1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6#include <linux/fs.h>
7#include <linux/slab.h>
8#include <linux/sched.h>
9#include <linux/sched/mm.h>
10#include <linux/writeback.h>
11#include <linux/pagemap.h>
12#include <linux/blkdev.h>
13#include <linux/uuid.h>
14#include <linux/timekeeping.h>
15#include "misc.h"
16#include "ctree.h"
17#include "disk-io.h"
18#include "transaction.h"
19#include "locking.h"
20#include "tree-log.h"
21#include "volumes.h"
22#include "dev-replace.h"
23#include "qgroup.h"
24#include "block-group.h"
25#include "space-info.h"
26#include "zoned.h"
27#include "fs.h"
28#include "accessors.h"
29#include "extent-tree.h"
30#include "root-tree.h"
31#include "defrag.h"
32#include "dir-item.h"
33#include "uuid-tree.h"
34#include "ioctl.h"
35#include "relocation.h"
36#include "scrub.h"
37
38static struct kmem_cache *btrfs_trans_handle_cachep;
39
40#define BTRFS_ROOT_TRANS_TAG 0
41
42/*
43 * Transaction states and transitions
44 *
45 * No running transaction (fs tree blocks are not modified)
46 * |
47 * | To next stage:
48 * | Call start_transaction() variants. Except btrfs_join_transaction_nostart().
49 * V
50 * Transaction N [[TRANS_STATE_RUNNING]]
51 * |
52 * | New trans handles can be attached to transaction N by calling all
53 * | start_transaction() variants.
54 * |
55 * | To next stage:
56 * | Call btrfs_commit_transaction() on any trans handle attached to
57 * | transaction N
58 * V
59 * Transaction N [[TRANS_STATE_COMMIT_PREP]]
60 * |
61 * | If there are simultaneous calls to btrfs_commit_transaction() one will win
62 * | the race and the rest will wait for the winner to commit the transaction.
63 * |
64 * | The winner will wait for previous running transaction to completely finish
65 * | if there is one.
66 * |
67 * Transaction N [[TRANS_STATE_COMMIT_START]]
68 * |
69 * | Then one of the following happens:
70 * | - Wait for all other trans handle holders to release.
71 * | The btrfs_commit_transaction() caller will do the commit work.
72 * | - Wait for current transaction to be committed by others.
73 * | Other btrfs_commit_transaction() caller will do the commit work.
74 * |
75 * | At this stage, only btrfs_join_transaction*() variants can attach
76 * | to this running transaction.
77 * | All other variants will wait for current one to finish and attach to
78 * | transaction N+1.
79 * |
80 * | To next stage:
81 * | Caller is chosen to commit transaction N, and all other trans handle
82 * | haven been released.
83 * V
84 * Transaction N [[TRANS_STATE_COMMIT_DOING]]
85 * |
86 * | The heavy lifting transaction work is started.
87 * | From running delayed refs (modifying extent tree) to creating pending
88 * | snapshots, running qgroups.
89 * | In short, modify supporting trees to reflect modifications of subvolume
90 * | trees.
91 * |
92 * | At this stage, all start_transaction() calls will wait for this
93 * | transaction to finish and attach to transaction N+1.
94 * |
95 * | To next stage:
96 * | Until all supporting trees are updated.
97 * V
98 * Transaction N [[TRANS_STATE_UNBLOCKED]]
99 * | Transaction N+1
100 * | All needed trees are modified, thus we only [[TRANS_STATE_RUNNING]]
101 * | need to write them back to disk and update |
102 * | super blocks. |
103 * | |
104 * | At this stage, new transaction is allowed to |
105 * | start. |
106 * | All new start_transaction() calls will be |
107 * | attached to transid N+1. |
108 * | |
109 * | To next stage: |
110 * | Until all tree blocks are super blocks are |
111 * | written to block devices |
112 * V |
113 * Transaction N [[TRANS_STATE_COMPLETED]] V
114 * All tree blocks and super blocks are written. Transaction N+1
115 * This transaction is finished and all its [[TRANS_STATE_COMMIT_START]]
116 * data structures will be cleaned up. | Life goes on
117 */
118static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
119 [TRANS_STATE_RUNNING] = 0U,
120 [TRANS_STATE_COMMIT_PREP] = 0U,
121 [TRANS_STATE_COMMIT_START] = (__TRANS_START | __TRANS_ATTACH),
122 [TRANS_STATE_COMMIT_DOING] = (__TRANS_START |
123 __TRANS_ATTACH |
124 __TRANS_JOIN |
125 __TRANS_JOIN_NOSTART),
126 [TRANS_STATE_UNBLOCKED] = (__TRANS_START |
127 __TRANS_ATTACH |
128 __TRANS_JOIN |
129 __TRANS_JOIN_NOLOCK |
130 __TRANS_JOIN_NOSTART),
131 [TRANS_STATE_SUPER_COMMITTED] = (__TRANS_START |
132 __TRANS_ATTACH |
133 __TRANS_JOIN |
134 __TRANS_JOIN_NOLOCK |
135 __TRANS_JOIN_NOSTART),
136 [TRANS_STATE_COMPLETED] = (__TRANS_START |
137 __TRANS_ATTACH |
138 __TRANS_JOIN |
139 __TRANS_JOIN_NOLOCK |
140 __TRANS_JOIN_NOSTART),
141};
142
143void btrfs_put_transaction(struct btrfs_transaction *transaction)
144{
145 WARN_ON(refcount_read(&transaction->use_count) == 0);
146 if (refcount_dec_and_test(r: &transaction->use_count)) {
147 BUG_ON(!list_empty(&transaction->list));
148 WARN_ON(!RB_EMPTY_ROOT(
149 &transaction->delayed_refs.href_root.rb_root));
150 WARN_ON(!RB_EMPTY_ROOT(
151 &transaction->delayed_refs.dirty_extent_root));
152 if (transaction->delayed_refs.pending_csums)
153 btrfs_err(transaction->fs_info,
154 "pending csums is %llu",
155 transaction->delayed_refs.pending_csums);
156 /*
157 * If any block groups are found in ->deleted_bgs then it's
158 * because the transaction was aborted and a commit did not
159 * happen (things failed before writing the new superblock
160 * and calling btrfs_finish_extent_commit()), so we can not
161 * discard the physical locations of the block groups.
162 */
163 while (!list_empty(head: &transaction->deleted_bgs)) {
164 struct btrfs_block_group *cache;
165
166 cache = list_first_entry(&transaction->deleted_bgs,
167 struct btrfs_block_group,
168 bg_list);
169 list_del_init(entry: &cache->bg_list);
170 btrfs_unfreeze_block_group(cache);
171 btrfs_put_block_group(cache);
172 }
173 WARN_ON(!list_empty(&transaction->dev_update_list));
174 kfree(objp: transaction);
175 }
176}
177
178static noinline void switch_commit_roots(struct btrfs_trans_handle *trans)
179{
180 struct btrfs_transaction *cur_trans = trans->transaction;
181 struct btrfs_fs_info *fs_info = trans->fs_info;
182 struct btrfs_root *root, *tmp;
183
184 /*
185 * At this point no one can be using this transaction to modify any tree
186 * and no one can start another transaction to modify any tree either.
187 */
188 ASSERT(cur_trans->state == TRANS_STATE_COMMIT_DOING);
189
190 down_write(sem: &fs_info->commit_root_sem);
191
192 if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
193 fs_info->last_reloc_trans = trans->transid;
194
195 list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits,
196 dirty_list) {
197 list_del_init(entry: &root->dirty_list);
198 free_extent_buffer(eb: root->commit_root);
199 root->commit_root = btrfs_root_node(root);
200 extent_io_tree_release(tree: &root->dirty_log_pages);
201 btrfs_qgroup_clean_swapped_blocks(root);
202 }
203
204 /* We can free old roots now. */
205 spin_lock(lock: &cur_trans->dropped_roots_lock);
206 while (!list_empty(head: &cur_trans->dropped_roots)) {
207 root = list_first_entry(&cur_trans->dropped_roots,
208 struct btrfs_root, root_list);
209 list_del_init(entry: &root->root_list);
210 spin_unlock(lock: &cur_trans->dropped_roots_lock);
211 btrfs_free_log(trans, root);
212 btrfs_drop_and_free_fs_root(fs_info, root);
213 spin_lock(lock: &cur_trans->dropped_roots_lock);
214 }
215 spin_unlock(lock: &cur_trans->dropped_roots_lock);
216
217 up_write(sem: &fs_info->commit_root_sem);
218}
219
220static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
221 unsigned int type)
222{
223 if (type & TRANS_EXTWRITERS)
224 atomic_inc(v: &trans->num_extwriters);
225}
226
227static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
228 unsigned int type)
229{
230 if (type & TRANS_EXTWRITERS)
231 atomic_dec(v: &trans->num_extwriters);
232}
233
234static inline void extwriter_counter_init(struct btrfs_transaction *trans,
235 unsigned int type)
236{
237 atomic_set(v: &trans->num_extwriters, i: ((type & TRANS_EXTWRITERS) ? 1 : 0));
238}
239
240static inline int extwriter_counter_read(struct btrfs_transaction *trans)
241{
242 return atomic_read(v: &trans->num_extwriters);
243}
244
245/*
246 * To be called after doing the chunk btree updates right after allocating a new
247 * chunk (after btrfs_chunk_alloc_add_chunk_item() is called), when removing a
248 * chunk after all chunk btree updates and after finishing the second phase of
249 * chunk allocation (btrfs_create_pending_block_groups()) in case some block
250 * group had its chunk item insertion delayed to the second phase.
251 */
252void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
253{
254 struct btrfs_fs_info *fs_info = trans->fs_info;
255
256 if (!trans->chunk_bytes_reserved)
257 return;
258
259 btrfs_block_rsv_release(fs_info, block_rsv: &fs_info->chunk_block_rsv,
260 num_bytes: trans->chunk_bytes_reserved, NULL);
261 trans->chunk_bytes_reserved = 0;
262}
263
264/*
265 * either allocate a new transaction or hop into the existing one
266 */
267static noinline int join_transaction(struct btrfs_fs_info *fs_info,
268 unsigned int type)
269{
270 struct btrfs_transaction *cur_trans;
271
272 spin_lock(lock: &fs_info->trans_lock);
273loop:
274 /* The file system has been taken offline. No new transactions. */
275 if (BTRFS_FS_ERROR(fs_info)) {
276 spin_unlock(lock: &fs_info->trans_lock);
277 return -EROFS;
278 }
279
280 cur_trans = fs_info->running_transaction;
281 if (cur_trans) {
282 if (TRANS_ABORTED(cur_trans)) {
283 spin_unlock(lock: &fs_info->trans_lock);
284 return cur_trans->aborted;
285 }
286 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
287 spin_unlock(lock: &fs_info->trans_lock);
288 return -EBUSY;
289 }
290 refcount_inc(r: &cur_trans->use_count);
291 atomic_inc(v: &cur_trans->num_writers);
292 extwriter_counter_inc(trans: cur_trans, type);
293 spin_unlock(lock: &fs_info->trans_lock);
294 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers);
295 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters);
296 return 0;
297 }
298 spin_unlock(lock: &fs_info->trans_lock);
299
300 /*
301 * If we are ATTACH or TRANS_JOIN_NOSTART, we just want to catch the
302 * current transaction, and commit it. If there is no transaction, just
303 * return ENOENT.
304 */
305 if (type == TRANS_ATTACH || type == TRANS_JOIN_NOSTART)
306 return -ENOENT;
307
308 /*
309 * JOIN_NOLOCK only happens during the transaction commit, so
310 * it is impossible that ->running_transaction is NULL
311 */
312 BUG_ON(type == TRANS_JOIN_NOLOCK);
313
314 cur_trans = kmalloc(size: sizeof(*cur_trans), GFP_NOFS);
315 if (!cur_trans)
316 return -ENOMEM;
317
318 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers);
319 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters);
320
321 spin_lock(lock: &fs_info->trans_lock);
322 if (fs_info->running_transaction) {
323 /*
324 * someone started a transaction after we unlocked. Make sure
325 * to redo the checks above
326 */
327 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
328 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
329 kfree(objp: cur_trans);
330 goto loop;
331 } else if (BTRFS_FS_ERROR(fs_info)) {
332 spin_unlock(lock: &fs_info->trans_lock);
333 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
334 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
335 kfree(objp: cur_trans);
336 return -EROFS;
337 }
338
339 cur_trans->fs_info = fs_info;
340 atomic_set(v: &cur_trans->pending_ordered, i: 0);
341 init_waitqueue_head(&cur_trans->pending_wait);
342 atomic_set(v: &cur_trans->num_writers, i: 1);
343 extwriter_counter_init(trans: cur_trans, type);
344 init_waitqueue_head(&cur_trans->writer_wait);
345 init_waitqueue_head(&cur_trans->commit_wait);
346 cur_trans->state = TRANS_STATE_RUNNING;
347 /*
348 * One for this trans handle, one so it will live on until we
349 * commit the transaction.
