1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2009 Oracle. All rights reserved.
4 */
5
6#include <linux/sched.h>
7#include <linux/pagemap.h>
8#include <linux/writeback.h>
9#include <linux/blkdev.h>
10#include <linux/rbtree.h>
11#include <linux/slab.h>
12#include <linux/error-injection.h>
13#include "ctree.h"
14#include "disk-io.h"
15#include "transaction.h"
16#include "volumes.h"
17#include "locking.h"
18#include "btrfs_inode.h"
19#include "async-thread.h"
20#include "free-space-cache.h"
21#include "qgroup.h"
22#include "print-tree.h"
23#include "delalloc-space.h"
24#include "block-group.h"
25#include "backref.h"
26#include "misc.h"
27#include "subpage.h"
28#include "zoned.h"
29#include "inode-item.h"
30#include "space-info.h"
31#include "fs.h"
32#include "accessors.h"
33#include "extent-tree.h"
34#include "root-tree.h"
35#include "file-item.h"
36#include "relocation.h"
37#include "super.h"
38#include "tree-checker.h"
39
40/*
41 * Relocation overview
42 *
43 * [What does relocation do]
44 *
45 * The objective of relocation is to relocate all extents of the target block
46 * group to other block groups.
47 * This is utilized by resize (shrink only), profile converting, compacting
48 * space, or balance routine to spread chunks over devices.
49 *
50 * Before | After
51 * ------------------------------------------------------------------
52 * BG A: 10 data extents | BG A: deleted
53 * BG B: 2 data extents | BG B: 10 data extents (2 old + 8 relocated)
54 * BG C: 1 extents | BG C: 3 data extents (1 old + 2 relocated)
55 *
56 * [How does relocation work]
57 *
58 * 1. Mark the target block group read-only
59 * New extents won't be allocated from the target block group.
60 *
61 * 2.1 Record each extent in the target block group
62 * To build a proper map of extents to be relocated.
63 *
64 * 2.2 Build data reloc tree and reloc trees
65 * Data reloc tree will contain an inode, recording all newly relocated
66 * data extents.
67 * There will be only one data reloc tree for one data block group.
68 *
69 * Reloc tree will be a special snapshot of its source tree, containing
70 * relocated tree blocks.
71 * Each tree referring to a tree block in target block group will get its
72 * reloc tree built.
73 *
74 * 2.3 Swap source tree with its corresponding reloc tree
75 * Each involved tree only refers to new extents after swap.
76 *
77 * 3. Cleanup reloc trees and data reloc tree.
78 * As old extents in the target block group are still referenced by reloc
79 * trees, we need to clean them up before really freeing the target block
80 * group.
81 *
82 * The main complexity is in steps 2.2 and 2.3.
83 *
84 * The entry point of relocation is relocate_block_group() function.
85 */
86
87#define RELOCATION_RESERVED_NODES 256
88/*
89 * map address of tree root to tree
90 */
91struct mapping_node {
92 struct {
93 struct rb_node rb_node;
94 u64 bytenr;
95 }; /* Use rb_simle_node for search/insert */
96 void *data;
97};
98
99struct mapping_tree {
100 struct rb_root rb_root;
101 spinlock_t lock;
102};
103
104/*
105 * present a tree block to process
106 */
107struct tree_block {
108 struct {
109 struct rb_node rb_node;
110 u64 bytenr;
111 }; /* Use rb_simple_node for search/insert */
112 u64 owner;
113 struct btrfs_key key;
114 u8 level;
115 bool key_ready;
116};
117
118#define MAX_EXTENTS 128
119
120struct file_extent_cluster {
121 u64 start;
122 u64 end;
123 u64 boundary[MAX_EXTENTS];
124 unsigned int nr;
125 u64 owning_root;
126};
127
128/* Stages of data relocation. */
129enum reloc_stage {
130 MOVE_DATA_EXTENTS,
131 UPDATE_DATA_PTRS
132};
133
134struct reloc_control {
135 /* block group to relocate */
136 struct btrfs_block_group *block_group;
137 /* extent tree */
138 struct btrfs_root *extent_root;
139 /* inode for moving data */
140 struct inode *data_inode;
141
142 struct btrfs_block_rsv *block_rsv;
143
144 struct btrfs_backref_cache backref_cache;
145
146 struct file_extent_cluster cluster;
147 /* tree blocks have been processed */
148 struct extent_io_tree processed_blocks;
149 /* map start of tree root to corresponding reloc tree */
150 struct mapping_tree reloc_root_tree;
151 /* list of reloc trees */
152 struct list_head reloc_roots;
153 /* list of subvolume trees that get relocated */
154 struct list_head dirty_subvol_roots;
155 /* size of metadata reservation for merging reloc trees */
156 u64 merging_rsv_size;
157 /* size of relocated tree nodes */
158 u64 nodes_relocated;
159 /* reserved size for block group relocation*/
160 u64 reserved_bytes;
161
162 u64 search_start;
163 u64 extents_found;
164
165 enum reloc_stage stage;
166 bool create_reloc_tree;
167 bool merge_reloc_tree;
168 bool found_file_extent;
169};
170
171static void mark_block_processed(struct reloc_control *rc,
172 struct btrfs_backref_node *node)
173{
174 u32 blocksize;
175
176 if (node->level == 0 ||
177 in_range(node->bytenr, rc->block_group->start,
178 rc->block_group->length)) {
179 blocksize = rc->extent_root->fs_info->nodesize;
180 set_extent_bit(tree: &rc->processed_blocks, start: node->bytenr,
181 end: node->bytenr + blocksize - 1, bits: EXTENT_DIRTY, NULL);
182 }
183 node->processed = 1;
184}
185
186/*
187 * walk up backref nodes until reach node presents tree root
188 */
189static struct btrfs_backref_node *walk_up_backref(
190 struct btrfs_backref_node *node,
191 struct btrfs_backref_edge *edges[], int *index)
192{
193 struct btrfs_backref_edge *edge;
194 int idx = *index;
195
196 while (!list_empty(head: &node->upper)) {
197 edge = list_entry(node->upper.next,
198 struct btrfs_backref_edge, list[LOWER]);
199 edges[idx++] = edge;
200 node = edge->node[UPPER];
201 }
202 BUG_ON(node->detached);
203 *index = idx;
204 return node;
205}
206
207/*
208 * walk down backref nodes to find start of next reference path
209 */
210static struct btrfs_backref_node *walk_down_backref(
211 struct btrfs_backref_edge *edges[], int *index)
212{
213 struct btrfs_backref_edge *edge;
214 struct btrfs_backref_node *lower;
215 int idx = *index;
216
217 while (idx > 0) {
218 edge = edges[idx - 1];
219 lower = edge->node[LOWER];
220 if (list_is_last(list: &edge->list[LOWER], head: &lower->upper)) {
221 idx--;
222 continue;
223 }
224 edge = list_entry(edge->list[LOWER].next,
225 struct btrfs_backref_edge, list[LOWER]);
226 edges[idx - 1] = edge;
227 *index = idx;
228 return edge->node[UPPER];
229 }
230 *index = 0;
231 return NULL;
232}
233
234static void update_backref_node(struct btrfs_backref_cache *cache,
235 struct btrfs_backref_node *node, u64 bytenr)
236{
237 struct rb_node *rb_node;
238 rb_erase(&node->rb_node, &cache->rb_root);
239 node->bytenr = bytenr;
240 rb_node = rb_simple_insert(root: &cache->rb_root, bytenr: node->bytenr, node: &node->rb_node);
241 if (rb_node)
242 btrfs_backref_panic(fs_info: cache->fs_info, bytenr, error: -EEXIST);
243}
244
245/*
246 * update backref cache after a transaction commit
247 */
248static int update_backref_cache(struct btrfs_trans_handle *trans,
249 struct btrfs_backref_cache *cache)
250{
251 struct btrfs_backref_node *node;
252 int level = 0;
253
254 if (cache->last_trans == 0) {
255 cache->last_trans = trans->transid;
256 return 0;
257 }
258
259 if (cache->last_trans == trans->transid)
260 return 0;
261
262 /*
263 * detached nodes are used to avoid unnecessary backref
264 * lookup. transaction commit changes the extent tree.
265 * so the detached nodes are no longer useful.
266 */
267 while (!list_empty(head: &cache->detached)) {
268 node = list_entry(cache->detached.next,
269 struct btrfs_backref_node, list);
270 btrfs_backref_cleanup_node(cache, node);
271 }
272
273 while (!list_empty(head: &cache->changed)) {
274 node = list_entry(cache->changed.next,
275 struct btrfs_backref_node, list);
276 list_del_init(entry: &node->list);
277 BUG_ON(node->pending);
278 update_backref_node(cache, node, bytenr: node->new_bytenr);
279 }
280
281 /*
282 * some nodes can be left in the pending list if there were
283 * errors during processing the pending nodes.
284 */
285 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
286 list_for_each_entry(node, &cache->pending[level], list) {
287 BUG_ON(!node->pending);
288 if (node->bytenr == node->new_bytenr)
289 continue;
290 update_backref_node(cache, node, bytenr: node->new_bytenr);
291 }
292 }
293
294 cache->last_trans = 0;
295 return 1;
296}
297
298static bool reloc_root_is_dead(const struct btrfs_root *root)
299{
300 /*
301 * Pair with set_bit/clear_bit in clean_dirty_subvols and
302 * btrfs_update_reloc_root. We need to see the updated bit before
303 * trying to access reloc_root
304 */
305 smp_rmb();
306 if (test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state))
307 return true;
308 return false;
309}
310
311/*
312 * Check if this subvolume tree has valid reloc tree.
313 *
314 * Reloc tree after swap is considered dead, thus not considered as valid.
315 * This is enough for most callers, as they don't distinguish dead reloc root
316 * from no reloc root. But btrfs_should_ignore_reloc_root() below is a
317 * special case.
318 */
319static bool have_reloc_root(const struct btrfs_root *root)
320{
321 if (reloc_root_is_dead(root))
322 return false;
323 if (!root->reloc_root)
324 return false;
325 return true;
326}
327
328bool btrfs_should_ignore_reloc_root(const struct btrfs_root *root)
329{
330 struct btrfs_root *reloc_root;
331
332 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
333 return false;
334
335 /* This root has been merged with its reloc tree, we can ignore it */
336 if (reloc_root_is_dead(root))
337 return true;
338
339 reloc_root = root->reloc_root;
340 if (!reloc_root)
341 return false;
342
343 if (btrfs_header_generation(eb: reloc_root->commit_root) ==
344 root->fs_info->running_transaction->transid)
345 return false;
346 /*
347 * If there is reloc tree and it was created in previous transaction
348 * backref lookup can find the reloc tree, so backref node for the fs
349 * tree root is useless for relocation.
350 */
351 return true;
352}
353
354/*
355 * find reloc tree by address of tree root
356 */
357struct btrfs_root *find_reloc_root(struct btrfs_fs_info *fs_info, u64 bytenr)
358{
359 struct reloc_control *rc = fs_info->reloc_ctl;
360 struct rb_node *rb_node;
361 struct mapping_node *node;
362 struct btrfs_root *root = NULL;
363
364 ASSERT(rc);
365 spin_lock(lock: &rc->reloc_root_tree.lock);
366 rb_node = rb_simple_search(root: &rc->reloc_root_tree.rb_root, bytenr);
367 if (rb_node) {
368 node = rb_entry(rb_node, struct mapping_node, rb_node);
369 root = node->data;
370 }
371 spin_unlock(lock: &rc->reloc_root_tree.lock);
372 return btrfs_grab_root(root);
373}
374
375/*
376 * For useless nodes, do two major clean ups:
377 *
378 * - Cleanup the children edges and nodes
379 * If child node is also orphan (no parent) during cleanup, then the child
380 * node will also be cleaned up.
381 *
382 * - Freeing up leaves (level 0), keeps nodes detached
383 * For nodes, the node is still cached as "detached"
384 *
385 * Return false if @node is not in the @useless_nodes list.
386 * Return true if @node is in the @useless_nodes list.
387 */
388static bool handle_useless_nodes(struct reloc_control *rc,
389 struct btrfs_backref_node *node)
390{
391 struct btrfs_backref_cache *cache = &rc->backref_cache;
392 struct list_head *useless_node = &cache->useless_node;
393 bool ret = false;
394
395 while (!list_empty(head: useless_node)) {
396 struct btrfs_backref_node *cur;
397
398 cur = list_first_entry(useless_node, struct btrfs_backref_node,
399 list);
400 list_del_init(entry: &cur->list);
401
402 /* Only tree root nodes can be added to @useless_nodes */
403 ASSERT(list_empty(&cur->upper));
404
405 if (cur == node)
406 ret = true;
407
408 /* The node is the lowest node */
409 if (cur->lowest) {
410 list_del_init(entry: &cur->lower);
411 cur->lowest = 0;
412 }
413
414 /* Cleanup the lower edges */
415 while (!list_empty(head: &cur->lower)) {
416 struct btrfs_backref_edge *edge;
417 struct btrfs_backref_node *lower;
418
419 edge = list_entry(cur->lower.next,
420 struct btrfs_backref_edge, list[UPPER]);
421 list_del(entry: &edge->list[UPPER]);
422 list_del(entry: &edge->list[LOWER]);
423 lower = edge->node[LOWER];
424 btrfs_backref_free_edge(cache, edge);
425
426 /* Child node is also orphan, queue for cleanup */
427 if (list_empty(head: &lower->upper))
428 list_add(new: &lower->list, head: useless_node);
429 }
430 /* Mark this block processed for relocation */
431 mark_block_processed(rc, node: cur);
432
433 /*
434 * Backref nodes for tree leaves are deleted from the cache.
435 * Backref nodes for upper level tree blocks are left in the
436 * cache to avoid unnecessary backref lookup.
437 */
438 if (cur->level > 0) {
439 list_add(new: &cur->list, head: &cache->detached);
440 cur->detached = 1;
441 } else {
442 rb_erase(&cur->rb_node, &cache->rb_root);
443 btrfs_backref_free_node(cache, node: cur);
444 }
445 }
446 return ret;
447}
448
449/*
450 * Build backref tree for a given tree block. Root of the backref tree
451 * corresponds the tree block, leaves of the backref tree correspond roots of
452 * b-trees that reference the tree block.
453 *
454 * The basic idea of this function is check backrefs of a given block to find
455 * upper level blocks that reference the block, and then check backrefs of
456 * these upper level blocks recursively. The recursion stops when tree root is
457 * reached or backrefs for the block is cached.
458 *
459 * NOTE: if we find that backrefs for a block are cached, we know backrefs for
460 * all upper level blocks that directly/indirectly reference the block are also
461 * cached.
462 */
463static noinline_for_stack struct btrfs_backref_node *build_backref_tree(
464 struct btrfs_trans_handle *trans,
465 struct reloc_control *rc, struct btrfs_key *node_key,
466 int level, u64 bytenr)
467{
468 struct btrfs_backref_iter *iter;
469 struct btrfs_backref_cache *cache = &rc->backref_cache;
470 /* For searching parent of TREE_BLOCK_REF */
471 struct btrfs_path *path;
472 struct btrfs_backref_node *cur;
473 struct btrfs_backref_node *node = NULL;
474 struct btrfs_backref_edge *edge;
475 int ret;
476 int err = 0;
477
478 iter = btrfs_backref_iter_alloc(fs_info: rc->extent_root->fs_info);
479 if (!iter)
480 return ERR_PTR(error: -ENOMEM);
481 path = btrfs_alloc_path();
482 if (!path) {
483 err = -ENOMEM;
484 goto out;
485 }
486
487 node = btrfs_backref_alloc_node(cache, bytenr, level);
488 if (!node) {
489 err = -ENOMEM;
490 goto out;
491 }
492
493 node->lowest = 1;
494 cur = node;
495
496 /* Breadth-first search to build backref cache */
497 do {
498 ret = btrfs_backref_add_tree_node(trans, cache, path, iter,
499 node_key, cur);
500 if (ret < 0) {
501 err = ret;
502 goto out;
503 }
504 edge = list_first_entry_or_null(&cache->pending_edge,
505 struct btrfs_backref_edge, list[UPPER]);
506 /*
507 * The pending list isn't empty, take the first block to
508 * process
509 */
510 if (edge) {
511 list_del_init(entry: &edge->list[UPPER]);
512 cur = edge->node[UPPER];
513 }
514 } while (edge);
515
516 /* Finish the upper linkage of newly added edges/nodes */
517 ret = btrfs_backref_finish_upper_links(cache, start: node);
518 if (ret < 0) {
519 err = ret;
520 goto out;
521 }
522
523 if (handle_useless_nodes(rc, node))
524 node = NULL;
525out:
526 btrfs_backref_iter_free(iter);
527 btrfs_free_path(p: path);
528 if (err) {
529 btrfs_backref_error_cleanup(cache, node);
530 return ERR_PTR(error: err);
531 }
532 ASSERT(!node || !node->detached);
533 ASSERT(list_empty(&cache->useless_node) &&
534 list_empty(&cache->pending_edge));
535 return node;
536}
537
538/*
539 * helper to add backref node for the newly created snapshot.
540 * the backref node is created by cloning backref node that
541 * corresponds to root of source tree
542 */
543static int clone_backref_node(struct btrfs_trans_handle *trans,
544 struct reloc_control *rc,
545 const struct btrfs_root *src,
546 struct btrfs_root *dest)
547{
548 struct btrfs_root *reloc_root = src->reloc_root;
549 struct btrfs_backref_cache *cache = &rc->backref_cache;
550 struct btrfs_backref_node *node = NULL;
551 struct btrfs_backref_node *new_node;
552 struct btrfs_backref_edge *edge;
553 struct btrfs_backref_edge *new_edge;
554 struct rb_node *rb_node;
555
556 if (cache->last_trans > 0)
557 update_backref_cache(trans, cache);
558
559 rb_node = rb_simple_search(root: &cache->rb_root, bytenr: src->commit_root->start);
560 if (rb_node) {
561 node = rb_entry(rb_node, struct btrfs_backref_node, rb_node);
562 if (node->detached)
563 node = NULL;
564 else
565 BUG_ON(node->new_bytenr != reloc_root->node->start);
566 }
567
568 if (!node) {
569 rb_node = rb_simple_search(root: &cache->rb_root,
570 bytenr: reloc_root->commit_root->start);
571 if (rb_node) {
572 node = rb_entry(rb_node, struct btrfs_backref_node,
573 rb_node);
574 BUG_ON(node->detached);
575 }
576 }
577
578 if (!node)
579 return 0;
580
581 new_node = btrfs_backref_alloc_node(cache, bytenr: dest->node->start,
582 level: node->level);
583 if (!new_node)
584 return -ENOMEM;
585
586 new_node->lowest = node->lowest;
587 new_node->checked = 1;
588 new_node->root = btrfs_grab_root(root: dest);
589 ASSERT(new_node->root);
590
591 if (!node->lowest) {
592 list_for_each_entry(edge, &node->lower, list[UPPER]) {
593 new_edge = btrfs_backref_alloc_edge(cache);
594 if (!new_edge)
595 goto fail;
596
597 btrfs_backref_link_edge(edge: new_edge, lower: edge->node[LOWER],
598 upper: new_node, LINK_UPPER);
599 }
600 } else {
601 list_add_tail(new: &new_node->lower, head: &cache->leaves);
602 }
603
604 rb_node = rb_simple_insert(root: &cache->rb_root, bytenr: new_node->bytenr,
605 node: &new_node->rb_node);
606 if (rb_node)
607 btrfs_backref_panic(fs_info: trans->fs_info, bytenr: new_node->bytenr, error: -EEXIST);
608
609 if (!new_node->lowest) {
610 list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) {
611 list_add_tail(new: &new_edge->list[LOWER],
612 head: &new_edge->node[LOWER]->upper);
613 }
614 }
615 return 0;
616fail:
617 while (!list_empty(head: &new_node->lower)) {
618 new_edge = list_entry(new_node->lower.next,
619 struct btrfs_backref_edge, list[UPPER]);
620 list_del(entry: &new_edge->list[UPPER]);
621 btrfs_backref_free_edge(cache, edge: new_edge);
622 }
623 btrfs_backref_free_node(cache, node: new_node);
624 return -ENOMEM;
625}
626
627/*
628 * helper to add 'address of tree root -> reloc tree' mapping
629 */
630static int __add_reloc_root(struct btrfs_root *root)
631{
632 struct btrfs_fs_info *fs_info = root->fs_info;
633 struct rb_node *rb_node;
634 struct mapping_node *node;
635 struct reloc_control *rc = fs_info->reloc_ctl;
636
637 node = kmalloc(size: sizeof(*node), GFP_NOFS);
638 if (!node)
639 return -ENOMEM;
640
641 node->bytenr = root->commit_root->start;
642 node->data = root;
643
644 spin_lock(lock: &rc->reloc_root_tree.lock);
645 rb_node = rb_simple_insert(root: &rc->reloc_root_tree.rb_root,
646 bytenr: node->bytenr, node: &node->rb_node);
647 spin_unlock(lock: &rc->reloc_root_tree.lock);
648 if (rb_node) {
649 btrfs_err(fs_info,
650 "Duplicate root found for start=%llu while inserting into relocation tree",
651 node->bytenr);
652 return -EEXIST;
653 }
654
655 list_add_tail(new: &root->root_list, head: &rc->reloc_roots);
656 return 0;
657}
658
659/*
660 * helper to delete the 'address of tree root -> reloc tree'
661 * mapping
662 */
663static void __del_reloc_root(struct btrfs_root *root)
664{
665 struct btrfs_fs_info *fs_info = root->fs_info;
666 struct rb_node *rb_node;
667 struct mapping_node *node = NULL;
668 struct reloc_control *rc = fs_info->reloc_ctl;
669 bool put_ref = false;
670
671 if (rc && root->node) {
672 spin_lock(lock: &rc->reloc_root_tree.lock);
673 rb_node = rb_simple_search(root: &rc->reloc_root_tree.rb_root,
674 bytenr: root->commit_root->start);
675 if (rb_node) {
676 node = rb_entry(rb_node, struct mapping_node, rb_node);
677 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
678 RB_CLEAR_NODE(&node->rb_node);
679 }
680 spin_unlock(lock: &rc->reloc_root_tree.lock);
681 ASSERT(!node || (struct btrfs_root *)node->data == root);
682 }
683
684 /*
685 * We only put the reloc root here if it's on the list. There's a lot
686 * of places where the pattern is to splice the rc->reloc_roots, process
687 * the reloc roots, and then add the reloc root back onto
688 * rc->reloc_roots. If we call __del_reloc_root while it's off of the
689 * list we don't want the reference being dropped, because the guy
690 * messing with the list is in charge of the reference.
