1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2011, 2012 STRATO. All rights reserved.
4 */
5
6#include <linux/blkdev.h>
7#include <linux/ratelimit.h>
8#include <linux/sched/mm.h>
9#include <crypto/hash.h>
10#include "ctree.h"
11#include "discard.h"
12#include "volumes.h"
13#include "disk-io.h"
14#include "ordered-data.h"
15#include "transaction.h"
16#include "backref.h"
17#include "extent_io.h"
18#include "dev-replace.h"
19#include "raid56.h"
20#include "block-group.h"
21#include "zoned.h"
22#include "fs.h"
23#include "accessors.h"
24#include "file-item.h"
25#include "scrub.h"
26#include "raid-stripe-tree.h"
27
28/*
29 * This is only the first step towards a full-features scrub. It reads all
30 * extent and super block and verifies the checksums. In case a bad checksum
31 * is found or the extent cannot be read, good data will be written back if
32 * any can be found.
33 *
34 * Future enhancements:
35 * - In case an unrepairable extent is encountered, track which files are
36 * affected and report them
37 * - track and record media errors, throw out bad devices
38 * - add a mode to also read unallocated space
39 */
40
41struct scrub_ctx;
42
43/*
44 * The following value only influences the performance.
45 *
46 * This detemines how many stripes would be submitted in one go,
47 * which is 512KiB (BTRFS_STRIPE_LEN * SCRUB_STRIPES_PER_GROUP).
48 */
49#define SCRUB_STRIPES_PER_GROUP 8
50
51/*
52 * How many groups we have for each sctx.
53 *
54 * This would be 8M per device, the same value as the old scrub in-flight bios
55 * size limit.
56 */
57#define SCRUB_GROUPS_PER_SCTX 16
58
59#define SCRUB_TOTAL_STRIPES (SCRUB_GROUPS_PER_SCTX * SCRUB_STRIPES_PER_GROUP)
60
61/*
62 * The following value times PAGE_SIZE needs to be large enough to match the
63 * largest node/leaf/sector size that shall be supported.
64 */
65#define SCRUB_MAX_SECTORS_PER_BLOCK (BTRFS_MAX_METADATA_BLOCKSIZE / SZ_4K)
66
67/* Represent one sector and its needed info to verify the content. */
68struct scrub_sector_verification {
69 bool is_metadata;
70
71 union {
72 /*
73 * Csum pointer for data csum verification. Should point to a
74 * sector csum inside scrub_stripe::csums.
75 *
76 * NULL if this data sector has no csum.
77 */
78 u8 *csum;
79
80 /*
81 * Extra info for metadata verification. All sectors inside a
82 * tree block share the same generation.
83 */
84 u64 generation;
85 };
86};
87
88enum scrub_stripe_flags {
89 /* Set when @mirror_num, @dev, @physical and @logical are set. */
90 SCRUB_STRIPE_FLAG_INITIALIZED,
91
92 /* Set when the read-repair is finished. */
93 SCRUB_STRIPE_FLAG_REPAIR_DONE,
94
95 /*
96 * Set for data stripes if it's triggered from P/Q stripe.
97 * During such scrub, we should not report errors in data stripes, nor
98 * update the accounting.
99 */
100 SCRUB_STRIPE_FLAG_NO_REPORT,
101};
102
103#define SCRUB_STRIPE_PAGES (BTRFS_STRIPE_LEN / PAGE_SIZE)
104
105/*
106 * Represent one contiguous range with a length of BTRFS_STRIPE_LEN.
107 */
108struct scrub_stripe {
109 struct scrub_ctx *sctx;
110 struct btrfs_block_group *bg;
111
112 struct page *pages[SCRUB_STRIPE_PAGES];
113 struct scrub_sector_verification *sectors;
114
115 struct btrfs_device *dev;
116 u64 logical;
117 u64 physical;
118
119 u16 mirror_num;
120
121 /* Should be BTRFS_STRIPE_LEN / sectorsize. */
122 u16 nr_sectors;
123
124 /*
125 * How many data/meta extents are in this stripe. Only for scrub status
126 * reporting purposes.
127 */
128 u16 nr_data_extents;
129 u16 nr_meta_extents;
130
131 atomic_t pending_io;
132 wait_queue_head_t io_wait;
133 wait_queue_head_t repair_wait;
134
135 /*
136 * Indicate the states of the stripe. Bits are defined in
137 * scrub_stripe_flags enum.
138 */
139 unsigned long state;
140
141 /* Indicate which sectors are covered by extent items. */
142 unsigned long extent_sector_bitmap;
143
144 /*
145 * The errors hit during the initial read of the stripe.
146 *
147 * Would be utilized for error reporting and repair.
148 *
149 * The remaining init_nr_* records the number of errors hit, only used
150 * by error reporting.
151 */
152 unsigned long init_error_bitmap;
153 unsigned int init_nr_io_errors;
154 unsigned int init_nr_csum_errors;
155 unsigned int init_nr_meta_errors;
156
157 /*
158 * The following error bitmaps are all for the current status.
159 * Every time we submit a new read, these bitmaps may be updated.
160 *
161 * error_bitmap = io_error_bitmap | csum_error_bitmap | meta_error_bitmap;
162 *
163 * IO and csum errors can happen for both metadata and data.
164 */
165 unsigned long error_bitmap;
166 unsigned long io_error_bitmap;
167 unsigned long csum_error_bitmap;
168 unsigned long meta_error_bitmap;
169
170 /* For writeback (repair or replace) error reporting. */
171 unsigned long write_error_bitmap;
172
173 /* Writeback can be concurrent, thus we need to protect the bitmap. */
174 spinlock_t write_error_lock;
175
176 /*
177 * Checksum for the whole stripe if this stripe is inside a data block
178 * group.
179 */
180 u8 *csums;
181
182 struct work_struct work;
183};
184
185struct scrub_ctx {
186 struct scrub_stripe stripes[SCRUB_TOTAL_STRIPES];
187 struct scrub_stripe *raid56_data_stripes;
188 struct btrfs_fs_info *fs_info;
189 struct btrfs_path extent_path;
190 struct btrfs_path csum_path;
191 int first_free;
192 int cur_stripe;
193 atomic_t cancel_req;
194 int readonly;
195 int sectors_per_bio;
196
197 /* State of IO submission throttling affecting the associated device */
198 ktime_t throttle_deadline;
199 u64 throttle_sent;
200
201 int is_dev_replace;
202 u64 write_pointer;
203
204 struct mutex wr_lock;
205 struct btrfs_device *wr_tgtdev;
206
207 /*
208 * statistics
209 */
210 struct btrfs_scrub_progress stat;
211 spinlock_t stat_lock;
212
213 /*
214 * Use a ref counter to avoid use-after-free issues. Scrub workers
215 * decrement bios_in_flight and workers_pending and then do a wakeup
216 * on the list_wait wait queue. We must ensure the main scrub task
217 * doesn't free the scrub context before or while the workers are
218 * doing the wakeup() call.
219 */
220 refcount_t refs;
221};
222
223struct scrub_warning {
224 struct btrfs_path *path;
225 u64 extent_item_size;
226 const char *errstr;
227 u64 physical;
228 u64 logical;
229 struct btrfs_device *dev;
230};
231
232static void release_scrub_stripe(struct scrub_stripe *stripe)
233{
234 if (!stripe)
235 return;
236
237 for (int i = 0; i < SCRUB_STRIPE_PAGES; i++) {
238 if (stripe->pages[i])
239 __free_page(stripe->pages[i]);
240 stripe->pages[i] = NULL;
241 }
242 kfree(objp: stripe->sectors);
243 kfree(objp: stripe->csums);
244 stripe->sectors = NULL;
245 stripe->csums = NULL;
246 stripe->sctx = NULL;
247 stripe->state = 0;
248}
249
250static int init_scrub_stripe(struct btrfs_fs_info *fs_info,
251 struct scrub_stripe *stripe)
252{
253 int ret;
254
255 memset(stripe, 0, sizeof(*stripe));
256
257 stripe->nr_sectors = BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits;
258 stripe->state = 0;
259
260 init_waitqueue_head(&stripe->io_wait);
261 init_waitqueue_head(&stripe->repair_wait);
262 atomic_set(v: &stripe->pending_io, i: 0);
263 spin_lock_init(&stripe->write_error_lock);
264
265 ret = btrfs_alloc_page_array(SCRUB_STRIPE_PAGES, page_array: stripe->pages);
266 if (ret < 0)
267 goto error;
268
269 stripe->sectors = kcalloc(n: stripe->nr_sectors,
270 size: sizeof(struct scrub_sector_verification),
271 GFP_KERNEL);
272 if (!stripe->sectors)
273 goto error;
274
275 stripe->csums = kcalloc(BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits,
276 size: fs_info->csum_size, GFP_KERNEL);
277 if (!stripe->csums)
278 goto error;
279 return 0;
280error:
281 release_scrub_stripe(stripe);
282 return -ENOMEM;
283}
284
285static void wait_scrub_stripe_io(struct scrub_stripe *stripe)
286{
287 wait_event(stripe->io_wait, atomic_read(&stripe->pending_io) == 0);
288}
289
290static void scrub_put_ctx(struct scrub_ctx *sctx);
291
292static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
293{
294 while (atomic_read(v: &fs_info->scrub_pause_req)) {
295 mutex_unlock(lock: &fs_info->scrub_lock);
296 wait_event(fs_info->scrub_pause_wait,
297 atomic_read(&fs_info->scrub_pause_req) == 0);
298 mutex_lock(&fs_info->scrub_lock);
299 }
300}
301
302static void scrub_pause_on(struct btrfs_fs_info *fs_info)
303{
304 atomic_inc(v: &fs_info->scrubs_paused);
305 wake_up(&fs_info->scrub_pause_wait);
306}
307
308static void scrub_pause_off(struct btrfs_fs_info *fs_info)
309{
310 mutex_lock(&fs_info->scrub_lock);
311 __scrub_blocked_if_needed(fs_info);
312 atomic_dec(v: &fs_info->scrubs_paused);
313 mutex_unlock(lock: &fs_info->scrub_lock);
314
315 wake_up(&fs_info->scrub_pause_wait);
316}
317
318static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
319{
320 scrub_pause_on(fs_info);
321 scrub_pause_off(fs_info);
322}
323
324static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
325{
326 int i;
327
328 if (!sctx)
329 return;
330
331 for (i = 0; i < SCRUB_TOTAL_STRIPES; i++)
332 release_scrub_stripe(stripe: &sctx->stripes[i]);
333
334 kvfree(addr: sctx);
335}
336
337static void scrub_put_ctx(struct scrub_ctx *sctx)
338{
339 if (refcount_dec_and_test(r: &sctx->refs))
340 scrub_free_ctx(sctx);
341}
342
343static noinline_for_stack struct scrub_ctx *scrub_setup_ctx(
344 struct btrfs_fs_info *fs_info, int is_dev_replace)
345{
346 struct scrub_ctx *sctx;
347 int i;
348
349 /* Since sctx has inline 128 stripes, it can go beyond 64K easily. Use
350 * kvzalloc().
351 */
352 sctx = kvzalloc(size: sizeof(*sctx), GFP_KERNEL);
353 if (!sctx)
354 goto nomem;
355 refcount_set(r: &sctx->refs, n: 1);
356 sctx->is_dev_replace = is_dev_replace;
357 sctx->fs_info = fs_info;
358 sctx->extent_path.search_commit_root = 1;
359 sctx->extent_path.skip_locking = 1;
360 sctx->csum_path.search_commit_root = 1;
361 sctx->csum_path.skip_locking = 1;
362 for (i = 0; i < SCRUB_TOTAL_STRIPES; i++) {
363 int ret;
364
365 ret = init_scrub_stripe(fs_info, stripe: &sctx->stripes[i]);
366 if (ret < 0)
367 goto nomem;
368 sctx->stripes[i].sctx = sctx;
369 }
370 sctx->first_free = 0;
371 atomic_set(v: &sctx->cancel_req, i: 0);
372
373 spin_lock_init(&sctx->stat_lock);
374 sctx->throttle_deadline = 0;
375
376 mutex_init(&sctx->wr_lock);
377 if (is_dev_replace) {
378 WARN_ON(!fs_info->dev_replace.tgtdev);
379 sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
380 }
381
382 return sctx;
383
384nomem:
385 scrub_free_ctx(sctx);
386 return ERR_PTR(error: -ENOMEM);
387}
388
389static int scrub_print_warning_inode(u64 inum, u64 offset, u64 num_bytes,
390 u64 root, void *warn_ctx)
391{
392 u32 nlink;
393 int ret;
394 int i;
395 unsigned nofs_flag;
396 struct extent_buffer *eb;
397 struct btrfs_inode_item *inode_item;
398 struct scrub_warning *swarn = warn_ctx;
399 struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
400 struct inode_fs_paths *ipath = NULL;
401 struct btrfs_root *local_root;
402 struct btrfs_key key;
403
404 local_root = btrfs_get_fs_root(fs_info, objectid: root, check_ref: true);
405 if (IS_ERR(ptr: local_root)) {
406 ret = PTR_ERR(ptr: local_root);
407 goto err;
408 }
409
410 /*
411 * this makes the path point to (inum INODE_ITEM ioff)
412 */
413 key.objectid = inum;
414 key.type = BTRFS_INODE_ITEM_KEY;
415 key.offset = 0;
416
417 ret = btrfs_search_slot(NULL, root: local_root, key: &key, p: swarn->path, ins_len: 0, cow: 0);
418 if (ret) {
419 btrfs_put_root(root: local_root);
420 btrfs_release_path(p: swarn->path);
421 goto err;
422 }
423
424 eb = swarn->path->nodes[0];
425 inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
426 struct btrfs_inode_item);
427 nlink = btrfs_inode_nlink(eb, s: inode_item);
428 btrfs_release_path(p: swarn->path);
429
430 /*
431 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
432 * uses GFP_NOFS in this context, so we keep it consistent but it does
433 * not seem to be strictly necessary.