350 */
351 refcount_set(r: &cur_trans->use_count, n: 2);
352 cur_trans->flags = 0;
353 cur_trans->start_time = ktime_get_seconds();
354
355 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
356
357 cur_trans->delayed_refs.href_root = RB_ROOT_CACHED;
358 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
359 atomic_set(v: &cur_trans->delayed_refs.num_entries, i: 0);
360
361 /*
362 * although the tree mod log is per file system and not per transaction,
363 * the log must never go across transaction boundaries.
364 */
365 smp_mb();
366 if (!list_empty(head: &fs_info->tree_mod_seq_list))
367 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
368 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
369 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
370 atomic64_set(v: &fs_info->tree_mod_seq, i: 0);
371
372 spin_lock_init(&cur_trans->delayed_refs.lock);
373
374 INIT_LIST_HEAD(list: &cur_trans->pending_snapshots);
375 INIT_LIST_HEAD(list: &cur_trans->dev_update_list);
376 INIT_LIST_HEAD(list: &cur_trans->switch_commits);
377 INIT_LIST_HEAD(list: &cur_trans->dirty_bgs);
378 INIT_LIST_HEAD(list: &cur_trans->io_bgs);
379 INIT_LIST_HEAD(list: &cur_trans->dropped_roots);
380 mutex_init(&cur_trans->cache_write_mutex);
381 spin_lock_init(&cur_trans->dirty_bgs_lock);
382 INIT_LIST_HEAD(list: &cur_trans->deleted_bgs);
383 spin_lock_init(&cur_trans->dropped_roots_lock);
384 list_add_tail(new: &cur_trans->list, head: &fs_info->trans_list);
385 extent_io_tree_init(fs_info, tree: &cur_trans->dirty_pages,
386 owner: IO_TREE_TRANS_DIRTY_PAGES);
387 extent_io_tree_init(fs_info, tree: &cur_trans->pinned_extents,
388 owner: IO_TREE_FS_PINNED_EXTENTS);
389 btrfs_set_fs_generation(fs_info, gen: fs_info->generation + 1);
390 cur_trans->transid = fs_info->generation;
391 fs_info->running_transaction = cur_trans;
392 cur_trans->aborted = 0;
393 spin_unlock(lock: &fs_info->trans_lock);
394
395 return 0;
396}
397
398/*
399 * This does all the record keeping required to make sure that a shareable root
400 * is properly recorded in a given transaction. This is required to make sure
401 * the old root from before we joined the transaction is deleted when the
402 * transaction commits.
403 */
404static int record_root_in_trans(struct btrfs_trans_handle *trans,
405 struct btrfs_root *root,
406 int force)
407{
408 struct btrfs_fs_info *fs_info = root->fs_info;
409 int ret = 0;
410
411 if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
412 root->last_trans < trans->transid) || force) {
413 WARN_ON(!force && root->commit_root != root->node);
414
415 /*
416 * see below for IN_TRANS_SETUP usage rules
417 * we have the reloc mutex held now, so there
418 * is only one writer in this function
419 */
420 set_bit(nr: BTRFS_ROOT_IN_TRANS_SETUP, addr: &root->state);
421
422 /* make sure readers find IN_TRANS_SETUP before
423 * they find our root->last_trans update
424 */
425 smp_wmb();
426
427 spin_lock(lock: &fs_info->fs_roots_radix_lock);
428 if (root->last_trans == trans->transid && !force) {
429 spin_unlock(lock: &fs_info->fs_roots_radix_lock);
430 return 0;
431 }
432 radix_tree_tag_set(&fs_info->fs_roots_radix,
433 index: (unsigned long)root->root_key.objectid,
434 BTRFS_ROOT_TRANS_TAG);
435 spin_unlock(lock: &fs_info->fs_roots_radix_lock);
436 root->last_trans = trans->transid;
437
438 /* this is pretty tricky. We don't want to
439 * take the relocation lock in btrfs_record_root_in_trans
440 * unless we're really doing the first setup for this root in
441 * this transaction.
442 *
443 * Normally we'd use root->last_trans as a flag to decide
444 * if we want to take the expensive mutex.
445 *
446 * But, we have to set root->last_trans before we
447 * init the relocation root, otherwise, we trip over warnings
448 * in ctree.c. The solution used here is to flag ourselves
449 * with root IN_TRANS_SETUP. When this is 1, we're still
450 * fixing up the reloc trees and everyone must wait.
451 *
452 * When this is zero, they can trust root->last_trans and fly
453 * through btrfs_record_root_in_trans without having to take the
454 * lock. smp_wmb() makes sure that all the writes above are
455 * done before we pop in the zero below
456 */
457 ret = btrfs_init_reloc_root(trans, root);
458 smp_mb__before_atomic();
459 clear_bit(nr: BTRFS_ROOT_IN_TRANS_SETUP, addr: &root->state);
460 }
461 return ret;
462}
463
464
465void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
466 struct btrfs_root *root)
467{
468 struct btrfs_fs_info *fs_info = root->fs_info;
469 struct btrfs_transaction *cur_trans = trans->transaction;
470
471 /* Add ourselves to the transaction dropped list */
472 spin_lock(lock: &cur_trans->dropped_roots_lock);
473 list_add_tail(new: &root->root_list, head: &cur_trans->dropped_roots);
474 spin_unlock(lock: &cur_trans->dropped_roots_lock);
475
476 /* Make sure we don't try to update the root at commit time */
477 spin_lock(lock: &fs_info->fs_roots_radix_lock);
478 radix_tree_tag_clear(&fs_info->fs_roots_radix,
479 index: (unsigned long)root->root_key.objectid,
480 BTRFS_ROOT_TRANS_TAG);
481 spin_unlock(lock: &fs_info->fs_roots_radix_lock);
482}
483
484int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
485 struct btrfs_root *root)
486{
487 struct btrfs_fs_info *fs_info = root->fs_info;
488 int ret;
489
490 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
491 return 0;
492
493 /*
494 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
495 * and barriers
496 */
497 smp_rmb();
498 if (root->last_trans == trans->transid &&
499 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
500 return 0;
501
502 mutex_lock(&fs_info->reloc_mutex);
503 ret = record_root_in_trans(trans, root, force: 0);
504 mutex_unlock(lock: &fs_info->reloc_mutex);
505
506 return ret;
507}
508
509static inline int is_transaction_blocked(struct btrfs_transaction *trans)
510{
511 return (trans->state >= TRANS_STATE_COMMIT_START &&
512 trans->state < TRANS_STATE_UNBLOCKED &&
513 !TRANS_ABORTED(trans));
514}
515
516/* wait for commit against the current transaction to become unblocked
517 * when this is done, it is safe to start a new transaction, but the current
518 * transaction might not be fully on disk.
519 */
520static void wait_current_trans(struct btrfs_fs_info *fs_info)
521{
522 struct btrfs_transaction *cur_trans;
523
524 spin_lock(lock: &fs_info->trans_lock);
525 cur_trans = fs_info->running_transaction;
526 if (cur_trans && is_transaction_blocked(trans: cur_trans)) {
527 refcount_inc(r: &cur_trans->use_count);
528 spin_unlock(lock: &fs_info->trans_lock);
529
530 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
531 wait_event(fs_info->transaction_wait,
532 cur_trans->state >= TRANS_STATE_UNBLOCKED ||
533 TRANS_ABORTED(cur_trans));
534 btrfs_put_transaction(transaction: cur_trans);
535 } else {
536 spin_unlock(lock: &fs_info->trans_lock);
537 }
538}
539
540static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
541{
542 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
543 return 0;
544
545 if (type == TRANS_START)
546 return 1;
547
548 return 0;
549}
550
551static inline bool need_reserve_reloc_root(struct btrfs_root *root)
552{
553 struct btrfs_fs_info *fs_info = root->fs_info;
554
555 if (!fs_info->reloc_ctl ||
556 !test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
557 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
558 root->reloc_root)
559 return false;
560
561 return true;
562}
563
564static int btrfs_reserve_trans_metadata(struct btrfs_fs_info *fs_info,
565 enum btrfs_reserve_flush_enum flush,
566 u64 num_bytes,
567 u64 *delayed_refs_bytes)
568{
569 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
570 struct btrfs_space_info *si = fs_info->trans_block_rsv.space_info;
571 u64 extra_delayed_refs_bytes = 0;
572 u64 bytes;
573 int ret;
574
575 /*
576 * If there's a gap between the size of the delayed refs reserve and
577 * its reserved space, than some tasks have added delayed refs or bumped
578 * its size otherwise (due to block group creation or removal, or block
579 * group item update). Also try to allocate that gap in order to prevent
580 * using (and possibly abusing) the global reserve when committing the
581 * transaction.
582 */
583 if (flush == BTRFS_RESERVE_FLUSH_ALL &&
584 !btrfs_block_rsv_full(rsv: delayed_refs_rsv)) {
585 spin_lock(lock: &delayed_refs_rsv->lock);
586 if (delayed_refs_rsv->size > delayed_refs_rsv->reserved)
587 extra_delayed_refs_bytes = delayed_refs_rsv->size -
588 delayed_refs_rsv->reserved;
589 spin_unlock(lock: &delayed_refs_rsv->lock);
590 }
591
592 bytes = num_bytes + *delayed_refs_bytes + extra_delayed_refs_bytes;
593
594 /*
595 * We want to reserve all the bytes we may need all at once, so we only
596 * do 1 enospc flushing cycle per transaction start.
597 */
598 ret = btrfs_reserve_metadata_bytes(fs_info, space_info: si, orig_bytes: bytes, flush);
599 if (ret == 0) {
600 if (extra_delayed_refs_bytes > 0)
601 btrfs_migrate_to_delayed_refs_rsv(fs_info,
602 num_bytes: extra_delayed_refs_bytes);
603 return 0;
604 }
605
606 if (extra_delayed_refs_bytes > 0) {
607 bytes -= extra_delayed_refs_bytes;
608 ret = btrfs_reserve_metadata_bytes(fs_info, space_info: si, orig_bytes: bytes, flush);
609 if (ret == 0)
610 return 0;
611 }
612
613 /*
614 * If we are an emergency flush, which can steal from the global block
615 * reserve, then attempt to not reserve space for the delayed refs, as
616 * we will consume space for them from the global block reserve.
617 */
618 if (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL) {
619 bytes -= *delayed_refs_bytes;
620 *delayed_refs_bytes = 0;
621 ret = btrfs_reserve_metadata_bytes(fs_info, space_info: si, orig_bytes: bytes, flush);
622 }
623
624 return ret;
625}
626
627static struct btrfs_trans_handle *
628start_transaction(struct btrfs_root *root, unsigned int num_items,
629 unsigned int type, enum btrfs_reserve_flush_enum flush,
630 bool enforce_qgroups)
631{
632 struct btrfs_fs_info *fs_info = root->fs_info;
633 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
634 struct btrfs_block_rsv *trans_rsv = &fs_info->trans_block_rsv;
635 struct btrfs_trans_handle *h;
636 struct btrfs_transaction *cur_trans;
637 u64 num_bytes = 0;
638 u64 qgroup_reserved = 0;
639 u64 delayed_refs_bytes = 0;
640 bool reloc_reserved = false;
641 bool do_chunk_alloc = false;
642 int ret;
643
644 if (BTRFS_FS_ERROR(fs_info))
645 return ERR_PTR(error: -EROFS);
646
647 if (current->journal_info) {
648 WARN_ON(type & TRANS_EXTWRITERS);
649 h = current->journal_info;
650 refcount_inc(r: &h->use_count);
651 WARN_ON(refcount_read(&h->use_count) > 2);
652 h->orig_rsv = h->block_rsv;
653 h->block_rsv = NULL;
654 goto got_it;
655 }
656
657 /*
658 * Do the reservation before we join the transaction so we can do all
659 * the appropriate flushing if need be.
660 */
661 if (num_items && root != fs_info->chunk_root) {
662 qgroup_reserved = num_items * fs_info->nodesize;
663 /*
664 * Use prealloc for now, as there might be a currently running
665 * transaction that could free this reserved space prematurely
666 * by committing.
667 */
668 ret = btrfs_qgroup_reserve_meta_prealloc(root, num_bytes: qgroup_reserved,
669 enforce: enforce_qgroups, noflush: false);
670 if (ret)
671 return ERR_PTR(error: ret);
672
673 num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
674 /*
675 * If we plan to insert/update/delete "num_items" from a btree,
676 * we will also generate delayed refs for extent buffers in the
677 * respective btree paths, so reserve space for the delayed refs
678 * that will be generated by the caller as it modifies btrees.
