, bool readonly,
777 struct btrfs_qgroup_inherit *inherit)
778{
779 struct btrfs_fs_info *fs_info = btrfs_sb(sb: dir->i_sb);
780 struct inode *inode;
781 struct btrfs_pending_snapshot *pending_snapshot;
782 unsigned int trans_num_items;
783 struct btrfs_trans_handle *trans;
784 int ret;
785
786 /* We do not support snapshotting right now. */
787 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
788 btrfs_warn(fs_info,
789 "extent tree v2 doesn't support snapshotting yet");
790 return -EOPNOTSUPP;
791 }
792
793 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
794 return -EINVAL;
795
796 if (atomic_read(v: &root->nr_swapfiles)) {
797 btrfs_warn(fs_info,
798 "cannot snapshot subvolume with active swapfile");
799 return -ETXTBSY;
800 }
801
802 pending_snapshot = kzalloc(size: sizeof(*pending_snapshot), GFP_KERNEL);
803 if (!pending_snapshot)
804 return -ENOMEM;
805
806 ret = get_anon_bdev(&pending_snapshot->anon_dev);
807 if (ret < 0)
808 goto free_pending;
809 pending_snapshot->root_item = kzalloc(size: sizeof(struct btrfs_root_item),
810 GFP_KERNEL);
811 pending_snapshot->path = btrfs_alloc_path();
812 if (!pending_snapshot->root_item || !pending_snapshot->path) {
813 ret = -ENOMEM;
814 goto free_pending;
815 }
816
817 btrfs_init_block_rsv(rsv: &pending_snapshot->block_rsv,
818 type: BTRFS_BLOCK_RSV_TEMP);
819 /*
820 * 1 to add dir item
821 * 1 to add dir index
822 * 1 to update parent inode item
823 */
824 trans_num_items = create_subvol_num_items(inherit) + 3;
825 ret = btrfs_subvolume_reserve_metadata(root: BTRFS_I(inode: dir)->root,
826 rsv: &pending_snapshot->block_rsv,
827 nitems: trans_num_items, use_global_rsv: false);
828 if (ret)
829 goto free_pending;
830
831 pending_snapshot->dentry = dentry;
832 pending_snapshot->root = root;
833 pending_snapshot->readonly = readonly;
834 pending_snapshot->dir = dir;
835 pending_snapshot->inherit = inherit;
836
837 trans = btrfs_start_transaction(root, num_items: 0);
838 if (IS_ERR(ptr: trans)) {
839 ret = PTR_ERR(ptr: trans);
840 goto fail;
841 }
842
843 trans->pending_snapshot = pending_snapshot;
844
845 ret = btrfs_commit_transaction(trans);
846 if (ret)
847 goto fail;
848
849 ret = pending_snapshot->error;
850 if (ret)
851 goto fail;
852
853 ret = btrfs_orphan_cleanup(root: pending_snapshot->snap);
854 if (ret)
855 goto fail;
856
857 inode = btrfs_lookup_dentry(dir: d_inode(dentry: dentry->d_parent), dentry);
858 if (IS_ERR(ptr: inode)) {
859 ret = PTR_ERR(ptr: inode);
860 goto fail;
861 }
862
863 d_instantiate(dentry, inode);
864 ret = 0;
865 pending_snapshot->anon_dev = 0;
866fail:
867 /* Prevent double freeing of anon_dev */
868 if (ret && pending_snapshot->snap)
869 pending_snapshot->snap->anon_dev = 0;
870 btrfs_put_root(root: pending_snapshot->snap);
871 btrfs_subvolume_release_metadata(root, rsv: &pending_snapshot->block_rsv);
872free_pending:
873 if (pending_snapshot->anon_dev)
874 free_anon_bdev(pending_snapshot->anon_dev);
875 kfree(objp: pending_snapshot->root_item);
876 btrfs_free_path(p: pending_snapshot->path);
877 kfree(objp: pending_snapshot);
878
879 return ret;
880}
881
882/* copy of may_delete in fs/namei.c()
883 * Check whether we can remove a link victim from directory dir, check
884 * whether the type of victim is right.
885 * 1. We can't do it if dir is read-only (done in permission())
886 * 2. We should have write and exec permissions on dir
887 * 3. We can't remove anything from append-only dir
888 * 4. We can't do anything with immutable dir (done in permission())
889 * 5. If the sticky bit on dir is set we should either
890 * a. be owner of dir, or
891 * b. be owner of victim, or
892 * c. have CAP_FOWNER capability
893 * 6. If the victim is append-only or immutable we can't do anything with
894 * links pointing to it.
895 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
896 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
897 * 9. We can't remove a root or mountpoint.
898 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
899 * nfs_async_unlink().
900 */
901
902static int btrfs_may_delete(struct mnt_idmap *idmap,
903 struct inode *dir, struct dentry *victim, int isdir)
904{
905 int error;
906
907 if (d_really_is_negative(dentry: victim))
908 return -ENOENT;
909
910 BUG_ON(d_inode(victim->d_parent) != dir);
911 audit_inode_child(parent: dir, dentry: victim, AUDIT_TYPE_CHILD_DELETE);
912
913 error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
914 if (error)
915 return error;
916 if (IS_APPEND(dir))
917 return -EPERM;
918 if (check_sticky(idmap, dir, inode: d_inode(dentry: victim)) ||
919 IS_APPEND(d_inode(victim)) || IS_IMMUTABLE(d_inode(victim)) ||
920 IS_SWAPFILE(d_inode(victim)))
921 return -EPERM;
922 if (isdir) {
923 if (!d_is_dir(dentry: victim))
924 return -ENOTDIR;
925 if (IS_ROOT(victim))
926 return -EBUSY;
927 } else if (d_is_dir(dentry: victim))
928 return -EISDIR;
929 if (IS_DEADDIR(dir))
930 return -ENOENT;
931 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
932 return -EBUSY;
933 return 0;
934}
935
936/* copy of may_create in fs/namei.c() */
937static inline int btrfs_may_create(struct mnt_idmap *idmap,
938 struct inode *dir, struct dentry *child)
939{
940 if (d_really_is_positive(dentry: child))
941 return -EEXIST;
942 if (IS_DEADDIR(dir))
943 return -ENOENT;
944 if (!fsuidgid_has_mapping(sb: dir->i_sb, idmap))
945 return -EOVERFLOW;
946 return inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
947}
948
949/*
950 * Create a new subvolume below @parent. This is largely modeled after
951 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
952 * inside this filesystem so it's quite a bit simpler.
953 */
954static noinline int btrfs_mksubvol(const struct path *parent,
955 struct mnt_idmap *idmap,
956 const char *name, int namelen,
957 struct btrfs_root *snap_src,
958 bool readonly,
959 struct btrfs_qgroup_inherit *inherit)
960{
961 struct inode *dir = d_inode(dentry: parent->dentry);
962 struct btrfs_fs_info *fs_info = btrfs_sb(sb: dir->i_sb);
963 struct dentry *dentry;
964 struct fscrypt_str name_str = FSTR_INIT((char *)name, namelen);
965 int error;
966
967 error = down_write_killable_nested(sem: &dir->i_rwsem, subclass: I_MUTEX_PARENT);
968 if (error == -EINTR)
969 return error;
970
971 dentry = lookup_one(idmap, name, parent->dentry, namelen);
972 error = PTR_ERR(ptr: dentry);
973 if (IS_ERR(ptr: dentry))
974 goto out_unlock;
975
976 error = btrfs_may_create(idmap, dir, child: dentry);
977 if (error)
978 goto out_dput;
979
980 /*
981 * even if this name doesn't exist, we may get hash collisions.
982 * check for them now when we can safely fail
983 */
984 error = btrfs_check_dir_item_collision(root: BTRFS_I(inode: dir)->root,
985 dir: dir->i_ino, name: &name_str);
986 if (error)
987 goto out_dput;
988
989 down_read(sem: &fs_info->subvol_sem);
990
991 if (btrfs_root_refs(s: &BTRFS_I(inode: dir)->root->root_item) == 0)
992 goto out_up_read;
993
994 if (snap_src)
995 error = create_snapshot(root: snap_src, dir, dentry, readonly, inherit);
996 else
997 error = create_subvol(idmap, dir, dentry, inherit);
998
999 if (!error)
1000 fsnotify_mkdir(dir, dentry);
1001out_up_read:
1002 up_read(sem: &fs_info->subvol_sem);
1003out_dput:
1004 dput(dentry);
1005out_unlock:
1006 btrfs_inode_unlock(inode: BTRFS_I(inode: dir), ilock_flags: 0);
1007 return error;
1008}
1009
1010static noinline int btrfs_mksnapshot(const struct path *parent,
1011 struct mnt_idmap *idmap,
1012 const char *name, int namelen,
1013 struct btrfs_root *root,
1014 bool readonly,
1015 struct btrfs_qgroup_inherit *inherit)
1016{
1017 int ret;
1018 bool snapshot_force_cow = false;
1019
1020 /*
1021 * Force new buffered writes to reserve space even when NOCOW is
1022 * possible. This is to avoid later writeback (running dealloc) to
1023 * fallback to COW mode and unexpectedly fail with ENOSPC.
1024 */
1025 btrfs_drew_read_lock(lock: &root->snapshot_lock);
1026
1027 ret = btrfs_start_delalloc_snapshot(root, in_reclaim_context: false);
1028 if (ret)
1029 goto out;
1030
1031 /*
1032 * All previous writes have started writeback in NOCOW mode, so now
1033 * we force future writes to fallback to COW mode during snapshot
1034 * creation.
1035 */
1036 atomic_inc(v: &root->snapshot_force_cow);
1037 snapshot_force_cow = true;
1038
1039 btrfs_wait_ordered_extents(root, U64_MAX, range_start: 0, range_len: (u64)-1);
1040
1041 ret = btrfs_mksubvol(parent, idmap, name, namelen,
1042 snap_src: root, readonly, inherit);
1043out:
1044 if (snapshot_force_cow)
1045 atomic_dec(v: &root->snapshot_force_cow);
1046 btrfs_drew_read_unlock(lock: &root->snapshot_lock);
1047 return ret;
1048}
1049
1050/*
1051 * Try to start exclusive operation @type or cancel it if it's running.
1052 *
1053 * Return:
1054 * 0 - normal mode, newly claimed op started
1055 * >0 - normal mode, something else is running,
1056 * return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS to user space
1057 * ECANCELED - cancel mode, successful cancel
1058 * ENOTCONN - cancel mode, operation not running anymore
1059 */
1060static int exclop_start_or_cancel_reloc(struct btrfs_fs_info *fs_info,
1061 enum btrfs_exclusive_operation type, bool cancel)
1062{
1063 if (!cancel) {
1064 /* Start normal op */
1065 if (!btrfs_exclop_start(fs_info, type))
1066 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1067 /* Exclusive operation is now claimed */
1068 return 0;
1069 }
1070
1071 /* Cancel running op */
1072 if (btrfs_exclop_start_try_lock(fs_info, type)) {
1073 /*
1074 * This blocks any exclop finish from setting it to NONE, so we
1075 * request cancellation. Either it runs and we will wait for it,
1076 * or it has finished and no waiting will happen.
1077 */
1078 atomic_inc(v: &fs_info->reloc_cancel_req);
1079 btrfs_exclop_start_unlock(fs_info);
1080
1081 if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
1082 wait_on_bit(word: &fs_info->flags, bit: BTRFS_FS_RELOC_RUNNING,
1083 TASK_INTERRUPTIBLE);
1084
1085 return -ECANCELED;
1086 }
1087
1088 /* Something else is running or none */
1089 return -ENOTCONN;
1090}
1091
1092static noinline int btrfs_ioctl_resize(struct file *file,
1093 void __user *arg)
1094{
1095 BTRFS_DEV_LOOKUP_ARGS(args);
1096 struct inode *inode = file_inode(f: file);
1097 struct btrfs_fs_info *fs_info = btrfs_sb(sb: inode->i_sb);
1098 u64 new_size;
1099 u64 old_size;
1100 u64 devid = 1;
1101 struct btrfs_root *root = BTRFS_I(inode)->root;
1102 struct btrfs_ioctl_vol_args *vol_args;
1103 struct btrfs_trans_handle *trans;
1104 struct btrfs_device *device = NULL;
1105 char *sizestr;
1106 char *retptr;
1107 char *devstr = NULL;
1108 int ret = 0;
1109 int mod = 0;
1110 bool cancel;
1111
1112 if (!capable(CAP_SYS_ADMIN))
1113 return -EPERM;
1114
1115 ret = mnt_want_write_file(file);
1116 if (ret)
1117 return ret;
1118
1119 /*
1120 * Read the arguments before checking exclusivity to be able to
1121 * distinguish regular resize and cancel
1122 */
1123 vol_args = memdup_user(arg, sizeof(*vol_args));
1124 if (IS_ERR(ptr: vol_args)) {
1125 ret = PTR_ERR(ptr: vol_args);
1126 goto out_drop;
1127 }
1128 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1129 sizestr = vol_args->name;
1130 cancel = (strcmp("cancel", sizestr) == 0);
1131 ret = exclop_start_or_cancel_reloc(fs_info, type: BTRFS_EXCLOP_RESIZE, cancel);
1132 if (ret)
1133 goto out_free;
1134 /* Exclusive operation is now claimed */
1135
1136 devstr = strchr(sizestr, ':');
1137 if (devstr) {
1138 sizestr = devstr + 1;
1139 *devstr = '\0';
1140 devstr = vol_args->name;
1141 ret = kstrtoull(s: devstr, base: 10, res: &devid);
1142 if (ret)
1143 goto out_finish;
1144 if (!devid) {
1145 ret = -EINVAL;
1146 goto out_finish;
1147 }
1148 btrfs_info(fs_info, "resizing devid %llu", devid);
1149 }
1150
1151 args.devid = devid;
1152 device = btrfs_find_device(fs_devices: fs_info->fs_devices, args: &args);
1153 if (!device) {
1154 btrfs_info(fs_info, "resizer unable to find device %llu",
1155 devid);
1156 ret = -ENODEV;
1157 goto out_finish;
1158 }
1159
1160 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1161 btrfs_info(fs_info,
1162 "resizer unable to apply on readonly device %llu",
1163 devid);
1164 ret = -EPERM;
1165 goto out_finish;
1166 }
1167
1168 if (!strcmp(sizestr, "max"))
1169 new_size = bdev_nr_bytes(bdev: device->bdev);
1170 else {
1171 if (sizestr[0] == '-') {
1172 mod = -1;
1173 sizestr++;
1174 } else if (sizestr[0] == '+') {
1175 mod = 1;
1176 sizestr++;
1177 }
1178 new_size = memparse(ptr: sizestr, retptr: &retptr);
1179 if (*retptr != '\0' || new_size == 0) {
1180 ret = -EINVAL;
1181 goto out_finish;
1182 }
1183 }
1184
1185 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1186 ret = -EPERM;
1187 goto out_finish;
1188 }
1189
1190 old_size = btrfs_device_get_total_bytes(dev: device);
1191
1192 if (mod < 0) {
1193 if (new_size > old_size) {
1194 ret = -EINVAL;
1195 goto out_finish;
1196 }
1197 new_size = old_size - new_size;
1198 } else if (mod > 0) {
1199 if (new_size > ULLONG_MAX - old_size) {
1200 ret = -ERANGE;
1201 goto out_finish;
1202 }
1203 new_size = old_size + new_size;
1204 }
1205
1206 if (new_size < SZ_256M) {
1207 ret = -EINVAL;
1208 goto out_finish;
1209 }
1210 if (new_size > bdev_nr_bytes(bdev: device->bdev)) {
1211 ret = -EFBIG;
1212 goto out_finish;
1213 }
1214
1215 new_size = round_down(new_size, fs_info->sectorsize);
1216
1217 if (new_size > old_size) {
1218 trans = btrfs_start_transaction(root, num_items: 0);
1219 if (IS_ERR(ptr: trans)) {
1220 ret = PTR_ERR(ptr: trans);
1221 goto out_finish;
1222 }
1223 ret = btrfs_grow_device(trans, device, new_size);
1224 btrfs_commit_transaction(trans);
1225 } else if (new_size < old_size) {
1226 ret = btrfs_shrink_device(device, new_size);
1227 } /* equal, nothing need to do */
1228
1229 if (ret == 0 && new_size != old_size)
1230 btrfs_info_in_rcu(fs_info,
1231 "resize device %s (devid %llu) from %llu to %llu",
1232 btrfs_dev_name(device), device->devid,
1233 old_size, new_size);
1234out_finish:
1235 btrfs_exclop_finish(fs_info);
1236out_free:
1237 kfree(objp: vol_args);
1238out_drop:
1239 mnt_drop_write_file(file);
1240 return ret;
1241}
1242
1243static noinline int __btrfs_ioctl_snap_create(struct file *file,
1244 struct mnt_idmap *idmap,
1245 const char *name, unsigned long fd, int subvol,
1246 bool readonly,
1247 struct btrfs_qgroup_inherit *inherit)
1248{
1249 int namelen;
1250 int ret = 0;
1251
1252 if (!S_ISDIR(file_inode(file)->i_mode))
1253 return -ENOTDIR;
1254
1255 ret = mnt_want_write_file(file);
1256 if (ret)
1257 goto out;
1258
1259 namelen = strlen(name);
1260 if (strchr(name, '/')) {
1261 ret = -EINVAL;
1262 goto out_drop_write;