434 */
435 nofs_flag = memalloc_nofs_save();
436 ipath = init_ipath(total_bytes: 4096, fs_root: local_root, path: swarn->path);
437 memalloc_nofs_restore(flags: nofs_flag);
438 if (IS_ERR(ptr: ipath)) {
439 btrfs_put_root(root: local_root);
440 ret = PTR_ERR(ptr: ipath);
441 ipath = NULL;
442 goto err;
443 }
444 ret = paths_from_inode(inum, ipath);
445
446 if (ret < 0)
447 goto err;
448
449 /*
450 * we deliberately ignore the bit ipath might have been too small to
451 * hold all of the paths here
452 */
453 for (i = 0; i < ipath->fspath->elem_cnt; ++i)
454 btrfs_warn_in_rcu(fs_info,
455"%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %u, links %u (path: %s)",
456 swarn->errstr, swarn->logical,
457 btrfs_dev_name(swarn->dev),
458 swarn->physical,
459 root, inum, offset,
460 fs_info->sectorsize, nlink,
461 (char *)(unsigned long)ipath->fspath->val[i]);
462
463 btrfs_put_root(root: local_root);
464 free_ipath(ipath);
465 return 0;
466
467err:
468 btrfs_warn_in_rcu(fs_info,
469 "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
470 swarn->errstr, swarn->logical,
471 btrfs_dev_name(swarn->dev),
472 swarn->physical,
473 root, inum, offset, ret);
474
475 free_ipath(ipath);
476 return 0;
477}
478
479static void scrub_print_common_warning(const char *errstr, struct btrfs_device *dev,
480 bool is_super, u64 logical, u64 physical)
481{
482 struct btrfs_fs_info *fs_info = dev->fs_info;
483 struct btrfs_path *path;
484 struct btrfs_key found_key;
485 struct extent_buffer *eb;
486 struct btrfs_extent_item *ei;
487 struct scrub_warning swarn;
488 u64 flags = 0;
489 u32 item_size;
490 int ret;
491
492 /* Super block error, no need to search extent tree. */
493 if (is_super) {
494 btrfs_warn_in_rcu(fs_info, "%s on device %s, physical %llu",
495 errstr, btrfs_dev_name(dev), physical);
496 return;
497 }
498 path = btrfs_alloc_path();
499 if (!path)
500 return;
501
502 swarn.physical = physical;
503 swarn.logical = logical;
504 swarn.errstr = errstr;
505 swarn.dev = NULL;
506
507 ret = extent_from_logical(fs_info, logical: swarn.logical, path, found_key: &found_key,
508 flags: &flags);
509 if (ret < 0)
510 goto out;
511
512 swarn.extent_item_size = found_key.offset;
513
514 eb = path->nodes[0];
515 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
516 item_size = btrfs_item_size(eb, slot: path->slots[0]);
517
518 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
519 unsigned long ptr = 0;
520 u8 ref_level;
521 u64 ref_root;
522
523 while (true) {
524 ret = tree_backref_for_extent(ptr: &ptr, eb, key: &found_key, ei,
525 item_size, out_root: &ref_root,
526 out_level: &ref_level);
527 if (ret < 0) {
528 btrfs_warn(fs_info,
529 "failed to resolve tree backref for logical %llu: %d",
530 swarn.logical, ret);
531 break;
532 }
533 if (ret > 0)
534 break;
535 btrfs_warn_in_rcu(fs_info,
536"%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
537 errstr, swarn.logical, btrfs_dev_name(dev),
538 swarn.physical, (ref_level ? "node" : "leaf"),
539 ref_level, ref_root);
540 }
541 btrfs_release_path(p: path);
542 } else {
543 struct btrfs_backref_walk_ctx ctx = { 0 };
544
545 btrfs_release_path(p: path);
546
547 ctx.bytenr = found_key.objectid;
548 ctx.extent_item_pos = swarn.logical - found_key.objectid;
549 ctx.fs_info = fs_info;
550
551 swarn.path = path;
552 swarn.dev = dev;
553
554 iterate_extent_inodes(ctx: &ctx, search_commit_root: true, iterate: scrub_print_warning_inode, user_ctx: &swarn);
555 }
556
557out:
558 btrfs_free_path(p: path);
559}
560
561static int fill_writer_pointer_gap(struct scrub_ctx *sctx, u64 physical)
562{
563 int ret = 0;
564 u64 length;
565
566 if (!btrfs_is_zoned(fs_info: sctx->fs_info))
567 return 0;
568
569 if (!btrfs_dev_is_sequential(device: sctx->wr_tgtdev, pos: physical))
570 return 0;
571
572 if (sctx->write_pointer < physical) {
573 length = physical - sctx->write_pointer;
574
575 ret = btrfs_zoned_issue_zeroout(device: sctx->wr_tgtdev,
576 physical: sctx->write_pointer, length);
577 if (!ret)
578 sctx->write_pointer = physical;
579 }
580 return ret;
581}
582
583static struct page *scrub_stripe_get_page(struct scrub_stripe *stripe, int sector_nr)
584{
585 struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
586 int page_index = (sector_nr << fs_info->sectorsize_bits) >> PAGE_SHIFT;
587
588 return stripe->pages[page_index];
589}
590
591static unsigned int scrub_stripe_get_page_offset(struct scrub_stripe *stripe,
592 int sector_nr)
593{
594 struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
595
596 return offset_in_page(sector_nr << fs_info->sectorsize_bits);
597}
598
599static void scrub_verify_one_metadata(struct scrub_stripe *stripe, int sector_nr)
600{
601 struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
602 const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits;
603 const u64 logical = stripe->logical + (sector_nr << fs_info->sectorsize_bits);
604 const struct page *first_page = scrub_stripe_get_page(stripe, sector_nr);
605 const unsigned int first_off = scrub_stripe_get_page_offset(stripe, sector_nr);
606 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
607 u8 on_disk_csum[BTRFS_CSUM_SIZE];
608 u8 calculated_csum[BTRFS_CSUM_SIZE];
609 struct btrfs_header *header;
610
611 /*
612 * Here we don't have a good way to attach the pages (and subpages)
613 * to a dummy extent buffer, thus we have to directly grab the members
614 * from pages.
615 */
616 header = (struct btrfs_header *)(page_address(first_page) + first_off);
617 memcpy(on_disk_csum, header->csum, fs_info->csum_size);
618
619 if (logical != btrfs_stack_header_bytenr(s: header)) {
620 bitmap_set(map: &stripe->csum_error_bitmap, start: sector_nr, nbits: sectors_per_tree);
621 bitmap_set(map: &stripe->error_bitmap, start: sector_nr, nbits: sectors_per_tree);
622 btrfs_warn_rl(fs_info,
623 "tree block %llu mirror %u has bad bytenr, has %llu want %llu",
624 logical, stripe->mirror_num,
625 btrfs_stack_header_bytenr(header), logical);
626 return;
627 }
628 if (memcmp(p: header->fsid, q: fs_info->fs_devices->metadata_uuid,
629 BTRFS_FSID_SIZE) != 0) {
630 bitmap_set(map: &stripe->meta_error_bitmap, start: sector_nr, nbits: sectors_per_tree);
631 bitmap_set(map: &stripe->error_bitmap, start: sector_nr, nbits: sectors_per_tree);
632 btrfs_warn_rl(fs_info,
633 "tree block %llu mirror %u has bad fsid, has %pU want %pU",
634 logical, stripe->mirror_num,
635 header->fsid, fs_info->fs_devices->fsid);
636 return;
637 }
638 if (memcmp(p: header->chunk_tree_uuid, q: fs_info->chunk_tree_uuid,
639 BTRFS_UUID_SIZE) != 0) {
640 bitmap_set(map: &stripe->meta_error_bitmap, start: sector_nr, nbits: sectors_per_tree);
641 bitmap_set(map: &stripe->error_bitmap, start: sector_nr, nbits: sectors_per_tree);
642 btrfs_warn_rl(fs_info,
643 "tree block %llu mirror %u has bad chunk tree uuid, has %pU want %pU",
644 logical, stripe->mirror_num,
645 header->chunk_tree_uuid, fs_info->chunk_tree_uuid);
646 return;
647 }
648
649 /* Now check tree block csum. */
650 shash->tfm = fs_info->csum_shash;
651 crypto_shash_init(desc: shash);
652 crypto_shash_update(desc: shash, page_address(first_page) + first_off +
653 BTRFS_CSUM_SIZE, len: fs_info->sectorsize - BTRFS_CSUM_SIZE);
654
655 for (int i = sector_nr + 1; i < sector_nr + sectors_per_tree; i++) {
656 struct page *page = scrub_stripe_get_page(stripe, sector_nr: i);
657 unsigned int page_off = scrub_stripe_get_page_offset(stripe, sector_nr: i);
658
659 crypto_shash_update(desc: shash, page_address(page) + page_off,
660 len: fs_info->sectorsize);
661 }
662
663 crypto_shash_final(desc: shash, out: calculated_csum);
664 if (memcmp(p: calculated_csum, q: on_disk_csum, size: fs_info->csum_size) != 0) {
665 bitmap_set(map: &stripe->meta_error_bitmap, start: sector_nr, nbits: sectors_per_tree);
666 bitmap_set(map: &stripe->error_bitmap, start: sector_nr, nbits: sectors_per_tree);
667 btrfs_warn_rl(fs_info,
668 "tree block %llu mirror %u has bad csum, has " CSUM_FMT " want " CSUM_FMT,
669 logical, stripe->mirror_num,
670 CSUM_FMT_VALUE(fs_info->csum_size, on_disk_csum),
671 CSUM_FMT_VALUE(fs_info->csum_size, calculated_csum));
672 return;
673 }
674 if (stripe->sectors[sector_nr].generation !=
675 btrfs_stack_header_generation(s: header)) {
676 bitmap_set(map: &stripe->meta_error_bitmap, start: sector_nr, nbits: sectors_per_tree);
677 bitmap_set(map: &stripe->error_bitmap, start: sector_nr, nbits: sectors_per_tree);
678 btrfs_warn_rl(fs_info,
679 "tree block %llu mirror %u has bad generation, has %llu want %llu",
680 logical, stripe->mirror_num,
681 btrfs_stack_header_generation(header),
682 stripe->sectors[sector_nr].generation);
683 return;
684 }
685 bitmap_clear(map: &stripe->error_bitmap, start: sector_nr, nbits: sectors_per_tree);
686 bitmap_clear(map: &stripe->csum_error_bitmap, start: sector_nr, nbits: sectors_per_tree);
687 bitmap_clear(map: &stripe->meta_error_bitmap, start: sector_nr, nbits: sectors_per_tree);
688}
689
690static void scrub_verify_one_sector(struct scrub_stripe *stripe, int sector_nr)
691{
692 struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
693 struct scrub_sector_verification *sector = &stripe->sectors[sector_nr];
694 const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits;
695 struct page *page = scrub_stripe_get_page(stripe, sector_nr);
696 unsigned int pgoff = scrub_stripe_get_page_offset(stripe, sector_nr);
697 u8 csum_buf[BTRFS_CSUM_SIZE];
698 int ret;
699
700 ASSERT(sector_nr >= 0 && sector_nr < stripe->nr_sectors);
701
702 /* Sector not utilized, skip it. */
703 if (!test_bit(sector_nr, &stripe->extent_sector_bitmap))
704 return;
705
706 /* IO error, no need to check. */
707 if (test_bit(sector_nr, &stripe->io_error_bitmap))
708 return;
709
710 /* Metadata, verify the full tree block. */
711 if (sector->is_metadata) {
712 /*
713 * Check if the tree block crosses the stripe boudary. If
714 * crossed the boundary, we cannot verify it but only give a
715 * warning.
716 *
717 * This can only happen on a very old filesystem where chunks
718 * are not ensured to be stripe aligned.
719 */
720 if (unlikely(sector_nr + sectors_per_tree > stripe->nr_sectors)) {
721 btrfs_warn_rl(fs_info,
722 "tree block at %llu crosses stripe boundary %llu",
723 stripe->logical +
724 (sector_nr << fs_info->sectorsize_bits),
725 stripe->logical);
726 return;
727 }
728 scrub_verify_one_metadata(stripe, sector_nr);
729 return;
730 }
731
732 /*
733 * Data is easier, we just verify the data csum (if we have it). For
734 * cases without csum, we have no other choice but to trust it.
735 */
736 if (!sector->csum) {
737 clear_bit(nr: sector_nr, addr: &stripe->error_bitmap);
738 return;
739 }
740
741 ret = btrfs_check_sector_csum(fs_info, page, pgoff, csum: csum_buf, csum_expected: sector->csum);
742 if (ret < 0) {
743 set_bit(nr: sector_nr, addr: &stripe->csum_error_bitmap);
744 set_bit(nr: sector_nr, addr: &stripe->error_bitmap);
745 } else {
746 clear_bit(nr: sector_nr, addr: &stripe->csum_error_bitmap);
747 clear_bit(nr: sector_nr, addr: &stripe->error_bitmap);
748 }
749}
750
751/* Verify specified sectors of a stripe. */
752static void scrub_verify_one_stripe(struct scrub_stripe *stripe, unsigned long bitmap)
753{
754 struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
755 const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits;
756 int sector_nr;
757
758 for_each_set_bit(sector_nr, &bitmap, stripe->nr_sectors) {
759 scrub_verify_one_sector(stripe, sector_nr);
760 if (stripe->sectors[sector_nr].is_metadata)
761 sector_nr += sectors_per_tree - 1;
762 }
763}
764
765static int calc_sector_number(struct scrub_stripe *stripe, struct bio_vec *first_bvec)
766{
767 int i;
768
769 for (i = 0; i < stripe->nr_sectors; i++) {
770 if (scrub_stripe_get_page(stripe, sector_nr: i) == first_bvec->bv_page &&
771 scrub_stripe_get_page_offset(stripe, sector_nr: i) == first_bvec->bv_offset)
772 break;
773 }
774 ASSERT(i < stripe->nr_sectors);
775 return i;
776}
777
778/*
779 * Repair read is different to the regular read:
780 *
781 * - Only reads the failed sectors
782 * - May have extra blocksize limits
783 */
784static void scrub_repair_read_endio(struct btrfs_bio *bbio)
785{
786 struct scrub_stripe *stripe = bbio->private;
787 struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
788 struct bio_vec *bvec;
789 int sector_nr = calc_sector_number(stripe, first_bvec: bio_first_bvec_all(bio: &bbio->bio));
790 u32 bio_size = 0;
791 int i;
792
793 ASSERT(sector_nr < stripe->nr_sectors);
794
795 bio_for_each_bvec_all(bvec, &bbio->bio, i)
796 bio_size += bvec->bv_len;
797
798 if (bbio->bio.bi_status) {
799 bitmap_set(map: &stripe->io_error_bitmap, start: sector_nr,
800 nbits: bio_size >> fs_info->sectorsize_bits);
801 bitmap_set(map: &stripe->error_bitmap, start: sector_nr,
802 nbits: bio_size >> fs_info->sectorsize_bits);
803 } else {
804 bitmap_clear(map: &stripe->io_error_bitmap, start: sector_nr,
805 nbits: bio_size >> fs_info->sectorsize_bits);
806 }
807 bio_put(&bbio->bio);
808 if (atomic_dec_and_test(v: &stripe->pending_io))
809 wake_up(&stripe->io_wait);
810}
811
812static int calc_next_mirror(int mirror, int num_copies)
813{
814 ASSERT(mirror <= num_copies);
815 return (mirror + 1 > num_copies) ? 1 : mirror + 1;
816}
817
818static void scrub_stripe_submit_repair_read(struct scrub_stripe *stripe,
819 int mirror, int blocksize, bool wait)
820{
821 struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
822 struct btrfs_bio *bbio = NULL;
823 const unsigned long old_error_bitmap = stripe->error_bitmap;
824 int i;
825
826 ASSERT(stripe->mirror_num >= 1);
827 ASSERT(atomic_read(&stripe->pending_io) == 0);
828
829 for_each_set_bit(i, &old_error_bitmap, stripe->nr_sectors) {
830 struct page *page;
831 int pgoff;
832 int ret;
833
834 page = scrub_stripe_get_page(stripe, sector_nr: i);
835 pgoff = scrub_stripe_get_page_offset(stripe, sector_nr: i);
836
837 /* The current sector cannot be merged, submit the bio. */
838 if (bbio && ((i > 0 && !test_bit(i - 1, &stripe->error_bitmap)) ||
839 bbio->bio.bi_iter.bi_size >= blocksize)) {
840 ASSERT(bbio->bio.bi_iter.bi_size);
841 atomic_inc(v: &stripe->pending_io);
842 btrfs_submit_bio(bbio, mirror_num: mirror);
843 if (wait)
844 wait_scrub_stripe_io(stripe);
845 bbio = NULL;
846 }
847
848 if (!bbio) {
849 bbio = btrfs_bio_alloc(nr_vecs: stripe->nr_sectors, opf: REQ_OP_READ,
850 fs_info, end_io: scrub_repair_read_endio, private: stripe);
851 bbio->bio.bi_iter.bi_sector = (stripe->logical +
852 (i << fs_info->sectorsize_bits)) >> SECTOR_SHIFT;
853 }
854
855 ret = bio_add_page(bio: &bbio->bio, page, len: fs_info->sectorsize, off: pgoff);
856 ASSERT(ret == fs_info->sectorsize);
857 }
858 if (bbio) {
859 ASSERT(bbio->bio.bi_iter.bi_size);
860 atomic_inc(v: &stripe->pending_io);
861 btrfs_submit_bio(bbio, mirror_num: mirror);
862 if (wait)
863 wait_scrub_stripe_io(stripe);
864 }
865}
866
867static void scrub_stripe_report_errors(struct scrub_ctx *sctx,
868 struct scrub_stripe *stripe)
869{
870 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
871 DEFAULT_RATELIMIT_BURST);
872 struct btrfs_fs_info *fs_info = sctx->fs_info;
873 struct btrfs_device *dev = NULL;
874 u64 physical = 0;
875 int nr_data_sectors = 0;
876 int nr_meta_sectors = 0;
877 int nr_nodatacsum_sectors = 0;
878 int nr_repaired_sectors = 0;
879 int sector_nr;
880
881 if (test_bit(SCRUB_STRIPE_FLAG_NO_REPORT, &stripe->state))
882 return;
883
884 /*
885 * Init needed infos for error reporting.
