1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6#include <linux/sched.h>
7#include <linux/sched/mm.h>
8#include <linux/slab.h>
9#include <linux/ratelimit.h>
10#include <linux/kthread.h>
11#include <linux/semaphore.h>
12#include <linux/uuid.h>
13#include <linux/list_sort.h>
14#include <linux/namei.h>
15#include "misc.h"
16#include "ctree.h"
17#include "extent_map.h"
18#include "disk-io.h"
19#include "transaction.h"
20#include "print-tree.h"
21#include "volumes.h"
22#include "raid56.h"
23#include "rcu-string.h"
24#include "dev-replace.h"
25#include "sysfs.h"
26#include "tree-checker.h"
27#include "space-info.h"
28#include "block-group.h"
29#include "discard.h"
30#include "zoned.h"
31#include "fs.h"
32#include "accessors.h"
33#include "uuid-tree.h"
34#include "ioctl.h"
35#include "relocation.h"
36#include "scrub.h"
37#include "super.h"
38#include "raid-stripe-tree.h"
39
40#define BTRFS_BLOCK_GROUP_STRIPE_MASK (BTRFS_BLOCK_GROUP_RAID0 | \
41 BTRFS_BLOCK_GROUP_RAID10 | \
42 BTRFS_BLOCK_GROUP_RAID56_MASK)
43
44const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
45 [BTRFS_RAID_RAID10] = {
46 .sub_stripes = 2,
47 .dev_stripes = 1,
48 .devs_max = 0, /* 0 == as many as possible */
49 .devs_min = 2,
50 .tolerated_failures = 1,
51 .devs_increment = 2,
52 .ncopies = 2,
53 .nparity = 0,
54 .raid_name = "raid10",
55 .bg_flag = BTRFS_BLOCK_GROUP_RAID10,
56 .mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
57 },
58 [BTRFS_RAID_RAID1] = {
59 .sub_stripes = 1,
60 .dev_stripes = 1,
61 .devs_max = 2,
62 .devs_min = 2,
63 .tolerated_failures = 1,
64 .devs_increment = 2,
65 .ncopies = 2,
66 .nparity = 0,
67 .raid_name = "raid1",
68 .bg_flag = BTRFS_BLOCK_GROUP_RAID1,
69 .mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
70 },
71 [BTRFS_RAID_RAID1C3] = {
72 .sub_stripes = 1,
73 .dev_stripes = 1,
74 .devs_max = 3,
75 .devs_min = 3,
76 .tolerated_failures = 2,
77 .devs_increment = 3,
78 .ncopies = 3,
79 .nparity = 0,
80 .raid_name = "raid1c3",
81 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C3,
82 .mindev_error = BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
83 },
84 [BTRFS_RAID_RAID1C4] = {
85 .sub_stripes = 1,
86 .dev_stripes = 1,
87 .devs_max = 4,
88 .devs_min = 4,
89 .tolerated_failures = 3,
90 .devs_increment = 4,
91 .ncopies = 4,
92 .nparity = 0,
93 .raid_name = "raid1c4",
94 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C4,
95 .mindev_error = BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
96 },
97 [BTRFS_RAID_DUP] = {
98 .sub_stripes = 1,
99 .dev_stripes = 2,
100 .devs_max = 1,
101 .devs_min = 1,
102 .tolerated_failures = 0,
103 .devs_increment = 1,
104 .ncopies = 2,
105 .nparity = 0,
106 .raid_name = "dup",
107 .bg_flag = BTRFS_BLOCK_GROUP_DUP,
108 .mindev_error = 0,
109 },
110 [BTRFS_RAID_RAID0] = {
111 .sub_stripes = 1,
112 .dev_stripes = 1,
113 .devs_max = 0,
114 .devs_min = 1,
115 .tolerated_failures = 0,
116 .devs_increment = 1,
117 .ncopies = 1,
118 .nparity = 0,
119 .raid_name = "raid0",
120 .bg_flag = BTRFS_BLOCK_GROUP_RAID0,
121 .mindev_error = 0,
122 },
123 [BTRFS_RAID_SINGLE] = {
124 .sub_stripes = 1,
125 .dev_stripes = 1,
126 .devs_max = 1,
127 .devs_min = 1,
128 .tolerated_failures = 0,
129 .devs_increment = 1,
130 .ncopies = 1,
131 .nparity = 0,
132 .raid_name = "single",
133 .bg_flag = 0,
134 .mindev_error = 0,
135 },
136 [BTRFS_RAID_RAID5] = {
137 .sub_stripes = 1,
138 .dev_stripes = 1,
139 .devs_max = 0,
140 .devs_min = 2,
141 .tolerated_failures = 1,
142 .devs_increment = 1,
143 .ncopies = 1,
144 .nparity = 1,
145 .raid_name = "raid5",
146 .bg_flag = BTRFS_BLOCK_GROUP_RAID5,
147 .mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
148 },
149 [BTRFS_RAID_RAID6] = {
150 .sub_stripes = 1,
151 .dev_stripes = 1,
152 .devs_max = 0,
153 .devs_min = 3,
154 .tolerated_failures = 2,
155 .devs_increment = 1,
156 .ncopies = 1,
157 .nparity = 2,
158 .raid_name = "raid6",
159 .bg_flag = BTRFS_BLOCK_GROUP_RAID6,
160 .mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
161 },
162};
163
164/*
165 * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which
166 * can be used as index to access btrfs_raid_array[].
167 */
168enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags)
169{
170 const u64 profile = (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK);
171
172 if (!profile)
173 return BTRFS_RAID_SINGLE;
174
175 return BTRFS_BG_FLAG_TO_INDEX(profile);
176}
177
178const char *btrfs_bg_type_to_raid_name(u64 flags)
179{
180 const int index = btrfs_bg_flags_to_raid_index(flags);
181
182 if (index >= BTRFS_NR_RAID_TYPES)
183 return NULL;
184
185 return btrfs_raid_array[index].raid_name;
186}
187
188int btrfs_nr_parity_stripes(u64 type)
189{
190 enum btrfs_raid_types index = btrfs_bg_flags_to_raid_index(flags: type);
191
192 return btrfs_raid_array[index].nparity;
193}
194
195/*
196 * Fill @buf with textual description of @bg_flags, no more than @size_buf
197 * bytes including terminating null byte.
198 */
199void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
200{
201 int i;
202 int ret;
203 char *bp = buf;
204 u64 flags = bg_flags;
205 u32 size_bp = size_buf;
206
207 if (!flags) {
208 strcpy(p: bp, q: "NONE");
209 return;
210 }
211
212#define DESCRIBE_FLAG(flag, desc) \
213 do { \
214 if (flags & (flag)) { \
215 ret = snprintf(bp, size_bp, "%s|", (desc)); \
216 if (ret < 0 || ret >= size_bp) \
217 goto out_overflow; \
218 size_bp -= ret; \
219 bp += ret; \
220 flags &= ~(flag); \
221 } \
222 } while (0)
223
224 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
225 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
226 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
227
228 DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
229 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
230 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
231 btrfs_raid_array[i].raid_name);
232#undef DESCRIBE_FLAG
233
234 if (flags) {
235 ret = snprintf(buf: bp, size: size_bp, fmt: "0x%llx|", flags);
236 size_bp -= ret;
237 }
238
239 if (size_bp < size_buf)
240 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
241
242 /*
243 * The text is trimmed, it's up to the caller to provide sufficiently
244 * large buffer
245 */
246out_overflow:;
247}
248
249static int init_first_rw_device(struct btrfs_trans_handle *trans);
250static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
251static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
252
253/*
254 * Device locking
255 * ==============
256 *
257 * There are several mutexes that protect manipulation of devices and low-level
258 * structures like chunks but not block groups, extents or files
259 *
260 * uuid_mutex (global lock)
261 * ------------------------
262 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
263 * the SCAN_DEV ioctl registration or from mount either implicitly (the first
264 * device) or requested by the device= mount option
265 *
266 * the mutex can be very coarse and can cover long-running operations
267 *
268 * protects: updates to fs_devices counters like missing devices, rw devices,
269 * seeding, structure cloning, opening/closing devices at mount/umount time
270 *
271 * global::fs_devs - add, remove, updates to the global list
272 *
273 * does not protect: manipulation of the fs_devices::devices list in general
274 * but in mount context it could be used to exclude list modifications by eg.
275 * scan ioctl
276 *
277 * btrfs_device::name - renames (write side), read is RCU
278 *
279 * fs_devices::device_list_mutex (per-fs, with RCU)
280 * ------------------------------------------------
281 * protects updates to fs_devices::devices, ie. adding and deleting
282 *
283 * simple list traversal with read-only actions can be done with RCU protection
284 *
285 * may be used to exclude some operations from running concurrently without any
286 * modifications to the list (see write_all_supers)
287 *
288 * Is not required at mount and close times, because our device list is
289 * protected by the uuid_mutex at that point.
290 *
291 * balance_mutex
292 * -------------
293 * protects balance structures (status, state) and context accessed from
294 * several places (internally, ioctl)
295 *
296 * chunk_mutex
297 * -----------
298 * protects chunks, adding or removing during allocation, trim or when a new
299 * device is added/removed. Additionally it also protects post_commit_list of
300 * individual devices, since they can be added to the transaction's
301 * post_commit_list only with chunk_mutex held.
302 *
303 * cleaner_mutex
304 * -------------
305 * a big lock that is held by the cleaner thread and prevents running subvolume
306 * cleaning together with relocation or delayed iputs
307 *
308 *
309 * Lock nesting
310 * ============
311 *
312 * uuid_mutex
313 * device_list_mutex
314 * chunk_mutex
315 * balance_mutex
316 *
317 *
318 * Exclusive operations
319 * ====================
320 *
321 * Maintains the exclusivity of the following operations that apply to the
322 * whole filesystem and cannot run in parallel.
323 *
324 * - Balance (*)
325 * - Device add
326 * - Device remove
327 * - Device replace (*)
328 * - Resize
329 *
330 * The device operations (as above) can be in one of the following states:
331 *
332 * - Running state
333 * - Paused state
334 * - Completed state
335 *
336 * Only device operations marked with (*) can go into the Paused state for the
337 * following reasons:
338 *
339 * - ioctl (only Balance can be Paused through ioctl)
340 * - filesystem remounted as read-only
341 * - filesystem unmounted and mounted as read-only
342 * - system power-cycle and filesystem mounted as read-only
343 * - filesystem or device errors leading to forced read-only
344 *
345 * The status of exclusive operation is set and cleared atomically.
346 * During the course of Paused state, fs_info::exclusive_operation remains set.
347 * A device operation in Paused or Running state can be canceled or resumed
348 * either by ioctl (Balance only) or when remounted as read-write.
349 * The exclusive status is cleared when the device operation is canceled or
350 * completed.
351 */
352
353DEFINE_MUTEX(uuid_mutex);
354static LIST_HEAD(fs_uuids);
355struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
356{
357 return &fs_uuids;
358}
359
360/*
361 * Allocate new btrfs_fs_devices structure identified by a fsid.
362 *
363 * @fsid: if not NULL, copy the UUID to fs_devices::fsid and to
364 * fs_devices::metadata_fsid
365 *
366 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
367 * The returned struct is not linked onto any lists and can be destroyed with
368 * kfree() right away.
369 */
370static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
371{
372 struct btrfs_fs_devices *fs_devs;
373
374 fs_devs = kzalloc(size: sizeof(*fs_devs), GFP_KERNEL);
375 if (!fs_devs)
376 return ERR_PTR(error: -ENOMEM);
377
378 mutex_init(&fs_devs->device_list_mutex);
379
380 INIT_LIST_HEAD(list: &fs_devs->devices);
381 INIT_LIST_HEAD(list: &fs_devs->alloc_list);
382 INIT_LIST_HEAD(list: &fs_devs->fs_list);
383 INIT_LIST_HEAD(list: &fs_devs->seed_list);
384
385 if (fsid) {
386 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
387 memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
388 }
389
390 return fs_devs;
391}
392
393static void btrfs_free_device(struct btrfs_device *device)
394{
395 WARN_ON(!list_empty(&device->post_commit_list));
396 rcu_string_free(str: device->name);
397 extent_io_tree_release(tree: &device->alloc_state);
398 btrfs_destroy_dev_zone_info(device);
399 kfree(objp: device);
400}
401
402static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
403{
404 struct btrfs_device *device;
405
406 WARN_ON(fs_devices->opened);
407 while (!list_empty(head: &fs_devices->devices)) {
408 device = list_entry(fs_devices->devices.next,
409 struct btrfs_device, dev_list);
410 list_del(entry: &device->dev_list);
411 btrfs_free_device(device);
412 }
413 kfree(objp: fs_devices);
414}
415
416void __exit btrfs_cleanup_fs_uuids(void)
417{
418 struct btrfs_fs_devices *fs_devices;
419
420 while (!list_empty(head: &fs_uuids)) {
421 fs_devices = list_entry(fs_uuids.next,
422 struct btrfs_fs_devices, fs_list);
423 list_del(entry: &fs_devices->fs_list);
424 free_fs_devices(fs_devices);
425 }
426}
427
428static bool match_fsid_fs_devices(const struct btrfs_fs_devices *fs_devices,
429 const u8 *fsid, const u8 *metadata_fsid)
430{
431 if (memcmp(p: fsid, q: fs_devices->fsid, BTRFS_FSID_SIZE) != 0)
432 return false;
433
434 if (!metadata_fsid)
435 return true;
436
437 if (memcmp(p: metadata_fsid, q: fs_devices->metadata_uuid, BTRFS_FSID_SIZE) != 0)
438 return false;
439
440 return true;
441}
442
443static noinline struct btrfs_fs_devices *find_fsid(
444 const u8 *fsid, const u8 *metadata_fsid)
445{
446 struct btrfs_fs_devices *fs_devices;
447
448 ASSERT(fsid);
449
450 /* Handle non-split brain cases */
451 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
452 if (match_fsid_fs_devices(fs_devices, fsid, metadata_fsid))
453 return fs_devices;
454 }
455 return NULL;
456}
457
458static int
459btrfs_get_bdev_and_sb(const char *device_path, blk_mode_t flags, void *holder,
460 int flush, struct bdev_handle **bdev_handle,
461 struct btrfs_super_block **disk_super)
462{
463 struct block_device *bdev;
464 int ret;
465
466 *bdev_handle = bdev_open_by_path(path: device_path, mode: flags, holder, NULL);
467
468 if (IS_ERR(ptr: *bdev_handle)) {
469 ret = PTR_ERR(ptr: *bdev_handle);
470 goto error;
471 }
472 bdev = (*bdev_handle)->bdev;
473
474 if (flush)
475 sync_blockdev(bdev);
476 ret = set_blocksize(bdev, BTRFS_BDEV_BLOCKSIZE);
477 if (ret) {
478 bdev_release(handle: *bdev_handle);
479 goto error;
480 }
481 invalidate_bdev(bdev);
482 *disk_super = btrfs_read_dev_super(bdev);
483 if (IS_ERR(ptr: *disk_super)) {
484 ret = PTR_ERR(ptr: *disk_super);
485 bdev_release(handle: *bdev_handle);
486 goto error;
487 }
488
489 return 0;
490
491error:
492 *bdev_handle = NULL;
493 return ret;
494}
495
496/*
497 * Search and remove all stale devices (which are not mounted). When both
498 * inputs are NULL, it will search and release all stale devices.
499 *
500 * @devt: Optional. When provided will it release all unmounted devices
501 * matching this devt only.
502 * @skip_device: Optional. Will skip this device when searching for the stale
503 * devices.
504 *
505 * Return: 0 for success or if @devt is 0.
506 * -EBUSY if @devt is a mounted device.
507 * -ENOENT if @devt does not match any device in the list.
508 */
509static int btrfs_free_stale_devices(dev_t devt, struct btrfs_device *skip_device)
510{
511 struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
512 struct btrfs_device *device, *tmp_device;
513 int ret;
514 bool freed = false;
515
516 lockdep_assert_held(&uuid_mutex);
517
518 /* Return good status if there is no instance of devt. */
519 ret = 0;
520 list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
521
522 mutex_lock(&fs_devices->device_list_mutex);
523 list_for_each_entry_safe(device, tmp_device,
524 &fs_devices->devices, dev_list) {
525 if (skip_device && skip_device == device)
526 continue;
527 if (devt && devt != device->devt)
528 continue;
529 if (fs_devices->opened) {
530 if (devt)
531 ret = -EBUSY;
532 break;
533 }
534
535 /* delete the stale device */
536 fs_devices->num_devices--;
537 list_del(entry: &device->dev_list);
538 btrfs_free_device(device);
539
540 freed = true;
541 }
542 mutex_unlock(lock: &fs_devices->device_list_mutex);
543
544 if (fs_devices->num_devices == 0) {
545 btrfs_sysfs_remove_fsid(fs_devs: fs_devices);
546 list_del(entry: &fs_devices->fs_list);
547 free_fs_devices(fs_devices);
548 }
549 }
550
551 /* If there is at least one freed device return 0. */
552 if (freed)
553 return 0;
554
555 return ret;
556}
557
558static struct btrfs_fs_devices *find_fsid_by_device(
559 struct btrfs_super_block *disk_super,
560 dev_t devt, bool *same_fsid_diff_dev)
561{
562 struct btrfs_fs_devices *fsid_fs_devices;
563 struct btrfs_fs_devices *devt_fs_devices;
564 const bool has_metadata_uuid = (btrfs_super_incompat_flags(s: disk_super) &
565 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
566 bool found_by_devt = false;
567
568 /* Find the fs_device by the usual method, if found use it. */
569 fsid_fs_devices = find_fsid(fsid: disk_super->fsid,
570 metadata_fsid: has_metadata_uuid ? disk_super->metadata_uuid : NULL);
571
572 /* The temp_fsid feature is supported only with single device filesystem. */
573 if (btrfs_super_num_devices(s: disk_super) != 1)
574 return fsid_fs_devices;
575
576 /*
577 * A seed device is an integral component of the sprout device, which
578 * functions as a multi-device filesystem. So, temp-fsid feature is
579 * not supported.
580 */
581 if (btrfs_super_flags(s: disk_super) & BTRFS_SUPER_FLAG_SEEDING)
582 return fsid_fs_devices;
583
584 /* Try to find a fs_devices by matching devt. */
585 list_for_each_entry(devt_fs_devices, &fs_uuids, fs_list) {
586 struct btrfs_device *device;
587
588 list_for_each_entry(device, &devt_fs_devices->devices, dev_list) {
589 if (device->devt == devt) {
590 found_by_devt = true;
591 break;
592 }
593 }
594 if (found_by_devt)
595 break;
596 }
597
598 if (found_by_devt) {
599 /* Existing device. */
600 if (fsid_fs_devices == NULL) {
601 if (devt_fs_devices->opened == 0) {
602 /* Stale device. */
603 return NULL;
604 } else {
605 /* temp_fsid is mounting a subvol. */
606 return devt_fs_devices;
607 }
608 } else {
609 /* Regular or temp_fsid device mounting a subvol. */
610 return devt_fs_devices;
611 }
612 } else {
613 /* New device. */
614 if (fsid_fs_devices == NULL) {
615 return NULL;
616 } else {
617 /* sb::fsid is already used create a new temp_fsid. */
618 *same_fsid_diff_dev = true;
619 return NULL;
620 }
621 }
622
623 /* Not reached. */
624}
625
626/*
627 * This is only used on mount, and we are protected from competing things
628 * messing with our fs_devices by the uuid_mutex, thus we do not need the
629 * fs_devices->device_list_mutex here.
630 */
631static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
632 struct btrfs_device *device, blk_mode_t flags,
633 void *holder)
634{
635 struct bdev_handle *bdev_handle;
636 struct btrfs_super_block *disk_super;
637 u64 devid;
638 int ret;
639
640 if (device->bdev)
641 return -EINVAL;
642 if (!device->name)
643 return -EINVAL;
644
645 ret = btrfs_get_bdev_and_sb(device_path: device->name->str, flags, holder, flush: 1,
646 bdev_handle: &bdev_handle, disk_super: &disk_super);
647 if (ret)
648 return ret;
649
650 devid = btrfs_stack_device_id(s: &disk_super->dev_item);
651 if (devid != device->devid)
652 goto error_free_page;
653
654 if (memcmp(p: device->uuid, q: disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
655 goto error_free_page;
656
657 device->generation = btrfs_super_generation(s: disk_super);
658
659 if (btrfs_super_flags(s: disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
660 if (btrfs_super_incompat_flags(s: disk_super) &
661 BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
662 pr_err(
663 "BTRFS: Invalid seeding and uuid-changed device detected\n");
664 goto error_free_page;
665 }
666
667 clear_bit(BTRFS_DEV_STATE_WRITEABLE, addr: &device->dev_state);
668 fs_devices->seeding = true;
669 } else {
670 if (bdev_read_only(bdev: bdev_handle->bdev))
671 clear_bit(BTRFS_DEV_STATE_WRITEABLE, addr: &device->dev_state);
672 else
673 set_bit(BTRFS_DEV_STATE_WRITEABLE, addr: &device->dev_state);
674 }
675
676 if (!bdev_nonrot(bdev: bdev_handle->bdev))
677 fs_devices->rotating = true;
678
679 if (bdev_max_discard_sectors(bdev: bdev_handle->bdev))
680 fs_devices->discardable = true;
681
682 device->bdev_handle = bdev_handle;
683 device->bdev = bdev_handle->bdev;
684 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, addr: &device->dev_state);
685
686 fs_devices->open_devices++;
687 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
688 device->devid != BTRFS_DEV_REPLACE_DEVID) {
689 fs_devices->rw_devices++;
690 list_add_tail(new: &device->dev_alloc_list, head: &fs_devices->alloc_list);
691 }
692 btrfs_release_disk_super(super: disk_super);
693
694 return 0;
695
696error_free_page:
697 btrfs_release_disk_super(super: disk_super);
698 bdev_release(handle: bdev_handle);
699
700 return -EINVAL;
701}
702
703u8 *btrfs_sb_fsid_ptr(struct btrfs_super_block *sb)
704{
705 bool has_metadata_uuid = (btrfs_super_incompat_flags(s: sb) &
706 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
707
708 return has_metadata_uuid ? sb->metadata_uuid : sb->fsid;
709}
710
711/*
712 * Add new device to list of registered devices
713 *
714 * Returns:
715 * device pointer which was just added or updated when successful
716 * error pointer when failed
717 */
718static noinline struct btrfs_device *device_list_add(const char *path,
719 struct btrfs_super_block *disk_super,
720 bool *new_device_added)
721{
722 struct btrfs_device *device;
723 struct btrfs_fs_devices *fs_devices = NULL;
724 struct rcu_string *name;
725 u64 found_transid = btrfs_super_generation(s: disk_super);
726 u64 devid = btrfs_stack_device_id(s: &disk_super->dev_item);
727 dev_t path_devt;
728 int error;
729 bool same_fsid_diff_dev = false;
730 bool has_metadata_uuid = (btrfs_super_incompat_flags(s: disk_super) &
731 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
732
733 if (btrfs_super_flags(s: disk_super) & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
734 btrfs_err(NULL,
735"device %s has incomplete metadata_uuid change, please use btrfstune to complete",
736 path);
737 return ERR_PTR(error: -EAGAIN);
738 }
739
740 error = lookup_bdev(pathname: path, dev: &path_devt);
741 if (error) {
742 btrfs_err(NULL, "failed to lookup block device for path %s: %d",
743 path, error);
744 return ERR_PTR(error);
745 }
746
747 fs_devices = find_fsid_by_device(disk_super, devt: path_devt, same_fsid_diff_dev: &same_fsid_diff_dev);
748
749 if (!fs_devices) {
750 fs_devices = alloc_fs_devices(fsid: disk_super->fsid);
751 if (has_metadata_uuid)
752 memcpy(fs_devices->metadata_uuid,
753 disk_super->metadata_uuid, BTRFS_FSID_SIZE);
754
755 if (IS_ERR(ptr: fs_devices))
756 return ERR_CAST(ptr: fs_devices);
757
758 if (same_fsid_diff_dev) {
759 generate_random_uuid(uuid: fs_devices->fsid);
760 fs_devices->temp_fsid = true;
761 pr_info("BTRFS: device %s using temp-fsid %pU\n",
762 path, fs_devices->fsid);
763 }
764
765 mutex_lock(&fs_devices->device_list_mutex);
766 list_add(new: &fs_devices->fs_list, head: &fs_uuids);
767
768 device = NULL;
769 } else {
770 struct btrfs_dev_lookup_args args = {
771 .devid = devid,
772 .uuid = disk_super->dev_item.uuid,
773 };
774
775 mutex_lock(&fs_devices->device_list_mutex);
776 device = btrfs_find_device(fs_devices, args: &args);
777
778 if (found_transid > fs_devices->latest_generation) {
779 memcpy(fs_devices->fsid, disk_super->fsid,
780 BTRFS_FSID_SIZE);
781 memcpy(fs_devices->metadata_uuid,
782 btrfs_sb_fsid_ptr(disk_super), BTRFS_FSID_SIZE);
783 }
784 }
785
786 if (!device) {
787 unsigned int nofs_flag;
788
789 if (fs_devices->opened) {
790 btrfs_err(NULL,
791"device %s belongs to fsid %pU, and the fs is already mounted, scanned by %s (%d)",
792 path, fs_devices->fsid, current->comm,
793 task_pid_nr(current));
794 mutex_unlock(lock: &fs_devices->device_list_mutex);
795 return ERR_PTR(error: -EBUSY);
796 }
797
798 nofs_flag = memalloc_nofs_save();
799 device = btrfs_alloc_device(NULL, devid: &devid,
800 uuid: disk_super->dev_item.uuid, path);
801 memalloc_nofs_restore(flags: nofs_flag);
802 if (IS_ERR(ptr: device)) {
803 mutex_unlock(lock: &fs_devices->device_list_mutex);
804 /* we can safely leave the fs_devices entry around */
805 return device;
806 }
807
808 device->devt = path_devt;
809
810 list_add_rcu(new: &device->dev_list, head: &fs_devices->devices);
811 fs_devices->num_devices++;
812
813 device->fs_devices = fs_devices;
814 *new_device_added = true;
815
816 if (disk_super->label[0])
817 pr_info(
818 "BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n",
819 disk_super->label, devid, found_transid, path,
820 current->comm, task_pid_nr(current));
821 else
822 pr_info(
823 "BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n",
824 disk_super->fsid, devid, found_transid, path,
825 current->comm, task_pid_nr(current));
826
827 } else if (!device->name || strcmp(device->name->str, path)) {
828 /*
829 * When FS is already mounted.
830 * 1. If you are here and if the device->name is NULL that
831 * means this device was missing at time of FS mount.
832 * 2. If you are here and if the device->name is different
833 * from 'path' that means either
834 * a. The same device disappeared and reappeared with
835 * different name. or
836 * b. The missing-disk-which-was-replaced, has
837 * reappeared now.
838 *
839 * We must allow 1 and 2a above. But 2b would be a spurious
840 * and unintentional.
841 *
842 * Further in case of 1 and 2a above, the disk at 'path'
843 * would have missed some transaction when it was away and
844 * in case of 2a the stale bdev has to be updated as well.
845 * 2b must not be allowed at all time.
846 */
847
848 /*
849 * For now, we do allow update to btrfs_fs_device through the
850 * btrfs dev scan cli after FS has been mounted. We're still
851 * tracking a problem where systems fail mount by subvolume id
852 * when we reject replacement on a mounted FS.
853 */
854 if (!fs_devices->opened && found_transid < device->generation) {
855 /*
856 * That is if the FS is _not_ mounted and if you
857 * are here, that means there is more than one
858 * disk with same uuid and devid.We keep the one
859 * with larger generation number or the last-in if
860 * generation are equal.
861 */
862 mutex_unlock(lock: &fs_devices->device_list_mutex);
863 btrfs_err(NULL,
864"device %s already registered with a higher generation, found %llu expect %llu",
865 path, found_transid, device->generation);
866 return ERR_PTR(error: -EEXIST);
867 }
868
869 /*
870 * We are going to replace the device path for a given devid,
871 * make sure it's the same device if the device is mounted
872 *
873 * NOTE: the device->fs_info may not be reliable here so pass
874 * in a NULL to message helpers instead. This avoids a possible
875 * use-after-free when the fs_info and fs_info->sb are already
876 * torn down.
877 */
878 if (device->bdev) {
879 if (device->devt != path_devt) {
880 mutex_unlock(lock: &fs_devices->device_list_mutex);
881 btrfs_warn_in_rcu(NULL,
882 "duplicate device %s devid %llu generation %llu scanned by %s (%d)",
883 path, devid, found_transid,
884 current->comm,
885 task_pid_nr(current));
886 return ERR_PTR(error: -EEXIST);
887 }
888 btrfs_info_in_rcu(NULL,
889 "devid %llu device path %s changed to %s scanned by %s (%d)",
890 devid, btrfs_dev_name(device),
891 path, current->comm,
892 task_pid_nr(current));
893 }
894
895 name = rcu_string_strdup(src: path, GFP_NOFS);
896 if (!name) {
897 mutex_unlock(lock: &fs_devices->device_list_mutex);
898 return ERR_PTR(error: -ENOMEM);
899 }
900 rcu_string_free(str: device->name);
901 rcu_assign_pointer(device->name, name);
902 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
903 fs_devices->missing_devices--;
904 clear_bit(BTRFS_DEV_STATE_MISSING, addr: &device->dev_state);
905 }
906 device->devt = path_devt;
907 }
908
909 /*
910 * Unmount does not free the btrfs_device struct but would zero
911 * generation along with most of the other members. So just update
912 * it back. We need it to pick the disk with largest generation
913 * (as above).
914 */
915 if (!fs_devices->opened) {
916 device->generation = found_transid;
917 fs_devices->latest_generation = max_t(u64, found_transid,
918 fs_devices->latest_generation);
919 }
920
921 fs_devices->total_devices = btrfs_super_num_devices(s: disk_super);
922
923 mutex_unlock(lock: &fs_devices->device_list_mutex);
924 return device;
925}
926
927static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
928{
929 struct btrfs_fs_devices *fs_devices;
930 struct btrfs_device *device;
931 struct btrfs_device *orig_dev;
932 int ret = 0;
933
934 lockdep_assert_held(&uuid_mutex);
935
936 fs_devices = alloc_fs_devices(fsid: orig->fsid);
937 if (IS_ERR(ptr: fs_devices))
938 return fs_devices;
939
940 fs_devices->total_devices = orig->total_devices;
941
942 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
943 const char *dev_path = NULL;
944
945 /*
946 * This is ok to do without RCU read locked because we hold the
947 * uuid mutex so nothing we touch in here is going to disappear.
948 */
949 if (orig_dev->name)
950 dev_path = orig_dev->name->str;
951
952 device = btrfs_alloc_device(NULL, devid: &orig_dev->devid,
953 uuid: orig_dev->uuid, path: dev_path);
954 if (IS_ERR(ptr: device)) {
955 ret = PTR_ERR(ptr: device);
956 goto error;
957 }
958
959 if (orig_dev->zone_info) {
960 struct btrfs_zoned_device_info *zone_info;
961
962 zone_info = btrfs_clone_dev_zone_info(orig_dev);
963 if (!zone_info) {
964 btrfs_free_device(device);
965 ret = -ENOMEM;
966 goto error;
967 }
968 device->zone_info = zone_info;
969 }
970
971 list_add(new: &device->dev_list, head: &fs_devices->devices);
972 device->fs_devices = fs_devices;
973 fs_devices->num_devices++;
974 }
975 return fs_devices;
976error:
977 free_fs_devices(fs_devices);
978 return ERR_PTR(error: ret);
979}
980
981static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices,
982 struct btrfs_device **latest_dev)
983{
984 struct btrfs_device *device, *next;
985
986 /* This is the initialized path, it is safe to release the devices. */
987 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
988 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) {
989 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
990 &device->dev_state) &&
991 !test_bit(BTRFS_DEV_STATE_MISSING,
992 &device->dev_state) &&
993 (!*latest_dev ||
994 device->generation > (*latest_dev)->generation)) {
995 *latest_dev = device;
996 }
997 continue;
998 }
999
1000 /*
1001 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID,
1002 * in btrfs_init_dev_replace() so just continue.
1003 */
1004 if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1005 continue;
1006
1007 if (device->bdev_handle) {
1008 bdev_release(handle: device->bdev_handle);
1009 device->bdev = NULL;
1010 device->bdev_handle = NULL;
1011 fs_devices->open_devices--;
1012 }
1013 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1014 list_del_init(entry: &device->dev_alloc_list);
1015 clear_bit(BTRFS_DEV_STATE_WRITEABLE, addr: &device->dev_state);
1016 fs_devices->rw_devices--;
1017 }
1018 list_del_init(entry: &device->dev_list);
1019 fs_devices->num_devices--;
1020 btrfs_free_device(device);
1021 }
1022
1023}
1024
1025/*
1026 * After we have read the system tree and know devids belonging to this
1027 * filesystem, remove the device which does not belong there.