691 */
692 spin_lock(lock: &fs_info->trans_lock);
693 if (!list_empty(head: &root->root_list)) {
694 put_ref = true;
695 list_del_init(entry: &root->root_list);
696 }
697 spin_unlock(lock: &fs_info->trans_lock);
698 if (put_ref)
699 btrfs_put_root(root);
700 kfree(objp: node);
701}
702
703/*
704 * helper to update the 'address of tree root -> reloc tree'
705 * mapping
706 */
707static int __update_reloc_root(struct btrfs_root *root)
708{
709 struct btrfs_fs_info *fs_info = root->fs_info;
710 struct rb_node *rb_node;
711 struct mapping_node *node = NULL;
712 struct reloc_control *rc = fs_info->reloc_ctl;
713
714 spin_lock(lock: &rc->reloc_root_tree.lock);
715 rb_node = rb_simple_search(root: &rc->reloc_root_tree.rb_root,
716 bytenr: root->commit_root->start);
717 if (rb_node) {
718 node = rb_entry(rb_node, struct mapping_node, rb_node);
719 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
720 }
721 spin_unlock(lock: &rc->reloc_root_tree.lock);
722
723 if (!node)
724 return 0;
725 BUG_ON((struct btrfs_root *)node->data != root);
726
727 spin_lock(lock: &rc->reloc_root_tree.lock);
728 node->bytenr = root->node->start;
729 rb_node = rb_simple_insert(root: &rc->reloc_root_tree.rb_root,
730 bytenr: node->bytenr, node: &node->rb_node);
731 spin_unlock(lock: &rc->reloc_root_tree.lock);
732 if (rb_node)
733 btrfs_backref_panic(fs_info, bytenr: node->bytenr, error: -EEXIST);
734 return 0;
735}
736
737static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
738 struct btrfs_root *root, u64 objectid)
739{
740 struct btrfs_fs_info *fs_info = root->fs_info;
741 struct btrfs_root *reloc_root;
742 struct extent_buffer *eb;
743 struct btrfs_root_item *root_item;
744 struct btrfs_key root_key;
745 int ret = 0;
746 bool must_abort = false;
747
748 root_item = kmalloc(size: sizeof(*root_item), GFP_NOFS);
749 if (!root_item)
750 return ERR_PTR(error: -ENOMEM);
751
752 root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
753 root_key.type = BTRFS_ROOT_ITEM_KEY;
754 root_key.offset = objectid;
755
756 if (root->root_key.objectid == objectid) {
757 u64 commit_root_gen;
758
759 /* called by btrfs_init_reloc_root */
760 ret = btrfs_copy_root(trans, root, buf: root->commit_root, cow_ret: &eb,
761 BTRFS_TREE_RELOC_OBJECTID);
762 if (ret)
763 goto fail;
764
765 /*
766 * Set the last_snapshot field to the generation of the commit
767 * root - like this ctree.c:btrfs_block_can_be_shared() behaves
768 * correctly (returns true) when the relocation root is created
769 * either inside the critical section of a transaction commit
770 * (through transaction.c:qgroup_account_snapshot()) and when
771 * it's created before the transaction commit is started.
772 */
773 commit_root_gen = btrfs_header_generation(eb: root->commit_root);
774 btrfs_set_root_last_snapshot(s: &root->root_item, val: commit_root_gen);
775 } else {
776 /*
777 * called by btrfs_reloc_post_snapshot_hook.
778 * the source tree is a reloc tree, all tree blocks
779 * modified after it was created have RELOC flag
780 * set in their headers. so it's OK to not update
781 * the 'last_snapshot'.
782 */
783 ret = btrfs_copy_root(trans, root, buf: root->node, cow_ret: &eb,
784 BTRFS_TREE_RELOC_OBJECTID);
785 if (ret)
786 goto fail;
787 }
788
789 /*
790 * We have changed references at this point, we must abort the
791 * transaction if anything fails.
792 */
793 must_abort = true;
794
795 memcpy(root_item, &root->root_item, sizeof(*root_item));
796 btrfs_set_root_bytenr(s: root_item, val: eb->start);
797 btrfs_set_root_level(s: root_item, val: btrfs_header_level(eb));
798 btrfs_set_root_generation(s: root_item, val: trans->transid);
799
800 if (root->root_key.objectid == objectid) {
801 btrfs_set_root_refs(s: root_item, val: 0);
802 memset(&root_item->drop_progress, 0,
803 sizeof(struct btrfs_disk_key));
804 btrfs_set_root_drop_level(s: root_item, val: 0);
805 }
806
807 btrfs_tree_unlock(eb);
808 free_extent_buffer(eb);
809
810 ret = btrfs_insert_root(trans, root: fs_info->tree_root,
811 key: &root_key, item: root_item);
812 if (ret)
813 goto fail;
814
815 kfree(objp: root_item);
816
817 reloc_root = btrfs_read_tree_root(tree_root: fs_info->tree_root, key: &root_key);
818 if (IS_ERR(ptr: reloc_root)) {
819 ret = PTR_ERR(ptr: reloc_root);
820 goto abort;
821 }
822 set_bit(nr: BTRFS_ROOT_SHAREABLE, addr: &reloc_root->state);
823 reloc_root->last_trans = trans->transid;
824 return reloc_root;
825fail:
826 kfree(objp: root_item);
827abort:
828 if (must_abort)
829 btrfs_abort_transaction(trans, ret);
830 return ERR_PTR(error: ret);
831}
832
833/*
834 * create reloc tree for a given fs tree. reloc tree is just a
835 * snapshot of the fs tree with special root objectid.
836 *
837 * The reloc_root comes out of here with two references, one for
838 * root->reloc_root, and another for being on the rc->reloc_roots list.
839 */
840int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
841 struct btrfs_root *root)
842{
843 struct btrfs_fs_info *fs_info = root->fs_info;
844 struct btrfs_root *reloc_root;
845 struct reloc_control *rc = fs_info->reloc_ctl;
846 struct btrfs_block_rsv *rsv;
847 int clear_rsv = 0;
848 int ret;
849
850 if (!rc)
851 return 0;
852
853 /*
854 * The subvolume has reloc tree but the swap is finished, no need to
855 * create/update the dead reloc tree
856 */
857 if (reloc_root_is_dead(root))
858 return 0;
859
860 /*
861 * This is subtle but important. We do not do
862 * record_root_in_transaction for reloc roots, instead we record their
863 * corresponding fs root, and then here we update the last trans for the
864 * reloc root. This means that we have to do this for the entire life
865 * of the reloc root, regardless of which stage of the relocation we are
866 * in.
867 */
868 if (root->reloc_root) {
869 reloc_root = root->reloc_root;
870 reloc_root->last_trans = trans->transid;
871 return 0;
872 }
873
874 /*
875 * We are merging reloc roots, we do not need new reloc trees. Also
876 * reloc trees never need their own reloc tree.
877 */
878 if (!rc->create_reloc_tree ||
879 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
880 return 0;
881
882 if (!trans->reloc_reserved) {
883 rsv = trans->block_rsv;
884 trans->block_rsv = rc->block_rsv;
885 clear_rsv = 1;
886 }
887 reloc_root = create_reloc_root(trans, root, objectid: root->root_key.objectid);
888 if (clear_rsv)
889 trans->block_rsv = rsv;
890 if (IS_ERR(ptr: reloc_root))
891 return PTR_ERR(ptr: reloc_root);
892
893 ret = __add_reloc_root(root: reloc_root);
894 ASSERT(ret != -EEXIST);
895 if (ret) {
896 /* Pairs with create_reloc_root */
897 btrfs_put_root(root: reloc_root);
898 return ret;
899 }
900 root->reloc_root = btrfs_grab_root(root: reloc_root);
901 return 0;
902}
903
904/*
905 * update root item of reloc tree
906 */
907int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
908 struct btrfs_root *root)
909{
910 struct btrfs_fs_info *fs_info = root->fs_info;
911 struct btrfs_root *reloc_root;
912 struct btrfs_root_item *root_item;
913 int ret;
914
915 if (!have_reloc_root(root))
916 return 0;
917
918 reloc_root = root->reloc_root;
919 root_item = &reloc_root->root_item;
920
921 /*
922 * We are probably ok here, but __del_reloc_root() will drop its ref of
923 * the root. We have the ref for root->reloc_root, but just in case
924 * hold it while we update the reloc root.
925 */
926 btrfs_grab_root(root: reloc_root);
927
928 /* root->reloc_root will stay until current relocation finished */
929 if (fs_info->reloc_ctl->merge_reloc_tree &&
930 btrfs_root_refs(s: root_item) == 0) {
931 set_bit(nr: BTRFS_ROOT_DEAD_RELOC_TREE, addr: &root->state);
932 /*
933 * Mark the tree as dead before we change reloc_root so
934 * have_reloc_root will not touch it from now on.
935 */
936 smp_wmb();
937 __del_reloc_root(root: reloc_root);
938 }
939
940 if (reloc_root->commit_root != reloc_root->node) {
941 __update_reloc_root(root: reloc_root);
942 btrfs_set_root_node(item: root_item, node: reloc_root->node);
943 free_extent_buffer(eb: reloc_root->commit_root);
944 reloc_root->commit_root = btrfs_root_node(root: reloc_root);
945 }
946
947 ret = btrfs_update_root(trans, root: fs_info->tree_root,
948 key: &reloc_root->root_key, item: root_item);
949 btrfs_put_root(root: reloc_root);
950 return ret;
951}
952
953/*
954 * helper to find first cached inode with inode number >= objectid
955 * in a subvolume
956 */
957static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid)
958{
959 struct rb_node *node;
960 struct rb_node *prev;
961 struct btrfs_inode *entry;
962 struct inode *inode;
963
964 spin_lock(lock: &root->inode_lock);
965again:
966 node = root->inode_tree.rb_node;
967 prev = NULL;
968 while (node) {
969 prev = node;
970 entry = rb_entry(node, struct btrfs_inode, rb_node);
971
972 if (objectid < btrfs_ino(inode: entry))
973 node = node->rb_left;
974 else if (objectid > btrfs_ino(inode: entry))
975 node = node->rb_right;
976 else
977 break;
978 }
979 if (!node) {
980 while (prev) {
981 entry = rb_entry(prev, struct btrfs_inode, rb_node);
982 if (objectid <= btrfs_ino(inode: entry)) {
983 node = prev;
984 break;
985 }
986 prev = rb_next(prev);
987 }
988 }
989 while (node) {
990 entry = rb_entry(node, struct btrfs_inode, rb_node);
991 inode = igrab(&entry->vfs_inode);
992 if (inode) {
993 spin_unlock(lock: &root->inode_lock);
994 return inode;
995 }
996
997 objectid = btrfs_ino(inode: entry) + 1;
998 if (cond_resched_lock(&root->inode_lock))
999 goto again;
1000
1001 node = rb_next(node);
1002 }
1003 spin_unlock(lock: &root->inode_lock);
1004 return NULL;
1005}
1006
1007/*
1008 * get new location of data
1009 */
1010static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
1011 u64 bytenr, u64 num_bytes)
1012{
1013 struct btrfs_root *root = BTRFS_I(inode: reloc_inode)->root;
1014 struct btrfs_path *path;
1015 struct btrfs_file_extent_item *fi;
1016 struct extent_buffer *leaf;
1017 int ret;
1018
1019 path = btrfs_alloc_path();
1020 if (!path)
1021 return -ENOMEM;
1022
1023 bytenr -= BTRFS_I(inode: reloc_inode)->index_cnt;
1024 ret = btrfs_lookup_file_extent(NULL, root, path,
1025 objectid: btrfs_ino(inode: BTRFS_I(inode: reloc_inode)), bytenr, mod: 0);
1026 if (ret < 0)
1027 goto out;
1028 if (ret > 0) {
1029 ret = -ENOENT;
1030 goto out;
1031 }
1032
1033 leaf = path->nodes[0];
1034 fi = btrfs_item_ptr(leaf, path->slots[0],
1035 struct btrfs_file_extent_item);
1036
1037 BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
1038 btrfs_file_extent_compression(leaf, fi) ||
1039 btrfs_file_extent_encryption(leaf, fi) ||
1040 btrfs_file_extent_other_encoding(leaf, fi));
1041
1042 if (num_bytes != btrfs_file_extent_disk_num_bytes(eb: leaf, s: fi)) {
1043 ret = -EINVAL;
1044 goto out;
1045 }
1046
1047 *new_bytenr = btrfs_file_extent_disk_bytenr(eb: leaf, s: fi);
1048 ret = 0;
1049out:
1050 btrfs_free_path(p: path);
1051 return ret;
1052}
1053
1054/*
1055 * update file extent items in the tree leaf to point to
1056 * the new locations.
1057 */
1058static noinline_for_stack
1059int replace_file_extents(struct btrfs_trans_handle *trans,
1060 struct reloc_control *rc,
1061 struct btrfs_root *root,
1062 struct extent_buffer *leaf)
1063{
1064 struct btrfs_fs_info *fs_info = root->fs_info;
1065 struct btrfs_key key;
1066 struct btrfs_file_extent_item *fi;
1067 struct inode *inode = NULL;
1068 u64 parent;
1069 u64 bytenr;
1070 u64 new_bytenr = 0;
1071 u64 num_bytes;
1072 u64 end;
1073 u32 nritems;
1074 u32 i;
1075 int ret = 0;
1076 int first = 1;
1077 int dirty = 0;
1078
1079 if (rc->stage != UPDATE_DATA_PTRS)
1080 return 0;
1081
1082 /* reloc trees always use full backref */
1083 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1084 parent = leaf->start;
1085 else
1086 parent = 0;
1087
1088 nritems = btrfs_header_nritems(eb: leaf);
1089 for (i = 0; i < nritems; i++) {
1090 struct btrfs_ref ref = { 0 };
1091
1092 cond_resched();
1093 btrfs_item_key_to_cpu(eb: leaf, cpu_key: &key, nr: i);
1094 if (key.type != BTRFS_EXTENT_DATA_KEY)
1095 continue;
1096 fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
1097 if (btrfs_file_extent_type(eb: leaf, s: fi) ==
1098 BTRFS_FILE_EXTENT_INLINE)
1099 continue;
1100 bytenr = btrfs_file_extent_disk_bytenr(eb: leaf, s: fi);
1101 num_bytes = btrfs_file_extent_disk_num_bytes(eb: leaf, s: fi);
1102 if (bytenr == 0)
1103 continue;
1104 if (!in_range(bytenr, rc->block_group->start,
1105 rc->block_group->length))
1106 continue;
1107
1108 /*
1109 * if we are modifying block in fs tree, wait for read_folio
1110 * to complete and drop the extent cache
1111 */
1112 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1113 if (first) {
1114 inode = find_next_inode(root, objectid: key.objectid);
1115 first = 0;
1116 } else if (inode && btrfs_ino(inode: BTRFS_I(inode)) < key.objectid) {
1117 btrfs_add_delayed_iput(inode: BTRFS_I(inode));
1118 inode = find_next_inode(root, objectid: key.objectid);
1119 }
1120 if (inode && btrfs_ino(inode: BTRFS_I(inode)) == key.objectid) {
1121 struct extent_state *cached_state = NULL;
1122
1123 end = key.offset +
1124 btrfs_file_extent_num_bytes(eb: leaf, s: fi);
1125 WARN_ON(!IS_ALIGNED(key.offset,
1126 fs_info->sectorsize));
1127 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1128 end--;
1129 ret = try_lock_extent(tree: &BTRFS_I(inode)->io_tree,
1130 start: key.offset, end,
1131 cached: &cached_state);
1132 if (!ret)
1133 continue;
1134
1135 btrfs_drop_extent_map_range(inode: BTRFS_I(inode),
1136 start: key.offset, end, skip_pinned: true);
1137 unlock_extent(tree: &BTRFS_I(inode)->io_tree,
1138 start: key.offset, end, cached: &cached_state);
1139 }
1140 }
1141
1142 ret = get_new_location(reloc_inode: rc->data_inode, new_bytenr: &new_bytenr,
1143 bytenr, num_bytes);
1144 if (ret) {
1145 /*
1146 * Don't have to abort since we've not changed anything
1147 * in the file extent yet.
1148 */
1149 break;
1150 }
1151
1152 btrfs_set_file_extent_disk_bytenr(eb: leaf, s: fi, val: new_bytenr);
1153 dirty = 1;
1154
1155 key.offset -= btrfs_file_extent_offset(eb: leaf, s: fi);
1156 btrfs_init_generic_ref(generic_ref: &ref, action: BTRFS_ADD_DELAYED_REF, bytenr: new_bytenr,
1157 len: num_bytes, parent, owning_root: root->root_key.objectid);
1158 btrfs_init_data_ref(generic_ref: &ref, ref_root: btrfs_header_owner(eb: leaf),
1159 ino: key.objectid, offset: key.offset,
1160 mod_root: root->root_key.objectid, skip_qgroup: false);
1161 ret = btrfs_inc_extent_ref(trans, generic_ref: &ref);
1162 if (ret) {
1163 btrfs_abort_transaction(trans, ret);
1164 break;
1165 }
1166
1167 btrfs_init_generic_ref(generic_ref: &ref, action: BTRFS_DROP_DELAYED_REF, bytenr,
1168 len: num_bytes, parent, owning_root: root->root_key.objectid);
1169 btrfs_init_data_ref(generic_ref: &ref, ref_root: btrfs_header_owner(eb: leaf),
1170 ino: key.objectid, offset: key.offset,
1171 mod_root: root->root_key.objectid, skip_qgroup: false);
1172 ret = btrfs_free_extent(trans, ref: &ref);
1173 if (ret) {
1174 btrfs_abort_transaction(trans, ret);
1175 break;
1176 }
1177 }
1178 if (dirty)
1179 btrfs_mark_buffer_dirty(trans, buf: leaf);
1180 if (inode)
1181 btrfs_add_delayed_iput(inode: BTRFS_I(inode));
1182 return ret;
1183}
1184
1185static noinline_for_stack int memcmp_node_keys(const struct extent_buffer *eb,
1186 int slot, const struct btrfs_path *path,
1187 int level)
1188{
1189 struct btrfs_disk_key key1;
1190 struct btrfs_disk_key key2;
1191 btrfs_node_key(eb, disk_key: &key1, nr: slot);
1192 btrfs_node_key(eb: path->nodes[level], disk_key: &key2, nr: path->slots[level]);
1193 return memcmp(p: &key1, q: &key2, size: sizeof(key1));
1194}
1195
1196/*
1197 * try to replace tree blocks in fs tree with the new blocks
1198 * in reloc tree. tree blocks haven't been modified since the
1199 * reloc tree was create can be replaced.
1200 *
1201 * if a block was replaced, level of the block + 1 is returned.
1202 * if no block got replaced, 0 is returned. if there are other
1203 * errors, a negative error number is returned.