1263 }
1264
1265 if (name[0] == '.' &&
1266 (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1267 ret = -EEXIST;
1268 goto out_drop_write;
1269 }
1270
1271 if (subvol) {
1272 ret = btrfs_mksubvol(parent: &file->f_path, idmap, name,
1273 namelen, NULL, readonly, inherit);
1274 } else {
1275 struct fd src = fdget(fd);
1276 struct inode *src_inode;
1277 if (!src.file) {
1278 ret = -EINVAL;
1279 goto out_drop_write;
1280 }
1281
1282 src_inode = file_inode(f: src.file);
1283 if (src_inode->i_sb != file_inode(f: file)->i_sb) {
1284 btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
1285 "Snapshot src from another FS");
1286 ret = -EXDEV;
1287 } else if (!inode_owner_or_capable(idmap, inode: src_inode)) {
1288 /*
1289 * Subvolume creation is not restricted, but snapshots
1290 * are limited to own subvolumes only
1291 */
1292 ret = -EPERM;
1293 } else {
1294 ret = btrfs_mksnapshot(parent: &file->f_path, idmap,
1295 name, namelen,
1296 root: BTRFS_I(inode: src_inode)->root,
1297 readonly, inherit);
1298 }
1299 fdput(fd: src);
1300 }
1301out_drop_write:
1302 mnt_drop_write_file(file);
1303out:
1304 return ret;
1305}
1306
1307static noinline int btrfs_ioctl_snap_create(struct file *file,
1308 void __user *arg, int subvol)
1309{
1310 struct btrfs_ioctl_vol_args *vol_args;
1311 int ret;
1312
1313 if (!S_ISDIR(file_inode(file)->i_mode))
1314 return -ENOTDIR;
1315
1316 vol_args = memdup_user(arg, sizeof(*vol_args));
1317 if (IS_ERR(ptr: vol_args))
1318 return PTR_ERR(ptr: vol_args);
1319 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1320
1321 ret = __btrfs_ioctl_snap_create(file, idmap: file_mnt_idmap(file),
1322 name: vol_args->name, fd: vol_args->fd, subvol,
1323 readonly: false, NULL);
1324
1325 kfree(objp: vol_args);
1326 return ret;
1327}
1328
1329static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1330 void __user *arg, int subvol)
1331{
1332 struct btrfs_ioctl_vol_args_v2 *vol_args;
1333 int ret;
1334 bool readonly = false;
1335 struct btrfs_qgroup_inherit *inherit = NULL;
1336
1337 if (!S_ISDIR(file_inode(file)->i_mode))
1338 return -ENOTDIR;
1339
1340 vol_args = memdup_user(arg, sizeof(*vol_args));
1341 if (IS_ERR(ptr: vol_args))
1342 return PTR_ERR(ptr: vol_args);
1343 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1344
1345 if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) {
1346 ret = -EOPNOTSUPP;
1347 goto free_args;
1348 }
1349
1350 if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1351 readonly = true;
1352 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1353 u64 nums;
1354
1355 if (vol_args->size < sizeof(*inherit) ||
1356 vol_args->size > PAGE_SIZE) {
1357 ret = -EINVAL;
1358 goto free_args;
1359 }
1360 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1361 if (IS_ERR(ptr: inherit)) {
1362 ret = PTR_ERR(ptr: inherit);
1363 goto free_args;
1364 }
1365
1366 if (inherit->num_qgroups > PAGE_SIZE ||
1367 inherit->num_ref_copies > PAGE_SIZE ||
1368 inherit->num_excl_copies > PAGE_SIZE) {
1369 ret = -EINVAL;
1370 goto free_inherit;
1371 }
1372
1373 nums = inherit->num_qgroups + 2 * inherit->num_ref_copies +
1374 2 * inherit->num_excl_copies;
1375 if (vol_args->size != struct_size(inherit, qgroups, nums)) {
1376 ret = -EINVAL;
1377 goto free_inherit;
1378 }
1379 }
1380
1381 ret = __btrfs_ioctl_snap_create(file, idmap: file_mnt_idmap(file),
1382 name: vol_args->name, fd: vol_args->fd, subvol,
1383 readonly, inherit);
1384 if (ret)
1385 goto free_inherit;
1386free_inherit:
1387 kfree(objp: inherit);
1388free_args:
1389 kfree(objp: vol_args);
1390 return ret;
1391}
1392
1393static noinline int btrfs_ioctl_subvol_getflags(struct inode *inode,
1394 void __user *arg)
1395{
1396 struct btrfs_fs_info *fs_info = btrfs_sb(sb: inode->i_sb);
1397 struct btrfs_root *root = BTRFS_I(inode)->root;
1398 int ret = 0;
1399 u64 flags = 0;
1400
1401 if (btrfs_ino(inode: BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID)
1402 return -EINVAL;
1403
1404 down_read(sem: &fs_info->subvol_sem);
1405 if (btrfs_root_readonly(root))
1406 flags |= BTRFS_SUBVOL_RDONLY;
1407 up_read(sem: &fs_info->subvol_sem);
1408
1409 if (copy_to_user(to: arg, from: &flags, n: sizeof(flags)))
1410 ret = -EFAULT;
1411
1412 return ret;
1413}
1414
1415static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1416 void __user *arg)
1417{
1418 struct inode *inode = file_inode(f: file);
1419 struct btrfs_fs_info *fs_info = btrfs_sb(sb: inode->i_sb);
1420 struct btrfs_root *root = BTRFS_I(inode)->root;
1421 struct btrfs_trans_handle *trans;
1422 u64 root_flags;
1423 u64 flags;
1424 int ret = 0;
1425
1426 if (!inode_owner_or_capable(idmap: file_mnt_idmap(file), inode))
1427 return -EPERM;
1428
1429 ret = mnt_want_write_file(file);
1430 if (ret)
1431 goto out;
1432
1433 if (btrfs_ino(inode: BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1434 ret = -EINVAL;
1435 goto out_drop_write;
1436 }
1437
1438 if (copy_from_user(to: &flags, from: arg, n: sizeof(flags))) {
1439 ret = -EFAULT;
1440 goto out_drop_write;
1441 }
1442
1443 if (flags & ~BTRFS_SUBVOL_RDONLY) {
1444 ret = -EOPNOTSUPP;
1445 goto out_drop_write;
1446 }
1447
1448 down_write(sem: &fs_info->subvol_sem);
1449
1450 /* nothing to do */
1451 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1452 goto out_drop_sem;
1453
1454 root_flags = btrfs_root_flags(s: &root->root_item);
1455 if (flags & BTRFS_SUBVOL_RDONLY) {
1456 btrfs_set_root_flags(s: &root->root_item,
1457 val: root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1458 } else {
1459 /*
1460 * Block RO -> RW transition if this subvolume is involved in
1461 * send
1462 */
1463 spin_lock(lock: &root->root_item_lock);
1464 if (root->send_in_progress == 0) {
1465 btrfs_set_root_flags(s: &root->root_item,
1466 val: root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1467 spin_unlock(lock: &root->root_item_lock);
1468 } else {
1469 spin_unlock(lock: &root->root_item_lock);
1470 btrfs_warn(fs_info,
1471 "Attempt to set subvolume %llu read-write during send",
1472 root->root_key.objectid);
1473 ret = -EPERM;
1474 goto out_drop_sem;
1475 }
1476 }
1477
1478 trans = btrfs_start_transaction(root, num_items: 1);
1479 if (IS_ERR(ptr: trans)) {
1480 ret = PTR_ERR(ptr: trans);
1481 goto out_reset;
1482 }
1483
1484 ret = btrfs_update_root(trans, root: fs_info->tree_root,
1485 key: &root->root_key, item: &root->root_item);
1486 if (ret < 0) {
1487 btrfs_end_transaction(trans);
1488 goto out_reset;
1489 }
1490
1491 ret = btrfs_commit_transaction(trans);
1492
1493out_reset:
1494 if (ret)
1495 btrfs_set_root_flags(s: &root->root_item, val: root_flags);
1496out_drop_sem:
1497 up_write(sem: &fs_info->subvol_sem);
1498out_drop_write:
1499 mnt_drop_write_file(file);
1500out:
1501 return ret;
1502}
1503
1504static noinline int key_in_sk(struct btrfs_key *key,
1505 struct btrfs_ioctl_search_key *sk)
1506{
1507 struct btrfs_key test;
1508 int ret;
1509
1510 test.objectid = sk->min_objectid;
1511 test.type = sk->min_type;
1512 test.offset = sk->min_offset;
1513
1514 ret = btrfs_comp_cpu_keys(k1: key, k2: &test);
1515 if (ret < 0)
1516 return 0;
1517
1518 test.objectid = sk->max_objectid;
1519 test.type = sk->max_type;
1520 test.offset = sk->max_offset;
1521
1522 ret = btrfs_comp_cpu_keys(k1: key, k2: &test);
1523 if (ret > 0)
1524 return 0;
1525 return 1;
1526}
1527
1528static noinline int copy_to_sk(struct btrfs_path *path,
1529 struct btrfs_key *key,
1530 struct btrfs_ioctl_search_key *sk,
1531 size_t *buf_size,
1532 char __user *ubuf,
1533 unsigned long *sk_offset,
1534 int *num_found)
1535{
1536 u64 found_transid;
1537 struct extent_buffer *leaf;
1538 struct btrfs_ioctl_search_header sh;
1539 struct btrfs_key test;
1540 unsigned long item_off;
1541 unsigned long item_len;
1542 int nritems;
1543 int i;
1544 int slot;
1545 int ret = 0;
1546
1547 leaf = path->nodes[0];
1548 slot = path->slots[0];
1549 nritems = btrfs_header_nritems(eb: leaf);
1550
1551 if (btrfs_header_generation(eb: leaf) > sk->max_transid) {
1552 i = nritems;
1553 goto advance_key;
1554 }
1555 found_transid = btrfs_header_generation(eb: leaf);
1556
1557 for (i = slot; i < nritems; i++) {
1558 item_off = btrfs_item_ptr_offset(leaf, i);
1559 item_len = btrfs_item_size(eb: leaf, slot: i);
1560
1561 btrfs_item_key_to_cpu(eb: leaf, cpu_key: key, nr: i);
1562 if (!key_in_sk(key, sk))
1563 continue;
1564
1565 if (sizeof(sh) + item_len > *buf_size) {
1566 if (*num_found) {
1567 ret = 1;
1568 goto out;
1569 }
1570
1571 /*
1572 * return one empty item back for v1, which does not
1573 * handle -EOVERFLOW
1574 */
1575
1576 *buf_size = sizeof(sh) + item_len;
1577 item_len = 0;
1578 ret = -EOVERFLOW;
1579 }
1580
1581 if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
1582 ret = 1;
1583 goto out;
1584 }
1585
1586 sh.objectid = key->objectid;
1587 sh.offset = key->offset;
1588 sh.type = key->type;
1589 sh.len = item_len;
1590 sh.transid = found_transid;
1591
1592 /*
1593 * Copy search result header. If we fault then loop again so we
1594 * can fault in the pages and -EFAULT there if there's a
1595 * problem. Otherwise we'll fault and then copy the buffer in
1596 * properly this next time through
1597 */
1598 if (copy_to_user_nofault(dst: ubuf + *sk_offset, src: &sh, size: sizeof(sh))) {
1599 ret = 0;
1600 goto out;
1601 }
1602
1603 *sk_offset += sizeof(sh);
1604
1605 if (item_len) {
1606 char __user *up = ubuf + *sk_offset;
1607 /*
1608 * Copy the item, same behavior as above, but reset the
1609 * * sk_offset so we copy the full thing again.
1610 */
1611 if (read_extent_buffer_to_user_nofault(eb: leaf, dst: up,
1612 start: item_off, len: item_len)) {
1613 ret = 0;
1614 *sk_offset -= sizeof(sh);
1615 goto out;
1616 }
1617
1618 *sk_offset += item_len;
1619 }
1620 (*num_found)++;
1621
1622 if (ret) /* -EOVERFLOW from above */
1623 goto out;
1624
1625 if (*num_found >= sk->nr_items) {
1626 ret = 1;
1627 goto out;
1628 }
1629 }
1630advance_key:
1631 ret = 0;
1632 test.objectid = sk->max_objectid;
1633 test.type = sk->max_type;
1634 test.offset = sk->max_offset;
1635 if (btrfs_comp_cpu_keys(k1: key, k2: &test) >= 0)
1636 ret = 1;
1637 else if (key->offset < (u64)-1)
1638 key->offset++;
1639 else if (key->type < (u8)-1) {
1640 key->offset = 0;
1641 key->type++;
1642 } else if (key->objectid < (u64)-1) {
1643 key->offset = 0;
1644 key->type = 0;
1645 key->objectid++;
1646 } else
1647 ret = 1;
1648out:
1649 /*
1650 * 0: all items from this leaf copied, continue with next
1651 * 1: * more items can be copied, but unused buffer is too small
1652 * * all items were found
1653 * Either way, it will stops the loop which iterates to the next
1654 * leaf
1655 * -EOVERFLOW: item was to large for buffer
1656 * -EFAULT: could not copy extent buffer back to userspace
1657 */
1658 return ret;
1659}
1660
1661static noinline int search_ioctl(struct inode *inode,
1662 struct btrfs_ioctl_search_key *sk,
1663 size_t *buf_size,
1664 char __user *ubuf)
1665{
1666 struct btrfs_fs_info *info = btrfs_sb(sb: inode->i_sb);
1667 struct btrfs_root *root;
1668 struct btrfs_key key;
1669 struct btrfs_path *path;
1670 int ret;
1671 int num_found = 0;
1672 unsigned long sk_offset = 0;
1673
1674 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
1675 *buf_size = sizeof(struct btrfs_ioctl_search_header);
1676 return -EOVERFLOW;
1677 }
1678
1679 path = btrfs_alloc_path();
1680 if (!path)
1681 return -ENOMEM;
1682
1683 if (sk->tree_id == 0) {
1684 /* search the root of the inode that was passed */
1685 root = btrfs_grab_root(root: BTRFS_I(inode)->root);
1686 } else {
1687 root = btrfs_get_fs_root(fs_info: info, objectid: sk->tree_id, check_ref: true);
1688 if (IS_ERR(ptr: root)) {
1689 btrfs_free_path(p: path);
1690 return PTR_ERR(ptr: root);
1691 }
1692 }
1693
1694 key.objectid = sk->min_objectid;
1695 key.type = sk->min_type;
1696 key.offset = sk->min_offset;
1697
1698 while (1) {
1699 ret = -EFAULT;
1700 /*
1701 * Ensure that the whole user buffer is faulted in at sub-page
1702 * granularity, otherwise the loop may live-lock.
1703 */
1704 if (fault_in_subpage_writeable(uaddr: ubuf + sk_offset,
1705 size: *buf_size - sk_offset))
1706 break;
1707
1708 ret = btrfs_search_forward(root, min_key: &key, path, min_trans: sk->min_transid);
1709 if (ret != 0) {
1710 if (ret > 0)
1711 ret = 0;
1712 goto err;
1713 }
1714 ret = copy_to_sk(path, key: &key, sk, buf_size, ubuf,
1715 sk_offset: &sk_offset, num_found: &num_found);
1716 btrfs_release_path(p: path);
1717 if (ret)
1718 break;
1719
1720 }
1721 if (ret > 0)
1722 ret = 0;
1723err:
1724 sk->nr_items = num_found;
1725 btrfs_put_root(root);
1726 btrfs_free_path(p: path);
1727 return ret;
1728}
1729
1730static noinline int btrfs_ioctl_tree_search(struct inode *inode,
1731 void __user *argp)
1732{
1733 struct btrfs_ioctl_search_args __user *uargs = argp;
1734 struct btrfs_ioctl_search_key sk;
1735 int ret;
1736 size_t buf_size;
1737
1738 if (!capable(CAP_SYS_ADMIN))
1739 return -EPERM;
1740
1741 if (copy_from_user(to: &sk, from: &uargs->key, n: sizeof(sk)))
1742 return -EFAULT;
1743
1744 buf_size = sizeof(uargs->buf);
1745
1746 ret = search_ioctl(inode, sk: &sk, buf_size: &buf_size, ubuf: uargs->buf);
1747
1748 /*
1749 * In the origin implementation an overflow is handled by returning a
1750 * search header with a len of zero, so reset ret.
1751 */
1752 if (ret == -EOVERFLOW)
1753 ret = 0;
1754
1755 if (ret == 0 && copy_to_user(to: &uargs->key, from: &sk, n: sizeof(sk)))
1756 ret = -EFAULT;
1757 return ret;
1758}
1759
1760static noinline int btrfs_ioctl_tree_search_v2(struct inode *inode,
1761 void __user *argp)
1762{
1763 struct btrfs_ioctl_search_args_v2 __user *uarg = argp;
1764 struct btrfs_ioctl_search_args_v2 args;
1765 int ret;
1766 size_t buf_size;
1767 const size_t buf_limit = SZ_16M;
1768
1769 if (!capable(CAP_SYS_ADMIN))
1770 return -EPERM;
1771
1772 /* copy search header and buffer size */
1773 if (copy_from_user(to: &args, from: uarg, n: sizeof(args)))
1774 return -EFAULT;
1775
1776 buf_size = args.buf_size;
1777
1778 /* limit result size to 16MB */
1779 if (buf_size > buf_limit)
1780 buf_size = buf_limit;
1781
1782 ret = search_ioctl(inode, sk: &args.key, buf_size: &buf_size,
1783 ubuf: (char __user *)(&uarg->buf[0]));
1784 if (ret == 0 && copy_to_user(to: &uarg->key, from: &args.key, n: sizeof(args.key)))
1785 ret = -EFAULT;
1786 else if (ret == -EOVERFLOW &&
1787 copy_to_user(to: &uarg->buf_size, from: &buf_size, n: sizeof(buf_size)))
1788 ret = -EFAULT;
1789
1790 return ret;
1791}
1792
1793/*
1794 * Search INODE_REFs to identify path name of 'dirid' directory
1795 * in a 'tree_id' tree. and sets path name to 'name'.