1028 */
1029void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices)
1030{
1031 struct btrfs_device *latest_dev = NULL;
1032 struct btrfs_fs_devices *seed_dev;
1033
1034 mutex_lock(&uuid_mutex);
1035 __btrfs_free_extra_devids(fs_devices, latest_dev: &latest_dev);
1036
1037 list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list)
1038 __btrfs_free_extra_devids(fs_devices: seed_dev, latest_dev: &latest_dev);
1039
1040 fs_devices->latest_dev = latest_dev;
1041
1042 mutex_unlock(lock: &uuid_mutex);
1043}
1044
1045static void btrfs_close_bdev(struct btrfs_device *device)
1046{
1047 if (!device->bdev)
1048 return;
1049
1050 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1051 sync_blockdev(bdev: device->bdev);
1052 invalidate_bdev(bdev: device->bdev);
1053 }
1054
1055 bdev_release(handle: device->bdev_handle);
1056}
1057
1058static void btrfs_close_one_device(struct btrfs_device *device)
1059{
1060 struct btrfs_fs_devices *fs_devices = device->fs_devices;
1061
1062 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1063 device->devid != BTRFS_DEV_REPLACE_DEVID) {
1064 list_del_init(entry: &device->dev_alloc_list);
1065 fs_devices->rw_devices--;
1066 }
1067
1068 if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1069 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, addr: &device->dev_state);
1070
1071 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
1072 clear_bit(BTRFS_DEV_STATE_MISSING, addr: &device->dev_state);
1073 fs_devices->missing_devices--;
1074 }
1075
1076 btrfs_close_bdev(device);
1077 if (device->bdev) {
1078 fs_devices->open_devices--;
1079 device->bdev = NULL;
1080 }
1081 clear_bit(BTRFS_DEV_STATE_WRITEABLE, addr: &device->dev_state);
1082 btrfs_destroy_dev_zone_info(device);
1083
1084 device->fs_info = NULL;
1085 atomic_set(v: &device->dev_stats_ccnt, i: 0);
1086 extent_io_tree_release(tree: &device->alloc_state);
1087
1088 /*
1089 * Reset the flush error record. We might have a transient flush error
1090 * in this mount, and if so we aborted the current transaction and set
1091 * the fs to an error state, guaranteeing no super blocks can be further
1092 * committed. However that error might be transient and if we unmount the
1093 * filesystem and mount it again, we should allow the mount to succeed
1094 * (btrfs_check_rw_degradable() should not fail) - if after mounting the
1095 * filesystem again we still get flush errors, then we will again abort
1096 * any transaction and set the error state, guaranteeing no commits of
1097 * unsafe super blocks.
1098 */
1099 device->last_flush_error = 0;
1100
1101 /* Verify the device is back in a pristine state */
1102 WARN_ON(test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
1103 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1104 WARN_ON(!list_empty(&device->dev_alloc_list));
1105 WARN_ON(!list_empty(&device->post_commit_list));
1106}
1107
1108static void close_fs_devices(struct btrfs_fs_devices *fs_devices)
1109{
1110 struct btrfs_device *device, *tmp;
1111
1112 lockdep_assert_held(&uuid_mutex);
1113
1114 if (--fs_devices->opened > 0)
1115 return;
1116
1117 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list)
1118 btrfs_close_one_device(device);
1119
1120 WARN_ON(fs_devices->open_devices);
1121 WARN_ON(fs_devices->rw_devices);
1122 fs_devices->opened = 0;
1123 fs_devices->seeding = false;
1124 fs_devices->fs_info = NULL;
1125}
1126
1127void btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1128{
1129 LIST_HEAD(list);
1130 struct btrfs_fs_devices *tmp;
1131
1132 mutex_lock(&uuid_mutex);
1133 close_fs_devices(fs_devices);
1134 if (!fs_devices->opened) {
1135 list_splice_init(list: &fs_devices->seed_list, head: &list);
1136
1137 /*
1138 * If the struct btrfs_fs_devices is not assembled with any
1139 * other device, it can be re-initialized during the next mount
1140 * without the needing device-scan step. Therefore, it can be
1141 * fully freed.
1142 */
1143 if (fs_devices->num_devices == 1) {
1144 list_del(entry: &fs_devices->fs_list);
1145 free_fs_devices(fs_devices);
1146 }
1147 }
1148
1149
1150 list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) {
1151 close_fs_devices(fs_devices);
1152 list_del(entry: &fs_devices->seed_list);
1153 free_fs_devices(fs_devices);
1154 }
1155 mutex_unlock(lock: &uuid_mutex);
1156}
1157
1158static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1159 blk_mode_t flags, void *holder)
1160{
1161 struct btrfs_device *device;
1162 struct btrfs_device *latest_dev = NULL;
1163 struct btrfs_device *tmp_device;
1164
1165 list_for_each_entry_safe(device, tmp_device, &fs_devices->devices,
1166 dev_list) {
1167 int ret;
1168
1169 ret = btrfs_open_one_device(fs_devices, device, flags, holder);
1170 if (ret == 0 &&
1171 (!latest_dev || device->generation > latest_dev->generation)) {
1172 latest_dev = device;
1173 } else if (ret == -ENODATA) {
1174 fs_devices->num_devices--;
1175 list_del(entry: &device->dev_list);
1176 btrfs_free_device(device);
1177 }
1178 }
1179 if (fs_devices->open_devices == 0)
1180 return -EINVAL;
1181
1182 fs_devices->opened = 1;
1183 fs_devices->latest_dev = latest_dev;
1184 fs_devices->total_rw_bytes = 0;
1185 fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
1186 fs_devices->read_policy = BTRFS_READ_POLICY_PID;
1187
1188 return 0;
1189}
1190
1191static int devid_cmp(void *priv, const struct list_head *a,
1192 const struct list_head *b)
1193{
1194 const struct btrfs_device *dev1, *dev2;
1195
1196 dev1 = list_entry(a, struct btrfs_device, dev_list);
1197 dev2 = list_entry(b, struct btrfs_device, dev_list);
1198
1199 if (dev1->devid < dev2->devid)
1200 return -1;
1201 else if (dev1->devid > dev2->devid)
1202 return 1;
1203 return 0;
1204}
1205
1206int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1207 blk_mode_t flags, void *holder)
1208{
1209 int ret;
1210
1211 lockdep_assert_held(&uuid_mutex);
1212 /*
1213 * The device_list_mutex cannot be taken here in case opening the
1214 * underlying device takes further locks like open_mutex.
1215 *
1216 * We also don't need the lock here as this is called during mount and
1217 * exclusion is provided by uuid_mutex
1218 */
1219
1220 if (fs_devices->opened) {
1221 fs_devices->opened++;
1222 ret = 0;
1223 } else {
1224 list_sort(NULL, head: &fs_devices->devices, cmp: devid_cmp);
1225 ret = open_fs_devices(fs_devices, flags, holder);
1226 }
1227
1228 return ret;
1229}
1230
1231void btrfs_release_disk_super(struct btrfs_super_block *super)
1232{
1233 struct page *page = virt_to_page(super);
1234
1235 put_page(page);
1236}
1237
1238static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
1239 u64 bytenr, u64 bytenr_orig)
1240{
1241 struct btrfs_super_block *disk_super;
1242 struct page *page;
1243 void *p;
1244 pgoff_t index;
1245
1246 /* make sure our super fits in the device */
1247 if (bytenr + PAGE_SIZE >= bdev_nr_bytes(bdev))
1248 return ERR_PTR(error: -EINVAL);
1249
1250 /* make sure our super fits in the page */
1251 if (sizeof(*disk_super) > PAGE_SIZE)
1252 return ERR_PTR(error: -EINVAL);
1253
1254 /* make sure our super doesn't straddle pages on disk */
1255 index = bytenr >> PAGE_SHIFT;
1256 if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
1257 return ERR_PTR(error: -EINVAL);
1258
1259 /* pull in the page with our super */
1260 page = read_cache_page_gfp(mapping: bdev->bd_inode->i_mapping, index, GFP_KERNEL);
1261
1262 if (IS_ERR(ptr: page))
1263 return ERR_CAST(ptr: page);
1264
1265 p = page_address(page);
1266
1267 /* align our pointer to the offset of the super block */
1268 disk_super = p + offset_in_page(bytenr);
1269
1270 if (btrfs_super_bytenr(s: disk_super) != bytenr_orig ||
1271 btrfs_super_magic(s: disk_super) != BTRFS_MAGIC) {
1272 btrfs_release_disk_super(super: p);
1273 return ERR_PTR(error: -EINVAL);
1274 }
1275
1276 if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1])
1277 disk_super->label[BTRFS_LABEL_SIZE - 1] = 0;
1278
1279 return disk_super;
1280}
1281
1282int btrfs_forget_devices(dev_t devt)
1283{
1284 int ret;
1285
1286 mutex_lock(&uuid_mutex);
1287 ret = btrfs_free_stale_devices(devt, NULL);
1288 mutex_unlock(lock: &uuid_mutex);
1289
1290 return ret;
1291}
1292
1293/*
1294 * Look for a btrfs signature on a device. This may be called out of the mount path
1295 * and we are not allowed to call set_blocksize during the scan. The superblock
1296 * is read via pagecache.
1297 *
1298 * With @mount_arg_dev it's a scan during mount time that will always register
1299 * the device or return an error. Multi-device and seeding devices are registered
1300 * in both cases.
1301 */
1302struct btrfs_device *btrfs_scan_one_device(const char *path, blk_mode_t flags,
1303 bool mount_arg_dev)
1304{
1305 struct btrfs_super_block *disk_super;
1306 bool new_device_added = false;
1307 struct btrfs_device *device = NULL;
1308 struct bdev_handle *bdev_handle;
1309 u64 bytenr, bytenr_orig;
1310 int ret;
1311
1312 lockdep_assert_held(&uuid_mutex);
1313
1314 /*
1315 * we would like to check all the supers, but that would make
1316 * a btrfs mount succeed after a mkfs from a different FS.
1317 * So, we need to add a special mount option to scan for
1318 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1319 */
1320
1321 /*
1322 * Avoid an exclusive open here, as the systemd-udev may initiate the
1323 * device scan which may race with the user's mount or mkfs command,
1324 * resulting in failure.
1325 * Since the device scan is solely for reading purposes, there is no
1326 * need for an exclusive open. Additionally, the devices are read again
1327 * during the mount process. It is ok to get some inconsistent
1328 * values temporarily, as the device paths of the fsid are the only
1329 * required information for assembling the volume.
1330 */
1331 bdev_handle = bdev_open_by_path(path, mode: flags, NULL, NULL);
1332 if (IS_ERR(ptr: bdev_handle))
1333 return ERR_CAST(ptr: bdev_handle);
1334
1335 bytenr_orig = btrfs_sb_offset(mirror: 0);
1336 ret = btrfs_sb_log_location_bdev(bdev: bdev_handle->bdev, mirror: 0, READ, bytenr_ret: &bytenr);
1337 if (ret) {
1338 device = ERR_PTR(error: ret);
1339 goto error_bdev_put;
1340 }
1341
1342 disk_super = btrfs_read_disk_super(bdev: bdev_handle->bdev, bytenr,
1343 bytenr_orig);
1344 if (IS_ERR(ptr: disk_super)) {
1345 device = ERR_CAST(ptr: disk_super);
1346 goto error_bdev_put;
1347 }
1348
1349 if (!mount_arg_dev && btrfs_super_num_devices(s: disk_super) == 1 &&
1350 !(btrfs_super_flags(s: disk_super) & BTRFS_SUPER_FLAG_SEEDING)) {
1351 dev_t devt;
1352
1353 ret = lookup_bdev(pathname: path, dev: &devt);
1354 if (ret)
1355 btrfs_warn(NULL, "lookup bdev failed for path %s: %d",
1356 path, ret);
1357 else
1358 btrfs_free_stale_devices(devt, NULL);
1359
1360 pr_debug("BTRFS: skip registering single non-seed device %s\n", path);
1361 device = NULL;
1362 goto free_disk_super;
1363 }
1364
1365 device = device_list_add(path, disk_super, new_device_added: &new_device_added);
1366 if (!IS_ERR(ptr: device) && new_device_added)
1367 btrfs_free_stale_devices(devt: device->devt, skip_device: device);
1368
1369free_disk_super:
1370 btrfs_release_disk_super(super: disk_super);
1371
1372error_bdev_put:
1373 bdev_release(handle: bdev_handle);
1374
1375 return device;
1376}
1377
1378/*
1379 * Try to find a chunk that intersects [start, start + len] range and when one
1380 * such is found, record the end of it in *start
1381 */
1382static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1383 u64 len)
1384{
1385 u64 physical_start, physical_end;
1386
1387 lockdep_assert_held(&device->fs_info->chunk_mutex);
1388
1389 if (find_first_extent_bit(tree: &device->alloc_state, start: *start,
1390 start_ret: &physical_start, end_ret: &physical_end,
1391 CHUNK_ALLOCATED, NULL)) {
1392
1393 if (in_range(physical_start, *start, len) ||
1394 in_range(*start, physical_start,
1395 physical_end - physical_start)) {
1396 *start = physical_end + 1;
1397 return true;
1398 }
1399 }
1400 return false;
1401}
1402
1403static u64 dev_extent_search_start(struct btrfs_device *device)
1404{
1405 switch (device->fs_devices->chunk_alloc_policy) {
1406 case BTRFS_CHUNK_ALLOC_REGULAR:
1407 return BTRFS_DEVICE_RANGE_RESERVED;
1408 case BTRFS_CHUNK_ALLOC_ZONED:
1409 /*
1410 * We don't care about the starting region like regular
1411 * allocator, because we anyway use/reserve the first two zones
1412 * for superblock logging.
1413 */
1414 return 0;
1415 default:
1416 BUG();
1417 }
1418}
1419
1420static bool dev_extent_hole_check_zoned(struct btrfs_device *device,
1421 u64 *hole_start, u64 *hole_size,
1422 u64 num_bytes)
1423{
1424 u64 zone_size = device->zone_info->zone_size;
1425 u64 pos;
1426 int ret;
1427 bool changed = false;
1428
1429 ASSERT(IS_ALIGNED(*hole_start, zone_size));
1430
1431 while (*hole_size > 0) {
1432 pos = btrfs_find_allocatable_zones(device, hole_start: *hole_start,
1433 hole_end: *hole_start + *hole_size,
1434 num_bytes);
1435 if (pos != *hole_start) {
1436 *hole_size = *hole_start + *hole_size - pos;
1437 *hole_start = pos;
1438 changed = true;
1439 if (*hole_size < num_bytes)
1440 break;
1441 }
1442
1443 ret = btrfs_ensure_empty_zones(device, start: pos, size: num_bytes);
1444
1445 /* Range is ensured to be empty */
1446 if (!ret)
1447 return changed;
1448
1449 /* Given hole range was invalid (outside of device) */
1450 if (ret == -ERANGE) {
1451 *hole_start += *hole_size;
1452 *hole_size = 0;
1453 return true;
1454 }
1455
1456 *hole_start += zone_size;
1457 *hole_size -= zone_size;
1458 changed = true;
1459 }
1460
1461 return changed;
1462}
1463
1464/*
1465 * Check if specified hole is suitable for allocation.
1466 *
1467 * @device: the device which we have the hole
1468 * @hole_start: starting position of the hole
1469 * @hole_size: the size of the hole
1470 * @num_bytes: the size of the free space that we need
1471 *
1472 * This function may modify @hole_start and @hole_size to reflect the suitable
1473 * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
1474 */
1475static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
1476 u64 *hole_size, u64 num_bytes)
1477{
1478 bool changed = false;
1479 u64 hole_end = *hole_start + *hole_size;
1480
1481 for (;;) {
1482 /*
1483 * Check before we set max_hole_start, otherwise we could end up
1484 * sending back this offset anyway.
1485 */
1486 if (contains_pending_extent(device, start: hole_start, len: *hole_size)) {
1487 if (hole_end >= *hole_start)
1488 *hole_size = hole_end - *hole_start;
1489 else
1490 *hole_size = 0;
1491 changed = true;
1492 }
1493
1494 switch (device->fs_devices->chunk_alloc_policy) {
1495 case BTRFS_CHUNK_ALLOC_REGULAR:
1496 /* No extra check */
1497 break;
1498 case BTRFS_CHUNK_ALLOC_ZONED:
1499 if (dev_extent_hole_check_zoned(device, hole_start,
1500 hole_size, num_bytes)) {
1501 changed = true;
1502 /*
1503 * The changed hole can contain pending extent.
1504 * Loop again to check that.
1505 */
1506 continue;
1507 }
1508 break;
1509 default:
1510 BUG();
1511 }
1512
1513 break;
1514 }
1515
1516 return changed;
1517}
1518
1519/*
1520 * Find free space in the specified device.
1521 *
1522 * @device: the device which we search the free space in
1523 * @num_bytes: the size of the free space that we need
1524 * @search_start: the position from which to begin the search
1525 * @start: store the start of the free space.
1526 * @len: the size of the free space. that we find, or the size
1527 * of the max free space if we don't find suitable free space
1528 *
1529 * This does a pretty simple search, the expectation is that it is called very
1530 * infrequently and that a given device has a small number of extents.
1531 *
1532 * @start is used to store the start of the free space if we find. But if we
1533 * don't find suitable free space, it will be used to store the start position
1534 * of the max free space.
1535 *
1536 * @len is used to store the size of the free space that we find.
1537 * But if we don't find suitable free space, it is used to store the size of
1538 * the max free space.
1539 *
1540 * NOTE: This function will search *commit* root of device tree, and does extra
1541 * check to ensure dev extents are not double allocated.
1542 * This makes the function safe to allocate dev extents but may not report
1543 * correct usable device space, as device extent freed in current transaction
1544 * is not reported as available.
1545 */
1546static int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1547 u64 *start, u64 *len)
1548{
1549 struct btrfs_fs_info *fs_info = device->fs_info;
1550 struct btrfs_root *root = fs_info->dev_root;
1551 struct btrfs_key key;
1552 struct btrfs_dev_extent *dev_extent;
1553 struct btrfs_path *path;
1554 u64 search_start;
1555 u64 hole_size;
1556 u64 max_hole_start;
1557 u64 max_hole_size = 0;
1558 u64 extent_end;
1559 u64 search_end = device->total_bytes;
1560 int ret;
1561 int slot;
1562 struct extent_buffer *l;
1563
1564 search_start = dev_extent_search_start(device);
1565 max_hole_start = search_start;
1566
1567 WARN_ON(device->zone_info &&
1568 !IS_ALIGNED(num_bytes, device->zone_info->zone_size));
1569
1570 path = btrfs_alloc_path();
1571 if (!path) {
1572 ret = -ENOMEM;
1573 goto out;
1574 }
1575again:
1576 if (search_start >= search_end ||
1577 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1578 ret = -ENOSPC;
1579 goto out;
1580 }
1581
1582 path->reada = READA_FORWARD;
1583 path->search_commit_root = 1;
1584 path->skip_locking = 1;
1585
1586 key.objectid = device->devid;
1587 key.offset = search_start;
1588 key.type = BTRFS_DEV_EXTENT_KEY;
1589
1590 ret = btrfs_search_backwards(root, key: &key, path);
1591 if (ret < 0)
1592 goto out;
1593
1594 while (search_start < search_end) {
1595 l = path->nodes[0];
1596 slot = path->slots[0];
1597 if (slot >= btrfs_header_nritems(eb: l)) {
1598 ret = btrfs_next_leaf(root, path);
1599 if (ret == 0)
1600 continue;
1601 if (ret < 0)
1602 goto out;
1603
1604 break;
1605 }
1606 btrfs_item_key_to_cpu(eb: l, cpu_key: &key, nr: slot);
1607
1608 if (key.objectid < device->devid)
1609 goto next;
1610
1611 if (key.objectid > device->devid)
1612 break;
1613
1614 if (key.type != BTRFS_DEV_EXTENT_KEY)
1615 goto next;
1616
1617 if (key.offset > search_end)
1618 break;
1619
1620 if (key.offset > search_start) {
1621 hole_size = key.offset - search_start;
1622 dev_extent_hole_check(device, hole_start: &search_start, hole_size: &hole_size,
1623 num_bytes);
1624
1625 if (hole_size > max_hole_size) {
1626 max_hole_start = search_start;
1627 max_hole_size = hole_size;
1628 }
1629
1630 /*
1631 * If this free space is greater than which we need,
1632 * it must be the max free space that we have found
1633 * until now, so max_hole_start must point to the start
1634 * of this free space and the length of this free space
1635 * is stored in max_hole_size. Thus, we return
1636 * max_hole_start and max_hole_size and go back to the
1637 * caller.
1638 */
1639 if (hole_size >= num_bytes) {
1640 ret = 0;
1641 goto out;
1642 }
1643 }
1644
1645 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1646 extent_end = key.offset + btrfs_dev_extent_length(eb: l,
1647 s: dev_extent);
1648 if (extent_end > search_start)
1649 search_start = extent_end;
1650next:
1651 path->slots[0]++;
1652 cond_resched();
1653 }
1654
1655 /*
1656 * At this point, search_start should be the end of
1657 * allocated dev extents, and when shrinking the device,
1658 * search_end may be smaller than search_start.
1659 */
1660 if (search_end > search_start) {
1661 hole_size = search_end - search_start;
1662 if (dev_extent_hole_check(device, hole_start: &search_start, hole_size: &hole_size,
1663 num_bytes)) {
1664 btrfs_release_path(p: path);
1665 goto again;
1666 }
1667
1668 if (hole_size > max_hole_size) {
1669 max_hole_start = search_start;
1670 max_hole_size = hole_size;
1671 }
1672 }
1673
1674 /* See above. */
1675 if (max_hole_size < num_bytes)
1676 ret = -ENOSPC;
1677 else
1678 ret = 0;
1679
1680 ASSERT(max_hole_start + max_hole_size <= search_end);
1681out:
1682 btrfs_free_path(p: path);
1683 *start = max_hole_start;
1684 if (len)
1685 *len = max_hole_size;
1686 return ret;
1687}
1688
1689static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1690 struct btrfs_device *device,
1691 u64 start, u64 *dev_extent_len)
1692{
1693 struct btrfs_fs_info *fs_info = device->fs_info;
1694 struct btrfs_root *root = fs_info->dev_root;
1695 int ret;
1696 struct btrfs_path *path;
1697 struct btrfs_key key;
1698 struct btrfs_key found_key;
1699 struct extent_buffer *leaf = NULL;
1700 struct btrfs_dev_extent *extent = NULL;
1701
1702 path = btrfs_alloc_path();
1703 if (!path)
1704 return -ENOMEM;
1705
1706 key.objectid = device->devid;
1707 key.offset = start;
1708 key.type = BTRFS_DEV_EXTENT_KEY;
1709again:
1710 ret = btrfs_search_slot(trans, root, key: &key, p: path, ins_len: -1, cow: 1);
1711 if (ret > 0) {
1712 ret = btrfs_previous_item(root, path, min_objectid: key.objectid,
1713 BTRFS_DEV_EXTENT_KEY);
1714 if (ret)
1715 goto out;
1716 leaf = path->nodes[0];
1717 btrfs_item_key_to_cpu(eb: leaf, cpu_key: &found_key, nr: path->slots[0]);
1718 extent = btrfs_item_ptr(leaf, path->slots[0],
1719 struct btrfs_dev_extent);
1720 BUG_ON(found_key.offset > start || found_key.offset +
1721 btrfs_dev_extent_length(leaf, extent) < start);
1722 key = found_key;
1723 btrfs_release_path(p: path);
1724 goto again;
1725 } else if (ret == 0) {
1726 leaf = path->nodes[0];
1727 extent = btrfs_item_ptr(leaf, path->slots[0],
1728 struct btrfs_dev_extent);
1729 } else {
1730 goto out;
1731 }
1732
1733 *dev_extent_len = btrfs_dev_extent_length(eb: leaf, s: extent);
1734
1735 ret = btrfs_del_item(trans, root, path);
1736 if (ret == 0)
1737 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, addr: &trans->transaction->flags);
1738out:
1739 btrfs_free_path(p: path);
1740 return ret;
1741}
1742
1743static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1744{
1745 struct extent_map_tree *em_tree;
1746 struct extent_map *em;
1747 struct rb_node *n;
1748 u64 ret = 0;
1749
1750 em_tree = &fs_info->mapping_tree;
1751 read_lock(&em_tree->lock);
1752 n = rb_last(&em_tree->map.rb_root);
1753 if (n) {
1754 em = rb_entry(n, struct extent_map, rb_node);
1755 ret = em->start + em->len;
1756 }
1757 read_unlock(&em_tree->lock);
1758
1759 return ret;
1760}
1761
1762static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1763 u64 *devid_ret)
1764{
1765 int ret;
1766 struct btrfs_key key;
1767 struct btrfs_key found_key;
1768 struct btrfs_path *path;
1769
1770 path = btrfs_alloc_path();
1771 if (!path)
1772 return -ENOMEM;
1773
1774 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1775 key.type = BTRFS_DEV_ITEM_KEY;
1776 key.offset = (u64)-1;
1777
1778 ret = btrfs_search_slot(NULL, root: fs_info->chunk_root, key: &key, p: path, ins_len: 0, cow: 0);
1779 if (ret < 0)
1780 goto error;
1781
1782 if (ret == 0) {
1783 /* Corruption */
1784 btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1785 ret = -EUCLEAN;
1786 goto error;
1787 }
1788
1789 ret = btrfs_previous_item(root: fs_info->chunk_root, path,
1790 BTRFS_DEV_ITEMS_OBJECTID,
1791 BTRFS_DEV_ITEM_KEY);
1792 if (ret) {
1793 *devid_ret = 1;
1794 } else {
1795 btrfs_item_key_to_cpu(eb: path->nodes[0], cpu_key: &found_key,
1796 nr: path->slots[0]);
1797 *devid_ret = found_key.offset + 1;
1798 }
1799 ret = 0;
1800error:
1801 btrfs_free_path(p: path);
1802 return ret;
1803}
1804
1805/*
1806 * the device information is stored in the chunk root
1807 * the btrfs_device struct should be fully filled in
1808 */
1809static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1810 struct btrfs_device *device)
1811{
1812 int ret;
1813 struct btrfs_path *path;
1814 struct btrfs_dev_item *dev_item;
1815 struct extent_buffer *leaf;
1816 struct btrfs_key key;
1817 unsigned long ptr;
1818
1819 path = btrfs_alloc_path();
1820 if (!path)
1821 return -ENOMEM;
1822
1823 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1824 key.type = BTRFS_DEV_ITEM_KEY;
1825 key.offset = device->devid;
1826
1827 btrfs_reserve_chunk_metadata(trans, is_item_insertion: true);
1828 ret = btrfs_insert_empty_item(trans, root: trans->fs_info->chunk_root, path,
1829 key: &key, data_size: sizeof(*dev_item));
1830 btrfs_trans_release_chunk_metadata(trans);
1831 if (ret)
1832 goto out;
1833
1834 leaf = path->nodes[0];
1835 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1836
1837 btrfs_set_device_id(eb: leaf, s: dev_item, val: device->devid);
1838 btrfs_set_device_generation(eb: leaf, s: dev_item, val: 0);
1839 btrfs_set_device_type(eb: leaf, s: dev_item, val: device->type);
1840 btrfs_set_device_io_align(eb: leaf, s: dev_item, val: device->io_align);
1841 btrfs_set_device_io_width(eb: leaf, s: dev_item, val: device->io_width);
1842 btrfs_set_device_sector_size(eb: leaf, s: dev_item, val: device->sector_size);
1843 btrfs_set_device_total_bytes(eb: leaf, s: dev_item,
1844 val: btrfs_device_get_disk_total_bytes(dev: device));
1845 btrfs_set_device_bytes_used(eb: leaf, s: dev_item,
1846 val: btrfs_device_get_bytes_used(dev: device));
1847 btrfs_set_device_group(eb: leaf, s: dev_item, val: 0);
1848 btrfs_set_device_seek_speed(eb: leaf, s: dev_item, val: 0);
1849 btrfs_set_device_bandwidth(eb: leaf, s: dev_item, val: 0);
1850 btrfs_set_device_start_offset(eb: leaf, s: dev_item, val: 0);
1851
1852 ptr = btrfs_device_uuid(d: dev_item);
1853 write_extent_buffer(eb: leaf, src: device->uuid, start: ptr, BTRFS_UUID_SIZE);
1854 ptr = btrfs_device_fsid(d: dev_item);
1855 write_extent_buffer(eb: leaf, src: trans->fs_info->fs_devices->metadata_uuid,
1856 start: ptr, BTRFS_FSID_SIZE);
1857 btrfs_mark_buffer_dirty(trans, buf: leaf);
1858
1859 ret = 0;
1860out:
1861 btrfs_free_path(p: path);
1862 return ret;
1863}
1864
1865/*
1866 * Function to update ctime/mtime for a given device path.
1867 * Mainly used for ctime/mtime based probe like libblkid.
1868 *
1869 * We don't care about errors here, this is just to be kind to userspace.
1870 */
1871static void update_dev_time(const char *device_path)
1872{
1873 struct path path;
1874 int ret;
1875
1876 ret = kern_path(device_path, LOOKUP_FOLLOW, &path);
1877 if (ret)
1878 return;
1879
1880 inode_update_time(inode: d_inode(dentry: path.dentry), flags: S_MTIME | S_CTIME | S_VERSION);
1881 path_put(&path);
1882}
1883
1884static int btrfs_rm_dev_item(struct btrfs_trans_handle *trans,
1885 struct btrfs_device *device)
1886{
1887 struct btrfs_root *root = device->fs_info->chunk_root;
1888 int ret;
1889 struct btrfs_path *path;
1890 struct btrfs_key key;
1891
1892 path = btrfs_alloc_path();
1893 if (!path)
1894 return -ENOMEM;
1895
1896 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1897 key.type = BTRFS_DEV_ITEM_KEY;
1898 key.offset = device->devid;
1899
1900 btrfs_reserve_chunk_metadata(trans, is_item_insertion: false);
1901 ret = btrfs_search_slot(trans, root, key: &key, p: path, ins_len: -1, cow: 1);
1902 btrfs_trans_release_chunk_metadata(trans);
1903 if (ret) {
1904 if (ret > 0)
1905 ret = -ENOENT;
1906 goto out;
1907 }
1908
1909 ret = btrfs_del_item(trans, root, path);
1910out:
1911 btrfs_free_path(p: path);
1912 return ret;
1913}
1914
1915/*
1916 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1917 * filesystem. It's up to the caller to adjust that number regarding eg. device
1918 * replace.
1919 */
1920static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1921 u64 num_devices)
1922{
1923 u64 all_avail;
1924 unsigned seq;
1925 int i;
1926
1927 do {
1928 seq = read_seqbegin(sl: &fs_info->profiles_lock);
1929
1930 all_avail = fs_info->avail_data_alloc_bits |
1931 fs_info->avail_system_alloc_bits |
1932 fs_info->avail_metadata_alloc_bits;
1933 } while (read_seqretry(sl: &fs_info->profiles_lock, start: seq));
1934
1935 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1936 if (!(all_avail & btrfs_raid_array[i].bg_flag))
1937 continue;
1938
1939 if (num_devices < btrfs_raid_array[i].devs_min)
1940 return btrfs_raid_array[i].mindev_error;
1941 }
1942
1943 return 0;
1944}
1945
1946static struct btrfs_device * btrfs_find_next_active_device(
1947 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
1948{
1949 struct btrfs_device *next_device;
1950
1951 list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1952 if (next_device != device &&
1953 !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
1954 && next_device->bdev)
1955 return next_device;
1956 }
1957
1958 return NULL;
1959}
1960
1961/*
1962 * Helper function to check if the given device is part of s_bdev / latest_dev
1963 * and replace it with the provided or the next active device, in the context
1964 * where this function called, there should be always be another device (or
1965 * this_dev) which is active.
1966 */
1967void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
1968 struct btrfs_device *next_device)
1969{
1970 struct btrfs_fs_info *fs_info = device->fs_info;
1971
1972 if (!next_device)
1973 next_device = btrfs_find_next_active_device(fs_devs: fs_info->fs_devices,
1974 device);
1975 ASSERT(next_device);
1976
1977 if (fs_info->sb->s_bdev &&
1978 (fs_info->sb->s_bdev == device->bdev))
1979 fs_info->sb->s_bdev = next_device->bdev;
1980
1981 if (fs_info->fs_devices->latest_dev->bdev == device->bdev)
1982 fs_info->fs_devices->latest_dev = next_device;
1983}
1984
1985/*
1986 * Return btrfs_fs_devices::num_devices excluding the device that's being
1987 * currently replaced.
1988 */
1989static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
1990{
1991 u64 num_devices = fs_info->fs_devices->num_devices;
1992
1993 down_read(sem: &fs_info->dev_replace.rwsem);
1994 if (btrfs_dev_replace_is_ongoing(dev_replace: &fs_info->dev_replace)) {
1995 ASSERT(num_devices > 1);
1996 num_devices--;
1997 }
1998 up_read(sem: &fs_info->dev_replace.rwsem);
1999
2000 return num_devices;
2001}
2002
2003static void btrfs_scratch_superblock(struct btrfs_fs_info *fs_info,
2004 struct block_device *bdev, int copy_num)
2005{
2006 struct btrfs_super_block *disk_super;
2007 const size_t len = sizeof(disk_super->magic);
2008 const u64 bytenr = btrfs_sb_offset(mirror: copy_num);
2009 int ret;
2010
2011 disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr_orig: bytenr);
2012 if (IS_ERR(ptr: disk_super))
2013 return;
2014
2015 memset(&disk_super->magic, 0, len);
2016 folio_mark_dirty(folio: virt_to_folio(x: disk_super));
2017 btrfs_release_disk_super(super: disk_super);
2018
2019 ret = sync_blockdev_range(bdev, lstart: bytenr, lend: bytenr + len - 1);
2020 if (ret)
2021 btrfs_warn(fs_info, "error clearing superblock number %d (%d)",
2022 copy_num, ret);
2023}
2024
2025void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info,
2026 struct block_device *bdev,
2027 const char *device_path)
2028{
2029 int copy_num;
2030
2031 if (!bdev)
2032 return;
2033
2034 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
2035 if (bdev_is_zoned(bdev))
2036 btrfs_reset_sb_log_zones(bdev, mirror: copy_num);
2037 else
2038 btrfs_scratch_superblock(fs_info, bdev, copy_num);
2039 }
2040
2041 /* Notify udev that device has changed */
2042 btrfs_kobject_uevent(bdev, action: KOBJ_CHANGE);
2043
2044 /* Update ctime/mtime for device path for libblkid */
2045 update_dev_time(device_path);
2046}
2047
2048int btrfs_rm_device(struct btrfs_fs_info *fs_info,
2049 struct btrfs_dev_lookup_args *args,
2050 struct bdev_handle **bdev_handle)
2051{
2052 struct btrfs_trans_handle *trans;
2053 struct btrfs_device *device;
2054 struct btrfs_fs_devices *cur_devices;
2055 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2056 u64 num_devices;
2057 int ret = 0;
2058
2059 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2060 btrfs_err(fs_info, "device remove not supported on extent tree v2 yet");
2061 return -EINVAL;
2062 }
2063
2064 /*
2065 * The device list in fs_devices is accessed without locks (neither
2066 * uuid_mutex nor device_list_mutex) as it won't change on a mounted
2067 * filesystem and another device rm cannot run.