1204 */
1205static noinline_for_stack
1206int replace_path(struct btrfs_trans_handle *trans, struct reloc_control *rc,
1207 struct btrfs_root *dest, struct btrfs_root *src,
1208 struct btrfs_path *path, struct btrfs_key *next_key,
1209 int lowest_level, int max_level)
1210{
1211 struct btrfs_fs_info *fs_info = dest->fs_info;
1212 struct extent_buffer *eb;
1213 struct extent_buffer *parent;
1214 struct btrfs_ref ref = { 0 };
1215 struct btrfs_key key;
1216 u64 old_bytenr;
1217 u64 new_bytenr;
1218 u64 old_ptr_gen;
1219 u64 new_ptr_gen;
1220 u64 last_snapshot;
1221 u32 blocksize;
1222 int cow = 0;
1223 int level;
1224 int ret;
1225 int slot;
1226
1227 ASSERT(src->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID);
1228 ASSERT(dest->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1229
1230 last_snapshot = btrfs_root_last_snapshot(s: &src->root_item);
1231again:
1232 slot = path->slots[lowest_level];
1233 btrfs_node_key_to_cpu(eb: path->nodes[lowest_level], cpu_key: &key, nr: slot);
1234
1235 eb = btrfs_lock_root_node(root: dest);
1236 level = btrfs_header_level(eb);
1237
1238 if (level < lowest_level) {
1239 btrfs_tree_unlock(eb);
1240 free_extent_buffer(eb);
1241 return 0;
1242 }
1243
1244 if (cow) {
1245 ret = btrfs_cow_block(trans, root: dest, buf: eb, NULL, parent_slot: 0, cow_ret: &eb,
1246 nest: BTRFS_NESTING_COW);
1247 if (ret) {
1248 btrfs_tree_unlock(eb);
1249 free_extent_buffer(eb);
1250 return ret;
1251 }
1252 }
1253
1254 if (next_key) {
1255 next_key->objectid = (u64)-1;
1256 next_key->type = (u8)-1;
1257 next_key->offset = (u64)-1;
1258 }
1259
1260 parent = eb;
1261 while (1) {
1262 level = btrfs_header_level(eb: parent);
1263 ASSERT(level >= lowest_level);
1264
1265 ret = btrfs_bin_search(eb: parent, first_slot: 0, key: &key, slot: &slot);
1266 if (ret < 0)
1267 break;
1268 if (ret && slot > 0)
1269 slot--;
1270
1271 if (next_key && slot + 1 < btrfs_header_nritems(eb: parent))
1272 btrfs_node_key_to_cpu(eb: parent, cpu_key: next_key, nr: slot + 1);
1273
1274 old_bytenr = btrfs_node_blockptr(eb: parent, nr: slot);
1275 blocksize = fs_info->nodesize;
1276 old_ptr_gen = btrfs_node_ptr_generation(eb: parent, nr: slot);
1277
1278 if (level <= max_level) {
1279 eb = path->nodes[level];
1280 new_bytenr = btrfs_node_blockptr(eb,
1281 nr: path->slots[level]);
1282 new_ptr_gen = btrfs_node_ptr_generation(eb,
1283 nr: path->slots[level]);
1284 } else {
1285 new_bytenr = 0;
1286 new_ptr_gen = 0;
1287 }
1288
1289 if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) {
1290 ret = level;
1291 break;
1292 }
1293
1294 if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
1295 memcmp_node_keys(eb: parent, slot, path, level)) {
1296 if (level <= lowest_level) {
1297 ret = 0;
1298 break;
1299 }
1300
1301 eb = btrfs_read_node_slot(parent, slot);
1302 if (IS_ERR(ptr: eb)) {
1303 ret = PTR_ERR(ptr: eb);
1304 break;
1305 }
1306 btrfs_tree_lock(eb);
1307 if (cow) {
1308 ret = btrfs_cow_block(trans, root: dest, buf: eb, parent,
1309 parent_slot: slot, cow_ret: &eb,
1310 nest: BTRFS_NESTING_COW);
1311 if (ret) {
1312 btrfs_tree_unlock(eb);
1313 free_extent_buffer(eb);
1314 break;
1315 }
1316 }
1317
1318 btrfs_tree_unlock(eb: parent);
1319 free_extent_buffer(eb: parent);
1320
1321 parent = eb;
1322 continue;
1323 }
1324
1325 if (!cow) {
1326 btrfs_tree_unlock(eb: parent);
1327 free_extent_buffer(eb: parent);
1328 cow = 1;
1329 goto again;
1330 }
1331
1332 btrfs_node_key_to_cpu(eb: path->nodes[level], cpu_key: &key,
1333 nr: path->slots[level]);
1334 btrfs_release_path(p: path);
1335
1336 path->lowest_level = level;
1337 set_bit(nr: BTRFS_ROOT_RESET_LOCKDEP_CLASS, addr: &src->state);
1338 ret = btrfs_search_slot(trans, root: src, key: &key, p: path, ins_len: 0, cow: 1);
1339 clear_bit(nr: BTRFS_ROOT_RESET_LOCKDEP_CLASS, addr: &src->state);
1340 path->lowest_level = 0;
1341 if (ret) {
1342 if (ret > 0)
1343 ret = -ENOENT;
1344 break;
1345 }
1346
1347 /*
1348 * Info qgroup to trace both subtrees.
1349 *
1350 * We must trace both trees.
1351 * 1) Tree reloc subtree
1352 * If not traced, we will leak data numbers
1353 * 2) Fs subtree
1354 * If not traced, we will double count old data
1355 *
1356 * We don't scan the subtree right now, but only record
1357 * the swapped tree blocks.
1358 * The real subtree rescan is delayed until we have new
1359 * CoW on the subtree root node before transaction commit.
1360 */
1361 ret = btrfs_qgroup_add_swapped_blocks(trans, subvol_root: dest,
1362 bg: rc->block_group, subvol_parent: parent, subvol_slot: slot,
1363 reloc_parent: path->nodes[level], reloc_slot: path->slots[level],
1364 last_snapshot);
1365 if (ret < 0)
1366 break;
1367 /*
1368 * swap blocks in fs tree and reloc tree.
1369 */
1370 btrfs_set_node_blockptr(eb: parent, nr: slot, val: new_bytenr);
1371 btrfs_set_node_ptr_generation(eb: parent, nr: slot, val: new_ptr_gen);
1372 btrfs_mark_buffer_dirty(trans, buf: parent);
1373
1374 btrfs_set_node_blockptr(eb: path->nodes[level],
1375 nr: path->slots[level], val: old_bytenr);
1376 btrfs_set_node_ptr_generation(eb: path->nodes[level],
1377 nr: path->slots[level], val: old_ptr_gen);
1378 btrfs_mark_buffer_dirty(trans, buf: path->nodes[level]);
1379
1380 btrfs_init_generic_ref(generic_ref: &ref, action: BTRFS_ADD_DELAYED_REF, bytenr: old_bytenr,
1381 len: blocksize, parent: path->nodes[level]->start,
1382 owning_root: src->root_key.objectid);
1383 btrfs_init_tree_ref(generic_ref: &ref, level: level - 1, root: src->root_key.objectid,
1384 mod_root: 0, skip_qgroup: true);
1385 ret = btrfs_inc_extent_ref(trans, generic_ref: &ref);
1386 if (ret) {
1387 btrfs_abort_transaction(trans, ret);
1388 break;
1389 }
1390 btrfs_init_generic_ref(generic_ref: &ref, action: BTRFS_ADD_DELAYED_REF, bytenr: new_bytenr,
1391 len: blocksize, parent: 0, owning_root: dest->root_key.objectid);
1392 btrfs_init_tree_ref(generic_ref: &ref, level: level - 1, root: dest->root_key.objectid, mod_root: 0,
1393 skip_qgroup: true);
1394 ret = btrfs_inc_extent_ref(trans, generic_ref: &ref);
1395 if (ret) {
1396 btrfs_abort_transaction(trans, ret);
1397 break;
1398 }
1399
1400 /* We don't know the real owning_root, use 0. */
1401 btrfs_init_generic_ref(generic_ref: &ref, action: BTRFS_DROP_DELAYED_REF, bytenr: new_bytenr,
1402 len: blocksize, parent: path->nodes[level]->start, owning_root: 0);
1403 btrfs_init_tree_ref(generic_ref: &ref, level: level - 1, root: src->root_key.objectid,
1404 mod_root: 0, skip_qgroup: true);
1405 ret = btrfs_free_extent(trans, ref: &ref);
1406 if (ret) {
1407 btrfs_abort_transaction(trans, ret);
1408 break;
1409 }
1410
1411 /* We don't know the real owning_root, use 0. */
1412 btrfs_init_generic_ref(generic_ref: &ref, action: BTRFS_DROP_DELAYED_REF, bytenr: old_bytenr,
1413 len: blocksize, parent: 0, owning_root: 0);
1414 btrfs_init_tree_ref(generic_ref: &ref, level: level - 1, root: dest->root_key.objectid,
1415 mod_root: 0, skip_qgroup: true);
1416 ret = btrfs_free_extent(trans, ref: &ref);
1417 if (ret) {
1418 btrfs_abort_transaction(trans, ret);
1419 break;
1420 }
1421
1422 btrfs_unlock_up_safe(path, level: 0);
1423
1424 ret = level;
1425 break;
1426 }
1427 btrfs_tree_unlock(eb: parent);
1428 free_extent_buffer(eb: parent);
1429 return ret;
1430}
1431
1432/*
1433 * helper to find next relocated block in reloc tree
1434 */
1435static noinline_for_stack
1436int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1437 int *level)
1438{
1439 struct extent_buffer *eb;
1440 int i;
1441 u64 last_snapshot;
1442 u32 nritems;
1443
1444 last_snapshot = btrfs_root_last_snapshot(s: &root->root_item);
1445
1446 for (i = 0; i < *level; i++) {
1447 free_extent_buffer(eb: path->nodes[i]);
1448 path->nodes[i] = NULL;
1449 }
1450
1451 for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
1452 eb = path->nodes[i];
1453 nritems = btrfs_header_nritems(eb);
1454 while (path->slots[i] + 1 < nritems) {
1455 path->slots[i]++;
1456 if (btrfs_node_ptr_generation(eb, nr: path->slots[i]) <=
1457 last_snapshot)
1458 continue;
1459
1460 *level = i;
1461 return 0;
1462 }
1463 free_extent_buffer(eb: path->nodes[i]);
1464 path->nodes[i] = NULL;
1465 }
1466 return 1;
1467}
1468
1469/*
1470 * walk down reloc tree to find relocated block of lowest level
1471 */
1472static noinline_for_stack
1473int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1474 int *level)
1475{
1476 struct extent_buffer *eb = NULL;
1477 int i;
1478 u64 ptr_gen = 0;
1479 u64 last_snapshot;
1480 u32 nritems;
1481
1482 last_snapshot = btrfs_root_last_snapshot(s: &root->root_item);
1483
1484 for (i = *level; i > 0; i--) {
1485 eb = path->nodes[i];
1486 nritems = btrfs_header_nritems(eb);
1487 while (path->slots[i] < nritems) {
1488 ptr_gen = btrfs_node_ptr_generation(eb, nr: path->slots[i]);
1489 if (ptr_gen > last_snapshot)
1490 break;
1491 path->slots[i]++;
1492 }
1493 if (path->slots[i] >= nritems) {
1494 if (i == *level)
1495 break;
1496 *level = i + 1;
1497 return 0;
1498 }
1499 if (i == 1) {
1500 *level = i;
1501 return 0;
1502 }
1503
1504 eb = btrfs_read_node_slot(parent: eb, slot: path->slots[i]);
1505 if (IS_ERR(ptr: eb))
1506 return PTR_ERR(ptr: eb);
1507 BUG_ON(btrfs_header_level(eb) != i - 1);
1508 path->nodes[i - 1] = eb;
1509 path->slots[i - 1] = 0;
1510 }
1511 return 1;
1512}
1513
1514/*
1515 * invalidate extent cache for file extents whose key in range of
1516 * [min_key, max_key)
1517 */
1518static int invalidate_extent_cache(struct btrfs_root *root,
1519 const struct btrfs_key *min_key,
1520 const struct btrfs_key *max_key)
1521{
1522 struct btrfs_fs_info *fs_info = root->fs_info;
1523 struct inode *inode = NULL;
1524 u64 objectid;
1525 u64 start, end;
1526 u64 ino;
1527
1528 objectid = min_key->objectid;
1529 while (1) {
1530 struct extent_state *cached_state = NULL;
1531
1532 cond_resched();
1533 iput(inode);
1534
1535 if (objectid > max_key->objectid)
1536 break;
1537
1538 inode = find_next_inode(root, objectid);
1539 if (!inode)
1540 break;
1541 ino = btrfs_ino(inode: BTRFS_I(inode));
1542
1543 if (ino > max_key->objectid) {
1544 iput(inode);
1545 break;
1546 }
1547
1548 objectid = ino + 1;
1549 if (!S_ISREG(inode->i_mode))
1550 continue;
1551
1552 if (unlikely(min_key->objectid == ino)) {
1553 if (min_key->type > BTRFS_EXTENT_DATA_KEY)
1554 continue;
1555 if (min_key->type < BTRFS_EXTENT_DATA_KEY)
1556 start = 0;
1557 else {
1558 start = min_key->offset;
1559 WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize));
1560 }
1561 } else {
1562 start = 0;
1563 }
1564
1565 if (unlikely(max_key->objectid == ino)) {
1566 if (max_key->type < BTRFS_EXTENT_DATA_KEY)
1567 continue;
1568 if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
1569 end = (u64)-1;
1570 } else {
1571 if (max_key->offset == 0)
1572 continue;
1573 end = max_key->offset;
1574 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1575 end--;
1576 }
1577 } else {
1578 end = (u64)-1;
1579 }
1580
1581 /* the lock_extent waits for read_folio to complete */
1582 lock_extent(tree: &BTRFS_I(inode)->io_tree, start, end, cached: &cached_state);
1583 btrfs_drop_extent_map_range(inode: BTRFS_I(inode), start, end, skip_pinned: true);
1584 unlock_extent(tree: &BTRFS_I(inode)->io_tree, start, end, cached: &cached_state);
1585 }
1586 return 0;
1587}
1588
1589static int find_next_key(struct btrfs_path *path, int level,
1590 struct btrfs_key *key)
1591
1592{
1593 while (level < BTRFS_MAX_LEVEL) {
1594 if (!path->nodes[level])
1595 break;
1596 if (path->slots[level] + 1 <
1597 btrfs_header_nritems(eb: path->nodes[level])) {
1598 btrfs_node_key_to_cpu(eb: path->nodes[level], cpu_key: key,
1599 nr: path->slots[level] + 1);
1600 return 0;
1601 }
1602 level++;
1603 }
1604 return 1;
1605}
1606
1607/*
1608 * Insert current subvolume into reloc_control::dirty_subvol_roots
1609 */
1610static int insert_dirty_subvol(struct btrfs_trans_handle *trans,
1611 struct reloc_control *rc,
1612 struct btrfs_root *root)
1613{
1614 struct btrfs_root *reloc_root = root->reloc_root;
1615 struct btrfs_root_item *reloc_root_item;
1616 int ret;
1617
1618 /* @root must be a subvolume tree root with a valid reloc tree */
1619 ASSERT(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1620 ASSERT(reloc_root);
1621
1622 reloc_root_item = &reloc_root->root_item;
1623 memset(&reloc_root_item->drop_progress, 0,
1624 sizeof(reloc_root_item->drop_progress));
1625 btrfs_set_root_drop_level(s: reloc_root_item, val: 0);
1626 btrfs_set_root_refs(s: reloc_root_item, val: 0);
1627 ret = btrfs_update_reloc_root(trans, root);
1628 if (ret)
1629 return ret;
1630
1631 if (list_empty(head: &root->reloc_dirty_list)) {
1632 btrfs_grab_root(root);
1633 list_add_tail(new: &root->reloc_dirty_list, head: &rc->dirty_subvol_roots);
1634 }
1635
1636 return 0;
1637}
1638
1639static int clean_dirty_subvols(struct reloc_control *rc)
1640{
1641 struct btrfs_root *root;
1642 struct btrfs_root *next;
1643 int ret = 0;
1644 int ret2;
1645
1646 list_for_each_entry_safe(root, next, &rc->dirty_subvol_roots,
1647 reloc_dirty_list) {
1648 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1649 /* Merged subvolume, cleanup its reloc root */
1650 struct btrfs_root *reloc_root = root->reloc_root;
1651
1652 list_del_init(entry: &root->reloc_dirty_list);
1653 root->reloc_root = NULL;
1654 /*
1655 * Need barrier to ensure clear_bit() only happens after
1656 * root->reloc_root = NULL. Pairs with have_reloc_root.
1657 */
1658 smp_wmb();
1659 clear_bit(nr: BTRFS_ROOT_DEAD_RELOC_TREE, addr: &root->state);
1660 if (reloc_root) {
1661 /*
1662 * btrfs_drop_snapshot drops our ref we hold for
1663 * ->reloc_root. If it fails however we must
1664 * drop the ref ourselves.
1665 */
1666 ret2 = btrfs_drop_snapshot(root: reloc_root, update_ref: 0, for_reloc: 1);
1667 if (ret2 < 0) {
1668 btrfs_put_root(root: reloc_root);
1669 if (!ret)
1670 ret = ret2;
1671 }
1672 }
1673 btrfs_put_root(root);
1674 } else {
1675 /* Orphan reloc tree, just clean it up */
1676 ret2 = btrfs_drop_snapshot(root, update_ref: 0, for_reloc: 1);
1677 if (ret2 < 0) {
1678 btrfs_put_root(root);
1679 if (!ret)
1680 ret = ret2;
1681 }
1682 }
1683 }
1684 return ret;
1685}
1686
1687/*
1688 * merge the relocated tree blocks in reloc tree with corresponding
1689 * fs tree.
1690 */
1691static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
1692 struct btrfs_root *root)
1693{
1694 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
1695 struct btrfs_key key;
1696 struct btrfs_key next_key;
1697 struct btrfs_trans_handle *trans = NULL;
1698 struct btrfs_root *reloc_root;
1699 struct btrfs_root_item *root_item;
1700 struct btrfs_path *path;
1701 struct extent_buffer *leaf;
1702 int reserve_level;
1703 int level;
1704 int max_level;
1705 int replaced = 0;
1706 int ret = 0;
1707 u32 min_reserved;
1708
1709 path = btrfs_alloc_path();
1710 if (!path)
1711 return -ENOMEM;
1712 path->reada = READA_FORWARD;
1713
1714 reloc_root = root->reloc_root;
1715 root_item = &reloc_root->root_item;
1716
1717 if (btrfs_disk_key_objectid(s: &root_item->drop_progress) == 0) {
1718 level = btrfs_root_level(s: root_item);
1719 atomic_inc(v: &reloc_root->node->refs);
1720 path->nodes[level] = reloc_root->node;
1721 path->slots[level] = 0;
1722 } else {
1723 btrfs_disk_key_to_cpu(cpu_key: &key, disk_key: &root_item->drop_progress);
1724
1725 level = btrfs_root_drop_level(s: root_item);
1726 BUG_ON(level == 0);
1727 path->lowest_level = level;
1728 ret = btrfs_search_slot(NULL, root: reloc_root, key: &key, p: path, ins_len: 0, cow: 0);
1729 path->lowest_level = 0;
1730 if (ret < 0) {
1731 btrfs_free_path(p: path);
1732 return ret;
1733 }
1734
1735 btrfs_node_key_to_cpu(eb: path->nodes[level], cpu_key: &next_key,
1736 nr: path->slots[level]);
1737 WARN_ON(memcmp(&key, &next_key, sizeof(key)));
1738
1739 btrfs_unlock_up_safe(path, level: 0);
1740 }
1741
1742 /*
1743 * In merge_reloc_root(), we modify the upper level pointer to swap the
1744 * tree blocks between reloc tree and subvolume tree. Thus for tree
1745 * block COW, we COW at most from level 1 to root level for each tree.
1746 *
1747 * Thus the needed metadata size is at most root_level * nodesize,
1748 * and * 2 since we have two trees to COW.
1749 */
1750 reserve_level = max_t(int, 1, btrfs_root_level(root_item));
1751 min_reserved = fs_info->nodesize * reserve_level * 2;
1752 memset(&next_key, 0, sizeof(next_key));
1753
1754 while (1) {
1755 ret = btrfs_block_rsv_refill(fs_info, block_rsv: rc->block_rsv,
1756 num_bytes: min_reserved,
1757 flush: BTRFS_RESERVE_FLUSH_LIMIT);
1758 if (ret)
1759 goto out;
1760 trans = btrfs_start_transaction(root, num_items: 0);
1761 if (IS_ERR(ptr: trans)) {
1762 ret = PTR_ERR(ptr: trans);
1763 trans = NULL;
1764 goto out;
1765 }
1766
1767 /*
1768 * At this point we no longer have a reloc_control, so we can't
1769 * depend on btrfs_init_reloc_root to update our last_trans.