1796 */
1797static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
1798 u64 tree_id, u64 dirid, char *name)
1799{
1800 struct btrfs_root *root;
1801 struct btrfs_key key;
1802 char *ptr;
1803 int ret = -1;
1804 int slot;
1805 int len;
1806 int total_len = 0;
1807 struct btrfs_inode_ref *iref;
1808 struct extent_buffer *l;
1809 struct btrfs_path *path;
1810
1811 if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
1812 name[0]='\0';
1813 return 0;
1814 }
1815
1816 path = btrfs_alloc_path();
1817 if (!path)
1818 return -ENOMEM;
1819
1820 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1];
1821
1822 root = btrfs_get_fs_root(fs_info: info, objectid: tree_id, check_ref: true);
1823 if (IS_ERR(ptr: root)) {
1824 ret = PTR_ERR(ptr: root);
1825 root = NULL;
1826 goto out;
1827 }
1828
1829 key.objectid = dirid;
1830 key.type = BTRFS_INODE_REF_KEY;
1831 key.offset = (u64)-1;
1832
1833 while (1) {
1834 ret = btrfs_search_backwards(root, key: &key, path);
1835 if (ret < 0)
1836 goto out;
1837 else if (ret > 0) {
1838 ret = -ENOENT;
1839 goto out;
1840 }
1841
1842 l = path->nodes[0];
1843 slot = path->slots[0];
1844
1845 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
1846 len = btrfs_inode_ref_name_len(eb: l, s: iref);
1847 ptr -= len + 1;
1848 total_len += len + 1;
1849 if (ptr < name) {
1850 ret = -ENAMETOOLONG;
1851 goto out;
1852 }
1853
1854 *(ptr + len) = '/';
1855 read_extent_buffer(eb: l, dst: ptr, start: (unsigned long)(iref + 1), len);
1856
1857 if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
1858 break;
1859
1860 btrfs_release_path(p: path);
1861 key.objectid = key.offset;
1862 key.offset = (u64)-1;
1863 dirid = key.objectid;
1864 }
1865 memmove(name, ptr, total_len);
1866 name[total_len] = '\0';
1867 ret = 0;
1868out:
1869 btrfs_put_root(root);
1870 btrfs_free_path(p: path);
1871 return ret;
1872}
1873
1874static int btrfs_search_path_in_tree_user(struct mnt_idmap *idmap,
1875 struct inode *inode,
1876 struct btrfs_ioctl_ino_lookup_user_args *args)
1877{
1878 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1879 struct super_block *sb = inode->i_sb;
1880 struct btrfs_key upper_limit = BTRFS_I(inode)->location;
1881 u64 treeid = BTRFS_I(inode)->root->root_key.objectid;
1882 u64 dirid = args->dirid;
1883 unsigned long item_off;
1884 unsigned long item_len;
1885 struct btrfs_inode_ref *iref;
1886 struct btrfs_root_ref *rref;
1887 struct btrfs_root *root = NULL;
1888 struct btrfs_path *path;
1889 struct btrfs_key key, key2;
1890 struct extent_buffer *leaf;
1891 struct inode *temp_inode;
1892 char *ptr;
1893 int slot;
1894 int len;
1895 int total_len = 0;
1896 int ret;
1897
1898 path = btrfs_alloc_path();
1899 if (!path)
1900 return -ENOMEM;
1901
1902 /*
1903 * If the bottom subvolume does not exist directly under upper_limit,
1904 * construct the path in from the bottom up.
1905 */
1906 if (dirid != upper_limit.objectid) {
1907 ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1];
1908
1909 root = btrfs_get_fs_root(fs_info, objectid: treeid, check_ref: true);
1910 if (IS_ERR(ptr: root)) {
1911 ret = PTR_ERR(ptr: root);
1912 goto out;
1913 }
1914
1915 key.objectid = dirid;
1916 key.type = BTRFS_INODE_REF_KEY;
1917 key.offset = (u64)-1;
1918 while (1) {
1919 ret = btrfs_search_backwards(root, key: &key, path);
1920 if (ret < 0)
1921 goto out_put;
1922 else if (ret > 0) {
1923 ret = -ENOENT;
1924 goto out_put;
1925 }
1926
1927 leaf = path->nodes[0];
1928 slot = path->slots[0];
1929
1930 iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref);
1931 len = btrfs_inode_ref_name_len(eb: leaf, s: iref);
1932 ptr -= len + 1;
1933 total_len += len + 1;
1934 if (ptr < args->path) {
1935 ret = -ENAMETOOLONG;
1936 goto out_put;
1937 }
1938
1939 *(ptr + len) = '/';
1940 read_extent_buffer(eb: leaf, dst: ptr,
1941 start: (unsigned long)(iref + 1), len);
1942
1943 /* Check the read+exec permission of this directory */
1944 ret = btrfs_previous_item(root, path, min_objectid: dirid,
1945 BTRFS_INODE_ITEM_KEY);
1946 if (ret < 0) {
1947 goto out_put;
1948 } else if (ret > 0) {
1949 ret = -ENOENT;
1950 goto out_put;
1951 }
1952
1953 leaf = path->nodes[0];
1954 slot = path->slots[0];
1955 btrfs_item_key_to_cpu(eb: leaf, cpu_key: &key2, nr: slot);
1956 if (key2.objectid != dirid) {
1957 ret = -ENOENT;
1958 goto out_put;
1959 }
1960
1961 /*
1962 * We don't need the path anymore, so release it and
1963 * avoid deadlocks and lockdep warnings in case
1964 * btrfs_iget() needs to lookup the inode from its root
1965 * btree and lock the same leaf.
1966 */
1967 btrfs_release_path(p: path);
1968 temp_inode = btrfs_iget(s: sb, ino: key2.objectid, root);
1969 if (IS_ERR(ptr: temp_inode)) {
1970 ret = PTR_ERR(ptr: temp_inode);
1971 goto out_put;
1972 }
1973 ret = inode_permission(idmap, temp_inode,
1974 MAY_READ | MAY_EXEC);
1975 iput(temp_inode);
1976 if (ret) {
1977 ret = -EACCES;
1978 goto out_put;
1979 }
1980
1981 if (key.offset == upper_limit.objectid)
1982 break;
1983 if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) {
1984 ret = -EACCES;
1985 goto out_put;
1986 }
1987
1988 key.objectid = key.offset;
1989 key.offset = (u64)-1;
1990 dirid = key.objectid;
1991 }
1992
1993 memmove(args->path, ptr, total_len);
1994 args->path[total_len] = '\0';
1995 btrfs_put_root(root);
1996 root = NULL;
1997 btrfs_release_path(p: path);
1998 }
1999
2000 /* Get the bottom subvolume's name from ROOT_REF */
2001 key.objectid = treeid;
2002 key.type = BTRFS_ROOT_REF_KEY;
2003 key.offset = args->treeid;
2004 ret = btrfs_search_slot(NULL, root: fs_info->tree_root, key: &key, p: path, ins_len: 0, cow: 0);
2005 if (ret < 0) {
2006 goto out;
2007 } else if (ret > 0) {
2008 ret = -ENOENT;
2009 goto out;
2010 }
2011
2012 leaf = path->nodes[0];
2013 slot = path->slots[0];
2014 btrfs_item_key_to_cpu(eb: leaf, cpu_key: &key, nr: slot);
2015
2016 item_off = btrfs_item_ptr_offset(leaf, slot);
2017 item_len = btrfs_item_size(eb: leaf, slot);
2018 /* Check if dirid in ROOT_REF corresponds to passed dirid */
2019 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2020 if (args->dirid != btrfs_root_ref_dirid(eb: leaf, s: rref)) {
2021 ret = -EINVAL;
2022 goto out;
2023 }
2024
2025 /* Copy subvolume's name */
2026 item_off += sizeof(struct btrfs_root_ref);
2027 item_len -= sizeof(struct btrfs_root_ref);
2028 read_extent_buffer(eb: leaf, dst: args->name, start: item_off, len: item_len);
2029 args->name[item_len] = 0;
2030
2031out_put:
2032 btrfs_put_root(root);
2033out:
2034 btrfs_free_path(p: path);
2035 return ret;
2036}
2037
2038static noinline int btrfs_ioctl_ino_lookup(struct btrfs_root *root,
2039 void __user *argp)
2040{
2041 struct btrfs_ioctl_ino_lookup_args *args;
2042 int ret = 0;
2043
2044 args = memdup_user(argp, sizeof(*args));
2045 if (IS_ERR(ptr: args))
2046 return PTR_ERR(ptr: args);
2047
2048 /*
2049 * Unprivileged query to obtain the containing subvolume root id. The
2050 * path is reset so it's consistent with btrfs_search_path_in_tree.
2051 */
2052 if (args->treeid == 0)
2053 args->treeid = root->root_key.objectid;
2054
2055 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2056 args->name[0] = 0;
2057 goto out;
2058 }
2059
2060 if (!capable(CAP_SYS_ADMIN)) {
2061 ret = -EPERM;
2062 goto out;
2063 }
2064
2065 ret = btrfs_search_path_in_tree(info: root->fs_info,
2066 tree_id: args->treeid, dirid: args->objectid,
2067 name: args->name);
2068
2069out:
2070 if (ret == 0 && copy_to_user(to: argp, from: args, n: sizeof(*args)))
2071 ret = -EFAULT;
2072
2073 kfree(objp: args);
2074 return ret;
2075}
2076
2077/*
2078 * Version of ino_lookup ioctl (unprivileged)
2079 *
2080 * The main differences from ino_lookup ioctl are:
2081 *
2082 * 1. Read + Exec permission will be checked using inode_permission() during
2083 * path construction. -EACCES will be returned in case of failure.
2084 * 2. Path construction will be stopped at the inode number which corresponds
2085 * to the fd with which this ioctl is called. If constructed path does not
2086 * exist under fd's inode, -EACCES will be returned.
2087 * 3. The name of bottom subvolume is also searched and filled.
2088 */
2089static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp)
2090{
2091 struct btrfs_ioctl_ino_lookup_user_args *args;
2092 struct inode *inode;
2093 int ret;
2094
2095 args = memdup_user(argp, sizeof(*args));
2096 if (IS_ERR(ptr: args))
2097 return PTR_ERR(ptr: args);
2098
2099 inode = file_inode(f: file);
2100
2101 if (args->dirid == BTRFS_FIRST_FREE_OBJECTID &&
2102 BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) {
2103 /*
2104 * The subvolume does not exist under fd with which this is
2105 * called
2106 */
2107 kfree(objp: args);
2108 return -EACCES;
2109 }
2110
2111 ret = btrfs_search_path_in_tree_user(idmap: file_mnt_idmap(file), inode, args);
2112
2113 if (ret == 0 && copy_to_user(to: argp, from: args, n: sizeof(*args)))
2114 ret = -EFAULT;
2115
2116 kfree(objp: args);
2117 return ret;
2118}
2119
2120/* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */
2121static int btrfs_ioctl_get_subvol_info(struct inode *inode, void __user *argp)
2122{
2123 struct btrfs_ioctl_get_subvol_info_args *subvol_info;
2124 struct btrfs_fs_info *fs_info;
2125 struct btrfs_root *root;
2126 struct btrfs_path *path;
2127 struct btrfs_key key;
2128 struct btrfs_root_item *root_item;
2129 struct btrfs_root_ref *rref;
2130 struct extent_buffer *leaf;
2131 unsigned long item_off;
2132 unsigned long item_len;
2133 int slot;
2134 int ret = 0;
2135
2136 path = btrfs_alloc_path();
2137 if (!path)
2138 return -ENOMEM;
2139
2140 subvol_info = kzalloc(size: sizeof(*subvol_info), GFP_KERNEL);
2141 if (!subvol_info) {
2142 btrfs_free_path(p: path);
2143 return -ENOMEM;
2144 }
2145
2146 fs_info = BTRFS_I(inode)->root->fs_info;
2147
2148 /* Get root_item of inode's subvolume */
2149 key.objectid = BTRFS_I(inode)->root->root_key.objectid;
2150 root = btrfs_get_fs_root(fs_info, objectid: key.objectid, check_ref: true);
2151 if (IS_ERR(ptr: root)) {
2152 ret = PTR_ERR(ptr: root);
2153 goto out_free;
2154 }
2155 root_item = &root->root_item;
2156
2157 subvol_info->treeid = key.objectid;
2158
2159 subvol_info->generation = btrfs_root_generation(s: root_item);
2160 subvol_info->flags = btrfs_root_flags(s: root_item);
2161
2162 memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE);
2163 memcpy(subvol_info->parent_uuid, root_item->parent_uuid,
2164 BTRFS_UUID_SIZE);
2165 memcpy(subvol_info->received_uuid, root_item->received_uuid,
2166 BTRFS_UUID_SIZE);
2167
2168 subvol_info->ctransid = btrfs_root_ctransid(s: root_item);
2169 subvol_info->ctime.sec = btrfs_stack_timespec_sec(s: &root_item->ctime);
2170 subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(s: &root_item->ctime);
2171
2172 subvol_info->otransid = btrfs_root_otransid(s: root_item);
2173 subvol_info->otime.sec = btrfs_stack_timespec_sec(s: &root_item->otime);
2174 subvol_info->otime.nsec = btrfs_stack_timespec_nsec(s: &root_item->otime);
2175
2176 subvol_info->stransid = btrfs_root_stransid(s: root_item);
2177 subvol_info->stime.sec = btrfs_stack_timespec_sec(s: &root_item->stime);
2178 subvol_info->stime.nsec = btrfs_stack_timespec_nsec(s: &root_item->stime);
2179
2180 subvol_info->rtransid = btrfs_root_rtransid(s: root_item);
2181 subvol_info->rtime.sec = btrfs_stack_timespec_sec(s: &root_item->rtime);
2182 subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(s: &root_item->rtime);
2183
2184 if (key.objectid != BTRFS_FS_TREE_OBJECTID) {
2185 /* Search root tree for ROOT_BACKREF of this subvolume */
2186 key.type = BTRFS_ROOT_BACKREF_KEY;
2187 key.offset = 0;
2188 ret = btrfs_search_slot(NULL, root: fs_info->tree_root, key: &key, p: path, ins_len: 0, cow: 0);
2189 if (ret < 0) {
2190 goto out;
2191 } else if (path->slots[0] >=
2192 btrfs_header_nritems(eb: path->nodes[0])) {
2193 ret = btrfs_next_leaf(root: fs_info->tree_root, path);
2194 if (ret < 0) {
2195 goto out;
2196 } else if (ret > 0) {
2197 ret = -EUCLEAN;
2198 goto out;
2199 }
2200 }
2201
2202 leaf = path->nodes[0];
2203 slot = path->slots[0];
2204 btrfs_item_key_to_cpu(eb: leaf, cpu_key: &key, nr: slot);
2205 if (key.objectid == subvol_info->treeid &&
2206 key.type == BTRFS_ROOT_BACKREF_KEY) {
2207 subvol_info->parent_id = key.offset;
2208
2209 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2210 subvol_info->dirid = btrfs_root_ref_dirid(eb: leaf, s: rref);
2211
2212 item_off = btrfs_item_ptr_offset(leaf, slot)
2213 + sizeof(struct btrfs_root_ref);
2214 item_len = btrfs_item_size(eb: leaf, slot)
2215 - sizeof(struct btrfs_root_ref);
2216 read_extent_buffer(eb: leaf, dst: subvol_info->name,
2217 start: item_off, len: item_len);
2218 } else {
2219 ret = -ENOENT;
2220 goto out;
2221 }
2222 }
2223
2224 btrfs_free_path(p: path);
2225 path = NULL;
2226 if (copy_to_user(to: argp, from: subvol_info, n: sizeof(*subvol_info)))
2227 ret = -EFAULT;
2228
2229out:
2230 btrfs_put_root(root);
2231out_free:
2232 btrfs_free_path(p: path);
2233 kfree(objp: subvol_info);
2234 return ret;
2235}
2236
2237/*
2238 * Return ROOT_REF information of the subvolume containing this inode
2239 * except the subvolume name.