886 *
887 * Although our scrub_stripe infrastucture is mostly based on btrfs_submit_bio()
888 * thus no need for dev/physical, error reporting still needs dev and physical.
889 */
890 if (!bitmap_empty(src: &stripe->init_error_bitmap, nbits: stripe->nr_sectors)) {
891 u64 mapped_len = fs_info->sectorsize;
892 struct btrfs_io_context *bioc = NULL;
893 int stripe_index = stripe->mirror_num - 1;
894 int ret;
895
896 /* For scrub, our mirror_num should always start at 1. */
897 ASSERT(stripe->mirror_num >= 1);
898 ret = btrfs_map_block(fs_info, op: BTRFS_MAP_GET_READ_MIRRORS,
899 logical: stripe->logical, length: &mapped_len, bioc_ret: &bioc,
900 NULL, NULL);
901 /*
902 * If we failed, dev will be NULL, and later detailed reports
903 * will just be skipped.
904 */
905 if (ret < 0)
906 goto skip;
907 physical = bioc->stripes[stripe_index].physical;
908 dev = bioc->stripes[stripe_index].dev;
909 btrfs_put_bioc(bioc);
910 }
911
912skip:
913 for_each_set_bit(sector_nr, &stripe->extent_sector_bitmap, stripe->nr_sectors) {
914 bool repaired = false;
915
916 if (stripe->sectors[sector_nr].is_metadata) {
917 nr_meta_sectors++;
918 } else {
919 nr_data_sectors++;
920 if (!stripe->sectors[sector_nr].csum)
921 nr_nodatacsum_sectors++;
922 }
923
924 if (test_bit(sector_nr, &stripe->init_error_bitmap) &&
925 !test_bit(sector_nr, &stripe->error_bitmap)) {
926 nr_repaired_sectors++;
927 repaired = true;
928 }
929
930 /* Good sector from the beginning, nothing need to be done. */
931 if (!test_bit(sector_nr, &stripe->init_error_bitmap))
932 continue;
933
934 /*
935 * Report error for the corrupted sectors. If repaired, just
936 * output the message of repaired message.
937 */
938 if (repaired) {
939 if (dev) {
940 btrfs_err_rl_in_rcu(fs_info,
941 "fixed up error at logical %llu on dev %s physical %llu",
942 stripe->logical, btrfs_dev_name(dev),
943 physical);
944 } else {
945 btrfs_err_rl_in_rcu(fs_info,
946 "fixed up error at logical %llu on mirror %u",
947 stripe->logical, stripe->mirror_num);
948 }
949 continue;
950 }
951
952 /* The remaining are all for unrepaired. */
953 if (dev) {
954 btrfs_err_rl_in_rcu(fs_info,
955 "unable to fixup (regular) error at logical %llu on dev %s physical %llu",
956 stripe->logical, btrfs_dev_name(dev),
957 physical);
958 } else {
959 btrfs_err_rl_in_rcu(fs_info,
960 "unable to fixup (regular) error at logical %llu on mirror %u",
961 stripe->logical, stripe->mirror_num);
962 }
963
964 if (test_bit(sector_nr, &stripe->io_error_bitmap))
965 if (__ratelimit(&rs) && dev)
966 scrub_print_common_warning(errstr: "i/o error", dev, is_super: false,
967 logical: stripe->logical, physical);
968 if (test_bit(sector_nr, &stripe->csum_error_bitmap))
969 if (__ratelimit(&rs) && dev)
970 scrub_print_common_warning(errstr: "checksum error", dev, is_super: false,
971 logical: stripe->logical, physical);
972 if (test_bit(sector_nr, &stripe->meta_error_bitmap))
973 if (__ratelimit(&rs) && dev)
974 scrub_print_common_warning(errstr: "header error", dev, is_super: false,
975 logical: stripe->logical, physical);
976 }
977
978 spin_lock(lock: &sctx->stat_lock);
979 sctx->stat.data_extents_scrubbed += stripe->nr_data_extents;
980 sctx->stat.tree_extents_scrubbed += stripe->nr_meta_extents;
981 sctx->stat.data_bytes_scrubbed += nr_data_sectors << fs_info->sectorsize_bits;
982 sctx->stat.tree_bytes_scrubbed += nr_meta_sectors << fs_info->sectorsize_bits;
983 sctx->stat.no_csum += nr_nodatacsum_sectors;
984 sctx->stat.read_errors += stripe->init_nr_io_errors;
985 sctx->stat.csum_errors += stripe->init_nr_csum_errors;
986 sctx->stat.verify_errors += stripe->init_nr_meta_errors;
987 sctx->stat.uncorrectable_errors +=
988 bitmap_weight(src: &stripe->error_bitmap, nbits: stripe->nr_sectors);
989 sctx->stat.corrected_errors += nr_repaired_sectors;
990 spin_unlock(lock: &sctx->stat_lock);
991}
992
993static void scrub_write_sectors(struct scrub_ctx *sctx, struct scrub_stripe *stripe,
994 unsigned long write_bitmap, bool dev_replace);
995
996/*
997 * The main entrance for all read related scrub work, including:
998 *
999 * - Wait for the initial read to finish
1000 * - Verify and locate any bad sectors
1001 * - Go through the remaining mirrors and try to read as large blocksize as
1002 * possible
1003 * - Go through all mirrors (including the failed mirror) sector-by-sector
1004 * - Submit writeback for repaired sectors
1005 *
1006 * Writeback for dev-replace does not happen here, it needs extra
1007 * synchronization for zoned devices.
1008 */
1009static void scrub_stripe_read_repair_worker(struct work_struct *work)
1010{
1011 struct scrub_stripe *stripe = container_of(work, struct scrub_stripe, work);
1012 struct scrub_ctx *sctx = stripe->sctx;
1013 struct btrfs_fs_info *fs_info = sctx->fs_info;
1014 int num_copies = btrfs_num_copies(fs_info, logical: stripe->bg->start,
1015 len: stripe->bg->length);
1016 int mirror;
1017 int i;
1018
1019 ASSERT(stripe->mirror_num > 0);
1020
1021 wait_scrub_stripe_io(stripe);
1022 scrub_verify_one_stripe(stripe, bitmap: stripe->extent_sector_bitmap);
1023 /* Save the initial failed bitmap for later repair and report usage. */
1024 stripe->init_error_bitmap = stripe->error_bitmap;
1025 stripe->init_nr_io_errors = bitmap_weight(src: &stripe->io_error_bitmap,
1026 nbits: stripe->nr_sectors);
1027 stripe->init_nr_csum_errors = bitmap_weight(src: &stripe->csum_error_bitmap,
1028 nbits: stripe->nr_sectors);
1029 stripe->init_nr_meta_errors = bitmap_weight(src: &stripe->meta_error_bitmap,
1030 nbits: stripe->nr_sectors);
1031
1032 if (bitmap_empty(src: &stripe->init_error_bitmap, nbits: stripe->nr_sectors))
1033 goto out;
1034
1035 /*
1036 * Try all remaining mirrors.
1037 *
1038 * Here we still try to read as large block as possible, as this is
1039 * faster and we have extra safety nets to rely on.
1040 */
1041 for (mirror = calc_next_mirror(mirror: stripe->mirror_num, num_copies);
1042 mirror != stripe->mirror_num;
1043 mirror = calc_next_mirror(mirror, num_copies)) {
1044 const unsigned long old_error_bitmap = stripe->error_bitmap;
1045
1046 scrub_stripe_submit_repair_read(stripe, mirror,
1047 BTRFS_STRIPE_LEN, wait: false);
1048 wait_scrub_stripe_io(stripe);
1049 scrub_verify_one_stripe(stripe, bitmap: old_error_bitmap);
1050 if (bitmap_empty(src: &stripe->error_bitmap, nbits: stripe->nr_sectors))
1051 goto out;
1052 }
1053
1054 /*
1055 * Last safety net, try re-checking all mirrors, including the failed
1056 * one, sector-by-sector.
1057 *
1058 * As if one sector failed the drive's internal csum, the whole read
1059 * containing the offending sector would be marked as error.
1060 * Thus here we do sector-by-sector read.
1061 *
1062 * This can be slow, thus we only try it as the last resort.
1063 */
1064
1065 for (i = 0, mirror = stripe->mirror_num;
1066 i < num_copies;
1067 i++, mirror = calc_next_mirror(mirror, num_copies)) {
1068 const unsigned long old_error_bitmap = stripe->error_bitmap;
1069
1070 scrub_stripe_submit_repair_read(stripe, mirror,
1071 blocksize: fs_info->sectorsize, wait: true);
1072 wait_scrub_stripe_io(stripe);
1073 scrub_verify_one_stripe(stripe, bitmap: old_error_bitmap);
1074 if (bitmap_empty(src: &stripe->error_bitmap, nbits: stripe->nr_sectors))
1075 goto out;
1076 }
1077out:
1078 /*
1079 * Submit the repaired sectors. For zoned case, we cannot do repair
1080 * in-place, but queue the bg to be relocated.
1081 */
1082 if (btrfs_is_zoned(fs_info)) {
1083 if (!bitmap_empty(src: &stripe->error_bitmap, nbits: stripe->nr_sectors))
1084 btrfs_repair_one_zone(fs_info, logical: sctx->stripes[0].bg->start);
1085 } else if (!sctx->readonly) {
1086 unsigned long repaired;
1087
1088 bitmap_andnot(dst: &repaired, src1: &stripe->init_error_bitmap,
1089 src2: &stripe->error_bitmap, nbits: stripe->nr_sectors);
1090 scrub_write_sectors(sctx, stripe, write_bitmap: repaired, dev_replace: false);
1091 wait_scrub_stripe_io(stripe);
1092 }
1093
1094 scrub_stripe_report_errors(sctx, stripe);
1095 set_bit(nr: SCRUB_STRIPE_FLAG_REPAIR_DONE, addr: &stripe->state);
1096 wake_up(&stripe->repair_wait);
1097}
1098
1099static void scrub_read_endio(struct btrfs_bio *bbio)
1100{
1101 struct scrub_stripe *stripe = bbio->private;
1102
1103 if (bbio->bio.bi_status) {
1104 bitmap_set(map: &stripe->io_error_bitmap, start: 0, nbits: stripe->nr_sectors);
1105 bitmap_set(map: &stripe->error_bitmap, start: 0, nbits: stripe->nr_sectors);
1106 } else {
1107 bitmap_clear(map: &stripe->io_error_bitmap, start: 0, nbits: stripe->nr_sectors);
1108 }
1109 bio_put(&bbio->bio);
1110 if (atomic_dec_and_test(v: &stripe->pending_io)) {
1111 wake_up(&stripe->io_wait);
1112 INIT_WORK(&stripe->work, scrub_stripe_read_repair_worker);
1113 queue_work(wq: stripe->bg->fs_info->scrub_workers, work: &stripe->work);
1114 }
1115}
1116
1117static void scrub_write_endio(struct btrfs_bio *bbio)
1118{
1119 struct scrub_stripe *stripe = bbio->private;
1120 struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
1121 struct bio_vec *bvec;
1122 int sector_nr = calc_sector_number(stripe, first_bvec: bio_first_bvec_all(bio: &bbio->bio));
1123 u32 bio_size = 0;
1124 int i;
1125
1126 bio_for_each_bvec_all(bvec, &bbio->bio, i)
1127 bio_size += bvec->bv_len;
1128
1129 if (bbio->bio.bi_status) {
1130 unsigned long flags;
1131
1132 spin_lock_irqsave(&stripe->write_error_lock, flags);
1133 bitmap_set(map: &stripe->write_error_bitmap, start: sector_nr,
1134 nbits: bio_size >> fs_info->sectorsize_bits);
1135 spin_unlock_irqrestore(lock: &stripe->write_error_lock, flags);
1136 }
1137 bio_put(&bbio->bio);
1138
1139 if (atomic_dec_and_test(v: &stripe->pending_io))
1140 wake_up(&stripe->io_wait);
1141}
1142
1143static void scrub_submit_write_bio(struct scrub_ctx *sctx,
1144 struct scrub_stripe *stripe,
1145 struct btrfs_bio *bbio, bool dev_replace)
1146{
1147 struct btrfs_fs_info *fs_info = sctx->fs_info;
1148 u32 bio_len = bbio->bio.bi_iter.bi_size;
1149 u32 bio_off = (bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT) -
1150 stripe->logical;
1151
1152 fill_writer_pointer_gap(sctx, physical: stripe->physical + bio_off);
1153 atomic_inc(v: &stripe->pending_io);
1154 btrfs_submit_repair_write(bbio, mirror_num: stripe->mirror_num, dev_replace);
1155 if (!btrfs_is_zoned(fs_info))
1156 return;
1157 /*
1158 * For zoned writeback, queue depth must be 1, thus we must wait for
1159 * the write to finish before the next write.
1160 */
1161 wait_scrub_stripe_io(stripe);
1162
1163 /*
1164 * And also need to update the write pointer if write finished
1165 * successfully.
1166 */
1167 if (!test_bit(bio_off >> fs_info->sectorsize_bits,
1168 &stripe->write_error_bitmap))
1169 sctx->write_pointer += bio_len;
1170}
1171
1172/*
1173 * Submit the write bio(s) for the sectors specified by @write_bitmap.