1770 *
1771 * But that's ok, we started the trans handle on our
1772 * corresponding fs_root, which means it's been added to the
1773 * dirty list. At commit time we'll still call
1774 * btrfs_update_reloc_root() and update our root item
1775 * appropriately.
1776 */
1777 reloc_root->last_trans = trans->transid;
1778 trans->block_rsv = rc->block_rsv;
1779
1780 replaced = 0;
1781 max_level = level;
1782
1783 ret = walk_down_reloc_tree(root: reloc_root, path, level: &level);
1784 if (ret < 0)
1785 goto out;
1786 if (ret > 0)
1787 break;
1788
1789 if (!find_next_key(path, level, key: &key) &&
1790 btrfs_comp_cpu_keys(k1: &next_key, k2: &key) >= 0) {
1791 ret = 0;
1792 } else {
1793 ret = replace_path(trans, rc, dest: root, src: reloc_root, path,
1794 next_key: &next_key, lowest_level: level, max_level);
1795 }
1796 if (ret < 0)
1797 goto out;
1798 if (ret > 0) {
1799 level = ret;
1800 btrfs_node_key_to_cpu(eb: path->nodes[level], cpu_key: &key,
1801 nr: path->slots[level]);
1802 replaced = 1;
1803 }
1804
1805 ret = walk_up_reloc_tree(root: reloc_root, path, level: &level);
1806 if (ret > 0)
1807 break;
1808
1809 BUG_ON(level == 0);
1810 /*
1811 * save the merging progress in the drop_progress.
1812 * this is OK since root refs == 1 in this case.
1813 */
1814 btrfs_node_key(eb: path->nodes[level], disk_key: &root_item->drop_progress,
1815 nr: path->slots[level]);
1816 btrfs_set_root_drop_level(s: root_item, val: level);
1817
1818 btrfs_end_transaction_throttle(trans);
1819 trans = NULL;
1820
1821 btrfs_btree_balance_dirty(fs_info);
1822
1823 if (replaced && rc->stage == UPDATE_DATA_PTRS)
1824 invalidate_extent_cache(root, min_key: &key, max_key: &next_key);
1825 }
1826
1827 /*
1828 * handle the case only one block in the fs tree need to be
1829 * relocated and the block is tree root.
1830 */
1831 leaf = btrfs_lock_root_node(root);
1832 ret = btrfs_cow_block(trans, root, buf: leaf, NULL, parent_slot: 0, cow_ret: &leaf,
1833 nest: BTRFS_NESTING_COW);
1834 btrfs_tree_unlock(eb: leaf);
1835 free_extent_buffer(eb: leaf);
1836out:
1837 btrfs_free_path(p: path);
1838
1839 if (ret == 0) {
1840 ret = insert_dirty_subvol(trans, rc, root);
1841 if (ret)
1842 btrfs_abort_transaction(trans, ret);
1843 }
1844
1845 if (trans)
1846 btrfs_end_transaction_throttle(trans);
1847
1848 btrfs_btree_balance_dirty(fs_info);
1849
1850 if (replaced && rc->stage == UPDATE_DATA_PTRS)
1851 invalidate_extent_cache(root, min_key: &key, max_key: &next_key);
1852
1853 return ret;
1854}
1855
1856static noinline_for_stack
1857int prepare_to_merge(struct reloc_control *rc, int err)
1858{
1859 struct btrfs_root *root = rc->extent_root;
1860 struct btrfs_fs_info *fs_info = root->fs_info;
1861 struct btrfs_root *reloc_root;
1862 struct btrfs_trans_handle *trans;
1863 LIST_HEAD(reloc_roots);
1864 u64 num_bytes = 0;
1865 int ret;
1866
1867 mutex_lock(&fs_info->reloc_mutex);
1868 rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
1869 rc->merging_rsv_size += rc->nodes_relocated * 2;
1870 mutex_unlock(lock: &fs_info->reloc_mutex);
1871
1872again:
1873 if (!err) {
1874 num_bytes = rc->merging_rsv_size;
1875 ret = btrfs_block_rsv_add(fs_info, block_rsv: rc->block_rsv, num_bytes,
1876 flush: BTRFS_RESERVE_FLUSH_ALL);
1877 if (ret)
1878 err = ret;
1879 }
1880
1881 trans = btrfs_join_transaction(root: rc->extent_root);
1882 if (IS_ERR(ptr: trans)) {
1883 if (!err)
1884 btrfs_block_rsv_release(fs_info, block_rsv: rc->block_rsv,
1885 num_bytes, NULL);
1886 return PTR_ERR(ptr: trans);
1887 }
1888
1889 if (!err) {
1890 if (num_bytes != rc->merging_rsv_size) {
1891 btrfs_end_transaction(trans);
1892 btrfs_block_rsv_release(fs_info, block_rsv: rc->block_rsv,
1893 num_bytes, NULL);
1894 goto again;
1895 }
1896 }
1897
1898 rc->merge_reloc_tree = true;
1899
1900 while (!list_empty(head: &rc->reloc_roots)) {
1901 reloc_root = list_entry(rc->reloc_roots.next,
1902 struct btrfs_root, root_list);
1903 list_del_init(entry: &reloc_root->root_list);
1904
1905 root = btrfs_get_fs_root(fs_info, objectid: reloc_root->root_key.offset,
1906 check_ref: false);
1907 if (IS_ERR(ptr: root)) {
1908 /*
1909 * Even if we have an error we need this reloc root
1910 * back on our list so we can clean up properly.
1911 */
1912 list_add(new: &reloc_root->root_list, head: &reloc_roots);
1913 btrfs_abort_transaction(trans, (int)PTR_ERR(root));
1914 if (!err)
1915 err = PTR_ERR(ptr: root);
1916 break;
1917 }
1918
1919 if (unlikely(root->reloc_root != reloc_root)) {
1920 if (root->reloc_root) {
1921 btrfs_err(fs_info,
1922"reloc tree mismatch, root %lld has reloc root key (%lld %u %llu) gen %llu, expect reloc root key (%lld %u %llu) gen %llu",
1923 root->root_key.objectid,
1924 root->reloc_root->root_key.objectid,
1925 root->reloc_root->root_key.type,
1926 root->reloc_root->root_key.offset,
1927 btrfs_root_generation(
1928 &root->reloc_root->root_item),
1929 reloc_root->root_key.objectid,
1930 reloc_root->root_key.type,
1931 reloc_root->root_key.offset,
1932 btrfs_root_generation(
1933 &reloc_root->root_item));
1934 } else {
1935 btrfs_err(fs_info,
1936"reloc tree mismatch, root %lld has no reloc root, expect reloc root key (%lld %u %llu) gen %llu",
1937 root->root_key.objectid,
1938 reloc_root->root_key.objectid,
1939 reloc_root->root_key.type,
1940 reloc_root->root_key.offset,
1941 btrfs_root_generation(
1942 &reloc_root->root_item));
1943 }
1944 list_add(new: &reloc_root->root_list, head: &reloc_roots);
1945 btrfs_put_root(root);
1946 btrfs_abort_transaction(trans, -EUCLEAN);
1947 if (!err)
1948 err = -EUCLEAN;
1949 break;
1950 }
1951
1952 /*
1953 * set reference count to 1, so btrfs_recover_relocation
1954 * knows it should resumes merging
1955 */
1956 if (!err)
1957 btrfs_set_root_refs(s: &reloc_root->root_item, val: 1);
1958 ret = btrfs_update_reloc_root(trans, root);
1959
1960 /*
1961 * Even if we have an error we need this reloc root back on our
1962 * list so we can clean up properly.
1963 */
1964 list_add(new: &reloc_root->root_list, head: &reloc_roots);
1965 btrfs_put_root(root);
1966
1967 if (ret) {
1968 btrfs_abort_transaction(trans, ret);
1969 if (!err)
1970 err = ret;
1971 break;
1972 }
1973 }
1974
1975 list_splice(list: &reloc_roots, head: &rc->reloc_roots);
1976
1977 if (!err)
1978 err = btrfs_commit_transaction(trans);
1979 else
1980 btrfs_end_transaction(trans);
1981 return err;
1982}
1983
1984static noinline_for_stack
1985void free_reloc_roots(struct list_head *list)
1986{
1987 struct btrfs_root *reloc_root, *tmp;
1988
1989 list_for_each_entry_safe(reloc_root, tmp, list, root_list)
1990 __del_reloc_root(root: reloc_root);
1991}
1992
1993static noinline_for_stack
1994void merge_reloc_roots(struct reloc_control *rc)
1995{
1996 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
1997 struct btrfs_root *root;
1998 struct btrfs_root *reloc_root;
1999 LIST_HEAD(reloc_roots);
2000 int found = 0;
2001 int ret = 0;
2002again:
2003 root = rc->extent_root;
2004
2005 /*
2006 * this serializes us with btrfs_record_root_in_transaction,
2007 * we have to make sure nobody is in the middle of
2008 * adding their roots to the list while we are
2009 * doing this splice
2010 */
2011 mutex_lock(&fs_info->reloc_mutex);
2012 list_splice_init(list: &rc->reloc_roots, head: &reloc_roots);
2013 mutex_unlock(lock: &fs_info->reloc_mutex);
2014
2015 while (!list_empty(head: &reloc_roots)) {
2016 found = 1;
2017 reloc_root = list_entry(reloc_roots.next,
2018 struct btrfs_root, root_list);
2019
2020 root = btrfs_get_fs_root(fs_info, objectid: reloc_root->root_key.offset,
2021 check_ref: false);
2022 if (btrfs_root_refs(s: &reloc_root->root_item) > 0) {
2023 if (WARN_ON(IS_ERR(root))) {
2024 /*
2025 * For recovery we read the fs roots on mount,
2026 * and if we didn't find the root then we marked
2027 * the reloc root as a garbage root. For normal
2028 * relocation obviously the root should exist in
2029 * memory. However there's no reason we can't
2030 * handle the error properly here just in case.
2031 */
2032 ret = PTR_ERR(ptr: root);
2033 goto out;
2034 }
2035 if (WARN_ON(root->reloc_root != reloc_root)) {
2036 /*
2037 * This can happen if on-disk metadata has some
2038 * corruption, e.g. bad reloc tree key offset.
2039 */
2040 ret = -EINVAL;
2041 goto out;
2042 }
2043 ret = merge_reloc_root(rc, root);
2044 btrfs_put_root(root);
2045 if (ret) {
2046 if (list_empty(head: &reloc_root->root_list))
2047 list_add_tail(new: &reloc_root->root_list,
2048 head: &reloc_roots);
2049 goto out;
2050 }
2051 } else {
2052 if (!IS_ERR(ptr: root)) {
2053 if (root->reloc_root == reloc_root) {
2054 root->reloc_root = NULL;
2055 btrfs_put_root(root: reloc_root);
2056 }
2057 clear_bit(nr: BTRFS_ROOT_DEAD_RELOC_TREE,
2058 addr: &root->state);
2059 btrfs_put_root(root);
2060 }
2061
2062 list_del_init(entry: &reloc_root->root_list);
2063 /* Don't forget to queue this reloc root for cleanup */
2064 list_add_tail(new: &reloc_root->reloc_dirty_list,
2065 head: &rc->dirty_subvol_roots);
2066 }
2067 }
2068
2069 if (found) {
2070 found = 0;
2071 goto again;
2072 }
2073out:
2074 if (ret) {
2075 btrfs_handle_fs_error(fs_info, ret, NULL);
2076 free_reloc_roots(list: &reloc_roots);
2077
2078 /* new reloc root may be added */
2079 mutex_lock(&fs_info->reloc_mutex);
2080 list_splice_init(list: &rc->reloc_roots, head: &reloc_roots);
2081 mutex_unlock(lock: &fs_info->reloc_mutex);
2082 free_reloc_roots(list: &reloc_roots);
2083 }
2084
2085 /*
2086 * We used to have
2087 *
2088 * BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
2089 *
2090 * here, but it's wrong. If we fail to start the transaction in
2091 * prepare_to_merge() we will have only 0 ref reloc roots, none of which
2092 * have actually been removed from the reloc_root_tree rb tree. This is
2093 * fine because we're bailing here, and we hold a reference on the root
2094 * for the list that holds it, so these roots will be cleaned up when we
2095 * do the reloc_dirty_list afterwards. Meanwhile the root->reloc_root
2096 * will be cleaned up on unmount.
2097 *
2098 * The remaining nodes will be cleaned up by free_reloc_control.
2099 */
2100}
2101
2102static void free_block_list(struct rb_root *blocks)
2103{
2104 struct tree_block *block;
2105 struct rb_node *rb_node;
2106 while ((rb_node = rb_first(blocks))) {
2107 block = rb_entry(rb_node, struct tree_block, rb_node);
2108 rb_erase(rb_node, blocks);
2109 kfree(objp: block);
2110 }
2111}
2112
2113static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
2114 struct btrfs_root *reloc_root)
2115{
2116 struct btrfs_fs_info *fs_info = reloc_root->fs_info;
2117 struct btrfs_root *root;
2118 int ret;
2119
2120 if (reloc_root->last_trans == trans->transid)
2121 return 0;
2122
2123 root = btrfs_get_fs_root(fs_info, objectid: reloc_root->root_key.offset, check_ref: false);
2124
2125 /*
2126 * This should succeed, since we can't have a reloc root without having
2127 * already looked up the actual root and created the reloc root for this
2128 * root.
2129 *
2130 * However if there's some sort of corruption where we have a ref to a
2131 * reloc root without a corresponding root this could return ENOENT.
2132 */
2133 if (IS_ERR(ptr: root)) {
2134 ASSERT(0);
2135 return PTR_ERR(ptr: root);
2136 }
2137 if (root->reloc_root != reloc_root) {
2138 ASSERT(0);
2139 btrfs_err(fs_info,
2140 "root %llu has two reloc roots associated with it",
2141 reloc_root->root_key.offset);
2142 btrfs_put_root(root);
2143 return -EUCLEAN;
2144 }
2145 ret = btrfs_record_root_in_trans(trans, root);
2146 btrfs_put_root(root);
2147
2148 return ret;
2149}
2150
2151static noinline_for_stack
2152struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
2153 struct reloc_control *rc,
2154 struct btrfs_backref_node *node,
2155 struct btrfs_backref_edge *edges[])
2156{
2157 struct btrfs_backref_node *next;
2158 struct btrfs_root *root;
2159 int index = 0;
2160 int ret;
2161
2162 next = node;
2163 while (1) {
2164 cond_resched();
2165 next = walk_up_backref(node: next, edges, index: &index);
2166 root = next->root;
2167
2168 /*
2169 * If there is no root, then our references for this block are
2170 * incomplete, as we should be able to walk all the way up to a
2171 * block that is owned by a root.
2172 *
2173 * This path is only for SHAREABLE roots, so if we come upon a
2174 * non-SHAREABLE root then we have backrefs that resolve
2175 * improperly.
2176 *
2177 * Both of these cases indicate file system corruption, or a bug
2178 * in the backref walking code.
2179 */
2180 if (!root) {
2181 ASSERT(0);
2182 btrfs_err(trans->fs_info,
2183 "bytenr %llu doesn't have a backref path ending in a root",
2184 node->bytenr);
2185 return ERR_PTR(error: -EUCLEAN);
2186 }
2187 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
2188 ASSERT(0);
2189 btrfs_err(trans->fs_info,
2190 "bytenr %llu has multiple refs with one ending in a non-shareable root",
2191 node->bytenr);
2192 return ERR_PTR(error: -EUCLEAN);
2193 }
2194
2195 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
2196 ret = record_reloc_root_in_trans(trans, reloc_root: root);
2197 if (ret)
2198 return ERR_PTR(error: ret);
2199 break;
2200 }
2201
2202 ret = btrfs_record_root_in_trans(trans, root);
2203 if (ret)
2204 return ERR_PTR(error: ret);
2205 root = root->reloc_root;
2206
2207 /*
2208 * We could have raced with another thread which failed, so
2209 * root->reloc_root may not be set, return ENOENT in this case.
2210 */
2211 if (!root)
2212 return ERR_PTR(error: -ENOENT);
2213
2214 if (next->new_bytenr != root->node->start) {
2215 /*
2216 * We just created the reloc root, so we shouldn't have
2217 * ->new_bytenr set and this shouldn't be in the changed
2218 * list. If it is then we have multiple roots pointing
2219 * at the same bytenr which indicates corruption, or
2220 * we've made a mistake in the backref walking code.
2221 */
2222 ASSERT(next->new_bytenr == 0);
2223 ASSERT(list_empty(&next->list));
2224 if (next->new_bytenr || !list_empty(head: &next->list)) {
2225 btrfs_err(trans->fs_info,
2226 "bytenr %llu possibly has multiple roots pointing at the same bytenr %llu",
2227 node->bytenr, next->bytenr);
2228 return ERR_PTR(error: -EUCLEAN);
2229 }
2230
2231 next->new_bytenr = root->node->start;
2232 btrfs_put_root(root: next->root);
2233 next->root = btrfs_grab_root(root);
2234 ASSERT(next->root);
2235 list_add_tail(new: &next->list,
2236 head: &rc->backref_cache.changed);
2237 mark_block_processed(rc, node: next);
2238 break;
2239 }
2240
2241 WARN_ON(1);
2242 root = NULL;
2243 next = walk_down_backref(edges, index: &index);
2244 if (!next || next->level <= node->level)
2245 break;
2246 }
2247 if (!root) {
2248 /*
2249 * This can happen if there's fs corruption or if there's a bug
2250 * in the backref lookup code.
2251 */
2252 ASSERT(0);
2253 return ERR_PTR(error: -ENOENT);
2254 }
2255
2256 next = node;
2257 /* setup backref node path for btrfs_reloc_cow_block */
2258 while (1) {
2259 rc->backref_cache.path[next->level] = next;
2260 if (--index < 0)
2261 break;
2262 next = edges[index]->node[UPPER];
2263 }
2264 return root;
2265}
2266
2267/*
2268 * Select a tree root for relocation.
2269 *
2270 * Return NULL if the block is not shareable. We should use do_relocation() in
2271 * this case.
2272 *
2273 * Return a tree root pointer if the block is shareable.
2274 * Return -ENOENT if the block is root of reloc tree.
2275 */
2276static noinline_for_stack
2277struct btrfs_root *select_one_root(struct btrfs_backref_node *node)
2278{
2279 struct btrfs_backref_node *next;
2280 struct btrfs_root *root;
2281 struct btrfs_root *fs_root = NULL;
2282 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2283 int index = 0;
2284
2285 next = node;
2286 while (1) {
2287 cond_resched();
2288 next = walk_up_backref(node: next, edges, index: &index);
2289 root = next->root;
2290
2291 /*
2292 * This can occur if we have incomplete extent refs leading all
2293 * the way up a particular path, in this case return -EUCLEAN.
2294 */
2295 if (!root)
2296 return ERR_PTR(error: -EUCLEAN);
2297
2298 /* No other choice for non-shareable tree */
2299 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
2300 return root;
2301
2302 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID)
2303 fs_root = root;
2304
2305 if (next != node)
2306 return NULL;
2307
2308 next = walk_down_backref(edges, index: &index);
2309 if (!next || next->level <= node->level)
2310 break;
2311 }
2312
2313 if (!fs_root)
2314 return ERR_PTR(error: -ENOENT);
2315 return fs_root;
2316}
2317
2318static noinline_for_stack
2319u64 calcu_metadata_size(struct reloc_control *rc,
2320 struct btrfs_backref_node *node, int reserve)
2321{
2322 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2323 struct btrfs_backref_node *next = node;
2324 struct btrfs_backref_edge *edge;
2325 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2326 u64 num_bytes = 0;
2327 int index = 0;
2328
2329 BUG_ON(reserve && node->processed);
2330
2331 while (next) {
2332 cond_resched();
2333 while (1) {
2334 if (next->processed && (reserve || next != node))
2335 break;
2336
2337 num_bytes += fs_info->nodesize;
2338
2339 if (list_empty(head: &next->upper))
2340 break;
2341
2342 edge = list_entry(next->upper.next,
2343 struct btrfs_backref_edge, list[LOWER]);
2344 edges[index++] = edge;
2345 next = edge->node[UPPER];
2346 }
2347 next = walk_down_backref(edges, index: &index);
2348 }
2349 return num_bytes;
2350}
2351
2352static int reserve_metadata_space(struct btrfs_trans_handle *trans,
2353 struct reloc_control *rc,
2354 struct btrfs_backref_node *node)
2355{
2356 struct btrfs_root *root = rc->extent_root;
2357 struct btrfs_fs_info *fs_info = root->fs_info;
2358 u64 num_bytes;
2359 int ret;
2360 u64 tmp;
2361
2362 num_bytes = calcu_metadata_size(rc, node, reserve: 1) * 2;
2363
2364 trans->block_rsv = rc->block_rsv;
2365 rc->reserved_bytes += num_bytes;
2366
2367 /*
2368 * We are under a transaction here so we can only do limited flushing.