2068 */
2069 num_devices = btrfs_num_devices(fs_info);
2070
2071 ret = btrfs_check_raid_min_devices(fs_info, num_devices: num_devices - 1);
2072 if (ret)
2073 return ret;
2074
2075 device = btrfs_find_device(fs_devices: fs_info->fs_devices, args);
2076 if (!device) {
2077 if (args->missing)
2078 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2079 else
2080 ret = -ENOENT;
2081 return ret;
2082 }
2083
2084 if (btrfs_pinned_by_swapfile(fs_info, ptr: device)) {
2085 btrfs_warn_in_rcu(fs_info,
2086 "cannot remove device %s (devid %llu) due to active swapfile",
2087 btrfs_dev_name(device), device->devid);
2088 return -ETXTBSY;
2089 }
2090
2091 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
2092 return BTRFS_ERROR_DEV_TGT_REPLACE;
2093
2094 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2095 fs_info->fs_devices->rw_devices == 1)
2096 return BTRFS_ERROR_DEV_ONLY_WRITABLE;
2097
2098 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2099 mutex_lock(&fs_info->chunk_mutex);
2100 list_del_init(entry: &device->dev_alloc_list);
2101 device->fs_devices->rw_devices--;
2102 mutex_unlock(lock: &fs_info->chunk_mutex);
2103 }
2104
2105 ret = btrfs_shrink_device(device, new_size: 0);
2106 if (ret)
2107 goto error_undo;
2108
2109 trans = btrfs_start_transaction(root: fs_info->chunk_root, num_items: 0);
2110 if (IS_ERR(ptr: trans)) {
2111 ret = PTR_ERR(ptr: trans);
2112 goto error_undo;
2113 }
2114
2115 ret = btrfs_rm_dev_item(trans, device);
2116 if (ret) {
2117 /* Any error in dev item removal is critical */
2118 btrfs_crit(fs_info,
2119 "failed to remove device item for devid %llu: %d",
2120 device->devid, ret);
2121 btrfs_abort_transaction(trans, ret);
2122 btrfs_end_transaction(trans);
2123 return ret;
2124 }
2125
2126 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, addr: &device->dev_state);
2127 btrfs_scrub_cancel_dev(dev: device);
2128
2129 /*
2130 * the device list mutex makes sure that we don't change
2131 * the device list while someone else is writing out all
2132 * the device supers. Whoever is writing all supers, should
2133 * lock the device list mutex before getting the number of
2134 * devices in the super block (super_copy). Conversely,
2135 * whoever updates the number of devices in the super block
2136 * (super_copy) should hold the device list mutex.
2137 */
2138
2139 /*
2140 * In normal cases the cur_devices == fs_devices. But in case
2141 * of deleting a seed device, the cur_devices should point to
2142 * its own fs_devices listed under the fs_devices->seed_list.
2143 */
2144 cur_devices = device->fs_devices;
2145 mutex_lock(&fs_devices->device_list_mutex);
2146 list_del_rcu(entry: &device->dev_list);
2147
2148 cur_devices->num_devices--;
2149 cur_devices->total_devices--;
2150 /* Update total_devices of the parent fs_devices if it's seed */
2151 if (cur_devices != fs_devices)
2152 fs_devices->total_devices--;
2153
2154 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2155 cur_devices->missing_devices--;
2156
2157 btrfs_assign_next_active_device(device, NULL);
2158
2159 if (device->bdev_handle) {
2160 cur_devices->open_devices--;
2161 /* remove sysfs entry */
2162 btrfs_sysfs_remove_device(device);
2163 }
2164
2165 num_devices = btrfs_super_num_devices(s: fs_info->super_copy) - 1;
2166 btrfs_set_super_num_devices(s: fs_info->super_copy, val: num_devices);
2167 mutex_unlock(lock: &fs_devices->device_list_mutex);
2168
2169 /*
2170 * At this point, the device is zero sized and detached from the
2171 * devices list. All that's left is to zero out the old supers and
2172 * free the device.
2173 *
2174 * We cannot call btrfs_close_bdev() here because we're holding the sb
2175 * write lock, and bdev_release() will pull in the ->open_mutex on
2176 * the block device and it's dependencies. Instead just flush the
2177 * device and let the caller do the final bdev_release.
2178 */
2179 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2180 btrfs_scratch_superblocks(fs_info, bdev: device->bdev,
2181 device_path: device->name->str);
2182 if (device->bdev) {
2183 sync_blockdev(bdev: device->bdev);
2184 invalidate_bdev(bdev: device->bdev);
2185 }
2186 }
2187
2188 *bdev_handle = device->bdev_handle;
2189 synchronize_rcu();
2190 btrfs_free_device(device);
2191
2192 /*
2193 * This can happen if cur_devices is the private seed devices list. We
2194 * cannot call close_fs_devices() here because it expects the uuid_mutex
2195 * to be held, but in fact we don't need that for the private
2196 * seed_devices, we can simply decrement cur_devices->opened and then
2197 * remove it from our list and free the fs_devices.
2198 */
2199 if (cur_devices->num_devices == 0) {
2200 list_del_init(entry: &cur_devices->seed_list);
2201 ASSERT(cur_devices->opened == 1);
2202 cur_devices->opened--;
2203 free_fs_devices(fs_devices: cur_devices);
2204 }
2205
2206 ret = btrfs_commit_transaction(trans);
2207
2208 return ret;
2209
2210error_undo:
2211 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2212 mutex_lock(&fs_info->chunk_mutex);
2213 list_add(new: &device->dev_alloc_list,
2214 head: &fs_devices->alloc_list);
2215 device->fs_devices->rw_devices++;
2216 mutex_unlock(lock: &fs_info->chunk_mutex);
2217 }
2218 return ret;
2219}
2220
2221void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2222{
2223 struct btrfs_fs_devices *fs_devices;
2224
2225 lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2226
2227 /*
2228 * in case of fs with no seed, srcdev->fs_devices will point
2229 * to fs_devices of fs_info. However when the dev being replaced is
2230 * a seed dev it will point to the seed's local fs_devices. In short
2231 * srcdev will have its correct fs_devices in both the cases.
2232 */
2233 fs_devices = srcdev->fs_devices;
2234
2235 list_del_rcu(entry: &srcdev->dev_list);
2236 list_del(entry: &srcdev->dev_alloc_list);
2237 fs_devices->num_devices--;
2238 if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2239 fs_devices->missing_devices--;
2240
2241 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2242 fs_devices->rw_devices--;
2243
2244 if (srcdev->bdev)
2245 fs_devices->open_devices--;
2246}
2247
2248void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2249{
2250 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2251
2252 mutex_lock(&uuid_mutex);
2253
2254 btrfs_close_bdev(device: srcdev);
2255 synchronize_rcu();
2256 btrfs_free_device(device: srcdev);
2257
2258 /* if this is no devs we rather delete the fs_devices */
2259 if (!fs_devices->num_devices) {
2260 /*
2261 * On a mounted FS, num_devices can't be zero unless it's a
2262 * seed. In case of a seed device being replaced, the replace
2263 * target added to the sprout FS, so there will be no more
2264 * device left under the seed FS.
2265 */
2266 ASSERT(fs_devices->seeding);
2267
2268 list_del_init(entry: &fs_devices->seed_list);
2269 close_fs_devices(fs_devices);
2270 free_fs_devices(fs_devices);
2271 }
2272 mutex_unlock(lock: &uuid_mutex);
2273}
2274
2275void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2276{
2277 struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2278
2279 mutex_lock(&fs_devices->device_list_mutex);
2280
2281 btrfs_sysfs_remove_device(device: tgtdev);
2282
2283 if (tgtdev->bdev)
2284 fs_devices->open_devices--;
2285
2286 fs_devices->num_devices--;
2287
2288 btrfs_assign_next_active_device(device: tgtdev, NULL);
2289
2290 list_del_rcu(entry: &tgtdev->dev_list);
2291
2292 mutex_unlock(lock: &fs_devices->device_list_mutex);
2293
2294 btrfs_scratch_superblocks(fs_info: tgtdev->fs_info, bdev: tgtdev->bdev,
2295 device_path: tgtdev->name->str);
2296
2297 btrfs_close_bdev(device: tgtdev);
2298 synchronize_rcu();
2299 btrfs_free_device(device: tgtdev);
2300}
2301
2302/*
2303 * Populate args from device at path.
2304 *
2305 * @fs_info: the filesystem
2306 * @args: the args to populate
2307 * @path: the path to the device
2308 *
2309 * This will read the super block of the device at @path and populate @args with
2310 * the devid, fsid, and uuid. This is meant to be used for ioctls that need to
2311 * lookup a device to operate on, but need to do it before we take any locks.
2312 * This properly handles the special case of "missing" that a user may pass in,
2313 * and does some basic sanity checks. The caller must make sure that @path is
2314 * properly NUL terminated before calling in, and must call
2315 * btrfs_put_dev_args_from_path() in order to free up the temporary fsid and
2316 * uuid buffers.
2317 *
2318 * Return: 0 for success, -errno for failure
2319 */
2320int btrfs_get_dev_args_from_path(struct btrfs_fs_info *fs_info,
2321 struct btrfs_dev_lookup_args *args,
2322 const char *path)
2323{
2324 struct btrfs_super_block *disk_super;
2325 struct bdev_handle *bdev_handle;
2326 int ret;
2327
2328 if (!path || !path[0])
2329 return -EINVAL;
2330 if (!strcmp(path, "missing")) {
2331 args->missing = true;
2332 return 0;
2333 }
2334
2335 args->uuid = kzalloc(BTRFS_UUID_SIZE, GFP_KERNEL);
2336 args->fsid = kzalloc(BTRFS_FSID_SIZE, GFP_KERNEL);
2337 if (!args->uuid || !args->fsid) {
2338 btrfs_put_dev_args_from_path(args);
2339 return -ENOMEM;
2340 }
2341
2342 ret = btrfs_get_bdev_and_sb(device_path: path, BLK_OPEN_READ, NULL, flush: 0,
2343 bdev_handle: &bdev_handle, disk_super: &disk_super);
2344 if (ret) {
2345 btrfs_put_dev_args_from_path(args);
2346 return ret;
2347 }
2348
2349 args->devid = btrfs_stack_device_id(s: &disk_super->dev_item);
2350 memcpy(args->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE);
2351 if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2352 memcpy(args->fsid, disk_super->metadata_uuid, BTRFS_FSID_SIZE);
2353 else
2354 memcpy(args->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
2355 btrfs_release_disk_super(super: disk_super);
2356 bdev_release(handle: bdev_handle);
2357 return 0;
2358}
2359
2360/*
2361 * Only use this jointly with btrfs_get_dev_args_from_path() because we will
2362 * allocate our ->uuid and ->fsid pointers, everybody else uses local variables
2363 * that don't need to be freed.
2364 */
2365void btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args *args)
2366{
2367 kfree(objp: args->uuid);
2368 kfree(objp: args->fsid);
2369 args->uuid = NULL;
2370 args->fsid = NULL;
2371}
2372
2373struct btrfs_device *btrfs_find_device_by_devspec(
2374 struct btrfs_fs_info *fs_info, u64 devid,
2375 const char *device_path)
2376{
2377 BTRFS_DEV_LOOKUP_ARGS(args);
2378 struct btrfs_device *device;
2379 int ret;
2380
2381 if (devid) {
2382 args.devid = devid;
2383 device = btrfs_find_device(fs_devices: fs_info->fs_devices, args: &args);
2384 if (!device)
2385 return ERR_PTR(error: -ENOENT);
2386 return device;
2387 }
2388
2389 ret = btrfs_get_dev_args_from_path(fs_info, args: &args, path: device_path);
2390 if (ret)
2391 return ERR_PTR(error: ret);
2392 device = btrfs_find_device(fs_devices: fs_info->fs_devices, args: &args);
2393 btrfs_put_dev_args_from_path(args: &args);
2394 if (!device)
2395 return ERR_PTR(error: -ENOENT);
2396 return device;
2397}
2398
2399static struct btrfs_fs_devices *btrfs_init_sprout(struct btrfs_fs_info *fs_info)
2400{
2401 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2402 struct btrfs_fs_devices *old_devices;
2403 struct btrfs_fs_devices *seed_devices;
2404
2405 lockdep_assert_held(&uuid_mutex);
2406 if (!fs_devices->seeding)
2407 return ERR_PTR(error: -EINVAL);
2408
2409 /*
2410 * Private copy of the seed devices, anchored at
2411 * fs_info->fs_devices->seed_list
2412 */
2413 seed_devices = alloc_fs_devices(NULL);
2414 if (IS_ERR(ptr: seed_devices))
2415 return seed_devices;
2416
2417 /*
2418 * It's necessary to retain a copy of the original seed fs_devices in
2419 * fs_uuids so that filesystems which have been seeded can successfully
2420 * reference the seed device from open_seed_devices. This also supports
2421 * multiple fs seed.
2422 */
2423 old_devices = clone_fs_devices(orig: fs_devices);
2424 if (IS_ERR(ptr: old_devices)) {
2425 kfree(objp: seed_devices);
2426 return old_devices;
2427 }
2428
2429 list_add(new: &old_devices->fs_list, head: &fs_uuids);
2430
2431 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2432 seed_devices->opened = 1;
2433 INIT_LIST_HEAD(list: &seed_devices->devices);
2434 INIT_LIST_HEAD(list: &seed_devices->alloc_list);
2435 mutex_init(&seed_devices->device_list_mutex);
2436
2437 return seed_devices;
2438}
2439
2440/*
2441 * Splice seed devices into the sprout fs_devices.
2442 * Generate a new fsid for the sprouted read-write filesystem.
2443 */
2444static void btrfs_setup_sprout(struct btrfs_fs_info *fs_info,
2445 struct btrfs_fs_devices *seed_devices)
2446{
2447 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2448 struct btrfs_super_block *disk_super = fs_info->super_copy;
2449 struct btrfs_device *device;
2450 u64 super_flags;
2451
2452 /*
2453 * We are updating the fsid, the thread leading to device_list_add()
2454 * could race, so uuid_mutex is needed.
2455 */
2456 lockdep_assert_held(&uuid_mutex);
2457
2458 /*
2459 * The threads listed below may traverse dev_list but can do that without
2460 * device_list_mutex:
2461 * - All device ops and balance - as we are in btrfs_exclop_start.
2462 * - Various dev_list readers - are using RCU.
2463 * - btrfs_ioctl_fitrim() - is using RCU.
2464 *
2465 * For-read threads as below are using device_list_mutex:
2466 * - Readonly scrub btrfs_scrub_dev()
2467 * - Readonly scrub btrfs_scrub_progress()
2468 * - btrfs_get_dev_stats()
2469 */
2470 lockdep_assert_held(&fs_devices->device_list_mutex);
2471
2472 list_splice_init_rcu(list: &fs_devices->devices, head: &seed_devices->devices,
2473 sync: synchronize_rcu);
2474 list_for_each_entry(device, &seed_devices->devices, dev_list)
2475 device->fs_devices = seed_devices;
2476
2477 fs_devices->seeding = false;
2478 fs_devices->num_devices = 0;
2479 fs_devices->open_devices = 0;
2480 fs_devices->missing_devices = 0;
2481 fs_devices->rotating = false;
2482 list_add(new: &seed_devices->seed_list, head: &fs_devices->seed_list);
2483
2484 generate_random_uuid(uuid: fs_devices->fsid);
2485 memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2486 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2487
2488 super_flags = btrfs_super_flags(s: disk_super) &
2489 ~BTRFS_SUPER_FLAG_SEEDING;
2490 btrfs_set_super_flags(s: disk_super, val: super_flags);
2491}
2492
2493/*
2494 * Store the expected generation for seed devices in device items.
2495 */
2496static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2497{
2498 BTRFS_DEV_LOOKUP_ARGS(args);
2499 struct btrfs_fs_info *fs_info = trans->fs_info;
2500 struct btrfs_root *root = fs_info->chunk_root;
2501 struct btrfs_path *path;
2502 struct extent_buffer *leaf;
2503 struct btrfs_dev_item *dev_item;
2504 struct btrfs_device *device;
2505 struct btrfs_key key;
2506 u8 fs_uuid[BTRFS_FSID_SIZE];
2507 u8 dev_uuid[BTRFS_UUID_SIZE];
2508 int ret;
2509
2510 path = btrfs_alloc_path();
2511 if (!path)
2512 return -ENOMEM;
2513
2514 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2515 key.offset = 0;
2516 key.type = BTRFS_DEV_ITEM_KEY;
2517
2518 while (1) {
2519 btrfs_reserve_chunk_metadata(trans, is_item_insertion: false);
2520 ret = btrfs_search_slot(trans, root, key: &key, p: path, ins_len: 0, cow: 1);
2521 btrfs_trans_release_chunk_metadata(trans);
2522 if (ret < 0)
2523 goto error;
2524
2525 leaf = path->nodes[0];
2526next_slot:
2527 if (path->slots[0] >= btrfs_header_nritems(eb: leaf)) {
2528 ret = btrfs_next_leaf(root, path);
2529 if (ret > 0)
2530 break;
2531 if (ret < 0)
2532 goto error;
2533 leaf = path->nodes[0];
2534 btrfs_item_key_to_cpu(eb: leaf, cpu_key: &key, nr: path->slots[0]);
2535 btrfs_release_path(p: path);
2536 continue;
2537 }
2538
2539 btrfs_item_key_to_cpu(eb: leaf, cpu_key: &key, nr: path->slots[0]);
2540 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2541 key.type != BTRFS_DEV_ITEM_KEY)
2542 break;
2543
2544 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2545 struct btrfs_dev_item);
2546 args.devid = btrfs_device_id(eb: leaf, s: dev_item);
2547 read_extent_buffer(eb: leaf, dst: dev_uuid, start: btrfs_device_uuid(d: dev_item),
2548 BTRFS_UUID_SIZE);
2549 read_extent_buffer(eb: leaf, dst: fs_uuid, start: btrfs_device_fsid(d: dev_item),
2550 BTRFS_FSID_SIZE);
2551 args.uuid = dev_uuid;
2552 args.fsid = fs_uuid;
2553 device = btrfs_find_device(fs_devices: fs_info->fs_devices, args: &args);
2554 BUG_ON(!device); /* Logic error */
2555
2556 if (device->fs_devices->seeding) {
2557 btrfs_set_device_generation(eb: leaf, s: dev_item,
2558 val: device->generation);
2559 btrfs_mark_buffer_dirty(trans, buf: leaf);
2560 }
2561
2562 path->slots[0]++;
2563 goto next_slot;
2564 }
2565 ret = 0;
2566error:
2567 btrfs_free_path(p: path);
2568 return ret;
2569}
2570
2571int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2572{
2573 struct btrfs_root *root = fs_info->dev_root;
2574 struct btrfs_trans_handle *trans;
2575 struct btrfs_device *device;
2576 struct bdev_handle *bdev_handle;
2577 struct super_block *sb = fs_info->sb;
2578 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2579 struct btrfs_fs_devices *seed_devices = NULL;
2580 u64 orig_super_total_bytes;
2581 u64 orig_super_num_devices;
2582 int ret = 0;
2583 bool seeding_dev = false;
2584 bool locked = false;
2585
2586 if (sb_rdonly(sb) && !fs_devices->seeding)
2587 return -EROFS;
2588
2589 bdev_handle = bdev_open_by_path(path: device_path, BLK_OPEN_WRITE,
2590 holder: fs_info->bdev_holder, NULL);
2591 if (IS_ERR(ptr: bdev_handle))
2592 return PTR_ERR(ptr: bdev_handle);
2593
2594 if (!btrfs_check_device_zone_type(fs_info, bdev: bdev_handle->bdev)) {
2595 ret = -EINVAL;
2596 goto error;
2597 }
2598
2599 if (fs_devices->seeding) {
2600 seeding_dev = true;
2601 down_write(sem: &sb->s_umount);
2602 mutex_lock(&uuid_mutex);
2603 locked = true;
2604 }
2605
2606 sync_blockdev(bdev: bdev_handle->bdev);
2607
2608 rcu_read_lock();
2609 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2610 if (device->bdev == bdev_handle->bdev) {
2611 ret = -EEXIST;
2612 rcu_read_unlock();
2613 goto error;
2614 }
2615 }
2616 rcu_read_unlock();
2617
2618 device = btrfs_alloc_device(fs_info, NULL, NULL, path: device_path);
2619 if (IS_ERR(ptr: device)) {
2620 /* we can safely leave the fs_devices entry around */
2621 ret = PTR_ERR(ptr: device);
2622 goto error;
2623 }
2624
2625 device->fs_info = fs_info;
2626 device->bdev_handle = bdev_handle;
2627 device->bdev = bdev_handle->bdev;
2628 ret = lookup_bdev(pathname: device_path, dev: &device->devt);
2629 if (ret)
2630 goto error_free_device;
2631
2632 ret = btrfs_get_dev_zone_info(device, populate_cache: false);
2633 if (ret)
2634 goto error_free_device;
2635
2636 trans = btrfs_start_transaction(root, num_items: 0);
2637 if (IS_ERR(ptr: trans)) {
2638 ret = PTR_ERR(ptr: trans);
2639 goto error_free_zone;
2640 }
2641
2642 set_bit(BTRFS_DEV_STATE_WRITEABLE, addr: &device->dev_state);
2643 device->generation = trans->transid;
2644 device->io_width = fs_info->sectorsize;
2645 device->io_align = fs_info->sectorsize;
2646 device->sector_size = fs_info->sectorsize;
2647 device->total_bytes =
2648 round_down(bdev_nr_bytes(device->bdev), fs_info->sectorsize);
2649 device->disk_total_bytes = device->total_bytes;
2650 device->commit_total_bytes = device->total_bytes;
2651 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, addr: &device->dev_state);
2652 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, addr: &device->dev_state);
2653 device->dev_stats_valid = 1;
2654 set_blocksize(bdev: device->bdev, BTRFS_BDEV_BLOCKSIZE);
2655
2656 if (seeding_dev) {
2657 btrfs_clear_sb_rdonly(sb);
2658
2659 /* GFP_KERNEL allocation must not be under device_list_mutex */
2660 seed_devices = btrfs_init_sprout(fs_info);
2661 if (IS_ERR(ptr: seed_devices)) {
2662 ret = PTR_ERR(ptr: seed_devices);
2663 btrfs_abort_transaction(trans, ret);
2664 goto error_trans;
2665 }
2666 }
2667
2668 mutex_lock(&fs_devices->device_list_mutex);
2669 if (seeding_dev) {
2670 btrfs_setup_sprout(fs_info, seed_devices);
2671 btrfs_assign_next_active_device(device: fs_info->fs_devices->latest_dev,
2672 next_device: device);
2673 }
2674
2675 device->fs_devices = fs_devices;
2676
2677 mutex_lock(&fs_info->chunk_mutex);
2678 list_add_rcu(new: &device->dev_list, head: &fs_devices->devices);
2679 list_add(new: &device->dev_alloc_list, head: &fs_devices->alloc_list);
2680 fs_devices->num_devices++;
2681 fs_devices->open_devices++;
2682 fs_devices->rw_devices++;
2683 fs_devices->total_devices++;
2684 fs_devices->total_rw_bytes += device->total_bytes;
2685
2686 atomic64_add(i: device->total_bytes, v: &fs_info->free_chunk_space);
2687
2688 if (!bdev_nonrot(bdev: device->bdev))
2689 fs_devices->rotating = true;
2690
2691 orig_super_total_bytes = btrfs_super_total_bytes(s: fs_info->super_copy);
2692 btrfs_set_super_total_bytes(s: fs_info->super_copy,
2693 round_down(orig_super_total_bytes + device->total_bytes,
2694 fs_info->sectorsize));
2695
2696 orig_super_num_devices = btrfs_super_num_devices(s: fs_info->super_copy);
2697 btrfs_set_super_num_devices(s: fs_info->super_copy,
2698 val: orig_super_num_devices + 1);
2699
2700 /*
2701 * we've got more storage, clear any full flags on the space
2702 * infos
2703 */
2704 btrfs_clear_space_info_full(info: fs_info);
2705
2706 mutex_unlock(lock: &fs_info->chunk_mutex);
2707
2708 /* Add sysfs device entry */
2709 btrfs_sysfs_add_device(device);
2710
2711 mutex_unlock(lock: &fs_devices->device_list_mutex);
2712
2713 if (seeding_dev) {
2714 mutex_lock(&fs_info->chunk_mutex);
2715 ret = init_first_rw_device(trans);
2716 mutex_unlock(lock: &fs_info->chunk_mutex);
2717 if (ret) {
2718 btrfs_abort_transaction(trans, ret);
2719 goto error_sysfs;
2720 }
2721 }
2722
2723 ret = btrfs_add_dev_item(trans, device);
2724 if (ret) {
2725 btrfs_abort_transaction(trans, ret);
2726 goto error_sysfs;
2727 }
2728
2729 if (seeding_dev) {
2730 ret = btrfs_finish_sprout(trans);
2731 if (ret) {
2732 btrfs_abort_transaction(trans, ret);
2733 goto error_sysfs;
2734 }
2735
2736 /*
2737 * fs_devices now represents the newly sprouted filesystem and
2738 * its fsid has been changed by btrfs_sprout_splice().
2739 */
2740 btrfs_sysfs_update_sprout_fsid(fs_devices);
2741 }
2742
2743 ret = btrfs_commit_transaction(trans);
2744
2745 if (seeding_dev) {
2746 mutex_unlock(lock: &uuid_mutex);
2747 up_write(sem: &sb->s_umount);
2748 locked = false;
2749
2750 if (ret) /* transaction commit */
2751 return ret;
2752
2753 ret = btrfs_relocate_sys_chunks(fs_info);
2754 if (ret < 0)
2755 btrfs_handle_fs_error(fs_info, ret,
2756 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2757 trans = btrfs_attach_transaction(root);
2758 if (IS_ERR(ptr: trans)) {
2759 if (PTR_ERR(ptr: trans) == -ENOENT)
2760 return 0;
2761 ret = PTR_ERR(ptr: trans);
2762 trans = NULL;
2763 goto error_sysfs;
2764 }
2765 ret = btrfs_commit_transaction(trans);
2766 }
2767
2768 /*
2769 * Now that we have written a new super block to this device, check all
2770 * other fs_devices list if device_path alienates any other scanned
2771 * device.
2772 * We can ignore the return value as it typically returns -EINVAL and
2773 * only succeeds if the device was an alien.
2774 */
2775 btrfs_forget_devices(devt: device->devt);
2776
2777 /* Update ctime/mtime for blkid or udev */
2778 update_dev_time(device_path);
2779
2780 return ret;
2781
2782error_sysfs:
2783 btrfs_sysfs_remove_device(device);
2784 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2785 mutex_lock(&fs_info->chunk_mutex);
2786 list_del_rcu(entry: &device->dev_list);
2787 list_del(entry: &device->dev_alloc_list);
2788 fs_info->fs_devices->num_devices--;
2789 fs_info->fs_devices->open_devices--;
2790 fs_info->fs_devices->rw_devices--;
2791 fs_info->fs_devices->total_devices--;
2792 fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2793 atomic64_sub(i: device->total_bytes, v: &fs_info->free_chunk_space);
2794 btrfs_set_super_total_bytes(s: fs_info->super_copy,
2795 val: orig_super_total_bytes);
2796 btrfs_set_super_num_devices(s: fs_info->super_copy,
2797 val: orig_super_num_devices);
2798 mutex_unlock(lock: &fs_info->chunk_mutex);
2799 mutex_unlock(lock: &fs_info->fs_devices->device_list_mutex);
2800error_trans:
2801 if (seeding_dev)
2802 btrfs_set_sb_rdonly(sb);
2803 if (trans)
2804 btrfs_end_transaction(trans);
2805error_free_zone:
2806 btrfs_destroy_dev_zone_info(device);
2807error_free_device:
2808 btrfs_free_device(device);
2809error:
2810 bdev_release(handle: bdev_handle);
2811 if (locked) {
2812 mutex_unlock(lock: &uuid_mutex);
2813 up_write(sem: &sb->s_umount);
2814 }
2815 return ret;
2816}
2817
2818static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2819 struct btrfs_device *device)
2820{
2821 int ret;
2822 struct btrfs_path *path;
2823 struct btrfs_root *root = device->fs_info->chunk_root;
2824 struct btrfs_dev_item *dev_item;
2825 struct extent_buffer *leaf;
2826 struct btrfs_key key;
2827
2828 path = btrfs_alloc_path();
2829 if (!path)
2830 return -ENOMEM;
2831
2832 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2833 key.type = BTRFS_DEV_ITEM_KEY;
2834 key.offset = device->devid;
2835
2836 ret = btrfs_search_slot(trans, root, key: &key, p: path, ins_len: 0, cow: 1);
2837 if (ret < 0)
2838 goto out;
2839
2840 if (ret > 0) {
2841 ret = -ENOENT;
2842 goto out;
2843 }
2844
2845 leaf = path->nodes[0];
2846 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2847
2848 btrfs_set_device_id(eb: leaf, s: dev_item, val: device->devid);
2849 btrfs_set_device_type(eb: leaf, s: dev_item, val: device->type);
2850 btrfs_set_device_io_align(eb: leaf, s: dev_item, val: device->io_align);
2851 btrfs_set_device_io_width(eb: leaf, s: dev_item, val: device->io_width);
2852 btrfs_set_device_sector_size(eb: leaf, s: dev_item, val: device->sector_size);
2853 btrfs_set_device_total_bytes(eb: leaf, s: dev_item,
2854 val: btrfs_device_get_disk_total_bytes(dev: device));
2855 btrfs_set_device_bytes_used(eb: leaf, s: dev_item,
2856 val: btrfs_device_get_bytes_used(dev: device));
2857 btrfs_mark_buffer_dirty(trans, buf: leaf);
2858
2859out:
2860 btrfs_free_path(p: path);
2861 return ret;
2862}
2863
2864int btrfs_grow_device(struct btrfs_trans_handle *trans,
2865 struct btrfs_device *device, u64 new_size)
2866{
2867 struct btrfs_fs_info *fs_info = device->fs_info;
2868 struct btrfs_super_block *super_copy = fs_info->super_copy;
2869 u64 old_total;
2870 u64 diff;
2871 int ret;
2872
2873 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2874 return -EACCES;
2875
2876 new_size = round_down(new_size, fs_info->sectorsize);
2877
2878 mutex_lock(&fs_info->chunk_mutex);
2879 old_total = btrfs_super_total_bytes(s: super_copy);
2880 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2881
2882 if (new_size <= device->total_bytes ||
2883 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2884 mutex_unlock(lock: &fs_info->chunk_mutex);
2885 return -EINVAL;
2886 }
2887
2888 btrfs_set_super_total_bytes(s: super_copy,
2889 round_down(old_total + diff, fs_info->sectorsize));
2890 device->fs_devices->total_rw_bytes += diff;
2891 atomic64_add(i: diff, v: &fs_info->free_chunk_space);
2892
2893 btrfs_device_set_total_bytes(dev: device, size: new_size);
2894 btrfs_device_set_disk_total_bytes(dev: device, size: new_size);
2895 btrfs_clear_space_info_full(info: device->fs_info);
2896 if (list_empty(head: &device->post_commit_list))
2897 list_add_tail(new: &device->post_commit_list,
2898 head: &trans->transaction->dev_update_list);
2899 mutex_unlock(lock: &fs_info->chunk_mutex);
2900
2901 btrfs_reserve_chunk_metadata(trans, is_item_insertion: false);
2902 ret = btrfs_update_device(trans, device);
2903 btrfs_trans_release_chunk_metadata(trans);
2904
2905 return ret;
2906}
2907
2908static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2909{
2910 struct btrfs_fs_info *fs_info = trans->fs_info;
2911 struct btrfs_root *root = fs_info->chunk_root;
2912 int ret;
2913 struct btrfs_path *path;
2914 struct btrfs_key key;
2915
2916 path = btrfs_alloc_path();
2917 if (!path)
2918 return -ENOMEM;
2919
2920 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2921 key.offset = chunk_offset;
2922 key.type = BTRFS_CHUNK_ITEM_KEY;
2923
2924 ret = btrfs_search_slot(trans, root, key: &key, p: path, ins_len: -1, cow: 1);
2925 if (ret < 0)
2926 goto out;
2927 else if (ret > 0) { /* Logic error or corruption */
2928 btrfs_handle_fs_error(fs_info, -ENOENT,
2929 "Failed lookup while freeing chunk.");
2930 ret = -ENOENT;
2931 goto out;
2932 }
2933
2934 ret = btrfs_del_item(trans, root, path);
2935 if (ret < 0)
2936 btrfs_handle_fs_error(fs_info, ret,
2937 "Failed to delete chunk item.");
2938out:
2939 btrfs_free_path(p: path);
2940 return ret;
2941}
2942
2943static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2944{
2945 struct btrfs_super_block *super_copy = fs_info->super_copy;
2946 struct btrfs_disk_key *disk_key;
2947 struct btrfs_chunk *chunk;
2948 u8 *ptr;
2949 int ret = 0;
2950 u32 num_stripes;
2951 u32 array_size;
2952 u32 len = 0;
2953 u32 cur;
2954 struct btrfs_key key;
2955
2956 lockdep_assert_held(&fs_info->chunk_mutex);
2957 array_size = btrfs_super_sys_array_size(s: super_copy);
2958
2959 ptr = super_copy->sys_chunk_array;
2960 cur = 0;
2961
2962 while (cur < array_size) {
2963 disk_key = (struct btrfs_disk_key *)ptr;
2964 btrfs_disk_key_to_cpu(cpu_key: &key, disk_key);
2965
2966 len = sizeof(*disk_key);
2967
2968 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2969 chunk = (struct btrfs_chunk *)(ptr + len);
2970 num_stripes = btrfs_stack_chunk_num_stripes(s: chunk);
2971 len += btrfs_chunk_item_size(num_stripes);
2972 } else {
2973 ret = -EIO;
2974 break;
2975 }
2976 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2977 key.offset == chunk_offset) {
2978 memmove(ptr, ptr + len, array_size - (cur + len));
2979 array_size -= len;
2980 btrfs_set_super_sys_array_size(s: super_copy, val: array_size);
2981 } else {
2982 ptr += len;
2983 cur += len;
2984 }
2985 }
2986 return ret;
2987}
2988
2989/*
2990 * Find the mapping containing the given logical extent.