1174 *
1175 * Here we utilize btrfs_submit_repair_write(), which has some extra benefits:
1176 *
1177 * - Only needs logical bytenr and mirror_num
1178 * Just like the scrub read path
1179 *
1180 * - Would only result in writes to the specified mirror
1181 * Unlike the regular writeback path, which would write back to all stripes
1182 *
1183 * - Handle dev-replace and read-repair writeback differently
1184 */
1185static void scrub_write_sectors(struct scrub_ctx *sctx, struct scrub_stripe *stripe,
1186 unsigned long write_bitmap, bool dev_replace)
1187{
1188 struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
1189 struct btrfs_bio *bbio = NULL;
1190 int sector_nr;
1191
1192 for_each_set_bit(sector_nr, &write_bitmap, stripe->nr_sectors) {
1193 struct page *page = scrub_stripe_get_page(stripe, sector_nr);
1194 unsigned int pgoff = scrub_stripe_get_page_offset(stripe, sector_nr);
1195 int ret;
1196
1197 /* We should only writeback sectors covered by an extent. */
1198 ASSERT(test_bit(sector_nr, &stripe->extent_sector_bitmap));
1199
1200 /* Cannot merge with previous sector, submit the current one. */
1201 if (bbio && sector_nr && !test_bit(sector_nr - 1, &write_bitmap)) {
1202 scrub_submit_write_bio(sctx, stripe, bbio, dev_replace);
1203 bbio = NULL;
1204 }
1205 if (!bbio) {
1206 bbio = btrfs_bio_alloc(nr_vecs: stripe->nr_sectors, opf: REQ_OP_WRITE,
1207 fs_info, end_io: scrub_write_endio, private: stripe);
1208 bbio->bio.bi_iter.bi_sector = (stripe->logical +
1209 (sector_nr << fs_info->sectorsize_bits)) >>
1210 SECTOR_SHIFT;
1211 }
1212 ret = bio_add_page(bio: &bbio->bio, page, len: fs_info->sectorsize, off: pgoff);
1213 ASSERT(ret == fs_info->sectorsize);
1214 }
1215 if (bbio)
1216 scrub_submit_write_bio(sctx, stripe, bbio, dev_replace);
1217}
1218
1219/*
1220 * Throttling of IO submission, bandwidth-limit based, the timeslice is 1
1221 * second. Limit can be set via /sys/fs/UUID/devinfo/devid/scrub_speed_max.
1222 */
1223static void scrub_throttle_dev_io(struct scrub_ctx *sctx, struct btrfs_device *device,
1224 unsigned int bio_size)
1225{
1226 const int time_slice = 1000;
1227 s64 delta;
1228 ktime_t now;
1229 u32 div;
1230 u64 bwlimit;
1231
1232 bwlimit = READ_ONCE(device->scrub_speed_max);
1233 if (bwlimit == 0)
1234 return;
1235
1236 /*
1237 * Slice is divided into intervals when the IO is submitted, adjust by
1238 * bwlimit and maximum of 64 intervals.
1239 */
1240 div = max_t(u32, 1, (u32)(bwlimit / (16 * 1024 * 1024)));
1241 div = min_t(u32, 64, div);
1242
1243 /* Start new epoch, set deadline */
1244 now = ktime_get();
1245 if (sctx->throttle_deadline == 0) {
1246 sctx->throttle_deadline = ktime_add_ms(kt: now, msec: time_slice / div);
1247 sctx->throttle_sent = 0;
1248 }
1249
1250 /* Still in the time to send? */
1251 if (ktime_before(cmp1: now, cmp2: sctx->throttle_deadline)) {
1252 /* If current bio is within the limit, send it */
1253 sctx->throttle_sent += bio_size;
1254 if (sctx->throttle_sent <= div_u64(dividend: bwlimit, divisor: div))
1255 return;
1256
1257 /* We're over the limit, sleep until the rest of the slice */
1258 delta = ktime_ms_delta(later: sctx->throttle_deadline, earlier: now);
1259 } else {
1260 /* New request after deadline, start new epoch */
1261 delta = 0;
1262 }
1263
1264 if (delta) {
1265 long timeout;
1266
1267 timeout = div_u64(dividend: delta * HZ, divisor: 1000);
1268 schedule_timeout_interruptible(timeout);
1269 }
1270
1271 /* Next call will start the deadline period */
1272 sctx->throttle_deadline = 0;
1273}
1274
1275/*
1276 * Given a physical address, this will calculate it's
1277 * logical offset. if this is a parity stripe, it will return
1278 * the most left data stripe's logical offset.
1279 *
1280 * return 0 if it is a data stripe, 1 means parity stripe.
1281 */
1282static int get_raid56_logic_offset(u64 physical, int num,
1283 struct map_lookup *map, u64 *offset,
1284 u64 *stripe_start)
1285{
1286 int i;
1287 int j = 0;
1288 u64 last_offset;
1289 const int data_stripes = nr_data_stripes(map);
1290
1291 last_offset = (physical - map->stripes[num].physical) * data_stripes;
1292 if (stripe_start)
1293 *stripe_start = last_offset;
1294
1295 *offset = last_offset;
1296 for (i = 0; i < data_stripes; i++) {
1297 u32 stripe_nr;
1298 u32 stripe_index;
1299 u32 rot;
1300
1301 *offset = last_offset + btrfs_stripe_nr_to_offset(stripe_nr: i);
1302
1303 stripe_nr = (u32)(*offset >> BTRFS_STRIPE_LEN_SHIFT) / data_stripes;
1304
1305 /* Work out the disk rotation on this stripe-set */
1306 rot = stripe_nr % map->num_stripes;
1307 /* calculate which stripe this data locates */
1308 rot += i;
1309 stripe_index = rot % map->num_stripes;
1310 if (stripe_index == num)
1311 return 0;
1312 if (stripe_index < num)
1313 j++;
1314 }
1315 *offset = last_offset + btrfs_stripe_nr_to_offset(stripe_nr: j);
1316 return 1;
1317}
1318
1319/*
1320 * Return 0 if the extent item range covers any byte of the range.
1321 * Return <0 if the extent item is before @search_start.
1322 * Return >0 if the extent item is after @start_start + @search_len.
1323 */
1324static int compare_extent_item_range(struct btrfs_path *path,
1325 u64 search_start, u64 search_len)
1326{
1327 struct btrfs_fs_info *fs_info = path->nodes[0]->fs_info;
1328 u64 len;
1329 struct btrfs_key key;
1330
1331 btrfs_item_key_to_cpu(eb: path->nodes[0], cpu_key: &key, nr: path->slots[0]);
1332 ASSERT(key.type == BTRFS_EXTENT_ITEM_KEY ||
1333 key.type == BTRFS_METADATA_ITEM_KEY);
1334 if (key.type == BTRFS_METADATA_ITEM_KEY)
1335 len = fs_info->nodesize;
1336 else
1337 len = key.offset;
1338
1339 if (key.objectid + len <= search_start)
1340 return -1;
1341 if (key.objectid >= search_start + search_len)
1342 return 1;
1343 return 0;
1344}
1345
1346/*
1347 * Locate one extent item which covers any byte in range
1348 * [@search_start, @search_start + @search_length)
1349 *
1350 * If the path is not initialized, we will initialize the search by doing
1351 * a btrfs_search_slot().
1352 * If the path is already initialized, we will use the path as the initial
1353 * slot, to avoid duplicated btrfs_search_slot() calls.
1354 *
1355 * NOTE: If an extent item starts before @search_start, we will still
1356 * return the extent item. This is for data extent crossing stripe boundary.
1357 *
1358 * Return 0 if we found such extent item, and @path will point to the extent item.
1359 * Return >0 if no such extent item can be found, and @path will be released.
1360 * Return <0 if hit fatal error, and @path will be released.
1361 */
1362static int find_first_extent_item(struct btrfs_root *extent_root,
1363 struct btrfs_path *path,
1364 u64 search_start, u64 search_len)
1365{
1366 struct btrfs_fs_info *fs_info = extent_root->fs_info;
1367 struct btrfs_key key;
1368 int ret;
1369
1370 /* Continue using the existing path */
1371 if (path->nodes[0])
1372 goto search_forward;
1373
1374 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1375 key.type = BTRFS_METADATA_ITEM_KEY;
1376 else
1377 key.type = BTRFS_EXTENT_ITEM_KEY;
1378 key.objectid = search_start;
1379 key.offset = (u64)-1;
1380
1381 ret = btrfs_search_slot(NULL, root: extent_root, key: &key, p: path, ins_len: 0, cow: 0);
1382 if (ret < 0)
1383 return ret;
1384
1385 ASSERT(ret > 0);
1386 /*
1387 * Here we intentionally pass 0 as @min_objectid, as there could be
1388 * an extent item starting before @search_start.
1389 */
1390 ret = btrfs_previous_extent_item(root: extent_root, path, min_objectid: 0);
1391 if (ret < 0)
1392 return ret;
1393 /*
1394 * No matter whether we have found an extent item, the next loop will
1395 * properly do every check on the key.
1396 */
1397search_forward:
1398 while (true) {
1399 btrfs_item_key_to_cpu(eb: path->nodes[0], cpu_key: &key, nr: path->slots[0]);
1400 if (key.objectid >= search_start + search_len)
1401 break;
1402 if (key.type != BTRFS_METADATA_ITEM_KEY &&
1403 key.type != BTRFS_EXTENT_ITEM_KEY)
1404 goto next;
1405
1406 ret = compare_extent_item_range(path, search_start, search_len);
1407 if (ret == 0)
1408 return ret;
1409 if (ret > 0)
1410 break;
1411next:
1412 path->slots[0]++;
1413 if (path->slots[0] >= btrfs_header_nritems(eb: path->nodes[0])) {
1414 ret = btrfs_next_leaf(root: extent_root, path);
1415 if (ret) {
1416 /* Either no more item or fatal error */
1417 btrfs_release_path(p: path);
1418 return ret;
1419 }
1420 }
1421 }
1422 btrfs_release_path(p: path);
1423 return 1;
1424}
1425
1426static void get_extent_info(struct btrfs_path *path, u64 *extent_start_ret,
1427 u64 *size_ret, u64 *flags_ret, u64 *generation_ret)
1428{
1429 struct btrfs_key key;
1430 struct btrfs_extent_item *ei;
1431
1432 btrfs_item_key_to_cpu(eb: path->nodes[0], cpu_key: &key, nr: path->slots[0]);
1433 ASSERT(key.type == BTRFS_METADATA_ITEM_KEY ||
1434 key.type == BTRFS_EXTENT_ITEM_KEY);
1435 *extent_start_ret = key.objectid;
1436 if (key.type == BTRFS_METADATA_ITEM_KEY)
1437 *size_ret = path->nodes[0]->fs_info->nodesize;
1438 else
1439 *size_ret = key.offset;
1440 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], struct btrfs_extent_item);
1441 *flags_ret = btrfs_extent_flags(eb: path->nodes[0], s: ei);
1442 *generation_ret = btrfs_extent_generation(eb: path->nodes[0], s: ei);
1443}
1444
1445static int sync_write_pointer_for_zoned(struct scrub_ctx *sctx, u64 logical,
1446 u64 physical, u64 physical_end)
1447{
1448 struct btrfs_fs_info *fs_info = sctx->fs_info;
1449 int ret = 0;
1450
1451 if (!btrfs_is_zoned(fs_info))
1452 return 0;
1453
1454 mutex_lock(&sctx->wr_lock);
1455 if (sctx->write_pointer < physical_end) {
1456 ret = btrfs_sync_zone_write_pointer(tgt_dev: sctx->wr_tgtdev, logical,
1457 physical_start: physical,
1458 physical_pos: sctx->write_pointer);
1459 if (ret)
1460 btrfs_err(fs_info,
1461 "zoned: failed to recover write pointer");
1462 }
1463 mutex_unlock(lock: &sctx->wr_lock);
1464 btrfs_dev_clear_zone_empty(device: sctx->wr_tgtdev, pos: physical);
1465
1466 return ret;
1467}
1468
1469static void fill_one_extent_info(struct btrfs_fs_info *fs_info,
1470 struct scrub_stripe *stripe,
1471 u64 extent_start, u64 extent_len,
1472 u64 extent_flags, u64 extent_gen)
1473{
1474 for (u64 cur_logical = max(stripe->logical, extent_start);
1475 cur_logical < min(stripe->logical + BTRFS_STRIPE_LEN,
1476 extent_start + extent_len);
1477 cur_logical += fs_info->sectorsize) {
1478 const int nr_sector = (cur_logical - stripe->logical) >>
1479 fs_info->sectorsize_bits;
1480 struct scrub_sector_verification *sector =
1481 &stripe->sectors[nr_sector];
1482
1483 set_bit(nr: nr_sector, addr: &stripe->extent_sector_bitmap);
1484 if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1485 sector->is_metadata = true;
1486 sector->generation = extent_gen;
1487 }
1488 }
1489}
1490
1491static void scrub_stripe_reset_bitmaps(struct scrub_stripe *stripe)
1492{
1493 stripe->extent_sector_bitmap = 0;
1494 stripe->init_error_bitmap = 0;
1495 stripe->init_nr_io_errors = 0;
1496 stripe->init_nr_csum_errors = 0;
1497 stripe->init_nr_meta_errors = 0;
1498 stripe->error_bitmap = 0;
1499 stripe->io_error_bitmap = 0;
1500 stripe->csum_error_bitmap = 0;
1501 stripe->meta_error_bitmap = 0;
1502}
1503
1504/*
1505 * Locate one stripe which has at least one extent in its range.
1506 *
1507 * Return 0 if found such stripe, and store its info into @stripe.
1508 * Return >0 if there is no such stripe in the specified range.
1509 * Return <0 for error.
1510 */
1511static int scrub_find_fill_first_stripe(struct btrfs_block_group *bg,
1512 struct btrfs_path *extent_path,
1513 struct btrfs_path *csum_path,
1514 struct btrfs_device *dev, u64 physical,
1515 int mirror_num, u64 logical_start,
1516 u32 logical_len,
1517 struct scrub_stripe *stripe)
1518{
1519 struct btrfs_fs_info *fs_info = bg->fs_info;
1520 struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bytenr: bg->start);
1521 struct btrfs_root *csum_root = btrfs_csum_root(fs_info, bytenr: bg->start);
1522 const u64 logical_end = logical_start + logical_len;
1523 u64 cur_logical = logical_start;
1524 u64 stripe_end;
1525 u64 extent_start;
1526 u64 extent_len;
1527 u64 extent_flags;
1528 u64 extent_gen;
1529 int ret;
1530
1531 memset(stripe->sectors, 0, sizeof(struct scrub_sector_verification) *
1532 stripe->nr_sectors);
1533 scrub_stripe_reset_bitmaps(stripe);
1534
1535 /* The range must be inside the bg. */
1536 ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length);
1537
1538 ret = find_first_extent_item(extent_root, path: extent_path, search_start: logical_start,
1539 search_len: logical_len);
1540 /* Either error or not found. */
1541 if (ret)
1542 goto out;
1543 get_extent_info(path: extent_path, extent_start_ret: &extent_start, size_ret: &extent_len, flags_ret: &extent_flags,
1544 generation_ret: &extent_gen);
1545 if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1546 stripe->nr_meta_extents++;
1547 if (extent_flags & BTRFS_EXTENT_FLAG_DATA)
1548 stripe->nr_data_extents++;
1549 cur_logical = max(extent_start, cur_logical);
1550
1551 /*
1552 * Round down to stripe boundary.
1553 *
1554 * The extra calculation against bg->start is to handle block groups
1555 * whose logical bytenr is not BTRFS_STRIPE_LEN aligned.