2369 * If we get an enospc just kick back -EAGAIN so we know to drop the
2370 * transaction and try to refill when we can flush all the things.
2371 */
2372 ret = btrfs_block_rsv_refill(fs_info, block_rsv: rc->block_rsv, num_bytes,
2373 flush: BTRFS_RESERVE_FLUSH_LIMIT);
2374 if (ret) {
2375 tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES;
2376 while (tmp <= rc->reserved_bytes)
2377 tmp <<= 1;
2378 /*
2379 * only one thread can access block_rsv at this point,
2380 * so we don't need hold lock to protect block_rsv.
2381 * we expand more reservation size here to allow enough
2382 * space for relocation and we will return earlier in
2383 * enospc case.
2384 */
2385 rc->block_rsv->size = tmp + fs_info->nodesize *
2386 RELOCATION_RESERVED_NODES;
2387 return -EAGAIN;
2388 }
2389
2390 return 0;
2391}
2392
2393/*
2394 * relocate a block tree, and then update pointers in upper level
2395 * blocks that reference the block to point to the new location.
2396 *
2397 * if called by link_to_upper, the block has already been relocated.
2398 * in that case this function just updates pointers.
2399 */
2400static int do_relocation(struct btrfs_trans_handle *trans,
2401 struct reloc_control *rc,
2402 struct btrfs_backref_node *node,
2403 struct btrfs_key *key,
2404 struct btrfs_path *path, int lowest)
2405{
2406 struct btrfs_backref_node *upper;
2407 struct btrfs_backref_edge *edge;
2408 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2409 struct btrfs_root *root;
2410 struct extent_buffer *eb;
2411 u32 blocksize;
2412 u64 bytenr;
2413 int slot;
2414 int ret = 0;
2415
2416 /*
2417 * If we are lowest then this is the first time we're processing this
2418 * block, and thus shouldn't have an eb associated with it yet.
2419 */
2420 ASSERT(!lowest || !node->eb);
2421
2422 path->lowest_level = node->level + 1;
2423 rc->backref_cache.path[node->level] = node;
2424 list_for_each_entry(edge, &node->upper, list[LOWER]) {
2425 struct btrfs_ref ref = { 0 };
2426
2427 cond_resched();
2428
2429 upper = edge->node[UPPER];
2430 root = select_reloc_root(trans, rc, node: upper, edges);
2431 if (IS_ERR(ptr: root)) {
2432 ret = PTR_ERR(ptr: root);
2433 goto next;
2434 }
2435
2436 if (upper->eb && !upper->locked) {
2437 if (!lowest) {
2438 ret = btrfs_bin_search(eb: upper->eb, first_slot: 0, key, slot: &slot);
2439 if (ret < 0)
2440 goto next;
2441 BUG_ON(ret);
2442 bytenr = btrfs_node_blockptr(eb: upper->eb, nr: slot);
2443 if (node->eb->start == bytenr)
2444 goto next;
2445 }
2446 btrfs_backref_drop_node_buffer(node: upper);
2447 }
2448
2449 if (!upper->eb) {
2450 ret = btrfs_search_slot(trans, root, key, p: path, ins_len: 0, cow: 1);
2451 if (ret) {
2452 if (ret > 0)
2453 ret = -ENOENT;
2454
2455 btrfs_release_path(p: path);
2456 break;
2457 }
2458
2459 if (!upper->eb) {
2460 upper->eb = path->nodes[upper->level];
2461 path->nodes[upper->level] = NULL;
2462 } else {
2463 BUG_ON(upper->eb != path->nodes[upper->level]);
2464 }
2465
2466 upper->locked = 1;
2467 path->locks[upper->level] = 0;
2468
2469 slot = path->slots[upper->level];
2470 btrfs_release_path(p: path);
2471 } else {
2472 ret = btrfs_bin_search(eb: upper->eb, first_slot: 0, key, slot: &slot);
2473 if (ret < 0)
2474 goto next;
2475 BUG_ON(ret);
2476 }
2477
2478 bytenr = btrfs_node_blockptr(eb: upper->eb, nr: slot);
2479 if (lowest) {
2480 if (bytenr != node->bytenr) {
2481 btrfs_err(root->fs_info,
2482 "lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu",
2483 bytenr, node->bytenr, slot,
2484 upper->eb->start);
2485 ret = -EIO;
2486 goto next;
2487 }
2488 } else {
2489 if (node->eb->start == bytenr)
2490 goto next;
2491 }
2492
2493 blocksize = root->fs_info->nodesize;
2494 eb = btrfs_read_node_slot(parent: upper->eb, slot);
2495 if (IS_ERR(ptr: eb)) {
2496 ret = PTR_ERR(ptr: eb);
2497 goto next;
2498 }
2499 btrfs_tree_lock(eb);
2500
2501 if (!node->eb) {
2502 ret = btrfs_cow_block(trans, root, buf: eb, parent: upper->eb,
2503 parent_slot: slot, cow_ret: &eb, nest: BTRFS_NESTING_COW);
2504 btrfs_tree_unlock(eb);
2505 free_extent_buffer(eb);
2506 if (ret < 0)
2507 goto next;
2508 /*
2509 * We've just COWed this block, it should have updated
2510 * the correct backref node entry.
2511 */
2512 ASSERT(node->eb == eb);
2513 } else {
2514 btrfs_set_node_blockptr(eb: upper->eb, nr: slot,
2515 val: node->eb->start);
2516 btrfs_set_node_ptr_generation(eb: upper->eb, nr: slot,
2517 val: trans->transid);
2518 btrfs_mark_buffer_dirty(trans, buf: upper->eb);
2519
2520 btrfs_init_generic_ref(generic_ref: &ref, action: BTRFS_ADD_DELAYED_REF,
2521 bytenr: node->eb->start, len: blocksize,
2522 parent: upper->eb->start,
2523 owning_root: btrfs_header_owner(eb: upper->eb));
2524 btrfs_init_tree_ref(generic_ref: &ref, level: node->level,
2525 root: btrfs_header_owner(eb: upper->eb),
2526 mod_root: root->root_key.objectid, skip_qgroup: false);
2527 ret = btrfs_inc_extent_ref(trans, generic_ref: &ref);
2528 if (!ret)
2529 ret = btrfs_drop_subtree(trans, root, node: eb,
2530 parent: upper->eb);
2531 if (ret)
2532 btrfs_abort_transaction(trans, ret);
2533 }
2534next:
2535 if (!upper->pending)
2536 btrfs_backref_drop_node_buffer(node: upper);
2537 else
2538 btrfs_backref_unlock_node_buffer(node: upper);
2539 if (ret)
2540 break;
2541 }
2542
2543 if (!ret && node->pending) {
2544 btrfs_backref_drop_node_buffer(node);
2545 list_move_tail(list: &node->list, head: &rc->backref_cache.changed);
2546 node->pending = 0;
2547 }
2548
2549 path->lowest_level = 0;
2550
2551 /*
2552 * We should have allocated all of our space in the block rsv and thus
2553 * shouldn't ENOSPC.
2554 */
2555 ASSERT(ret != -ENOSPC);
2556 return ret;
2557}
2558
2559static int link_to_upper(struct btrfs_trans_handle *trans,
2560 struct reloc_control *rc,
2561 struct btrfs_backref_node *node,
2562 struct btrfs_path *path)
2563{
2564 struct btrfs_key key;
2565
2566 btrfs_node_key_to_cpu(eb: node->eb, cpu_key: &key, nr: 0);
2567 return do_relocation(trans, rc, node, key: &key, path, lowest: 0);
2568}
2569
2570static int finish_pending_nodes(struct btrfs_trans_handle *trans,
2571 struct reloc_control *rc,
2572 struct btrfs_path *path, int err)
2573{
2574 LIST_HEAD(list);
2575 struct btrfs_backref_cache *cache = &rc->backref_cache;
2576 struct btrfs_backref_node *node;
2577 int level;
2578 int ret;
2579
2580 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2581 while (!list_empty(head: &cache->pending[level])) {
2582 node = list_entry(cache->pending[level].next,
2583 struct btrfs_backref_node, list);
2584 list_move_tail(list: &node->list, head: &list);
2585 BUG_ON(!node->pending);
2586
2587 if (!err) {
2588 ret = link_to_upper(trans, rc, node, path);
2589 if (ret < 0)
2590 err = ret;
2591 }
2592 }
2593 list_splice_init(list: &list, head: &cache->pending[level]);
2594 }
2595 return err;
2596}
2597
2598/*
2599 * mark a block and all blocks directly/indirectly reference the block
2600 * as processed.
2601 */
2602static void update_processed_blocks(struct reloc_control *rc,
2603 struct btrfs_backref_node *node)
2604{
2605 struct btrfs_backref_node *next = node;
2606 struct btrfs_backref_edge *edge;
2607 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2608 int index = 0;
2609
2610 while (next) {
2611 cond_resched();
2612 while (1) {
2613 if (next->processed)
2614 break;
2615
2616 mark_block_processed(rc, node: next);
2617
2618 if (list_empty(head: &next->upper))
2619 break;
2620
2621 edge = list_entry(next->upper.next,
2622 struct btrfs_backref_edge, list[LOWER]);
2623 edges[index++] = edge;
2624 next = edge->node[UPPER];
2625 }
2626 next = walk_down_backref(edges, index: &index);
2627 }
2628}
2629
2630static int tree_block_processed(u64 bytenr, struct reloc_control *rc)
2631{
2632 u32 blocksize = rc->extent_root->fs_info->nodesize;
2633
2634 if (test_range_bit(tree: &rc->processed_blocks, start: bytenr,
2635 end: bytenr + blocksize - 1, bit: EXTENT_DIRTY, NULL))
2636 return 1;
2637 return 0;
2638}
2639
2640static int get_tree_block_key(struct btrfs_fs_info *fs_info,
2641 struct tree_block *block)
2642{
2643 struct btrfs_tree_parent_check check = {
2644 .level = block->level,
2645 .owner_root = block->owner,
2646 .transid = block->key.offset
2647 };
2648 struct extent_buffer *eb;
2649
2650 eb = read_tree_block(fs_info, bytenr: block->bytenr, check: &check);
2651 if (IS_ERR(ptr: eb))
2652 return PTR_ERR(ptr: eb);
2653 if (!extent_buffer_uptodate(eb)) {
2654 free_extent_buffer(eb);
2655 return -EIO;
2656 }
2657 if (block->level == 0)
2658 btrfs_item_key_to_cpu(eb, cpu_key: &block->key, nr: 0);
2659 else
2660 btrfs_node_key_to_cpu(eb, cpu_key: &block->key, nr: 0);
2661 free_extent_buffer(eb);
2662 block->key_ready = true;
2663 return 0;
2664}
2665
2666/*
2667 * helper function to relocate a tree block
2668 */
2669static int relocate_tree_block(struct btrfs_trans_handle *trans,
2670 struct reloc_control *rc,
2671 struct btrfs_backref_node *node,
2672 struct btrfs_key *key,
2673 struct btrfs_path *path)
2674{
2675 struct btrfs_root *root;
2676 int ret = 0;
2677
2678 if (!node)
2679 return 0;
2680
2681 /*
2682 * If we fail here we want to drop our backref_node because we are going
2683 * to start over and regenerate the tree for it.
2684 */
2685 ret = reserve_metadata_space(trans, rc, node);
2686 if (ret)
2687 goto out;
2688
2689 BUG_ON(node->processed);
2690 root = select_one_root(node);
2691 if (IS_ERR(ptr: root)) {
2692 ret = PTR_ERR(ptr: root);
2693
2694 /* See explanation in select_one_root for the -EUCLEAN case. */
2695 ASSERT(ret == -ENOENT);
2696 if (ret == -ENOENT) {
2697 ret = 0;
2698 update_processed_blocks(rc, node);
2699 }
2700 goto out;
2701 }
2702
2703 if (root) {
2704 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
2705 /*
2706 * This block was the root block of a root, and this is
2707 * the first time we're processing the block and thus it
2708 * should not have had the ->new_bytenr modified and
2709 * should have not been included on the changed list.
2710 *
2711 * However in the case of corruption we could have
2712 * multiple refs pointing to the same block improperly,
2713 * and thus we would trip over these checks. ASSERT()
2714 * for the developer case, because it could indicate a
2715 * bug in the backref code, however error out for a
2716 * normal user in the case of corruption.
2717 */
2718 ASSERT(node->new_bytenr == 0);
2719 ASSERT(list_empty(&node->list));
2720 if (node->new_bytenr || !list_empty(head: &node->list)) {
2721 btrfs_err(root->fs_info,
2722 "bytenr %llu has improper references to it",
2723 node->bytenr);
2724 ret = -EUCLEAN;
2725 goto out;
2726 }
2727 ret = btrfs_record_root_in_trans(trans, root);
2728 if (ret)
2729 goto out;
2730 /*
2731 * Another thread could have failed, need to check if we
2732 * have reloc_root actually set.
2733 */
2734 if (!root->reloc_root) {
2735 ret = -ENOENT;
2736 goto out;
2737 }
2738 root = root->reloc_root;
2739 node->new_bytenr = root->node->start;
2740 btrfs_put_root(root: node->root);
2741 node->root = btrfs_grab_root(root);
2742 ASSERT(node->root);
2743 list_add_tail(new: &node->list, head: &rc->backref_cache.changed);
2744 } else {
2745 path->lowest_level = node->level;
2746 if (root == root->fs_info->chunk_root)
2747 btrfs_reserve_chunk_metadata(trans, is_item_insertion: false);
2748 ret = btrfs_search_slot(trans, root, key, p: path, ins_len: 0, cow: 1);
2749 btrfs_release_path(p: path);
2750 if (root == root->fs_info->chunk_root)
2751 btrfs_trans_release_chunk_metadata(trans);
2752 if (ret > 0)
2753 ret = 0;
2754 }
2755 if (!ret)
2756 update_processed_blocks(rc, node);
2757 } else {
2758 ret = do_relocation(trans, rc, node, key, path, lowest: 1);
2759 }
2760out:
2761 if (ret || node->level == 0 || node->cowonly)
2762 btrfs_backref_cleanup_node(cache: &rc->backref_cache, node);
2763 return ret;
2764}
2765
2766/*
2767 * relocate a list of blocks
2768 */
2769static noinline_for_stack
2770int relocate_tree_blocks(struct btrfs_trans_handle *trans,
2771 struct reloc_control *rc, struct rb_root *blocks)
2772{
2773 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2774 struct btrfs_backref_node *node;
2775 struct btrfs_path *path;
2776 struct tree_block *block;
2777 struct tree_block *next;
2778 int ret;
2779 int err = 0;
2780
2781 path = btrfs_alloc_path();
2782 if (!path) {
2783 err = -ENOMEM;
2784 goto out_free_blocks;
2785 }
2786
2787 /* Kick in readahead for tree blocks with missing keys */
2788 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2789 if (!block->key_ready)
2790 btrfs_readahead_tree_block(fs_info, bytenr: block->bytenr,
2791 owner_root: block->owner, gen: 0,
2792 level: block->level);
2793 }
2794
2795 /* Get first keys */
2796 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2797 if (!block->key_ready) {
2798 err = get_tree_block_key(fs_info, block);
2799 if (err)
2800 goto out_free_path;
2801 }
2802 }
2803
2804 /* Do tree relocation */
2805 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2806 node = build_backref_tree(trans, rc, node_key: &block->key,
2807 level: block->level, bytenr: block->bytenr);
2808 if (IS_ERR(ptr: node)) {
2809 err = PTR_ERR(ptr: node);
2810 goto out;
2811 }
2812
2813 ret = relocate_tree_block(trans, rc, node, key: &block->key,
2814 path);
2815 if (ret < 0) {
2816 err = ret;
2817 break;
2818 }
2819 }
2820out:
2821 err = finish_pending_nodes(trans, rc, path, err);
2822
2823out_free_path:
2824 btrfs_free_path(p: path);
2825out_free_blocks:
2826 free_block_list(blocks);
2827 return err;
2828}
2829
2830static noinline_for_stack int prealloc_file_extent_cluster(
2831 struct btrfs_inode *inode,
2832 const struct file_extent_cluster *cluster)
2833{
2834 u64 alloc_hint = 0;
2835 u64 start;
2836 u64 end;
2837 u64 offset = inode->index_cnt;
2838 u64 num_bytes;
2839 int nr;
2840 int ret = 0;
2841 u64 i_size = i_size_read(inode: &inode->vfs_inode);
2842 u64 prealloc_start = cluster->start - offset;
2843 u64 prealloc_end = cluster->end - offset;
2844 u64 cur_offset = prealloc_start;
2845
2846 /*
2847 * For subpage case, previous i_size may not be aligned to PAGE_SIZE.
2848 * This means the range [i_size, PAGE_END + 1) is filled with zeros by
2849 * btrfs_do_readpage() call of previously relocated file cluster.
2850 *
2851 * If the current cluster starts in the above range, btrfs_do_readpage()
2852 * will skip the read, and relocate_one_page() will later writeback
2853 * the padding zeros as new data, causing data corruption.
2854 *
2855 * Here we have to manually invalidate the range (i_size, PAGE_END + 1).
2856 */
2857 if (!PAGE_ALIGNED(i_size)) {
2858 struct address_space *mapping = inode->vfs_inode.i_mapping;
2859 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2860 const u32 sectorsize = fs_info->sectorsize;
2861 struct page *page;
2862
2863 ASSERT(sectorsize < PAGE_SIZE);
2864 ASSERT(IS_ALIGNED(i_size, sectorsize));
2865
2866 /*
2867 * Subpage can't handle page with DIRTY but without UPTODATE
2868 * bit as it can lead to the following deadlock:
2869 *
2870 * btrfs_read_folio()
2871 * | Page already *locked*
2872 * |- btrfs_lock_and_flush_ordered_range()
2873 * |- btrfs_start_ordered_extent()
2874 * |- extent_write_cache_pages()
2875 * |- lock_page()
2876 * We try to lock the page we already hold.
2877 *
2878 * Here we just writeback the whole data reloc inode, so that
2879 * we will be ensured to have no dirty range in the page, and
2880 * are safe to clear the uptodate bits.
2881 *
2882 * This shouldn't cause too much overhead, as we need to write
2883 * the data back anyway.
2884 */
2885 ret = filemap_write_and_wait(mapping);
2886 if (ret < 0)
2887 return ret;
2888
2889 clear_extent_bits(tree: &inode->io_tree, start: i_size,
2890 round_up(i_size, PAGE_SIZE) - 1,
2891 bits: EXTENT_UPTODATE);
2892 page = find_lock_page(mapping, index: i_size >> PAGE_SHIFT);
2893 /*
2894 * If page is freed we don't need to do anything then, as we
2895 * will re-read the whole page anyway.