679 * Try to reserve them to avoid excessive use of the global
680 * block reserve.
681 */
682 delayed_refs_bytes = btrfs_calc_delayed_ref_bytes(fs_info, num_delayed_refs: num_items);
683
684 /*
685 * Do the reservation for the relocation root creation
686 */
687 if (need_reserve_reloc_root(root)) {
688 num_bytes += fs_info->nodesize;
689 reloc_reserved = true;
690 }
691
692 ret = btrfs_reserve_trans_metadata(fs_info, flush, num_bytes,
693 delayed_refs_bytes: &delayed_refs_bytes);
694 if (ret)
695 goto reserve_fail;
696
697 btrfs_block_rsv_add_bytes(block_rsv: trans_rsv, num_bytes, update_size: true);
698
699 if (trans_rsv->space_info->force_alloc)
700 do_chunk_alloc = true;
701 } else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL &&
702 !btrfs_block_rsv_full(rsv: delayed_refs_rsv)) {
703 /*
704 * Some people call with btrfs_start_transaction(root, 0)
705 * because they can be throttled, but have some other mechanism
706 * for reserving space. We still want these guys to refill the
707 * delayed block_rsv so just add 1 items worth of reservation
708 * here.
709 */
710 ret = btrfs_delayed_refs_rsv_refill(fs_info, flush);
711 if (ret)
712 goto reserve_fail;
713 }
714again:
715 h = kmem_cache_zalloc(k: btrfs_trans_handle_cachep, GFP_NOFS);
716 if (!h) {
717 ret = -ENOMEM;
718 goto alloc_fail;
719 }
720
721 /*
722 * If we are JOIN_NOLOCK we're already committing a transaction and
723 * waiting on this guy, so we don't need to do the sb_start_intwrite
724 * because we're already holding a ref. We need this because we could
725 * have raced in and did an fsync() on a file which can kick a commit
726 * and then we deadlock with somebody doing a freeze.
727 *
728 * If we are ATTACH, it means we just want to catch the current
729 * transaction and commit it, so we needn't do sb_start_intwrite().
730 */
731 if (type & __TRANS_FREEZABLE)
732 sb_start_intwrite(sb: fs_info->sb);
733
734 if (may_wait_transaction(fs_info, type))
735 wait_current_trans(fs_info);
736
737 do {
738 ret = join_transaction(fs_info, type);
739 if (ret == -EBUSY) {
740 wait_current_trans(fs_info);
741 if (unlikely(type == TRANS_ATTACH ||
742 type == TRANS_JOIN_NOSTART))
743 ret = -ENOENT;
744 }
745 } while (ret == -EBUSY);
746
747 if (ret < 0)
748 goto join_fail;
749
750 cur_trans = fs_info->running_transaction;
751
752 h->transid = cur_trans->transid;
753 h->transaction = cur_trans;
754 refcount_set(r: &h->use_count, n: 1);
755 h->fs_info = root->fs_info;
756
757 h->type = type;
758 INIT_LIST_HEAD(list: &h->new_bgs);
759 btrfs_init_metadata_block_rsv(fs_info, rsv: &h->delayed_rsv, type: BTRFS_BLOCK_RSV_DELOPS);
760
761 smp_mb();
762 if (cur_trans->state >= TRANS_STATE_COMMIT_START &&
763 may_wait_transaction(fs_info, type)) {
764 current->journal_info = h;
765 btrfs_commit_transaction(trans: h);
766 goto again;
767 }
768
769 if (num_bytes) {
770 trace_btrfs_space_reservation(fs_info, type: "transaction",
771 val: h->transid, bytes: num_bytes, reserve: 1);
772 h->block_rsv = trans_rsv;
773 h->bytes_reserved = num_bytes;
774 if (delayed_refs_bytes > 0) {
775 trace_btrfs_space_reservation(fs_info,
776 type: "local_delayed_refs_rsv",
777 val: h->transid,
778 bytes: delayed_refs_bytes, reserve: 1);
779 h->delayed_refs_bytes_reserved = delayed_refs_bytes;
780 btrfs_block_rsv_add_bytes(block_rsv: &h->delayed_rsv, num_bytes: delayed_refs_bytes, update_size: true);
781 delayed_refs_bytes = 0;
782 }
783 h->reloc_reserved = reloc_reserved;
784 }
785
786 /*
787 * Now that we have found a transaction to be a part of, convert the
788 * qgroup reservation from prealloc to pertrans. A different transaction
789 * can't race in and free our pertrans out from under us.
790 */
791 if (qgroup_reserved)
792 btrfs_qgroup_convert_reserved_meta(root, num_bytes: qgroup_reserved);
793
794got_it:
795 if (!current->journal_info)
796 current->journal_info = h;
797
798 /*
799 * If the space_info is marked ALLOC_FORCE then we'll get upgraded to
800 * ALLOC_FORCE the first run through, and then we won't allocate for
801 * anybody else who races in later. We don't care about the return
802 * value here.
803 */
804 if (do_chunk_alloc && num_bytes) {
805 u64 flags = h->block_rsv->space_info->flags;
806
807 btrfs_chunk_alloc(trans: h, flags: btrfs_get_alloc_profile(fs_info, orig_flags: flags),
808 force: CHUNK_ALLOC_NO_FORCE);
809 }
810
811 /*
812 * btrfs_record_root_in_trans() needs to alloc new extents, and may
813 * call btrfs_join_transaction() while we're also starting a
814 * transaction.
815 *
816 * Thus it need to be called after current->journal_info initialized,
817 * or we can deadlock.
818 */
819 ret = btrfs_record_root_in_trans(trans: h, root);
820 if (ret) {
821 /*
822 * The transaction handle is fully initialized and linked with
823 * other structures so it needs to be ended in case of errors,
824 * not just freed.
825 */
826 btrfs_end_transaction(trans: h);
827 return ERR_PTR(error: ret);
828 }
829
830 return h;
831
832join_fail:
833 if (type & __TRANS_FREEZABLE)
834 sb_end_intwrite(sb: fs_info->sb);
835 kmem_cache_free(s: btrfs_trans_handle_cachep, objp: h);
836alloc_fail:
837 if (num_bytes)
838 btrfs_block_rsv_release(fs_info, block_rsv: trans_rsv, num_bytes, NULL);
839 if (delayed_refs_bytes)
840 btrfs_space_info_free_bytes_may_use(fs_info, space_info: trans_rsv->space_info,
841 num_bytes: delayed_refs_bytes);
842reserve_fail:
843 btrfs_qgroup_free_meta_prealloc(root, num_bytes: qgroup_reserved);
844 return ERR_PTR(error: ret);
845}
846
847struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
848 unsigned int num_items)
849{
850 return start_transaction(root, num_items, TRANS_START,
851 flush: BTRFS_RESERVE_FLUSH_ALL, enforce_qgroups: true);
852}
853
854struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
855 struct btrfs_root *root,
856 unsigned int num_items)
857{
858 return start_transaction(root, num_items, TRANS_START,
859 flush: BTRFS_RESERVE_FLUSH_ALL_STEAL, enforce_qgroups: false);
860}
861
862struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
863{
864 return start_transaction(root, num_items: 0, TRANS_JOIN, flush: BTRFS_RESERVE_NO_FLUSH,
865 enforce_qgroups: true);
866}
867
868struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root)
869{
870 return start_transaction(root, num_items: 0, TRANS_JOIN_NOLOCK,
871 flush: BTRFS_RESERVE_NO_FLUSH, enforce_qgroups: true);
872}
873
874/*
875 * Similar to regular join but it never starts a transaction when none is
876 * running or when there's a running one at a state >= TRANS_STATE_UNBLOCKED.
877 * This is similar to btrfs_attach_transaction() but it allows the join to
878 * happen if the transaction commit already started but it's not yet in the
879 * "doing" phase (the state is < TRANS_STATE_COMMIT_DOING).
880 */
881struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root)
882{
883 return start_transaction(root, num_items: 0, TRANS_JOIN_NOSTART,
884 flush: BTRFS_RESERVE_NO_FLUSH, enforce_qgroups: true);
885}
886
887/*
888 * Catch the running transaction.
889 *
890 * It is used when we want to commit the current the transaction, but
891 * don't want to start a new one.
892 *
893 * Note: If this function return -ENOENT, it just means there is no
894 * running transaction. But it is possible that the inactive transaction
895 * is still in the memory, not fully on disk. If you hope there is no
896 * inactive transaction in the fs when -ENOENT is returned, you should
897 * invoke
898 * btrfs_attach_transaction_barrier()
899 */
900struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
901{
902 return start_transaction(root, num_items: 0, TRANS_ATTACH,
903 flush: BTRFS_RESERVE_NO_FLUSH, enforce_qgroups: true);
904}
905
906/*
907 * Catch the running transaction.
908 *
909 * It is similar to the above function, the difference is this one
910 * will wait for all the inactive transactions until they fully
911 * complete.
912 */
913struct btrfs_trans_handle *
914btrfs_attach_transaction_barrier(struct btrfs_root *root)
915{
916 struct btrfs_trans_handle *trans;
917
918 trans = start_transaction(root, num_items: 0, TRANS_ATTACH,
919 flush: BTRFS_RESERVE_NO_FLUSH, enforce_qgroups: true);
920 if (trans == ERR_PTR(error: -ENOENT)) {
921 int ret;
922
923 ret = btrfs_wait_for_commit(fs_info: root->fs_info, transid: 0);
924 if (ret)
925 return ERR_PTR(error: ret);
926 }
927
928 return trans;
929}
930
931/* Wait for a transaction commit to reach at least the given state. */
932static noinline void wait_for_commit(struct btrfs_transaction *commit,
933 const enum btrfs_trans_state min_state)
934{
935 struct btrfs_fs_info *fs_info = commit->fs_info;
936 u64 transid = commit->transid;
937 bool put = false;
938
939 /*
940 * At the moment this function is called with min_state either being
941 * TRANS_STATE_COMPLETED or TRANS_STATE_SUPER_COMMITTED.
942 */
943 if (min_state == TRANS_STATE_COMPLETED)
944 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
945 else
946 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
947
948 while (1) {
949 wait_event(commit->commit_wait, commit->state >= min_state);
950 if (put)
951 btrfs_put_transaction(transaction: commit);
952
953 if (min_state < TRANS_STATE_COMPLETED)
954 break;
955
956 /*
957 * A transaction isn't really completed until all of the
958 * previous transactions are completed, but with fsync we can
959 * end up with SUPER_COMMITTED transactions before a COMPLETED
960 * transaction. Wait for those.