1556 */
1557 stripe->logical = round_down(cur_logical - bg->start, BTRFS_STRIPE_LEN) +
1558 bg->start;
1559 stripe->physical = physical + stripe->logical - logical_start;
1560 stripe->dev = dev;
1561 stripe->bg = bg;
1562 stripe->mirror_num = mirror_num;
1563 stripe_end = stripe->logical + BTRFS_STRIPE_LEN - 1;
1564
1565 /* Fill the first extent info into stripe->sectors[] array. */
1566 fill_one_extent_info(fs_info, stripe, extent_start, extent_len,
1567 extent_flags, extent_gen);
1568 cur_logical = extent_start + extent_len;
1569
1570 /* Fill the extent info for the remaining sectors. */
1571 while (cur_logical <= stripe_end) {
1572 ret = find_first_extent_item(extent_root, path: extent_path, search_start: cur_logical,
1573 search_len: stripe_end - cur_logical + 1);
1574 if (ret < 0)
1575 goto out;
1576 if (ret > 0) {
1577 ret = 0;
1578 break;
1579 }
1580 get_extent_info(path: extent_path, extent_start_ret: &extent_start, size_ret: &extent_len,
1581 flags_ret: &extent_flags, generation_ret: &extent_gen);
1582 if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1583 stripe->nr_meta_extents++;
1584 if (extent_flags & BTRFS_EXTENT_FLAG_DATA)
1585 stripe->nr_data_extents++;
1586 fill_one_extent_info(fs_info, stripe, extent_start, extent_len,
1587 extent_flags, extent_gen);
1588 cur_logical = extent_start + extent_len;
1589 }
1590
1591 /* Now fill the data csum. */
1592 if (bg->flags & BTRFS_BLOCK_GROUP_DATA) {
1593 int sector_nr;
1594 unsigned long csum_bitmap = 0;
1595
1596 /* Csum space should have already been allocated. */
1597 ASSERT(stripe->csums);
1598
1599 /*
1600 * Our csum bitmap should be large enough, as BTRFS_STRIPE_LEN
1601 * should contain at most 16 sectors.
1602 */
1603 ASSERT(BITS_PER_LONG >= BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits);
1604
1605 ret = btrfs_lookup_csums_bitmap(root: csum_root, path: csum_path,
1606 start: stripe->logical, end: stripe_end,
1607 csum_buf: stripe->csums, csum_bitmap: &csum_bitmap);
1608 if (ret < 0)
1609 goto out;
1610 if (ret > 0)
1611 ret = 0;
1612
1613 for_each_set_bit(sector_nr, &csum_bitmap, stripe->nr_sectors) {
1614 stripe->sectors[sector_nr].csum = stripe->csums +
1615 sector_nr * fs_info->csum_size;
1616 }
1617 }
1618 set_bit(nr: SCRUB_STRIPE_FLAG_INITIALIZED, addr: &stripe->state);
1619out:
1620 return ret;
1621}
1622
1623static void scrub_reset_stripe(struct scrub_stripe *stripe)
1624{
1625 scrub_stripe_reset_bitmaps(stripe);
1626
1627 stripe->nr_meta_extents = 0;
1628 stripe->nr_data_extents = 0;
1629 stripe->state = 0;
1630
1631 for (int i = 0; i < stripe->nr_sectors; i++) {
1632 stripe->sectors[i].is_metadata = false;
1633 stripe->sectors[i].csum = NULL;
1634 stripe->sectors[i].generation = 0;
1635 }
1636}
1637
1638static void scrub_submit_extent_sector_read(struct scrub_ctx *sctx,
1639 struct scrub_stripe *stripe)
1640{
1641 struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
1642 struct btrfs_bio *bbio = NULL;
1643 u64 stripe_len = BTRFS_STRIPE_LEN;
1644 int mirror = stripe->mirror_num;
1645 int i;
1646
1647 atomic_inc(v: &stripe->pending_io);
1648
1649 for_each_set_bit(i, &stripe->extent_sector_bitmap, stripe->nr_sectors) {
1650 struct page *page = scrub_stripe_get_page(stripe, sector_nr: i);
1651 unsigned int pgoff = scrub_stripe_get_page_offset(stripe, sector_nr: i);
1652
1653 /* The current sector cannot be merged, submit the bio. */
1654 if (bbio &&
1655 ((i > 0 &&
1656 !test_bit(i - 1, &stripe->extent_sector_bitmap)) ||
1657 bbio->bio.bi_iter.bi_size >= stripe_len)) {
1658 ASSERT(bbio->bio.bi_iter.bi_size);
1659 atomic_inc(v: &stripe->pending_io);
1660 btrfs_submit_bio(bbio, mirror_num: mirror);
1661 bbio = NULL;
1662 }
1663
1664 if (!bbio) {
1665 struct btrfs_io_stripe io_stripe = {};
1666 struct btrfs_io_context *bioc = NULL;
1667 const u64 logical = stripe->logical +
1668 (i << fs_info->sectorsize_bits);
1669 int err;
1670
1671 bbio = btrfs_bio_alloc(nr_vecs: stripe->nr_sectors, opf: REQ_OP_READ,
1672 fs_info, end_io: scrub_read_endio, private: stripe);
1673 bbio->bio.bi_iter.bi_sector = logical >> SECTOR_SHIFT;
1674
1675 io_stripe.is_scrub = true;
1676 err = btrfs_map_block(fs_info, op: BTRFS_MAP_READ, logical,
1677 length: &stripe_len, bioc_ret: &bioc, smap: &io_stripe,
1678 mirror_num_ret: &mirror);
1679 btrfs_put_bioc(bioc);
1680 if (err) {
1681 btrfs_bio_end_io(bbio,
1682 status: errno_to_blk_status(errno: err));
1683 return;
1684 }
1685 }
1686
1687 __bio_add_page(bio: &bbio->bio, page, len: fs_info->sectorsize, off: pgoff);
1688 }
1689
1690 if (bbio) {
1691 ASSERT(bbio->bio.bi_iter.bi_size);
1692 atomic_inc(v: &stripe->pending_io);
1693 btrfs_submit_bio(bbio, mirror_num: mirror);
1694 }
1695
1696 if (atomic_dec_and_test(v: &stripe->pending_io)) {
1697 wake_up(&stripe->io_wait);
1698 INIT_WORK(&stripe->work, scrub_stripe_read_repair_worker);
1699 queue_work(wq: stripe->bg->fs_info->scrub_workers, work: &stripe->work);
1700 }
1701}
1702
1703static void scrub_submit_initial_read(struct scrub_ctx *sctx,
1704 struct scrub_stripe *stripe)
1705{
1706 struct btrfs_fs_info *fs_info = sctx->fs_info;
1707 struct btrfs_bio *bbio;
1708 int mirror = stripe->mirror_num;
1709
1710 ASSERT(stripe->bg);
1711 ASSERT(stripe->mirror_num > 0);
1712 ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state));
1713
1714 if (btrfs_need_stripe_tree_update(fs_info, map_type: stripe->bg->flags)) {
1715 scrub_submit_extent_sector_read(sctx, stripe);
1716 return;
1717 }
1718
1719 bbio = btrfs_bio_alloc(SCRUB_STRIPE_PAGES, opf: REQ_OP_READ, fs_info,
1720 end_io: scrub_read_endio, private: stripe);
1721
1722 /* Read the whole stripe. */
1723 bbio->bio.bi_iter.bi_sector = stripe->logical >> SECTOR_SHIFT;
1724 for (int i = 0; i < BTRFS_STRIPE_LEN >> PAGE_SHIFT; i++) {
1725 int ret;
1726
1727 ret = bio_add_page(bio: &bbio->bio, page: stripe->pages[i], PAGE_SIZE, off: 0);
1728 /* We should have allocated enough bio vectors. */
1729 ASSERT(ret == PAGE_SIZE);
1730 }
1731 atomic_inc(v: &stripe->pending_io);
1732
1733 /*
1734 * For dev-replace, either user asks to avoid the source dev, or
1735 * the device is missing, we try the next mirror instead.
1736 */
1737 if (sctx->is_dev_replace &&
1738 (fs_info->dev_replace.cont_reading_from_srcdev_mode ==
1739 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID ||
1740 !stripe->dev->bdev)) {
1741 int num_copies = btrfs_num_copies(fs_info, logical: stripe->bg->start,
1742 len: stripe->bg->length);
1743
1744 mirror = calc_next_mirror(mirror, num_copies);
1745 }
1746 btrfs_submit_bio(bbio, mirror_num: mirror);
1747}
1748
1749static bool stripe_has_metadata_error(struct scrub_stripe *stripe)
1750{
1751 int i;
1752
1753 for_each_set_bit(i, &stripe->error_bitmap, stripe->nr_sectors) {
1754 if (stripe->sectors[i].is_metadata) {
1755 struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
1756
1757 btrfs_err(fs_info,
1758 "stripe %llu has unrepaired metadata sector at %llu",
1759 stripe->logical,
1760 stripe->logical + (i << fs_info->sectorsize_bits));
1761 return true;
1762 }
1763 }
1764 return false;
1765}
1766
1767static void submit_initial_group_read(struct scrub_ctx *sctx,
1768 unsigned int first_slot,
1769 unsigned int nr_stripes)
1770{
1771 struct blk_plug plug;
1772
1773 ASSERT(first_slot < SCRUB_TOTAL_STRIPES);
1774 ASSERT(first_slot + nr_stripes <= SCRUB_TOTAL_STRIPES);
1775
1776 scrub_throttle_dev_io(sctx, device: sctx->stripes[0].dev,
1777 bio_size: btrfs_stripe_nr_to_offset(stripe_nr: nr_stripes));
1778 blk_start_plug(&plug);
1779 for (int i = 0; i < nr_stripes; i++) {
1780 struct scrub_stripe *stripe = &sctx->stripes[first_slot + i];
1781
1782 /* Those stripes should be initialized. */
1783 ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state));
1784 scrub_submit_initial_read(sctx, stripe);
1785 }
1786 blk_finish_plug(&plug);
1787}
1788
1789static int flush_scrub_stripes(struct scrub_ctx *sctx)
1790{
1791 struct btrfs_fs_info *fs_info = sctx->fs_info;
1792 struct scrub_stripe *stripe;
1793 const int nr_stripes = sctx->cur_stripe;
1794 int ret = 0;
1795
1796 if (!nr_stripes)
1797 return 0;
1798
1799 ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &sctx->stripes[0].state));
1800
1801 /* Submit the stripes which are populated but not submitted. */
1802 if (nr_stripes % SCRUB_STRIPES_PER_GROUP) {
1803 const int first_slot = round_down(nr_stripes, SCRUB_STRIPES_PER_GROUP);
1804
1805 submit_initial_group_read(sctx, first_slot, nr_stripes: nr_stripes - first_slot);
1806 }
1807
1808 for (int i = 0; i < nr_stripes; i++) {
1809 stripe = &sctx->stripes[i];
1810
1811 wait_event(stripe->repair_wait,
1812 test_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state));
1813 }
1814
1815 /* Submit for dev-replace. */
1816 if (sctx->is_dev_replace) {
1817 /*
1818 * For dev-replace, if we know there is something wrong with
1819 * metadata, we should immedately abort.
1820 */
1821 for (int i = 0; i < nr_stripes; i++) {
1822 if (stripe_has_metadata_error(stripe: &sctx->stripes[i])) {
1823 ret = -EIO;
1824 goto out;
1825 }
1826 }
1827 for (int i = 0; i < nr_stripes; i++) {
1828 unsigned long good;
1829
1830 stripe = &sctx->stripes[i];
1831
1832 ASSERT(stripe->dev == fs_info->dev_replace.srcdev);
1833
1834 bitmap_andnot(dst: &good, src1: &stripe->extent_sector_bitmap,
1835 src2: &stripe->error_bitmap, nbits: stripe->nr_sectors);
1836 scrub_write_sectors(sctx, stripe, write_bitmap: good, dev_replace: true);
1837 }
1838 }
1839
1840 /* Wait for the above writebacks to finish. */
1841 for (int i = 0; i < nr_stripes; i++) {
1842 stripe = &sctx->stripes[i];
1843
1844 wait_scrub_stripe_io(stripe);
1845 scrub_reset_stripe(stripe);
1846 }
1847out:
1848 sctx->cur_stripe = 0;
1849 return ret;
1850}
1851
1852static void raid56_scrub_wait_endio(struct bio *bio)
1853{
1854 complete(bio->bi_private);
1855}
1856
1857static int queue_scrub_stripe(struct scrub_ctx *sctx, struct btrfs_block_group *bg,
1858 struct btrfs_device *dev, int mirror_num,
1859 u64 logical, u32 length, u64 physical,
1860 u64 *found_logical_ret)
1861{
1862 struct scrub_stripe *stripe;
1863 int ret;
1864
1865 /*
1866 * There should always be one slot left, as caller filling the last
1867 * slot should flush them all.
1868 */
1869 ASSERT(sctx->cur_stripe < SCRUB_TOTAL_STRIPES);
1870
1871 stripe = &sctx->stripes[sctx->cur_stripe];
1872 scrub_reset_stripe(stripe);
1873 ret = scrub_find_fill_first_stripe(bg, extent_path: &sctx->extent_path,
1874 csum_path: &sctx->csum_path, dev, physical,
1875 mirror_num, logical_start: logical, logical_len: length, stripe);
1876 /* Either >0 as no more extents or <0 for error. */
1877 if (ret)
1878 return ret;
1879 if (found_logical_ret)
1880 *found_logical_ret = stripe->logical;
1881 sctx->cur_stripe++;
1882
1883 /* We filled one group, submit it. */
1884 if (sctx->cur_stripe % SCRUB_STRIPES_PER_GROUP == 0) {
1885 const int first_slot = sctx->cur_stripe - SCRUB_STRIPES_PER_GROUP;
1886
1887 submit_initial_group_read(sctx, first_slot, SCRUB_STRIPES_PER_GROUP);
1888 }
1889
1890 /* Last slot used, flush them all. */
1891 if (sctx->cur_stripe == SCRUB_TOTAL_STRIPES)
1892 return flush_scrub_stripes(sctx);
1893 return 0;
1894}
1895
1896static int scrub_raid56_parity_stripe(struct scrub_ctx *sctx,
1897 struct btrfs_device *scrub_dev,
1898 struct btrfs_block_group *bg,
1899 struct map_lookup *map,
1900 u64 full_stripe_start)
1901{
1902 DECLARE_COMPLETION_ONSTACK(io_done);
1903 struct btrfs_fs_info *fs_info = sctx->fs_info;
1904 struct btrfs_raid_bio *rbio;
1905 struct btrfs_io_context *bioc = NULL;
1906 struct btrfs_path extent_path = { 0 };
1907 struct btrfs_path csum_path = { 0 };
1908 struct bio *bio;
1909 struct scrub_stripe *stripe;
1910 bool all_empty = true;
1911 const int data_stripes = nr_data_stripes(map);
1912 unsigned long extent_bitmap = 0;
1913 u64 length = btrfs_stripe_nr_to_offset(stripe_nr: data_stripes);
1914 int ret;
1915
1916 ASSERT(sctx->raid56_data_stripes);
1917
1918 /*
1919 * For data stripe search, we cannot re-use the same extent/csum paths,
1920 * as the data stripe bytenr may be smaller than previous extent. Thus
1921 * we have to use our own extent/csum paths.
1922 */
1923 extent_path.search_commit_root = 1;
1924 extent_path.skip_locking = 1;
1925 csum_path.search_commit_root = 1;
1926 csum_path.skip_locking = 1;
1927
1928 for (int i = 0; i < data_stripes; i++) {
1929 int stripe_index;
1930 int rot;
1931 u64 physical;
1932
1933 stripe = &sctx->raid56_data_stripes[i];
1934 rot = div_u64(dividend: full_stripe_start - bg->start,
1935 divisor: data_stripes) >> BTRFS_STRIPE_LEN_SHIFT;
1936 stripe_index = (i + rot) % map->num_stripes;
1937 physical = map->stripes[stripe_index].physical +
1938 btrfs_stripe_nr_to_offset(stripe_nr: rot);
1939
1940 scrub_reset_stripe(stripe);
1941 set_bit(nr: SCRUB_STRIPE_FLAG_NO_REPORT, addr: &stripe->state);
1942 ret = scrub_find_fill_first_stripe(bg, extent_path: &extent_path, csum_path: &csum_path,
1943 dev: map->stripes[stripe_index].dev, physical, mirror_num: 1,
1944 logical_start: full_stripe_start + btrfs_stripe_nr_to_offset(stripe_nr: i),
1945 BTRFS_STRIPE_LEN, stripe);
1946 if (ret < 0)
1947 goto out;
1948 /*
1949 * No extent in this data stripe, need to manually mark them
1950 * initialized to make later read submission happy.