2896 */
2897 if (page) {
2898 btrfs_subpage_clear_uptodate(fs_info, page, start: i_size,
2899 round_up(i_size, PAGE_SIZE) - i_size);
2900 unlock_page(page);
2901 put_page(page);
2902 }
2903 }
2904
2905 BUG_ON(cluster->start != cluster->boundary[0]);
2906 ret = btrfs_alloc_data_chunk_ondemand(inode,
2907 bytes: prealloc_end + 1 - prealloc_start);
2908 if (ret)
2909 return ret;
2910
2911 btrfs_inode_lock(inode, ilock_flags: 0);
2912 for (nr = 0; nr < cluster->nr; nr++) {
2913 struct extent_state *cached_state = NULL;
2914
2915 start = cluster->boundary[nr] - offset;
2916 if (nr + 1 < cluster->nr)
2917 end = cluster->boundary[nr + 1] - 1 - offset;
2918 else
2919 end = cluster->end - offset;
2920
2921 lock_extent(tree: &inode->io_tree, start, end, cached: &cached_state);
2922 num_bytes = end + 1 - start;
2923 ret = btrfs_prealloc_file_range(inode: &inode->vfs_inode, mode: 0, start,
2924 num_bytes, min_size: num_bytes,
2925 actual_len: end + 1, alloc_hint: &alloc_hint);
2926 cur_offset = end + 1;
2927 unlock_extent(tree: &inode->io_tree, start, end, cached: &cached_state);
2928 if (ret)
2929 break;
2930 }
2931 btrfs_inode_unlock(inode, ilock_flags: 0);
2932
2933 if (cur_offset < prealloc_end)
2934 btrfs_free_reserved_data_space_noquota(fs_info: inode->root->fs_info,
2935 len: prealloc_end + 1 - cur_offset);
2936 return ret;
2937}
2938
2939static noinline_for_stack int setup_relocation_extent_mapping(struct inode *inode,
2940 u64 start, u64 end, u64 block_start)
2941{
2942 struct extent_map *em;
2943 struct extent_state *cached_state = NULL;
2944 int ret = 0;
2945
2946 em = alloc_extent_map();
2947 if (!em)
2948 return -ENOMEM;
2949
2950 em->start = start;
2951 em->len = end + 1 - start;
2952 em->block_len = em->len;
2953 em->block_start = block_start;
2954 set_bit(nr: EXTENT_FLAG_PINNED, addr: &em->flags);
2955
2956 lock_extent(tree: &BTRFS_I(inode)->io_tree, start, end, cached: &cached_state);
2957 ret = btrfs_replace_extent_map_range(inode: BTRFS_I(inode), new_em: em, modified: false);
2958 unlock_extent(tree: &BTRFS_I(inode)->io_tree, start, end, cached: &cached_state);
2959 free_extent_map(em);
2960
2961 return ret;
2962}
2963
2964/*
2965 * Allow error injection to test balance/relocation cancellation
2966 */
2967noinline int btrfs_should_cancel_balance(const struct btrfs_fs_info *fs_info)
2968{
2969 return atomic_read(v: &fs_info->balance_cancel_req) ||
2970 atomic_read(v: &fs_info->reloc_cancel_req) ||
2971 fatal_signal_pending(current);
2972}
2973ALLOW_ERROR_INJECTION(btrfs_should_cancel_balance, TRUE);
2974
2975static u64 get_cluster_boundary_end(const struct file_extent_cluster *cluster,
2976 int cluster_nr)
2977{
2978 /* Last extent, use cluster end directly */
2979 if (cluster_nr >= cluster->nr - 1)
2980 return cluster->end;
2981
2982 /* Use next boundary start*/
2983 return cluster->boundary[cluster_nr + 1] - 1;
2984}
2985
2986static int relocate_one_page(struct inode *inode, struct file_ra_state *ra,
2987 const struct file_extent_cluster *cluster,
2988 int *cluster_nr, unsigned long page_index)
2989{
2990 struct btrfs_fs_info *fs_info = btrfs_sb(sb: inode->i_sb);
2991 u64 offset = BTRFS_I(inode)->index_cnt;
2992 const unsigned long last_index = (cluster->end - offset) >> PAGE_SHIFT;
2993 gfp_t mask = btrfs_alloc_write_mask(mapping: inode->i_mapping);
2994 struct page *page;
2995 u64 page_start;
2996 u64 page_end;
2997 u64 cur;
2998 int ret;
2999
3000 ASSERT(page_index <= last_index);
3001 page = find_lock_page(mapping: inode->i_mapping, index: page_index);
3002 if (!page) {
3003 page_cache_sync_readahead(mapping: inode->i_mapping, ra, NULL,
3004 index: page_index, req_count: last_index + 1 - page_index);
3005 page = find_or_create_page(mapping: inode->i_mapping, index: page_index, gfp_mask: mask);
3006 if (!page)
3007 return -ENOMEM;
3008 }
3009
3010 if (PageReadahead(page))
3011 page_cache_async_readahead(mapping: inode->i_mapping, ra, NULL,
3012 page_folio(page), index: page_index,
3013 req_count: last_index + 1 - page_index);
3014
3015 if (!PageUptodate(page)) {
3016 btrfs_read_folio(NULL, page_folio(page));
3017 lock_page(page);
3018 if (!PageUptodate(page)) {
3019 ret = -EIO;
3020 goto release_page;
3021 }
3022 }
3023
3024 /*
3025 * We could have lost page private when we dropped the lock to read the
3026 * page above, make sure we set_page_extent_mapped here so we have any
3027 * of the subpage blocksize stuff we need in place.
3028 */
3029 ret = set_page_extent_mapped(page);
3030 if (ret < 0)
3031 goto release_page;
3032
3033 page_start = page_offset(page);
3034 page_end = page_start + PAGE_SIZE - 1;
3035
3036 /*
3037 * Start from the cluster, as for subpage case, the cluster can start
3038 * inside the page.
3039 */
3040 cur = max(page_start, cluster->boundary[*cluster_nr] - offset);
3041 while (cur <= page_end) {
3042 struct extent_state *cached_state = NULL;
3043 u64 extent_start = cluster->boundary[*cluster_nr] - offset;
3044 u64 extent_end = get_cluster_boundary_end(cluster,
3045 cluster_nr: *cluster_nr) - offset;
3046 u64 clamped_start = max(page_start, extent_start);
3047 u64 clamped_end = min(page_end, extent_end);
3048 u32 clamped_len = clamped_end + 1 - clamped_start;
3049
3050 /* Reserve metadata for this range */
3051 ret = btrfs_delalloc_reserve_metadata(inode: BTRFS_I(inode),
3052 num_bytes: clamped_len, disk_num_bytes: clamped_len,
3053 noflush: false);
3054 if (ret)
3055 goto release_page;
3056
3057 /* Mark the range delalloc and dirty for later writeback */
3058 lock_extent(tree: &BTRFS_I(inode)->io_tree, start: clamped_start, end: clamped_end,
3059 cached: &cached_state);
3060 ret = btrfs_set_extent_delalloc(inode: BTRFS_I(inode), start: clamped_start,
3061 end: clamped_end, extra_bits: 0, cached_state: &cached_state);
3062 if (ret) {
3063 clear_extent_bit(tree: &BTRFS_I(inode)->io_tree,
3064 start: clamped_start, end: clamped_end,
3065 bits: EXTENT_LOCKED | EXTENT_BOUNDARY,
3066 cached: &cached_state);
3067 btrfs_delalloc_release_metadata(inode: BTRFS_I(inode),
3068 num_bytes: clamped_len, qgroup_free: true);
3069 btrfs_delalloc_release_extents(inode: BTRFS_I(inode),
3070 num_bytes: clamped_len);
3071 goto release_page;
3072 }
3073 btrfs_page_set_dirty(fs_info, page, start: clamped_start, len: clamped_len);
3074
3075 /*
3076 * Set the boundary if it's inside the page.
3077 * Data relocation requires the destination extents to have the
3078 * same size as the source.
3079 * EXTENT_BOUNDARY bit prevents current extent from being merged
3080 * with previous extent.
3081 */
3082 if (in_range(cluster->boundary[*cluster_nr] - offset,
3083 page_start, PAGE_SIZE)) {
3084 u64 boundary_start = cluster->boundary[*cluster_nr] -
3085 offset;
3086 u64 boundary_end = boundary_start +
3087 fs_info->sectorsize - 1;
3088
3089 set_extent_bit(tree: &BTRFS_I(inode)->io_tree,
3090 start: boundary_start, end: boundary_end,
3091 bits: EXTENT_BOUNDARY, NULL);
3092 }
3093 unlock_extent(tree: &BTRFS_I(inode)->io_tree, start: clamped_start, end: clamped_end,
3094 cached: &cached_state);
3095 btrfs_delalloc_release_extents(inode: BTRFS_I(inode), num_bytes: clamped_len);
3096 cur += clamped_len;
3097
3098 /* Crossed extent end, go to next extent */
3099 if (cur >= extent_end) {
3100 (*cluster_nr)++;
3101 /* Just finished the last extent of the cluster, exit. */
3102 if (*cluster_nr >= cluster->nr)
3103 break;
3104 }
3105 }
3106 unlock_page(page);
3107 put_page(page);
3108
3109 balance_dirty_pages_ratelimited(mapping: inode->i_mapping);
3110 btrfs_throttle(fs_info);
3111 if (btrfs_should_cancel_balance(fs_info))
3112 ret = -ECANCELED;
3113 return ret;
3114
3115release_page:
3116 unlock_page(page);
3117 put_page(page);
3118 return ret;
3119}
3120
3121static int relocate_file_extent_cluster(struct inode *inode,
3122 const struct file_extent_cluster *cluster)
3123{
3124 u64 offset = BTRFS_I(inode)->index_cnt;
3125 unsigned long index;
3126 unsigned long last_index;
3127 struct file_ra_state *ra;
3128 int cluster_nr = 0;
3129 int ret = 0;
3130
3131 if (!cluster->nr)
3132 return 0;
3133
3134 ra = kzalloc(size: sizeof(*ra), GFP_NOFS);
3135 if (!ra)
3136 return -ENOMEM;
3137
3138 ret = prealloc_file_extent_cluster(inode: BTRFS_I(inode), cluster);
3139 if (ret)
3140 goto out;
3141
3142 file_ra_state_init(ra, mapping: inode->i_mapping);
3143
3144 ret = setup_relocation_extent_mapping(inode, start: cluster->start - offset,
3145 end: cluster->end - offset, block_start: cluster->start);
3146 if (ret)
3147 goto out;
3148
3149 last_index = (cluster->end - offset) >> PAGE_SHIFT;
3150 for (index = (cluster->start - offset) >> PAGE_SHIFT;
3151 index <= last_index && !ret; index++)
3152 ret = relocate_one_page(inode, ra, cluster, cluster_nr: &cluster_nr, page_index: index);
3153 if (ret == 0)
3154 WARN_ON(cluster_nr != cluster->nr);
3155out:
3156 kfree(objp: ra);
3157 return ret;
3158}
3159
3160static noinline_for_stack int relocate_data_extent(struct inode *inode,
3161 const struct btrfs_key *extent_key,
3162 struct file_extent_cluster *cluster)
3163{
3164 int ret;
3165 struct btrfs_root *root = BTRFS_I(inode)->root;
3166
3167 if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
3168 ret = relocate_file_extent_cluster(inode, cluster);
3169 if (ret)
3170 return ret;
3171 cluster->nr = 0;
3172 }
3173
3174 /*
3175 * Under simple quotas, we set root->relocation_src_root when we find
3176 * the extent. If adjacent extents have different owners, we can't merge
3177 * them while relocating. Handle this by storing the owning root that
3178 * started a cluster and if we see an extent from a different root break
3179 * cluster formation (just like the above case of non-adjacent extents).
3180 *
3181 * Without simple quotas, relocation_src_root is always 0, so we should
3182 * never see a mismatch, and it should have no effect on relocation
3183 * clusters.
3184 */
3185 if (cluster->nr > 0 && cluster->owning_root != root->relocation_src_root) {
3186 u64 tmp = root->relocation_src_root;
3187
3188 /*
3189 * root->relocation_src_root is the state that actually affects
3190 * the preallocation we do here, so set it to the root owning
3191 * the cluster we need to relocate.
3192 */
3193 root->relocation_src_root = cluster->owning_root;
3194 ret = relocate_file_extent_cluster(inode, cluster);
3195 if (ret)
3196 return ret;
3197 cluster->nr = 0;
3198 /* And reset it back for the current extent's owning root. */
3199 root->relocation_src_root = tmp;
3200 }
3201
3202 if (!cluster->nr) {
3203 cluster->start = extent_key->objectid;
3204 cluster->owning_root = root->relocation_src_root;
3205 }
3206 else
3207 BUG_ON(cluster->nr >= MAX_EXTENTS);
3208 cluster->end = extent_key->objectid + extent_key->offset - 1;
3209 cluster->boundary[cluster->nr] = extent_key->objectid;
3210 cluster->nr++;
3211
3212 if (cluster->nr >= MAX_EXTENTS) {
3213 ret = relocate_file_extent_cluster(inode, cluster);
3214 if (ret)
3215 return ret;
3216 cluster->nr = 0;
3217 }
3218 return 0;
3219}
3220
3221/*
3222 * helper to add a tree block to the list.
3223 * the major work is getting the generation and level of the block
3224 */
3225static int add_tree_block(struct reloc_control *rc,
3226 const struct btrfs_key *extent_key,
3227 struct btrfs_path *path,
3228 struct rb_root *blocks)
3229{
3230 struct extent_buffer *eb;
3231 struct btrfs_extent_item *ei;
3232 struct btrfs_tree_block_info *bi;
3233 struct tree_block *block;
3234 struct rb_node *rb_node;
3235 u32 item_size;
3236 int level = -1;
3237 u64 generation;
3238 u64 owner = 0;
3239
3240 eb = path->nodes[0];
3241 item_size = btrfs_item_size(eb, slot: path->slots[0]);
3242
3243 if (extent_key->type == BTRFS_METADATA_ITEM_KEY ||
3244 item_size >= sizeof(*ei) + sizeof(*bi)) {
3245 unsigned long ptr = 0, end;
3246
3247 ei = btrfs_item_ptr(eb, path->slots[0],
3248 struct btrfs_extent_item);
3249 end = (unsigned long)ei + item_size;
3250 if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) {
3251 bi = (struct btrfs_tree_block_info *)(ei + 1);
3252 level = btrfs_tree_block_level(eb, s: bi);
3253 ptr = (unsigned long)(bi + 1);
3254 } else {
3255 level = (int)extent_key->offset;
3256 ptr = (unsigned long)(ei + 1);
3257 }
3258 generation = btrfs_extent_generation(eb, s: ei);
3259
3260 /*
3261 * We're reading random blocks without knowing their owner ahead
3262 * of time. This is ok most of the time, as all reloc roots and
3263 * fs roots have the same lock type. However normal trees do
3264 * not, and the only way to know ahead of time is to read the
3265 * inline ref offset. We know it's an fs root if
3266 *
3267 * 1. There's more than one ref.
3268 * 2. There's a SHARED_DATA_REF_KEY set.
3269 * 3. FULL_BACKREF is set on the flags.
3270 *
3271 * Otherwise it's safe to assume that the ref offset == the
3272 * owner of this block, so we can use that when calling
3273 * read_tree_block.
3274 */
3275 if (btrfs_extent_refs(eb, s: ei) == 1 &&
3276 !(btrfs_extent_flags(eb, s: ei) &
3277 BTRFS_BLOCK_FLAG_FULL_BACKREF) &&
3278 ptr < end) {
3279 struct btrfs_extent_inline_ref *iref;
3280 int type;
3281
3282 iref = (struct btrfs_extent_inline_ref *)ptr;
3283 type = btrfs_get_extent_inline_ref_type(eb, iref,
3284 is_data: BTRFS_REF_TYPE_BLOCK);
3285 if (type == BTRFS_REF_TYPE_INVALID)
3286 return -EINVAL;
3287 if (type == BTRFS_TREE_BLOCK_REF_KEY)
3288 owner = btrfs_extent_inline_ref_offset(eb, s: iref);
3289 }
3290 } else {
3291 btrfs_print_leaf(l: eb);
3292 btrfs_err(rc->block_group->fs_info,
3293 "unrecognized tree backref at tree block %llu slot %u",
3294 eb->start, path->slots[0]);
3295 btrfs_release_path(p: path);
3296 return -EUCLEAN;
3297 }
3298
3299 btrfs_release_path(p: path);
3300
3301 BUG_ON(level == -1);
3302
3303 block = kmalloc(size: sizeof(*block), GFP_NOFS);
3304 if (!block)
3305 return -ENOMEM;
3306
3307 block->bytenr = extent_key->objectid;
3308 block->key.objectid = rc->extent_root->fs_info->nodesize;
3309 block->key.offset = generation;
3310 block->level = level;
3311 block->key_ready = false;
3312 block->owner = owner;
3313
3314 rb_node = rb_simple_insert(root: blocks, bytenr: block->bytenr, node: &block->rb_node);
3315 if (rb_node)
3316 btrfs_backref_panic(fs_info: rc->extent_root->fs_info, bytenr: block->bytenr,
3317 error: -EEXIST);
3318
3319 return 0;
3320}
3321
3322/*
3323 * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
3324 */
3325static int __add_tree_block(struct reloc_control *rc,
3326 u64 bytenr, u32 blocksize,
3327 struct rb_root *blocks)
3328{
3329 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3330 struct btrfs_path *path;
3331 struct btrfs_key key;
3332 int ret;
3333 bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
3334
3335 if (tree_block_processed(bytenr, rc))
3336 return 0;
3337
3338 if (rb_simple_search(root: blocks, bytenr))
3339 return 0;
3340
3341 path = btrfs_alloc_path();
3342 if (!path)
3343 return -ENOMEM;
3344again:
3345 key.objectid = bytenr;
3346 if (skinny) {
3347 key.type = BTRFS_METADATA_ITEM_KEY;
3348 key.offset = (u64)-1;
3349 } else {
3350 key.type = BTRFS_EXTENT_ITEM_KEY;
3351 key.offset = blocksize;
3352 }
3353
3354 path->search_commit_root = 1;
3355 path->skip_locking = 1;
3356 ret = btrfs_search_slot(NULL, root: rc->extent_root, key: &key, p: path, ins_len: 0, cow: 0);
3357 if (ret < 0)
3358 goto out;
3359
3360 if (ret > 0 && skinny) {
3361 if (path->slots[0]) {
3362 path->slots[0]--;
3363 btrfs_item_key_to_cpu(eb: path->nodes[0], cpu_key: &key,
3364 nr: path->slots[0]);
3365 if (key.objectid == bytenr &&
3366 (key.type == BTRFS_METADATA_ITEM_KEY ||
3367 (key.type == BTRFS_EXTENT_ITEM_KEY &&
3368 key.offset == blocksize)))
3369 ret = 0;
3370 }
3371
3372 if (ret) {
3373 skinny = false;
3374 btrfs_release_path(p: path);
3375 goto again;
3376 }
3377 }
3378 if (ret) {
3379 ASSERT(ret == 1);
3380 btrfs_print_leaf(l: path->nodes[0]);
3381 btrfs_err(fs_info,
3382 "tree block extent item (%llu) is not found in extent tree",
3383 bytenr);
3384 WARN_ON(1);
3385 ret = -EINVAL;
3386 goto out;
3387 }
3388
3389 ret = add_tree_block(rc, extent_key: &key, path, blocks);
3390out:
3391 btrfs_free_path(p: path);
3392 return ret;
3393}
3394
3395static int delete_block_group_cache(struct btrfs_fs_info *fs_info,
3396 struct btrfs_block_group *block_group,
3397 struct inode *inode,
3398 u64 ino)
3399{
3400 struct btrfs_root *root = fs_info->tree_root;
3401 struct btrfs_trans_handle *trans;
3402 int ret = 0;
3403
3404 if (inode)
3405 goto truncate;
3406
3407 inode = btrfs_iget(s: fs_info->sb, ino, root);
3408 if (IS_ERR(ptr: inode))
3409 return -ENOENT;
3410
3411truncate:
3412 ret = btrfs_check_trunc_cache_free_space(fs_info,
3413 rsv: &fs_info->global_block_rsv);
3414 if (ret)
3415 goto out;
3416
3417 trans = btrfs_join_transaction(root);
3418 if (IS_ERR(ptr: trans)) {
3419 ret = PTR_ERR(ptr: trans);
3420 goto out;
3421 }
3422
3423 ret = btrfs_truncate_free_space_cache(trans, block_group, inode);
3424
3425 btrfs_end_transaction(trans);
3426 btrfs_btree_balance_dirty(fs_info);
3427out:
3428 iput(inode);
3429 return ret;
3430}
3431
3432/*
3433 * Locate the free space cache EXTENT_DATA in root tree leaf and delete the
3434 * cache inode, to avoid free space cache data extent blocking data relocation.