2991 *
2992 * @logical: Logical block offset in bytes.
2993 * @length: Length of extent in bytes.
2994 *
2995 * Return: Chunk mapping or ERR_PTR.
2996 */
2997struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
2998 u64 logical, u64 length)
2999{
3000 struct extent_map_tree *em_tree;
3001 struct extent_map *em;
3002
3003 em_tree = &fs_info->mapping_tree;
3004 read_lock(&em_tree->lock);
3005 em = lookup_extent_mapping(tree: em_tree, start: logical, len: length);
3006 read_unlock(&em_tree->lock);
3007
3008 if (!em) {
3009 btrfs_crit(fs_info, "unable to find logical %llu length %llu",
3010 logical, length);
3011 return ERR_PTR(error: -EINVAL);
3012 }
3013
3014 if (em->start > logical || em->start + em->len < logical) {
3015 btrfs_crit(fs_info,
3016 "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
3017 logical, length, em->start, em->start + em->len);
3018 free_extent_map(em);
3019 return ERR_PTR(error: -EINVAL);
3020 }
3021
3022 /* callers are responsible for dropping em's ref. */
3023 return em;
3024}
3025
3026static int remove_chunk_item(struct btrfs_trans_handle *trans,
3027 struct map_lookup *map, u64 chunk_offset)
3028{
3029 int i;
3030
3031 /*
3032 * Removing chunk items and updating the device items in the chunks btree
3033 * requires holding the chunk_mutex.
3034 * See the comment at btrfs_chunk_alloc() for the details.
3035 */
3036 lockdep_assert_held(&trans->fs_info->chunk_mutex);
3037
3038 for (i = 0; i < map->num_stripes; i++) {
3039 int ret;
3040
3041 ret = btrfs_update_device(trans, device: map->stripes[i].dev);
3042 if (ret)
3043 return ret;
3044 }
3045
3046 return btrfs_free_chunk(trans, chunk_offset);
3047}
3048
3049int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
3050{
3051 struct btrfs_fs_info *fs_info = trans->fs_info;
3052 struct extent_map *em;
3053 struct map_lookup *map;
3054 u64 dev_extent_len = 0;
3055 int i, ret = 0;
3056 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3057
3058 em = btrfs_get_chunk_map(fs_info, logical: chunk_offset, length: 1);
3059 if (IS_ERR(ptr: em)) {
3060 /*
3061 * This is a logic error, but we don't want to just rely on the
3062 * user having built with ASSERT enabled, so if ASSERT doesn't
3063 * do anything we still error out.
3064 */
3065 ASSERT(0);
3066 return PTR_ERR(ptr: em);
3067 }
3068 map = em->map_lookup;
3069
3070 /*
3071 * First delete the device extent items from the devices btree.
3072 * We take the device_list_mutex to avoid racing with the finishing phase
3073 * of a device replace operation. See the comment below before acquiring
3074 * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex
3075 * because that can result in a deadlock when deleting the device extent
3076 * items from the devices btree - COWing an extent buffer from the btree
3077 * may result in allocating a new metadata chunk, which would attempt to
3078 * lock again fs_info->chunk_mutex.
3079 */
3080 mutex_lock(&fs_devices->device_list_mutex);
3081 for (i = 0; i < map->num_stripes; i++) {
3082 struct btrfs_device *device = map->stripes[i].dev;
3083 ret = btrfs_free_dev_extent(trans, device,
3084 start: map->stripes[i].physical,
3085 dev_extent_len: &dev_extent_len);
3086 if (ret) {
3087 mutex_unlock(lock: &fs_devices->device_list_mutex);
3088 btrfs_abort_transaction(trans, ret);
3089 goto out;
3090 }
3091
3092 if (device->bytes_used > 0) {
3093 mutex_lock(&fs_info->chunk_mutex);
3094 btrfs_device_set_bytes_used(dev: device,
3095 size: device->bytes_used - dev_extent_len);
3096 atomic64_add(i: dev_extent_len, v: &fs_info->free_chunk_space);
3097 btrfs_clear_space_info_full(info: fs_info);
3098 mutex_unlock(lock: &fs_info->chunk_mutex);
3099 }
3100 }
3101 mutex_unlock(lock: &fs_devices->device_list_mutex);
3102
3103 /*
3104 * We acquire fs_info->chunk_mutex for 2 reasons:
3105 *
3106 * 1) Just like with the first phase of the chunk allocation, we must
3107 * reserve system space, do all chunk btree updates and deletions, and
3108 * update the system chunk array in the superblock while holding this
3109 * mutex. This is for similar reasons as explained on the comment at
3110 * the top of btrfs_chunk_alloc();
3111 *
3112 * 2) Prevent races with the final phase of a device replace operation
3113 * that replaces the device object associated with the map's stripes,
3114 * because the device object's id can change at any time during that
3115 * final phase of the device replace operation
3116 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
3117 * replaced device and then see it with an ID of
3118 * BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating
3119 * the device item, which does not exists on the chunk btree.
3120 * The finishing phase of device replace acquires both the
3121 * device_list_mutex and the chunk_mutex, in that order, so we are
3122 * safe by just acquiring the chunk_mutex.
3123 */
3124 trans->removing_chunk = true;
3125 mutex_lock(&fs_info->chunk_mutex);
3126
3127 check_system_chunk(trans, type: map->type);
3128
3129 ret = remove_chunk_item(trans, map, chunk_offset);
3130 /*
3131 * Normally we should not get -ENOSPC since we reserved space before
3132 * through the call to check_system_chunk().
3133 *
3134 * Despite our system space_info having enough free space, we may not
3135 * be able to allocate extents from its block groups, because all have
3136 * an incompatible profile, which will force us to allocate a new system
3137 * block group with the right profile, or right after we called
3138 * check_system_space() above, a scrub turned the only system block group
3139 * with enough free space into RO mode.
3140 * This is explained with more detail at do_chunk_alloc().
3141 *
3142 * So if we get -ENOSPC, allocate a new system chunk and retry once.
3143 */
3144 if (ret == -ENOSPC) {
3145 const u64 sys_flags = btrfs_system_alloc_profile(fs_info);
3146 struct btrfs_block_group *sys_bg;
3147
3148 sys_bg = btrfs_create_chunk(trans, type: sys_flags);
3149 if (IS_ERR(ptr: sys_bg)) {
3150 ret = PTR_ERR(ptr: sys_bg);
3151 btrfs_abort_transaction(trans, ret);
3152 goto out;
3153 }
3154
3155 ret = btrfs_chunk_alloc_add_chunk_item(trans, bg: sys_bg);
3156 if (ret) {
3157 btrfs_abort_transaction(trans, ret);
3158 goto out;
3159 }
3160
3161 ret = remove_chunk_item(trans, map, chunk_offset);
3162 if (ret) {
3163 btrfs_abort_transaction(trans, ret);
3164 goto out;
3165 }
3166 } else if (ret) {
3167 btrfs_abort_transaction(trans, ret);
3168 goto out;
3169 }
3170
3171 trace_btrfs_chunk_free(fs_info, map, offset: chunk_offset, size: em->len);
3172
3173 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3174 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
3175 if (ret) {
3176 btrfs_abort_transaction(trans, ret);
3177 goto out;
3178 }
3179 }
3180
3181 mutex_unlock(lock: &fs_info->chunk_mutex);
3182 trans->removing_chunk = false;
3183
3184 /*
3185 * We are done with chunk btree updates and deletions, so release the
3186 * system space we previously reserved (with check_system_chunk()).
3187 */
3188 btrfs_trans_release_chunk_metadata(trans);
3189
3190 ret = btrfs_remove_block_group(trans, group_start: chunk_offset, em);
3191 if (ret) {
3192 btrfs_abort_transaction(trans, ret);
3193 goto out;
3194 }
3195
3196out:
3197 if (trans->removing_chunk) {
3198 mutex_unlock(lock: &fs_info->chunk_mutex);
3199 trans->removing_chunk = false;
3200 }
3201 /* once for us */
3202 free_extent_map(em);
3203 return ret;
3204}
3205
3206int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3207{
3208 struct btrfs_root *root = fs_info->chunk_root;
3209 struct btrfs_trans_handle *trans;
3210 struct btrfs_block_group *block_group;
3211 u64 length;
3212 int ret;
3213
3214 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3215 btrfs_err(fs_info,
3216 "relocate: not supported on extent tree v2 yet");
3217 return -EINVAL;
3218 }
3219
3220 /*
3221 * Prevent races with automatic removal of unused block groups.
3222 * After we relocate and before we remove the chunk with offset
3223 * chunk_offset, automatic removal of the block group can kick in,
3224 * resulting in a failure when calling btrfs_remove_chunk() below.
3225 *
3226 * Make sure to acquire this mutex before doing a tree search (dev
3227 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3228 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3229 * we release the path used to search the chunk/dev tree and before
3230 * the current task acquires this mutex and calls us.
3231 */
3232 lockdep_assert_held(&fs_info->reclaim_bgs_lock);
3233
3234 /* step one, relocate all the extents inside this chunk */
3235 btrfs_scrub_pause(fs_info);
3236 ret = btrfs_relocate_block_group(fs_info, group_start: chunk_offset);
3237 btrfs_scrub_continue(fs_info);
3238 if (ret) {
3239 /*
3240 * If we had a transaction abort, stop all running scrubs.
3241 * See transaction.c:cleanup_transaction() why we do it here.
3242 */
3243 if (BTRFS_FS_ERROR(fs_info))
3244 btrfs_scrub_cancel(info: fs_info);
3245 return ret;
3246 }
3247
3248 block_group = btrfs_lookup_block_group(info: fs_info, bytenr: chunk_offset);
3249 if (!block_group)
3250 return -ENOENT;
3251 btrfs_discard_cancel_work(discard_ctl: &fs_info->discard_ctl, block_group);
3252 length = block_group->length;
3253 btrfs_put_block_group(cache: block_group);
3254
3255 /*
3256 * On a zoned file system, discard the whole block group, this will
3257 * trigger a REQ_OP_ZONE_RESET operation on the device zone. If
3258 * resetting the zone fails, don't treat it as a fatal problem from the
3259 * filesystem's point of view.
3260 */
3261 if (btrfs_is_zoned(fs_info)) {
3262 ret = btrfs_discard_extent(fs_info, bytenr: chunk_offset, num_bytes: length, NULL);
3263 if (ret)
3264 btrfs_info(fs_info,
3265 "failed to reset zone %llu after relocation",
3266 chunk_offset);
3267 }
3268
3269 trans = btrfs_start_trans_remove_block_group(fs_info: root->fs_info,
3270 chunk_offset);
3271 if (IS_ERR(ptr: trans)) {
3272 ret = PTR_ERR(ptr: trans);
3273 btrfs_handle_fs_error(root->fs_info, ret, NULL);
3274 return ret;
3275 }
3276
3277 /*
3278 * step two, delete the device extents and the
3279 * chunk tree entries
3280 */
3281 ret = btrfs_remove_chunk(trans, chunk_offset);
3282 btrfs_end_transaction(trans);
3283 return ret;
3284}
3285
3286static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3287{
3288 struct btrfs_root *chunk_root = fs_info->chunk_root;
3289 struct btrfs_path *path;
3290 struct extent_buffer *leaf;
3291 struct btrfs_chunk *chunk;
3292 struct btrfs_key key;
3293 struct btrfs_key found_key;
3294 u64 chunk_type;
3295 bool retried = false;
3296 int failed = 0;
3297 int ret;
3298
3299 path = btrfs_alloc_path();
3300 if (!path)
3301 return -ENOMEM;
3302
3303again:
3304 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3305 key.offset = (u64)-1;
3306 key.type = BTRFS_CHUNK_ITEM_KEY;
3307
3308 while (1) {
3309 mutex_lock(&fs_info->reclaim_bgs_lock);
3310 ret = btrfs_search_slot(NULL, root: chunk_root, key: &key, p: path, ins_len: 0, cow: 0);
3311 if (ret < 0) {
3312 mutex_unlock(lock: &fs_info->reclaim_bgs_lock);
3313 goto error;
3314 }
3315 BUG_ON(ret == 0); /* Corruption */
3316
3317 ret = btrfs_previous_item(root: chunk_root, path, min_objectid: key.objectid,
3318 type: key.type);
3319 if (ret)
3320 mutex_unlock(lock: &fs_info->reclaim_bgs_lock);
3321 if (ret < 0)
3322 goto error;
3323 if (ret > 0)
3324 break;
3325
3326 leaf = path->nodes[0];
3327 btrfs_item_key_to_cpu(eb: leaf, cpu_key: &found_key, nr: path->slots[0]);
3328
3329 chunk = btrfs_item_ptr(leaf, path->slots[0],
3330 struct btrfs_chunk);
3331 chunk_type = btrfs_chunk_type(eb: leaf, s: chunk);
3332 btrfs_release_path(p: path);
3333
3334 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3335 ret = btrfs_relocate_chunk(fs_info, chunk_offset: found_key.offset);
3336 if (ret == -ENOSPC)
3337 failed++;
3338 else
3339 BUG_ON(ret);
3340 }
3341 mutex_unlock(lock: &fs_info->reclaim_bgs_lock);
3342
3343 if (found_key.offset == 0)
3344 break;
3345 key.offset = found_key.offset - 1;
3346 }
3347 ret = 0;
3348 if (failed && !retried) {
3349 failed = 0;
3350 retried = true;
3351 goto again;
3352 } else if (WARN_ON(failed && retried)) {
3353 ret = -ENOSPC;
3354 }
3355error:
3356 btrfs_free_path(p: path);
3357 return ret;
3358}
3359
3360/*
3361 * return 1 : allocate a data chunk successfully,
3362 * return <0: errors during allocating a data chunk,
3363 * return 0 : no need to allocate a data chunk.
3364 */
3365static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3366 u64 chunk_offset)
3367{
3368 struct btrfs_block_group *cache;
3369 u64 bytes_used;
3370 u64 chunk_type;
3371
3372 cache = btrfs_lookup_block_group(info: fs_info, bytenr: chunk_offset);
3373 ASSERT(cache);
3374 chunk_type = cache->flags;
3375 btrfs_put_block_group(cache);
3376
3377 if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3378 return 0;
3379
3380 spin_lock(lock: &fs_info->data_sinfo->lock);
3381 bytes_used = fs_info->data_sinfo->bytes_used;
3382 spin_unlock(lock: &fs_info->data_sinfo->lock);
3383
3384 if (!bytes_used) {
3385 struct btrfs_trans_handle *trans;
3386 int ret;
3387
3388 trans = btrfs_join_transaction(root: fs_info->tree_root);
3389 if (IS_ERR(ptr: trans))
3390 return PTR_ERR(ptr: trans);
3391
3392 ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3393 btrfs_end_transaction(trans);
3394 if (ret < 0)
3395 return ret;
3396 return 1;
3397 }
3398
3399 return 0;
3400}
3401
3402static int insert_balance_item(struct btrfs_fs_info *fs_info,
3403 struct btrfs_balance_control *bctl)
3404{
3405 struct btrfs_root *root = fs_info->tree_root;
3406 struct btrfs_trans_handle *trans;
3407 struct btrfs_balance_item *item;
3408 struct btrfs_disk_balance_args disk_bargs;
3409 struct btrfs_path *path;
3410 struct extent_buffer *leaf;
3411 struct btrfs_key key;
3412 int ret, err;
3413
3414 path = btrfs_alloc_path();
3415 if (!path)
3416 return -ENOMEM;
3417
3418 trans = btrfs_start_transaction(root, num_items: 0);
3419 if (IS_ERR(ptr: trans)) {
3420 btrfs_free_path(p: path);
3421 return PTR_ERR(ptr: trans);
3422 }
3423
3424 key.objectid = BTRFS_BALANCE_OBJECTID;
3425 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3426 key.offset = 0;
3427
3428 ret = btrfs_insert_empty_item(trans, root, path, key: &key,
3429 data_size: sizeof(*item));
3430 if (ret)
3431 goto out;
3432
3433 leaf = path->nodes[0];
3434 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3435
3436 memzero_extent_buffer(eb: leaf, start: (unsigned long)item, len: sizeof(*item));
3437
3438 btrfs_cpu_balance_args_to_disk(disk: &disk_bargs, cpu: &bctl->data);
3439 btrfs_set_balance_data(eb: leaf, bi: item, ba: &disk_bargs);
3440 btrfs_cpu_balance_args_to_disk(disk: &disk_bargs, cpu: &bctl->meta);
3441 btrfs_set_balance_meta(eb: leaf, bi: item, ba: &disk_bargs);
3442 btrfs_cpu_balance_args_to_disk(disk: &disk_bargs, cpu: &bctl->sys);
3443 btrfs_set_balance_sys(eb: leaf, bi: item, ba: &disk_bargs);
3444
3445 btrfs_set_balance_flags(eb: leaf, s: item, val: bctl->flags);
3446
3447 btrfs_mark_buffer_dirty(trans, buf: leaf);
3448out:
3449 btrfs_free_path(p: path);
3450 err = btrfs_commit_transaction(trans);
3451 if (err && !ret)
3452 ret = err;
3453 return ret;
3454}
3455
3456static int del_balance_item(struct btrfs_fs_info *fs_info)
3457{
3458 struct btrfs_root *root = fs_info->tree_root;
3459 struct btrfs_trans_handle *trans;
3460 struct btrfs_path *path;
3461 struct btrfs_key key;
3462 int ret, err;
3463
3464 path = btrfs_alloc_path();
3465 if (!path)
3466 return -ENOMEM;
3467
3468 trans = btrfs_start_transaction_fallback_global_rsv(root, num_items: 0);
3469 if (IS_ERR(ptr: trans)) {
3470 btrfs_free_path(p: path);
3471 return PTR_ERR(ptr: trans);
3472 }
3473
3474 key.objectid = BTRFS_BALANCE_OBJECTID;
3475 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3476 key.offset = 0;
3477
3478 ret = btrfs_search_slot(trans, root, key: &key, p: path, ins_len: -1, cow: 1);
3479 if (ret < 0)
3480 goto out;
3481 if (ret > 0) {
3482 ret = -ENOENT;
3483 goto out;
3484 }
3485
3486 ret = btrfs_del_item(trans, root, path);
3487out:
3488 btrfs_free_path(p: path);
3489 err = btrfs_commit_transaction(trans);
3490 if (err && !ret)
3491 ret = err;
3492 return ret;
3493}
3494
3495/*
3496 * This is a heuristic used to reduce the number of chunks balanced on
3497 * resume after balance was interrupted.
3498 */
3499static void update_balance_args(struct btrfs_balance_control *bctl)
3500{
3501 /*
3502 * Turn on soft mode for chunk types that were being converted.
3503 */
3504 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3505 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3506 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3507 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3508 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3509 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3510
3511 /*
3512 * Turn on usage filter if is not already used. The idea is
3513 * that chunks that we have already balanced should be
3514 * reasonably full. Don't do it for chunks that are being
3515 * converted - that will keep us from relocating unconverted
3516 * (albeit full) chunks.
3517 */
3518 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3519 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3520 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3521 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3522 bctl->data.usage = 90;
3523 }
3524 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3525 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3526 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3527 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3528 bctl->sys.usage = 90;
3529 }
3530 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3531 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3532 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3533 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3534 bctl->meta.usage = 90;
3535 }
3536}
3537
3538/*
3539 * Clear the balance status in fs_info and delete the balance item from disk.
3540 */
3541static void reset_balance_state(struct btrfs_fs_info *fs_info)
3542{
3543 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3544 int ret;
3545
3546 BUG_ON(!fs_info->balance_ctl);
3547
3548 spin_lock(lock: &fs_info->balance_lock);
3549 fs_info->balance_ctl = NULL;
3550 spin_unlock(lock: &fs_info->balance_lock);
3551
3552 kfree(objp: bctl);
3553 ret = del_balance_item(fs_info);
3554 if (ret)
3555 btrfs_handle_fs_error(fs_info, ret, NULL);
3556}
3557
3558/*
3559 * Balance filters. Return 1 if chunk should be filtered out
3560 * (should not be balanced).
3561 */
3562static int chunk_profiles_filter(u64 chunk_type,
3563 struct btrfs_balance_args *bargs)
3564{
3565 chunk_type = chunk_to_extended(flags: chunk_type) &
3566 BTRFS_EXTENDED_PROFILE_MASK;
3567
3568 if (bargs->profiles & chunk_type)
3569 return 0;
3570
3571 return 1;
3572}
3573
3574static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3575 struct btrfs_balance_args *bargs)
3576{
3577 struct btrfs_block_group *cache;
3578 u64 chunk_used;
3579 u64 user_thresh_min;
3580 u64 user_thresh_max;
3581 int ret = 1;
3582
3583 cache = btrfs_lookup_block_group(info: fs_info, bytenr: chunk_offset);
3584 chunk_used = cache->used;
3585
3586 if (bargs->usage_min == 0)
3587 user_thresh_min = 0;
3588 else
3589 user_thresh_min = mult_perc(num: cache->length, percent: bargs->usage_min);
3590
3591 if (bargs->usage_max == 0)
3592 user_thresh_max = 1;
3593 else if (bargs->usage_max > 100)
3594 user_thresh_max = cache->length;
3595 else
3596 user_thresh_max = mult_perc(num: cache->length, percent: bargs->usage_max);
3597
3598 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3599 ret = 0;
3600
3601 btrfs_put_block_group(cache);
3602 return ret;
3603}
3604
3605static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3606 u64 chunk_offset, struct btrfs_balance_args *bargs)
3607{
3608 struct btrfs_block_group *cache;
3609 u64 chunk_used, user_thresh;
3610 int ret = 1;
3611
3612 cache = btrfs_lookup_block_group(info: fs_info, bytenr: chunk_offset);
3613 chunk_used = cache->used;
3614
3615 if (bargs->usage_min == 0)
3616 user_thresh = 1;
3617 else if (bargs->usage > 100)
3618 user_thresh = cache->length;
3619 else
3620 user_thresh = mult_perc(num: cache->length, percent: bargs->usage);
3621
3622 if (chunk_used < user_thresh)
3623 ret = 0;
3624
3625 btrfs_put_block_group(cache);
3626 return ret;
3627}
3628
3629static int chunk_devid_filter(struct extent_buffer *leaf,
3630 struct btrfs_chunk *chunk,
3631 struct btrfs_balance_args *bargs)
3632{
3633 struct btrfs_stripe *stripe;
3634 int num_stripes = btrfs_chunk_num_stripes(eb: leaf, s: chunk);
3635 int i;
3636
3637 for (i = 0; i < num_stripes; i++) {
3638 stripe = btrfs_stripe_nr(c: chunk, nr: i);
3639 if (btrfs_stripe_devid(eb: leaf, s: stripe) == bargs->devid)
3640 return 0;
3641 }
3642
3643 return 1;
3644}
3645
3646static u64 calc_data_stripes(u64 type, int num_stripes)
3647{
3648 const int index = btrfs_bg_flags_to_raid_index(flags: type);
3649 const int ncopies = btrfs_raid_array[index].ncopies;
3650 const int nparity = btrfs_raid_array[index].nparity;
3651
3652 return (num_stripes - nparity) / ncopies;
3653}
3654
3655/* [pstart, pend) */
3656static int chunk_drange_filter(struct extent_buffer *leaf,
3657 struct btrfs_chunk *chunk,
3658 struct btrfs_balance_args *bargs)
3659{
3660 struct btrfs_stripe *stripe;
3661 int num_stripes = btrfs_chunk_num_stripes(eb: leaf, s: chunk);
3662 u64 stripe_offset;
3663 u64 stripe_length;
3664 u64 type;
3665 int factor;
3666 int i;
3667
3668 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3669 return 0;
3670
3671 type = btrfs_chunk_type(eb: leaf, s: chunk);
3672 factor = calc_data_stripes(type, num_stripes);
3673
3674 for (i = 0; i < num_stripes; i++) {
3675 stripe = btrfs_stripe_nr(c: chunk, nr: i);
3676 if (btrfs_stripe_devid(eb: leaf, s: stripe) != bargs->devid)
3677 continue;
3678
3679 stripe_offset = btrfs_stripe_offset(eb: leaf, s: stripe);
3680 stripe_length = btrfs_chunk_length(eb: leaf, s: chunk);
3681 stripe_length = div_u64(dividend: stripe_length, divisor: factor);
3682
3683 if (stripe_offset < bargs->pend &&
3684 stripe_offset + stripe_length > bargs->pstart)
3685 return 0;
3686 }
3687
3688 return 1;
3689}
3690
3691/* [vstart, vend) */
3692static int chunk_vrange_filter(struct extent_buffer *leaf,
3693 struct btrfs_chunk *chunk,
3694 u64 chunk_offset,
3695 struct btrfs_balance_args *bargs)
3696{
3697 if (chunk_offset < bargs->vend &&
3698 chunk_offset + btrfs_chunk_length(eb: leaf, s: chunk) > bargs->vstart)
3699 /* at least part of the chunk is inside this vrange */
3700 return 0;
3701
3702 return 1;
3703}
3704
3705static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3706 struct btrfs_chunk *chunk,
3707 struct btrfs_balance_args *bargs)
3708{
3709 int num_stripes = btrfs_chunk_num_stripes(eb: leaf, s: chunk);
3710
3711 if (bargs->stripes_min <= num_stripes
3712 && num_stripes <= bargs->stripes_max)
3713 return 0;
3714
3715 return 1;
3716}
3717
3718static int chunk_soft_convert_filter(u64 chunk_type,
3719 struct btrfs_balance_args *bargs)
3720{
3721 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3722 return 0;
3723
3724 chunk_type = chunk_to_extended(flags: chunk_type) &
3725 BTRFS_EXTENDED_PROFILE_MASK;
3726
3727 if (bargs->target == chunk_type)
3728 return 1;
3729
3730 return 0;
3731}
3732
3733static int should_balance_chunk(struct extent_buffer *leaf,
3734 struct btrfs_chunk *chunk, u64 chunk_offset)
3735{
3736 struct btrfs_fs_info *fs_info = leaf->fs_info;
3737 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3738 struct btrfs_balance_args *bargs = NULL;
3739 u64 chunk_type = btrfs_chunk_type(eb: leaf, s: chunk);
3740
3741 /* type filter */
3742 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3743 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3744 return 0;
3745 }
3746
3747 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3748 bargs = &bctl->data;
3749 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3750 bargs = &bctl->sys;
3751 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3752 bargs = &bctl->meta;
3753
3754 /* profiles filter */
3755 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3756 chunk_profiles_filter(chunk_type, bargs)) {
3757 return 0;
3758 }
3759
3760 /* usage filter */
3761 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3762 chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3763 return 0;
3764 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3765 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3766 return 0;
3767 }
3768
3769 /* devid filter */
3770 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3771 chunk_devid_filter(leaf, chunk, bargs)) {
3772 return 0;
3773 }
3774
3775 /* drange filter, makes sense only with devid filter */
3776 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3777 chunk_drange_filter(leaf, chunk, bargs)) {
3778 return 0;
3779 }
3780
3781 /* vrange filter */
3782 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3783 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3784 return 0;
3785 }
3786
3787 /* stripes filter */
3788 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3789 chunk_stripes_range_filter(leaf, chunk, bargs)) {
3790 return 0;
3791 }
3792
3793 /* soft profile changing mode */
3794 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3795 chunk_soft_convert_filter(chunk_type, bargs)) {
3796 return 0;
3797 }
3798
3799 /*
3800 * limited by count, must be the last filter
3801 */
3802 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3803 if (bargs->limit == 0)
3804 return 0;
3805 else
3806 bargs->limit--;
3807 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3808 /*
3809 * Same logic as the 'limit' filter; the minimum cannot be
3810 * determined here because we do not have the global information
3811 * about the count of all chunks that satisfy the filters.
3812 */
3813 if (bargs->limit_max == 0)
3814 return 0;
3815 else
3816 bargs->limit_max--;
3817 }
3818
3819 return 1;
3820}
3821
3822static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3823{
3824 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3825 struct btrfs_root *chunk_root = fs_info->chunk_root;
3826 u64 chunk_type;
3827 struct btrfs_chunk *chunk;
3828 struct btrfs_path *path = NULL;
3829 struct btrfs_key key;
3830 struct btrfs_key found_key;
3831 struct extent_buffer *leaf;
3832 int slot;
3833 int ret;
3834 int enospc_errors = 0;
3835 bool counting = true;
3836 /* The single value limit and min/max limits use the same bytes in the */
3837 u64 limit_data = bctl->data.limit;
3838 u64 limit_meta = bctl->meta.limit;
3839 u64 limit_sys = bctl->sys.limit;
3840 u32 count_data = 0;
3841 u32 count_meta = 0;
3842 u32 count_sys = 0;
3843 int chunk_reserved = 0;
3844
3845 path = btrfs_alloc_path();
3846 if (!path) {
3847 ret = -ENOMEM;
3848 goto error;
3849 }
3850
3851 /* zero out stat counters */
3852 spin_lock(lock: &fs_info->balance_lock);
3853 memset(&bctl->stat, 0, sizeof(bctl->stat));
3854 spin_unlock(lock: &fs_info->balance_lock);
3855again:
3856 if (!counting) {
3857 /*
3858 * The single value limit and min/max limits use the same bytes
3859 * in the
3860 */
3861 bctl->data.limit = limit_data;
3862 bctl->meta.limit = limit_meta;
3863 bctl->sys.limit = limit_sys;
3864 }
3865 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3866 key.offset = (u64)-1;
3867 key.type = BTRFS_CHUNK_ITEM_KEY;
3868
3869 while (1) {
3870 if ((!counting && atomic_read(v: &fs_info->balance_pause_req)) ||
3871 atomic_read(v: &fs_info->balance_cancel_req)) {
3872 ret = -ECANCELED;
3873 goto error;
3874 }
3875
3876 mutex_lock(&fs_info->reclaim_bgs_lock);
3877 ret = btrfs_search_slot(NULL, root: chunk_root, key: &key, p: path, ins_len: 0, cow: 0);
3878 if (ret < 0) {
3879 mutex_unlock(lock: &fs_info->reclaim_bgs_lock);
3880 goto error;
3881 }
3882
3883 /*
3884 * this shouldn't happen, it means the last relocate
3885 * failed
3886 */
3887 if (ret == 0)
3888 BUG(); /* FIXME break ? */
3889
3890 ret = btrfs_previous_item(root: chunk_root, path, min_objectid: 0,
3891 BTRFS_CHUNK_ITEM_KEY);
3892 if (ret) {
3893 mutex_unlock(lock: &fs_info->reclaim_bgs_lock);
3894 ret = 0;
3895 break;
3896 }
3897
3898 leaf = path->nodes[0];
3899 slot = path->slots[0];
3900 btrfs_item_key_to_cpu(eb: leaf, cpu_key: &found_key, nr: slot);
3901
3902 if (found_key.objectid != key.objectid) {
3903 mutex_unlock(lock: &fs_info->reclaim_bgs_lock);
3904 break;
3905 }
3906
3907 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3908 chunk_type = btrfs_chunk_type(eb: leaf, s: chunk);
3909
3910 if (!counting) {
3911 spin_lock(lock: &fs_info->balance_lock);
3912 bctl->stat.considered++;
3913 spin_unlock(lock: &fs_info->balance_lock);
3914 }
3915
3916 ret = should_balance_chunk(leaf, chunk, chunk_offset: found_key.offset);
3917
3918 btrfs_release_path(p: path);
3919 if (!ret) {
3920 mutex_unlock(lock: &fs_info->reclaim_bgs_lock);
3921 goto loop;
3922 }
3923
3924 if (counting) {
3925 mutex_unlock(lock: &fs_info->reclaim_bgs_lock);
3926 spin_lock(lock: &fs_info->balance_lock);
3927 bctl->stat.expected++;
3928 spin_unlock(lock: &fs_info->balance_lock);
3929
3930 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3931 count_data++;
3932 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3933 count_sys++;
3934 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3935 count_meta++;
3936
3937 goto loop;
3938 }
3939
3940 /*
3941 * Apply limit_min filter, no need to check if the LIMITS
3942 * filter is used, limit_min is 0 by default
3943 */
3944 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3945 count_data < bctl->data.limit_min)
3946 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3947 count_meta < bctl->meta.limit_min)
3948 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3949 count_sys < bctl->sys.limit_min)) {
3950 mutex_unlock(lock: &fs_info->reclaim_bgs_lock);
3951 goto loop;
3952 }
3953
3954 if (!chunk_reserved) {
3955 /*
3956 * We may be relocating the only data chunk we have,
3957 * which could potentially end up with losing data's
3958 * raid profile, so lets allocate an empty one in
3959 * advance.