1951 */
1952 if (ret > 0) {
1953 stripe->logical = full_stripe_start +
1954 btrfs_stripe_nr_to_offset(stripe_nr: i);
1955 stripe->dev = map->stripes[stripe_index].dev;
1956 stripe->mirror_num = 1;
1957 set_bit(nr: SCRUB_STRIPE_FLAG_INITIALIZED, addr: &stripe->state);
1958 }
1959 }
1960
1961 /* Check if all data stripes are empty. */
1962 for (int i = 0; i < data_stripes; i++) {
1963 stripe = &sctx->raid56_data_stripes[i];
1964 if (!bitmap_empty(src: &stripe->extent_sector_bitmap, nbits: stripe->nr_sectors)) {
1965 all_empty = false;
1966 break;
1967 }
1968 }
1969 if (all_empty) {
1970 ret = 0;
1971 goto out;
1972 }
1973
1974 for (int i = 0; i < data_stripes; i++) {
1975 stripe = &sctx->raid56_data_stripes[i];
1976 scrub_submit_initial_read(sctx, stripe);
1977 }
1978 for (int i = 0; i < data_stripes; i++) {
1979 stripe = &sctx->raid56_data_stripes[i];
1980
1981 wait_event(stripe->repair_wait,
1982 test_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state));
1983 }
1984 /* For now, no zoned support for RAID56. */
1985 ASSERT(!btrfs_is_zoned(sctx->fs_info));
1986
1987 /*
1988 * Now all data stripes are properly verified. Check if we have any
1989 * unrepaired, if so abort immediately or we could further corrupt the
1990 * P/Q stripes.
1991 *
1992 * During the loop, also populate extent_bitmap.
1993 */
1994 for (int i = 0; i < data_stripes; i++) {
1995 unsigned long error;
1996
1997 stripe = &sctx->raid56_data_stripes[i];
1998
1999 /*
2000 * We should only check the errors where there is an extent.
2001 * As we may hit an empty data stripe while it's missing.
2002 */
2003 bitmap_and(dst: &error, src1: &stripe->error_bitmap,
2004 src2: &stripe->extent_sector_bitmap, nbits: stripe->nr_sectors);
2005 if (!bitmap_empty(src: &error, nbits: stripe->nr_sectors)) {
2006 btrfs_err(fs_info,
2007"unrepaired sectors detected, full stripe %llu data stripe %u errors %*pbl",
2008 full_stripe_start, i, stripe->nr_sectors,
2009 &error);
2010 ret = -EIO;
2011 goto out;
2012 }
2013 bitmap_or(dst: &extent_bitmap, src1: &extent_bitmap,
2014 src2: &stripe->extent_sector_bitmap, nbits: stripe->nr_sectors);
2015 }
2016
2017 /* Now we can check and regenerate the P/Q stripe. */
2018 bio = bio_alloc(NULL, nr_vecs: 1, opf: REQ_OP_READ, GFP_NOFS);
2019 bio->bi_iter.bi_sector = full_stripe_start >> SECTOR_SHIFT;
2020 bio->bi_private = &io_done;
2021 bio->bi_end_io = raid56_scrub_wait_endio;
2022
2023 btrfs_bio_counter_inc_blocked(fs_info);
2024 ret = btrfs_map_block(fs_info, op: BTRFS_MAP_WRITE, logical: full_stripe_start,
2025 length: &length, bioc_ret: &bioc, NULL, NULL);
2026 if (ret < 0) {
2027 btrfs_put_bioc(bioc);
2028 btrfs_bio_counter_dec(fs_info);
2029 goto out;
2030 }
2031 rbio = raid56_parity_alloc_scrub_rbio(bio, bioc, scrub_dev, dbitmap: &extent_bitmap,
2032 BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits);
2033 btrfs_put_bioc(bioc);
2034 if (!rbio) {
2035 ret = -ENOMEM;
2036 btrfs_bio_counter_dec(fs_info);
2037 goto out;
2038 }
2039 /* Use the recovered stripes as cache to avoid read them from disk again. */
2040 for (int i = 0; i < data_stripes; i++) {
2041 stripe = &sctx->raid56_data_stripes[i];
2042
2043 raid56_parity_cache_data_pages(rbio, data_pages: stripe->pages,
2044 data_logical: full_stripe_start + (i << BTRFS_STRIPE_LEN_SHIFT));
2045 }
2046 raid56_parity_submit_scrub_rbio(rbio);
2047 wait_for_completion_io(&io_done);
2048 ret = blk_status_to_errno(status: bio->bi_status);
2049 bio_put(bio);
2050 btrfs_bio_counter_dec(fs_info);
2051
2052 btrfs_release_path(p: &extent_path);
2053 btrfs_release_path(p: &csum_path);
2054out:
2055 return ret;
2056}
2057
2058/*
2059 * Scrub one range which can only has simple mirror based profile.
2060 * (Including all range in SINGLE/DUP/RAID1/RAID1C*, and each stripe in
2061 * RAID0/RAID10).
2062 *
2063 * Since we may need to handle a subset of block group, we need @logical_start
2064 * and @logical_length parameter.
2065 */
2066static int scrub_simple_mirror(struct scrub_ctx *sctx,
2067 struct btrfs_block_group *bg,
2068 struct map_lookup *map,
2069 u64 logical_start, u64 logical_length,
2070 struct btrfs_device *device,
2071 u64 physical, int mirror_num)
2072{
2073 struct btrfs_fs_info *fs_info = sctx->fs_info;
2074 const u64 logical_end = logical_start + logical_length;
2075 u64 cur_logical = logical_start;
2076 int ret;
2077
2078 /* The range must be inside the bg */
2079 ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length);
2080
2081 /* Go through each extent items inside the logical range */
2082 while (cur_logical < logical_end) {
2083 u64 found_logical;
2084 u64 cur_physical = physical + cur_logical - logical_start;
2085
2086 /* Canceled? */
2087 if (atomic_read(v: &fs_info->scrub_cancel_req) ||
2088 atomic_read(v: &sctx->cancel_req)) {
2089 ret = -ECANCELED;
2090 break;
2091 }
2092 /* Paused? */
2093 if (atomic_read(v: &fs_info->scrub_pause_req)) {
2094 /* Push queued extents */
2095 scrub_blocked_if_needed(fs_info);
2096 }
2097 /* Block group removed? */
2098 spin_lock(lock: &bg->lock);
2099 if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags)) {
2100 spin_unlock(lock: &bg->lock);
2101 ret = 0;
2102 break;
2103 }
2104 spin_unlock(lock: &bg->lock);
2105
2106 ret = queue_scrub_stripe(sctx, bg, dev: device, mirror_num,
2107 logical: cur_logical, length: logical_end - cur_logical,
2108 physical: cur_physical, found_logical_ret: &found_logical);
2109 if (ret > 0) {
2110 /* No more extent, just update the accounting */
2111 sctx->stat.last_physical = physical + logical_length;
2112 ret = 0;
2113 break;
2114 }
2115 if (ret < 0)
2116 break;
2117
2118 cur_logical = found_logical + BTRFS_STRIPE_LEN;
2119
2120 /* Don't hold CPU for too long time */
2121 cond_resched();
2122 }
2123 return ret;
2124}
2125
2126/* Calculate the full stripe length for simple stripe based profiles */
2127static u64 simple_stripe_full_stripe_len(const struct map_lookup *map)
2128{
2129 ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2130 BTRFS_BLOCK_GROUP_RAID10));
2131
2132 return btrfs_stripe_nr_to_offset(stripe_nr: map->num_stripes / map->sub_stripes);
2133}
2134
2135/* Get the logical bytenr for the stripe */
2136static u64 simple_stripe_get_logical(struct map_lookup *map,
2137 struct btrfs_block_group *bg,
2138 int stripe_index)
2139{
2140 ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2141 BTRFS_BLOCK_GROUP_RAID10));
2142 ASSERT(stripe_index < map->num_stripes);
2143
2144 /*
2145 * (stripe_index / sub_stripes) gives how many data stripes we need to
2146 * skip.
2147 */
2148 return btrfs_stripe_nr_to_offset(stripe_nr: stripe_index / map->sub_stripes) +
2149 bg->start;
2150}
2151
2152/* Get the mirror number for the stripe */
2153static int simple_stripe_mirror_num(struct map_lookup *map, int stripe_index)
2154{
2155 ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2156 BTRFS_BLOCK_GROUP_RAID10));
2157 ASSERT(stripe_index < map->num_stripes);
2158
2159 /* For RAID0, it's fixed to 1, for RAID10 it's 0,1,0,1... */
2160 return stripe_index % map->sub_stripes + 1;
2161}
2162
2163static int scrub_simple_stripe(struct scrub_ctx *sctx,
2164 struct btrfs_block_group *bg,
2165 struct map_lookup *map,
2166 struct btrfs_device *device,
2167 int stripe_index)
2168{
2169 const u64 logical_increment = simple_stripe_full_stripe_len(map);
2170 const u64 orig_logical = simple_stripe_get_logical(map, bg, stripe_index);
2171 const u64 orig_physical = map->stripes[stripe_index].physical;
2172 const int mirror_num = simple_stripe_mirror_num(map, stripe_index);
2173 u64 cur_logical = orig_logical;
2174 u64 cur_physical = orig_physical;
2175 int ret = 0;
2176
2177 while (cur_logical < bg->start + bg->length) {
2178 /*
2179 * Inside each stripe, RAID0 is just SINGLE, and RAID10 is
2180 * just RAID1, so we can reuse scrub_simple_mirror() to scrub
2181 * this stripe.
2182 */
2183 ret = scrub_simple_mirror(sctx, bg, map, logical_start: cur_logical,
2184 BTRFS_STRIPE_LEN, device, physical: cur_physical,
2185 mirror_num);
2186 if (ret)
2187 return ret;
2188 /* Skip to next stripe which belongs to the target device */
2189 cur_logical += logical_increment;
2190 /* For physical offset, we just go to next stripe */
2191 cur_physical += BTRFS_STRIPE_LEN;
2192 }
2193 return ret;
2194}
2195
2196static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
2197 struct btrfs_block_group *bg,
2198 struct extent_map *em,
2199 struct btrfs_device *scrub_dev,
2200 int stripe_index)
2201{
2202 struct btrfs_fs_info *fs_info = sctx->fs_info;
2203 struct map_lookup *map = em->map_lookup;
2204 const u64 profile = map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK;
2205 const u64 chunk_logical = bg->start;
2206 int ret;
2207 int ret2;
2208 u64 physical = map->stripes[stripe_index].physical;
2209 const u64 dev_stripe_len = btrfs_calc_stripe_length(em);
2210 const u64 physical_end = physical + dev_stripe_len;
2211 u64 logical;
2212 u64 logic_end;
2213 /* The logical increment after finishing one stripe */
2214 u64 increment;
2215 /* Offset inside the chunk */
2216 u64 offset;
2217 u64 stripe_logical;
2218 int stop_loop = 0;
2219
2220 /* Extent_path should be released by now. */
2221 ASSERT(sctx->extent_path.nodes[0] == NULL);
2222
2223 scrub_blocked_if_needed(fs_info);
2224
2225 if (sctx->is_dev_replace &&
2226 btrfs_dev_is_sequential(device: sctx->wr_tgtdev, pos: physical)) {
2227 mutex_lock(&sctx->wr_lock);
2228 sctx->write_pointer = physical;
2229 mutex_unlock(lock: &sctx->wr_lock);
2230 }
2231
2232 /* Prepare the extra data stripes used by RAID56. */
2233 if (profile & BTRFS_BLOCK_GROUP_RAID56_MASK) {
2234 ASSERT(sctx->raid56_data_stripes == NULL);
2235
2236 sctx->raid56_data_stripes = kcalloc(n: nr_data_stripes(map),
2237 size: sizeof(struct scrub_stripe),
2238 GFP_KERNEL);
2239 if (!sctx->raid56_data_stripes) {
2240 ret = -ENOMEM;
2241 goto out;
2242 }
2243 for (int i = 0; i < nr_data_stripes(map); i++) {
2244 ret = init_scrub_stripe(fs_info,
2245 stripe: &sctx->raid56_data_stripes[i]);
2246 if (ret < 0)
2247 goto out;
2248 sctx->raid56_data_stripes[i].bg = bg;
2249 sctx->raid56_data_stripes[i].sctx = sctx;
2250 }
2251 }
2252 /*
2253 * There used to be a big double loop to handle all profiles using the
2254 * same routine, which grows larger and more gross over time.
2255 *
2256 * So here we handle each profile differently, so simpler profiles
2257 * have simpler scrubbing function.
2258 */
2259 if (!(profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10 |
2260 BTRFS_BLOCK_GROUP_RAID56_MASK))) {
2261 /*
2262 * Above check rules out all complex profile, the remaining
2263 * profiles are SINGLE|DUP|RAID1|RAID1C*, which is simple
2264 * mirrored duplication without stripe.
2265 *
2266 * Only @physical and @mirror_num needs to calculated using
2267 * @stripe_index.
2268 */
2269 ret = scrub_simple_mirror(sctx, bg, map, logical_start: bg->start, logical_length: bg->length,
2270 device: scrub_dev, physical: map->stripes[stripe_index].physical,
2271 mirror_num: stripe_index + 1);
2272 offset = 0;
2273 goto out;
2274 }
2275 if (profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
2276 ret = scrub_simple_stripe(sctx, bg, map, device: scrub_dev, stripe_index);
2277 offset = btrfs_stripe_nr_to_offset(stripe_nr: stripe_index / map->sub_stripes);
2278 goto out;
2279 }
2280
2281 /* Only RAID56 goes through the old code */
2282 ASSERT(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK);
2283 ret = 0;
2284
2285 /* Calculate the logical end of the stripe */
2286 get_raid56_logic_offset(physical: physical_end, num: stripe_index,
2287 map, offset: &logic_end, NULL);
2288 logic_end += chunk_logical;
2289
2290 /* Initialize @offset in case we need to go to out: label */
2291 get_raid56_logic_offset(physical, num: stripe_index, map, offset: &offset, NULL);
2292 increment = btrfs_stripe_nr_to_offset(stripe_nr: nr_data_stripes(map));
2293
2294 /*
2295 * Due to the rotation, for RAID56 it's better to iterate each stripe
2296 * using their physical offset.
2297 */
2298 while (physical < physical_end) {
2299 ret = get_raid56_logic_offset(physical, num: stripe_index, map,
2300 offset: &logical, stripe_start: &stripe_logical);
2301 logical += chunk_logical;
2302 if (ret) {
2303 /* it is parity strip */
2304 stripe_logical += chunk_logical;
2305 ret = scrub_raid56_parity_stripe(sctx, scrub_dev, bg,
2306 map, full_stripe_start: stripe_logical);
2307 if (ret)
2308 goto out;
2309 goto next;
2310 }
2311
2312 /*
2313 * Now we're at a data stripe, scrub each extents in the range.