2240 */
2241static int btrfs_ioctl_get_subvol_rootref(struct btrfs_root *root,
2242 void __user *argp)
2243{
2244 struct btrfs_ioctl_get_subvol_rootref_args *rootrefs;
2245 struct btrfs_root_ref *rref;
2246 struct btrfs_path *path;
2247 struct btrfs_key key;
2248 struct extent_buffer *leaf;
2249 u64 objectid;
2250 int slot;
2251 int ret;
2252 u8 found;
2253
2254 path = btrfs_alloc_path();
2255 if (!path)
2256 return -ENOMEM;
2257
2258 rootrefs = memdup_user(argp, sizeof(*rootrefs));
2259 if (IS_ERR(ptr: rootrefs)) {
2260 btrfs_free_path(p: path);
2261 return PTR_ERR(ptr: rootrefs);
2262 }
2263
2264 objectid = root->root_key.objectid;
2265 key.objectid = objectid;
2266 key.type = BTRFS_ROOT_REF_KEY;
2267 key.offset = rootrefs->min_treeid;
2268 found = 0;
2269
2270 root = root->fs_info->tree_root;
2271 ret = btrfs_search_slot(NULL, root, key: &key, p: path, ins_len: 0, cow: 0);
2272 if (ret < 0) {
2273 goto out;
2274 } else if (path->slots[0] >=
2275 btrfs_header_nritems(eb: path->nodes[0])) {
2276 ret = btrfs_next_leaf(root, path);
2277 if (ret < 0) {
2278 goto out;
2279 } else if (ret > 0) {
2280 ret = -EUCLEAN;
2281 goto out;
2282 }
2283 }
2284 while (1) {
2285 leaf = path->nodes[0];
2286 slot = path->slots[0];
2287
2288 btrfs_item_key_to_cpu(eb: leaf, cpu_key: &key, nr: slot);
2289 if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) {
2290 ret = 0;
2291 goto out;
2292 }
2293
2294 if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) {
2295 ret = -EOVERFLOW;
2296 goto out;
2297 }
2298
2299 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2300 rootrefs->rootref[found].treeid = key.offset;
2301 rootrefs->rootref[found].dirid =
2302 btrfs_root_ref_dirid(eb: leaf, s: rref);
2303 found++;
2304
2305 ret = btrfs_next_item(root, p: path);
2306 if (ret < 0) {
2307 goto out;
2308 } else if (ret > 0) {
2309 ret = -EUCLEAN;
2310 goto out;
2311 }
2312 }
2313
2314out:
2315 btrfs_free_path(p: path);
2316
2317 if (!ret || ret == -EOVERFLOW) {
2318 rootrefs->num_items = found;
2319 /* update min_treeid for next search */
2320 if (found)
2321 rootrefs->min_treeid =
2322 rootrefs->rootref[found - 1].treeid + 1;
2323 if (copy_to_user(to: argp, from: rootrefs, n: sizeof(*rootrefs)))
2324 ret = -EFAULT;
2325 }
2326
2327 kfree(objp: rootrefs);
2328
2329 return ret;
2330}
2331
2332static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2333 void __user *arg,
2334 bool destroy_v2)
2335{
2336 struct dentry *parent = file->f_path.dentry;
2337 struct btrfs_fs_info *fs_info = btrfs_sb(sb: parent->d_sb);
2338 struct dentry *dentry;
2339 struct inode *dir = d_inode(dentry: parent);
2340 struct inode *inode;
2341 struct btrfs_root *root = BTRFS_I(inode: dir)->root;
2342 struct btrfs_root *dest = NULL;
2343 struct btrfs_ioctl_vol_args *vol_args = NULL;
2344 struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL;
2345 struct mnt_idmap *idmap = file_mnt_idmap(file);
2346 char *subvol_name, *subvol_name_ptr = NULL;
2347 int subvol_namelen;
2348 int err = 0;
2349 bool destroy_parent = false;
2350
2351 /* We don't support snapshots with extent tree v2 yet. */
2352 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2353 btrfs_err(fs_info,
2354 "extent tree v2 doesn't support snapshot deletion yet");
2355 return -EOPNOTSUPP;
2356 }
2357
2358 if (destroy_v2) {
2359 vol_args2 = memdup_user(arg, sizeof(*vol_args2));
2360 if (IS_ERR(ptr: vol_args2))
2361 return PTR_ERR(ptr: vol_args2);
2362
2363 if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) {
2364 err = -EOPNOTSUPP;
2365 goto out;
2366 }
2367
2368 /*
2369 * If SPEC_BY_ID is not set, we are looking for the subvolume by
2370 * name, same as v1 currently does.
2371 */
2372 if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) {
2373 vol_args2->name[BTRFS_SUBVOL_NAME_MAX] = 0;
2374 subvol_name = vol_args2->name;
2375
2376 err = mnt_want_write_file(file);
2377 if (err)
2378 goto out;
2379 } else {
2380 struct inode *old_dir;
2381
2382 if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) {
2383 err = -EINVAL;
2384 goto out;
2385 }
2386
2387 err = mnt_want_write_file(file);
2388 if (err)
2389 goto out;
2390
2391 dentry = btrfs_get_dentry(sb: fs_info->sb,
2392 BTRFS_FIRST_FREE_OBJECTID,
2393 root_objectid: vol_args2->subvolid, generation: 0);
2394 if (IS_ERR(ptr: dentry)) {
2395 err = PTR_ERR(ptr: dentry);
2396 goto out_drop_write;
2397 }
2398
2399 /*
2400 * Change the default parent since the subvolume being
2401 * deleted can be outside of the current mount point.
2402 */
2403 parent = btrfs_get_parent(child: dentry);
2404
2405 /*
2406 * At this point dentry->d_name can point to '/' if the
2407 * subvolume we want to destroy is outsite of the
2408 * current mount point, so we need to release the
2409 * current dentry and execute the lookup to return a new
2410 * one with ->d_name pointing to the
2411 * <mount point>/subvol_name.
2412 */
2413 dput(dentry);
2414 if (IS_ERR(ptr: parent)) {
2415 err = PTR_ERR(ptr: parent);
2416 goto out_drop_write;
2417 }
2418 old_dir = dir;
2419 dir = d_inode(dentry: parent);
2420
2421 /*
2422 * If v2 was used with SPEC_BY_ID, a new parent was
2423 * allocated since the subvolume can be outside of the
2424 * current mount point. Later on we need to release this
2425 * new parent dentry.
2426 */
2427 destroy_parent = true;
2428
2429 /*
2430 * On idmapped mounts, deletion via subvolid is
2431 * restricted to subvolumes that are immediate
2432 * ancestors of the inode referenced by the file
2433 * descriptor in the ioctl. Otherwise the idmapping
2434 * could potentially be abused to delete subvolumes
2435 * anywhere in the filesystem the user wouldn't be able
2436 * to delete without an idmapped mount.
2437 */
2438 if (old_dir != dir && idmap != &nop_mnt_idmap) {
2439 err = -EOPNOTSUPP;
2440 goto free_parent;
2441 }
2442
2443 subvol_name_ptr = btrfs_get_subvol_name_from_objectid(
2444 fs_info, subvol_objectid: vol_args2->subvolid);
2445 if (IS_ERR(ptr: subvol_name_ptr)) {
2446 err = PTR_ERR(ptr: subvol_name_ptr);
2447 goto free_parent;
2448 }
2449 /* subvol_name_ptr is already nul terminated */
2450 subvol_name = (char *)kbasename(path: subvol_name_ptr);
2451 }
2452 } else {
2453 vol_args = memdup_user(arg, sizeof(*vol_args));
2454 if (IS_ERR(ptr: vol_args))
2455 return PTR_ERR(ptr: vol_args);
2456
2457 vol_args->name[BTRFS_PATH_NAME_MAX] = 0;
2458 subvol_name = vol_args->name;
2459
2460 err = mnt_want_write_file(file);
2461 if (err)
2462 goto out;
2463 }
2464
2465 subvol_namelen = strlen(subvol_name);
2466
2467 if (strchr(subvol_name, '/') ||
2468 strncmp(subvol_name, "..", subvol_namelen) == 0) {
2469 err = -EINVAL;
2470 goto free_subvol_name;
2471 }
2472
2473 if (!S_ISDIR(dir->i_mode)) {
2474 err = -ENOTDIR;
2475 goto free_subvol_name;
2476 }
2477
2478 err = down_write_killable_nested(sem: &dir->i_rwsem, subclass: I_MUTEX_PARENT);
2479 if (err == -EINTR)
2480 goto free_subvol_name;
2481 dentry = lookup_one(idmap, subvol_name, parent, subvol_namelen);
2482 if (IS_ERR(ptr: dentry)) {
2483 err = PTR_ERR(ptr: dentry);
2484 goto out_unlock_dir;
2485 }
2486
2487 if (d_really_is_negative(dentry)) {
2488 err = -ENOENT;
2489 goto out_dput;
2490 }
2491
2492 inode = d_inode(dentry);
2493 dest = BTRFS_I(inode)->root;
2494 if (!capable(CAP_SYS_ADMIN)) {
2495 /*
2496 * Regular user. Only allow this with a special mount
2497 * option, when the user has write+exec access to the
2498 * subvol root, and when rmdir(2) would have been
2499 * allowed.
2500 *
2501 * Note that this is _not_ check that the subvol is
2502 * empty or doesn't contain data that we wouldn't
2503 * otherwise be able to delete.
2504 *
2505 * Users who want to delete empty subvols should try
2506 * rmdir(2).
2507 */
2508 err = -EPERM;
2509 if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED))
2510 goto out_dput;
2511
2512 /*
2513 * Do not allow deletion if the parent dir is the same
2514 * as the dir to be deleted. That means the ioctl
2515 * must be called on the dentry referencing the root
2516 * of the subvol, not a random directory contained
2517 * within it.
2518 */
2519 err = -EINVAL;
2520 if (root == dest)
2521 goto out_dput;
2522
2523 err = inode_permission(idmap, inode, MAY_WRITE | MAY_EXEC);
2524 if (err)
2525 goto out_dput;
2526 }
2527
2528 /* check if subvolume may be deleted by a user */
2529 err = btrfs_may_delete(idmap, dir, victim: dentry, isdir: 1);
2530 if (err)
2531 goto out_dput;
2532
2533 if (btrfs_ino(inode: BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
2534 err = -EINVAL;
2535 goto out_dput;
2536 }
2537
2538 btrfs_inode_lock(inode: BTRFS_I(inode), ilock_flags: 0);
2539 err = btrfs_delete_subvolume(dir: BTRFS_I(inode: dir), dentry);
2540 btrfs_inode_unlock(inode: BTRFS_I(inode), ilock_flags: 0);
2541 if (!err)
2542 d_delete_notify(dir, dentry);
2543
2544out_dput:
2545 dput(dentry);
2546out_unlock_dir:
2547 btrfs_inode_unlock(inode: BTRFS_I(inode: dir), ilock_flags: 0);
2548free_subvol_name:
2549 kfree(objp: subvol_name_ptr);
2550free_parent:
2551 if (destroy_parent)
2552 dput(parent);
2553out_drop_write:
2554 mnt_drop_write_file(file);
2555out:
2556 kfree(objp: vol_args2);
2557 kfree(objp: vol_args);
2558 return err;
2559}
2560
2561static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2562{
2563 struct inode *inode = file_inode(f: file);
2564 struct btrfs_root *root = BTRFS_I(inode)->root;
2565 struct btrfs_ioctl_defrag_range_args range = {0};
2566 int ret;
2567
2568 ret = mnt_want_write_file(file);
2569 if (ret)
2570 return ret;
2571
2572 if (btrfs_root_readonly(root)) {
2573 ret = -EROFS;
2574 goto out;
2575 }
2576
2577 switch (inode->i_mode & S_IFMT) {
2578 case S_IFDIR:
2579 if (!capable(CAP_SYS_ADMIN)) {
2580 ret = -EPERM;
2581 goto out;
2582 }
2583 ret = btrfs_defrag_root(root);
2584 break;
2585 case S_IFREG:
2586 /*
2587 * Note that this does not check the file descriptor for write
2588 * access. This prevents defragmenting executables that are
2589 * running and allows defrag on files open in read-only mode.
2590 */
2591 if (!capable(CAP_SYS_ADMIN) &&
2592 inode_permission(&nop_mnt_idmap, inode, MAY_WRITE)) {
2593 ret = -EPERM;
2594 goto out;
2595 }
2596
2597 if (argp) {
2598 if (copy_from_user(to: &range, from: argp, n: sizeof(range))) {
2599 ret = -EFAULT;
2600 goto out;
2601 }
2602 /* compression requires us to start the IO */
2603 if ((range.flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
2604 range.flags |= BTRFS_DEFRAG_RANGE_START_IO;
2605 range.extent_thresh = (u32)-1;
2606 }
2607 } else {
2608 /* the rest are all set to zero by kzalloc */
2609 range.len = (u64)-1;
2610 }
2611 ret = btrfs_defrag_file(inode: file_inode(f: file), ra: &file->f_ra,
2612 range: &range, BTRFS_OLDEST_GENERATION, max_to_defrag: 0);
2613 if (ret > 0)
2614 ret = 0;
2615 break;
2616 default:
2617 ret = -EINVAL;
2618 }
2619out:
2620 mnt_drop_write_file(file);
2621 return ret;
2622}
2623
2624static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg)
2625{
2626 struct btrfs_ioctl_vol_args *vol_args;
2627 bool restore_op = false;
2628 int ret;
2629
2630 if (!capable(CAP_SYS_ADMIN))
2631 return -EPERM;
2632
2633 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2634 btrfs_err(fs_info, "device add not supported on extent tree v2 yet");
2635 return -EINVAL;
2636 }
2637
2638 if (fs_info->fs_devices->temp_fsid) {
2639 btrfs_err(fs_info,
2640 "device add not supported on cloned temp-fsid mount");
2641 return -EINVAL;
2642 }
2643
2644 if (!btrfs_exclop_start(fs_info, type: BTRFS_EXCLOP_DEV_ADD)) {
2645 if (!btrfs_exclop_start_try_lock(fs_info, type: BTRFS_EXCLOP_DEV_ADD))
2646 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2647
2648 /*
2649 * We can do the device add because we have a paused balanced,
2650 * change the exclusive op type and remember we should bring
2651 * back the paused balance
2652 */
2653 fs_info->exclusive_operation = BTRFS_EXCLOP_DEV_ADD;
2654 btrfs_exclop_start_unlock(fs_info);
2655 restore_op = true;
2656 }
2657
2658 vol_args = memdup_user(arg, sizeof(*vol_args));
2659 if (IS_ERR(ptr: vol_args)) {
2660 ret = PTR_ERR(ptr: vol_args);
2661 goto out;
2662 }
2663
2664 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2665 ret = btrfs_init_new_device(fs_info, path: vol_args->name);
2666
2667 if (!ret)
2668 btrfs_info(fs_info, "disk added %s", vol_args->name);
2669
2670 kfree(objp: vol_args);
2671out:
2672 if (restore_op)
2673 btrfs_exclop_balance(fs_info, op: BTRFS_EXCLOP_BALANCE_PAUSED);
2674 else
2675 btrfs_exclop_finish(fs_info);
2676 return ret;
2677}
2678
2679static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
2680{
2681 BTRFS_DEV_LOOKUP_ARGS(args);
2682 struct inode *inode = file_inode(f: file);
2683 struct btrfs_fs_info *fs_info = btrfs_sb(sb: inode->i_sb);
2684 struct btrfs_ioctl_vol_args_v2 *vol_args;
2685 struct bdev_handle *bdev_handle = NULL;
2686 int ret;
2687 bool cancel = false;
2688
2689 if (!capable(CAP_SYS_ADMIN))
2690 return -EPERM;
2691
2692 vol_args = memdup_user(arg, sizeof(*vol_args));
2693 if (IS_ERR(ptr: vol_args))
2694 return PTR_ERR(ptr: vol_args);
2695
2696 if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) {
2697 ret = -EOPNOTSUPP;
2698 goto out;
2699 }
2700
2701 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
2702 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) {
2703 args.devid = vol_args->devid;
2704 } else if (!strcmp("cancel", vol_args->name)) {
2705 cancel = true;
2706 } else {
2707 ret = btrfs_get_dev_args_from_path(fs_info, args: &args, path: vol_args->name);
2708 if (ret)
2709 goto out;
2710 }
2711
2712 ret = mnt_want_write_file(file);
2713 if (ret)
2714 goto out;
2715
2716 ret = exclop_start_or_cancel_reloc(fs_info, type: BTRFS_EXCLOP_DEV_REMOVE,
2717 cancel);
2718 if (ret)
2719 goto err_drop;
2720
2721 /* Exclusive operation is now claimed */
2722 ret = btrfs_rm_device(fs_info, args: &args, bdev_handle: &bdev_handle);
2723
2724 btrfs_exclop_finish(fs_info);
2725
2726 if (!ret) {
2727 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
2728 btrfs_info(fs_info, "device deleted: id %llu",
2729 vol_args->devid);
2730 else
2731 btrfs_info(fs_info, "device deleted: %s",
2732 vol_args->name);
2733 }
2734err_drop:
2735 mnt_drop_write_file(file);
2736 if (bdev_handle)
2737 bdev_release(handle: bdev_handle);
2738out:
2739 btrfs_put_dev_args_from_path(args: &args);
2740 kfree(objp: vol_args);
2741 return ret;
2742}
2743
2744static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
2745{
2746 BTRFS_DEV_LOOKUP_ARGS(args);
2747 struct inode *inode = file_inode(f: file);
2748 struct btrfs_fs_info *fs_info = btrfs_sb(sb: inode->i_sb);
2749 struct btrfs_ioctl_vol_args *vol_args;
2750 struct bdev_handle *bdev_handle = NULL;
2751 int ret;
2752 bool cancel = false;
2753
2754 if (!capable(CAP_SYS_ADMIN))
2755 return -EPERM;
2756
2757 vol_args = memdup_user(arg, sizeof(*vol_args));
2758 if (IS_ERR(ptr: vol_args))
2759 return PTR_ERR(ptr: vol_args);
2760
2761 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2762 if (!strcmp("cancel", vol_args->name)) {
2763 cancel = true;
2764 } else {
2765 ret = btrfs_get_dev_args_from_path(fs_info, args: &args, path: vol_args->name);
2766 if (ret)
2767 goto out;
2768 }
2769
2770 ret = mnt_want_write_file(file);
2771 if (ret)
2772 goto out;
2773
2774 ret = exclop_start_or_cancel_reloc(fs_info, type: BTRFS_EXCLOP_DEV_REMOVE,
2775 cancel);
2776 if (ret == 0) {
2777 ret = btrfs_rm_device(fs_info, args: &args, bdev_handle: &bdev_handle);
2778 if (!ret)
2779 btrfs_info(fs_info, "disk deleted %s", vol_args->name);
2780 btrfs_exclop_finish(fs_info);
2781 }
2782
2783 mnt_drop_write_file(file);
2784 if (bdev_handle)
2785 bdev_release(handle: bdev_handle);
2786out:
2787 btrfs_put_dev_args_from_path(args: &args);
2788 kfree(objp: vol_args);
2789 return ret;
2790}
2791
2792static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info,
2793 void __user *arg)
2794{
2795 struct btrfs_ioctl_fs_info_args *fi_args;
2796 struct btrfs_device *device;
2797 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2798 u64 flags_in;
2799 int ret = 0;
2800
2801 fi_args = memdup_user(arg, sizeof(*fi_args));
2802 if (IS_ERR(ptr: fi_args))
2803 return PTR_ERR(ptr: fi_args);
2804
2805 flags_in = fi_args->flags;
2806 memset(fi_args, 0, sizeof(*fi_args));
2807
2808 rcu_read_lock();
2809 fi_args->num_devices = fs_devices->num_devices;
2810
2811 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2812 if (device->devid > fi_args->max_id)
2813 fi_args->max_id = device->devid;
2814 }
2815 rcu_read_unlock();
2816
2817 memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid));
2818 fi_args->nodesize = fs_info->nodesize;
2819 fi_args->sectorsize = fs_info->sectorsize;
2820 fi_args->clone_alignment = fs_info->sectorsize;
2821
2822 if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) {
2823 fi_args->csum_type = btrfs_super_csum_type(s: fs_info->super_copy);
2824 fi_args->csum_size = btrfs_super_csum_size(s: fs_info->super_copy);
2825 fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO;
2826 }
2827
2828 if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) {
2829 fi_args->generation = btrfs_get_fs_generation(fs_info);
2830 fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION;
2831 }
2832
2833 if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) {
2834 memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid,
2835 sizeof(fi_args->metadata_uuid));
2836 fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID;
2837 }
2838
2839 if (copy_to_user(to: arg, from: fi_args, n: sizeof(*fi_args)))
2840 ret = -EFAULT;
2841
2842 kfree(objp: fi_args);
2843 return ret;
2844}
2845
2846static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info,
2847 void __user *arg)
2848{
2849 BTRFS_DEV_LOOKUP_ARGS(args);
2850 struct btrfs_ioctl_dev_info_args *di_args;
2851 struct btrfs_device *dev;
2852 int ret = 0;
2853
2854 di_args = memdup_user(arg, sizeof(*di_args));
2855 if (IS_ERR(ptr: di_args))
2856 return PTR_ERR(ptr: di_args);
2857
2858 args.devid = di_args->devid;
2859 if (!btrfs_is_empty_uuid(uuid: di_args->uuid))
2860 args.uuid = di_args->uuid;
2861
2862 rcu_read_lock();
2863 dev = btrfs_find_device(fs_devices: fs_info->fs_devices, args: &args);
2864 if (!dev) {
2865 ret = -ENODEV;
2866 goto out;
2867 }
2868
2869 di_args->devid = dev->devid;
2870 di_args->bytes_used = btrfs_device_get_bytes_used(dev);
2871 di_args->total_bytes = btrfs_device_get_total_bytes(dev);
2872 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2873 memcpy(di_args->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
2874 if (dev->name)
2875 strscpy(p: di_args->path, q: btrfs_dev_name(device: dev), size: sizeof(di_args->path));
2876 else
2877 di_args->path[0] = '\0';
2878
2879out:
2880 rcu_read_unlock();
2881 if (ret == 0 && copy_to_user(to: arg, from: di_args, n: sizeof(*di_args)))
2882 ret = -EFAULT;
2883
2884 kfree(objp: di_args);
2885 return ret;
2886}
2887
2888static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
2889{
2890 struct inode *inode = file_inode(f: file);
2891 struct btrfs_fs_info *fs_info = btrfs_sb(sb: inode->i_sb);
2892 struct btrfs_root *root = BTRFS_I(inode)->root;
2893 struct btrfs_root *new_root;
2894 struct btrfs_dir_item *di;
2895 struct btrfs_trans_handle *trans;
2896 struct btrfs_path *path = NULL;
2897 struct btrfs_disk_key disk_key;
2898 struct fscrypt_str name = FSTR_INIT("default", 7);
2899 u64 objectid = 0;
2900 u64 dir_id;
2901 int ret;
2902
2903 if (!capable(CAP_SYS_ADMIN))
2904 return -EPERM;
2905
2906 ret = mnt_want_write_file(file);
2907 if (ret)
2908 return ret;
2909
2910 if (copy_from_user(to: &objectid, from: argp, n: sizeof(objectid))) {
2911 ret = -EFAULT;
2912 goto out;
2913 }
2914
2915 if (!objectid)
2916 objectid = BTRFS_FS_TREE_OBJECTID;
2917
2918 new_root = btrfs_get_fs_root(fs_info, objectid, check_ref: true);
2919 if (IS_ERR(ptr: new_root)) {
2920 ret = PTR_ERR(ptr: new_root);
2921 goto out;
2922 }
2923 if (!is_fstree(rootid: new_root->root_key.objectid)) {
2924 ret = -ENOENT;
2925 goto out_free;
2926 }
2927
2928 path = btrfs_alloc_path();
2929 if (!path) {
2930 ret = -ENOMEM;
2931 goto out_free;
2932 }
2933
2934 trans = btrfs_start_transaction(root, num_items: 1);
2935 if (IS_ERR(ptr: trans)) {
2936 ret = PTR_ERR(ptr: trans);
2937 goto out_free;
2938 }
2939
2940 dir_id = btrfs_super_root_dir(s: fs_info->super_copy);
2941 di = btrfs_lookup_dir_item(trans, root: fs_info->tree_root, path,
2942 dir: dir_id, name: &name, mod: 1);
2943 if (IS_ERR_OR_NULL(ptr: di)) {
2944 btrfs_release_path(p: path);
2945 btrfs_end_transaction(trans);
2946 btrfs_err(fs_info,
2947 "Umm, you don't have the default diritem, this isn't going to work");
2948 ret = -ENOENT;
2949 goto out_free;
2950 }
2951
2952 btrfs_cpu_key_to_disk(disk_key: &disk_key, cpu_key: &new_root->root_key);
2953 btrfs_set_dir_item_key(eb: path->nodes[0], item: di, key: &disk_key);
2954 btrfs_mark_buffer_dirty(trans, buf: path->nodes[0]);
2955 btrfs_release_path(p: path);
2956
2957 btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL);
2958 btrfs_end_transaction(trans);
2959out_free:
2960 btrfs_put_root(root: new_root);
2961 btrfs_free_path(p: path);
2962out:
2963 mnt_drop_write_file(file);
2964 return ret;
2965}
2966
2967static void get_block_group_info(struct list_head *groups_list,
2968 struct btrfs_ioctl_space_info *space)
2969{
2970 struct btrfs_block_group *block_group;
2971
2972 space->total_bytes = 0;
2973 space->used_bytes = 0;
2974 space->flags = 0;
2975 list_for_each_entry(block_group, groups_list, list) {
2976 space->flags = block_group->flags;
2977 space->total_bytes += block_group->length;
2978 space->used_bytes += block_group->used;
2979 }
2980}
2981
2982static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info,
2983 void __user *arg)
2984{
2985 struct btrfs_ioctl_space_args space_args = { 0 };
2986 struct btrfs_ioctl_space_info space;
2987 struct btrfs_ioctl_space_info *dest;
2988 struct btrfs_ioctl_space_info *dest_orig;
2989 struct btrfs_ioctl_space_info __user *user_dest;
2990 struct btrfs_space_info *info;
2991 static const u64 types[] = {
2992 BTRFS_BLOCK_GROUP_DATA,
2993 BTRFS_BLOCK_GROUP_SYSTEM,
2994 BTRFS_BLOCK_GROUP_METADATA,
2995 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA
2996 };
2997 int num_types = 4;
2998 int alloc_size;
2999 int ret = 0;
3000 u64 slot_count = 0;
3001 int i, c;
3002
3003 if (copy_from_user(to: &space_args,
3004 from: (struct btrfs_ioctl_space_args __user *)arg,
3005 n: sizeof(space_args)))
3006 return -EFAULT;
3007
3008 for (i = 0; i < num_types; i++) {
3009 struct btrfs_space_info *tmp;
3010
3011 info = NULL;
3012 list_for_each_entry(tmp, &fs_info->space_info, list) {
3013 if (tmp->flags == types[i]) {
3014 info = tmp;
3015 break;
3016 }
3017 }
3018
3019 if (!info)
3020 continue;
3021
3022 down_read(sem: &info->groups_sem);
3023 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3024 if (!list_empty(head: &info->block_groups[c]))
3025 slot_count++;
3026 }
3027 up_read(sem: &info->groups_sem);
3028 }
3029
3030 /*
3031 * Global block reserve, exported as a space_info
3032 */
3033 slot_count++;
3034
3035 /* space_slots == 0 means they are asking for a count */
3036 if (space_args.space_slots == 0) {
3037 space_args.total_spaces = slot_count;
3038 goto out;
3039 }
3040
3041 slot_count = min_t(u64, space_args.space_slots, slot_count);
3042
3043 alloc_size = sizeof(*dest) * slot_count;
3044
3045 /* we generally have at most 6 or so space infos, one for each raid
3046 * level. So, a whole page should be more than enough for everyone
3047 */
3048 if (alloc_size > PAGE_SIZE)
3049 return -ENOMEM;
3050
3051 space_args.total_spaces = 0;
3052 dest = kmalloc(size: alloc_size, GFP_KERNEL);
3053 if (!dest)
3054 return -ENOMEM;
3055 dest_orig = dest;
3056
3057 /* now we have a buffer to copy into */
3058 for (i = 0; i < num_types; i++) {
3059 struct btrfs_space_info *tmp;
3060
3061 if (!slot_count)
3062 break;
3063
3064 info = NULL;
3065 list_for_each_entry(tmp, &fs_info->space_info, list) {
3066 if (tmp->flags == types[i]) {
3067 info = tmp;
3068 break;
3069 }
3070 }
3071
3072 if (!info)
3073 continue;
3074 down_read(sem: &info->groups_sem);
3075 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3076 if (!list_empty(head: &info->block_groups[c])) {
3077 get_block_group_info(groups_list: &info->block_groups[c],
3078 space: &space);
3079 memcpy(dest, &space, sizeof(space));
3080 dest++;
3081 space_args.total_spaces++;
3082 slot_count--;
3083 }
3084 if (!slot_count)
3085 break;
3086 }
3087 up_read(sem: &info->groups_sem);
3088 }
3089
3090 /*
3091 * Add global block reserve
3092 */
3093 if (slot_count) {
3094 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
3095
3096 spin_lock(lock: &block_rsv->lock);
3097 space.total_bytes = block_rsv->size;
3098 space.used_bytes = block_rsv->size - block_rsv->reserved;
3099 spin_unlock(lock: &block_rsv->lock);
3100 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
3101 memcpy(dest, &space, sizeof(space));
3102 space_args.total_spaces++;
3103 }
3104
3105 user_dest = (struct btrfs_ioctl_space_info __user *)
3106 (arg + sizeof(struct btrfs_ioctl_space_args));
3107
3108 if (copy_to_user(to: user_dest, from: dest_orig, n: alloc_size))
3109 ret = -EFAULT;
3110
3111 kfree(objp: dest_orig);
3112out:
3113 if (ret == 0 && copy_to_user(to: arg, from: &space_args, n: sizeof(space_args)))
3114 ret = -EFAULT;
3115
3116 return ret;
3117}
3118
3119static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
3120 void __user *argp)
3121{
3122 struct btrfs_trans_handle *trans;
3123 u64 transid;
3124
3125 /*
3126 * Start orphan cleanup here for the given root in case it hasn't been
3127 * started already by other means. Errors are handled in the other
3128 * functions during transaction commit.
3129 */
3130 btrfs_orphan_cleanup(root);
3131
3132 trans = btrfs_attach_transaction_barrier(root);
3133 if (IS_ERR(ptr: trans)) {
3134 if (PTR_ERR(ptr: trans) != -ENOENT)
3135 return PTR_ERR(ptr: trans);
3136
3137 /* No running transaction, don't bother */
3138 transid = btrfs_get_last_trans_committed(fs_info: root->fs_info);
3139 goto out;
3140 }
3141 transid = trans->transid;
3142 btrfs_commit_transaction_async(trans);
3143out:
3144 if (argp)
3145 if (copy_to_user(to: argp, from: &transid, n: sizeof(transid)))
3146 return -EFAULT;
3147 return 0;
3148}
3149
3150static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info,
3151 void __user *argp)
3152{
3153 /* By default wait for the current transaction. */
3154 u64 transid = 0;
3155
3156 if (argp)
3157 if (copy_from_user(to: &transid, from: argp, n: sizeof(transid)))
3158 return -EFAULT;
3159
3160 return btrfs_wait_for_commit(fs_info, transid);
3161}
3162
3163static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
3164{
3165 struct btrfs_fs_info *fs_info = btrfs_sb(sb: file_inode(f: file)->i_sb);
3166 struct btrfs_ioctl_scrub_args *sa;
3167 int ret;
3168
3169 if (!capable(CAP_SYS_ADMIN))
3170 return -EPERM;
3171
3172 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3173 btrfs_err(fs_info, "scrub is not supported on extent tree v2 yet");
3174 return -EINVAL;
3175 }
3176
3177 sa = memdup_user(arg, sizeof(*sa));
3178 if (IS_ERR(ptr: sa))
3179 return PTR_ERR(ptr: sa);
3180
3181 if (sa->flags & ~BTRFS_SCRUB_SUPPORTED_FLAGS) {
3182 ret = -EOPNOTSUPP;
3183 goto out;
3184 }
3185
3186 if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
3187 ret = mnt_want_write_file(file);
3188 if (ret)
3189 goto out;
3190 }
3191
3192 ret = btrfs_scrub_dev(fs_info, devid: sa->devid, start: sa->start, end: sa->end,
3193 progress: &sa->progress, readonly: sa->flags & BTRFS_SCRUB_READONLY,
3194 is_dev_replace: 0);
3195
3196 /*
3197 * Copy scrub args to user space even if btrfs_scrub_dev() returned an
3198 * error. This is important as it allows user space to know how much
3199 * progress scrub has done. For example, if scrub is canceled we get
3200 * -ECANCELED from btrfs_scrub_dev() and return that error back to user
3201 * space. Later user space can inspect the progress from the structure
3202 * btrfs_ioctl_scrub_args and resume scrub from where it left off
3203 * previously (btrfs-progs does this).
3204 * If we fail to copy the btrfs_ioctl_scrub_args structure to user space
3205 * then return -EFAULT to signal the structure was not copied or it may
3206 * be corrupt and unreliable due to a partial copy.