961 */
962
963 spin_lock(lock: &fs_info->trans_lock);
964 commit = list_first_entry_or_null(&fs_info->trans_list,
965 struct btrfs_transaction,
966 list);
967 if (!commit || commit->transid > transid) {
968 spin_unlock(lock: &fs_info->trans_lock);
969 break;
970 }
971 refcount_inc(r: &commit->use_count);
972 put = true;
973 spin_unlock(lock: &fs_info->trans_lock);
974 }
975}
976
977int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
978{
979 struct btrfs_transaction *cur_trans = NULL, *t;
980 int ret = 0;
981
982 if (transid) {
983 if (transid <= btrfs_get_last_trans_committed(fs_info))
984 goto out;
985
986 /* find specified transaction */
987 spin_lock(lock: &fs_info->trans_lock);
988 list_for_each_entry(t, &fs_info->trans_list, list) {
989 if (t->transid == transid) {
990 cur_trans = t;
991 refcount_inc(r: &cur_trans->use_count);
992 ret = 0;
993 break;
994 }
995 if (t->transid > transid) {
996 ret = 0;
997 break;
998 }
999 }
1000 spin_unlock(lock: &fs_info->trans_lock);
1001
1002 /*
1003 * The specified transaction doesn't exist, or we
1004 * raced with btrfs_commit_transaction
1005 */
1006 if (!cur_trans) {
1007 if (transid > btrfs_get_last_trans_committed(fs_info))
1008 ret = -EINVAL;
1009 goto out;
1010 }
1011 } else {
1012 /* find newest transaction that is committing | committed */
1013 spin_lock(lock: &fs_info->trans_lock);
1014 list_for_each_entry_reverse(t, &fs_info->trans_list,
1015 list) {
1016 if (t->state >= TRANS_STATE_COMMIT_START) {
1017 if (t->state == TRANS_STATE_COMPLETED)
1018 break;
1019 cur_trans = t;
1020 refcount_inc(r: &cur_trans->use_count);
1021 break;
1022 }
1023 }
1024 spin_unlock(lock: &fs_info->trans_lock);
1025 if (!cur_trans)
1026 goto out; /* nothing committing|committed */
1027 }
1028
1029 wait_for_commit(commit: cur_trans, min_state: TRANS_STATE_COMPLETED);
1030 ret = cur_trans->aborted;
1031 btrfs_put_transaction(transaction: cur_trans);
1032out:
1033 return ret;
1034}
1035
1036void btrfs_throttle(struct btrfs_fs_info *fs_info)
1037{
1038 wait_current_trans(fs_info);
1039}
1040
1041bool btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
1042{
1043 struct btrfs_transaction *cur_trans = trans->transaction;
1044
1045 if (cur_trans->state >= TRANS_STATE_COMMIT_START ||
1046 test_bit(BTRFS_DELAYED_REFS_FLUSHING, &cur_trans->delayed_refs.flags))
1047 return true;
1048
1049 if (btrfs_check_space_for_delayed_refs(fs_info: trans->fs_info))
1050 return true;
1051
1052 return !!btrfs_block_rsv_check(block_rsv: &trans->fs_info->global_block_rsv, min_percent: 50);
1053}
1054
1055static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
1056
1057{
1058 struct btrfs_fs_info *fs_info = trans->fs_info;
1059
1060 if (!trans->block_rsv) {
1061 ASSERT(!trans->bytes_reserved);
1062 ASSERT(!trans->delayed_refs_bytes_reserved);
1063 return;
1064 }
1065
1066 if (!trans->bytes_reserved) {
1067 ASSERT(!trans->delayed_refs_bytes_reserved);
1068 return;
1069 }
1070
1071 ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
1072 trace_btrfs_space_reservation(fs_info, type: "transaction",
1073 val: trans->transid, bytes: trans->bytes_reserved, reserve: 0);
1074 btrfs_block_rsv_release(fs_info, block_rsv: trans->block_rsv,
1075 num_bytes: trans->bytes_reserved, NULL);
1076 trans->bytes_reserved = 0;
1077
1078 if (!trans->delayed_refs_bytes_reserved)
1079 return;
1080
1081 trace_btrfs_space_reservation(fs_info, type: "local_delayed_refs_rsv",
1082 val: trans->transid,
1083 bytes: trans->delayed_refs_bytes_reserved, reserve: 0);
1084 btrfs_block_rsv_release(fs_info, block_rsv: &trans->delayed_rsv,
1085 num_bytes: trans->delayed_refs_bytes_reserved, NULL);
1086 trans->delayed_refs_bytes_reserved = 0;
1087}
1088
1089static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
1090 int throttle)
1091{
1092 struct btrfs_fs_info *info = trans->fs_info;
1093 struct btrfs_transaction *cur_trans = trans->transaction;
1094 int err = 0;
1095
1096 if (refcount_read(r: &trans->use_count) > 1) {
1097 refcount_dec(r: &trans->use_count);
1098 trans->block_rsv = trans->orig_rsv;
1099 return 0;
1100 }
1101
1102 btrfs_trans_release_metadata(trans);
1103 trans->block_rsv = NULL;
1104
1105 btrfs_create_pending_block_groups(trans);
1106
1107 btrfs_trans_release_chunk_metadata(trans);
1108
1109 if (trans->type & __TRANS_FREEZABLE)
1110 sb_end_intwrite(sb: info->sb);
1111
1112 WARN_ON(cur_trans != info->running_transaction);
1113 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
1114 atomic_dec(v: &cur_trans->num_writers);
1115 extwriter_counter_dec(trans: cur_trans, type: trans->type);
1116
1117 cond_wake_up(wq: &cur_trans->writer_wait);
1118
1119 btrfs_lockdep_release(info, btrfs_trans_num_extwriters);
1120 btrfs_lockdep_release(info, btrfs_trans_num_writers);
1121
1122 btrfs_put_transaction(transaction: cur_trans);
1123
1124 if (current->journal_info == trans)
1125 current->journal_info = NULL;
1126
1127 if (throttle)
1128 btrfs_run_delayed_iputs(fs_info: info);
1129
1130 if (TRANS_ABORTED(trans) || BTRFS_FS_ERROR(info)) {
1131 wake_up_process(tsk: info->transaction_kthread);
1132 if (TRANS_ABORTED(trans))
1133 err = trans->aborted;
1134 else
1135 err = -EROFS;
1136 }
1137
1138 kmem_cache_free(s: btrfs_trans_handle_cachep, objp: trans);
1139 return err;
1140}
1141
1142int btrfs_end_transaction(struct btrfs_trans_handle *trans)
1143{
1144 return __btrfs_end_transaction(trans, throttle: 0);
1145}
1146
1147int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
1148{
1149 return __btrfs_end_transaction(trans, throttle: 1);
1150}
1151
1152/*
1153 * when btree blocks are allocated, they have some corresponding bits set for
1154 * them in one of two extent_io trees. This is used to make sure all of
1155 * those extents are sent to disk but does not wait on them
1156 */
1157int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
1158 struct extent_io_tree *dirty_pages, int mark)
1159{
1160 int err = 0;
1161 int werr = 0;
1162 struct address_space *mapping = fs_info->btree_inode->i_mapping;
1163 struct extent_state *cached_state = NULL;
1164 u64 start = 0;
1165 u64 end;
1166
1167 while (find_first_extent_bit(tree: dirty_pages, start, start_ret: &start, end_ret: &end,
1168 bits: mark, cached_state: &cached_state)) {
1169 bool wait_writeback = false;
1170
1171 err = convert_extent_bit(tree: dirty_pages, start, end,
1172 bits: EXTENT_NEED_WAIT,
1173 clear_bits: mark, cached_state: &cached_state);
1174 /*
1175 * convert_extent_bit can return -ENOMEM, which is most of the
1176 * time a temporary error. So when it happens, ignore the error
1177 * and wait for writeback of this range to finish - because we
1178 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
1179 * to __btrfs_wait_marked_extents() would not know that
1180 * writeback for this range started and therefore wouldn't
1181 * wait for it to finish - we don't want to commit a
1182 * superblock that points to btree nodes/leafs for which
1183 * writeback hasn't finished yet (and without errors).
1184 * We cleanup any entries left in the io tree when committing
1185 * the transaction (through extent_io_tree_release()).
1186 */
1187 if (err == -ENOMEM) {
1188 err = 0;
1189 wait_writeback = true;
1190 }
1191 if (!err)
1192 err = filemap_fdatawrite_range(mapping, start, end);
1193 if (err)
1194 werr = err;
1195 else if (wait_writeback)
1196 werr = filemap_fdatawait_range(mapping, lstart: start, lend: end);
1197 free_extent_state(state: cached_state);
1198 cached_state = NULL;
1199 cond_resched();
1200 start = end + 1;
1201 }
1202 return werr;
1203}
1204
1205/*
1206 * when btree blocks are allocated, they have some corresponding bits set for
1207 * them in one of two extent_io trees. This is used to make sure all of
1208 * those extents are on disk for transaction or log commit. We wait
1209 * on all the pages and clear them from the dirty pages state tree
1210 */
1211static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
1212 struct extent_io_tree *dirty_pages)
1213{
1214 int err = 0;
1215 int werr = 0;
1216 struct address_space *mapping = fs_info->btree_inode->i_mapping;
1217 struct extent_state *cached_state = NULL;
1218 u64 start = 0;
1219 u64 end;
1220
1221 while (find_first_extent_bit(tree: dirty_pages, start, start_ret: &start, end_ret: &end,
1222 bits: EXTENT_NEED_WAIT, cached_state: &cached_state)) {
1223 /*
1224 * Ignore -ENOMEM errors returned by clear_extent_bit().
1225 * When committing the transaction, we'll remove any entries
1226 * left in the io tree. For a log commit, we don't remove them
1227 * after committing the log because the tree can be accessed
1228 * concurrently - we do it only at transaction commit time when
1229 * it's safe to do it (through extent_io_tree_release()).
1230 */
1231 err = clear_extent_bit(tree: dirty_pages, start, end,
1232 bits: EXTENT_NEED_WAIT, cached: &cached_state);
1233 if (err == -ENOMEM)
1234 err = 0;
1235 if (!err)
1236 err = filemap_fdatawait_range(mapping, lstart: start, lend: end);
1237 if (err)
1238 werr = err;
1239 free_extent_state(state: cached_state);
1240 cached_state = NULL;
1241 cond_resched();
1242 start = end + 1;
1243 }
1244 if (err)
1245 werr = err;
1246 return werr;
1247}
1248
1249static int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
1250 struct extent_io_tree *dirty_pages)
1251{
1252 bool errors = false;
1253 int err;
1254
1255 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1256 if (test_and_clear_bit(nr: BTRFS_FS_BTREE_ERR, addr: &fs_info->flags))
1257 errors = true;
1258
1259 if (errors && !err)
1260 err = -EIO;
1261 return err;
1262}
1263
1264int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1265{
1266 struct btrfs_fs_info *fs_info = log_root->fs_info;
1267 struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1268 bool errors = false;
1269 int err;
1270
1271 ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1272
1273 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1274 if ((mark & EXTENT_DIRTY) &&
1275 test_and_clear_bit(nr: BTRFS_FS_LOG1_ERR, addr: &fs_info->flags))
1276 errors = true;
1277
1278 if ((mark & EXTENT_NEW) &&
1279 test_and_clear_bit(nr: BTRFS_FS_LOG2_ERR, addr: &fs_info->flags))
1280 errors = true;
1281
1282 if (errors && !err)
1283 err = -EIO;
1284 return err;
1285}
1286
1287/*
1288 * When btree blocks are allocated the corresponding extents are marked dirty.
1289 * This function ensures such extents are persisted on disk for transaction or
1290 * log commit.
1291 *
1292 * @trans: transaction whose dirty pages we'd like to write
1293 */
1294static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
1295{
1296 int ret;
1297 int ret2;
1298 struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
1299 struct btrfs_fs_info *fs_info = trans->fs_info;
1300 struct blk_plug plug;
1301
1302 blk_start_plug(&plug);
1303 ret = btrfs_write_marked_extents(fs_info, dirty_pages, mark: EXTENT_DIRTY);
1304 blk_finish_plug(&plug);
1305 ret2 = btrfs_wait_extents(fs_info, dirty_pages);
1306
1307 extent_io_tree_release(tree: &trans->transaction->dirty_pages);
1308
1309 if (ret)
1310 return ret;
1311 else if (ret2)
1312 return ret2;
1313 else
1314 return 0;
1315}
1316
1317/*
1318 * this is used to update the root pointer in the tree of tree roots.
1319 *
1320 * But, in the case of the extent allocation tree, updating the root
1321 * pointer may allocate blocks which may change the root of the extent
1322 * allocation tree.
1323 *
1324 * So, this loops and repeats and makes sure the cowonly root didn't
1325 * change while the root pointer was being updated in the metadata.
1326 */
1327static int update_cowonly_root(struct btrfs_trans_handle *trans,
1328 struct btrfs_root *root)
1329{
1330 int ret;
1331 u64 old_root_bytenr;
1332 u64 old_root_used;
1333 struct btrfs_fs_info *fs_info = root->fs_info;
1334 struct btrfs_root *tree_root = fs_info->tree_root;
1335
1336 old_root_used = btrfs_root_used(s: &root->root_item);
1337
1338 while (1) {
1339 old_root_bytenr = btrfs_root_bytenr(s: &root->root_item);
1340 if (old_root_bytenr == root->node->start &&
1341 old_root_used == btrfs_root_used(s: &root->root_item))
1342 break;
1343
1344 btrfs_set_root_node(item: &root->root_item, node: root->node);
1345 ret = btrfs_update_root(trans, root: tree_root,
1346 key: &root->root_key,
1347 item: &root->root_item);
1348 if (ret)
1349 return ret;
1350
1351 old_root_used = btrfs_root_used(s: &root->root_item);
1352 }
1353
1354 return 0;
1355}
1356
1357/*
1358 * update all the cowonly tree roots on disk
1359 *
1360 * The error handling in this function may not be obvious. Any of the
1361 * failures will cause the file system to go offline. We still need
1362 * to clean up the delayed refs.
1363 */
1364static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
1365{
1366 struct btrfs_fs_info *fs_info = trans->fs_info;
1367 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1368 struct list_head *io_bgs = &trans->transaction->io_bgs;
1369 struct list_head *next;
1370 struct extent_buffer *eb;
1371 int ret;
1372
1373 /*
1374 * At this point no one can be using this transaction to modify any tree
1375 * and no one can start another transaction to modify any tree either.