2314 *
2315 * At this stage, if we ignore the repair part, inside each data
2316 * stripe it is no different than SINGLE profile.
2317 * We can reuse scrub_simple_mirror() here, as the repair part
2318 * is still based on @mirror_num.
2319 */
2320 ret = scrub_simple_mirror(sctx, bg, map, logical_start: logical, BTRFS_STRIPE_LEN,
2321 device: scrub_dev, physical, mirror_num: 1);
2322 if (ret < 0)
2323 goto out;
2324next:
2325 logical += increment;
2326 physical += BTRFS_STRIPE_LEN;
2327 spin_lock(lock: &sctx->stat_lock);
2328 if (stop_loop)
2329 sctx->stat.last_physical =
2330 map->stripes[stripe_index].physical + dev_stripe_len;
2331 else
2332 sctx->stat.last_physical = physical;
2333 spin_unlock(lock: &sctx->stat_lock);
2334 if (stop_loop)
2335 break;
2336 }
2337out:
2338 ret2 = flush_scrub_stripes(sctx);
2339 if (!ret)
2340 ret = ret2;
2341 btrfs_release_path(p: &sctx->extent_path);
2342 btrfs_release_path(p: &sctx->csum_path);
2343
2344 if (sctx->raid56_data_stripes) {
2345 for (int i = 0; i < nr_data_stripes(map); i++)
2346 release_scrub_stripe(stripe: &sctx->raid56_data_stripes[i]);
2347 kfree(objp: sctx->raid56_data_stripes);
2348 sctx->raid56_data_stripes = NULL;
2349 }
2350
2351 if (sctx->is_dev_replace && ret >= 0) {
2352 int ret2;
2353
2354 ret2 = sync_write_pointer_for_zoned(sctx,
2355 logical: chunk_logical + offset,
2356 physical: map->stripes[stripe_index].physical,
2357 physical_end);
2358 if (ret2)
2359 ret = ret2;
2360 }
2361
2362 return ret < 0 ? ret : 0;
2363}
2364
2365static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
2366 struct btrfs_block_group *bg,
2367 struct btrfs_device *scrub_dev,
2368 u64 dev_offset,
2369 u64 dev_extent_len)
2370{
2371 struct btrfs_fs_info *fs_info = sctx->fs_info;
2372 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
2373 struct map_lookup *map;
2374 struct extent_map *em;
2375 int i;
2376 int ret = 0;
2377
2378 read_lock(&map_tree->lock);
2379 em = lookup_extent_mapping(tree: map_tree, start: bg->start, len: bg->length);
2380 read_unlock(&map_tree->lock);
2381
2382 if (!em) {
2383 /*
2384 * Might have been an unused block group deleted by the cleaner
2385 * kthread or relocation.
2386 */
2387 spin_lock(lock: &bg->lock);
2388 if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags))
2389 ret = -EINVAL;
2390 spin_unlock(lock: &bg->lock);
2391
2392 return ret;
2393 }
2394 if (em->start != bg->start)
2395 goto out;
2396 if (em->len < dev_extent_len)
2397 goto out;
2398
2399 map = em->map_lookup;
2400 for (i = 0; i < map->num_stripes; ++i) {
2401 if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
2402 map->stripes[i].physical == dev_offset) {
2403 ret = scrub_stripe(sctx, bg, em, scrub_dev, stripe_index: i);
2404 if (ret)
2405 goto out;
2406 }
2407 }
2408out:
2409 free_extent_map(em);
2410
2411 return ret;
2412}
2413
2414static int finish_extent_writes_for_zoned(struct btrfs_root *root,
2415 struct btrfs_block_group *cache)
2416{
2417 struct btrfs_fs_info *fs_info = cache->fs_info;
2418 struct btrfs_trans_handle *trans;
2419
2420 if (!btrfs_is_zoned(fs_info))
2421 return 0;
2422
2423 btrfs_wait_block_group_reservations(bg: cache);
2424 btrfs_wait_nocow_writers(bg: cache);
2425 btrfs_wait_ordered_roots(fs_info, U64_MAX, range_start: cache->start, range_len: cache->length);
2426
2427 trans = btrfs_join_transaction(root);
2428 if (IS_ERR(ptr: trans))
2429 return PTR_ERR(ptr: trans);
2430 return btrfs_commit_transaction(trans);
2431}
2432
2433static noinline_for_stack
2434int scrub_enumerate_chunks(struct scrub_ctx *sctx,
2435 struct btrfs_device *scrub_dev, u64 start, u64 end)
2436{
2437 struct btrfs_dev_extent *dev_extent = NULL;
2438 struct btrfs_path *path;
2439 struct btrfs_fs_info *fs_info = sctx->fs_info;
2440 struct btrfs_root *root = fs_info->dev_root;
2441 u64 chunk_offset;
2442 int ret = 0;
2443 int ro_set;
2444 int slot;
2445 struct extent_buffer *l;
2446 struct btrfs_key key;
2447 struct btrfs_key found_key;
2448 struct btrfs_block_group *cache;
2449 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
2450
2451 path = btrfs_alloc_path();
2452 if (!path)
2453 return -ENOMEM;
2454
2455 path->reada = READA_FORWARD;
2456 path->search_commit_root = 1;
2457 path->skip_locking = 1;
2458
2459 key.objectid = scrub_dev->devid;
2460 key.offset = 0ull;
2461 key.type = BTRFS_DEV_EXTENT_KEY;
2462
2463 while (1) {
2464 u64 dev_extent_len;
2465
2466 ret = btrfs_search_slot(NULL, root, key: &key, p: path, ins_len: 0, cow: 0);
2467 if (ret < 0)
2468 break;
2469 if (ret > 0) {
2470 if (path->slots[0] >=
2471 btrfs_header_nritems(eb: path->nodes[0])) {
2472 ret = btrfs_next_leaf(root, path);
2473 if (ret < 0)
2474 break;
2475 if (ret > 0) {
2476 ret = 0;
2477 break;
2478 }
2479 } else {
2480 ret = 0;
2481 }
2482 }
2483
2484 l = path->nodes[0];
2485 slot = path->slots[0];
2486
2487 btrfs_item_key_to_cpu(eb: l, cpu_key: &found_key, nr: slot);
2488
2489 if (found_key.objectid != scrub_dev->devid)
2490 break;
2491
2492 if (found_key.type != BTRFS_DEV_EXTENT_KEY)
2493 break;
2494
2495 if (found_key.offset >= end)
2496 break;
2497
2498 if (found_key.offset < key.offset)
2499 break;
2500
2501 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
2502 dev_extent_len = btrfs_dev_extent_length(eb: l, s: dev_extent);
2503
2504 if (found_key.offset + dev_extent_len <= start)
2505 goto skip;
2506
2507 chunk_offset = btrfs_dev_extent_chunk_offset(eb: l, s: dev_extent);
2508
2509 /*
2510 * get a reference on the corresponding block group to prevent
2511 * the chunk from going away while we scrub it
2512 */
2513 cache = btrfs_lookup_block_group(info: fs_info, bytenr: chunk_offset);
2514
2515 /* some chunks are removed but not committed to disk yet,
2516 * continue scrubbing */
2517 if (!cache)
2518 goto skip;
2519
2520 ASSERT(cache->start <= chunk_offset);
2521 /*
2522 * We are using the commit root to search for device extents, so
2523 * that means we could have found a device extent item from a
2524 * block group that was deleted in the current transaction. The
2525 * logical start offset of the deleted block group, stored at
2526 * @chunk_offset, might be part of the logical address range of
2527 * a new block group (which uses different physical extents).
2528 * In this case btrfs_lookup_block_group() has returned the new
2529 * block group, and its start address is less than @chunk_offset.
2530 *
2531 * We skip such new block groups, because it's pointless to
2532 * process them, as we won't find their extents because we search
2533 * for them using the commit root of the extent tree. For a device
2534 * replace it's also fine to skip it, we won't miss copying them
2535 * to the target device because we have the write duplication
2536 * setup through the regular write path (by btrfs_map_block()),
2537 * and we have committed a transaction when we started the device
2538 * replace, right after setting up the device replace state.
2539 */
2540 if (cache->start < chunk_offset) {
2541 btrfs_put_block_group(cache);
2542 goto skip;
2543 }
2544
2545 if (sctx->is_dev_replace && btrfs_is_zoned(fs_info)) {
2546 if (!test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags)) {
2547 btrfs_put_block_group(cache);
2548 goto skip;
2549 }
2550 }
2551
2552 /*
2553 * Make sure that while we are scrubbing the corresponding block
2554 * group doesn't get its logical address and its device extents
2555 * reused for another block group, which can possibly be of a
2556 * different type and different profile. We do this to prevent
2557 * false error detections and crashes due to bogus attempts to
2558 * repair extents.
2559 */
2560 spin_lock(lock: &cache->lock);
2561 if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags)) {
2562 spin_unlock(lock: &cache->lock);
2563 btrfs_put_block_group(cache);
2564 goto skip;
2565 }
2566 btrfs_freeze_block_group(cache);
2567 spin_unlock(lock: &cache->lock);
2568
2569 /*
2570 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
2571 * to avoid deadlock caused by:
2572 * btrfs_inc_block_group_ro()
2573 * -> btrfs_wait_for_commit()
2574 * -> btrfs_commit_transaction()
2575 * -> btrfs_scrub_pause()
2576 */
2577 scrub_pause_on(fs_info);
2578
2579 /*
2580 * Don't do chunk preallocation for scrub.
2581 *
2582 * This is especially important for SYSTEM bgs, or we can hit
2583 * -EFBIG from btrfs_finish_chunk_alloc() like:
2584 * 1. The only SYSTEM bg is marked RO.
2585 * Since SYSTEM bg is small, that's pretty common.
2586 * 2. New SYSTEM bg will be allocated
2587 * Due to regular version will allocate new chunk.
2588 * 3. New SYSTEM bg is empty and will get cleaned up
2589 * Before cleanup really happens, it's marked RO again.
2590 * 4. Empty SYSTEM bg get scrubbed
2591 * We go back to 2.
2592 *
2593 * This can easily boost the amount of SYSTEM chunks if cleaner
2594 * thread can't be triggered fast enough, and use up all space
2595 * of btrfs_super_block::sys_chunk_array
2596 *
2597 * While for dev replace, we need to try our best to mark block
2598 * group RO, to prevent race between:
2599 * - Write duplication
2600 * Contains latest data
2601 * - Scrub copy
2602 * Contains data from commit tree
2603 *
2604 * If target block group is not marked RO, nocow writes can
2605 * be overwritten by scrub copy, causing data corruption.
2606 * So for dev-replace, it's not allowed to continue if a block
2607 * group is not RO.
2608 */
2609 ret = btrfs_inc_block_group_ro(cache, do_chunk_alloc: sctx->is_dev_replace);
2610 if (!ret && sctx->is_dev_replace) {
2611 ret = finish_extent_writes_for_zoned(root, cache);
2612 if (ret) {
2613 btrfs_dec_block_group_ro(cache);
2614 scrub_pause_off(fs_info);
2615 btrfs_put_block_group(cache);
2616 break;
2617 }
2618 }
2619
2620 if (ret == 0) {
2621 ro_set = 1;
2622 } else if (ret == -ENOSPC && !sctx->is_dev_replace &&
2623 !(cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK)) {
2624 /*
2625 * btrfs_inc_block_group_ro return -ENOSPC when it
2626 * failed in creating new chunk for metadata.
2627 * It is not a problem for scrub, because
2628 * metadata are always cowed, and our scrub paused
2629 * commit_transactions.
2630 *
2631 * For RAID56 chunks, we have to mark them read-only
2632 * for scrub, as later we would use our own cache
2633 * out of RAID56 realm.
2634 * Thus we want the RAID56 bg to be marked RO to
2635 * prevent RMW from screwing up out cache.
2636 */
2637 ro_set = 0;
2638 } else if (ret == -ETXTBSY) {
2639 btrfs_warn(fs_info,
2640 "skipping scrub of block group %llu due to active swapfile",
2641 cache->start);
2642 scrub_pause_off(fs_info);
2643 ret = 0;
2644 goto skip_unfreeze;
2645 } else {
2646 btrfs_warn(fs_info,
2647 "failed setting block group ro: %d", ret);
2648 btrfs_unfreeze_block_group(cache);
2649 btrfs_put_block_group(cache);
2650 scrub_pause_off(fs_info);
2651 break;
2652 }
2653
2654 /*
2655 * Now the target block is marked RO, wait for nocow writes to
2656 * finish before dev-replace.
2657 * COW is fine, as COW never overwrites extents in commit tree.
2658 */
2659 if (sctx->is_dev_replace) {
2660 btrfs_wait_nocow_writers(bg: cache);
2661 btrfs_wait_ordered_roots(fs_info, U64_MAX, range_start: cache->start,
2662 range_len: cache->length);
2663 }
2664
2665 scrub_pause_off(fs_info);
2666 down_write(sem: &dev_replace->rwsem);
2667 dev_replace->cursor_right = found_key.offset + dev_extent_len;
2668 dev_replace->cursor_left = found_key.offset;
2669 dev_replace->item_needs_writeback = 1;
2670 up_write(sem: &dev_replace->rwsem);
2671
2672 ret = scrub_chunk(sctx, bg: cache, scrub_dev, dev_offset: found_key.offset,
2673 dev_extent_len);
2674 if (sctx->is_dev_replace &&
2675 !btrfs_finish_block_group_to_copy(srcdev: dev_replace->srcdev,
2676 cache, physical: found_key.offset))
2677 ro_set = 0;
2678
2679 down_write(sem: &dev_replace->rwsem);
2680 dev_replace->cursor_left = dev_replace->cursor_right;
2681 dev_replace->item_needs_writeback = 1;
2682 up_write(sem: &dev_replace->rwsem);
2683
2684 if (ro_set)
2685 btrfs_dec_block_group_ro(cache);
2686
2687 /*
2688 * We might have prevented the cleaner kthread from deleting
2689 * this block group if it was already unused because we raced
2690 * and set it to RO mode first. So add it back to the unused
2691 * list, otherwise it might not ever be deleted unless a manual
2692 * balance is triggered or it becomes used and unused again.