3435 */
3436static int delete_v1_space_cache(struct extent_buffer *leaf,
3437 struct btrfs_block_group *block_group,
3438 u64 data_bytenr)
3439{
3440 u64 space_cache_ino;
3441 struct btrfs_file_extent_item *ei;
3442 struct btrfs_key key;
3443 bool found = false;
3444 int i;
3445 int ret;
3446
3447 if (btrfs_header_owner(eb: leaf) != BTRFS_ROOT_TREE_OBJECTID)
3448 return 0;
3449
3450 for (i = 0; i < btrfs_header_nritems(eb: leaf); i++) {
3451 u8 type;
3452
3453 btrfs_item_key_to_cpu(eb: leaf, cpu_key: &key, nr: i);
3454 if (key.type != BTRFS_EXTENT_DATA_KEY)
3455 continue;
3456 ei = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
3457 type = btrfs_file_extent_type(eb: leaf, s: ei);
3458
3459 if ((type == BTRFS_FILE_EXTENT_REG ||
3460 type == BTRFS_FILE_EXTENT_PREALLOC) &&
3461 btrfs_file_extent_disk_bytenr(eb: leaf, s: ei) == data_bytenr) {
3462 found = true;
3463 space_cache_ino = key.objectid;
3464 break;
3465 }
3466 }
3467 if (!found)
3468 return -ENOENT;
3469 ret = delete_block_group_cache(fs_info: leaf->fs_info, block_group, NULL,
3470 ino: space_cache_ino);
3471 return ret;
3472}
3473
3474/*
3475 * helper to find all tree blocks that reference a given data extent
3476 */
3477static noinline_for_stack int add_data_references(struct reloc_control *rc,
3478 const struct btrfs_key *extent_key,
3479 struct btrfs_path *path,
3480 struct rb_root *blocks)
3481{
3482 struct btrfs_backref_walk_ctx ctx = { 0 };
3483 struct ulist_iterator leaf_uiter;
3484 struct ulist_node *ref_node = NULL;
3485 const u32 blocksize = rc->extent_root->fs_info->nodesize;
3486 int ret = 0;
3487
3488 btrfs_release_path(p: path);
3489
3490 ctx.bytenr = extent_key->objectid;
3491 ctx.skip_inode_ref_list = true;
3492 ctx.fs_info = rc->extent_root->fs_info;
3493
3494 ret = btrfs_find_all_leafs(ctx: &ctx);
3495 if (ret < 0)
3496 return ret;
3497
3498 ULIST_ITER_INIT(&leaf_uiter);
3499 while ((ref_node = ulist_next(ulist: ctx.refs, uiter: &leaf_uiter))) {
3500 struct btrfs_tree_parent_check check = { 0 };
3501 struct extent_buffer *eb;
3502
3503 eb = read_tree_block(fs_info: ctx.fs_info, bytenr: ref_node->val, check: &check);
3504 if (IS_ERR(ptr: eb)) {
3505 ret = PTR_ERR(ptr: eb);
3506 break;
3507 }
3508 ret = delete_v1_space_cache(leaf: eb, block_group: rc->block_group,
3509 data_bytenr: extent_key->objectid);
3510 free_extent_buffer(eb);
3511 if (ret < 0)
3512 break;
3513 ret = __add_tree_block(rc, bytenr: ref_node->val, blocksize, blocks);
3514 if (ret < 0)
3515 break;
3516 }
3517 if (ret < 0)
3518 free_block_list(blocks);
3519 ulist_free(ulist: ctx.refs);
3520 return ret;
3521}
3522
3523/*
3524 * helper to find next unprocessed extent
3525 */
3526static noinline_for_stack
3527int find_next_extent(struct reloc_control *rc, struct btrfs_path *path,
3528 struct btrfs_key *extent_key)
3529{
3530 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3531 struct btrfs_key key;
3532 struct extent_buffer *leaf;
3533 u64 start, end, last;
3534 int ret;
3535
3536 last = rc->block_group->start + rc->block_group->length;
3537 while (1) {
3538 bool block_found;
3539
3540 cond_resched();
3541 if (rc->search_start >= last) {
3542 ret = 1;
3543 break;
3544 }
3545
3546 key.objectid = rc->search_start;
3547 key.type = BTRFS_EXTENT_ITEM_KEY;
3548 key.offset = 0;
3549
3550 path->search_commit_root = 1;
3551 path->skip_locking = 1;
3552 ret = btrfs_search_slot(NULL, root: rc->extent_root, key: &key, p: path,
3553 ins_len: 0, cow: 0);
3554 if (ret < 0)
3555 break;
3556next:
3557 leaf = path->nodes[0];
3558 if (path->slots[0] >= btrfs_header_nritems(eb: leaf)) {
3559 ret = btrfs_next_leaf(root: rc->extent_root, path);
3560 if (ret != 0)
3561 break;
3562 leaf = path->nodes[0];
3563 }
3564
3565 btrfs_item_key_to_cpu(eb: leaf, cpu_key: &key, nr: path->slots[0]);
3566 if (key.objectid >= last) {
3567 ret = 1;
3568 break;
3569 }
3570
3571 if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3572 key.type != BTRFS_METADATA_ITEM_KEY) {
3573 path->slots[0]++;
3574 goto next;
3575 }
3576
3577 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3578 key.objectid + key.offset <= rc->search_start) {
3579 path->slots[0]++;
3580 goto next;
3581 }
3582
3583 if (key.type == BTRFS_METADATA_ITEM_KEY &&
3584 key.objectid + fs_info->nodesize <=
3585 rc->search_start) {
3586 path->slots[0]++;
3587 goto next;
3588 }
3589
3590 block_found = find_first_extent_bit(tree: &rc->processed_blocks,
3591 start: key.objectid, start_ret: &start, end_ret: &end,
3592 bits: EXTENT_DIRTY, NULL);
3593
3594 if (block_found && start <= key.objectid) {
3595 btrfs_release_path(p: path);
3596 rc->search_start = end + 1;
3597 } else {
3598 if (key.type == BTRFS_EXTENT_ITEM_KEY)
3599 rc->search_start = key.objectid + key.offset;
3600 else
3601 rc->search_start = key.objectid +
3602 fs_info->nodesize;
3603 memcpy(extent_key, &key, sizeof(key));
3604 return 0;
3605 }
3606 }
3607 btrfs_release_path(p: path);
3608 return ret;
3609}
3610
3611static void set_reloc_control(struct reloc_control *rc)
3612{
3613 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3614
3615 mutex_lock(&fs_info->reloc_mutex);
3616 fs_info->reloc_ctl = rc;
3617 mutex_unlock(lock: &fs_info->reloc_mutex);
3618}
3619
3620static void unset_reloc_control(struct reloc_control *rc)
3621{
3622 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3623
3624 mutex_lock(&fs_info->reloc_mutex);
3625 fs_info->reloc_ctl = NULL;
3626 mutex_unlock(lock: &fs_info->reloc_mutex);
3627}
3628
3629static noinline_for_stack
3630int prepare_to_relocate(struct reloc_control *rc)
3631{
3632 struct btrfs_trans_handle *trans;
3633 int ret;
3634
3635 rc->block_rsv = btrfs_alloc_block_rsv(fs_info: rc->extent_root->fs_info,
3636 type: BTRFS_BLOCK_RSV_TEMP);
3637 if (!rc->block_rsv)
3638 return -ENOMEM;
3639
3640 memset(&rc->cluster, 0, sizeof(rc->cluster));
3641 rc->search_start = rc->block_group->start;
3642 rc->extents_found = 0;
3643 rc->nodes_relocated = 0;
3644 rc->merging_rsv_size = 0;
3645 rc->reserved_bytes = 0;
3646 rc->block_rsv->size = rc->extent_root->fs_info->nodesize *
3647 RELOCATION_RESERVED_NODES;
3648 ret = btrfs_block_rsv_refill(fs_info: rc->extent_root->fs_info,
3649 block_rsv: rc->block_rsv, num_bytes: rc->block_rsv->size,
3650 flush: BTRFS_RESERVE_FLUSH_ALL);
3651 if (ret)
3652 return ret;
3653
3654 rc->create_reloc_tree = true;
3655 set_reloc_control(rc);
3656
3657 trans = btrfs_join_transaction(root: rc->extent_root);
3658 if (IS_ERR(ptr: trans)) {
3659 unset_reloc_control(rc);
3660 /*
3661 * extent tree is not a ref_cow tree and has no reloc_root to
3662 * cleanup. And callers are responsible to free the above
3663 * block rsv.
3664 */
3665 return PTR_ERR(ptr: trans);
3666 }
3667
3668 ret = btrfs_commit_transaction(trans);
3669 if (ret)
3670 unset_reloc_control(rc);
3671
3672 return ret;
3673}
3674
3675static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
3676{
3677 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3678 struct rb_root blocks = RB_ROOT;
3679 struct btrfs_key key;
3680 struct btrfs_trans_handle *trans = NULL;
3681 struct btrfs_path *path;
3682 struct btrfs_extent_item *ei;
3683 u64 flags;
3684 int ret;
3685 int err = 0;
3686 int progress = 0;
3687
3688 path = btrfs_alloc_path();
3689 if (!path)
3690 return -ENOMEM;
3691 path->reada = READA_FORWARD;
3692
3693 ret = prepare_to_relocate(rc);
3694 if (ret) {
3695 err = ret;
3696 goto out_free;
3697 }
3698
3699 while (1) {
3700 rc->reserved_bytes = 0;
3701 ret = btrfs_block_rsv_refill(fs_info, block_rsv: rc->block_rsv,
3702 num_bytes: rc->block_rsv->size,
3703 flush: BTRFS_RESERVE_FLUSH_ALL);
3704 if (ret) {
3705 err = ret;
3706 break;
3707 }
3708 progress++;
3709 trans = btrfs_start_transaction(root: rc->extent_root, num_items: 0);
3710 if (IS_ERR(ptr: trans)) {
3711 err = PTR_ERR(ptr: trans);
3712 trans = NULL;
3713 break;
3714 }
3715restart:
3716 if (update_backref_cache(trans, cache: &rc->backref_cache)) {
3717 btrfs_end_transaction(trans);
3718 trans = NULL;
3719 continue;
3720 }
3721
3722 ret = find_next_extent(rc, path, extent_key: &key);
3723 if (ret < 0)
3724 err = ret;
3725 if (ret != 0)
3726 break;
3727
3728 rc->extents_found++;
3729
3730 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3731 struct btrfs_extent_item);
3732 flags = btrfs_extent_flags(eb: path->nodes[0], s: ei);
3733
3734 /*
3735 * If we are relocating a simple quota owned extent item, we
3736 * need to note the owner on the reloc data root so that when
3737 * we allocate the replacement item, we can attribute it to the
3738 * correct eventual owner (rather than the reloc data root).
3739 */
3740 if (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_SIMPLE) {
3741 struct btrfs_root *root = BTRFS_I(inode: rc->data_inode)->root;
3742 u64 owning_root_id = btrfs_get_extent_owner_root(fs_info,
3743 leaf: path->nodes[0],
3744 slot: path->slots[0]);
3745
3746 root->relocation_src_root = owning_root_id;
3747 }
3748
3749 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
3750 ret = add_tree_block(rc, extent_key: &key, path, blocks: &blocks);
3751 } else if (rc->stage == UPDATE_DATA_PTRS &&
3752 (flags & BTRFS_EXTENT_FLAG_DATA)) {
3753 ret = add_data_references(rc, extent_key: &key, path, blocks: &blocks);
3754 } else {
3755 btrfs_release_path(p: path);
3756 ret = 0;
3757 }
3758 if (ret < 0) {
3759 err = ret;
3760 break;
3761 }
3762
3763 if (!RB_EMPTY_ROOT(&blocks)) {
3764 ret = relocate_tree_blocks(trans, rc, blocks: &blocks);
3765 if (ret < 0) {
3766 if (ret != -EAGAIN) {
3767 err = ret;
3768 break;
3769 }
3770 rc->extents_found--;
3771 rc->search_start = key.objectid;
3772 }
3773 }
3774
3775 btrfs_end_transaction_throttle(trans);
3776 btrfs_btree_balance_dirty(fs_info);
3777 trans = NULL;
3778
3779 if (rc->stage == MOVE_DATA_EXTENTS &&
3780 (flags & BTRFS_EXTENT_FLAG_DATA)) {
3781 rc->found_file_extent = true;
3782 ret = relocate_data_extent(inode: rc->data_inode,
3783 extent_key: &key, cluster: &rc->cluster);
3784 if (ret < 0) {
3785 err = ret;
3786 break;
3787 }
3788 }
3789 if (btrfs_should_cancel_balance(fs_info)) {
3790 err = -ECANCELED;
3791 break;
3792 }
3793 }
3794 if (trans && progress && err == -ENOSPC) {
3795 ret = btrfs_force_chunk_alloc(trans, type: rc->block_group->flags);
3796 if (ret == 1) {
3797 err = 0;
3798 progress = 0;
3799 goto restart;
3800 }
3801 }
3802
3803 btrfs_release_path(p: path);
3804 clear_extent_bits(tree: &rc->processed_blocks, start: 0, end: (u64)-1, bits: EXTENT_DIRTY);
3805
3806 if (trans) {
3807 btrfs_end_transaction_throttle(trans);
3808 btrfs_btree_balance_dirty(fs_info);
3809 }
3810
3811 if (!err) {
3812 ret = relocate_file_extent_cluster(inode: rc->data_inode,
3813 cluster: &rc->cluster);
3814 if (ret < 0)
3815 err = ret;
3816 }
3817
3818 rc->create_reloc_tree = false;
3819 set_reloc_control(rc);
3820
3821 btrfs_backref_release_cache(cache: &rc->backref_cache);
3822 btrfs_block_rsv_release(fs_info, block_rsv: rc->block_rsv, num_bytes: (u64)-1, NULL);
3823
3824 /*
3825 * Even in the case when the relocation is cancelled, we should all go
3826 * through prepare_to_merge() and merge_reloc_roots().
3827 *
3828 * For error (including cancelled balance), prepare_to_merge() will
3829 * mark all reloc trees orphan, then queue them for cleanup in
3830 * merge_reloc_roots()
3831 */
3832 err = prepare_to_merge(rc, err);
3833
3834 merge_reloc_roots(rc);
3835
3836 rc->merge_reloc_tree = false;
3837 unset_reloc_control(rc);
3838 btrfs_block_rsv_release(fs_info, block_rsv: rc->block_rsv, num_bytes: (u64)-1, NULL);
3839
3840 /* get rid of pinned extents */
3841 trans = btrfs_join_transaction(root: rc->extent_root);
3842 if (IS_ERR(ptr: trans)) {
3843 err = PTR_ERR(ptr: trans);
3844 goto out_free;
3845 }
3846 ret = btrfs_commit_transaction(trans);
3847 if (ret && !err)
3848 err = ret;
3849out_free:
3850 ret = clean_dirty_subvols(rc);
3851 if (ret < 0 && !err)
3852 err = ret;
3853 btrfs_free_block_rsv(fs_info, rsv: rc->block_rsv);
3854 btrfs_free_path(p: path);
3855 return err;
3856}
3857
3858static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
3859 struct btrfs_root *root, u64 objectid)
3860{
3861 struct btrfs_path *path;
3862 struct btrfs_inode_item *item;
3863 struct extent_buffer *leaf;
3864 int ret;
3865
3866 path = btrfs_alloc_path();
3867 if (!path)
3868 return -ENOMEM;
3869
3870 ret = btrfs_insert_empty_inode(trans, root, path, objectid);
3871 if (ret)
3872 goto out;
3873
3874 leaf = path->nodes[0];
3875 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
3876 memzero_extent_buffer(eb: leaf, start: (unsigned long)item, len: sizeof(*item));
3877 btrfs_set_inode_generation(eb: leaf, s: item, val: 1);
3878 btrfs_set_inode_size(eb: leaf, s: item, val: 0);
3879 btrfs_set_inode_mode(eb: leaf, s: item, S_IFREG | 0600);
3880 btrfs_set_inode_flags(eb: leaf, s: item, BTRFS_INODE_NOCOMPRESS |
3881 BTRFS_INODE_PREALLOC);
3882 btrfs_mark_buffer_dirty(trans, buf: leaf);
3883out:
3884 btrfs_free_path(p: path);
3885 return ret;
3886}
3887
3888static void delete_orphan_inode(struct btrfs_trans_handle *trans,
3889 struct btrfs_root *root, u64 objectid)
3890{
3891 struct btrfs_path *path;
3892 struct btrfs_key key;
3893 int ret = 0;
3894
3895 path = btrfs_alloc_path();
3896 if (!path) {
3897 ret = -ENOMEM;
3898 goto out;
3899 }
3900
3901 key.objectid = objectid;
3902 key.type = BTRFS_INODE_ITEM_KEY;
3903 key.offset = 0;
3904 ret = btrfs_search_slot(trans, root, key: &key, p: path, ins_len: -1, cow: 1);
3905 if (ret) {
3906 if (ret > 0)
3907 ret = -ENOENT;
3908 goto out;
3909 }
3910 ret = btrfs_del_item(trans, root, path);
3911out:
3912 if (ret)
3913 btrfs_abort_transaction(trans, ret);
3914 btrfs_free_path(p: path);
3915}
3916
3917/*
3918 * helper to create inode for data relocation.
3919 * the inode is in data relocation tree and its link count is 0
3920 */
3921static noinline_for_stack struct inode *create_reloc_inode(
3922 struct btrfs_fs_info *fs_info,
3923 const struct btrfs_block_group *group)
3924{
3925 struct inode *inode = NULL;
3926 struct btrfs_trans_handle *trans;
3927 struct btrfs_root *root;
3928 u64 objectid;
3929 int err = 0;
3930
3931 root = btrfs_grab_root(root: fs_info->data_reloc_root);
3932 trans = btrfs_start_transaction(root, num_items: 6);
3933 if (IS_ERR(ptr: trans)) {
3934 btrfs_put_root(root);
3935 return ERR_CAST(ptr: trans);
3936 }
3937
3938 err = btrfs_get_free_objectid(root, objectid: &objectid);
3939 if (err)
3940 goto out;
3941
3942 err = __insert_orphan_inode(trans, root, objectid);
3943 if (err)
3944 goto out;
3945
3946 inode = btrfs_iget(s: fs_info->sb, ino: objectid, root);
3947 if (IS_ERR(ptr: inode)) {
3948 delete_orphan_inode(trans, root, objectid);
3949 err = PTR_ERR(ptr: inode);
3950 inode = NULL;
3951 goto out;
3952 }
3953 BTRFS_I(inode)->index_cnt = group->start;
3954
3955 err = btrfs_orphan_add(trans, inode: BTRFS_I(inode));
3956out:
3957 btrfs_put_root(root);
3958 btrfs_end_transaction(trans);
3959 btrfs_btree_balance_dirty(fs_info);
3960 if (err) {
3961 iput(inode);
3962 inode = ERR_PTR(error: err);
3963 }
3964 return inode;
3965}
3966
3967/*
3968 * Mark start of chunk relocation that is cancellable. Check if the cancellation
3969 * has been requested meanwhile and don't start in that case.
3970 *
3971 * Return:
3972 * 0 success
3973 * -EINPROGRESS operation is already in progress, that's probably a bug
3974 * -ECANCELED cancellation request was set before the operation started
3975 */
3976static int reloc_chunk_start(struct btrfs_fs_info *fs_info)
3977{
3978 if (test_and_set_bit(nr: BTRFS_FS_RELOC_RUNNING, addr: &fs_info->flags)) {
3979 /* This should not happen */
3980 btrfs_err(fs_info, "reloc already running, cannot start");
3981 return -EINPROGRESS;
3982 }
3983
3984 if (atomic_read(v: &fs_info->reloc_cancel_req) > 0) {
3985 btrfs_info(fs_info, "chunk relocation canceled on start");
3986 /*
3987 * On cancel, clear all requests but let the caller mark
3988 * the end after cleanup operations.
3989 */
3990 atomic_set(v: &fs_info->reloc_cancel_req, i: 0);
3991 return -ECANCELED;
3992 }
3993 return 0;
3994}
3995
3996/*
3997 * Mark end of chunk relocation that is cancellable and wake any waiters.
3998 */
3999static void reloc_chunk_end(struct btrfs_fs_info *fs_info)
4000{
4001 /* Requested after start, clear bit first so any waiters can continue */
4002 if (atomic_read(v: &fs_info->reloc_cancel_req) > 0)
4003 btrfs_info(fs_info, "chunk relocation canceled during operation");
4004 clear_and_wake_up_bit(bit: BTRFS_FS_RELOC_RUNNING, word: &fs_info->flags);
4005 atomic_set(v: &fs_info->reloc_cancel_req, i: 0);
4006}
4007
4008static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info)
4009{
4010 struct reloc_control *rc;
4011
4012 rc = kzalloc(size: sizeof(*rc), GFP_NOFS);
4013 if (!rc)
4014 return NULL;
4015
4016 INIT_LIST_HEAD(list: &rc->reloc_roots);
4017 INIT_LIST_HEAD(list: &rc->dirty_subvol_roots);
4018 btrfs_backref_init_cache(fs_info, cache: &rc->backref_cache, is_reloc: true);
4019 rc->reloc_root_tree.rb_root = RB_ROOT;
4020 spin_lock_init(&rc->reloc_root_tree.lock);
4021 extent_io_tree_init(fs_info, tree: &rc->processed_blocks, owner: IO_TREE_RELOC_BLOCKS);
4022 return rc;
4023}
4024
4025static void free_reloc_control(struct reloc_control *rc)
4026{
4027 struct mapping_node *node, *tmp;
4028
4029 free_reloc_roots(list: &rc->reloc_roots);
4030 rbtree_postorder_for_each_entry_safe(node, tmp,
4031 &rc->reloc_root_tree.rb_root, rb_node)
4032 kfree(objp: node);
4033
4034 kfree(objp: rc);
4035}
4036
4037/*
4038 * Print the block group being relocated
4039 */
4040static void describe_relocation(struct btrfs_fs_info *fs_info,
4041 struct btrfs_block_group *block_group)
4042{
4043 char buf[128] = {'\0'};
4044
4045 btrfs_describe_block_groups(flags: block_group->flags, buf, size_buf: sizeof(buf));
4046
4047 btrfs_info(fs_info,
4048 "relocating block group %llu flags %s",
4049 block_group->start, buf);
4050}
4051
4052static const char *stage_to_string(enum reloc_stage stage)
4053{
4054 if (stage == MOVE_DATA_EXTENTS)
4055 return "move data extents";
4056 if (stage == UPDATE_DATA_PTRS)
4057 return "update data pointers";
4058 return "unknown";
4059}
4060
4061/*
4062 * function to relocate all extents in a block group.