3960 */
3961 ret = btrfs_may_alloc_data_chunk(fs_info,
3962 chunk_offset: found_key.offset);
3963 if (ret < 0) {
3964 mutex_unlock(lock: &fs_info->reclaim_bgs_lock);
3965 goto error;
3966 } else if (ret == 1) {
3967 chunk_reserved = 1;
3968 }
3969 }
3970
3971 ret = btrfs_relocate_chunk(fs_info, chunk_offset: found_key.offset);
3972 mutex_unlock(lock: &fs_info->reclaim_bgs_lock);
3973 if (ret == -ENOSPC) {
3974 enospc_errors++;
3975 } else if (ret == -ETXTBSY) {
3976 btrfs_info(fs_info,
3977 "skipping relocation of block group %llu due to active swapfile",
3978 found_key.offset);
3979 ret = 0;
3980 } else if (ret) {
3981 goto error;
3982 } else {
3983 spin_lock(lock: &fs_info->balance_lock);
3984 bctl->stat.completed++;
3985 spin_unlock(lock: &fs_info->balance_lock);
3986 }
3987loop:
3988 if (found_key.offset == 0)
3989 break;
3990 key.offset = found_key.offset - 1;
3991 }
3992
3993 if (counting) {
3994 btrfs_release_path(p: path);
3995 counting = false;
3996 goto again;
3997 }
3998error:
3999 btrfs_free_path(p: path);
4000 if (enospc_errors) {
4001 btrfs_info(fs_info, "%d enospc errors during balance",
4002 enospc_errors);
4003 if (!ret)
4004 ret = -ENOSPC;
4005 }
4006
4007 return ret;
4008}
4009
4010/*
4011 * See if a given profile is valid and reduced.
4012 *
4013 * @flags: profile to validate
4014 * @extended: if true @flags is treated as an extended profile
4015 */
4016static int alloc_profile_is_valid(u64 flags, int extended)
4017{
4018 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
4019 BTRFS_BLOCK_GROUP_PROFILE_MASK);
4020
4021 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
4022
4023 /* 1) check that all other bits are zeroed */
4024 if (flags & ~mask)
4025 return 0;
4026
4027 /* 2) see if profile is reduced */
4028 if (flags == 0)
4029 return !extended; /* "0" is valid for usual profiles */
4030
4031 return has_single_bit_set(n: flags);
4032}
4033
4034/*
4035 * Validate target profile against allowed profiles and return true if it's OK.
4036 * Otherwise print the error message and return false.
4037 */
4038static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
4039 const struct btrfs_balance_args *bargs,
4040 u64 allowed, const char *type)
4041{
4042 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
4043 return true;
4044
4045 /* Profile is valid and does not have bits outside of the allowed set */
4046 if (alloc_profile_is_valid(flags: bargs->target, extended: 1) &&
4047 (bargs->target & ~allowed) == 0)
4048 return true;
4049
4050 btrfs_err(fs_info, "balance: invalid convert %s profile %s",
4051 type, btrfs_bg_type_to_raid_name(bargs->target));
4052 return false;
4053}
4054
4055/*
4056 * Fill @buf with textual description of balance filter flags @bargs, up to
4057 * @size_buf including the terminating null. The output may be trimmed if it
4058 * does not fit into the provided buffer.
4059 */
4060static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
4061 u32 size_buf)
4062{
4063 int ret;
4064 u32 size_bp = size_buf;
4065 char *bp = buf;
4066 u64 flags = bargs->flags;
4067 char tmp_buf[128] = {'\0'};
4068
4069 if (!flags)
4070 return;
4071
4072#define CHECK_APPEND_NOARG(a) \
4073 do { \
4074 ret = snprintf(bp, size_bp, (a)); \
4075 if (ret < 0 || ret >= size_bp) \
4076 goto out_overflow; \
4077 size_bp -= ret; \
4078 bp += ret; \
4079 } while (0)
4080
4081#define CHECK_APPEND_1ARG(a, v1) \
4082 do { \
4083 ret = snprintf(bp, size_bp, (a), (v1)); \
4084 if (ret < 0 || ret >= size_bp) \
4085 goto out_overflow; \
4086 size_bp -= ret; \
4087 bp += ret; \
4088 } while (0)
4089
4090#define CHECK_APPEND_2ARG(a, v1, v2) \
4091 do { \
4092 ret = snprintf(bp, size_bp, (a), (v1), (v2)); \
4093 if (ret < 0 || ret >= size_bp) \
4094 goto out_overflow; \
4095 size_bp -= ret; \
4096 bp += ret; \
4097 } while (0)
4098
4099 if (flags & BTRFS_BALANCE_ARGS_CONVERT)
4100 CHECK_APPEND_1ARG("convert=%s,",
4101 btrfs_bg_type_to_raid_name(bargs->target));
4102
4103 if (flags & BTRFS_BALANCE_ARGS_SOFT)
4104 CHECK_APPEND_NOARG("soft,");
4105
4106 if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
4107 btrfs_describe_block_groups(bg_flags: bargs->profiles, buf: tmp_buf,
4108 size_buf: sizeof(tmp_buf));
4109 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
4110 }
4111
4112 if (flags & BTRFS_BALANCE_ARGS_USAGE)
4113 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
4114
4115 if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
4116 CHECK_APPEND_2ARG("usage=%u..%u,",
4117 bargs->usage_min, bargs->usage_max);
4118
4119 if (flags & BTRFS_BALANCE_ARGS_DEVID)
4120 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
4121
4122 if (flags & BTRFS_BALANCE_ARGS_DRANGE)
4123 CHECK_APPEND_2ARG("drange=%llu..%llu,",
4124 bargs->pstart, bargs->pend);
4125
4126 if (flags & BTRFS_BALANCE_ARGS_VRANGE)
4127 CHECK_APPEND_2ARG("vrange=%llu..%llu,",
4128 bargs->vstart, bargs->vend);
4129
4130 if (flags & BTRFS_BALANCE_ARGS_LIMIT)
4131 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
4132
4133 if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
4134 CHECK_APPEND_2ARG("limit=%u..%u,",
4135 bargs->limit_min, bargs->limit_max);
4136
4137 if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
4138 CHECK_APPEND_2ARG("stripes=%u..%u,",
4139 bargs->stripes_min, bargs->stripes_max);
4140
4141#undef CHECK_APPEND_2ARG
4142#undef CHECK_APPEND_1ARG
4143#undef CHECK_APPEND_NOARG
4144
4145out_overflow:
4146
4147 if (size_bp < size_buf)
4148 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
4149 else
4150 buf[0] = '\0';
4151}
4152
4153static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
4154{
4155 u32 size_buf = 1024;
4156 char tmp_buf[192] = {'\0'};
4157 char *buf;
4158 char *bp;
4159 u32 size_bp = size_buf;
4160 int ret;
4161 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4162
4163 buf = kzalloc(size: size_buf, GFP_KERNEL);
4164 if (!buf)
4165 return;
4166
4167 bp = buf;
4168
4169#define CHECK_APPEND_1ARG(a, v1) \
4170 do { \
4171 ret = snprintf(bp, size_bp, (a), (v1)); \
4172 if (ret < 0 || ret >= size_bp) \
4173 goto out_overflow; \
4174 size_bp -= ret; \
4175 bp += ret; \
4176 } while (0)
4177
4178 if (bctl->flags & BTRFS_BALANCE_FORCE)
4179 CHECK_APPEND_1ARG("%s", "-f ");
4180
4181 if (bctl->flags & BTRFS_BALANCE_DATA) {
4182 describe_balance_args(bargs: &bctl->data, buf: tmp_buf, size_buf: sizeof(tmp_buf));
4183 CHECK_APPEND_1ARG("-d%s ", tmp_buf);
4184 }
4185
4186 if (bctl->flags & BTRFS_BALANCE_METADATA) {
4187 describe_balance_args(bargs: &bctl->meta, buf: tmp_buf, size_buf: sizeof(tmp_buf));
4188 CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4189 }
4190
4191 if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4192 describe_balance_args(bargs: &bctl->sys, buf: tmp_buf, size_buf: sizeof(tmp_buf));
4193 CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4194 }
4195
4196#undef CHECK_APPEND_1ARG
4197
4198out_overflow:
4199
4200 if (size_bp < size_buf)
4201 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4202 btrfs_info(fs_info, "balance: %s %s",
4203 (bctl->flags & BTRFS_BALANCE_RESUME) ?
4204 "resume" : "start", buf);
4205
4206 kfree(objp: buf);
4207}
4208
4209/*
4210 * Should be called with balance mutexe held
4211 */
4212int btrfs_balance(struct btrfs_fs_info *fs_info,
4213 struct btrfs_balance_control *bctl,
4214 struct btrfs_ioctl_balance_args *bargs)
4215{
4216 u64 meta_target, data_target;
4217 u64 allowed;
4218 int mixed = 0;
4219 int ret;
4220 u64 num_devices;
4221 unsigned seq;
4222 bool reducing_redundancy;
4223 bool paused = false;
4224 int i;
4225
4226 if (btrfs_fs_closing(fs_info) ||
4227 atomic_read(v: &fs_info->balance_pause_req) ||
4228 btrfs_should_cancel_balance(fs_info)) {
4229 ret = -EINVAL;
4230 goto out;
4231 }
4232
4233 allowed = btrfs_super_incompat_flags(s: fs_info->super_copy);
4234 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4235 mixed = 1;
4236
4237 /*
4238 * In case of mixed groups both data and meta should be picked,
4239 * and identical options should be given for both of them.
4240 */
4241 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4242 if (mixed && (bctl->flags & allowed)) {
4243 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4244 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4245 memcmp(p: &bctl->data, q: &bctl->meta, size: sizeof(bctl->data))) {
4246 btrfs_err(fs_info,
4247 "balance: mixed groups data and metadata options must be the same");
4248 ret = -EINVAL;
4249 goto out;
4250 }
4251 }
4252
4253 /*
4254 * rw_devices will not change at the moment, device add/delete/replace
4255 * are exclusive
4256 */
4257 num_devices = fs_info->fs_devices->rw_devices;
4258
4259 /*
4260 * SINGLE profile on-disk has no profile bit, but in-memory we have a
4261 * special bit for it, to make it easier to distinguish. Thus we need
4262 * to set it manually, or balance would refuse the profile.
4263 */
4264 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
4265 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4266 if (num_devices >= btrfs_raid_array[i].devs_min)
4267 allowed |= btrfs_raid_array[i].bg_flag;
4268
4269 if (!validate_convert_profile(fs_info, bargs: &bctl->data, allowed, type: "data") ||
4270 !validate_convert_profile(fs_info, bargs: &bctl->meta, allowed, type: "metadata") ||
4271 !validate_convert_profile(fs_info, bargs: &bctl->sys, allowed, type: "system")) {
4272 ret = -EINVAL;
4273 goto out;
4274 }
4275
4276 /*
4277 * Allow to reduce metadata or system integrity only if force set for
4278 * profiles with redundancy (copies, parity)
4279 */
4280 allowed = 0;
4281 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4282 if (btrfs_raid_array[i].ncopies >= 2 ||
4283 btrfs_raid_array[i].tolerated_failures >= 1)
4284 allowed |= btrfs_raid_array[i].bg_flag;
4285 }
4286 do {
4287 seq = read_seqbegin(sl: &fs_info->profiles_lock);
4288
4289 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4290 (fs_info->avail_system_alloc_bits & allowed) &&
4291 !(bctl->sys.target & allowed)) ||
4292 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4293 (fs_info->avail_metadata_alloc_bits & allowed) &&
4294 !(bctl->meta.target & allowed)))
4295 reducing_redundancy = true;
4296 else
4297 reducing_redundancy = false;
4298
4299 /* if we're not converting, the target field is uninitialized */
4300 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4301 bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4302 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4303 bctl->data.target : fs_info->avail_data_alloc_bits;
4304 } while (read_seqretry(sl: &fs_info->profiles_lock, start: seq));
4305
4306 if (reducing_redundancy) {
4307 if (bctl->flags & BTRFS_BALANCE_FORCE) {
4308 btrfs_info(fs_info,
4309 "balance: force reducing metadata redundancy");
4310 } else {
4311 btrfs_err(fs_info,
4312 "balance: reduces metadata redundancy, use --force if you want this");
4313 ret = -EINVAL;
4314 goto out;
4315 }
4316 }
4317
4318 if (btrfs_get_num_tolerated_disk_barrier_failures(flags: meta_target) <
4319 btrfs_get_num_tolerated_disk_barrier_failures(flags: data_target)) {
4320 btrfs_warn(fs_info,
4321 "balance: metadata profile %s has lower redundancy than data profile %s",
4322 btrfs_bg_type_to_raid_name(meta_target),
4323 btrfs_bg_type_to_raid_name(data_target));
4324 }
4325
4326 ret = insert_balance_item(fs_info, bctl);
4327 if (ret && ret != -EEXIST)
4328 goto out;
4329
4330 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4331 BUG_ON(ret == -EEXIST);
4332 BUG_ON(fs_info->balance_ctl);
4333 spin_lock(lock: &fs_info->balance_lock);
4334 fs_info->balance_ctl = bctl;
4335 spin_unlock(lock: &fs_info->balance_lock);
4336 } else {
4337 BUG_ON(ret != -EEXIST);
4338 spin_lock(lock: &fs_info->balance_lock);
4339 update_balance_args(bctl);
4340 spin_unlock(lock: &fs_info->balance_lock);
4341 }
4342
4343 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4344 set_bit(nr: BTRFS_FS_BALANCE_RUNNING, addr: &fs_info->flags);
4345 describe_balance_start_or_resume(fs_info);
4346 mutex_unlock(lock: &fs_info->balance_mutex);
4347
4348 ret = __btrfs_balance(fs_info);
4349
4350 mutex_lock(&fs_info->balance_mutex);
4351 if (ret == -ECANCELED && atomic_read(v: &fs_info->balance_pause_req)) {
4352 btrfs_info(fs_info, "balance: paused");
4353 btrfs_exclop_balance(fs_info, op: BTRFS_EXCLOP_BALANCE_PAUSED);
4354 paused = true;
4355 }
4356 /*
4357 * Balance can be canceled by:
4358 *
4359 * - Regular cancel request
4360 * Then ret == -ECANCELED and balance_cancel_req > 0
4361 *
4362 * - Fatal signal to "btrfs" process
4363 * Either the signal caught by wait_reserve_ticket() and callers
4364 * got -EINTR, or caught by btrfs_should_cancel_balance() and
4365 * got -ECANCELED.
4366 * Either way, in this case balance_cancel_req = 0, and
4367 * ret == -EINTR or ret == -ECANCELED.
4368 *
4369 * So here we only check the return value to catch canceled balance.
4370 */
4371 else if (ret == -ECANCELED || ret == -EINTR)
4372 btrfs_info(fs_info, "balance: canceled");
4373 else
4374 btrfs_info(fs_info, "balance: ended with status: %d", ret);
4375
4376 clear_bit(nr: BTRFS_FS_BALANCE_RUNNING, addr: &fs_info->flags);
4377
4378 if (bargs) {
4379 memset(bargs, 0, sizeof(*bargs));
4380 btrfs_update_ioctl_balance_args(fs_info, bargs);
4381 }
4382
4383 /* We didn't pause, we can clean everything up. */
4384 if (!paused) {
4385 reset_balance_state(fs_info);
4386 btrfs_exclop_finish(fs_info);
4387 }
4388
4389 wake_up(&fs_info->balance_wait_q);
4390
4391 return ret;
4392out:
4393 if (bctl->flags & BTRFS_BALANCE_RESUME)
4394 reset_balance_state(fs_info);
4395 else
4396 kfree(objp: bctl);
4397 btrfs_exclop_finish(fs_info);
4398
4399 return ret;
4400}
4401
4402static int balance_kthread(void *data)
4403{
4404 struct btrfs_fs_info *fs_info = data;
4405 int ret = 0;
4406
4407 sb_start_write(sb: fs_info->sb);
4408 mutex_lock(&fs_info->balance_mutex);
4409 if (fs_info->balance_ctl)
4410 ret = btrfs_balance(fs_info, bctl: fs_info->balance_ctl, NULL);
4411 mutex_unlock(lock: &fs_info->balance_mutex);
4412 sb_end_write(sb: fs_info->sb);
4413
4414 return ret;
4415}
4416
4417int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4418{
4419 struct task_struct *tsk;
4420
4421 mutex_lock(&fs_info->balance_mutex);
4422 if (!fs_info->balance_ctl) {
4423 mutex_unlock(lock: &fs_info->balance_mutex);
4424 return 0;
4425 }
4426 mutex_unlock(lock: &fs_info->balance_mutex);
4427
4428 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4429 btrfs_info(fs_info, "balance: resume skipped");
4430 return 0;
4431 }
4432
4433 spin_lock(lock: &fs_info->super_lock);
4434 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
4435 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE;
4436 spin_unlock(lock: &fs_info->super_lock);
4437 /*
4438 * A ro->rw remount sequence should continue with the paused balance
4439 * regardless of who pauses it, system or the user as of now, so set
4440 * the resume flag.
4441 */
4442 spin_lock(lock: &fs_info->balance_lock);
4443 fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4444 spin_unlock(lock: &fs_info->balance_lock);
4445
4446 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4447 return PTR_ERR_OR_ZERO(ptr: tsk);
4448}
4449
4450int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4451{
4452 struct btrfs_balance_control *bctl;
4453 struct btrfs_balance_item *item;
4454 struct btrfs_disk_balance_args disk_bargs;
4455 struct btrfs_path *path;
4456 struct extent_buffer *leaf;
4457 struct btrfs_key key;
4458 int ret;
4459
4460 path = btrfs_alloc_path();
4461 if (!path)
4462 return -ENOMEM;
4463
4464 key.objectid = BTRFS_BALANCE_OBJECTID;
4465 key.type = BTRFS_TEMPORARY_ITEM_KEY;
4466 key.offset = 0;
4467
4468 ret = btrfs_search_slot(NULL, root: fs_info->tree_root, key: &key, p: path, ins_len: 0, cow: 0);
4469 if (ret < 0)
4470 goto out;
4471 if (ret > 0) { /* ret = -ENOENT; */
4472 ret = 0;
4473 goto out;
4474 }
4475
4476 bctl = kzalloc(size: sizeof(*bctl), GFP_NOFS);
4477 if (!bctl) {
4478 ret = -ENOMEM;
4479 goto out;
4480 }
4481
4482 leaf = path->nodes[0];
4483 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4484
4485 bctl->flags = btrfs_balance_flags(eb: leaf, s: item);
4486 bctl->flags |= BTRFS_BALANCE_RESUME;
4487
4488 btrfs_balance_data(eb: leaf, bi: item, ba: &disk_bargs);
4489 btrfs_disk_balance_args_to_cpu(cpu: &bctl->data, disk: &disk_bargs);
4490 btrfs_balance_meta(eb: leaf, bi: item, ba: &disk_bargs);
4491 btrfs_disk_balance_args_to_cpu(cpu: &bctl->meta, disk: &disk_bargs);
4492 btrfs_balance_sys(eb: leaf, bi: item, ba: &disk_bargs);
4493 btrfs_disk_balance_args_to_cpu(cpu: &bctl->sys, disk: &disk_bargs);
4494
4495 /*
4496 * This should never happen, as the paused balance state is recovered
4497 * during mount without any chance of other exclusive ops to collide.
4498 *
4499 * This gives the exclusive op status to balance and keeps in paused
4500 * state until user intervention (cancel or umount). If the ownership
4501 * cannot be assigned, show a message but do not fail. The balance
4502 * is in a paused state and must have fs_info::balance_ctl properly
4503 * set up.
4504 */
4505 if (!btrfs_exclop_start(fs_info, type: BTRFS_EXCLOP_BALANCE_PAUSED))
4506 btrfs_warn(fs_info,
4507 "balance: cannot set exclusive op status, resume manually");
4508
4509 btrfs_release_path(p: path);
4510
4511 mutex_lock(&fs_info->balance_mutex);
4512 BUG_ON(fs_info->balance_ctl);
4513 spin_lock(lock: &fs_info->balance_lock);
4514 fs_info->balance_ctl = bctl;
4515 spin_unlock(lock: &fs_info->balance_lock);
4516 mutex_unlock(lock: &fs_info->balance_mutex);
4517out:
4518 btrfs_free_path(p: path);
4519 return ret;
4520}
4521
4522int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4523{
4524 int ret = 0;
4525
4526 mutex_lock(&fs_info->balance_mutex);
4527 if (!fs_info->balance_ctl) {
4528 mutex_unlock(lock: &fs_info->balance_mutex);
4529 return -ENOTCONN;
4530 }
4531
4532 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4533 atomic_inc(v: &fs_info->balance_pause_req);
4534 mutex_unlock(lock: &fs_info->balance_mutex);
4535
4536 wait_event(fs_info->balance_wait_q,
4537 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4538
4539 mutex_lock(&fs_info->balance_mutex);
4540 /* we are good with balance_ctl ripped off from under us */
4541 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4542 atomic_dec(v: &fs_info->balance_pause_req);
4543 } else {
4544 ret = -ENOTCONN;
4545 }
4546
4547 mutex_unlock(lock: &fs_info->balance_mutex);
4548 return ret;
4549}
4550
4551int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4552{
4553 mutex_lock(&fs_info->balance_mutex);
4554 if (!fs_info->balance_ctl) {
4555 mutex_unlock(lock: &fs_info->balance_mutex);
4556 return -ENOTCONN;
4557 }
4558
4559 /*
4560 * A paused balance with the item stored on disk can be resumed at
4561 * mount time if the mount is read-write. Otherwise it's still paused
4562 * and we must not allow cancelling as it deletes the item.
4563 */
4564 if (sb_rdonly(sb: fs_info->sb)) {
4565 mutex_unlock(lock: &fs_info->balance_mutex);
4566 return -EROFS;
4567 }
4568
4569 atomic_inc(v: &fs_info->balance_cancel_req);
4570 /*
4571 * if we are running just wait and return, balance item is
4572 * deleted in btrfs_balance in this case
4573 */
4574 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4575 mutex_unlock(lock: &fs_info->balance_mutex);
4576 wait_event(fs_info->balance_wait_q,
4577 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4578 mutex_lock(&fs_info->balance_mutex);
4579 } else {
4580 mutex_unlock(lock: &fs_info->balance_mutex);
4581 /*
4582 * Lock released to allow other waiters to continue, we'll
4583 * reexamine the status again.
4584 */
4585 mutex_lock(&fs_info->balance_mutex);
4586
4587 if (fs_info->balance_ctl) {
4588 reset_balance_state(fs_info);
4589 btrfs_exclop_finish(fs_info);
4590 btrfs_info(fs_info, "balance: canceled");
4591 }
4592 }
4593
4594 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4595 atomic_dec(v: &fs_info->balance_cancel_req);
4596 mutex_unlock(lock: &fs_info->balance_mutex);
4597 return 0;
4598}
4599
4600int btrfs_uuid_scan_kthread(void *data)
4601{
4602 struct btrfs_fs_info *fs_info = data;
4603 struct btrfs_root *root = fs_info->tree_root;
4604 struct btrfs_key key;
4605 struct btrfs_path *path = NULL;
4606 int ret = 0;
4607 struct extent_buffer *eb;
4608 int slot;
4609 struct btrfs_root_item root_item;
4610 u32 item_size;
4611 struct btrfs_trans_handle *trans = NULL;
4612 bool closing = false;
4613
4614 path = btrfs_alloc_path();
4615 if (!path) {
4616 ret = -ENOMEM;
4617 goto out;
4618 }
4619
4620 key.objectid = 0;
4621 key.type = BTRFS_ROOT_ITEM_KEY;
4622 key.offset = 0;
4623
4624 while (1) {
4625 if (btrfs_fs_closing(fs_info)) {
4626 closing = true;
4627 break;
4628 }
4629 ret = btrfs_search_forward(root, min_key: &key, path,
4630 BTRFS_OLDEST_GENERATION);
4631 if (ret) {
4632 if (ret > 0)
4633 ret = 0;
4634 break;
4635 }
4636
4637 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4638 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4639 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4640 key.objectid > BTRFS_LAST_FREE_OBJECTID)
4641 goto skip;
4642
4643 eb = path->nodes[0];
4644 slot = path->slots[0];
4645 item_size = btrfs_item_size(eb, slot);
4646 if (item_size < sizeof(root_item))
4647 goto skip;
4648
4649 read_extent_buffer(eb, dst: &root_item,
4650 btrfs_item_ptr_offset(eb, slot),
4651 len: (int)sizeof(root_item));
4652 if (btrfs_root_refs(s: &root_item) == 0)
4653 goto skip;
4654
4655 if (!btrfs_is_empty_uuid(uuid: root_item.uuid) ||
4656 !btrfs_is_empty_uuid(uuid: root_item.received_uuid)) {
4657 if (trans)
4658 goto update_tree;
4659
4660 btrfs_release_path(p: path);
4661 /*
4662 * 1 - subvol uuid item
4663 * 1 - received_subvol uuid item
4664 */
4665 trans = btrfs_start_transaction(root: fs_info->uuid_root, num_items: 2);
4666 if (IS_ERR(ptr: trans)) {
4667 ret = PTR_ERR(ptr: trans);
4668 break;
4669 }
4670 continue;
4671 } else {
4672 goto skip;
4673 }
4674update_tree:
4675 btrfs_release_path(p: path);
4676 if (!btrfs_is_empty_uuid(uuid: root_item.uuid)) {
4677 ret = btrfs_uuid_tree_add(trans, uuid: root_item.uuid,
4678 BTRFS_UUID_KEY_SUBVOL,
4679 subid: key.objectid);
4680 if (ret < 0) {
4681 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4682 ret);
4683 break;
4684 }
4685 }
4686
4687 if (!btrfs_is_empty_uuid(uuid: root_item.received_uuid)) {
4688 ret = btrfs_uuid_tree_add(trans,
4689 uuid: root_item.received_uuid,
4690 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4691 subid: key.objectid);
4692 if (ret < 0) {
4693 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4694 ret);
4695 break;
4696 }
4697 }
4698
4699skip:
4700 btrfs_release_path(p: path);
4701 if (trans) {
4702 ret = btrfs_end_transaction(trans);
4703 trans = NULL;
4704 if (ret)
4705 break;
4706 }
4707
4708 if (key.offset < (u64)-1) {
4709 key.offset++;
4710 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4711 key.offset = 0;
4712 key.type = BTRFS_ROOT_ITEM_KEY;
4713 } else if (key.objectid < (u64)-1) {
4714 key.offset = 0;
4715 key.type = BTRFS_ROOT_ITEM_KEY;
4716 key.objectid++;
4717 } else {
4718 break;
4719 }
4720 cond_resched();
4721 }
4722
4723out:
4724 btrfs_free_path(p: path);
4725 if (trans && !IS_ERR(ptr: trans))
4726 btrfs_end_transaction(trans);
4727 if (ret)
4728 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4729 else if (!closing)
4730 set_bit(nr: BTRFS_FS_UPDATE_UUID_TREE_GEN, addr: &fs_info->flags);
4731 up(sem: &fs_info->uuid_tree_rescan_sem);
4732 return 0;
4733}
4734
4735int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4736{
4737 struct btrfs_trans_handle *trans;
4738 struct btrfs_root *tree_root = fs_info->tree_root;
4739 struct btrfs_root *uuid_root;
4740 struct task_struct *task;
4741 int ret;
4742
4743 /*
4744 * 1 - root node
4745 * 1 - root item
4746 */
4747 trans = btrfs_start_transaction(root: tree_root, num_items: 2);
4748 if (IS_ERR(ptr: trans))
4749 return PTR_ERR(ptr: trans);
4750
4751 uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
4752 if (IS_ERR(ptr: uuid_root)) {
4753 ret = PTR_ERR(ptr: uuid_root);
4754 btrfs_abort_transaction(trans, ret);
4755 btrfs_end_transaction(trans);
4756 return ret;
4757 }
4758
4759 fs_info->uuid_root = uuid_root;
4760
4761 ret = btrfs_commit_transaction(trans);
4762 if (ret)
4763 return ret;
4764
4765 down(sem: &fs_info->uuid_tree_rescan_sem);
4766 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4767 if (IS_ERR(ptr: task)) {
4768 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4769 btrfs_warn(fs_info, "failed to start uuid_scan task");
4770 up(sem: &fs_info->uuid_tree_rescan_sem);
4771 return PTR_ERR(ptr: task);
4772 }
4773
4774 return 0;
4775}
4776
4777/*
4778 * shrinking a device means finding all of the device extents past
4779 * the new size, and then following the back refs to the chunks.
4780 * The chunk relocation code actually frees the device extent
4781 */
4782int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4783{
4784 struct btrfs_fs_info *fs_info = device->fs_info;
4785 struct btrfs_root *root = fs_info->dev_root;
4786 struct btrfs_trans_handle *trans;
4787 struct btrfs_dev_extent *dev_extent = NULL;
4788 struct btrfs_path *path;
4789 u64 length;
4790 u64 chunk_offset;
4791 int ret;
4792 int slot;
4793 int failed = 0;
4794 bool retried = false;
4795 struct extent_buffer *l;
4796 struct btrfs_key key;
4797 struct btrfs_super_block *super_copy = fs_info->super_copy;
4798 u64 old_total = btrfs_super_total_bytes(s: super_copy);
4799 u64 old_size = btrfs_device_get_total_bytes(dev: device);
4800 u64 diff;
4801 u64 start;
4802 u64 free_diff = 0;
4803
4804 new_size = round_down(new_size, fs_info->sectorsize);
4805 start = new_size;
4806 diff = round_down(old_size - new_size, fs_info->sectorsize);
4807
4808 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4809 return -EINVAL;
4810
4811 path = btrfs_alloc_path();
4812 if (!path)
4813 return -ENOMEM;
4814
4815 path->reada = READA_BACK;
4816
4817 trans = btrfs_start_transaction(root, num_items: 0);
4818 if (IS_ERR(ptr: trans)) {
4819 btrfs_free_path(p: path);
4820 return PTR_ERR(ptr: trans);
4821 }
4822
4823 mutex_lock(&fs_info->chunk_mutex);
4824
4825 btrfs_device_set_total_bytes(dev: device, size: new_size);
4826 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4827 device->fs_devices->total_rw_bytes -= diff;
4828
4829 /*
4830 * The new free_chunk_space is new_size - used, so we have to
4831 * subtract the delta of the old free_chunk_space which included
4832 * old_size - used. If used > new_size then just subtract this
4833 * entire device's free space.
4834 */
4835 if (device->bytes_used < new_size)
4836 free_diff = (old_size - device->bytes_used) -
4837 (new_size - device->bytes_used);
4838 else
4839 free_diff = old_size - device->bytes_used;
4840 atomic64_sub(i: free_diff, v: &fs_info->free_chunk_space);
4841 }
4842
4843 /*
4844 * Once the device's size has been set to the new size, ensure all
4845 * in-memory chunks are synced to disk so that the loop below sees them
4846 * and relocates them accordingly.
4847 */
4848 if (contains_pending_extent(device, start: &start, len: diff)) {
4849 mutex_unlock(lock: &fs_info->chunk_mutex);
4850 ret = btrfs_commit_transaction(trans);
4851 if (ret)
4852 goto done;
4853 } else {
4854 mutex_unlock(lock: &fs_info->chunk_mutex);
4855 btrfs_end_transaction(trans);
4856 }
4857
4858again:
4859 key.objectid = device->devid;
4860 key.offset = (u64)-1;
4861 key.type = BTRFS_DEV_EXTENT_KEY;
4862
4863 do {
4864 mutex_lock(&fs_info->reclaim_bgs_lock);
4865 ret = btrfs_search_slot(NULL, root, key: &key, p: path, ins_len: 0, cow: 0);
4866 if (ret < 0) {
4867 mutex_unlock(lock: &fs_info->reclaim_bgs_lock);
4868 goto done;
4869 }
4870
4871 ret = btrfs_previous_item(root, path, min_objectid: 0, type: key.type);
4872 if (ret) {
4873 mutex_unlock(lock: &fs_info->reclaim_bgs_lock);
4874 if (ret < 0)
4875 goto done;
4876 ret = 0;
4877 btrfs_release_path(p: path);
4878 break;
4879 }
4880
4881 l = path->nodes[0];
4882 slot = path->slots[0];
4883 btrfs_item_key_to_cpu(eb: l, cpu_key: &key, nr: path->slots[0]);
4884
4885 if (key.objectid != device->devid) {
4886 mutex_unlock(lock: &fs_info->reclaim_bgs_lock);
4887 btrfs_release_path(p: path);
4888 break;
4889 }
4890
4891 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4892 length = btrfs_dev_extent_length(eb: l, s: dev_extent);
4893
4894 if (key.offset + length <= new_size) {
4895 mutex_unlock(lock: &fs_info->reclaim_bgs_lock);
4896 btrfs_release_path(p: path);
4897 break;
4898 }
4899
4900 chunk_offset = btrfs_dev_extent_chunk_offset(eb: l, s: dev_extent);
4901 btrfs_release_path(p: path);
4902
4903 /*
4904 * We may be relocating the only data chunk we have,
4905 * which could potentially end up with losing data's
4906 * raid profile, so lets allocate an empty one in
4907 * advance.