1376 */
1377 ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1378
1379 eb = btrfs_lock_root_node(root: fs_info->tree_root);
1380 ret = btrfs_cow_block(trans, root: fs_info->tree_root, buf: eb, NULL,
1381 parent_slot: 0, cow_ret: &eb, nest: BTRFS_NESTING_COW);
1382 btrfs_tree_unlock(eb);
1383 free_extent_buffer(eb);
1384
1385 if (ret)
1386 return ret;
1387
1388 ret = btrfs_run_dev_stats(trans);
1389 if (ret)
1390 return ret;
1391 ret = btrfs_run_dev_replace(trans);
1392 if (ret)
1393 return ret;
1394 ret = btrfs_run_qgroups(trans);
1395 if (ret)
1396 return ret;
1397
1398 ret = btrfs_setup_space_cache(trans);
1399 if (ret)
1400 return ret;
1401
1402again:
1403 while (!list_empty(head: &fs_info->dirty_cowonly_roots)) {
1404 struct btrfs_root *root;
1405 next = fs_info->dirty_cowonly_roots.next;
1406 list_del_init(entry: next);
1407 root = list_entry(next, struct btrfs_root, dirty_list);
1408 clear_bit(nr: BTRFS_ROOT_DIRTY, addr: &root->state);
1409
1410 list_add_tail(new: &root->dirty_list,
1411 head: &trans->transaction->switch_commits);
1412 ret = update_cowonly_root(trans, root);
1413 if (ret)
1414 return ret;
1415 }
1416
1417 /* Now flush any delayed refs generated by updating all of the roots */
1418 ret = btrfs_run_delayed_refs(trans, U64_MAX);
1419 if (ret)
1420 return ret;
1421
1422 while (!list_empty(head: dirty_bgs) || !list_empty(head: io_bgs)) {
1423 ret = btrfs_write_dirty_block_groups(trans);
1424 if (ret)
1425 return ret;
1426
1427 /*
1428 * We're writing the dirty block groups, which could generate
1429 * delayed refs, which could generate more dirty block groups,
1430 * so we want to keep this flushing in this loop to make sure
1431 * everything gets run.
1432 */
1433 ret = btrfs_run_delayed_refs(trans, U64_MAX);
1434 if (ret)
1435 return ret;
1436 }
1437
1438 if (!list_empty(head: &fs_info->dirty_cowonly_roots))
1439 goto again;
1440
1441 /* Update dev-replace pointer once everything is committed */
1442 fs_info->dev_replace.committed_cursor_left =
1443 fs_info->dev_replace.cursor_left_last_write_of_item;
1444
1445 return 0;
1446}
1447
1448/*
1449 * If we had a pending drop we need to see if there are any others left in our
1450 * dead roots list, and if not clear our bit and wake any waiters.
1451 */
1452void btrfs_maybe_wake_unfinished_drop(struct btrfs_fs_info *fs_info)
1453{
1454 /*
1455 * We put the drop in progress roots at the front of the list, so if the
1456 * first entry doesn't have UNFINISHED_DROP set we can wake everybody
1457 * up.
1458 */
1459 spin_lock(lock: &fs_info->trans_lock);
1460 if (!list_empty(head: &fs_info->dead_roots)) {
1461 struct btrfs_root *root = list_first_entry(&fs_info->dead_roots,
1462 struct btrfs_root,
1463 root_list);
1464 if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state)) {
1465 spin_unlock(lock: &fs_info->trans_lock);
1466 return;
1467 }
1468 }
1469 spin_unlock(lock: &fs_info->trans_lock);
1470
1471 btrfs_wake_unfinished_drop(fs_info);
1472}
1473
1474/*
1475 * dead roots are old snapshots that need to be deleted. This allocates
1476 * a dirty root struct and adds it into the list of dead roots that need to
1477 * be deleted
1478 */
1479void btrfs_add_dead_root(struct btrfs_root *root)
1480{
1481 struct btrfs_fs_info *fs_info = root->fs_info;
1482
1483 spin_lock(lock: &fs_info->trans_lock);
1484 if (list_empty(head: &root->root_list)) {
1485 btrfs_grab_root(root);
1486
1487 /* We want to process the partially complete drops first. */
1488 if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state))
1489 list_add(new: &root->root_list, head: &fs_info->dead_roots);
1490 else
1491 list_add_tail(new: &root->root_list, head: &fs_info->dead_roots);
1492 }
1493 spin_unlock(lock: &fs_info->trans_lock);
1494}
1495
1496/*
1497 * Update each subvolume root and its relocation root, if it exists, in the tree
1498 * of tree roots. Also free log roots if they exist.
1499 */
1500static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
1501{
1502 struct btrfs_fs_info *fs_info = trans->fs_info;
1503 struct btrfs_root *gang[8];
1504 int i;
1505 int ret;
1506
1507 /*
1508 * At this point no one can be using this transaction to modify any tree
1509 * and no one can start another transaction to modify any tree either.
1510 */
1511 ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1512
1513 spin_lock(lock: &fs_info->fs_roots_radix_lock);
1514 while (1) {
1515 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1516 results: (void **)gang, first_index: 0,
1517 ARRAY_SIZE(gang),
1518 BTRFS_ROOT_TRANS_TAG);
1519 if (ret == 0)
1520 break;
1521 for (i = 0; i < ret; i++) {
1522 struct btrfs_root *root = gang[i];
1523 int ret2;
1524
1525 /*
1526 * At this point we can neither have tasks logging inodes
1527 * from a root nor trying to commit a log tree.
1528 */
1529 ASSERT(atomic_read(&root->log_writers) == 0);
1530 ASSERT(atomic_read(&root->log_commit[0]) == 0);
1531 ASSERT(atomic_read(&root->log_commit[1]) == 0);
1532
1533 radix_tree_tag_clear(&fs_info->fs_roots_radix,
1534 index: (unsigned long)root->root_key.objectid,
1535 BTRFS_ROOT_TRANS_TAG);
1536 spin_unlock(lock: &fs_info->fs_roots_radix_lock);
1537
1538 btrfs_free_log(trans, root);
1539 ret2 = btrfs_update_reloc_root(trans, root);
1540 if (ret2)
1541 return ret2;
1542
1543 /* see comments in should_cow_block() */
1544 clear_bit(nr: BTRFS_ROOT_FORCE_COW, addr: &root->state);
1545 smp_mb__after_atomic();
1546
1547 if (root->commit_root != root->node) {
1548 list_add_tail(new: &root->dirty_list,
1549 head: &trans->transaction->switch_commits);
1550 btrfs_set_root_node(item: &root->root_item,
1551 node: root->node);
1552 }
1553
1554 ret2 = btrfs_update_root(trans, root: fs_info->tree_root,
1555 key: &root->root_key,
1556 item: &root->root_item);
1557 if (ret2)
1558 return ret2;
1559 spin_lock(lock: &fs_info->fs_roots_radix_lock);
1560 btrfs_qgroup_free_meta_all_pertrans(root);
1561 }
1562 }
1563 spin_unlock(lock: &fs_info->fs_roots_radix_lock);
1564 return 0;
1565}
1566
1567/*
1568 * Do all special snapshot related qgroup dirty hack.
1569 *
1570 * Will do all needed qgroup inherit and dirty hack like switch commit
1571 * roots inside one transaction and write all btree into disk, to make
1572 * qgroup works.
1573 */
1574static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1575 struct btrfs_root *src,
1576 struct btrfs_root *parent,
1577 struct btrfs_qgroup_inherit *inherit,
1578 u64 dst_objectid)
1579{
1580 struct btrfs_fs_info *fs_info = src->fs_info;
1581 int ret;
1582
1583 /*
1584 * Save some performance in the case that qgroups are not enabled. If
1585 * this check races with the ioctl, rescan will kick in anyway.
1586 */
1587 if (!btrfs_qgroup_full_accounting(fs_info))
1588 return 0;
1589
1590 /*
1591 * Ensure dirty @src will be committed. Or, after coming
1592 * commit_fs_roots() and switch_commit_roots(), any dirty but not
1593 * recorded root will never be updated again, causing an outdated root
1594 * item.
1595 */
1596 ret = record_root_in_trans(trans, root: src, force: 1);
1597 if (ret)
1598 return ret;
1599
1600 /*
1601 * btrfs_qgroup_inherit relies on a consistent view of the usage for the
1602 * src root, so we must run the delayed refs here.
1603 *
1604 * However this isn't particularly fool proof, because there's no
1605 * synchronization keeping us from changing the tree after this point
1606 * before we do the qgroup_inherit, or even from making changes while
1607 * we're doing the qgroup_inherit. But that's a problem for the future,
1608 * for now flush the delayed refs to narrow the race window where the
1609 * qgroup counters could end up wrong.
1610 */
1611 ret = btrfs_run_delayed_refs(trans, U64_MAX);
1612 if (ret) {
1613 btrfs_abort_transaction(trans, ret);
1614 return ret;
1615 }
1616
1617 ret = commit_fs_roots(trans);
1618 if (ret)
1619 goto out;
1620 ret = btrfs_qgroup_account_extents(trans);
1621 if (ret < 0)
1622 goto out;
1623
1624 /* Now qgroup are all updated, we can inherit it to new qgroups */
1625 ret = btrfs_qgroup_inherit(trans, srcid: src->root_key.objectid, objectid: dst_objectid,
1626 inode_rootid: parent->root_key.objectid, inherit);
1627 if (ret < 0)
1628 goto out;
1629
1630 /*
1631 * Now we do a simplified commit transaction, which will:
1632 * 1) commit all subvolume and extent tree
1633 * To ensure all subvolume and extent tree have a valid
1634 * commit_root to accounting later insert_dir_item()
1635 * 2) write all btree blocks onto disk
1636 * This is to make sure later btree modification will be cowed
1637 * Or commit_root can be populated and cause wrong qgroup numbers
1638 * In this simplified commit, we don't really care about other trees
1639 * like chunk and root tree, as they won't affect qgroup.
1640 * And we don't write super to avoid half committed status.
1641 */
1642 ret = commit_cowonly_roots(trans);
1643 if (ret)
1644 goto out;
1645 switch_commit_roots(trans);
1646 ret = btrfs_write_and_wait_transaction(trans);
1647 if (ret)
1648 btrfs_handle_fs_error(fs_info, ret,
1649 "Error while writing out transaction for qgroup");
1650
1651out:
1652 /*
1653 * Force parent root to be updated, as we recorded it before so its
1654 * last_trans == cur_transid.
1655 * Or it won't be committed again onto disk after later
1656 * insert_dir_item()
1657 */
1658 if (!ret)
1659 ret = record_root_in_trans(trans, root: parent, force: 1);
1660 return ret;
1661}
1662
1663/*
1664 * new snapshots need to be created at a very specific time in the
1665 * transaction commit. This does the actual creation.
1666 *
1667 * Note:
1668 * If the error which may affect the commitment of the current transaction
1669 * happens, we should return the error number. If the error which just affect
1670 * the creation of the pending snapshots, just return 0.
1671 */
1672static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1673 struct btrfs_pending_snapshot *pending)
1674{
1675
1676 struct btrfs_fs_info *fs_info = trans->fs_info;
1677 struct btrfs_key key;
1678 struct btrfs_root_item *new_root_item;
1679 struct btrfs_root *tree_root = fs_info->tree_root;
1680 struct btrfs_root *root = pending->root;
1681 struct btrfs_root *parent_root;
1682 struct btrfs_block_rsv *rsv;
1683 struct inode *parent_inode = pending->dir;
1684 struct btrfs_path *path;
1685 struct btrfs_dir_item *dir_item;
1686 struct extent_buffer *tmp;
1687 struct extent_buffer *old;
1688 struct timespec64 cur_time;
1689 int ret = 0;
1690 u64 to_reserve = 0;
1691 u64 index = 0;
1692 u64 objectid;
1693 u64 root_flags;
1694 unsigned int nofs_flags;
1695 struct fscrypt_name fname;
1696
1697 ASSERT(pending->path);
1698 path = pending->path;
1699
1700 ASSERT(pending->root_item);
1701 new_root_item = pending->root_item;
1702
1703 /*
1704 * We're inside a transaction and must make sure that any potential
1705 * allocations with GFP_KERNEL in fscrypt won't recurse back to
1706 * filesystem.
1707 */
1708 nofs_flags = memalloc_nofs_save();
1709 pending->error = fscrypt_setup_filename(inode: parent_inode,
1710 iname: &pending->dentry->d_name, lookup: 0,
1711 fname: &fname);
1712 memalloc_nofs_restore(flags: nofs_flags);
1713 if (pending->error)
1714 goto free_pending;
1715
1716 pending->error = btrfs_get_free_objectid(root: tree_root, objectid: &objectid);
1717 if (pending->error)
1718 goto free_fname;
1719
1720 /*
1721 * Make qgroup to skip current new snapshot's qgroupid, as it is
1722 * accounted by later btrfs_qgroup_inherit().