3207 */
3208 if (copy_to_user(to: arg, from: sa, n: sizeof(*sa)))
3209 ret = -EFAULT;
3210
3211 if (!(sa->flags & BTRFS_SCRUB_READONLY))
3212 mnt_drop_write_file(file);
3213out:
3214 kfree(objp: sa);
3215 return ret;
3216}
3217
3218static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info)
3219{
3220 if (!capable(CAP_SYS_ADMIN))
3221 return -EPERM;
3222
3223 return btrfs_scrub_cancel(info: fs_info);
3224}
3225
3226static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info,
3227 void __user *arg)
3228{
3229 struct btrfs_ioctl_scrub_args *sa;
3230 int ret;
3231
3232 if (!capable(CAP_SYS_ADMIN))
3233 return -EPERM;
3234
3235 sa = memdup_user(arg, sizeof(*sa));
3236 if (IS_ERR(ptr: sa))
3237 return PTR_ERR(ptr: sa);
3238
3239 ret = btrfs_scrub_progress(fs_info, devid: sa->devid, progress: &sa->progress);
3240
3241 if (ret == 0 && copy_to_user(to: arg, from: sa, n: sizeof(*sa)))
3242 ret = -EFAULT;
3243
3244 kfree(objp: sa);
3245 return ret;
3246}
3247
3248static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info,
3249 void __user *arg)
3250{
3251 struct btrfs_ioctl_get_dev_stats *sa;
3252 int ret;
3253
3254 sa = memdup_user(arg, sizeof(*sa));
3255 if (IS_ERR(ptr: sa))
3256 return PTR_ERR(ptr: sa);
3257
3258 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
3259 kfree(objp: sa);
3260 return -EPERM;
3261 }
3262
3263 ret = btrfs_get_dev_stats(fs_info, stats: sa);
3264
3265 if (ret == 0 && copy_to_user(to: arg, from: sa, n: sizeof(*sa)))
3266 ret = -EFAULT;
3267
3268 kfree(objp: sa);
3269 return ret;
3270}
3271
3272static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info,
3273 void __user *arg)
3274{
3275 struct btrfs_ioctl_dev_replace_args *p;
3276 int ret;
3277
3278 if (!capable(CAP_SYS_ADMIN))
3279 return -EPERM;
3280
3281 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3282 btrfs_err(fs_info, "device replace not supported on extent tree v2 yet");
3283 return -EINVAL;
3284 }
3285
3286 p = memdup_user(arg, sizeof(*p));
3287 if (IS_ERR(ptr: p))
3288 return PTR_ERR(ptr: p);
3289
3290 switch (p->cmd) {
3291 case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
3292 if (sb_rdonly(sb: fs_info->sb)) {
3293 ret = -EROFS;
3294 goto out;
3295 }
3296 if (!btrfs_exclop_start(fs_info, type: BTRFS_EXCLOP_DEV_REPLACE)) {
3297 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3298 } else {
3299 ret = btrfs_dev_replace_by_ioctl(fs_info, args: p);
3300 btrfs_exclop_finish(fs_info);
3301 }
3302 break;
3303 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
3304 btrfs_dev_replace_status(fs_info, args: p);
3305 ret = 0;
3306 break;
3307 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
3308 p->result = btrfs_dev_replace_cancel(fs_info);
3309 ret = 0;
3310 break;
3311 default:
3312 ret = -EINVAL;
3313 break;
3314 }
3315
3316 if ((ret == 0 || ret == -ECANCELED) && copy_to_user(to: arg, from: p, n: sizeof(*p)))
3317 ret = -EFAULT;
3318out:
3319 kfree(objp: p);
3320 return ret;
3321}
3322
3323static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
3324{
3325 int ret = 0;
3326 int i;
3327 u64 rel_ptr;
3328 int size;
3329 struct btrfs_ioctl_ino_path_args *ipa = NULL;
3330 struct inode_fs_paths *ipath = NULL;
3331 struct btrfs_path *path;
3332
3333 if (!capable(CAP_DAC_READ_SEARCH))
3334 return -EPERM;
3335
3336 path = btrfs_alloc_path();
3337 if (!path) {
3338 ret = -ENOMEM;
3339 goto out;
3340 }
3341
3342 ipa = memdup_user(arg, sizeof(*ipa));
3343 if (IS_ERR(ptr: ipa)) {
3344 ret = PTR_ERR(ptr: ipa);
3345 ipa = NULL;
3346 goto out;
3347 }
3348
3349 size = min_t(u32, ipa->size, 4096);
3350 ipath = init_ipath(total_bytes: size, fs_root: root, path);
3351 if (IS_ERR(ptr: ipath)) {
3352 ret = PTR_ERR(ptr: ipath);
3353 ipath = NULL;
3354 goto out;
3355 }
3356
3357 ret = paths_from_inode(inum: ipa->inum, ipath);
3358 if (ret < 0)
3359 goto out;
3360
3361 for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
3362 rel_ptr = ipath->fspath->val[i] -
3363 (u64)(unsigned long)ipath->fspath->val;
3364 ipath->fspath->val[i] = rel_ptr;
3365 }
3366
3367 btrfs_free_path(p: path);
3368 path = NULL;
3369 ret = copy_to_user(to: (void __user *)(unsigned long)ipa->fspath,
3370 from: ipath->fspath, n: size);
3371 if (ret) {
3372 ret = -EFAULT;
3373 goto out;
3374 }
3375
3376out:
3377 btrfs_free_path(p: path);
3378 free_ipath(ipath);
3379 kfree(objp: ipa);
3380
3381 return ret;
3382}
3383
3384static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info,
3385 void __user *arg, int version)
3386{
3387 int ret = 0;
3388 int size;
3389 struct btrfs_ioctl_logical_ino_args *loi;
3390 struct btrfs_data_container *inodes = NULL;
3391 struct btrfs_path *path = NULL;
3392 bool ignore_offset;
3393
3394 if (!capable(CAP_SYS_ADMIN))
3395 return -EPERM;
3396
3397 loi = memdup_user(arg, sizeof(*loi));
3398 if (IS_ERR(ptr: loi))
3399 return PTR_ERR(ptr: loi);
3400
3401 if (version == 1) {
3402 ignore_offset = false;
3403 size = min_t(u32, loi->size, SZ_64K);
3404 } else {
3405 /* All reserved bits must be 0 for now */
3406 if (memchr_inv(p: loi->reserved, c: 0, size: sizeof(loi->reserved))) {
3407 ret = -EINVAL;
3408 goto out_loi;
3409 }
3410 /* Only accept flags we have defined so far */
3411 if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) {
3412 ret = -EINVAL;
3413 goto out_loi;
3414 }
3415 ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET;
3416 size = min_t(u32, loi->size, SZ_16M);
3417 }
3418
3419 inodes = init_data_container(total_bytes: size);
3420 if (IS_ERR(ptr: inodes)) {
3421 ret = PTR_ERR(ptr: inodes);
3422 goto out_loi;
3423 }
3424
3425 path = btrfs_alloc_path();
3426 if (!path) {
3427 ret = -ENOMEM;
3428 goto out;
3429 }
3430 ret = iterate_inodes_from_logical(logical: loi->logical, fs_info, path,
3431 ctx: inodes, ignore_offset);
3432 btrfs_free_path(p: path);
3433 if (ret == -EINVAL)
3434 ret = -ENOENT;
3435 if (ret < 0)
3436 goto out;
3437
3438 ret = copy_to_user(to: (void __user *)(unsigned long)loi->inodes, from: inodes,
3439 n: size);
3440 if (ret)
3441 ret = -EFAULT;
3442
3443out:
3444 kvfree(addr: inodes);
3445out_loi:
3446 kfree(objp: loi);
3447
3448 return ret;
3449}
3450
3451void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info,
3452 struct btrfs_ioctl_balance_args *bargs)
3453{
3454 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3455
3456 bargs->flags = bctl->flags;
3457
3458 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags))
3459 bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
3460 if (atomic_read(v: &fs_info->balance_pause_req))
3461 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
3462 if (atomic_read(v: &fs_info->balance_cancel_req))
3463 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
3464
3465 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
3466 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
3467 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
3468
3469 spin_lock(lock: &fs_info->balance_lock);
3470 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
3471 spin_unlock(lock: &fs_info->balance_lock);
3472}
3473
3474/*
3475 * Try to acquire fs_info::balance_mutex as well as set BTRFS_EXLCOP_BALANCE as
3476 * required.
3477 *
3478 * @fs_info: the filesystem
3479 * @excl_acquired: ptr to boolean value which is set to false in case balance
3480 * is being resumed
3481 *
3482 * Return 0 on success in which case both fs_info::balance is acquired as well
3483 * as exclusive ops are blocked. In case of failure return an error code.
3484 */
3485static int btrfs_try_lock_balance(struct btrfs_fs_info *fs_info, bool *excl_acquired)
3486{
3487 int ret;
3488
3489 /*
3490 * Exclusive operation is locked. Three possibilities:
3491 * (1) some other op is running
3492 * (2) balance is running
3493 * (3) balance is paused -- special case (think resume)
3494 */
3495 while (1) {
3496 if (btrfs_exclop_start(fs_info, type: BTRFS_EXCLOP_BALANCE)) {
3497 *excl_acquired = true;
3498 mutex_lock(&fs_info->balance_mutex);
3499 return 0;
3500 }
3501
3502 mutex_lock(&fs_info->balance_mutex);
3503 if (fs_info->balance_ctl) {
3504 /* This is either (2) or (3) */
3505 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
3506 /* This is (2) */
3507 ret = -EINPROGRESS;
3508 goto out_failure;
3509
3510 } else {
3511 mutex_unlock(lock: &fs_info->balance_mutex);
3512 /*
3513 * Lock released to allow other waiters to
3514 * continue, we'll reexamine the status again.
3515 */
3516 mutex_lock(&fs_info->balance_mutex);
3517
3518 if (fs_info->balance_ctl &&
3519 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
3520 /* This is (3) */
3521 *excl_acquired = false;
3522 return 0;
3523 }
3524 }
3525 } else {
3526 /* This is (1) */
3527 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3528 goto out_failure;
3529 }
3530
3531 mutex_unlock(lock: &fs_info->balance_mutex);
3532 }
3533
3534out_failure:
3535 mutex_unlock(lock: &fs_info->balance_mutex);
3536 *excl_acquired = false;
3537 return ret;
3538}
3539
3540static long btrfs_ioctl_balance(struct file *file, void __user *arg)
3541{
3542 struct btrfs_root *root = BTRFS_I(inode: file_inode(f: file))->root;
3543 struct btrfs_fs_info *fs_info = root->fs_info;
3544 struct btrfs_ioctl_balance_args *bargs;
3545 struct btrfs_balance_control *bctl;
3546 bool need_unlock = true;
3547 int ret;
3548
3549 if (!capable(CAP_SYS_ADMIN))
3550 return -EPERM;
3551
3552 ret = mnt_want_write_file(file);
3553 if (ret)
3554 return ret;
3555
3556 bargs = memdup_user(arg, sizeof(*bargs));
3557 if (IS_ERR(ptr: bargs)) {
3558 ret = PTR_ERR(ptr: bargs);
3559 bargs = NULL;
3560 goto out;
3561 }
3562
3563 ret = btrfs_try_lock_balance(fs_info, excl_acquired: &need_unlock);
3564 if (ret)
3565 goto out;
3566
3567 lockdep_assert_held(&fs_info->balance_mutex);
3568
3569 if (bargs->flags & BTRFS_BALANCE_RESUME) {
3570 if (!fs_info->balance_ctl) {
3571 ret = -ENOTCONN;
3572 goto out_unlock;
3573 }
3574
3575 bctl = fs_info->balance_ctl;
3576 spin_lock(lock: &fs_info->balance_lock);
3577 bctl->flags |= BTRFS_BALANCE_RESUME;
3578 spin_unlock(lock: &fs_info->balance_lock);
3579 btrfs_exclop_balance(fs_info, op: BTRFS_EXCLOP_BALANCE);
3580
3581 goto do_balance;
3582 }
3583
3584 if (bargs->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
3585 ret = -EINVAL;
3586 goto out_unlock;
3587 }
3588
3589 if (fs_info->balance_ctl) {
3590 ret = -EINPROGRESS;
3591 goto out_unlock;
3592 }
3593
3594 bctl = kzalloc(size: sizeof(*bctl), GFP_KERNEL);
3595 if (!bctl) {
3596 ret = -ENOMEM;
3597 goto out_unlock;
3598 }
3599
3600 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
3601 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
3602 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
3603
3604 bctl->flags = bargs->flags;
3605do_balance:
3606 /*
3607 * Ownership of bctl and exclusive operation goes to btrfs_balance.
3608 * bctl is freed in reset_balance_state, or, if restriper was paused
3609 * all the way until unmount, in free_fs_info. The flag should be
3610 * cleared after reset_balance_state.
3611 */
3612 need_unlock = false;
3613
3614 ret = btrfs_balance(fs_info, bctl, bargs);
3615 bctl = NULL;
3616
3617 if (ret == 0 || ret == -ECANCELED) {
3618 if (copy_to_user(to: arg, from: bargs, n: sizeof(*bargs)))
3619 ret = -EFAULT;
3620 }
3621
3622 kfree(objp: bctl);
3623out_unlock:
3624 mutex_unlock(lock: &fs_info->balance_mutex);
3625 if (need_unlock)
3626 btrfs_exclop_finish(fs_info);
3627out:
3628 mnt_drop_write_file(file);
3629 kfree(objp: bargs);
3630 return ret;
3631}
3632
3633static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd)
3634{
3635 if (!capable(CAP_SYS_ADMIN))
3636 return -EPERM;
3637
3638 switch (cmd) {
3639 case BTRFS_BALANCE_CTL_PAUSE:
3640 return btrfs_pause_balance(fs_info);
3641 case BTRFS_BALANCE_CTL_CANCEL:
3642 return btrfs_cancel_balance(fs_info);
3643 }
3644
3645 return -EINVAL;
3646}
3647
3648static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info,
3649 void __user *arg)
3650{
3651 struct btrfs_ioctl_balance_args *bargs;
3652 int ret = 0;
3653
3654 if (!capable(CAP_SYS_ADMIN))
3655 return -EPERM;
3656
3657 mutex_lock(&fs_info->balance_mutex);
3658 if (!fs_info->balance_ctl) {
3659 ret = -ENOTCONN;
3660 goto out;
3661 }
3662
3663 bargs = kzalloc(size: sizeof(*bargs), GFP_KERNEL);
3664 if (!bargs) {
3665 ret = -ENOMEM;
3666 goto out;
3667 }
3668
3669 btrfs_update_ioctl_balance_args(fs_info, bargs);
3670
3671 if (copy_to_user(to: arg, from: bargs, n: sizeof(*bargs)))
3672 ret = -EFAULT;
3673
3674 kfree(objp: bargs);
3675out:
3676 mutex_unlock(lock: &fs_info->balance_mutex);
3677 return ret;
3678}
3679
3680static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
3681{
3682 struct inode *inode = file_inode(f: file);
3683 struct btrfs_fs_info *fs_info = btrfs_sb(sb: inode->i_sb);
3684 struct btrfs_ioctl_quota_ctl_args *sa;
3685 int ret;
3686
3687 if (!capable(CAP_SYS_ADMIN))
3688 return -EPERM;
3689
3690 ret = mnt_want_write_file(file);
3691 if (ret)
3692 return ret;
3693
3694 sa = memdup_user(arg, sizeof(*sa));
3695 if (IS_ERR(ptr: sa)) {
3696 ret = PTR_ERR(ptr: sa);
3697 goto drop_write;
3698 }
3699
3700 down_write(sem: &fs_info->subvol_sem);
3701
3702 switch (sa->cmd) {
3703 case BTRFS_QUOTA_CTL_ENABLE:
3704 case BTRFS_QUOTA_CTL_ENABLE_SIMPLE_QUOTA:
3705 ret = btrfs_quota_enable(fs_info, quota_ctl_args: sa);
3706 break;
3707 case BTRFS_QUOTA_CTL_DISABLE:
3708 ret = btrfs_quota_disable(fs_info);
3709 break;
3710 default:
3711 ret = -EINVAL;
3712 break;
3713 }
3714
3715 kfree(objp: sa);
3716 up_write(sem: &fs_info->subvol_sem);
3717drop_write:
3718 mnt_drop_write_file(file);
3719 return ret;
3720}
3721
3722static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
3723{
3724 struct inode *inode = file_inode(f: file);
3725 struct btrfs_fs_info *fs_info = btrfs_sb(sb: inode->i_sb);
3726 struct btrfs_root *root = BTRFS_I(inode)->root;
3727 struct btrfs_ioctl_qgroup_assign_args *sa;
3728 struct btrfs_trans_handle *trans;
3729 int ret;
3730 int err;
3731
3732 if (!capable(CAP_SYS_ADMIN))
3733 return -EPERM;
3734
3735 ret = mnt_want_write_file(file);
3736 if (ret)
3737 return ret;
3738
3739 sa = memdup_user(arg, sizeof(*sa));
3740 if (IS_ERR(ptr: sa)) {
3741 ret = PTR_ERR(ptr: sa);
3742 goto drop_write;
3743 }
3744
3745 trans = btrfs_join_transaction(root);
3746 if (IS_ERR(ptr: trans)) {
3747 ret = PTR_ERR(ptr: trans);
3748 goto out;
3749 }
3750
3751 if (sa->assign) {
3752 ret = btrfs_add_qgroup_relation(trans, src: sa->src, dst: sa->dst);
3753 } else {
3754 ret = btrfs_del_qgroup_relation(trans, src: sa->src, dst: sa->dst);
3755 }
3756
3757 /* update qgroup status and info */
3758 mutex_lock(&fs_info->qgroup_ioctl_lock);
3759 err = btrfs_run_qgroups(trans);
3760 mutex_unlock(lock: &fs_info->qgroup_ioctl_lock);
3761 if (err < 0)
3762 btrfs_handle_fs_error(fs_info, err,
3763 "failed to update qgroup status and info");