4908 */
4909 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4910 if (ret < 0) {
4911 mutex_unlock(lock: &fs_info->reclaim_bgs_lock);
4912 goto done;
4913 }
4914
4915 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4916 mutex_unlock(lock: &fs_info->reclaim_bgs_lock);
4917 if (ret == -ENOSPC) {
4918 failed++;
4919 } else if (ret) {
4920 if (ret == -ETXTBSY) {
4921 btrfs_warn(fs_info,
4922 "could not shrink block group %llu due to active swapfile",
4923 chunk_offset);
4924 }
4925 goto done;
4926 }
4927 } while (key.offset-- > 0);
4928
4929 if (failed && !retried) {
4930 failed = 0;
4931 retried = true;
4932 goto again;
4933 } else if (failed && retried) {
4934 ret = -ENOSPC;
4935 goto done;
4936 }
4937
4938 /* Shrinking succeeded, else we would be at "done". */
4939 trans = btrfs_start_transaction(root, num_items: 0);
4940 if (IS_ERR(ptr: trans)) {
4941 ret = PTR_ERR(ptr: trans);
4942 goto done;
4943 }
4944
4945 mutex_lock(&fs_info->chunk_mutex);
4946 /* Clear all state bits beyond the shrunk device size */
4947 clear_extent_bits(tree: &device->alloc_state, start: new_size, end: (u64)-1,
4948 CHUNK_STATE_MASK);
4949
4950 btrfs_device_set_disk_total_bytes(dev: device, size: new_size);
4951 if (list_empty(head: &device->post_commit_list))
4952 list_add_tail(new: &device->post_commit_list,
4953 head: &trans->transaction->dev_update_list);
4954
4955 WARN_ON(diff > old_total);
4956 btrfs_set_super_total_bytes(s: super_copy,
4957 round_down(old_total - diff, fs_info->sectorsize));
4958 mutex_unlock(lock: &fs_info->chunk_mutex);
4959
4960 btrfs_reserve_chunk_metadata(trans, is_item_insertion: false);
4961 /* Now btrfs_update_device() will change the on-disk size. */
4962 ret = btrfs_update_device(trans, device);
4963 btrfs_trans_release_chunk_metadata(trans);
4964 if (ret < 0) {
4965 btrfs_abort_transaction(trans, ret);
4966 btrfs_end_transaction(trans);
4967 } else {
4968 ret = btrfs_commit_transaction(trans);
4969 }
4970done:
4971 btrfs_free_path(p: path);
4972 if (ret) {
4973 mutex_lock(&fs_info->chunk_mutex);
4974 btrfs_device_set_total_bytes(dev: device, size: old_size);
4975 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4976 device->fs_devices->total_rw_bytes += diff;
4977 atomic64_add(i: free_diff, v: &fs_info->free_chunk_space);
4978 }
4979 mutex_unlock(lock: &fs_info->chunk_mutex);
4980 }
4981 return ret;
4982}
4983
4984static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4985 struct btrfs_key *key,
4986 struct btrfs_chunk *chunk, int item_size)
4987{
4988 struct btrfs_super_block *super_copy = fs_info->super_copy;
4989 struct btrfs_disk_key disk_key;
4990 u32 array_size;
4991 u8 *ptr;
4992
4993 lockdep_assert_held(&fs_info->chunk_mutex);
4994
4995 array_size = btrfs_super_sys_array_size(s: super_copy);
4996 if (array_size + item_size + sizeof(disk_key)
4997 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
4998 return -EFBIG;
4999
5000 ptr = super_copy->sys_chunk_array + array_size;
5001 btrfs_cpu_key_to_disk(disk_key: &disk_key, cpu_key: key);
5002 memcpy(ptr, &disk_key, sizeof(disk_key));
5003 ptr += sizeof(disk_key);
5004 memcpy(ptr, chunk, item_size);
5005 item_size += sizeof(disk_key);
5006 btrfs_set_super_sys_array_size(s: super_copy, val: array_size + item_size);
5007
5008 return 0;
5009}
5010
5011/*
5012 * sort the devices in descending order by max_avail, total_avail
5013 */
5014static int btrfs_cmp_device_info(const void *a, const void *b)
5015{
5016 const struct btrfs_device_info *di_a = a;
5017 const struct btrfs_device_info *di_b = b;
5018
5019 if (di_a->max_avail > di_b->max_avail)
5020 return -1;
5021 if (di_a->max_avail < di_b->max_avail)
5022 return 1;
5023 if (di_a->total_avail > di_b->total_avail)
5024 return -1;
5025 if (di_a->total_avail < di_b->total_avail)
5026 return 1;
5027 return 0;
5028}
5029
5030static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
5031{
5032 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5033 return;
5034
5035 btrfs_set_fs_incompat(info, RAID56);
5036}
5037
5038static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
5039{
5040 if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
5041 return;
5042
5043 btrfs_set_fs_incompat(info, RAID1C34);
5044}
5045
5046/*
5047 * Structure used internally for btrfs_create_chunk() function.
5048 * Wraps needed parameters.
5049 */
5050struct alloc_chunk_ctl {
5051 u64 start;
5052 u64 type;
5053 /* Total number of stripes to allocate */
5054 int num_stripes;
5055 /* sub_stripes info for map */
5056 int sub_stripes;
5057 /* Stripes per device */
5058 int dev_stripes;
5059 /* Maximum number of devices to use */
5060 int devs_max;
5061 /* Minimum number of devices to use */
5062 int devs_min;
5063 /* ndevs has to be a multiple of this */
5064 int devs_increment;
5065 /* Number of copies */
5066 int ncopies;
5067 /* Number of stripes worth of bytes to store parity information */
5068 int nparity;
5069 u64 max_stripe_size;
5070 u64 max_chunk_size;
5071 u64 dev_extent_min;
5072 u64 stripe_size;
5073 u64 chunk_size;
5074 int ndevs;
5075};
5076
5077static void init_alloc_chunk_ctl_policy_regular(
5078 struct btrfs_fs_devices *fs_devices,
5079 struct alloc_chunk_ctl *ctl)
5080{
5081 struct btrfs_space_info *space_info;
5082
5083 space_info = btrfs_find_space_info(info: fs_devices->fs_info, flags: ctl->type);
5084 ASSERT(space_info);
5085
5086 ctl->max_chunk_size = READ_ONCE(space_info->chunk_size);
5087 ctl->max_stripe_size = min_t(u64, ctl->max_chunk_size, SZ_1G);
5088
5089 if (ctl->type & BTRFS_BLOCK_GROUP_SYSTEM)
5090 ctl->devs_max = min_t(int, ctl->devs_max, BTRFS_MAX_DEVS_SYS_CHUNK);
5091
5092 /* We don't want a chunk larger than 10% of writable space */
5093 ctl->max_chunk_size = min(mult_perc(fs_devices->total_rw_bytes, 10),
5094 ctl->max_chunk_size);
5095 ctl->dev_extent_min = btrfs_stripe_nr_to_offset(stripe_nr: ctl->dev_stripes);
5096}
5097
5098static void init_alloc_chunk_ctl_policy_zoned(
5099 struct btrfs_fs_devices *fs_devices,
5100 struct alloc_chunk_ctl *ctl)
5101{
5102 u64 zone_size = fs_devices->fs_info->zone_size;
5103 u64 limit;
5104 int min_num_stripes = ctl->devs_min * ctl->dev_stripes;
5105 int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies;
5106 u64 min_chunk_size = min_data_stripes * zone_size;
5107 u64 type = ctl->type;
5108
5109 ctl->max_stripe_size = zone_size;
5110 if (type & BTRFS_BLOCK_GROUP_DATA) {
5111 ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE,
5112 zone_size);
5113 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5114 ctl->max_chunk_size = ctl->max_stripe_size;
5115 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5116 ctl->max_chunk_size = 2 * ctl->max_stripe_size;
5117 ctl->devs_max = min_t(int, ctl->devs_max,
5118 BTRFS_MAX_DEVS_SYS_CHUNK);
5119 } else {
5120 BUG();
5121 }
5122
5123 /* We don't want a chunk larger than 10% of writable space */
5124 limit = max(round_down(mult_perc(fs_devices->total_rw_bytes, 10),
5125 zone_size),
5126 min_chunk_size);
5127 ctl->max_chunk_size = min(limit, ctl->max_chunk_size);
5128 ctl->dev_extent_min = zone_size * ctl->dev_stripes;
5129}
5130
5131static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
5132 struct alloc_chunk_ctl *ctl)
5133{
5134 int index = btrfs_bg_flags_to_raid_index(flags: ctl->type);
5135
5136 ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
5137 ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
5138 ctl->devs_max = btrfs_raid_array[index].devs_max;
5139 if (!ctl->devs_max)
5140 ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
5141 ctl->devs_min = btrfs_raid_array[index].devs_min;
5142 ctl->devs_increment = btrfs_raid_array[index].devs_increment;
5143 ctl->ncopies = btrfs_raid_array[index].ncopies;
5144 ctl->nparity = btrfs_raid_array[index].nparity;
5145 ctl->ndevs = 0;
5146
5147 switch (fs_devices->chunk_alloc_policy) {
5148 case BTRFS_CHUNK_ALLOC_REGULAR:
5149 init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
5150 break;
5151 case BTRFS_CHUNK_ALLOC_ZONED:
5152 init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl);
5153 break;
5154 default:
5155 BUG();
5156 }
5157}
5158
5159static int gather_device_info(struct btrfs_fs_devices *fs_devices,
5160 struct alloc_chunk_ctl *ctl,
5161 struct btrfs_device_info *devices_info)
5162{
5163 struct btrfs_fs_info *info = fs_devices->fs_info;
5164 struct btrfs_device *device;
5165 u64 total_avail;
5166 u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
5167 int ret;
5168 int ndevs = 0;
5169 u64 max_avail;
5170 u64 dev_offset;
5171
5172 /*
5173 * in the first pass through the devices list, we gather information
5174 * about the available holes on each device.
5175 */
5176 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
5177 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5178 WARN(1, KERN_ERR
5179 "BTRFS: read-only device in alloc_list\n");
5180 continue;
5181 }
5182
5183 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
5184 &device->dev_state) ||
5185 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
5186 continue;
5187
5188 if (device->total_bytes > device->bytes_used)
5189 total_avail = device->total_bytes - device->bytes_used;
5190 else
5191 total_avail = 0;
5192
5193 /* If there is no space on this device, skip it. */
5194 if (total_avail < ctl->dev_extent_min)
5195 continue;
5196
5197 ret = find_free_dev_extent(device, num_bytes: dev_extent_want, start: &dev_offset,
5198 len: &max_avail);
5199 if (ret && ret != -ENOSPC)
5200 return ret;
5201
5202 if (ret == 0)
5203 max_avail = dev_extent_want;
5204
5205 if (max_avail < ctl->dev_extent_min) {
5206 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5207 btrfs_debug(info,
5208 "%s: devid %llu has no free space, have=%llu want=%llu",
5209 __func__, device->devid, max_avail,
5210 ctl->dev_extent_min);
5211 continue;
5212 }
5213
5214 if (ndevs == fs_devices->rw_devices) {
5215 WARN(1, "%s: found more than %llu devices\n",
5216 __func__, fs_devices->rw_devices);
5217 break;
5218 }
5219 devices_info[ndevs].dev_offset = dev_offset;
5220 devices_info[ndevs].max_avail = max_avail;
5221 devices_info[ndevs].total_avail = total_avail;
5222 devices_info[ndevs].dev = device;
5223 ++ndevs;
5224 }
5225 ctl->ndevs = ndevs;
5226
5227 /*
5228 * now sort the devices by hole size / available space
5229 */
5230 sort(base: devices_info, num: ndevs, size: sizeof(struct btrfs_device_info),
5231 cmp_func: btrfs_cmp_device_info, NULL);
5232
5233 return 0;
5234}
5235
5236static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
5237 struct btrfs_device_info *devices_info)
5238{
5239 /* Number of stripes that count for block group size */
5240 int data_stripes;
5241
5242 /*
5243 * The primary goal is to maximize the number of stripes, so use as
5244 * many devices as possible, even if the stripes are not maximum sized.
5245 *
5246 * The DUP profile stores more than one stripe per device, the
5247 * max_avail is the total size so we have to adjust.
5248 */
5249 ctl->stripe_size = div_u64(dividend: devices_info[ctl->ndevs - 1].max_avail,
5250 divisor: ctl->dev_stripes);
5251 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5252
5253 /* This will have to be fixed for RAID1 and RAID10 over more drives */
5254 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5255
5256 /*
5257 * Use the number of data stripes to figure out how big this chunk is
5258 * really going to be in terms of logical address space, and compare
5259 * that answer with the max chunk size. If it's higher, we try to
5260 * reduce stripe_size.
5261 */
5262 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5263 /*
5264 * Reduce stripe_size, round it up to a 16MB boundary again and
5265 * then use it, unless it ends up being even bigger than the
5266 * previous value we had already.
5267 */
5268 ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
5269 data_stripes), SZ_16M),
5270 ctl->stripe_size);
5271 }
5272
5273 /* Stripe size should not go beyond 1G. */
5274 ctl->stripe_size = min_t(u64, ctl->stripe_size, SZ_1G);
5275
5276 /* Align to BTRFS_STRIPE_LEN */
5277 ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
5278 ctl->chunk_size = ctl->stripe_size * data_stripes;
5279
5280 return 0;
5281}
5282
5283static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl,
5284 struct btrfs_device_info *devices_info)
5285{
5286 u64 zone_size = devices_info[0].dev->zone_info->zone_size;
5287 /* Number of stripes that count for block group size */
5288 int data_stripes;
5289
5290 /*
5291 * It should hold because:
5292 * dev_extent_min == dev_extent_want == zone_size * dev_stripes
5293 */
5294 ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min);
5295
5296 ctl->stripe_size = zone_size;
5297 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5298 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5299
5300 /* stripe_size is fixed in zoned filesysmte. Reduce ndevs instead. */
5301 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5302 ctl->ndevs = div_u64(dividend: div_u64(dividend: ctl->max_chunk_size * ctl->ncopies,
5303 divisor: ctl->stripe_size) + ctl->nparity,
5304 divisor: ctl->dev_stripes);
5305 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5306 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5307 ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size);
5308 }
5309
5310 ctl->chunk_size = ctl->stripe_size * data_stripes;
5311
5312 return 0;
5313}
5314
5315static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
5316 struct alloc_chunk_ctl *ctl,
5317 struct btrfs_device_info *devices_info)
5318{
5319 struct btrfs_fs_info *info = fs_devices->fs_info;
5320
5321 /*
5322 * Round down to number of usable stripes, devs_increment can be any
5323 * number so we can't use round_down() that requires power of 2, while
5324 * rounddown is safe.
5325 */
5326 ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);
5327
5328 if (ctl->ndevs < ctl->devs_min) {
5329 if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5330 btrfs_debug(info,
5331 "%s: not enough devices with free space: have=%d minimum required=%d",
5332 __func__, ctl->ndevs, ctl->devs_min);
5333 }
5334 return -ENOSPC;
5335 }
5336
5337 ctl->ndevs = min(ctl->ndevs, ctl->devs_max);
5338
5339 switch (fs_devices->chunk_alloc_policy) {
5340 case BTRFS_CHUNK_ALLOC_REGULAR:
5341 return decide_stripe_size_regular(ctl, devices_info);
5342 case BTRFS_CHUNK_ALLOC_ZONED:
5343 return decide_stripe_size_zoned(ctl, devices_info);
5344 default:
5345 BUG();
5346 }
5347}
5348
5349static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans,
5350 struct alloc_chunk_ctl *ctl,
5351 struct btrfs_device_info *devices_info)
5352{
5353 struct btrfs_fs_info *info = trans->fs_info;
5354 struct map_lookup *map = NULL;
5355 struct extent_map_tree *em_tree;
5356 struct btrfs_block_group *block_group;
5357 struct extent_map *em;
5358 u64 start = ctl->start;
5359 u64 type = ctl->type;
5360 int ret;
5361 int i;
5362 int j;
5363
5364 map = kmalloc(map_lookup_size(ctl->num_stripes), GFP_NOFS);
5365 if (!map)
5366 return ERR_PTR(error: -ENOMEM);
5367 map->num_stripes = ctl->num_stripes;
5368
5369 for (i = 0; i < ctl->ndevs; ++i) {
5370 for (j = 0; j < ctl->dev_stripes; ++j) {
5371 int s = i * ctl->dev_stripes + j;
5372 map->stripes[s].dev = devices_info[i].dev;
5373 map->stripes[s].physical = devices_info[i].dev_offset +
5374 j * ctl->stripe_size;
5375 }
5376 }
5377 map->io_align = BTRFS_STRIPE_LEN;
5378 map->io_width = BTRFS_STRIPE_LEN;
5379 map->type = type;
5380 map->sub_stripes = ctl->sub_stripes;
5381
5382 trace_btrfs_chunk_alloc(fs_info: info, map, offset: start, size: ctl->chunk_size);
5383
5384 em = alloc_extent_map();
5385 if (!em) {
5386 kfree(objp: map);
5387 return ERR_PTR(error: -ENOMEM);
5388 }
5389 set_bit(nr: EXTENT_FLAG_FS_MAPPING, addr: &em->flags);
5390 em->map_lookup = map;
5391 em->start = start;
5392 em->len = ctl->chunk_size;
5393 em->block_start = 0;
5394 em->block_len = em->len;
5395 em->orig_block_len = ctl->stripe_size;
5396
5397 em_tree = &info->mapping_tree;
5398 write_lock(&em_tree->lock);
5399 ret = add_extent_mapping(tree: em_tree, em, modified: 0);
5400 if (ret) {
5401 write_unlock(&em_tree->lock);
5402 free_extent_map(em);
5403 return ERR_PTR(error: ret);
5404 }
5405 write_unlock(&em_tree->lock);
5406
5407 block_group = btrfs_make_block_group(trans, type, chunk_offset: start, size: ctl->chunk_size);
5408 if (IS_ERR(ptr: block_group))
5409 goto error_del_extent;
5410
5411 for (i = 0; i < map->num_stripes; i++) {
5412 struct btrfs_device *dev = map->stripes[i].dev;
5413
5414 btrfs_device_set_bytes_used(dev,
5415 size: dev->bytes_used + ctl->stripe_size);
5416 if (list_empty(head: &dev->post_commit_list))
5417 list_add_tail(new: &dev->post_commit_list,
5418 head: &trans->transaction->dev_update_list);
5419 }
5420
5421 atomic64_sub(i: ctl->stripe_size * map->num_stripes,
5422 v: &info->free_chunk_space);
5423
5424 free_extent_map(em);
5425 check_raid56_incompat_flag(info, type);
5426 check_raid1c34_incompat_flag(info, type);
5427
5428 return block_group;
5429
5430error_del_extent:
5431 write_lock(&em_tree->lock);
5432 remove_extent_mapping(tree: em_tree, em);
5433 write_unlock(&em_tree->lock);
5434
5435 /* One for our allocation */
5436 free_extent_map(em);
5437 /* One for the tree reference */
5438 free_extent_map(em);
5439
5440 return block_group;
5441}
5442
5443struct btrfs_block_group *btrfs_create_chunk(struct btrfs_trans_handle *trans,
5444 u64 type)
5445{
5446 struct btrfs_fs_info *info = trans->fs_info;
5447 struct btrfs_fs_devices *fs_devices = info->fs_devices;
5448 struct btrfs_device_info *devices_info = NULL;
5449 struct alloc_chunk_ctl ctl;
5450 struct btrfs_block_group *block_group;
5451 int ret;
5452
5453 lockdep_assert_held(&info->chunk_mutex);
5454
5455 if (!alloc_profile_is_valid(flags: type, extended: 0)) {
5456 ASSERT(0);
5457 return ERR_PTR(error: -EINVAL);
5458 }
5459
5460 if (list_empty(head: &fs_devices->alloc_list)) {
5461 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5462 btrfs_debug(info, "%s: no writable device", __func__);
5463 return ERR_PTR(error: -ENOSPC);
5464 }
5465
5466 if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
5467 btrfs_err(info, "invalid chunk type 0x%llx requested", type);
5468 ASSERT(0);
5469 return ERR_PTR(error: -EINVAL);
5470 }
5471
5472 ctl.start = find_next_chunk(fs_info: info);
5473 ctl.type = type;
5474 init_alloc_chunk_ctl(fs_devices, ctl: &ctl);
5475
5476 devices_info = kcalloc(n: fs_devices->rw_devices, size: sizeof(*devices_info),
5477 GFP_NOFS);
5478 if (!devices_info)
5479 return ERR_PTR(error: -ENOMEM);
5480
5481 ret = gather_device_info(fs_devices, ctl: &ctl, devices_info);
5482 if (ret < 0) {
5483 block_group = ERR_PTR(error: ret);
5484 goto out;
5485 }
5486
5487 ret = decide_stripe_size(fs_devices, ctl: &ctl, devices_info);
5488 if (ret < 0) {
5489 block_group = ERR_PTR(error: ret);
5490 goto out;
5491 }
5492
5493 block_group = create_chunk(trans, ctl: &ctl, devices_info);
5494
5495out:
5496 kfree(objp: devices_info);
5497 return block_group;
5498}
5499
5500/*
5501 * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the
5502 * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system
5503 * chunks.
5504 *
5505 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
5506 * phases.
5507 */
5508int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans,
5509 struct btrfs_block_group *bg)
5510{
5511 struct btrfs_fs_info *fs_info = trans->fs_info;
5512 struct btrfs_root *chunk_root = fs_info->chunk_root;
5513 struct btrfs_key key;
5514 struct btrfs_chunk *chunk;
5515 struct btrfs_stripe *stripe;
5516 struct extent_map *em;
5517 struct map_lookup *map;
5518 size_t item_size;
5519 int i;
5520 int ret;
5521
5522 /*
5523 * We take the chunk_mutex for 2 reasons:
5524 *
5525 * 1) Updates and insertions in the chunk btree must be done while holding
5526 * the chunk_mutex, as well as updating the system chunk array in the
5527 * superblock. See the comment on top of btrfs_chunk_alloc() for the
5528 * details;
5529 *
5530 * 2) To prevent races with the final phase of a device replace operation
5531 * that replaces the device object associated with the map's stripes,
5532 * because the device object's id can change at any time during that
5533 * final phase of the device replace operation
5534 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
5535 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
5536 * which would cause a failure when updating the device item, which does
5537 * not exists, or persisting a stripe of the chunk item with such ID.
5538 * Here we can't use the device_list_mutex because our caller already
5539 * has locked the chunk_mutex, and the final phase of device replace
5540 * acquires both mutexes - first the device_list_mutex and then the
5541 * chunk_mutex. Using any of those two mutexes protects us from a
5542 * concurrent device replace.
5543 */
5544 lockdep_assert_held(&fs_info->chunk_mutex);
5545
5546 em = btrfs_get_chunk_map(fs_info, logical: bg->start, length: bg->length);
5547 if (IS_ERR(ptr: em)) {
5548 ret = PTR_ERR(ptr: em);
5549 btrfs_abort_transaction(trans, ret);
5550 return ret;
5551 }
5552
5553 map = em->map_lookup;
5554 item_size = btrfs_chunk_item_size(num_stripes: map->num_stripes);
5555
5556 chunk = kzalloc(size: item_size, GFP_NOFS);
5557 if (!chunk) {
5558 ret = -ENOMEM;
5559 btrfs_abort_transaction(trans, ret);
5560 goto out;
5561 }
5562
5563 for (i = 0; i < map->num_stripes; i++) {
5564 struct btrfs_device *device = map->stripes[i].dev;
5565
5566 ret = btrfs_update_device(trans, device);
5567 if (ret)
5568 goto out;
5569 }
5570
5571 stripe = &chunk->stripe;
5572 for (i = 0; i < map->num_stripes; i++) {
5573 struct btrfs_device *device = map->stripes[i].dev;
5574 const u64 dev_offset = map->stripes[i].physical;
5575
5576 btrfs_set_stack_stripe_devid(s: stripe, val: device->devid);
5577 btrfs_set_stack_stripe_offset(s: stripe, val: dev_offset);
5578 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5579 stripe++;
5580 }
5581
5582 btrfs_set_stack_chunk_length(s: chunk, val: bg->length);
5583 btrfs_set_stack_chunk_owner(s: chunk, BTRFS_EXTENT_TREE_OBJECTID);
5584 btrfs_set_stack_chunk_stripe_len(s: chunk, BTRFS_STRIPE_LEN);
5585 btrfs_set_stack_chunk_type(s: chunk, val: map->type);
5586 btrfs_set_stack_chunk_num_stripes(s: chunk, val: map->num_stripes);
5587 btrfs_set_stack_chunk_io_align(s: chunk, BTRFS_STRIPE_LEN);
5588 btrfs_set_stack_chunk_io_width(s: chunk, BTRFS_STRIPE_LEN);
5589 btrfs_set_stack_chunk_sector_size(s: chunk, val: fs_info->sectorsize);
5590 btrfs_set_stack_chunk_sub_stripes(s: chunk, val: map->sub_stripes);
5591
5592 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5593 key.type = BTRFS_CHUNK_ITEM_KEY;
5594 key.offset = bg->start;
5595
5596 ret = btrfs_insert_item(trans, root: chunk_root, key: &key, data: chunk, data_size: item_size);
5597 if (ret)
5598 goto out;
5599
5600 set_bit(nr: BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED, addr: &bg->runtime_flags);
5601
5602 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5603 ret = btrfs_add_system_chunk(fs_info, key: &key, chunk, item_size);
5604 if (ret)
5605 goto out;
5606 }
5607
5608out:
5609 kfree(objp: chunk);
5610 free_extent_map(em);
5611 return ret;
5612}
5613
5614static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
5615{
5616 struct btrfs_fs_info *fs_info = trans->fs_info;
5617 u64 alloc_profile;
5618 struct btrfs_block_group *meta_bg;
5619 struct btrfs_block_group *sys_bg;
5620
5621 /*
5622 * When adding a new device for sprouting, the seed device is read-only
5623 * so we must first allocate a metadata and a system chunk. But before
5624 * adding the block group items to the extent, device and chunk btrees,
5625 * we must first:
5626 *
5627 * 1) Create both chunks without doing any changes to the btrees, as
5628 * otherwise we would get -ENOSPC since the block groups from the
5629 * seed device are read-only;
5630 *
5631 * 2) Add the device item for the new sprout device - finishing the setup
5632 * of a new block group requires updating the device item in the chunk
5633 * btree, so it must exist when we attempt to do it. The previous step
5634 * ensures this does not fail with -ENOSPC.
5635 *
5636 * After that we can add the block group items to their btrees:
5637 * update existing device item in the chunk btree, add a new block group
5638 * item to the extent btree, add a new chunk item to the chunk btree and
5639 * finally add the new device extent items to the devices btree.
5640 */
5641
5642 alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5643 meta_bg = btrfs_create_chunk(trans, type: alloc_profile);
5644 if (IS_ERR(ptr: meta_bg))
5645 return PTR_ERR(ptr: meta_bg);
5646
5647 alloc_profile = btrfs_system_alloc_profile(fs_info);
5648 sys_bg = btrfs_create_chunk(trans, type: alloc_profile);
5649 if (IS_ERR(ptr: sys_bg))
5650 return PTR_ERR(ptr: sys_bg);
5651
5652 return 0;
5653}
5654
5655static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5656{
5657 const int index = btrfs_bg_flags_to_raid_index(flags: map->type);
5658
5659 return btrfs_raid_array[index].tolerated_failures;
5660}
5661
5662bool btrfs_chunk_writeable(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5663{
5664 struct extent_map *em;
5665 struct map_lookup *map;
5666 int miss_ndevs = 0;
5667 int i;
5668 bool ret = true;
5669
5670 em = btrfs_get_chunk_map(fs_info, logical: chunk_offset, length: 1);
5671 if (IS_ERR(ptr: em))
5672 return false;
5673
5674 map = em->map_lookup;
5675 for (i = 0; i < map->num_stripes; i++) {
5676 if (test_bit(BTRFS_DEV_STATE_MISSING,
5677 &map->stripes[i].dev->dev_state)) {
5678 miss_ndevs++;
5679 continue;
5680 }
5681 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5682 &map->stripes[i].dev->dev_state)) {
5683 ret = false;
5684 goto end;
5685 }
5686 }
5687
5688 /*
5689 * If the number of missing devices is larger than max errors, we can
5690 * not write the data into that chunk successfully.
5691 */
5692 if (miss_ndevs > btrfs_chunk_max_errors(map))
5693 ret = false;
5694end:
5695 free_extent_map(em);
5696 return ret;
5697}
5698
5699void btrfs_mapping_tree_free(struct extent_map_tree *tree)
5700{
5701 struct extent_map *em;
5702
5703 while (1) {
5704 write_lock(&tree->lock);
5705 em = lookup_extent_mapping(tree, start: 0, len: (u64)-1);
5706 if (em)
5707 remove_extent_mapping(tree, em);
5708 write_unlock(&tree->lock);
5709 if (!em)
5710 break;
5711 /* once for us */
5712 free_extent_map(em);
5713 /* once for the tree */
5714 free_extent_map(em);
5715 }
5716}
5717
5718int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5719{
5720 struct extent_map *em;
5721 struct map_lookup *map;
5722 enum btrfs_raid_types index;
5723 int ret = 1;
5724
5725 em = btrfs_get_chunk_map(fs_info, logical, length: len);
5726 if (IS_ERR(ptr: em))
5727 /*
5728 * We could return errors for these cases, but that could get
5729 * ugly and we'd probably do the same thing which is just not do
5730 * anything else and exit, so return 1 so the callers don't try
5731 * to use other copies.
5732 */
5733 return 1;
5734
5735 map = em->map_lookup;
5736 index = btrfs_bg_flags_to_raid_index(flags: map->type);
5737
5738 /* Non-RAID56, use their ncopies from btrfs_raid_array. */
5739 if (!(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5740 ret = btrfs_raid_array[index].ncopies;
5741 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5742 ret = 2;
5743 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5744 /*
5745 * There could be two corrupted data stripes, we need
5746 * to loop retry in order to rebuild the correct data.
5747 *
5748 * Fail a stripe at a time on every retry except the
5749 * stripe under reconstruction.
5750 */
5751 ret = map->num_stripes;
5752 free_extent_map(em);
5753 return ret;
5754}
5755
5756unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5757 u64 logical)
5758{
5759 struct extent_map *em;
5760 struct map_lookup *map;
5761 unsigned long len = fs_info->sectorsize;
5762
5763 if (!btrfs_fs_incompat(fs_info, RAID56))
5764 return len;
5765
5766 em = btrfs_get_chunk_map(fs_info, logical, length: len);
5767
5768 if (!WARN_ON(IS_ERR(em))) {
5769 map = em->map_lookup;
5770 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5771 len = btrfs_stripe_nr_to_offset(stripe_nr: nr_data_stripes(map));
5772 free_extent_map(em);
5773 }
5774 return len;
5775}
5776
5777int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5778{
5779 struct extent_map *em;
5780 struct map_lookup *map;
5781 int ret = 0;
5782
5783 if (!btrfs_fs_incompat(fs_info, RAID56))
5784 return 0;
5785
5786 em = btrfs_get_chunk_map(fs_info, logical, length: len);
5787
5788 if(!WARN_ON(IS_ERR(em))) {
5789 map = em->map_lookup;
5790 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5791 ret = 1;
5792 free_extent_map(em);
5793 }
5794 return ret;
5795}
5796
5797static int find_live_mirror(struct btrfs_fs_info *fs_info,
5798 struct map_lookup *map, int first,
5799 int dev_replace_is_ongoing)
5800{
5801 int i;
5802 int num_stripes;
5803 int preferred_mirror;
5804 int tolerance;
5805 struct btrfs_device *srcdev;
5806
5807 ASSERT((map->type &
5808 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
5809
5810 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5811 num_stripes = map->sub_stripes;
5812 else
5813 num_stripes = map->num_stripes;
5814
5815 switch (fs_info->fs_devices->read_policy) {
5816 default:
5817 /* Shouldn't happen, just warn and use pid instead of failing */
5818 btrfs_warn_rl(fs_info,
5819 "unknown read_policy type %u, reset to pid",
5820 fs_info->fs_devices->read_policy);
5821 fs_info->fs_devices->read_policy = BTRFS_READ_POLICY_PID;
5822 fallthrough;
5823 case BTRFS_READ_POLICY_PID:
5824 preferred_mirror = first + (current->pid % num_stripes);
5825 break;
5826 }
5827
5828 if (dev_replace_is_ongoing &&
5829 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5830 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5831 srcdev = fs_info->dev_replace.srcdev;
5832 else
5833 srcdev = NULL;
5834
5835 /*
5836 * try to avoid the drive that is the source drive for a
5837 * dev-replace procedure, only choose it if no other non-missing
5838 * mirror is available
5839 */
5840 for (tolerance = 0; tolerance < 2; tolerance++) {
5841 if (map->stripes[preferred_mirror].dev->bdev &&
5842 (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5843 return preferred_mirror;
5844 for (i = first; i < first + num_stripes; i++) {
5845 if (map->stripes[i].dev->bdev &&
5846 (tolerance || map->stripes[i].dev != srcdev))
5847 return i;
5848 }
5849 }
5850
5851 /* we couldn't find one that doesn't fail. Just return something
5852 * and the io error handling code will clean up eventually
5853 */
5854 return preferred_mirror;
5855}
5856
5857static struct btrfs_io_context *alloc_btrfs_io_context(struct btrfs_fs_info *fs_info,
5858 u64 logical,
5859 u16 total_stripes)
5860{
5861 struct btrfs_io_context *bioc;
5862
5863 bioc = kzalloc(
5864 /* The size of btrfs_io_context */
5865 size: sizeof(struct btrfs_io_context) +
5866 /* Plus the variable array for the stripes */
5867 sizeof(struct btrfs_io_stripe) * (total_stripes),
5868 GFP_NOFS);
5869
5870 if (!bioc)
5871 return NULL;
5872
5873 refcount_set(r: &bioc->refs, n: 1);
5874
5875 bioc->fs_info = fs_info;
5876 bioc->replace_stripe_src = -1;
5877 bioc->full_stripe_logical = (u64)-1;
5878 bioc->logical = logical;
5879
5880 return bioc;
5881}
5882
5883void btrfs_get_bioc(struct btrfs_io_context *bioc)
5884{
5885 WARN_ON(!refcount_read(&bioc->refs));
5886 refcount_inc(r: &bioc->refs);
5887}
5888
5889void btrfs_put_bioc(struct btrfs_io_context *bioc)
5890{
5891 if (!bioc)
5892 return;
5893 if (refcount_dec_and_test(r: &bioc->refs))
5894 kfree(objp: bioc);
5895}
5896
5897/*
5898 * Please note that, discard won't be sent to target device of device
5899 * replace.