1723 */
1724 btrfs_set_skip_qgroup(trans, qgroupid: objectid);
1725
1726 btrfs_reloc_pre_snapshot(pending, bytes_to_reserve: &to_reserve);
1727
1728 if (to_reserve > 0) {
1729 pending->error = btrfs_block_rsv_add(fs_info,
1730 block_rsv: &pending->block_rsv,
1731 num_bytes: to_reserve,
1732 flush: BTRFS_RESERVE_NO_FLUSH);
1733 if (pending->error)
1734 goto clear_skip_qgroup;
1735 }
1736
1737 key.objectid = objectid;
1738 key.offset = (u64)-1;
1739 key.type = BTRFS_ROOT_ITEM_KEY;
1740
1741 rsv = trans->block_rsv;
1742 trans->block_rsv = &pending->block_rsv;
1743 trans->bytes_reserved = trans->block_rsv->reserved;
1744 trace_btrfs_space_reservation(fs_info, type: "transaction",
1745 val: trans->transid,
1746 bytes: trans->bytes_reserved, reserve: 1);
1747 parent_root = BTRFS_I(inode: parent_inode)->root;
1748 ret = record_root_in_trans(trans, root: parent_root, force: 0);
1749 if (ret)
1750 goto fail;
1751 cur_time = current_time(inode: parent_inode);
1752
1753 /*
1754 * insert the directory item
1755 */
1756 ret = btrfs_set_inode_index(dir: BTRFS_I(inode: parent_inode), index: &index);
1757 if (ret) {
1758 btrfs_abort_transaction(trans, ret);
1759 goto fail;
1760 }
1761
1762 /* check if there is a file/dir which has the same name. */
1763 dir_item = btrfs_lookup_dir_item(NULL, root: parent_root, path,
1764 dir: btrfs_ino(inode: BTRFS_I(inode: parent_inode)),
1765 name: &fname.disk_name, mod: 0);
1766 if (dir_item != NULL && !IS_ERR(ptr: dir_item)) {
1767 pending->error = -EEXIST;
1768 goto dir_item_existed;
1769 } else if (IS_ERR(ptr: dir_item)) {
1770 ret = PTR_ERR(ptr: dir_item);
1771 btrfs_abort_transaction(trans, ret);
1772 goto fail;
1773 }
1774 btrfs_release_path(p: path);
1775
1776 ret = btrfs_create_qgroup(trans, qgroupid: objectid);
1777 if (ret) {
1778 btrfs_abort_transaction(trans, ret);
1779 goto fail;
1780 }
1781
1782 /*
1783 * pull in the delayed directory update
1784 * and the delayed inode item
1785 * otherwise we corrupt the FS during
1786 * snapshot
1787 */
1788 ret = btrfs_run_delayed_items(trans);
1789 if (ret) { /* Transaction aborted */
1790 btrfs_abort_transaction(trans, ret);
1791 goto fail;
1792 }
1793
1794 ret = record_root_in_trans(trans, root, force: 0);
1795 if (ret) {
1796 btrfs_abort_transaction(trans, ret);
1797 goto fail;
1798 }
1799 btrfs_set_root_last_snapshot(s: &root->root_item, val: trans->transid);
1800 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1801 btrfs_check_and_init_root_item(item: new_root_item);
1802
1803 root_flags = btrfs_root_flags(s: new_root_item);
1804 if (pending->readonly)
1805 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1806 else
1807 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1808 btrfs_set_root_flags(s: new_root_item, val: root_flags);
1809
1810 btrfs_set_root_generation_v2(s: new_root_item,
1811 val: trans->transid);
1812 generate_random_guid(guid: new_root_item->uuid);
1813 memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1814 BTRFS_UUID_SIZE);
1815 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1816 memset(new_root_item->received_uuid, 0,
1817 sizeof(new_root_item->received_uuid));
1818 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1819 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1820 btrfs_set_root_stransid(s: new_root_item, val: 0);
1821 btrfs_set_root_rtransid(s: new_root_item, val: 0);
1822 }
1823 btrfs_set_stack_timespec_sec(s: &new_root_item->otime, val: cur_time.tv_sec);
1824 btrfs_set_stack_timespec_nsec(s: &new_root_item->otime, val: cur_time.tv_nsec);
1825 btrfs_set_root_otransid(s: new_root_item, val: trans->transid);
1826
1827 old = btrfs_lock_root_node(root);
1828 ret = btrfs_cow_block(trans, root, buf: old, NULL, parent_slot: 0, cow_ret: &old,
1829 nest: BTRFS_NESTING_COW);
1830 if (ret) {
1831 btrfs_tree_unlock(eb: old);
1832 free_extent_buffer(eb: old);
1833 btrfs_abort_transaction(trans, ret);
1834 goto fail;
1835 }
1836
1837 ret = btrfs_copy_root(trans, root, buf: old, cow_ret: &tmp, new_root_objectid: objectid);
1838 /* clean up in any case */
1839 btrfs_tree_unlock(eb: old);
1840 free_extent_buffer(eb: old);
1841 if (ret) {
1842 btrfs_abort_transaction(trans, ret);
1843 goto fail;
1844 }
1845 /* see comments in should_cow_block() */
1846 set_bit(nr: BTRFS_ROOT_FORCE_COW, addr: &root->state);
1847 smp_wmb();
1848
1849 btrfs_set_root_node(item: new_root_item, node: tmp);
1850 /* record when the snapshot was created in key.offset */
1851 key.offset = trans->transid;
1852 ret = btrfs_insert_root(trans, root: tree_root, key: &key, item: new_root_item);
1853 btrfs_tree_unlock(eb: tmp);
1854 free_extent_buffer(eb: tmp);
1855 if (ret) {
1856 btrfs_abort_transaction(trans, ret);
1857 goto fail;
1858 }
1859
1860 /*
1861 * insert root back/forward references
1862 */
1863 ret = btrfs_add_root_ref(trans, root_id: objectid,
1864 ref_id: parent_root->root_key.objectid,
1865 dirid: btrfs_ino(inode: BTRFS_I(inode: parent_inode)), sequence: index,
1866 name: &fname.disk_name);
1867 if (ret) {
1868 btrfs_abort_transaction(trans, ret);
1869 goto fail;
1870 }
1871
1872 key.offset = (u64)-1;
1873 pending->snap = btrfs_get_new_fs_root(fs_info, objectid, anon_dev: pending->anon_dev);
1874 if (IS_ERR(ptr: pending->snap)) {
1875 ret = PTR_ERR(ptr: pending->snap);
1876 pending->snap = NULL;
1877 btrfs_abort_transaction(trans, ret);
1878 goto fail;
1879 }
1880
1881 ret = btrfs_reloc_post_snapshot(trans, pending);
1882 if (ret) {
1883 btrfs_abort_transaction(trans, ret);
1884 goto fail;
1885 }
1886
1887 /*
1888 * Do special qgroup accounting for snapshot, as we do some qgroup
1889 * snapshot hack to do fast snapshot.
1890 * To co-operate with that hack, we do hack again.
1891 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1892 */
1893 if (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_FULL)
1894 ret = qgroup_account_snapshot(trans, src: root, parent: parent_root,
1895 inherit: pending->inherit, dst_objectid: objectid);
1896 else if (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_SIMPLE)
1897 ret = btrfs_qgroup_inherit(trans, srcid: root->root_key.objectid, objectid,
1898 inode_rootid: parent_root->root_key.objectid, inherit: pending->inherit);
1899 if (ret < 0)
1900 goto fail;
1901
1902 ret = btrfs_insert_dir_item(trans, name: &fname.disk_name,
1903 dir: BTRFS_I(inode: parent_inode), location: &key, BTRFS_FT_DIR,
1904 index);
1905 /* We have check then name at the beginning, so it is impossible. */
1906 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1907 if (ret) {
1908 btrfs_abort_transaction(trans, ret);
1909 goto fail;
1910 }
1911
1912 btrfs_i_size_write(inode: BTRFS_I(inode: parent_inode), size: parent_inode->i_size +
1913 fname.disk_name.len * 2);
1914 inode_set_mtime_to_ts(inode: parent_inode,
1915 ts: inode_set_ctime_current(inode: parent_inode));
1916 ret = btrfs_update_inode_fallback(trans, inode: BTRFS_I(inode: parent_inode));
1917 if (ret) {
1918 btrfs_abort_transaction(trans, ret);
1919 goto fail;
1920 }
1921 ret = btrfs_uuid_tree_add(trans, uuid: new_root_item->uuid,
1922 BTRFS_UUID_KEY_SUBVOL,
1923 subid: objectid);
1924 if (ret) {
1925 btrfs_abort_transaction(trans, ret);
1926 goto fail;
1927 }
1928 if (!btrfs_is_empty_uuid(uuid: new_root_item->received_uuid)) {
1929 ret = btrfs_uuid_tree_add(trans, uuid: new_root_item->received_uuid,
1930 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1931 subid: objectid);
1932 if (ret && ret != -EEXIST) {
1933 btrfs_abort_transaction(trans, ret);
1934 goto fail;
1935 }
1936 }
1937
1938fail:
1939 pending->error = ret;
1940dir_item_existed:
1941 trans->block_rsv = rsv;
1942 trans->bytes_reserved = 0;
1943clear_skip_qgroup:
1944 btrfs_clear_skip_qgroup(trans);
1945free_fname:
1946 fscrypt_free_filename(fname: &fname);
1947free_pending:
1948 kfree(objp: new_root_item);
1949 pending->root_item = NULL;
1950 btrfs_free_path(p: path);
1951 pending->path = NULL;
1952
1953 return ret;
1954}
1955
1956/*
1957 * create all the snapshots we've scheduled for creation
1958 */
1959static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
1960{
1961 struct btrfs_pending_snapshot *pending, *next;
1962 struct list_head *head = &trans->transaction->pending_snapshots;
1963 int ret = 0;
1964
1965 list_for_each_entry_safe(pending, next, head, list) {
1966 list_del(entry: &pending->list);
1967 ret = create_pending_snapshot(trans, pending);
1968 if (ret)
1969 break;
1970 }
1971 return ret;
1972}
1973
1974static void update_super_roots(struct btrfs_fs_info *fs_info)
1975{
1976 struct btrfs_root_item *root_item;
1977 struct btrfs_super_block *super;
1978
1979 super = fs_info->super_copy;
1980
1981 root_item = &fs_info->chunk_root->root_item;
1982 super->chunk_root = root_item->bytenr;
1983 super->chunk_root_generation = root_item->generation;
1984 super->chunk_root_level = root_item->level;
1985
1986 root_item = &fs_info->tree_root->root_item;
1987 super->root = root_item->bytenr;
1988 super->generation = root_item->generation;
1989 super->root_level = root_item->level;
1990 if (btrfs_test_opt(fs_info, SPACE_CACHE))
1991 super->cache_generation = root_item->generation;
1992 else if (test_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags))
1993 super->cache_generation = 0;
1994 if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
1995 super->uuid_tree_generation = root_item->generation;
1996}
1997
1998int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1999{
2000 struct btrfs_transaction *trans;
2001 int ret = 0;
2002
2003 spin_lock(lock: &info->trans_lock);
2004 trans = info->running_transaction;
2005 if (trans)
2006 ret = (trans->state >= TRANS_STATE_COMMIT_START);
2007 spin_unlock(lock: &info->trans_lock);
2008 return ret;
2009}
2010
2011int btrfs_transaction_blocked(struct btrfs_fs_info *info)
2012{
2013 struct btrfs_transaction *trans;
2014 int ret = 0;
2015
2016 spin_lock(lock: &info->trans_lock);
2017 trans = info->running_transaction;
2018 if (trans)
2019 ret = is_transaction_blocked(trans);
2020 spin_unlock(lock: &info->trans_lock);
2021 return ret;
2022}
2023
2024void btrfs_commit_transaction_async(struct btrfs_trans_handle *trans)
2025{
2026 struct btrfs_fs_info *fs_info = trans->fs_info;
2027 struct btrfs_transaction *cur_trans;
2028
2029 /* Kick the transaction kthread. */
2030 set_bit(nr: BTRFS_FS_COMMIT_TRANS, addr: &fs_info->flags);
2031 wake_up_process(tsk: fs_info->transaction_kthread);
2032
2033 /* take transaction reference */
2034 cur_trans = trans->transaction;
2035 refcount_inc(r: &cur_trans->use_count);
2036
2037 btrfs_end_transaction(trans);
2038
2039 /*
2040 * Wait for the current transaction commit to start and block
2041 * subsequent transaction joins
2042 */
2043 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2044 wait_event(fs_info->transaction_blocked_wait,
2045 cur_trans->state >= TRANS_STATE_COMMIT_START ||
2046 TRANS_ABORTED(cur_trans));
2047 btrfs_put_transaction(transaction: cur_trans);
2048}
2049
2050static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
2051{
2052 struct btrfs_fs_info *fs_info = trans->fs_info;
2053 struct btrfs_transaction *cur_trans = trans->transaction;
2054
2055 WARN_ON(refcount_read(&trans->use_count) > 1);
2056
2057 btrfs_abort_transaction(trans, err);
2058
2059 spin_lock(lock: &fs_info->trans_lock);
2060
2061 /*
2062 * If the transaction is removed from the list, it means this
2063 * transaction has been committed successfully, so it is impossible
2064 * to call the cleanup function.