3764 err = btrfs_end_transaction(trans);
3765 if (err && !ret)
3766 ret = err;
3767
3768out:
3769 kfree(objp: sa);
3770drop_write:
3771 mnt_drop_write_file(file);
3772 return ret;
3773}
3774
3775static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
3776{
3777 struct inode *inode = file_inode(f: file);
3778 struct btrfs_root *root = BTRFS_I(inode)->root;
3779 struct btrfs_ioctl_qgroup_create_args *sa;
3780 struct btrfs_trans_handle *trans;
3781 int ret;
3782 int err;
3783
3784 if (!capable(CAP_SYS_ADMIN))
3785 return -EPERM;
3786
3787 ret = mnt_want_write_file(file);
3788 if (ret)
3789 return ret;
3790
3791 sa = memdup_user(arg, sizeof(*sa));
3792 if (IS_ERR(ptr: sa)) {
3793 ret = PTR_ERR(ptr: sa);
3794 goto drop_write;
3795 }
3796
3797 if (!sa->qgroupid) {
3798 ret = -EINVAL;
3799 goto out;
3800 }
3801
3802 trans = btrfs_join_transaction(root);
3803 if (IS_ERR(ptr: trans)) {
3804 ret = PTR_ERR(ptr: trans);
3805 goto out;
3806 }
3807
3808 if (sa->create) {
3809 ret = btrfs_create_qgroup(trans, qgroupid: sa->qgroupid);
3810 } else {
3811 ret = btrfs_remove_qgroup(trans, qgroupid: sa->qgroupid);
3812 }
3813
3814 err = btrfs_end_transaction(trans);
3815 if (err && !ret)
3816 ret = err;
3817
3818out:
3819 kfree(objp: sa);
3820drop_write:
3821 mnt_drop_write_file(file);
3822 return ret;
3823}
3824
3825static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
3826{
3827 struct inode *inode = file_inode(f: file);
3828 struct btrfs_root *root = BTRFS_I(inode)->root;
3829 struct btrfs_ioctl_qgroup_limit_args *sa;
3830 struct btrfs_trans_handle *trans;
3831 int ret;
3832 int err;
3833 u64 qgroupid;
3834
3835 if (!capable(CAP_SYS_ADMIN))
3836 return -EPERM;
3837
3838 ret = mnt_want_write_file(file);
3839 if (ret)
3840 return ret;
3841
3842 sa = memdup_user(arg, sizeof(*sa));
3843 if (IS_ERR(ptr: sa)) {
3844 ret = PTR_ERR(ptr: sa);
3845 goto drop_write;
3846 }
3847
3848 trans = btrfs_join_transaction(root);
3849 if (IS_ERR(ptr: trans)) {
3850 ret = PTR_ERR(ptr: trans);
3851 goto out;
3852 }
3853
3854 qgroupid = sa->qgroupid;
3855 if (!qgroupid) {
3856 /* take the current subvol as qgroup */
3857 qgroupid = root->root_key.objectid;
3858 }
3859
3860 ret = btrfs_limit_qgroup(trans, qgroupid, limit: &sa->lim);
3861
3862 err = btrfs_end_transaction(trans);
3863 if (err && !ret)
3864 ret = err;
3865
3866out:
3867 kfree(objp: sa);
3868drop_write:
3869 mnt_drop_write_file(file);
3870 return ret;
3871}
3872
3873static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
3874{
3875 struct inode *inode = file_inode(f: file);
3876 struct btrfs_fs_info *fs_info = btrfs_sb(sb: inode->i_sb);
3877 struct btrfs_ioctl_quota_rescan_args *qsa;
3878 int ret;
3879
3880 if (!capable(CAP_SYS_ADMIN))
3881 return -EPERM;
3882
3883 ret = mnt_want_write_file(file);
3884 if (ret)
3885 return ret;
3886
3887 qsa = memdup_user(arg, sizeof(*qsa));
3888 if (IS_ERR(ptr: qsa)) {
3889 ret = PTR_ERR(ptr: qsa);
3890 goto drop_write;
3891 }
3892
3893 if (qsa->flags) {
3894 ret = -EINVAL;
3895 goto out;
3896 }
3897
3898 ret = btrfs_qgroup_rescan(fs_info);
3899
3900out:
3901 kfree(objp: qsa);
3902drop_write:
3903 mnt_drop_write_file(file);
3904 return ret;
3905}
3906
3907static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info,
3908 void __user *arg)
3909{
3910 struct btrfs_ioctl_quota_rescan_args qsa = {0};
3911
3912 if (!capable(CAP_SYS_ADMIN))
3913 return -EPERM;
3914
3915 if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
3916 qsa.flags = 1;
3917 qsa.progress = fs_info->qgroup_rescan_progress.objectid;
3918 }
3919
3920 if (copy_to_user(to: arg, from: &qsa, n: sizeof(qsa)))
3921 return -EFAULT;
3922
3923 return 0;
3924}
3925
3926static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info,
3927 void __user *arg)
3928{
3929 if (!capable(CAP_SYS_ADMIN))
3930 return -EPERM;
3931
3932 return btrfs_qgroup_wait_for_completion(fs_info, interruptible: true);
3933}
3934
3935static long _btrfs_ioctl_set_received_subvol(struct file *file,
3936 struct mnt_idmap *idmap,
3937 struct btrfs_ioctl_received_subvol_args *sa)
3938{
3939 struct inode *inode = file_inode(f: file);
3940 struct btrfs_fs_info *fs_info = btrfs_sb(sb: inode->i_sb);
3941 struct btrfs_root *root = BTRFS_I(inode)->root;
3942 struct btrfs_root_item *root_item = &root->root_item;
3943 struct btrfs_trans_handle *trans;
3944 struct timespec64 ct = current_time(inode);
3945 int ret = 0;
3946 int received_uuid_changed;
3947
3948 if (!inode_owner_or_capable(idmap, inode))
3949 return -EPERM;
3950
3951 ret = mnt_want_write_file(file);
3952 if (ret < 0)
3953 return ret;
3954
3955 down_write(sem: &fs_info->subvol_sem);
3956
3957 if (btrfs_ino(inode: BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
3958 ret = -EINVAL;
3959 goto out;
3960 }
3961
3962 if (btrfs_root_readonly(root)) {
3963 ret = -EROFS;
3964 goto out;
3965 }
3966
3967 /*
3968 * 1 - root item
3969 * 2 - uuid items (received uuid + subvol uuid)
3970 */
3971 trans = btrfs_start_transaction(root, num_items: 3);
3972 if (IS_ERR(ptr: trans)) {
3973 ret = PTR_ERR(ptr: trans);
3974 trans = NULL;
3975 goto out;
3976 }
3977
3978 sa->rtransid = trans->transid;
3979 sa->rtime.sec = ct.tv_sec;
3980 sa->rtime.nsec = ct.tv_nsec;
3981
3982 received_uuid_changed = memcmp(p: root_item->received_uuid, q: sa->uuid,
3983 BTRFS_UUID_SIZE);
3984 if (received_uuid_changed &&
3985 !btrfs_is_empty_uuid(uuid: root_item->received_uuid)) {
3986 ret = btrfs_uuid_tree_remove(trans, uuid: root_item->received_uuid,
3987 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
3988 subid: root->root_key.objectid);
3989 if (ret && ret != -ENOENT) {
3990 btrfs_abort_transaction(trans, ret);
3991 btrfs_end_transaction(trans);
3992 goto out;
3993 }
3994 }
3995 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
3996 btrfs_set_root_stransid(s: root_item, val: sa->stransid);
3997 btrfs_set_root_rtransid(s: root_item, val: sa->rtransid);
3998 btrfs_set_stack_timespec_sec(s: &root_item->stime, val: sa->stime.sec);
3999 btrfs_set_stack_timespec_nsec(s: &root_item->stime, val: sa->stime.nsec);
4000 btrfs_set_stack_timespec_sec(s: &root_item->rtime, val: sa->rtime.sec);
4001 btrfs_set_stack_timespec_nsec(s: &root_item->rtime, val: sa->rtime.nsec);
4002
4003 ret = btrfs_update_root(trans, root: fs_info->tree_root,
4004 key: &root->root_key, item: &root->root_item);
4005 if (ret < 0) {
4006 btrfs_end_transaction(trans);
4007 goto out;
4008 }
4009 if (received_uuid_changed && !btrfs_is_empty_uuid(uuid: sa->uuid)) {
4010 ret = btrfs_uuid_tree_add(trans, uuid: sa->uuid,
4011 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4012 subid: root->root_key.objectid);
4013 if (ret < 0 && ret != -EEXIST) {
4014 btrfs_abort_transaction(trans, ret);
4015 btrfs_end_transaction(trans);
4016 goto out;
4017 }
4018 }
4019 ret = btrfs_commit_transaction(trans);
4020out:
4021 up_write(sem: &fs_info->subvol_sem);
4022 mnt_drop_write_file(file);
4023 return ret;
4024}
4025
4026#ifdef CONFIG_64BIT
4027static long btrfs_ioctl_set_received_subvol_32(struct file *file,
4028 void __user *arg)
4029{
4030 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
4031 struct btrfs_ioctl_received_subvol_args *args64 = NULL;
4032 int ret = 0;
4033
4034 args32 = memdup_user(arg, sizeof(*args32));
4035 if (IS_ERR(ptr: args32))
4036 return PTR_ERR(ptr: args32);
4037
4038 args64 = kmalloc(size: sizeof(*args64), GFP_KERNEL);
4039 if (!args64) {
4040 ret = -ENOMEM;
4041 goto out;
4042 }
4043
4044 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
4045 args64->stransid = args32->stransid;
4046 args64->rtransid = args32->rtransid;
4047 args64->stime.sec = args32->stime.sec;
4048 args64->stime.nsec = args32->stime.nsec;
4049 args64->rtime.sec = args32->rtime.sec;
4050 args64->rtime.nsec = args32->rtime.nsec;
4051 args64->flags = args32->flags;
4052
4053 ret = _btrfs_ioctl_set_received_subvol(file, idmap: file_mnt_idmap(file), sa: args64);
4054 if (ret)
4055 goto out;
4056
4057 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
4058 args32->stransid = args64->stransid;
4059 args32->rtransid = args64->rtransid;
4060 args32->stime.sec = args64->stime.sec;
4061 args32->stime.nsec = args64->stime.nsec;
4062 args32->rtime.sec = args64->rtime.sec;
4063 args32->rtime.nsec = args64->rtime.nsec;
4064 args32->flags = args64->flags;
4065
4066 ret = copy_to_user(to: arg, from: args32, n: sizeof(*args32));
4067 if (ret)
4068 ret = -EFAULT;
4069
4070out:
4071 kfree(objp: args32);
4072 kfree(objp: args64);
4073 return ret;
4074}
4075#endif
4076
4077static long btrfs_ioctl_set_received_subvol(struct file *file,
4078 void __user *arg)
4079{
4080 struct btrfs_ioctl_received_subvol_args *sa = NULL;
4081 int ret = 0;
4082
4083 sa = memdup_user(arg, sizeof(*sa));
4084 if (IS_ERR(ptr: sa))
4085 return PTR_ERR(ptr: sa);
4086
4087 ret = _btrfs_ioctl_set_received_subvol(file, idmap: file_mnt_idmap(file), sa);
4088
4089 if (ret)
4090 goto out;
4091
4092 ret = copy_to_user(to: arg, from: sa, n: sizeof(*sa));
4093 if (ret)
4094 ret = -EFAULT;
4095
4096out:
4097 kfree(objp: sa);
4098 return ret;
4099}
4100
4101static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info,
4102 void __user *arg)
4103{
4104 size_t len;
4105 int ret;
4106 char label[BTRFS_LABEL_SIZE];
4107
4108 spin_lock(lock: &fs_info->super_lock);
4109 memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE);
4110 spin_unlock(lock: &fs_info->super_lock);
4111
4112 len = strnlen(p: label, BTRFS_LABEL_SIZE);
4113
4114 if (len == BTRFS_LABEL_SIZE) {
4115 btrfs_warn(fs_info,
4116 "label is too long, return the first %zu bytes",
4117 --len);
4118 }
4119
4120 ret = copy_to_user(to: arg, from: label, n: len);
4121
4122 return ret ? -EFAULT : 0;
4123}
4124
4125static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
4126{
4127 struct inode *inode = file_inode(f: file);
4128 struct btrfs_fs_info *fs_info = btrfs_sb(sb: inode->i_sb);
4129 struct btrfs_root *root = BTRFS_I(inode)->root;
4130 struct btrfs_super_block *super_block = fs_info->super_copy;
4131 struct btrfs_trans_handle *trans;
4132 char label[BTRFS_LABEL_SIZE];
4133 int ret;
4134
4135 if (!capable(CAP_SYS_ADMIN))
4136 return -EPERM;
4137
4138 if (copy_from_user(to: label, from: arg, n: sizeof(label)))
4139 return -EFAULT;
4140
4141 if (strnlen(p: label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
4142 btrfs_err(fs_info,
4143 "unable to set label with more than %d bytes",
4144 BTRFS_LABEL_SIZE - 1);
4145 return -EINVAL;
4146 }
4147
4148 ret = mnt_want_write_file(file);
4149 if (ret)
4150 return ret;
4151
4152 trans = btrfs_start_transaction(root, num_items: 0);
4153 if (IS_ERR(ptr: trans)) {
4154 ret = PTR_ERR(ptr: trans);
4155 goto out_unlock;
4156 }
4157
4158 spin_lock(lock: &fs_info->super_lock);
4159 strcpy(p: super_block->label, q: label);
4160 spin_unlock(lock: &fs_info->super_lock);
4161 ret = btrfs_commit_transaction(trans);
4162
4163out_unlock:
4164 mnt_drop_write_file(file);
4165 return ret;
4166}
4167
4168#define INIT_FEATURE_FLAGS(suffix) \
4169 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
4170 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
4171 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
4172
4173int btrfs_ioctl_get_supported_features(void __user *arg)
4174{
4175 static const struct btrfs_ioctl_feature_flags features[3] = {
4176 INIT_FEATURE_FLAGS(SUPP),
4177 INIT_FEATURE_FLAGS(SAFE_SET),
4178 INIT_FEATURE_FLAGS(SAFE_CLEAR)
4179 };
4180
4181 if (copy_to_user(to: arg, from: &features, n: sizeof(features)))
4182 return -EFAULT;
4183
4184 return 0;
4185}
4186
4187static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info,
4188 void __user *arg)
4189{
4190 struct btrfs_super_block *super_block = fs_info->super_copy;
4191 struct btrfs_ioctl_feature_flags features;
4192
4193 features.compat_flags = btrfs_super_compat_flags(s: super_block);
4194 features.compat_ro_flags = btrfs_super_compat_ro_flags(s: super_block);
4195 features.incompat_flags = btrfs_super_incompat_flags(s: super_block);
4196
4197 if (copy_to_user(to: arg, from: &features, n: sizeof(features)))
4198 return -EFAULT;
4199
4200 return 0;
4201}
4202
4203static int check_feature_bits(struct btrfs_fs_info *fs_info,
4204 enum btrfs_feature_set set,
4205 u64 change_mask, u64 flags, u64 supported_flags,
4206 u64 safe_set, u64 safe_clear)
4207{
4208 const char *type = btrfs_feature_set_name(set);
4209 char *names;
4210 u64 disallowed, unsupported;
4211 u64 set_mask = flags & change_mask;
4212 u64 clear_mask = ~flags & change_mask;
4213
4214 unsupported = set_mask & ~supported_flags;
4215 if (unsupported) {
4216 names = btrfs_printable_features(set, flags: unsupported);
4217 if (names) {
4218 btrfs_warn(fs_info,
4219 "this kernel does not support the %s feature bit%s",
4220 names, strchr(names, ',') ? "s" : "");
4221 kfree(objp: names);
4222 } else
4223 btrfs_warn(fs_info,
4224 "this kernel does not support %s bits 0x%llx",
4225 type, unsupported);
4226 return -EOPNOTSUPP;
4227 }
4228
4229 disallowed = set_mask & ~safe_set;
4230 if (disallowed) {
4231 names = btrfs_printable_features(set, flags: disallowed);
4232 if (names) {
4233 btrfs_warn(fs_info,
4234 "can't set the %s feature bit%s while mounted",
4235 names, strchr(names, ',') ? "s" : "");
4236 kfree(objp: names);
4237 } else
4238 btrfs_warn(fs_info,
4239 "can't set %s bits 0x%llx while mounted",
4240 type, disallowed);
4241 return -EPERM;
4242 }
4243
4244 disallowed = clear_mask & ~safe_clear;
4245 if (disallowed) {
4246 names = btrfs_printable_features(set, flags: disallowed);
4247 if (names) {
4248 btrfs_warn(fs_info,
4249 "can't clear the %s feature bit%s while mounted",
4250 names, strchr(names, ',') ? "s" : "");
4251 kfree(objp: names);
4252 } else
4253 btrfs_warn(fs_info,
4254 "can't clear %s bits 0x%llx while mounted",
4255 type, disallowed);
4256 return -EPERM;
4257 }
4258
4259 return 0;
4260}
4261
4262#define check_feature(fs_info, change_mask, flags, mask_base) \
4263check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags, \
4264 BTRFS_FEATURE_ ## mask_base ## _SUPP, \
4265 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \
4266 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
4267
4268static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
4269{
4270 struct inode *inode = file_inode(f: file);
4271 struct btrfs_fs_info *fs_info = btrfs_sb(sb: inode->i_sb);
4272 struct btrfs_root *root = BTRFS_I(inode)->root;
4273 struct btrfs_super_block *super_block = fs_info->super_copy;
4274 struct btrfs_ioctl_feature_flags flags[2];
4275 struct btrfs_trans_handle *trans;
4276 u64 newflags;
4277 int ret;
4278
4279 if (!capable(CAP_SYS_ADMIN))
4280 return -EPERM;
4281
4282 if (copy_from_user(to: flags, from: arg, n: sizeof(flags)))
4283 return -EFAULT;
4284
4285 /* Nothing to do */
4286 if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