5900 */
5901struct btrfs_discard_stripe *btrfs_map_discard(struct btrfs_fs_info *fs_info,
5902 u64 logical, u64 *length_ret,
5903 u32 *num_stripes)
5904{
5905 struct extent_map *em;
5906 struct map_lookup *map;
5907 struct btrfs_discard_stripe *stripes;
5908 u64 length = *length_ret;
5909 u64 offset;
5910 u32 stripe_nr;
5911 u32 stripe_nr_end;
5912 u32 stripe_cnt;
5913 u64 stripe_end_offset;
5914 u64 stripe_offset;
5915 u32 stripe_index;
5916 u32 factor = 0;
5917 u32 sub_stripes = 0;
5918 u32 stripes_per_dev = 0;
5919 u32 remaining_stripes = 0;
5920 u32 last_stripe = 0;
5921 int ret;
5922 int i;
5923
5924 em = btrfs_get_chunk_map(fs_info, logical, length);
5925 if (IS_ERR(ptr: em))
5926 return ERR_CAST(ptr: em);
5927
5928 map = em->map_lookup;
5929
5930 /* we don't discard raid56 yet */
5931 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5932 ret = -EOPNOTSUPP;
5933 goto out_free_map;
5934 }
5935
5936 offset = logical - em->start;
5937 length = min_t(u64, em->start + em->len - logical, length);
5938 *length_ret = length;
5939
5940 /*
5941 * stripe_nr counts the total number of stripes we have to stride
5942 * to get to this block
5943 */
5944 stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT;
5945
5946 /* stripe_offset is the offset of this block in its stripe */
5947 stripe_offset = offset - btrfs_stripe_nr_to_offset(stripe_nr);
5948
5949 stripe_nr_end = round_up(offset + length, BTRFS_STRIPE_LEN) >>
5950 BTRFS_STRIPE_LEN_SHIFT;
5951 stripe_cnt = stripe_nr_end - stripe_nr;
5952 stripe_end_offset = btrfs_stripe_nr_to_offset(stripe_nr: stripe_nr_end) -
5953 (offset + length);
5954 /*
5955 * after this, stripe_nr is the number of stripes on this
5956 * device we have to walk to find the data, and stripe_index is
5957 * the number of our device in the stripe array
5958 */
5959 *num_stripes = 1;
5960 stripe_index = 0;
5961 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5962 BTRFS_BLOCK_GROUP_RAID10)) {
5963 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5964 sub_stripes = 1;
5965 else
5966 sub_stripes = map->sub_stripes;
5967
5968 factor = map->num_stripes / sub_stripes;
5969 *num_stripes = min_t(u64, map->num_stripes,
5970 sub_stripes * stripe_cnt);
5971 stripe_index = stripe_nr % factor;
5972 stripe_nr /= factor;
5973 stripe_index *= sub_stripes;
5974
5975 remaining_stripes = stripe_cnt % factor;
5976 stripes_per_dev = stripe_cnt / factor;
5977 last_stripe = ((stripe_nr_end - 1) % factor) * sub_stripes;
5978 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
5979 BTRFS_BLOCK_GROUP_DUP)) {
5980 *num_stripes = map->num_stripes;
5981 } else {
5982 stripe_index = stripe_nr % map->num_stripes;
5983 stripe_nr /= map->num_stripes;
5984 }
5985
5986 stripes = kcalloc(n: *num_stripes, size: sizeof(*stripes), GFP_NOFS);
5987 if (!stripes) {
5988 ret = -ENOMEM;
5989 goto out_free_map;
5990 }
5991
5992 for (i = 0; i < *num_stripes; i++) {
5993 stripes[i].physical =
5994 map->stripes[stripe_index].physical +
5995 stripe_offset + btrfs_stripe_nr_to_offset(stripe_nr);
5996 stripes[i].dev = map->stripes[stripe_index].dev;
5997
5998 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5999 BTRFS_BLOCK_GROUP_RAID10)) {
6000 stripes[i].length = btrfs_stripe_nr_to_offset(stripe_nr: stripes_per_dev);
6001
6002 if (i / sub_stripes < remaining_stripes)
6003 stripes[i].length += BTRFS_STRIPE_LEN;
6004
6005 /*
6006 * Special for the first stripe and
6007 * the last stripe:
6008 *
6009 * |-------|...|-------|
6010 * |----------|
6011 * off end_off
6012 */
6013 if (i < sub_stripes)
6014 stripes[i].length -= stripe_offset;
6015
6016 if (stripe_index >= last_stripe &&
6017 stripe_index <= (last_stripe +
6018 sub_stripes - 1))
6019 stripes[i].length -= stripe_end_offset;
6020
6021 if (i == sub_stripes - 1)
6022 stripe_offset = 0;
6023 } else {
6024 stripes[i].length = length;
6025 }
6026
6027 stripe_index++;
6028 if (stripe_index == map->num_stripes) {
6029 stripe_index = 0;
6030 stripe_nr++;
6031 }
6032 }
6033
6034 free_extent_map(em);
6035 return stripes;
6036out_free_map:
6037 free_extent_map(em);
6038 return ERR_PTR(error: ret);
6039}
6040
6041static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical)
6042{
6043 struct btrfs_block_group *cache;
6044 bool ret;
6045
6046 /* Non zoned filesystem does not use "to_copy" flag */
6047 if (!btrfs_is_zoned(fs_info))
6048 return false;
6049
6050 cache = btrfs_lookup_block_group(info: fs_info, bytenr: logical);
6051
6052 ret = test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags);
6053
6054 btrfs_put_block_group(cache);
6055 return ret;
6056}
6057
6058static void handle_ops_on_dev_replace(enum btrfs_map_op op,
6059 struct btrfs_io_context *bioc,
6060 struct btrfs_dev_replace *dev_replace,
6061 u64 logical,
6062 int *num_stripes_ret, int *max_errors_ret)
6063{
6064 u64 srcdev_devid = dev_replace->srcdev->devid;
6065 /*
6066 * At this stage, num_stripes is still the real number of stripes,
6067 * excluding the duplicated stripes.
6068 */
6069 int num_stripes = *num_stripes_ret;
6070 int nr_extra_stripes = 0;
6071 int max_errors = *max_errors_ret;
6072 int i;
6073
6074 /*
6075 * A block group which has "to_copy" set will eventually be copied by
6076 * the dev-replace process. We can avoid cloning IO here.
6077 */
6078 if (is_block_group_to_copy(fs_info: dev_replace->srcdev->fs_info, logical))
6079 return;
6080
6081 /*
6082 * Duplicate the write operations while the dev-replace procedure is
6083 * running. Since the copying of the old disk to the new disk takes
6084 * place at run time while the filesystem is mounted writable, the
6085 * regular write operations to the old disk have to be duplicated to go
6086 * to the new disk as well.
6087 *
6088 * Note that device->missing is handled by the caller, and that the
6089 * write to the old disk is already set up in the stripes array.
6090 */
6091 for (i = 0; i < num_stripes; i++) {
6092 struct btrfs_io_stripe *old = &bioc->stripes[i];
6093 struct btrfs_io_stripe *new = &bioc->stripes[num_stripes + nr_extra_stripes];
6094
6095 if (old->dev->devid != srcdev_devid)
6096 continue;
6097
6098 new->physical = old->physical;
6099 new->dev = dev_replace->tgtdev;
6100 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK)
6101 bioc->replace_stripe_src = i;
6102 nr_extra_stripes++;
6103 }
6104
6105 /* We can only have at most 2 extra nr_stripes (for DUP). */
6106 ASSERT(nr_extra_stripes <= 2);
6107 /*
6108 * For GET_READ_MIRRORS, we can only return at most 1 extra stripe for
6109 * replace.
6110 * If we have 2 extra stripes, only choose the one with smaller physical.
6111 */
6112 if (op == BTRFS_MAP_GET_READ_MIRRORS && nr_extra_stripes == 2) {
6113 struct btrfs_io_stripe *first = &bioc->stripes[num_stripes];
6114 struct btrfs_io_stripe *second = &bioc->stripes[num_stripes + 1];
6115
6116 /* Only DUP can have two extra stripes. */
6117 ASSERT(bioc->map_type & BTRFS_BLOCK_GROUP_DUP);
6118
6119 /*
6120 * Swap the last stripe stripes and reduce @nr_extra_stripes.
6121 * The extra stripe would still be there, but won't be accessed.
6122 */
6123 if (first->physical > second->physical) {
6124 swap(second->physical, first->physical);
6125 swap(second->dev, first->dev);
6126 nr_extra_stripes--;
6127 }
6128 }
6129
6130 *num_stripes_ret = num_stripes + nr_extra_stripes;
6131 *max_errors_ret = max_errors + nr_extra_stripes;
6132 bioc->replace_nr_stripes = nr_extra_stripes;
6133}
6134
6135static u64 btrfs_max_io_len(struct map_lookup *map, enum btrfs_map_op op,
6136 u64 offset, u32 *stripe_nr, u64 *stripe_offset,
6137 u64 *full_stripe_start)
6138{
6139 /*
6140 * Stripe_nr is the stripe where this block falls. stripe_offset is
6141 * the offset of this block in its stripe.
6142 */
6143 *stripe_offset = offset & BTRFS_STRIPE_LEN_MASK;
6144 *stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT;
6145 ASSERT(*stripe_offset < U32_MAX);
6146
6147 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6148 unsigned long full_stripe_len =
6149 btrfs_stripe_nr_to_offset(stripe_nr: nr_data_stripes(map));
6150
6151 /*
6152 * For full stripe start, we use previously calculated
6153 * @stripe_nr. Align it to nr_data_stripes, then multiply with
6154 * STRIPE_LEN.
6155 *
6156 * By this we can avoid u64 division completely. And we have
6157 * to go rounddown(), not round_down(), as nr_data_stripes is
6158 * not ensured to be power of 2.
6159 */
6160 *full_stripe_start =
6161 btrfs_stripe_nr_to_offset(
6162 rounddown(*stripe_nr, nr_data_stripes(map)));
6163
6164 ASSERT(*full_stripe_start + full_stripe_len > offset);
6165 ASSERT(*full_stripe_start <= offset);
6166 /*
6167 * For writes to RAID56, allow to write a full stripe set, but
6168 * no straddling of stripe sets.
6169 */
6170 if (op == BTRFS_MAP_WRITE)
6171 return full_stripe_len - (offset - *full_stripe_start);
6172 }
6173
6174 /*
6175 * For other RAID types and for RAID56 reads, allow a single stripe (on
6176 * a single disk).
6177 */
6178 if (map->type & BTRFS_BLOCK_GROUP_STRIPE_MASK)
6179 return BTRFS_STRIPE_LEN - *stripe_offset;
6180 return U64_MAX;
6181}
6182
6183static int set_io_stripe(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6184 u64 logical, u64 *length, struct btrfs_io_stripe *dst,
6185 struct map_lookup *map, u32 stripe_index,
6186 u64 stripe_offset, u64 stripe_nr)
6187{
6188 dst->dev = map->stripes[stripe_index].dev;
6189
6190 if (op == BTRFS_MAP_READ && btrfs_need_stripe_tree_update(fs_info, map_type: map->type))
6191 return btrfs_get_raid_extent_offset(fs_info, logical, length,
6192 map_type: map->type, stripe_index, stripe: dst);
6193
6194 dst->physical = map->stripes[stripe_index].physical +
6195 stripe_offset + btrfs_stripe_nr_to_offset(stripe_nr);
6196 return 0;
6197}
6198
6199/*
6200 * Map one logical range to one or more physical ranges.
6201 *
6202 * @length: (Mandatory) mapped length of this run.
6203 * One logical range can be split into different segments
6204 * due to factors like zones and RAID0/5/6/10 stripe
6205 * boundaries.
6206 *
6207 * @bioc_ret: (Mandatory) returned btrfs_io_context structure.
6208 * which has one or more physical ranges (btrfs_io_stripe)
6209 * recorded inside.
6210 * Caller should call btrfs_put_bioc() to free it after use.
6211 *
6212 * @smap: (Optional) single physical range optimization.
6213 * If the map request can be fulfilled by one single
6214 * physical range, and this is parameter is not NULL,
6215 * then @bioc_ret would be NULL, and @smap would be
6216 * updated.
6217 *
6218 * @mirror_num_ret: (Mandatory) returned mirror number if the original
6219 * value is 0.
6220 *
6221 * Mirror number 0 means to choose any live mirrors.
6222 *
6223 * For non-RAID56 profiles, non-zero mirror_num means
6224 * the Nth mirror. (e.g. mirror_num 1 means the first
6225 * copy).
6226 *
6227 * For RAID56 profile, mirror 1 means rebuild from P and
6228 * the remaining data stripes.
6229 *
6230 * For RAID6 profile, mirror > 2 means mark another
6231 * data/P stripe error and rebuild from the remaining
6232 * stripes..
6233 */
6234int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6235 u64 logical, u64 *length,
6236 struct btrfs_io_context **bioc_ret,
6237 struct btrfs_io_stripe *smap, int *mirror_num_ret)
6238{
6239 struct extent_map *em;
6240 struct map_lookup *map;
6241 u64 map_offset;
6242 u64 stripe_offset;
6243 u32 stripe_nr;
6244 u32 stripe_index;
6245 int data_stripes;
6246 int i;
6247 int ret = 0;
6248 int mirror_num = (mirror_num_ret ? *mirror_num_ret : 0);
6249 int num_stripes;
6250 int num_copies;
6251 int max_errors = 0;
6252 struct btrfs_io_context *bioc = NULL;
6253 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6254 int dev_replace_is_ongoing = 0;
6255 u16 num_alloc_stripes;
6256 u64 raid56_full_stripe_start = (u64)-1;
6257 u64 max_len;
6258
6259 ASSERT(bioc_ret);
6260
6261 num_copies = btrfs_num_copies(fs_info, logical, len: fs_info->sectorsize);
6262 if (mirror_num > num_copies)
6263 return -EINVAL;
6264
6265 em = btrfs_get_chunk_map(fs_info, logical, length: *length);
6266 if (IS_ERR(ptr: em))
6267 return PTR_ERR(ptr: em);
6268
6269 map = em->map_lookup;
6270 data_stripes = nr_data_stripes(map);
6271
6272 map_offset = logical - em->start;
6273 max_len = btrfs_max_io_len(map, op, offset: map_offset, stripe_nr: &stripe_nr,
6274 stripe_offset: &stripe_offset, full_stripe_start: &raid56_full_stripe_start);
6275 *length = min_t(u64, em->len - map_offset, max_len);
6276
6277 down_read(sem: &dev_replace->rwsem);
6278 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6279 /*
6280 * Hold the semaphore for read during the whole operation, write is
6281 * requested at commit time but must wait.
6282 */
6283 if (!dev_replace_is_ongoing)
6284 up_read(sem: &dev_replace->rwsem);
6285
6286 num_stripes = 1;
6287 stripe_index = 0;
6288 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6289 stripe_index = stripe_nr % map->num_stripes;
6290 stripe_nr /= map->num_stripes;
6291 if (op == BTRFS_MAP_READ)
6292 mirror_num = 1;
6293 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
6294 if (op != BTRFS_MAP_READ) {
6295 num_stripes = map->num_stripes;
6296 } else if (mirror_num) {
6297 stripe_index = mirror_num - 1;
6298 } else {
6299 stripe_index = find_live_mirror(fs_info, map, first: 0,
6300 dev_replace_is_ongoing);
6301 mirror_num = stripe_index + 1;
6302 }
6303
6304 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
6305 if (op != BTRFS_MAP_READ) {
6306 num_stripes = map->num_stripes;
6307 } else if (mirror_num) {
6308 stripe_index = mirror_num - 1;
6309 } else {
6310 mirror_num = 1;
6311 }
6312
6313 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6314 u32 factor = map->num_stripes / map->sub_stripes;
6315
6316 stripe_index = (stripe_nr % factor) * map->sub_stripes;
6317 stripe_nr /= factor;
6318
6319 if (op != BTRFS_MAP_READ)
6320 num_stripes = map->sub_stripes;
6321 else if (mirror_num)
6322 stripe_index += mirror_num - 1;
6323 else {
6324 int old_stripe_index = stripe_index;
6325 stripe_index = find_live_mirror(fs_info, map,
6326 first: stripe_index,
6327 dev_replace_is_ongoing);
6328 mirror_num = stripe_index - old_stripe_index + 1;
6329 }
6330
6331 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6332 if (op != BTRFS_MAP_READ || mirror_num > 1) {
6333 /*
6334 * Needs full stripe mapping.
6335 *
6336 * Push stripe_nr back to the start of the full stripe
6337 * For those cases needing a full stripe, @stripe_nr
6338 * is the full stripe number.
6339 *
6340 * Originally we go raid56_full_stripe_start / full_stripe_len,
6341 * but that can be expensive. Here we just divide
6342 * @stripe_nr with @data_stripes.
6343 */
6344 stripe_nr /= data_stripes;
6345
6346 /* RAID[56] write or recovery. Return all stripes */
6347 num_stripes = map->num_stripes;
6348 max_errors = btrfs_chunk_max_errors(map);
6349
6350 /* Return the length to the full stripe end */
6351 *length = min(logical + *length,
6352 raid56_full_stripe_start + em->start +
6353 btrfs_stripe_nr_to_offset(data_stripes)) -
6354 logical;
6355 stripe_index = 0;
6356 stripe_offset = 0;
6357 } else {
6358 ASSERT(mirror_num <= 1);
6359 /* Just grab the data stripe directly. */
6360 stripe_index = stripe_nr % data_stripes;
6361 stripe_nr /= data_stripes;
6362
6363 /* We distribute the parity blocks across stripes */
6364 stripe_index = (stripe_nr + stripe_index) % map->num_stripes;
6365 if (op == BTRFS_MAP_READ && mirror_num < 1)
6366 mirror_num = 1;
6367 }
6368 } else {
6369 /*
6370 * After this, stripe_nr is the number of stripes on this
6371 * device we have to walk to find the data, and stripe_index is
6372 * the number of our device in the stripe array
6373 */
6374 stripe_index = stripe_nr % map->num_stripes;
6375 stripe_nr /= map->num_stripes;
6376 mirror_num = stripe_index + 1;
6377 }
6378 if (stripe_index >= map->num_stripes) {
6379 btrfs_crit(fs_info,
6380 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6381 stripe_index, map->num_stripes);
6382 ret = -EINVAL;
6383 goto out;
6384 }
6385
6386 num_alloc_stripes = num_stripes;
6387 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6388 op != BTRFS_MAP_READ)
6389 /*
6390 * For replace case, we need to add extra stripes for extra
6391 * duplicated stripes.
6392 *
6393 * For both WRITE and GET_READ_MIRRORS, we may have at most
6394 * 2 more stripes (DUP types, otherwise 1).
6395 */
6396 num_alloc_stripes += 2;
6397
6398 /*
6399 * If this I/O maps to a single device, try to return the device and
6400 * physical block information on the stack instead of allocating an
6401 * I/O context structure.
6402 */
6403 if (smap && num_alloc_stripes == 1 &&
6404 !(btrfs_need_stripe_tree_update(fs_info, map_type: map->type) &&
6405 op != BTRFS_MAP_READ) &&
6406 !((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) && mirror_num > 1)) {
6407 ret = set_io_stripe(fs_info, op, logical, length, dst: smap, map,
6408 stripe_index, stripe_offset, stripe_nr);
6409 if (mirror_num_ret)
6410 *mirror_num_ret = mirror_num;
6411 *bioc_ret = NULL;
6412 goto out;
6413 }
6414
6415 bioc = alloc_btrfs_io_context(fs_info, logical, total_stripes: num_alloc_stripes);
6416 if (!bioc) {
6417 ret = -ENOMEM;
6418 goto out;
6419 }
6420 bioc->map_type = map->type;
6421
6422 /*
6423 * For RAID56 full map, we need to make sure the stripes[] follows the
6424 * rule that data stripes are all ordered, then followed with P and Q
6425 * (if we have).
6426 *
6427 * It's still mostly the same as other profiles, just with extra rotation.
6428 */
6429 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK &&
6430 (op != BTRFS_MAP_READ || mirror_num > 1)) {
6431 /*
6432 * For RAID56 @stripe_nr is already the number of full stripes
6433 * before us, which is also the rotation value (needs to modulo
6434 * with num_stripes).
6435 *
6436 * In this case, we just add @stripe_nr with @i, then do the
6437 * modulo, to reduce one modulo call.
6438 */
6439 bioc->full_stripe_logical = em->start +
6440 btrfs_stripe_nr_to_offset(stripe_nr: stripe_nr * data_stripes);
6441 for (int i = 0; i < num_stripes; i++) {
6442 ret = set_io_stripe(fs_info, op, logical, length,
6443 dst: &bioc->stripes[i], map,
6444 stripe_index: (i + stripe_nr) % num_stripes,
6445 stripe_offset, stripe_nr);
6446 if (ret < 0)
6447 break;
6448 }
6449 } else {
6450 /*
6451 * For all other non-RAID56 profiles, just copy the target
6452 * stripe into the bioc.
6453 */
6454 for (i = 0; i < num_stripes; i++) {
6455 ret = set_io_stripe(fs_info, op, logical, length,
6456 dst: &bioc->stripes[i], map, stripe_index,
6457 stripe_offset, stripe_nr);
6458 if (ret < 0)
6459 break;
6460 stripe_index++;
6461 }
6462 }
6463
6464 if (ret) {
6465 *bioc_ret = NULL;
6466 btrfs_put_bioc(bioc);
6467 goto out;
6468 }
6469
6470 if (op != BTRFS_MAP_READ)
6471 max_errors = btrfs_chunk_max_errors(map);
6472
6473 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6474 op != BTRFS_MAP_READ) {
6475 handle_ops_on_dev_replace(op, bioc, dev_replace, logical,
6476 num_stripes_ret: &num_stripes, max_errors_ret: &max_errors);
6477 }
6478
6479 *bioc_ret = bioc;
6480 bioc->num_stripes = num_stripes;
6481 bioc->max_errors = max_errors;
6482 bioc->mirror_num = mirror_num;
6483
6484out:
6485 if (dev_replace_is_ongoing) {
6486 lockdep_assert_held(&dev_replace->rwsem);
6487 /* Unlock and let waiting writers proceed */
6488 up_read(sem: &dev_replace->rwsem);
6489 }
6490 free_extent_map(em);
6491 return ret;
6492}
6493
6494static bool dev_args_match_fs_devices(const struct btrfs_dev_lookup_args *args,
6495 const struct btrfs_fs_devices *fs_devices)
6496{
6497 if (args->fsid == NULL)
6498 return true;
6499 if (memcmp(p: fs_devices->metadata_uuid, q: args->fsid, BTRFS_FSID_SIZE) == 0)
6500 return true;
6501 return false;
6502}
6503
6504static bool dev_args_match_device(const struct btrfs_dev_lookup_args *args,
6505 const struct btrfs_device *device)
6506{
6507 if (args->missing) {
6508 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state) &&
6509 !device->bdev)
6510 return true;
6511 return false;
6512 }
6513
6514 if (device->devid != args->devid)
6515 return false;
6516 if (args->uuid && memcmp(p: device->uuid, q: args->uuid, BTRFS_UUID_SIZE) != 0)
6517 return false;
6518 return true;
6519}
6520
6521/*
6522 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6523 * return NULL.
6524 *
6525 * If devid and uuid are both specified, the match must be exact, otherwise
6526 * only devid is used.
6527 */
6528struct btrfs_device *btrfs_find_device(const struct btrfs_fs_devices *fs_devices,
6529 const struct btrfs_dev_lookup_args *args)
6530{
6531 struct btrfs_device *device;
6532 struct btrfs_fs_devices *seed_devs;
6533
6534 if (dev_args_match_fs_devices(args, fs_devices)) {
6535 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6536 if (dev_args_match_device(args, device))
6537 return device;
6538 }
6539 }
6540
6541 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
6542 if (!dev_args_match_fs_devices(args, fs_devices: seed_devs))
6543 continue;
6544 list_for_each_entry(device, &seed_devs->devices, dev_list) {
6545 if (dev_args_match_device(args, device))
6546 return device;
6547 }
6548 }
6549
6550 return NULL;
6551}
6552
6553static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6554 u64 devid, u8 *dev_uuid)
6555{
6556 struct btrfs_device *device;
6557 unsigned int nofs_flag;
6558
6559 /*
6560 * We call this under the chunk_mutex, so we want to use NOFS for this
6561 * allocation, however we don't want to change btrfs_alloc_device() to
6562 * always do NOFS because we use it in a lot of other GFP_KERNEL safe
6563 * places.
6564 */
6565
6566 nofs_flag = memalloc_nofs_save();
6567 device = btrfs_alloc_device(NULL, devid: &devid, uuid: dev_uuid, NULL);
6568 memalloc_nofs_restore(flags: nofs_flag);
6569 if (IS_ERR(ptr: device))
6570 return device;
6571
6572 list_add(new: &device->dev_list, head: &fs_devices->devices);
6573 device->fs_devices = fs_devices;
6574 fs_devices->num_devices++;
6575
6576 set_bit(BTRFS_DEV_STATE_MISSING, addr: &device->dev_state);
6577 fs_devices->missing_devices++;
6578
6579 return device;
6580}
6581
6582/*
6583 * Allocate new device struct, set up devid and UUID.
6584 *
6585 * @fs_info: used only for generating a new devid, can be NULL if
6586 * devid is provided (i.e. @devid != NULL).
6587 * @devid: a pointer to devid for this device. If NULL a new devid
6588 * is generated.
6589 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6590 * is generated.
6591 * @path: a pointer to device path if available, NULL otherwise.
6592 *
6593 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6594 * on error. Returned struct is not linked onto any lists and must be
6595 * destroyed with btrfs_free_device.
6596 */
6597struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6598 const u64 *devid, const u8 *uuid,
6599 const char *path)
6600{
6601 struct btrfs_device *dev;
6602 u64 tmp;
6603
6604 if (WARN_ON(!devid && !fs_info))
6605 return ERR_PTR(error: -EINVAL);
6606
6607 dev = kzalloc(size: sizeof(*dev), GFP_KERNEL);
6608 if (!dev)
6609 return ERR_PTR(error: -ENOMEM);
6610
6611 INIT_LIST_HEAD(list: &dev->dev_list);
6612 INIT_LIST_HEAD(list: &dev->dev_alloc_list);
6613 INIT_LIST_HEAD(list: &dev->post_commit_list);
6614
6615 atomic_set(v: &dev->dev_stats_ccnt, i: 0);
6616 btrfs_device_data_ordered_init(dev);
6617 extent_io_tree_init(fs_info, tree: &dev->alloc_state, owner: IO_TREE_DEVICE_ALLOC_STATE);
6618
6619 if (devid)
6620 tmp = *devid;
6621 else {
6622 int ret;
6623
6624 ret = find_next_devid(fs_info, devid_ret: &tmp);
6625 if (ret) {
6626 btrfs_free_device(device: dev);
6627 return ERR_PTR(error: ret);
6628 }
6629 }
6630 dev->devid = tmp;
6631
6632 if (uuid)
6633 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6634 else
6635 generate_random_uuid(uuid: dev->uuid);
6636
6637 if (path) {
6638 struct rcu_string *name;
6639
6640 name = rcu_string_strdup(src: path, GFP_KERNEL);
6641 if (!name) {
6642 btrfs_free_device(device: dev);
6643 return ERR_PTR(error: -ENOMEM);
6644 }
6645 rcu_assign_pointer(dev->name, name);
6646 }
6647
6648 return dev;
6649}
6650
6651static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6652 u64 devid, u8 *uuid, bool error)
6653{
6654 if (error)
6655 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6656 devid, uuid);
6657 else
6658 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6659 devid, uuid);
6660}
6661
6662u64 btrfs_calc_stripe_length(const struct extent_map *em)
6663{
6664 const struct map_lookup *map = em->map_lookup;
6665 const int data_stripes = calc_data_stripes(type: map->type, num_stripes: map->num_stripes);
6666
6667 return div_u64(dividend: em->len, divisor: data_stripes);
6668}
6669
6670#if BITS_PER_LONG == 32
6671/*
6672 * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE
6673 * can't be accessed on 32bit systems.
6674 *
6675 * This function do mount time check to reject the fs if it already has
6676 * metadata chunk beyond that limit.
6677 */
6678static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6679 u64 logical, u64 length, u64 type)
6680{
6681 if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6682 return 0;
6683
6684 if (logical + length < MAX_LFS_FILESIZE)
6685 return 0;
6686
6687 btrfs_err_32bit_limit(fs_info);
6688 return -EOVERFLOW;
6689}
6690
6691/*
6692 * This is to give early warning for any metadata chunk reaching
6693 * BTRFS_32BIT_EARLY_WARN_THRESHOLD.
6694 * Although we can still access the metadata, it's not going to be possible
6695 * once the limit is reached.
6696 */
6697static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6698 u64 logical, u64 length, u64 type)
6699{
6700 if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6701 return;
6702
6703 if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD)
6704 return;
6705
6706 btrfs_warn_32bit_limit(fs_info);
6707}
6708#endif
6709
6710static struct btrfs_device *handle_missing_device(struct btrfs_fs_info *fs_info,
6711 u64 devid, u8 *uuid)
6712{
6713 struct btrfs_device *dev;
6714
6715 if (!btrfs_test_opt(fs_info, DEGRADED)) {
6716 btrfs_report_missing_device(fs_info, devid, uuid, error: true);
6717 return ERR_PTR(error: -ENOENT);
6718 }
6719
6720 dev = add_missing_dev(fs_devices: fs_info->fs_devices, devid, dev_uuid: uuid);
6721 if (IS_ERR(ptr: dev)) {
6722 btrfs_err(fs_info, "failed to init missing device %llu: %ld",
6723 devid, PTR_ERR(dev));
6724 return dev;
6725 }
6726 btrfs_report_missing_device(fs_info, devid, uuid, error: false);
6727
6728 return dev;
6729}
6730
6731static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
6732 struct btrfs_chunk *chunk)
6733{
6734 BTRFS_DEV_LOOKUP_ARGS(args);
6735 struct btrfs_fs_info *fs_info = leaf->fs_info;
6736 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
6737 struct map_lookup *map;
6738 struct extent_map *em;
6739 u64 logical;
6740 u64 length;
6741 u64 devid;
6742 u64 type;
6743 u8 uuid[BTRFS_UUID_SIZE];
6744 int index;
6745 int num_stripes;
6746 int ret;
6747 int i;
6748
6749 logical = key->offset;
6750 length = btrfs_chunk_length(eb: leaf, s: chunk);
6751 type = btrfs_chunk_type(eb: leaf, s: chunk);
6752 index = btrfs_bg_flags_to_raid_index(flags: type);
6753 num_stripes = btrfs_chunk_num_stripes(eb: leaf, s: chunk);
6754
6755#if BITS_PER_LONG == 32
6756 ret = check_32bit_meta_chunk(fs_info, logical, length, type);
6757 if (ret < 0)
6758 return ret;
6759 warn_32bit_meta_chunk(fs_info, logical, length, type);
6760#endif
6761
6762 /*
6763 * Only need to verify chunk item if we're reading from sys chunk array,
6764 * as chunk item in tree block is already verified by tree-checker.
6765 */
6766 if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
6767 ret = btrfs_check_chunk_valid(leaf, chunk, logical);
6768 if (ret)
6769 return ret;
6770 }
6771
6772 read_lock(&map_tree->lock);
6773 em = lookup_extent_mapping(tree: map_tree, start: logical, len: 1);
6774 read_unlock(&map_tree->lock);
6775
6776 /* already mapped? */
6777 if (em && em->start <= logical && em->start + em->len > logical) {
6778 free_extent_map(em);
6779 return 0;
6780 } else if (em) {
6781 free_extent_map(em);
6782 }
6783
6784 em = alloc_extent_map();
6785 if (!em)
6786 return -ENOMEM;
6787 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6788 if (!map) {
6789 free_extent_map(em);
6790 return -ENOMEM;
6791 }
6792
6793 set_bit(nr: EXTENT_FLAG_FS_MAPPING, addr: &em->flags);
6794 em->map_lookup = map;
6795 em->start = logical;
6796 em->len = length;
6797 em->orig_start = 0;
6798 em->block_start = 0;
6799 em->block_len = em->len;
6800
6801 map->num_stripes = num_stripes;
6802 map->io_width = btrfs_chunk_io_width(eb: leaf, s: chunk);
6803 map->io_align = btrfs_chunk_io_align(eb: leaf, s: chunk);
6804 map->type = type;
6805 /*
6806 * We can't use the sub_stripes value, as for profiles other than
6807 * RAID10, they may have 0 as sub_stripes for filesystems created by
6808 * older mkfs (<v5.4).
6809 * In that case, it can cause divide-by-zero errors later.
6810 * Since currently sub_stripes is fixed for each profile, let's
6811 * use the trusted value instead.