2065 */
2066 BUG_ON(list_empty(&cur_trans->list));
2067
2068 if (cur_trans == fs_info->running_transaction) {
2069 cur_trans->state = TRANS_STATE_COMMIT_DOING;
2070 spin_unlock(lock: &fs_info->trans_lock);
2071
2072 /*
2073 * The thread has already released the lockdep map as reader
2074 * already in btrfs_commit_transaction().
2075 */
2076 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers);
2077 wait_event(cur_trans->writer_wait,
2078 atomic_read(&cur_trans->num_writers) == 1);
2079
2080 spin_lock(lock: &fs_info->trans_lock);
2081 }
2082
2083 /*
2084 * Now that we know no one else is still using the transaction we can
2085 * remove the transaction from the list of transactions. This avoids
2086 * the transaction kthread from cleaning up the transaction while some
2087 * other task is still using it, which could result in a use-after-free
2088 * on things like log trees, as it forces the transaction kthread to
2089 * wait for this transaction to be cleaned up by us.
2090 */
2091 list_del_init(entry: &cur_trans->list);
2092
2093 spin_unlock(lock: &fs_info->trans_lock);
2094
2095 btrfs_cleanup_one_transaction(trans: trans->transaction, fs_info);
2096
2097 spin_lock(lock: &fs_info->trans_lock);
2098 if (cur_trans == fs_info->running_transaction)
2099 fs_info->running_transaction = NULL;
2100 spin_unlock(lock: &fs_info->trans_lock);
2101
2102 if (trans->type & __TRANS_FREEZABLE)
2103 sb_end_intwrite(sb: fs_info->sb);
2104 btrfs_put_transaction(transaction: cur_trans);
2105 btrfs_put_transaction(transaction: cur_trans);
2106
2107 trace_btrfs_transaction_commit(fs_info);
2108
2109 if (current->journal_info == trans)
2110 current->journal_info = NULL;
2111
2112 /*
2113 * If relocation is running, we can't cancel scrub because that will
2114 * result in a deadlock. Before relocating a block group, relocation
2115 * pauses scrub, then starts and commits a transaction before unpausing
2116 * scrub. If the transaction commit is being done by the relocation
2117 * task or triggered by another task and the relocation task is waiting
2118 * for the commit, and we end up here due to an error in the commit
2119 * path, then calling btrfs_scrub_cancel() will deadlock, as we are
2120 * asking for scrub to stop while having it asked to be paused higher
2121 * above in relocation code.
2122 */
2123 if (!test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
2124 btrfs_scrub_cancel(info: fs_info);
2125
2126 kmem_cache_free(s: btrfs_trans_handle_cachep, objp: trans);
2127}
2128
2129/*
2130 * Release reserved delayed ref space of all pending block groups of the
2131 * transaction and remove them from the list
2132 */
2133static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans)
2134{
2135 struct btrfs_fs_info *fs_info = trans->fs_info;
2136 struct btrfs_block_group *block_group, *tmp;
2137
2138 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
2139 btrfs_dec_delayed_refs_rsv_bg_inserts(fs_info);
2140 list_del_init(entry: &block_group->bg_list);
2141 }
2142}
2143
2144static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
2145{
2146 /*
2147 * We use try_to_writeback_inodes_sb() here because if we used
2148 * btrfs_start_delalloc_roots we would deadlock with fs freeze.
2149 * Currently are holding the fs freeze lock, if we do an async flush
2150 * we'll do btrfs_join_transaction() and deadlock because we need to
2151 * wait for the fs freeze lock. Using the direct flushing we benefit
2152 * from already being in a transaction and our join_transaction doesn't
2153 * have to re-take the fs freeze lock.
2154 *
2155 * Note that try_to_writeback_inodes_sb() will only trigger writeback
2156 * if it can read lock sb->s_umount. It will always be able to lock it,
2157 * except when the filesystem is being unmounted or being frozen, but in
2158 * those cases sync_filesystem() is called, which results in calling
2159 * writeback_inodes_sb() while holding a write lock on sb->s_umount.
2160 * Note that we don't call writeback_inodes_sb() directly, because it
2161 * will emit a warning if sb->s_umount is not locked.
2162 */
2163 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2164 try_to_writeback_inodes_sb(sb: fs_info->sb, reason: WB_REASON_SYNC);
2165 return 0;
2166}
2167
2168static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
2169{
2170 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2171 btrfs_wait_ordered_roots(fs_info, U64_MAX, range_start: 0, range_len: (u64)-1);
2172}
2173
2174/*
2175 * Add a pending snapshot associated with the given transaction handle to the
2176 * respective handle. This must be called after the transaction commit started
2177 * and while holding fs_info->trans_lock.
2178 * This serves to guarantee a caller of btrfs_commit_transaction() that it can
2179 * safely free the pending snapshot pointer in case btrfs_commit_transaction()
2180 * returns an error.
2181 */
2182static void add_pending_snapshot(struct btrfs_trans_handle *trans)
2183{
2184 struct btrfs_transaction *cur_trans = trans->transaction;
2185
2186 if (!trans->pending_snapshot)
2187 return;
2188
2189 lockdep_assert_held(&trans->fs_info->trans_lock);
2190 ASSERT(cur_trans->state >= TRANS_STATE_COMMIT_PREP);
2191
2192 list_add(new: &trans->pending_snapshot->list, head: &cur_trans->pending_snapshots);
2193}
2194
2195static void update_commit_stats(struct btrfs_fs_info *fs_info, ktime_t interval)
2196{
2197 fs_info->commit_stats.commit_count++;
2198 fs_info->commit_stats.last_commit_dur = interval;
2199 fs_info->commit_stats.max_commit_dur =
2200 max_t(u64, fs_info->commit_stats.max_commit_dur, interval);
2201 fs_info->commit_stats.total_commit_dur += interval;
2202}
2203
2204int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
2205{
2206 struct btrfs_fs_info *fs_info = trans->fs_info;
2207 struct btrfs_transaction *cur_trans = trans->transaction;
2208 struct btrfs_transaction *prev_trans = NULL;
2209 int ret;
2210 ktime_t start_time;
2211 ktime_t interval;
2212
2213 ASSERT(refcount_read(&trans->use_count) == 1);
2214 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2215
2216 clear_bit(nr: BTRFS_FS_NEED_TRANS_COMMIT, addr: &fs_info->flags);
2217
2218 /* Stop the commit early if ->aborted is set */
2219 if (TRANS_ABORTED(cur_trans)) {
2220 ret = cur_trans->aborted;
2221 goto lockdep_trans_commit_start_release;
2222 }
2223
2224 btrfs_trans_release_metadata(trans);
2225 trans->block_rsv = NULL;
2226
2227 /*
2228 * We only want one transaction commit doing the flushing so we do not
2229 * waste a bunch of time on lock contention on the extent root node.
2230 */
2231 if (!test_and_set_bit(nr: BTRFS_DELAYED_REFS_FLUSHING,
2232 addr: &cur_trans->delayed_refs.flags)) {
2233 /*
2234 * Make a pass through all the delayed refs we have so far.
2235 * Any running threads may add more while we are here.
2236 */
2237 ret = btrfs_run_delayed_refs(trans, min_bytes: 0);
2238 if (ret)
2239 goto lockdep_trans_commit_start_release;
2240 }
2241
2242 btrfs_create_pending_block_groups(trans);
2243
2244 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
2245 int run_it = 0;
2246
2247 /* this mutex is also taken before trying to set
2248 * block groups readonly. We need to make sure
2249 * that nobody has set a block group readonly
2250 * after a extents from that block group have been
2251 * allocated for cache files. btrfs_set_block_group_ro
2252 * will wait for the transaction to commit if it
2253 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
2254 *
2255 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2256 * only one process starts all the block group IO. It wouldn't
2257 * hurt to have more than one go through, but there's no
2258 * real advantage to it either.
2259 */
2260 mutex_lock(&fs_info->ro_block_group_mutex);
2261 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2262 addr: &cur_trans->flags))
2263 run_it = 1;
2264 mutex_unlock(lock: &fs_info->ro_block_group_mutex);
2265
2266 if (run_it) {
2267 ret = btrfs_start_dirty_block_groups(trans);
2268 if (ret)
2269 goto lockdep_trans_commit_start_release;
2270 }
2271 }
2272
2273 spin_lock(lock: &fs_info->trans_lock);
2274 if (cur_trans->state >= TRANS_STATE_COMMIT_PREP) {
2275 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2276
2277 add_pending_snapshot(trans);
2278
2279 spin_unlock(lock: &fs_info->trans_lock);
2280 refcount_inc(r: &cur_trans->use_count);
2281
2282 if (trans->in_fsync)
2283 want_state = TRANS_STATE_SUPER_COMMITTED;
2284
2285 btrfs_trans_state_lockdep_release(fs_info,
2286 BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2287 ret = btrfs_end_transaction(trans);
2288 wait_for_commit(commit: cur_trans, min_state: want_state);
2289
2290 if (TRANS_ABORTED(cur_trans))
2291 ret = cur_trans->aborted;
2292
2293 btrfs_put_transaction(transaction: cur_trans);
2294
2295 return ret;
2296 }
2297
2298 cur_trans->state = TRANS_STATE_COMMIT_PREP;
2299 wake_up(&fs_info->transaction_blocked_wait);
2300 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2301
2302 if (cur_trans->list.prev != &fs_info->trans_list) {
2303 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2304
2305 if (trans->in_fsync)
2306 want_state = TRANS_STATE_SUPER_COMMITTED;
2307
2308 prev_trans = list_entry(cur_trans->list.prev,
2309 struct btrfs_transaction, list);
2310 if (prev_trans->state < want_state) {
2311 refcount_inc(r: &prev_trans->use_count);
2312 spin_unlock(lock: &fs_info->trans_lock);
2313
2314 wait_for_commit(commit: prev_trans, min_state: want_state);
2315
2316 ret = READ_ONCE(prev_trans->aborted);
2317
2318 btrfs_put_transaction(transaction: prev_trans);
2319 if (ret)
2320 goto lockdep_release;
2321 spin_lock(lock: &fs_info->trans_lock);
2322 }
2323 } else {
2324 /*
2325 * The previous transaction was aborted and was already removed
2326 * from the list of transactions at fs_info->trans_list. So we
2327 * abort to prevent writing a new superblock that reflects a
2328 * corrupt state (pointing to trees with unwritten nodes/leafs).
2329 */
2330 if (BTRFS_FS_ERROR(fs_info)) {
2331 spin_unlock(lock: &fs_info->trans_lock);
2332 ret = -EROFS;
2333 goto lockdep_release;
2334 }
2335 }
2336
2337 cur_trans->state = TRANS_STATE_COMMIT_START;
2338 wake_up(&fs_info->transaction_blocked_wait);
2339 spin_unlock(lock: &fs_info->trans_lock);
2340
2341 /*
2342 * Get the time spent on the work done by the commit thread and not
2343 * the time spent waiting on a previous commit
2344 */
2345 start_time = ktime_get_ns();
2346
2347 extwriter_counter_dec(trans: cur_trans, type: trans->type);
2348
2349 ret = btrfs_start_delalloc_flush(fs_info);
2350 if (ret)
2351 goto lockdep_release;
2352
2353 ret = btrfs_run_delayed_items(trans);
2354 if (ret)
2355 goto lockdep_release;
2356
2357 /*
2358 * The thread has started/joined the transaction thus it holds the
2359 * lockdep map as a reader. It has to release it before acquiring the
2360 * lockdep map as a writer.
2361 */
2362 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
2363 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_extwriters);
2364 wait_event(cur_trans->writer_wait,
2365 extwriter_counter_read(cur_trans) == 0);
2366
2367 /* some pending stuffs might be added after the previous flush. */
2368 ret = btrfs_run_delayed_items(trans);
2369 if (ret) {
2370 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2371 goto cleanup_transaction;
2372 }
2373
2374 btrfs_wait_delalloc_flush(fs_info);
2375
2376 /*
2377 * Wait for all ordered extents started by a fast fsync that joined this
2378 * transaction. Otherwise if this transaction commits before the ordered
2379 * extents complete we lose logged data after a power failure.
2380 */
2381 btrfs_might_wait_for_event(fs_info, btrfs_trans_pending_ordered);
2382 wait_event(cur_trans->pending_wait,
2383 atomic_read(&cur_trans->pending_ordered) == 0);
2384
2385 btrfs_scrub_pause(fs_info);
2386 /*
2387 * Ok now we need to make sure to block out any other joins while we
2388 * commit the transaction. We could have started a join before setting
2389 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2390 */
2391 spin_lock(lock: &fs_info->trans_lock);
2392 add_pending_snapshot(trans);
2393 cur_trans->state = TRANS_STATE_COMMIT_DOING;
2394 spin_unlock(lock: &fs_info->trans_lock);
2395
2396 /*
2397 * The thread has started/joined the transaction thus it holds the
2398 * lockdep map as a reader. It has to release it before acquiring the
2399 * lockdep map as a writer.