2693 */
2694 spin_lock(lock: &cache->lock);
2695 if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags) &&
2696 !cache->ro && cache->reserved == 0 && cache->used == 0) {
2697 spin_unlock(lock: &cache->lock);
2698 if (btrfs_test_opt(fs_info, DISCARD_ASYNC))
2699 btrfs_discard_queue_work(discard_ctl: &fs_info->discard_ctl,
2700 block_group: cache);
2701 else
2702 btrfs_mark_bg_unused(bg: cache);
2703 } else {
2704 spin_unlock(lock: &cache->lock);
2705 }
2706skip_unfreeze:
2707 btrfs_unfreeze_block_group(cache);
2708 btrfs_put_block_group(cache);
2709 if (ret)
2710 break;
2711 if (sctx->is_dev_replace &&
2712 atomic64_read(v: &dev_replace->num_write_errors) > 0) {
2713 ret = -EIO;
2714 break;
2715 }
2716 if (sctx->stat.malloc_errors > 0) {
2717 ret = -ENOMEM;
2718 break;
2719 }
2720skip:
2721 key.offset = found_key.offset + dev_extent_len;
2722 btrfs_release_path(p: path);
2723 }
2724
2725 btrfs_free_path(p: path);
2726
2727 return ret;
2728}
2729
2730static int scrub_one_super(struct scrub_ctx *sctx, struct btrfs_device *dev,
2731 struct page *page, u64 physical, u64 generation)
2732{
2733 struct btrfs_fs_info *fs_info = sctx->fs_info;
2734 struct bio_vec bvec;
2735 struct bio bio;
2736 struct btrfs_super_block *sb = page_address(page);
2737 int ret;
2738
2739 bio_init(bio: &bio, bdev: dev->bdev, table: &bvec, max_vecs: 1, opf: REQ_OP_READ);
2740 bio.bi_iter.bi_sector = physical >> SECTOR_SHIFT;
2741 __bio_add_page(bio: &bio, page, BTRFS_SUPER_INFO_SIZE, off: 0);
2742 ret = submit_bio_wait(bio: &bio);
2743 bio_uninit(&bio);
2744
2745 if (ret < 0)
2746 return ret;
2747 ret = btrfs_check_super_csum(fs_info, disk_sb: sb);
2748 if (ret != 0) {
2749 btrfs_err_rl(fs_info,
2750 "super block at physical %llu devid %llu has bad csum",
2751 physical, dev->devid);
2752 return -EIO;
2753 }
2754 if (btrfs_super_generation(s: sb) != generation) {
2755 btrfs_err_rl(fs_info,
2756"super block at physical %llu devid %llu has bad generation %llu expect %llu",
2757 physical, dev->devid,
2758 btrfs_super_generation(sb), generation);
2759 return -EUCLEAN;
2760 }
2761
2762 return btrfs_validate_super(fs_info, sb, mirror_num: -1);
2763}
2764
2765static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
2766 struct btrfs_device *scrub_dev)
2767{
2768 int i;
2769 u64 bytenr;
2770 u64 gen;
2771 int ret = 0;
2772 struct page *page;
2773 struct btrfs_fs_info *fs_info = sctx->fs_info;
2774
2775 if (BTRFS_FS_ERROR(fs_info))
2776 return -EROFS;
2777
2778 page = alloc_page(GFP_KERNEL);
2779 if (!page) {
2780 spin_lock(lock: &sctx->stat_lock);
2781 sctx->stat.malloc_errors++;
2782 spin_unlock(lock: &sctx->stat_lock);
2783 return -ENOMEM;
2784 }
2785
2786 /* Seed devices of a new filesystem has their own generation. */
2787 if (scrub_dev->fs_devices != fs_info->fs_devices)
2788 gen = scrub_dev->generation;
2789 else
2790 gen = btrfs_get_last_trans_committed(fs_info);
2791
2792 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
2793 bytenr = btrfs_sb_offset(mirror: i);
2794 if (bytenr + BTRFS_SUPER_INFO_SIZE >
2795 scrub_dev->commit_total_bytes)
2796 break;
2797 if (!btrfs_check_super_location(device: scrub_dev, pos: bytenr))
2798 continue;
2799
2800 ret = scrub_one_super(sctx, dev: scrub_dev, page, physical: bytenr, generation: gen);
2801 if (ret) {
2802 spin_lock(lock: &sctx->stat_lock);
2803 sctx->stat.super_errors++;
2804 spin_unlock(lock: &sctx->stat_lock);
2805 }
2806 }
2807 __free_page(page);
2808 return 0;
2809}
2810
2811static void scrub_workers_put(struct btrfs_fs_info *fs_info)
2812{
2813 if (refcount_dec_and_mutex_lock(r: &fs_info->scrub_workers_refcnt,
2814 lock: &fs_info->scrub_lock)) {
2815 struct workqueue_struct *scrub_workers = fs_info->scrub_workers;
2816
2817 fs_info->scrub_workers = NULL;
2818 mutex_unlock(lock: &fs_info->scrub_lock);
2819
2820 if (scrub_workers)
2821 destroy_workqueue(wq: scrub_workers);
2822 }
2823}
2824
2825/*
2826 * get a reference count on fs_info->scrub_workers. start worker if necessary
2827 */
2828static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info)
2829{
2830 struct workqueue_struct *scrub_workers = NULL;
2831 unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
2832 int max_active = fs_info->thread_pool_size;
2833 int ret = -ENOMEM;
2834
2835 if (refcount_inc_not_zero(r: &fs_info->scrub_workers_refcnt))
2836 return 0;
2837
2838 scrub_workers = alloc_workqueue(fmt: "btrfs-scrub", flags, max_active);
2839 if (!scrub_workers)
2840 return -ENOMEM;
2841
2842 mutex_lock(&fs_info->scrub_lock);
2843 if (refcount_read(r: &fs_info->scrub_workers_refcnt) == 0) {
2844 ASSERT(fs_info->scrub_workers == NULL);
2845 fs_info->scrub_workers = scrub_workers;
2846 refcount_set(r: &fs_info->scrub_workers_refcnt, n: 1);
2847 mutex_unlock(lock: &fs_info->scrub_lock);
2848 return 0;
2849 }
2850 /* Other thread raced in and created the workers for us */
2851 refcount_inc(r: &fs_info->scrub_workers_refcnt);
2852 mutex_unlock(lock: &fs_info->scrub_lock);
2853
2854 ret = 0;
2855
2856 destroy_workqueue(wq: scrub_workers);
2857 return ret;
2858}
2859
2860int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
2861 u64 end, struct btrfs_scrub_progress *progress,
2862 int readonly, int is_dev_replace)
2863{
2864 struct btrfs_dev_lookup_args args = { .devid = devid };
2865 struct scrub_ctx *sctx;
2866 int ret;
2867 struct btrfs_device *dev;
2868 unsigned int nofs_flag;
2869 bool need_commit = false;
2870
2871 if (btrfs_fs_closing(fs_info))
2872 return -EAGAIN;
2873
2874 /* At mount time we have ensured nodesize is in the range of [4K, 64K]. */
2875 ASSERT(fs_info->nodesize <= BTRFS_STRIPE_LEN);
2876
2877 /*
2878 * SCRUB_MAX_SECTORS_PER_BLOCK is calculated using the largest possible
2879 * value (max nodesize / min sectorsize), thus nodesize should always
2880 * be fine.
2881 */
2882 ASSERT(fs_info->nodesize <=
2883 SCRUB_MAX_SECTORS_PER_BLOCK << fs_info->sectorsize_bits);
2884
2885 /* Allocate outside of device_list_mutex */
2886 sctx = scrub_setup_ctx(fs_info, is_dev_replace);
2887 if (IS_ERR(ptr: sctx))
2888 return PTR_ERR(ptr: sctx);
2889
2890 ret = scrub_workers_get(fs_info);
2891 if (ret)
2892 goto out_free_ctx;
2893
2894 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2895 dev = btrfs_find_device(fs_devices: fs_info->fs_devices, args: &args);
2896 if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) &&
2897 !is_dev_replace)) {
2898 mutex_unlock(lock: &fs_info->fs_devices->device_list_mutex);
2899 ret = -ENODEV;
2900 goto out;
2901 }
2902
2903 if (!is_dev_replace && !readonly &&
2904 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
2905 mutex_unlock(lock: &fs_info->fs_devices->device_list_mutex);
2906 btrfs_err_in_rcu(fs_info,
2907 "scrub on devid %llu: filesystem on %s is not writable",
2908 devid, btrfs_dev_name(dev));
2909 ret = -EROFS;
2910 goto out;
2911 }
2912
2913 mutex_lock(&fs_info->scrub_lock);
2914 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
2915 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) {
2916 mutex_unlock(lock: &fs_info->scrub_lock);
2917 mutex_unlock(lock: &fs_info->fs_devices->device_list_mutex);
2918 ret = -EIO;
2919 goto out;
2920 }
2921
2922 down_read(sem: &fs_info->dev_replace.rwsem);
2923 if (dev->scrub_ctx ||
2924 (!is_dev_replace &&
2925 btrfs_dev_replace_is_ongoing(dev_replace: &fs_info->dev_replace))) {
2926 up_read(sem: &fs_info->dev_replace.rwsem);
2927 mutex_unlock(lock: &fs_info->scrub_lock);
2928 mutex_unlock(lock: &fs_info->fs_devices->device_list_mutex);
2929 ret = -EINPROGRESS;
2930 goto out;
2931 }
2932 up_read(sem: &fs_info->dev_replace.rwsem);
2933
2934 sctx->readonly = readonly;
2935 dev->scrub_ctx = sctx;
2936 mutex_unlock(lock: &fs_info->fs_devices->device_list_mutex);
2937
2938 /*
2939 * checking @scrub_pause_req here, we can avoid
2940 * race between committing transaction and scrubbing.
2941 */
2942 __scrub_blocked_if_needed(fs_info);
2943 atomic_inc(v: &fs_info->scrubs_running);
2944 mutex_unlock(lock: &fs_info->scrub_lock);
2945
2946 /*
2947 * In order to avoid deadlock with reclaim when there is a transaction
2948 * trying to pause scrub, make sure we use GFP_NOFS for all the
2949 * allocations done at btrfs_scrub_sectors() and scrub_sectors_for_parity()
2950 * invoked by our callees. The pausing request is done when the
2951 * transaction commit starts, and it blocks the transaction until scrub
2952 * is paused (done at specific points at scrub_stripe() or right above
2953 * before incrementing fs_info->scrubs_running).
2954 */
2955 nofs_flag = memalloc_nofs_save();
2956 if (!is_dev_replace) {
2957 u64 old_super_errors;
2958
2959 spin_lock(lock: &sctx->stat_lock);
2960 old_super_errors = sctx->stat.super_errors;
2961 spin_unlock(lock: &sctx->stat_lock);
2962
2963 btrfs_info(fs_info, "scrub: started on devid %llu", devid);
2964 /*
2965 * by holding device list mutex, we can
2966 * kick off writing super in log tree sync.
2967 */
2968 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2969 ret = scrub_supers(sctx, scrub_dev: dev);
2970 mutex_unlock(lock: &fs_info->fs_devices->device_list_mutex);
2971
2972 spin_lock(lock: &sctx->stat_lock);
2973 /*
2974 * Super block errors found, but we can not commit transaction
2975 * at current context, since btrfs_commit_transaction() needs
2976 * to pause the current running scrub (hold by ourselves).
2977 */
2978 if (sctx->stat.super_errors > old_super_errors && !sctx->readonly)
2979 need_commit = true;
2980 spin_unlock(lock: &sctx->stat_lock);
2981 }
2982
2983 if (!ret)
2984 ret = scrub_enumerate_chunks(sctx, scrub_dev: dev, start, end);
2985 memalloc_nofs_restore(flags: nofs_flag);
2986
2987 atomic_dec(v: &fs_info->scrubs_running);
2988 wake_up(&fs_info->scrub_pause_wait);
2989
2990 if (progress)
2991 memcpy(progress, &sctx->stat, sizeof(*progress));
2992
2993 if (!is_dev_replace)
2994 btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d",
2995 ret ? "not finished" : "finished", devid, ret);
2996
2997 mutex_lock(&fs_info->scrub_lock);
2998 dev->scrub_ctx = NULL;
2999 mutex_unlock(lock: &fs_info->scrub_lock);
3000
3001 scrub_workers_put(fs_info);
3002 scrub_put_ctx(sctx);
3003
3004 /*
3005 * We found some super block errors before, now try to force a
3006 * transaction commit, as scrub has finished.
3007 */
3008 if (need_commit) {
3009 struct btrfs_trans_handle *trans;
3010
3011 trans = btrfs_start_transaction(root: fs_info->tree_root, num_items: 0);
3012 if (IS_ERR(ptr: trans)) {
3013 ret = PTR_ERR(ptr: trans);
3014 btrfs_err(fs_info,
3015 "scrub: failed to start transaction to fix super block errors: %d", ret);
3016 return ret;
3017 }
3018 ret = btrfs_commit_transaction(trans);
3019 if (ret < 0)
3020 btrfs_err(fs_info,
3021 "scrub: failed to commit transaction to fix super block errors: %d", ret);
3022 }
3023 return ret;
3024out:
3025 scrub_workers_put(fs_info);
3026out_free_ctx:
3027 scrub_free_ctx(sctx);
3028
3029 return ret;
3030}
3031
3032void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
3033{
3034 mutex_lock(&fs_info->scrub_lock);
3035 atomic_inc(v: &fs_info->scrub_pause_req);
3036 while (atomic_read(v: &fs_info->scrubs_paused) !=
3037 atomic_read(v: &fs_info->scrubs_running)) {
3038 mutex_unlock(lock: &fs_info->scrub_lock);
3039 wait_event(fs_info->scrub_pause_wait,
3040 atomic_read(&fs_info->scrubs_paused) ==
3041 atomic_read(&fs_info->scrubs_running));
3042 mutex_lock(&fs_info->scrub_lock);
3043 }
3044 mutex_unlock(lock: &fs_info->scrub_lock);
3045}
3046
3047void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
3048{
3049 atomic_dec(v: &fs_info->scrub_pause_req);
3050 wake_up(&fs_info->scrub_pause_wait);
3051}
3052
3053int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
3054{
3055 mutex_lock(&fs_info->scrub_lock);
3056 if (!atomic_read(v: &fs_info->scrubs_running)) {
3057 mutex_unlock(lock: &fs_info->scrub_lock);
3058 return -ENOTCONN;
3059 }
3060
3061 atomic_inc(v: &fs_info->scrub_cancel_req);
3062 while (atomic_read(v: &fs_info->scrubs_running)) {
3063 mutex_unlock(lock: &fs_info->scrub_lock);
3064 wait_event(fs_info->scrub_pause_wait,
3065 atomic_read(&fs_info->scrubs_running) == 0);
3066 mutex_lock(&fs_info->scrub_lock);
3067 }
3068 atomic_dec(v: &fs_info->scrub_cancel_req);
3069 mutex_unlock(lock: &fs_info->scrub_lock);
3070
3071 return 0;
3072}
3073
3074int btrfs_scrub_cancel_dev(struct btrfs_device *dev)
3075{
3076 struct btrfs_fs_info *fs_info = dev->fs_info;
3077 struct scrub_ctx *sctx;
3078
3079 mutex_lock(&fs_info->scrub_lock);
3080 sctx = dev->scrub_ctx;
3081 if (!sctx) {
3082 mutex_unlock(lock: &fs_info->scrub_lock);
3083 return -ENOTCONN;
3084 }
3085 atomic_inc(v: &sctx->cancel_req);
3086 while (dev->scrub_ctx) {
3087 mutex_unlock(lock: &fs_info->scrub_lock);
3088 wait_event(fs_info->scrub_pause_wait,
3089 dev->scrub_ctx == NULL);
3090 mutex_lock(&fs_info->scrub_lock);
3091 }
3092 mutex_unlock(lock: &fs_info->scrub_lock);
3093
3094 return 0;
3095}
3096
3097int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
3098 struct btrfs_scrub_progress *progress)
3099{
3100 struct btrfs_dev_lookup_args args = { .devid = devid };
3101 struct btrfs_device *dev;
3102 struct scrub_ctx *sctx = NULL;
3103
3104 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3105 dev = btrfs_find_device(fs_devices: fs_info->fs_devices, args: &args);
3106 if (dev)
3107 sctx = dev->scrub_ctx;
3108 if (sctx)
3109 memcpy(progress, &sctx->stat, sizeof(*progress));
3110 mutex_unlock(lock: &fs_info->fs_devices->device_list_mutex);
3111
3112 return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
3113}
3114

source code of linux/fs/btrfs/scrub.c