4063 */
4064int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start)
4065{
4066 struct btrfs_block_group *bg;
4067 struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bytenr: group_start);
4068 struct reloc_control *rc;
4069 struct inode *inode;
4070 struct btrfs_path *path;
4071 int ret;
4072 int rw = 0;
4073 int err = 0;
4074
4075 /*
4076 * This only gets set if we had a half-deleted snapshot on mount. We
4077 * cannot allow relocation to start while we're still trying to clean up
4078 * these pending deletions.
4079 */
4080 ret = wait_on_bit(word: &fs_info->flags, bit: BTRFS_FS_UNFINISHED_DROPS, TASK_INTERRUPTIBLE);
4081 if (ret)
4082 return ret;
4083
4084 /* We may have been woken up by close_ctree, so bail if we're closing. */
4085 if (btrfs_fs_closing(fs_info))
4086 return -EINTR;
4087
4088 bg = btrfs_lookup_block_group(info: fs_info, bytenr: group_start);
4089 if (!bg)
4090 return -ENOENT;
4091
4092 /*
4093 * Relocation of a data block group creates ordered extents. Without
4094 * sb_start_write(), we can freeze the filesystem while unfinished
4095 * ordered extents are left. Such ordered extents can cause a deadlock
4096 * e.g. when syncfs() is waiting for their completion but they can't
4097 * finish because they block when joining a transaction, due to the
4098 * fact that the freeze locks are being held in write mode.
4099 */
4100 if (bg->flags & BTRFS_BLOCK_GROUP_DATA)
4101 ASSERT(sb_write_started(fs_info->sb));
4102
4103 if (btrfs_pinned_by_swapfile(fs_info, ptr: bg)) {
4104 btrfs_put_block_group(cache: bg);
4105 return -ETXTBSY;
4106 }
4107
4108 rc = alloc_reloc_control(fs_info);
4109 if (!rc) {
4110 btrfs_put_block_group(cache: bg);
4111 return -ENOMEM;
4112 }
4113
4114 ret = reloc_chunk_start(fs_info);
4115 if (ret < 0) {
4116 err = ret;
4117 goto out_put_bg;
4118 }
4119
4120 rc->extent_root = extent_root;
4121 rc->block_group = bg;
4122
4123 ret = btrfs_inc_block_group_ro(cache: rc->block_group, do_chunk_alloc: true);
4124 if (ret) {
4125 err = ret;
4126 goto out;
4127 }
4128 rw = 1;
4129
4130 path = btrfs_alloc_path();
4131 if (!path) {
4132 err = -ENOMEM;
4133 goto out;
4134 }
4135
4136 inode = lookup_free_space_inode(block_group: rc->block_group, path);
4137 btrfs_free_path(p: path);
4138
4139 if (!IS_ERR(ptr: inode))
4140 ret = delete_block_group_cache(fs_info, block_group: rc->block_group, inode, ino: 0);
4141 else
4142 ret = PTR_ERR(ptr: inode);
4143
4144 if (ret && ret != -ENOENT) {
4145 err = ret;
4146 goto out;
4147 }
4148
4149 rc->data_inode = create_reloc_inode(fs_info, group: rc->block_group);
4150 if (IS_ERR(ptr: rc->data_inode)) {
4151 err = PTR_ERR(ptr: rc->data_inode);
4152 rc->data_inode = NULL;
4153 goto out;
4154 }
4155
4156 describe_relocation(fs_info, block_group: rc->block_group);
4157
4158 btrfs_wait_block_group_reservations(bg: rc->block_group);
4159 btrfs_wait_nocow_writers(bg: rc->block_group);
4160 btrfs_wait_ordered_roots(fs_info, U64_MAX,
4161 range_start: rc->block_group->start,
4162 range_len: rc->block_group->length);
4163
4164 ret = btrfs_zone_finish(block_group: rc->block_group);
4165 WARN_ON(ret && ret != -EAGAIN);
4166
4167 while (1) {
4168 enum reloc_stage finishes_stage;
4169
4170 mutex_lock(&fs_info->cleaner_mutex);
4171 ret = relocate_block_group(rc);
4172 mutex_unlock(lock: &fs_info->cleaner_mutex);
4173 if (ret < 0)
4174 err = ret;
4175
4176 finishes_stage = rc->stage;
4177 /*
4178 * We may have gotten ENOSPC after we already dirtied some
4179 * extents. If writeout happens while we're relocating a
4180 * different block group we could end up hitting the
4181 * BUG_ON(rc->stage == UPDATE_DATA_PTRS) in
4182 * btrfs_reloc_cow_block. Make sure we write everything out
4183 * properly so we don't trip over this problem, and then break
4184 * out of the loop if we hit an error.
4185 */
4186 if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
4187 ret = btrfs_wait_ordered_range(inode: rc->data_inode, start: 0,
4188 len: (u64)-1);
4189 if (ret)
4190 err = ret;
4191 invalidate_mapping_pages(mapping: rc->data_inode->i_mapping,
4192 start: 0, end: -1);
4193 rc->stage = UPDATE_DATA_PTRS;
4194 }
4195
4196 if (err < 0)
4197 goto out;
4198
4199 if (rc->extents_found == 0)
4200 break;
4201
4202 btrfs_info(fs_info, "found %llu extents, stage: %s",
4203 rc->extents_found, stage_to_string(finishes_stage));
4204 }
4205
4206 WARN_ON(rc->block_group->pinned > 0);
4207 WARN_ON(rc->block_group->reserved > 0);
4208 WARN_ON(rc->block_group->used > 0);
4209out:
4210 if (err && rw)
4211 btrfs_dec_block_group_ro(cache: rc->block_group);
4212 iput(rc->data_inode);
4213out_put_bg:
4214 btrfs_put_block_group(cache: bg);
4215 reloc_chunk_end(fs_info);
4216 free_reloc_control(rc);
4217 return err;
4218}
4219
4220static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
4221{
4222 struct btrfs_fs_info *fs_info = root->fs_info;
4223 struct btrfs_trans_handle *trans;
4224 int ret, err;
4225
4226 trans = btrfs_start_transaction(root: fs_info->tree_root, num_items: 0);
4227 if (IS_ERR(ptr: trans))
4228 return PTR_ERR(ptr: trans);
4229
4230 memset(&root->root_item.drop_progress, 0,
4231 sizeof(root->root_item.drop_progress));
4232 btrfs_set_root_drop_level(s: &root->root_item, val: 0);
4233 btrfs_set_root_refs(s: &root->root_item, val: 0);
4234 ret = btrfs_update_root(trans, root: fs_info->tree_root,
4235 key: &root->root_key, item: &root->root_item);
4236
4237 err = btrfs_end_transaction(trans);
4238 if (err)
4239 return err;
4240 return ret;
4241}
4242
4243/*
4244 * recover relocation interrupted by system crash.
4245 *
4246 * this function resumes merging reloc trees with corresponding fs trees.
4247 * this is important for keeping the sharing of tree blocks
4248 */
4249int btrfs_recover_relocation(struct btrfs_fs_info *fs_info)
4250{
4251 LIST_HEAD(reloc_roots);
4252 struct btrfs_key key;
4253 struct btrfs_root *fs_root;
4254 struct btrfs_root *reloc_root;
4255 struct btrfs_path *path;
4256 struct extent_buffer *leaf;
4257 struct reloc_control *rc = NULL;
4258 struct btrfs_trans_handle *trans;
4259 int ret;
4260 int err = 0;
4261
4262 path = btrfs_alloc_path();
4263 if (!path)
4264 return -ENOMEM;
4265 path->reada = READA_BACK;
4266
4267 key.objectid = BTRFS_TREE_RELOC_OBJECTID;
4268 key.type = BTRFS_ROOT_ITEM_KEY;
4269 key.offset = (u64)-1;
4270
4271 while (1) {
4272 ret = btrfs_search_slot(NULL, root: fs_info->tree_root, key: &key,
4273 p: path, ins_len: 0, cow: 0);
4274 if (ret < 0) {
4275 err = ret;
4276 goto out;
4277 }
4278 if (ret > 0) {
4279 if (path->slots[0] == 0)
4280 break;
4281 path->slots[0]--;
4282 }
4283 leaf = path->nodes[0];
4284 btrfs_item_key_to_cpu(eb: leaf, cpu_key: &key, nr: path->slots[0]);
4285 btrfs_release_path(p: path);
4286
4287 if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
4288 key.type != BTRFS_ROOT_ITEM_KEY)
4289 break;
4290
4291 reloc_root = btrfs_read_tree_root(tree_root: fs_info->tree_root, key: &key);
4292 if (IS_ERR(ptr: reloc_root)) {
4293 err = PTR_ERR(ptr: reloc_root);
4294 goto out;
4295 }
4296
4297 set_bit(nr: BTRFS_ROOT_SHAREABLE, addr: &reloc_root->state);
4298 list_add(new: &reloc_root->root_list, head: &reloc_roots);
4299
4300 if (btrfs_root_refs(s: &reloc_root->root_item) > 0) {
4301 fs_root = btrfs_get_fs_root(fs_info,
4302 objectid: reloc_root->root_key.offset, check_ref: false);
4303 if (IS_ERR(ptr: fs_root)) {
4304 ret = PTR_ERR(ptr: fs_root);
4305 if (ret != -ENOENT) {
4306 err = ret;
4307 goto out;
4308 }
4309 ret = mark_garbage_root(root: reloc_root);
4310 if (ret < 0) {
4311 err = ret;
4312 goto out;
4313 }
4314 } else {
4315 btrfs_put_root(root: fs_root);
4316 }
4317 }
4318
4319 if (key.offset == 0)
4320 break;
4321
4322 key.offset--;
4323 }
4324 btrfs_release_path(p: path);
4325
4326 if (list_empty(head: &reloc_roots))
4327 goto out;
4328
4329 rc = alloc_reloc_control(fs_info);
4330 if (!rc) {
4331 err = -ENOMEM;
4332 goto out;
4333 }
4334
4335 ret = reloc_chunk_start(fs_info);
4336 if (ret < 0) {
4337 err = ret;
4338 goto out_end;
4339 }
4340
4341 rc->extent_root = btrfs_extent_root(fs_info, bytenr: 0);
4342
4343 set_reloc_control(rc);
4344
4345 trans = btrfs_join_transaction(root: rc->extent_root);
4346 if (IS_ERR(ptr: trans)) {
4347 err = PTR_ERR(ptr: trans);
4348 goto out_unset;
4349 }
4350
4351 rc->merge_reloc_tree = true;
4352
4353 while (!list_empty(head: &reloc_roots)) {
4354 reloc_root = list_entry(reloc_roots.next,
4355 struct btrfs_root, root_list);
4356 list_del(entry: &reloc_root->root_list);
4357
4358 if (btrfs_root_refs(s: &reloc_root->root_item) == 0) {
4359 list_add_tail(new: &reloc_root->root_list,
4360 head: &rc->reloc_roots);
4361 continue;
4362 }
4363
4364 fs_root = btrfs_get_fs_root(fs_info, objectid: reloc_root->root_key.offset,
4365 check_ref: false);
4366 if (IS_ERR(ptr: fs_root)) {
4367 err = PTR_ERR(ptr: fs_root);
4368 list_add_tail(new: &reloc_root->root_list, head: &reloc_roots);
4369 btrfs_end_transaction(trans);
4370 goto out_unset;
4371 }
4372
4373 err = __add_reloc_root(root: reloc_root);
4374 ASSERT(err != -EEXIST);
4375 if (err) {
4376 list_add_tail(new: &reloc_root->root_list, head: &reloc_roots);
4377 btrfs_put_root(root: fs_root);
4378 btrfs_end_transaction(trans);
4379 goto out_unset;
4380 }
4381 fs_root->reloc_root = btrfs_grab_root(root: reloc_root);
4382 btrfs_put_root(root: fs_root);
4383 }
4384
4385 err = btrfs_commit_transaction(trans);
4386 if (err)
4387 goto out_unset;
4388
4389 merge_reloc_roots(rc);
4390
4391 unset_reloc_control(rc);
4392
4393 trans = btrfs_join_transaction(root: rc->extent_root);
4394 if (IS_ERR(ptr: trans)) {
4395 err = PTR_ERR(ptr: trans);
4396 goto out_clean;
4397 }
4398 err = btrfs_commit_transaction(trans);
4399out_clean:
4400 ret = clean_dirty_subvols(rc);
4401 if (ret < 0 && !err)
4402 err = ret;
4403out_unset:
4404 unset_reloc_control(rc);
4405out_end:
4406 reloc_chunk_end(fs_info);
4407 free_reloc_control(rc);
4408out:
4409 free_reloc_roots(list: &reloc_roots);
4410
4411 btrfs_free_path(p: path);
4412
4413 if (err == 0) {
4414 /* cleanup orphan inode in data relocation tree */
4415 fs_root = btrfs_grab_root(root: fs_info->data_reloc_root);
4416 ASSERT(fs_root);
4417 err = btrfs_orphan_cleanup(root: fs_root);
4418 btrfs_put_root(root: fs_root);
4419 }
4420 return err;
4421}
4422
4423/*
4424 * helper to add ordered checksum for data relocation.
4425 *
4426 * cloning checksum properly handles the nodatasum extents.
4427 * it also saves CPU time to re-calculate the checksum.
4428 */
4429int btrfs_reloc_clone_csums(struct btrfs_ordered_extent *ordered)
4430{
4431 struct btrfs_inode *inode = BTRFS_I(inode: ordered->inode);
4432 struct btrfs_fs_info *fs_info = inode->root->fs_info;
4433 u64 disk_bytenr = ordered->file_offset + inode->index_cnt;
4434 struct btrfs_root *csum_root = btrfs_csum_root(fs_info, bytenr: disk_bytenr);
4435 LIST_HEAD(list);
4436 int ret;
4437
4438 ret = btrfs_lookup_csums_list(root: csum_root, start: disk_bytenr,
4439 end: disk_bytenr + ordered->num_bytes - 1,
4440 list: &list, search_commit: 0, nowait: false);
4441 if (ret)
4442 return ret;
4443
4444 while (!list_empty(head: &list)) {
4445 struct btrfs_ordered_sum *sums =
4446 list_entry(list.next, struct btrfs_ordered_sum, list);
4447
4448 list_del_init(entry: &sums->list);
4449
4450 /*
4451 * We need to offset the new_bytenr based on where the csum is.
4452 * We need to do this because we will read in entire prealloc
4453 * extents but we may have written to say the middle of the
4454 * prealloc extent, so we need to make sure the csum goes with
4455 * the right disk offset.
4456 *
4457 * We can do this because the data reloc inode refers strictly
4458 * to the on disk bytes, so we don't have to worry about
4459 * disk_len vs real len like with real inodes since it's all
4460 * disk length.
4461 */
4462 sums->logical = ordered->disk_bytenr + sums->logical - disk_bytenr;
4463 btrfs_add_ordered_sum(entry: ordered, sum: sums);
4464 }
4465
4466 return 0;
4467}
4468
4469int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
4470 struct btrfs_root *root,
4471 const struct extent_buffer *buf,
4472 struct extent_buffer *cow)
4473{
4474 struct btrfs_fs_info *fs_info = root->fs_info;
4475 struct reloc_control *rc;
4476 struct btrfs_backref_node *node;
4477 int first_cow = 0;
4478 int level;
4479 int ret = 0;
4480
4481 rc = fs_info->reloc_ctl;
4482 if (!rc)
4483 return 0;
4484
4485 BUG_ON(rc->stage == UPDATE_DATA_PTRS && btrfs_is_data_reloc_root(root));
4486
4487 level = btrfs_header_level(eb: buf);
4488 if (btrfs_header_generation(eb: buf) <=
4489 btrfs_root_last_snapshot(s: &root->root_item))
4490 first_cow = 1;
4491
4492 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID &&
4493 rc->create_reloc_tree) {
4494 WARN_ON(!first_cow && level == 0);
4495
4496 node = rc->backref_cache.path[level];
4497 BUG_ON(node->bytenr != buf->start &&
4498 node->new_bytenr != buf->start);
4499
4500 btrfs_backref_drop_node_buffer(node);
4501 atomic_inc(v: &cow->refs);
4502 node->eb = cow;
4503 node->new_bytenr = cow->start;
4504
4505 if (!node->pending) {
4506 list_move_tail(list: &node->list,
4507 head: &rc->backref_cache.pending[level]);
4508 node->pending = 1;
4509 }
4510
4511 if (first_cow)
4512 mark_block_processed(rc, node);
4513
4514 if (first_cow && level > 0)
4515 rc->nodes_relocated += buf->len;
4516 }
4517
4518 if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS)
4519 ret = replace_file_extents(trans, rc, root, leaf: cow);
4520 return ret;
4521}
4522
4523/*
4524 * called before creating snapshot. it calculates metadata reservation
4525 * required for relocating tree blocks in the snapshot
4526 */
4527void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
4528 u64 *bytes_to_reserve)
4529{
4530 struct btrfs_root *root = pending->root;
4531 struct reloc_control *rc = root->fs_info->reloc_ctl;
4532
4533 if (!rc || !have_reloc_root(root))
4534 return;
4535
4536 if (!rc->merge_reloc_tree)
4537 return;
4538
4539 root = root->reloc_root;
4540 BUG_ON(btrfs_root_refs(&root->root_item) == 0);
4541 /*
4542 * relocation is in the stage of merging trees. the space
4543 * used by merging a reloc tree is twice the size of
4544 * relocated tree nodes in the worst case. half for cowing
4545 * the reloc tree, half for cowing the fs tree. the space
4546 * used by cowing the reloc tree will be freed after the
4547 * tree is dropped. if we create snapshot, cowing the fs
4548 * tree may use more space than it frees. so we need
4549 * reserve extra space.
4550 */
4551 *bytes_to_reserve += rc->nodes_relocated;
4552}
4553
4554/*
4555 * called after snapshot is created. migrate block reservation
4556 * and create reloc root for the newly created snapshot
4557 *
4558 * This is similar to btrfs_init_reloc_root(), we come out of here with two
4559 * references held on the reloc_root, one for root->reloc_root and one for
4560 * rc->reloc_roots.
4561 */
4562int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4563 struct btrfs_pending_snapshot *pending)
4564{
4565 struct btrfs_root *root = pending->root;
4566 struct btrfs_root *reloc_root;
4567 struct btrfs_root *new_root;
4568 struct reloc_control *rc = root->fs_info->reloc_ctl;
4569 int ret;
4570
4571 if (!rc || !have_reloc_root(root))
4572 return 0;
4573
4574 rc = root->fs_info->reloc_ctl;
4575 rc->merging_rsv_size += rc->nodes_relocated;
4576
4577 if (rc->merge_reloc_tree) {
4578 ret = btrfs_block_rsv_migrate(src_rsv: &pending->block_rsv,
4579 dst_rsv: rc->block_rsv,
4580 num_bytes: rc->nodes_relocated, update_size: true);
4581 if (ret)
4582 return ret;
4583 }
4584
4585 new_root = pending->snap;
4586 reloc_root = create_reloc_root(trans, root: root->reloc_root,
4587 objectid: new_root->root_key.objectid);
4588 if (IS_ERR(ptr: reloc_root))
4589 return PTR_ERR(ptr: reloc_root);
4590
4591 ret = __add_reloc_root(root: reloc_root);
4592 ASSERT(ret != -EEXIST);
4593 if (ret) {
4594 /* Pairs with create_reloc_root */
4595 btrfs_put_root(root: reloc_root);
4596 return ret;
4597 }
4598 new_root->reloc_root = btrfs_grab_root(root: reloc_root);
4599
4600 if (rc->create_reloc_tree)
4601 ret = clone_backref_node(trans, rc, src: root, dest: reloc_root);
4602 return ret;
4603}
4604
4605/*
4606 * Get the current bytenr for the block group which is being relocated.
4607 *
4608 * Return U64_MAX if no running relocation.
4609 */
4610u64 btrfs_get_reloc_bg_bytenr(const struct btrfs_fs_info *fs_info)
4611{
4612 u64 logical = U64_MAX;
4613
4614 lockdep_assert_held(&fs_info->reloc_mutex);
4615
4616 if (fs_info->reloc_ctl && fs_info->reloc_ctl->block_group)
4617 logical = fs_info->reloc_ctl->block_group->start;
4618 return logical;
4619}
4620

source code of linux/fs/btrfs/relocation.c