2400 */
2401 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2402 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers);
2403 wait_event(cur_trans->writer_wait,
2404 atomic_read(&cur_trans->num_writers) == 1);
2405
2406 /*
2407 * Make lockdep happy by acquiring the state locks after
2408 * btrfs_trans_num_writers is released. If we acquired the state locks
2409 * before releasing the btrfs_trans_num_writers lock then lockdep would
2410 * complain because we did not follow the reverse order unlocking rule.
2411 */
2412 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2413 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2414 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2415
2416 /*
2417 * We've started the commit, clear the flag in case we were triggered to
2418 * do an async commit but somebody else started before the transaction
2419 * kthread could do the work.
2420 */
2421 clear_bit(nr: BTRFS_FS_COMMIT_TRANS, addr: &fs_info->flags);
2422
2423 if (TRANS_ABORTED(cur_trans)) {
2424 ret = cur_trans->aborted;
2425 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2426 goto scrub_continue;
2427 }
2428 /*
2429 * the reloc mutex makes sure that we stop
2430 * the balancing code from coming in and moving
2431 * extents around in the middle of the commit
2432 */
2433 mutex_lock(&fs_info->reloc_mutex);
2434
2435 /*
2436 * We needn't worry about the delayed items because we will
2437 * deal with them in create_pending_snapshot(), which is the
2438 * core function of the snapshot creation.
2439 */
2440 ret = create_pending_snapshots(trans);
2441 if (ret)
2442 goto unlock_reloc;
2443
2444 /*
2445 * We insert the dir indexes of the snapshots and update the inode
2446 * of the snapshots' parents after the snapshot creation, so there
2447 * are some delayed items which are not dealt with. Now deal with
2448 * them.
2449 *
2450 * We needn't worry that this operation will corrupt the snapshots,
2451 * because all the tree which are snapshoted will be forced to COW
2452 * the nodes and leaves.
2453 */
2454 ret = btrfs_run_delayed_items(trans);
2455 if (ret)
2456 goto unlock_reloc;
2457
2458 ret = btrfs_run_delayed_refs(trans, U64_MAX);
2459 if (ret)
2460 goto unlock_reloc;
2461
2462 /*
2463 * make sure none of the code above managed to slip in a
2464 * delayed item
2465 */
2466 btrfs_assert_delayed_root_empty(fs_info);
2467
2468 WARN_ON(cur_trans != trans->transaction);
2469
2470 ret = commit_fs_roots(trans);
2471 if (ret)
2472 goto unlock_reloc;
2473
2474 /* commit_fs_roots gets rid of all the tree log roots, it is now
2475 * safe to free the root of tree log roots
2476 */
2477 btrfs_free_log_root_tree(trans, fs_info);
2478
2479 /*
2480 * Since fs roots are all committed, we can get a quite accurate
2481 * new_roots. So let's do quota accounting.
2482 */
2483 ret = btrfs_qgroup_account_extents(trans);
2484 if (ret < 0)
2485 goto unlock_reloc;
2486
2487 ret = commit_cowonly_roots(trans);
2488 if (ret)
2489 goto unlock_reloc;
2490
2491 /*
2492 * The tasks which save the space cache and inode cache may also
2493 * update ->aborted, check it.
2494 */
2495 if (TRANS_ABORTED(cur_trans)) {
2496 ret = cur_trans->aborted;
2497 goto unlock_reloc;
2498 }
2499
2500 cur_trans = fs_info->running_transaction;
2501
2502 btrfs_set_root_node(item: &fs_info->tree_root->root_item,
2503 node: fs_info->tree_root->node);
2504 list_add_tail(new: &fs_info->tree_root->dirty_list,
2505 head: &cur_trans->switch_commits);
2506
2507 btrfs_set_root_node(item: &fs_info->chunk_root->root_item,
2508 node: fs_info->chunk_root->node);
2509 list_add_tail(new: &fs_info->chunk_root->dirty_list,
2510 head: &cur_trans->switch_commits);
2511
2512 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2513 btrfs_set_root_node(item: &fs_info->block_group_root->root_item,
2514 node: fs_info->block_group_root->node);
2515 list_add_tail(new: &fs_info->block_group_root->dirty_list,
2516 head: &cur_trans->switch_commits);
2517 }
2518
2519 switch_commit_roots(trans);
2520
2521 ASSERT(list_empty(&cur_trans->dirty_bgs));
2522 ASSERT(list_empty(&cur_trans->io_bgs));
2523 update_super_roots(fs_info);
2524
2525 btrfs_set_super_log_root(s: fs_info->super_copy, val: 0);
2526 btrfs_set_super_log_root_level(s: fs_info->super_copy, val: 0);
2527 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2528 sizeof(*fs_info->super_copy));
2529
2530 btrfs_commit_device_sizes(trans: cur_trans);
2531
2532 clear_bit(nr: BTRFS_FS_LOG1_ERR, addr: &fs_info->flags);
2533 clear_bit(nr: BTRFS_FS_LOG2_ERR, addr: &fs_info->flags);
2534
2535 btrfs_trans_release_chunk_metadata(trans);
2536
2537 /*
2538 * Before changing the transaction state to TRANS_STATE_UNBLOCKED and
2539 * setting fs_info->running_transaction to NULL, lock tree_log_mutex to
2540 * make sure that before we commit our superblock, no other task can
2541 * start a new transaction and commit a log tree before we commit our
2542 * superblock. Anyone trying to commit a log tree locks this mutex before
2543 * writing its superblock.
2544 */
2545 mutex_lock(&fs_info->tree_log_mutex);
2546
2547 spin_lock(lock: &fs_info->trans_lock);
2548 cur_trans->state = TRANS_STATE_UNBLOCKED;
2549 fs_info->running_transaction = NULL;
2550 spin_unlock(lock: &fs_info->trans_lock);
2551 mutex_unlock(lock: &fs_info->reloc_mutex);
2552
2553 wake_up(&fs_info->transaction_wait);
2554 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2555
2556 /* If we have features changed, wake up the cleaner to update sysfs. */
2557 if (test_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags) &&
2558 fs_info->cleaner_kthread)
2559 wake_up_process(tsk: fs_info->cleaner_kthread);
2560
2561 ret = btrfs_write_and_wait_transaction(trans);
2562 if (ret) {
2563 btrfs_handle_fs_error(fs_info, ret,
2564 "Error while writing out transaction");
2565 mutex_unlock(lock: &fs_info->tree_log_mutex);
2566 goto scrub_continue;
2567 }
2568
2569 ret = write_all_supers(fs_info, max_mirrors: 0);
2570 /*
2571 * the super is written, we can safely allow the tree-loggers
2572 * to go about their business
2573 */
2574 mutex_unlock(lock: &fs_info->tree_log_mutex);
2575 if (ret)
2576 goto scrub_continue;
2577
2578 /*
2579 * We needn't acquire the lock here because there is no other task
2580 * which can change it.
2581 */
2582 cur_trans->state = TRANS_STATE_SUPER_COMMITTED;
2583 wake_up(&cur_trans->commit_wait);
2584 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2585
2586 btrfs_finish_extent_commit(trans);
2587
2588 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2589 btrfs_clear_space_info_full(info: fs_info);
2590
2591 btrfs_set_last_trans_committed(fs_info, gen: cur_trans->transid);
2592 /*
2593 * We needn't acquire the lock here because there is no other task
2594 * which can change it.
2595 */
2596 cur_trans->state = TRANS_STATE_COMPLETED;
2597 wake_up(&cur_trans->commit_wait);
2598 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2599
2600 spin_lock(lock: &fs_info->trans_lock);
2601 list_del_init(entry: &cur_trans->list);
2602 spin_unlock(lock: &fs_info->trans_lock);
2603
2604 btrfs_put_transaction(transaction: cur_trans);
2605 btrfs_put_transaction(transaction: cur_trans);
2606
2607 if (trans->type & __TRANS_FREEZABLE)
2608 sb_end_intwrite(sb: fs_info->sb);
2609
2610 trace_btrfs_transaction_commit(fs_info);
2611
2612 interval = ktime_get_ns() - start_time;
2613
2614 btrfs_scrub_continue(fs_info);
2615
2616 if (current->journal_info == trans)
2617 current->journal_info = NULL;
2618
2619 kmem_cache_free(s: btrfs_trans_handle_cachep, objp: trans);
2620
2621 update_commit_stats(fs_info, interval);
2622
2623 return ret;
2624
2625unlock_reloc:
2626 mutex_unlock(lock: &fs_info->reloc_mutex);
2627 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2628scrub_continue:
2629 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2630 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2631 btrfs_scrub_continue(fs_info);
2632cleanup_transaction:
2633 btrfs_trans_release_metadata(trans);
2634 btrfs_cleanup_pending_block_groups(trans);
2635 btrfs_trans_release_chunk_metadata(trans);
2636 trans->block_rsv = NULL;
2637 btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
2638 if (current->journal_info == trans)
2639 current->journal_info = NULL;
2640 cleanup_transaction(trans, err: ret);
2641
2642 return ret;
2643
2644lockdep_release:
2645 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
2646 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2647 goto cleanup_transaction;
2648
2649lockdep_trans_commit_start_release:
2650 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2651 btrfs_end_transaction(trans);
2652 return ret;
2653}
2654
2655/*
2656 * return < 0 if error
2657 * 0 if there are no more dead_roots at the time of call
2658 * 1 there are more to be processed, call me again
2659 *
2660 * The return value indicates there are certainly more snapshots to delete, but
2661 * if there comes a new one during processing, it may return 0. We don't mind,
2662 * because btrfs_commit_super will poke cleaner thread and it will process it a
2663 * few seconds later.
2664 */
2665int btrfs_clean_one_deleted_snapshot(struct btrfs_fs_info *fs_info)
2666{
2667 struct btrfs_root *root;
2668 int ret;
2669
2670 spin_lock(lock: &fs_info->trans_lock);
2671 if (list_empty(head: &fs_info->dead_roots)) {
2672 spin_unlock(lock: &fs_info->trans_lock);
2673 return 0;
2674 }
2675 root = list_first_entry(&fs_info->dead_roots,
2676 struct btrfs_root, root_list);
2677 list_del_init(entry: &root->root_list);
2678 spin_unlock(lock: &fs_info->trans_lock);
2679
2680 btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid);
2681
2682 btrfs_kill_all_delayed_nodes(root);
2683
2684 if (btrfs_header_backref_rev(eb: root->node) <
2685 BTRFS_MIXED_BACKREF_REV)
2686 ret = btrfs_drop_snapshot(root, update_ref: 0, for_reloc: 0);
2687 else
2688 ret = btrfs_drop_snapshot(root, update_ref: 1, for_reloc: 0);
2689
2690 btrfs_put_root(root);
2691 return (ret < 0) ? 0 : 1;
2692}
2693
2694/*
2695 * We only mark the transaction aborted and then set the file system read-only.
2696 * This will prevent new transactions from starting or trying to join this
2697 * one.
2698 *
2699 * This means that error recovery at the call site is limited to freeing
2700 * any local memory allocations and passing the error code up without
2701 * further cleanup. The transaction should complete as it normally would
2702 * in the call path but will return -EIO.
2703 *
2704 * We'll complete the cleanup in btrfs_end_transaction and
2705 * btrfs_commit_transaction.
2706 */
2707void __cold __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
2708 const char *function,
2709 unsigned int line, int error, bool first_hit)
2710{
2711 struct btrfs_fs_info *fs_info = trans->fs_info;
2712
2713 WRITE_ONCE(trans->aborted, error);
2714 WRITE_ONCE(trans->transaction->aborted, error);
2715 if (first_hit && error == -ENOSPC)
2716 btrfs_dump_space_info_for_trans_abort(fs_info);
2717 /* Wake up anybody who may be waiting on this transaction */
2718 wake_up(&fs_info->transaction_wait);
2719 wake_up(&fs_info->transaction_blocked_wait);
2720 __btrfs_handle_fs_error(fs_info, function, line, error, NULL);
2721}
2722
2723int __init btrfs_transaction_init(void)
2724{
2725 btrfs_trans_handle_cachep = kmem_cache_create(name: "btrfs_trans_handle",
2726 size: sizeof(struct btrfs_trans_handle), align: 0,
2727 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
2728 if (!btrfs_trans_handle_cachep)
2729 return -ENOMEM;
2730 return 0;
2731}
2732
2733void __cold btrfs_transaction_exit(void)
2734{
2735 kmem_cache_destroy(s: btrfs_trans_handle_cachep);
2736}
2737

source code of linux/fs/btrfs/transaction.c