4287 !flags[0].incompat_flags)
4288 return 0;
4289
4290 ret = check_feature(fs_info, flags[0].compat_flags,
4291 flags[1].compat_flags, COMPAT);
4292 if (ret)
4293 return ret;
4294
4295 ret = check_feature(fs_info, flags[0].compat_ro_flags,
4296 flags[1].compat_ro_flags, COMPAT_RO);
4297 if (ret)
4298 return ret;
4299
4300 ret = check_feature(fs_info, flags[0].incompat_flags,
4301 flags[1].incompat_flags, INCOMPAT);
4302 if (ret)
4303 return ret;
4304
4305 ret = mnt_want_write_file(file);
4306 if (ret)
4307 return ret;
4308
4309 trans = btrfs_start_transaction(root, num_items: 0);
4310 if (IS_ERR(ptr: trans)) {
4311 ret = PTR_ERR(ptr: trans);
4312 goto out_drop_write;
4313 }
4314
4315 spin_lock(lock: &fs_info->super_lock);
4316 newflags = btrfs_super_compat_flags(s: super_block);
4317 newflags |= flags[0].compat_flags & flags[1].compat_flags;
4318 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
4319 btrfs_set_super_compat_flags(s: super_block, val: newflags);
4320
4321 newflags = btrfs_super_compat_ro_flags(s: super_block);
4322 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
4323 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
4324 btrfs_set_super_compat_ro_flags(s: super_block, val: newflags);
4325
4326 newflags = btrfs_super_incompat_flags(s: super_block);
4327 newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
4328 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
4329 btrfs_set_super_incompat_flags(s: super_block, val: newflags);
4330 spin_unlock(lock: &fs_info->super_lock);
4331
4332 ret = btrfs_commit_transaction(trans);
4333out_drop_write:
4334 mnt_drop_write_file(file);
4335
4336 return ret;
4337}
4338
4339static int _btrfs_ioctl_send(struct inode *inode, void __user *argp, bool compat)
4340{
4341 struct btrfs_ioctl_send_args *arg;
4342 int ret;
4343
4344 if (compat) {
4345#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4346 struct btrfs_ioctl_send_args_32 args32 = { 0 };
4347
4348 ret = copy_from_user(to: &args32, from: argp, n: sizeof(args32));
4349 if (ret)
4350 return -EFAULT;
4351 arg = kzalloc(size: sizeof(*arg), GFP_KERNEL);
4352 if (!arg)
4353 return -ENOMEM;
4354 arg->send_fd = args32.send_fd;
4355 arg->clone_sources_count = args32.clone_sources_count;
4356 arg->clone_sources = compat_ptr(uptr: args32.clone_sources);
4357 arg->parent_root = args32.parent_root;
4358 arg->flags = args32.flags;
4359 memcpy(arg->reserved, args32.reserved,
4360 sizeof(args32.reserved));
4361#else
4362 return -ENOTTY;
4363#endif
4364 } else {
4365 arg = memdup_user(argp, sizeof(*arg));
4366 if (IS_ERR(ptr: arg))
4367 return PTR_ERR(ptr: arg);
4368 }
4369 ret = btrfs_ioctl_send(inode, arg);
4370 kfree(objp: arg);
4371 return ret;
4372}
4373
4374static int btrfs_ioctl_encoded_read(struct file *file, void __user *argp,
4375 bool compat)
4376{
4377 struct btrfs_ioctl_encoded_io_args args = { 0 };
4378 size_t copy_end_kernel = offsetofend(struct btrfs_ioctl_encoded_io_args,
4379 flags);
4380 size_t copy_end;
4381 struct iovec iovstack[UIO_FASTIOV];
4382 struct iovec *iov = iovstack;
4383 struct iov_iter iter;
4384 loff_t pos;
4385 struct kiocb kiocb;
4386 ssize_t ret;
4387
4388 if (!capable(CAP_SYS_ADMIN)) {
4389 ret = -EPERM;
4390 goto out_acct;
4391 }
4392
4393 if (compat) {
4394#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4395 struct btrfs_ioctl_encoded_io_args_32 args32;
4396
4397 copy_end = offsetofend(struct btrfs_ioctl_encoded_io_args_32,
4398 flags);
4399 if (copy_from_user(to: &args32, from: argp, n: copy_end)) {
4400 ret = -EFAULT;
4401 goto out_acct;
4402 }
4403 args.iov = compat_ptr(uptr: args32.iov);
4404 args.iovcnt = args32.iovcnt;
4405 args.offset = args32.offset;
4406 args.flags = args32.flags;
4407#else
4408 return -ENOTTY;
4409#endif
4410 } else {
4411 copy_end = copy_end_kernel;
4412 if (copy_from_user(to: &args, from: argp, n: copy_end)) {
4413 ret = -EFAULT;
4414 goto out_acct;
4415 }
4416 }
4417 if (args.flags != 0) {
4418 ret = -EINVAL;
4419 goto out_acct;
4420 }
4421
4422 ret = import_iovec(ITER_DEST, uvec: args.iov, nr_segs: args.iovcnt, ARRAY_SIZE(iovstack),
4423 iovp: &iov, i: &iter);
4424 if (ret < 0)
4425 goto out_acct;
4426
4427 if (iov_iter_count(i: &iter) == 0) {
4428 ret = 0;
4429 goto out_iov;
4430 }
4431 pos = args.offset;
4432 ret = rw_verify_area(READ, file, &pos, args.len);
4433 if (ret < 0)
4434 goto out_iov;
4435
4436 init_sync_kiocb(kiocb: &kiocb, filp: file);
4437 kiocb.ki_pos = pos;
4438
4439 ret = btrfs_encoded_read(iocb: &kiocb, iter: &iter, encoded: &args);
4440 if (ret >= 0) {
4441 fsnotify_access(file);
4442 if (copy_to_user(to: argp + copy_end,
4443 from: (char *)&args + copy_end_kernel,
4444 n: sizeof(args) - copy_end_kernel))
4445 ret = -EFAULT;
4446 }
4447
4448out_iov:
4449 kfree(objp: iov);
4450out_acct:
4451 if (ret > 0)
4452 add_rchar(current, amt: ret);
4453 inc_syscr(current);
4454 return ret;
4455}
4456
4457static int btrfs_ioctl_encoded_write(struct file *file, void __user *argp, bool compat)
4458{
4459 struct btrfs_ioctl_encoded_io_args args;
4460 struct iovec iovstack[UIO_FASTIOV];
4461 struct iovec *iov = iovstack;
4462 struct iov_iter iter;
4463 loff_t pos;
4464 struct kiocb kiocb;
4465 ssize_t ret;
4466
4467 if (!capable(CAP_SYS_ADMIN)) {
4468 ret = -EPERM;
4469 goto out_acct;
4470 }
4471
4472 if (!(file->f_mode & FMODE_WRITE)) {
4473 ret = -EBADF;
4474 goto out_acct;
4475 }
4476
4477 if (compat) {
4478#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4479 struct btrfs_ioctl_encoded_io_args_32 args32;
4480
4481 if (copy_from_user(to: &args32, from: argp, n: sizeof(args32))) {
4482 ret = -EFAULT;
4483 goto out_acct;
4484 }
4485 args.iov = compat_ptr(uptr: args32.iov);
4486 args.iovcnt = args32.iovcnt;
4487 args.offset = args32.offset;
4488 args.flags = args32.flags;
4489 args.len = args32.len;
4490 args.unencoded_len = args32.unencoded_len;
4491 args.unencoded_offset = args32.unencoded_offset;
4492 args.compression = args32.compression;
4493 args.encryption = args32.encryption;
4494 memcpy(args.reserved, args32.reserved, sizeof(args.reserved));
4495#else
4496 return -ENOTTY;
4497#endif
4498 } else {
4499 if (copy_from_user(to: &args, from: argp, n: sizeof(args))) {
4500 ret = -EFAULT;
4501 goto out_acct;
4502 }
4503 }
4504
4505 ret = -EINVAL;
4506 if (args.flags != 0)
4507 goto out_acct;
4508 if (memchr_inv(p: args.reserved, c: 0, size: sizeof(args.reserved)))
4509 goto out_acct;
4510 if (args.compression == BTRFS_ENCODED_IO_COMPRESSION_NONE &&
4511 args.encryption == BTRFS_ENCODED_IO_ENCRYPTION_NONE)
4512 goto out_acct;
4513 if (args.compression >= BTRFS_ENCODED_IO_COMPRESSION_TYPES ||
4514 args.encryption >= BTRFS_ENCODED_IO_ENCRYPTION_TYPES)
4515 goto out_acct;
4516 if (args.unencoded_offset > args.unencoded_len)
4517 goto out_acct;
4518 if (args.len > args.unencoded_len - args.unencoded_offset)
4519 goto out_acct;
4520
4521 ret = import_iovec(ITER_SOURCE, uvec: args.iov, nr_segs: args.iovcnt, ARRAY_SIZE(iovstack),
4522 iovp: &iov, i: &iter);
4523 if (ret < 0)
4524 goto out_acct;
4525
4526 file_start_write(file);
4527
4528 if (iov_iter_count(i: &iter) == 0) {
4529 ret = 0;
4530 goto out_end_write;
4531 }
4532 pos = args.offset;
4533 ret = rw_verify_area(WRITE, file, &pos, args.len);
4534 if (ret < 0)
4535 goto out_end_write;
4536
4537 init_sync_kiocb(kiocb: &kiocb, filp: file);
4538 ret = kiocb_set_rw_flags(ki: &kiocb, flags: 0);
4539 if (ret)
4540 goto out_end_write;
4541 kiocb.ki_pos = pos;
4542
4543 ret = btrfs_do_write_iter(iocb: &kiocb, from: &iter, encoded: &args);
4544 if (ret > 0)
4545 fsnotify_modify(file);
4546
4547out_end_write:
4548 file_end_write(file);
4549 kfree(objp: iov);
4550out_acct:
4551 if (ret > 0)
4552 add_wchar(current, amt: ret);
4553 inc_syscw(current);
4554 return ret;
4555}
4556
4557long btrfs_ioctl(struct file *file, unsigned int
4558 cmd, unsigned long arg)
4559{
4560 struct inode *inode = file_inode(f: file);
4561 struct btrfs_fs_info *fs_info = btrfs_sb(sb: inode->i_sb);
4562 struct btrfs_root *root = BTRFS_I(inode)->root;
4563 void __user *argp = (void __user *)arg;
4564
4565 switch (cmd) {
4566 case FS_IOC_GETVERSION:
4567 return btrfs_ioctl_getversion(inode, arg: argp);
4568 case FS_IOC_GETFSLABEL:
4569 return btrfs_ioctl_get_fslabel(fs_info, arg: argp);
4570 case FS_IOC_SETFSLABEL:
4571 return btrfs_ioctl_set_fslabel(file, arg: argp);
4572 case FITRIM:
4573 return btrfs_ioctl_fitrim(fs_info, arg: argp);
4574 case BTRFS_IOC_SNAP_CREATE:
4575 return btrfs_ioctl_snap_create(file, arg: argp, subvol: 0);
4576 case BTRFS_IOC_SNAP_CREATE_V2:
4577 return btrfs_ioctl_snap_create_v2(file, arg: argp, subvol: 0);
4578 case BTRFS_IOC_SUBVOL_CREATE:
4579 return btrfs_ioctl_snap_create(file, arg: argp, subvol: 1);
4580 case BTRFS_IOC_SUBVOL_CREATE_V2:
4581 return btrfs_ioctl_snap_create_v2(file, arg: argp, subvol: 1);
4582 case BTRFS_IOC_SNAP_DESTROY:
4583 return btrfs_ioctl_snap_destroy(file, arg: argp, destroy_v2: false);
4584 case BTRFS_IOC_SNAP_DESTROY_V2:
4585 return btrfs_ioctl_snap_destroy(file, arg: argp, destroy_v2: true);
4586 case BTRFS_IOC_SUBVOL_GETFLAGS:
4587 return btrfs_ioctl_subvol_getflags(inode, arg: argp);
4588 case BTRFS_IOC_SUBVOL_SETFLAGS:
4589 return btrfs_ioctl_subvol_setflags(file, arg: argp);
4590 case BTRFS_IOC_DEFAULT_SUBVOL:
4591 return btrfs_ioctl_default_subvol(file, argp);
4592 case BTRFS_IOC_DEFRAG:
4593 return btrfs_ioctl_defrag(file, NULL);
4594 case BTRFS_IOC_DEFRAG_RANGE:
4595 return btrfs_ioctl_defrag(file, argp);
4596 case BTRFS_IOC_RESIZE:
4597 return btrfs_ioctl_resize(file, arg: argp);
4598 case BTRFS_IOC_ADD_DEV:
4599 return btrfs_ioctl_add_dev(fs_info, arg: argp);
4600 case BTRFS_IOC_RM_DEV:
4601 return btrfs_ioctl_rm_dev(file, arg: argp);
4602 case BTRFS_IOC_RM_DEV_V2:
4603 return btrfs_ioctl_rm_dev_v2(file, arg: argp);
4604 case BTRFS_IOC_FS_INFO:
4605 return btrfs_ioctl_fs_info(fs_info, arg: argp);
4606 case BTRFS_IOC_DEV_INFO:
4607 return btrfs_ioctl_dev_info(fs_info, arg: argp);
4608 case BTRFS_IOC_TREE_SEARCH:
4609 return btrfs_ioctl_tree_search(inode, argp);
4610 case BTRFS_IOC_TREE_SEARCH_V2:
4611 return btrfs_ioctl_tree_search_v2(inode, argp);
4612 case BTRFS_IOC_INO_LOOKUP:
4613 return btrfs_ioctl_ino_lookup(root, argp);
4614 case BTRFS_IOC_INO_PATHS:
4615 return btrfs_ioctl_ino_to_path(root, arg: argp);
4616 case BTRFS_IOC_LOGICAL_INO:
4617 return btrfs_ioctl_logical_to_ino(fs_info, arg: argp, version: 1);
4618 case BTRFS_IOC_LOGICAL_INO_V2:
4619 return btrfs_ioctl_logical_to_ino(fs_info, arg: argp, version: 2);
4620 case BTRFS_IOC_SPACE_INFO:
4621 return btrfs_ioctl_space_info(fs_info, arg: argp);
4622 case BTRFS_IOC_SYNC: {
4623 int ret;
4624
4625 ret = btrfs_start_delalloc_roots(fs_info, LONG_MAX, in_reclaim_context: false);
4626 if (ret)
4627 return ret;
4628 ret = btrfs_sync_fs(sb: inode->i_sb, wait: 1);
4629 /*
4630 * The transaction thread may want to do more work,
4631 * namely it pokes the cleaner kthread that will start
4632 * processing uncleaned subvols.
4633 */
4634 wake_up_process(tsk: fs_info->transaction_kthread);
4635 return ret;
4636 }
4637 case BTRFS_IOC_START_SYNC:
4638 return btrfs_ioctl_start_sync(root, argp);
4639 case BTRFS_IOC_WAIT_SYNC:
4640 return btrfs_ioctl_wait_sync(fs_info, argp);
4641 case BTRFS_IOC_SCRUB:
4642 return btrfs_ioctl_scrub(file, arg: argp);
4643 case BTRFS_IOC_SCRUB_CANCEL:
4644 return btrfs_ioctl_scrub_cancel(fs_info);
4645 case BTRFS_IOC_SCRUB_PROGRESS:
4646 return btrfs_ioctl_scrub_progress(fs_info, arg: argp);
4647 case BTRFS_IOC_BALANCE_V2:
4648 return btrfs_ioctl_balance(file, arg: argp);
4649 case BTRFS_IOC_BALANCE_CTL:
4650 return btrfs_ioctl_balance_ctl(fs_info, cmd: arg);
4651 case BTRFS_IOC_BALANCE_PROGRESS:
4652 return btrfs_ioctl_balance_progress(fs_info, arg: argp);
4653 case BTRFS_IOC_SET_RECEIVED_SUBVOL:
4654 return btrfs_ioctl_set_received_subvol(file, arg: argp);
4655#ifdef CONFIG_64BIT
4656 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
4657 return btrfs_ioctl_set_received_subvol_32(file, arg: argp);
4658#endif
4659 case BTRFS_IOC_SEND:
4660 return _btrfs_ioctl_send(inode, argp, compat: false);
4661#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4662 case BTRFS_IOC_SEND_32:
4663 return _btrfs_ioctl_send(inode, argp, compat: true);
4664#endif
4665 case BTRFS_IOC_GET_DEV_STATS:
4666 return btrfs_ioctl_get_dev_stats(fs_info, arg: argp);
4667 case BTRFS_IOC_QUOTA_CTL:
4668 return btrfs_ioctl_quota_ctl(file, arg: argp);
4669 case BTRFS_IOC_QGROUP_ASSIGN:
4670 return btrfs_ioctl_qgroup_assign(file, arg: argp);
4671 case BTRFS_IOC_QGROUP_CREATE:
4672 return btrfs_ioctl_qgroup_create(file, arg: argp);
4673 case BTRFS_IOC_QGROUP_LIMIT:
4674 return btrfs_ioctl_qgroup_limit(file, arg: argp);
4675 case BTRFS_IOC_QUOTA_RESCAN:
4676 return btrfs_ioctl_quota_rescan(file, arg: argp);
4677 case BTRFS_IOC_QUOTA_RESCAN_STATUS:
4678 return btrfs_ioctl_quota_rescan_status(fs_info, arg: argp);
4679 case BTRFS_IOC_QUOTA_RESCAN_WAIT:
4680 return btrfs_ioctl_quota_rescan_wait(fs_info, arg: argp);
4681 case BTRFS_IOC_DEV_REPLACE:
4682 return btrfs_ioctl_dev_replace(fs_info, arg: argp);
4683 case BTRFS_IOC_GET_SUPPORTED_FEATURES:
4684 return btrfs_ioctl_get_supported_features(arg: argp);
4685 case BTRFS_IOC_GET_FEATURES:
4686 return btrfs_ioctl_get_features(fs_info, arg: argp);
4687 case BTRFS_IOC_SET_FEATURES:
4688 return btrfs_ioctl_set_features(file, arg: argp);
4689 case BTRFS_IOC_GET_SUBVOL_INFO:
4690 return btrfs_ioctl_get_subvol_info(inode, argp);
4691 case BTRFS_IOC_GET_SUBVOL_ROOTREF:
4692 return btrfs_ioctl_get_subvol_rootref(root, argp);
4693 case BTRFS_IOC_INO_LOOKUP_USER:
4694 return btrfs_ioctl_ino_lookup_user(file, argp);
4695 case FS_IOC_ENABLE_VERITY:
4696 return fsverity_ioctl_enable(filp: file, arg: (const void __user *)argp);
4697 case FS_IOC_MEASURE_VERITY:
4698 return fsverity_ioctl_measure(filp: file, arg: argp);
4699 case BTRFS_IOC_ENCODED_READ:
4700 return btrfs_ioctl_encoded_read(file, argp, compat: false);
4701 case BTRFS_IOC_ENCODED_WRITE:
4702 return btrfs_ioctl_encoded_write(file, argp, compat: false);
4703#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4704 case BTRFS_IOC_ENCODED_READ_32:
4705 return btrfs_ioctl_encoded_read(file, argp, compat: true);
4706 case BTRFS_IOC_ENCODED_WRITE_32:
4707 return btrfs_ioctl_encoded_write(file, argp, compat: true);
4708#endif
4709 }
4710
4711 return -ENOTTY;
4712}
4713
4714#ifdef CONFIG_COMPAT
4715long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4716{
4717 /*
4718 * These all access 32-bit values anyway so no further
4719 * handling is necessary.
4720 */
4721 switch (cmd) {
4722 case FS_IOC32_GETVERSION:
4723 cmd = FS_IOC_GETVERSION;
4724 break;
4725 }
4726
4727 return btrfs_ioctl(file, cmd, arg: (unsigned long) compat_ptr(uptr: arg));
4728}
4729#endif
4730

source code of linux/fs/btrfs/ioctl.c