6812 */
6813 map->sub_stripes = btrfs_raid_array[index].sub_stripes;
6814 map->verified_stripes = 0;
6815 em->orig_block_len = btrfs_calc_stripe_length(em);
6816 for (i = 0; i < num_stripes; i++) {
6817 map->stripes[i].physical =
6818 btrfs_stripe_offset_nr(eb: leaf, c: chunk, nr: i);
6819 devid = btrfs_stripe_devid_nr(eb: leaf, c: chunk, nr: i);
6820 args.devid = devid;
6821 read_extent_buffer(eb: leaf, dst: uuid, start: (unsigned long)
6822 btrfs_stripe_dev_uuid_nr(c: chunk, nr: i),
6823 BTRFS_UUID_SIZE);
6824 args.uuid = uuid;
6825 map->stripes[i].dev = btrfs_find_device(fs_devices: fs_info->fs_devices, args: &args);
6826 if (!map->stripes[i].dev) {
6827 map->stripes[i].dev = handle_missing_device(fs_info,
6828 devid, uuid);
6829 if (IS_ERR(ptr: map->stripes[i].dev)) {
6830 ret = PTR_ERR(ptr: map->stripes[i].dev);
6831 free_extent_map(em);
6832 return ret;
6833 }
6834 }
6835
6836 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
6837 addr: &(map->stripes[i].dev->dev_state));
6838 }
6839
6840 write_lock(&map_tree->lock);
6841 ret = add_extent_mapping(tree: map_tree, em, modified: 0);
6842 write_unlock(&map_tree->lock);
6843 if (ret < 0) {
6844 btrfs_err(fs_info,
6845 "failed to add chunk map, start=%llu len=%llu: %d",
6846 em->start, em->len, ret);
6847 }
6848 free_extent_map(em);
6849
6850 return ret;
6851}
6852
6853static void fill_device_from_item(struct extent_buffer *leaf,
6854 struct btrfs_dev_item *dev_item,
6855 struct btrfs_device *device)
6856{
6857 unsigned long ptr;
6858
6859 device->devid = btrfs_device_id(eb: leaf, s: dev_item);
6860 device->disk_total_bytes = btrfs_device_total_bytes(eb: leaf, s: dev_item);
6861 device->total_bytes = device->disk_total_bytes;
6862 device->commit_total_bytes = device->disk_total_bytes;
6863 device->bytes_used = btrfs_device_bytes_used(eb: leaf, s: dev_item);
6864 device->commit_bytes_used = device->bytes_used;
6865 device->type = btrfs_device_type(eb: leaf, s: dev_item);
6866 device->io_align = btrfs_device_io_align(eb: leaf, s: dev_item);
6867 device->io_width = btrfs_device_io_width(eb: leaf, s: dev_item);
6868 device->sector_size = btrfs_device_sector_size(eb: leaf, s: dev_item);
6869 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6870 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, addr: &device->dev_state);
6871
6872 ptr = btrfs_device_uuid(d: dev_item);
6873 read_extent_buffer(eb: leaf, dst: device->uuid, start: ptr, BTRFS_UUID_SIZE);
6874}
6875
6876static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
6877 u8 *fsid)
6878{
6879 struct btrfs_fs_devices *fs_devices;
6880 int ret;
6881
6882 lockdep_assert_held(&uuid_mutex);
6883 ASSERT(fsid);
6884
6885 /* This will match only for multi-device seed fs */
6886 list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list)
6887 if (!memcmp(p: fs_devices->fsid, q: fsid, BTRFS_FSID_SIZE))
6888 return fs_devices;
6889
6890
6891 fs_devices = find_fsid(fsid, NULL);
6892 if (!fs_devices) {
6893 if (!btrfs_test_opt(fs_info, DEGRADED))
6894 return ERR_PTR(error: -ENOENT);
6895
6896 fs_devices = alloc_fs_devices(fsid);
6897 if (IS_ERR(ptr: fs_devices))
6898 return fs_devices;
6899
6900 fs_devices->seeding = true;
6901 fs_devices->opened = 1;
6902 return fs_devices;
6903 }
6904
6905 /*
6906 * Upon first call for a seed fs fsid, just create a private copy of the
6907 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list
6908 */
6909 fs_devices = clone_fs_devices(orig: fs_devices);
6910 if (IS_ERR(ptr: fs_devices))
6911 return fs_devices;
6912
6913 ret = open_fs_devices(fs_devices, BLK_OPEN_READ, holder: fs_info->bdev_holder);
6914 if (ret) {
6915 free_fs_devices(fs_devices);
6916 return ERR_PTR(error: ret);
6917 }
6918
6919 if (!fs_devices->seeding) {
6920 close_fs_devices(fs_devices);
6921 free_fs_devices(fs_devices);
6922 return ERR_PTR(error: -EINVAL);
6923 }
6924
6925 list_add(new: &fs_devices->seed_list, head: &fs_info->fs_devices->seed_list);
6926
6927 return fs_devices;
6928}
6929
6930static int read_one_dev(struct extent_buffer *leaf,
6931 struct btrfs_dev_item *dev_item)
6932{
6933 BTRFS_DEV_LOOKUP_ARGS(args);
6934 struct btrfs_fs_info *fs_info = leaf->fs_info;
6935 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6936 struct btrfs_device *device;
6937 u64 devid;
6938 int ret;
6939 u8 fs_uuid[BTRFS_FSID_SIZE];
6940 u8 dev_uuid[BTRFS_UUID_SIZE];
6941
6942 devid = btrfs_device_id(eb: leaf, s: dev_item);
6943 args.devid = devid;
6944 read_extent_buffer(eb: leaf, dst: dev_uuid, start: btrfs_device_uuid(d: dev_item),
6945 BTRFS_UUID_SIZE);
6946 read_extent_buffer(eb: leaf, dst: fs_uuid, start: btrfs_device_fsid(d: dev_item),
6947 BTRFS_FSID_SIZE);
6948 args.uuid = dev_uuid;
6949 args.fsid = fs_uuid;
6950
6951 if (memcmp(p: fs_uuid, q: fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
6952 fs_devices = open_seed_devices(fs_info, fsid: fs_uuid);
6953 if (IS_ERR(ptr: fs_devices))
6954 return PTR_ERR(ptr: fs_devices);
6955 }
6956
6957 device = btrfs_find_device(fs_devices: fs_info->fs_devices, args: &args);
6958 if (!device) {
6959 if (!btrfs_test_opt(fs_info, DEGRADED)) {
6960 btrfs_report_missing_device(fs_info, devid,
6961 uuid: dev_uuid, error: true);
6962 return -ENOENT;
6963 }
6964
6965 device = add_missing_dev(fs_devices, devid, dev_uuid);
6966 if (IS_ERR(ptr: device)) {
6967 btrfs_err(fs_info,
6968 "failed to add missing dev %llu: %ld",
6969 devid, PTR_ERR(device));
6970 return PTR_ERR(ptr: device);
6971 }
6972 btrfs_report_missing_device(fs_info, devid, uuid: dev_uuid, error: false);
6973 } else {
6974 if (!device->bdev) {
6975 if (!btrfs_test_opt(fs_info, DEGRADED)) {
6976 btrfs_report_missing_device(fs_info,
6977 devid, uuid: dev_uuid, error: true);
6978 return -ENOENT;
6979 }
6980 btrfs_report_missing_device(fs_info, devid,
6981 uuid: dev_uuid, error: false);
6982 }
6983
6984 if (!device->bdev &&
6985 !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
6986 /*
6987 * this happens when a device that was properly setup
6988 * in the device info lists suddenly goes bad.
6989 * device->bdev is NULL, and so we have to set
6990 * device->missing to one here
6991 */
6992 device->fs_devices->missing_devices++;
6993 set_bit(BTRFS_DEV_STATE_MISSING, addr: &device->dev_state);
6994 }
6995
6996 /* Move the device to its own fs_devices */
6997 if (device->fs_devices != fs_devices) {
6998 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
6999 &device->dev_state));
7000
7001 list_move(list: &device->dev_list, head: &fs_devices->devices);
7002 device->fs_devices->num_devices--;
7003 fs_devices->num_devices++;
7004
7005 device->fs_devices->missing_devices--;
7006 fs_devices->missing_devices++;
7007
7008 device->fs_devices = fs_devices;
7009 }
7010 }
7011
7012 if (device->fs_devices != fs_info->fs_devices) {
7013 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
7014 if (device->generation !=
7015 btrfs_device_generation(eb: leaf, s: dev_item))
7016 return -EINVAL;
7017 }
7018
7019 fill_device_from_item(leaf, dev_item, device);
7020 if (device->bdev) {
7021 u64 max_total_bytes = bdev_nr_bytes(bdev: device->bdev);
7022
7023 if (device->total_bytes > max_total_bytes) {
7024 btrfs_err(fs_info,
7025 "device total_bytes should be at most %llu but found %llu",
7026 max_total_bytes, device->total_bytes);
7027 return -EINVAL;
7028 }
7029 }
7030 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, addr: &device->dev_state);
7031 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
7032 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
7033 device->fs_devices->total_rw_bytes += device->total_bytes;
7034 atomic64_add(i: device->total_bytes - device->bytes_used,
7035 v: &fs_info->free_chunk_space);
7036 }
7037 ret = 0;
7038 return ret;
7039}
7040
7041int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
7042{
7043 struct btrfs_super_block *super_copy = fs_info->super_copy;
7044 struct extent_buffer *sb;
7045 struct btrfs_disk_key *disk_key;
7046 struct btrfs_chunk *chunk;
7047 u8 *array_ptr;
7048 unsigned long sb_array_offset;
7049 int ret = 0;
7050 u32 num_stripes;
7051 u32 array_size;
7052 u32 len = 0;
7053 u32 cur_offset;
7054 u64 type;
7055 struct btrfs_key key;
7056
7057 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
7058
7059 /*
7060 * We allocated a dummy extent, just to use extent buffer accessors.
7061 * There will be unused space after BTRFS_SUPER_INFO_SIZE, but
7062 * that's fine, we will not go beyond system chunk array anyway.
7063 */
7064 sb = alloc_dummy_extent_buffer(fs_info, BTRFS_SUPER_INFO_OFFSET);
7065 if (!sb)
7066 return -ENOMEM;
7067 set_extent_buffer_uptodate(sb);
7068
7069 write_extent_buffer(eb: sb, src: super_copy, start: 0, BTRFS_SUPER_INFO_SIZE);
7070 array_size = btrfs_super_sys_array_size(s: super_copy);
7071
7072 array_ptr = super_copy->sys_chunk_array;
7073 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
7074 cur_offset = 0;
7075
7076 while (cur_offset < array_size) {
7077 disk_key = (struct btrfs_disk_key *)array_ptr;
7078 len = sizeof(*disk_key);
7079 if (cur_offset + len > array_size)
7080 goto out_short_read;
7081
7082 btrfs_disk_key_to_cpu(cpu_key: &key, disk_key);
7083
7084 array_ptr += len;
7085 sb_array_offset += len;
7086 cur_offset += len;
7087
7088 if (key.type != BTRFS_CHUNK_ITEM_KEY) {
7089 btrfs_err(fs_info,
7090 "unexpected item type %u in sys_array at offset %u",
7091 (u32)key.type, cur_offset);
7092 ret = -EIO;
7093 break;
7094 }
7095
7096 chunk = (struct btrfs_chunk *)sb_array_offset;
7097 /*
7098 * At least one btrfs_chunk with one stripe must be present,
7099 * exact stripe count check comes afterwards
7100 */
7101 len = btrfs_chunk_item_size(num_stripes: 1);
7102 if (cur_offset + len > array_size)
7103 goto out_short_read;
7104
7105 num_stripes = btrfs_chunk_num_stripes(eb: sb, s: chunk);
7106 if (!num_stripes) {
7107 btrfs_err(fs_info,
7108 "invalid number of stripes %u in sys_array at offset %u",
7109 num_stripes, cur_offset);
7110 ret = -EIO;
7111 break;
7112 }
7113
7114 type = btrfs_chunk_type(eb: sb, s: chunk);
7115 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
7116 btrfs_err(fs_info,
7117 "invalid chunk type %llu in sys_array at offset %u",
7118 type, cur_offset);
7119 ret = -EIO;
7120 break;
7121 }
7122
7123 len = btrfs_chunk_item_size(num_stripes);
7124 if (cur_offset + len > array_size)
7125 goto out_short_read;
7126
7127 ret = read_one_chunk(key: &key, leaf: sb, chunk);
7128 if (ret)
7129 break;
7130
7131 array_ptr += len;
7132 sb_array_offset += len;
7133 cur_offset += len;
7134 }
7135 clear_extent_buffer_uptodate(eb: sb);
7136 free_extent_buffer_stale(eb: sb);
7137 return ret;
7138
7139out_short_read:
7140 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
7141 len, cur_offset);
7142 clear_extent_buffer_uptodate(eb: sb);
7143 free_extent_buffer_stale(eb: sb);
7144 return -EIO;
7145}
7146
7147/*
7148 * Check if all chunks in the fs are OK for read-write degraded mount
7149 *
7150 * If the @failing_dev is specified, it's accounted as missing.
7151 *
7152 * Return true if all chunks meet the minimal RW mount requirements.
7153 * Return false if any chunk doesn't meet the minimal RW mount requirements.
7154 */
7155bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7156 struct btrfs_device *failing_dev)
7157{
7158 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
7159 struct extent_map *em;
7160 u64 next_start = 0;
7161 bool ret = true;
7162
7163 read_lock(&map_tree->lock);
7164 em = lookup_extent_mapping(tree: map_tree, start: 0, len: (u64)-1);
7165 read_unlock(&map_tree->lock);
7166 /* No chunk at all? Return false anyway */
7167 if (!em) {
7168 ret = false;
7169 goto out;
7170 }
7171 while (em) {
7172 struct map_lookup *map;
7173 int missing = 0;
7174 int max_tolerated;
7175 int i;
7176
7177 map = em->map_lookup;
7178 max_tolerated =
7179 btrfs_get_num_tolerated_disk_barrier_failures(
7180 flags: map->type);
7181 for (i = 0; i < map->num_stripes; i++) {
7182 struct btrfs_device *dev = map->stripes[i].dev;
7183
7184 if (!dev || !dev->bdev ||
7185 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7186 dev->last_flush_error)
7187 missing++;
7188 else if (failing_dev && failing_dev == dev)
7189 missing++;
7190 }
7191 if (missing > max_tolerated) {
7192 if (!failing_dev)
7193 btrfs_warn(fs_info,
7194 "chunk %llu missing %d devices, max tolerance is %d for writable mount",
7195 em->start, missing, max_tolerated);
7196 free_extent_map(em);
7197 ret = false;
7198 goto out;
7199 }
7200 next_start = extent_map_end(em);
7201 free_extent_map(em);
7202
7203 read_lock(&map_tree->lock);
7204 em = lookup_extent_mapping(tree: map_tree, start: next_start,
7205 len: (u64)(-1) - next_start);
7206 read_unlock(&map_tree->lock);
7207 }
7208out:
7209 return ret;
7210}
7211
7212static void readahead_tree_node_children(struct extent_buffer *node)
7213{
7214 int i;
7215 const int nr_items = btrfs_header_nritems(eb: node);
7216
7217 for (i = 0; i < nr_items; i++)
7218 btrfs_readahead_node_child(node, slot: i);
7219}
7220
7221int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7222{
7223 struct btrfs_root *root = fs_info->chunk_root;
7224 struct btrfs_path *path;
7225 struct extent_buffer *leaf;
7226 struct btrfs_key key;
7227 struct btrfs_key found_key;
7228 int ret;
7229 int slot;
7230 int iter_ret = 0;
7231 u64 total_dev = 0;
7232 u64 last_ra_node = 0;
7233
7234 path = btrfs_alloc_path();
7235 if (!path)
7236 return -ENOMEM;
7237
7238 /*
7239 * uuid_mutex is needed only if we are mounting a sprout FS
7240 * otherwise we don't need it.
7241 */
7242 mutex_lock(&uuid_mutex);
7243
7244 /*
7245 * It is possible for mount and umount to race in such a way that
7246 * we execute this code path, but open_fs_devices failed to clear
7247 * total_rw_bytes. We certainly want it cleared before reading the
7248 * device items, so clear it here.
7249 */
7250 fs_info->fs_devices->total_rw_bytes = 0;
7251
7252 /*
7253 * Lockdep complains about possible circular locking dependency between
7254 * a disk's open_mutex (struct gendisk.open_mutex), the rw semaphores
7255 * used for freeze procection of a fs (struct super_block.s_writers),
7256 * which we take when starting a transaction, and extent buffers of the
7257 * chunk tree if we call read_one_dev() while holding a lock on an
7258 * extent buffer of the chunk tree. Since we are mounting the filesystem
7259 * and at this point there can't be any concurrent task modifying the
7260 * chunk tree, to keep it simple, just skip locking on the chunk tree.
7261 */
7262 ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags));
7263 path->skip_locking = 1;
7264
7265 /*
7266 * Read all device items, and then all the chunk items. All
7267 * device items are found before any chunk item (their object id
7268 * is smaller than the lowest possible object id for a chunk
7269 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7270 */
7271 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7272 key.offset = 0;
7273 key.type = 0;
7274 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
7275 struct extent_buffer *node = path->nodes[1];
7276
7277 leaf = path->nodes[0];
7278 slot = path->slots[0];
7279
7280 if (node) {
7281 if (last_ra_node != node->start) {
7282 readahead_tree_node_children(node);
7283 last_ra_node = node->start;
7284 }
7285 }
7286 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7287 struct btrfs_dev_item *dev_item;
7288 dev_item = btrfs_item_ptr(leaf, slot,
7289 struct btrfs_dev_item);
7290 ret = read_one_dev(leaf, dev_item);
7291 if (ret)
7292 goto error;
7293 total_dev++;
7294 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7295 struct btrfs_chunk *chunk;
7296
7297 /*
7298 * We are only called at mount time, so no need to take
7299 * fs_info->chunk_mutex. Plus, to avoid lockdep warnings,
7300 * we always lock first fs_info->chunk_mutex before
7301 * acquiring any locks on the chunk tree. This is a
7302 * requirement for chunk allocation, see the comment on
7303 * top of btrfs_chunk_alloc() for details.
7304 */
7305 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7306 ret = read_one_chunk(key: &found_key, leaf, chunk);
7307 if (ret)
7308 goto error;
7309 }
7310 }
7311 /* Catch error found during iteration */
7312 if (iter_ret < 0) {
7313 ret = iter_ret;
7314 goto error;
7315 }
7316
7317 /*
7318 * After loading chunk tree, we've got all device information,
7319 * do another round of validation checks.
7320 */
7321 if (total_dev != fs_info->fs_devices->total_devices) {
7322 btrfs_warn(fs_info,
7323"super block num_devices %llu mismatch with DEV_ITEM count %llu, will be repaired on next transaction commit",
7324 btrfs_super_num_devices(fs_info->super_copy),
7325 total_dev);
7326 fs_info->fs_devices->total_devices = total_dev;
7327 btrfs_set_super_num_devices(s: fs_info->super_copy, val: total_dev);
7328 }
7329 if (btrfs_super_total_bytes(s: fs_info->super_copy) <
7330 fs_info->fs_devices->total_rw_bytes) {
7331 btrfs_err(fs_info,
7332 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7333 btrfs_super_total_bytes(fs_info->super_copy),
7334 fs_info->fs_devices->total_rw_bytes);
7335 ret = -EINVAL;
7336 goto error;
7337 }
7338 ret = 0;
7339error:
7340 mutex_unlock(lock: &uuid_mutex);
7341
7342 btrfs_free_path(p: path);
7343 return ret;
7344}
7345
7346int btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7347{
7348 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7349 struct btrfs_device *device;
7350 int ret = 0;
7351
7352 fs_devices->fs_info = fs_info;
7353
7354 mutex_lock(&fs_devices->device_list_mutex);
7355 list_for_each_entry(device, &fs_devices->devices, dev_list)
7356 device->fs_info = fs_info;
7357
7358 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7359 list_for_each_entry(device, &seed_devs->devices, dev_list) {
7360 device->fs_info = fs_info;
7361 ret = btrfs_get_dev_zone_info(device, populate_cache: false);
7362 if (ret)
7363 break;
7364 }
7365
7366 seed_devs->fs_info = fs_info;
7367 }
7368 mutex_unlock(lock: &fs_devices->device_list_mutex);
7369
7370 return ret;
7371}
7372
7373static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7374 const struct btrfs_dev_stats_item *ptr,
7375 int index)
7376{
7377 u64 val;
7378
7379 read_extent_buffer(eb, dst: &val,
7380 offsetof(struct btrfs_dev_stats_item, values) +
7381 ((unsigned long)ptr) + (index * sizeof(u64)),
7382 len: sizeof(val));
7383 return val;
7384}
7385
7386static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7387 struct btrfs_dev_stats_item *ptr,
7388 int index, u64 val)
7389{
7390 write_extent_buffer(eb, src: &val,
7391 offsetof(struct btrfs_dev_stats_item, values) +
7392 ((unsigned long)ptr) + (index * sizeof(u64)),
7393 len: sizeof(val));
7394}
7395
7396static int btrfs_device_init_dev_stats(struct btrfs_device *device,
7397 struct btrfs_path *path)
7398{
7399 struct btrfs_dev_stats_item *ptr;
7400 struct extent_buffer *eb;
7401 struct btrfs_key key;
7402 int item_size;
7403 int i, ret, slot;
7404
7405 if (!device->fs_info->dev_root)
7406 return 0;
7407
7408 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7409 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7410 key.offset = device->devid;
7411 ret = btrfs_search_slot(NULL, root: device->fs_info->dev_root, key: &key, p: path, ins_len: 0, cow: 0);
7412 if (ret) {
7413 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7414 btrfs_dev_stat_set(dev: device, index: i, val: 0);
7415 device->dev_stats_valid = 1;
7416 btrfs_release_path(p: path);
7417 return ret < 0 ? ret : 0;
7418 }
7419 slot = path->slots[0];
7420 eb = path->nodes[0];
7421 item_size = btrfs_item_size(eb, slot);
7422
7423 ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item);
7424
7425 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7426 if (item_size >= (1 + i) * sizeof(__le64))
7427 btrfs_dev_stat_set(dev: device, index: i,
7428 val: btrfs_dev_stats_value(eb, ptr, index: i));
7429 else
7430 btrfs_dev_stat_set(dev: device, index: i, val: 0);
7431 }
7432
7433 device->dev_stats_valid = 1;
7434 btrfs_dev_stat_print_on_load(device);
7435 btrfs_release_path(p: path);
7436
7437 return 0;
7438}
7439
7440int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7441{
7442 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7443 struct btrfs_device *device;
7444 struct btrfs_path *path = NULL;
7445 int ret = 0;
7446
7447 path = btrfs_alloc_path();
7448 if (!path)
7449 return -ENOMEM;
7450
7451 mutex_lock(&fs_devices->device_list_mutex);
7452 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7453 ret = btrfs_device_init_dev_stats(device, path);
7454 if (ret)
7455 goto out;
7456 }
7457 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7458 list_for_each_entry(device, &seed_devs->devices, dev_list) {
7459 ret = btrfs_device_init_dev_stats(device, path);
7460 if (ret)
7461 goto out;
7462 }
7463 }
7464out:
7465 mutex_unlock(lock: &fs_devices->device_list_mutex);
7466
7467 btrfs_free_path(p: path);
7468 return ret;
7469}
7470
7471static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7472 struct btrfs_device *device)
7473{
7474 struct btrfs_fs_info *fs_info = trans->fs_info;
7475 struct btrfs_root *dev_root = fs_info->dev_root;
7476 struct btrfs_path *path;
7477 struct btrfs_key key;
7478 struct extent_buffer *eb;
7479 struct btrfs_dev_stats_item *ptr;
7480 int ret;
7481 int i;
7482
7483 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7484 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7485 key.offset = device->devid;
7486
7487 path = btrfs_alloc_path();
7488 if (!path)
7489 return -ENOMEM;
7490 ret = btrfs_search_slot(trans, root: dev_root, key: &key, p: path, ins_len: -1, cow: 1);
7491 if (ret < 0) {
7492 btrfs_warn_in_rcu(fs_info,
7493 "error %d while searching for dev_stats item for device %s",
7494 ret, btrfs_dev_name(device));
7495 goto out;
7496 }
7497
7498 if (ret == 0 &&
7499 btrfs_item_size(eb: path->nodes[0], slot: path->slots[0]) < sizeof(*ptr)) {
7500 /* need to delete old one and insert a new one */
7501 ret = btrfs_del_item(trans, root: dev_root, path);
7502 if (ret != 0) {
7503 btrfs_warn_in_rcu(fs_info,
7504 "delete too small dev_stats item for device %s failed %d",
7505 btrfs_dev_name(device), ret);
7506 goto out;
7507 }
7508 ret = 1;
7509 }
7510
7511 if (ret == 1) {
7512 /* need to insert a new item */
7513 btrfs_release_path(p: path);
7514 ret = btrfs_insert_empty_item(trans, root: dev_root, path,
7515 key: &key, data_size: sizeof(*ptr));
7516 if (ret < 0) {
7517 btrfs_warn_in_rcu(fs_info,
7518 "insert dev_stats item for device %s failed %d",
7519 btrfs_dev_name(device), ret);
7520 goto out;
7521 }
7522 }
7523
7524 eb = path->nodes[0];
7525 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7526 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7527 btrfs_set_dev_stats_value(eb, ptr, index: i,
7528 val: btrfs_dev_stat_read(dev: device, index: i));
7529 btrfs_mark_buffer_dirty(trans, buf: eb);
7530
7531out:
7532 btrfs_free_path(p: path);
7533 return ret;
7534}
7535
7536/*
7537 * called from commit_transaction. Writes all changed device stats to disk.
7538 */
7539int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7540{
7541 struct btrfs_fs_info *fs_info = trans->fs_info;
7542 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7543 struct btrfs_device *device;
7544 int stats_cnt;
7545 int ret = 0;
7546
7547 mutex_lock(&fs_devices->device_list_mutex);
7548 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7549 stats_cnt = atomic_read(v: &device->dev_stats_ccnt);
7550 if (!device->dev_stats_valid || stats_cnt == 0)
7551 continue;
7552
7553
7554 /*
7555 * There is a LOAD-LOAD control dependency between the value of
7556 * dev_stats_ccnt and updating the on-disk values which requires
7557 * reading the in-memory counters. Such control dependencies
7558 * require explicit read memory barriers.
7559 *
7560 * This memory barriers pairs with smp_mb__before_atomic in
7561 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7562 * barrier implied by atomic_xchg in
7563 * btrfs_dev_stats_read_and_reset
7564 */
7565 smp_rmb();
7566
7567 ret = update_dev_stat_item(trans, device);
7568 if (!ret)
7569 atomic_sub(i: stats_cnt, v: &device->dev_stats_ccnt);
7570 }
7571 mutex_unlock(lock: &fs_devices->device_list_mutex);
7572
7573 return ret;
7574}
7575
7576void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7577{
7578 btrfs_dev_stat_inc(dev, index);
7579
7580 if (!dev->dev_stats_valid)
7581 return;
7582 btrfs_err_rl_in_rcu(dev->fs_info,
7583 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7584 btrfs_dev_name(dev),
7585 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7586 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7587 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7588 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7589 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7590}
7591
7592static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7593{
7594 int i;
7595
7596 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7597 if (btrfs_dev_stat_read(dev, index: i) != 0)
7598 break;
7599 if (i == BTRFS_DEV_STAT_VALUES_MAX)
7600 return; /* all values == 0, suppress message */
7601
7602 btrfs_info_in_rcu(dev->fs_info,
7603 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7604 btrfs_dev_name(dev),
7605 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7606 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7607 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7608 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7609 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7610}
7611
7612int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7613 struct btrfs_ioctl_get_dev_stats *stats)
7614{
7615 BTRFS_DEV_LOOKUP_ARGS(args);
7616 struct btrfs_device *dev;
7617 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7618 int i;
7619
7620 mutex_lock(&fs_devices->device_list_mutex);
7621 args.devid = stats->devid;
7622 dev = btrfs_find_device(fs_devices: fs_info->fs_devices, args: &args);
7623 mutex_unlock(lock: &fs_devices->device_list_mutex);
7624
7625 if (!dev) {
7626 btrfs_warn(fs_info, "get dev_stats failed, device not found");
7627 return -ENODEV;
7628 } else if (!dev->dev_stats_valid) {
7629 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7630 return -ENODEV;
7631 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7632 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7633 if (stats->nr_items > i)
7634 stats->values[i] =
7635 btrfs_dev_stat_read_and_reset(dev, index: i);
7636 else
7637 btrfs_dev_stat_set(dev, index: i, val: 0);
7638 }
7639 btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7640 current->comm, task_pid_nr(current));
7641 } else {
7642 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7643 if (stats->nr_items > i)
7644 stats->values[i] = btrfs_dev_stat_read(dev, index: i);
7645 }
7646 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7647 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7648 return 0;
7649}
7650
7651/*
7652 * Update the size and bytes used for each device where it changed. This is
7653 * delayed since we would otherwise get errors while writing out the
7654 * superblocks.
7655 *
7656 * Must be invoked during transaction commit.
7657 */
7658void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7659{
7660 struct btrfs_device *curr, *next;
7661
7662 ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
7663
7664 if (list_empty(head: &trans->dev_update_list))
7665 return;
7666
7667 /*
7668 * We don't need the device_list_mutex here. This list is owned by the
7669 * transaction and the transaction must complete before the device is
7670 * released.
7671 */
7672 mutex_lock(&trans->fs_info->chunk_mutex);
7673 list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7674 post_commit_list) {
7675 list_del_init(entry: &curr->post_commit_list);
7676 curr->commit_total_bytes = curr->disk_total_bytes;
7677 curr->commit_bytes_used = curr->bytes_used;
7678 }
7679 mutex_unlock(lock: &trans->fs_info->chunk_mutex);
7680}
7681
7682/*
7683 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7684 */
7685int btrfs_bg_type_to_factor(u64 flags)
7686{
7687 const int index = btrfs_bg_flags_to_raid_index(flags);
7688
7689 return btrfs_raid_array[index].ncopies;
7690}
7691
7692
7693
7694static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7695 u64 chunk_offset, u64 devid,
7696 u64 physical_offset, u64 physical_len)
7697{
7698 struct btrfs_dev_lookup_args args = { .devid = devid };
7699 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7700 struct extent_map *em;
7701 struct map_lookup *map;
7702 struct btrfs_device *dev;
7703 u64 stripe_len;
7704 bool found = false;
7705 int ret = 0;
7706 int i;
7707
7708 read_lock(&em_tree->lock);
7709 em = lookup_extent_mapping(tree: em_tree, start: chunk_offset, len: 1);
7710 read_unlock(&em_tree->lock);
7711
7712 if (!em) {
7713 btrfs_err(fs_info,
7714"dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7715 physical_offset, devid);
7716 ret = -EUCLEAN;
7717 goto out;
7718 }
7719
7720 map = em->map_lookup;
7721 stripe_len = btrfs_calc_stripe_length(em);
7722 if (physical_len != stripe_len) {
7723 btrfs_err(fs_info,
7724"dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7725 physical_offset, devid, em->start, physical_len,
7726 stripe_len);
7727 ret = -EUCLEAN;
7728 goto out;
7729 }
7730
7731 /*
7732 * Very old mkfs.btrfs (before v4.1) will not respect the reserved
7733 * space. Although kernel can handle it without problem, better to warn
7734 * the users.
7735 */
7736 if (physical_offset < BTRFS_DEVICE_RANGE_RESERVED)
7737 btrfs_warn(fs_info,
7738 "devid %llu physical %llu len %llu inside the reserved space",
7739 devid, physical_offset, physical_len);
7740
7741 for (i = 0; i < map->num_stripes; i++) {
7742 if (map->stripes[i].dev->devid == devid &&
7743 map->stripes[i].physical == physical_offset) {
7744 found = true;
7745 if (map->verified_stripes >= map->num_stripes) {
7746 btrfs_err(fs_info,
7747 "too many dev extents for chunk %llu found",
7748 em->start);
7749 ret = -EUCLEAN;
7750 goto out;
7751 }
7752 map->verified_stripes++;
7753 break;
7754 }
7755 }
7756 if (!found) {
7757 btrfs_err(fs_info,
7758 "dev extent physical offset %llu devid %llu has no corresponding chunk",
7759 physical_offset, devid);
7760 ret = -EUCLEAN;
7761 }
7762
7763 /* Make sure no dev extent is beyond device boundary */
7764 dev = btrfs_find_device(fs_devices: fs_info->fs_devices, args: &args);
7765 if (!dev) {
7766 btrfs_err(fs_info, "failed to find devid %llu", devid);
7767 ret = -EUCLEAN;
7768 goto out;
7769 }
7770
7771 if (physical_offset + physical_len > dev->disk_total_bytes) {
7772 btrfs_err(fs_info,
7773"dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
7774 devid, physical_offset, physical_len,
7775 dev->disk_total_bytes);
7776 ret = -EUCLEAN;
7777 goto out;
7778 }
7779
7780 if (dev->zone_info) {
7781 u64 zone_size = dev->zone_info->zone_size;
7782
7783 if (!IS_ALIGNED(physical_offset, zone_size) ||
7784 !IS_ALIGNED(physical_len, zone_size)) {
7785 btrfs_err(fs_info,
7786"zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone",
7787 devid, physical_offset, physical_len);
7788 ret = -EUCLEAN;
7789 goto out;
7790 }
7791 }
7792
7793out:
7794 free_extent_map(em);
7795 return ret;
7796}
7797
7798static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
7799{
7800 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7801 struct extent_map *em;
7802 struct rb_node *node;
7803 int ret = 0;
7804
7805 read_lock(&em_tree->lock);
7806 for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
7807 em = rb_entry(node, struct extent_map, rb_node);
7808 if (em->map_lookup->num_stripes !=
7809 em->map_lookup->verified_stripes) {
7810 btrfs_err(fs_info,
7811 "chunk %llu has missing dev extent, have %d expect %d",
7812 em->start, em->map_lookup->verified_stripes,
7813 em->map_lookup->num_stripes);
7814 ret = -EUCLEAN;
7815 goto out;
7816 }
7817 }
7818out:
7819 read_unlock(&em_tree->lock);
7820 return ret;
7821}
7822
7823/*
7824 * Ensure that all dev extents are mapped to correct chunk, otherwise
7825 * later chunk allocation/free would cause unexpected behavior.
7826 *
7827 * NOTE: This will iterate through the whole device tree, which should be of
7828 * the same size level as the chunk tree. This slightly increases mount time.
7829 */
7830int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
7831{
7832 struct btrfs_path *path;
7833 struct btrfs_root *root = fs_info->dev_root;
7834 struct btrfs_key key;
7835 u64 prev_devid = 0;
7836 u64 prev_dev_ext_end = 0;
7837 int ret = 0;
7838
7839 /*
7840 * We don't have a dev_root because we mounted with ignorebadroots and
7841 * failed to load the root, so we want to skip the verification in this
7842 * case for sure.
7843 *
7844 * However if the dev root is fine, but the tree itself is corrupted
7845 * we'd still fail to mount. This verification is only to make sure
7846 * writes can happen safely, so instead just bypass this check
7847 * completely in the case of IGNOREBADROOTS.
7848 */
7849 if (btrfs_test_opt(fs_info, IGNOREBADROOTS))
7850 return 0;
7851
7852 key.objectid = 1;
7853 key.type = BTRFS_DEV_EXTENT_KEY;
7854 key.offset = 0;
7855
7856 path = btrfs_alloc_path();
7857 if (!path)
7858 return -ENOMEM;
7859
7860 path->reada = READA_FORWARD;
7861 ret = btrfs_search_slot(NULL, root, key: &key, p: path, ins_len: 0, cow: 0);
7862 if (ret < 0)
7863 goto out;
7864
7865 if (path->slots[0] >= btrfs_header_nritems(eb: path->nodes[0])) {
7866 ret = btrfs_next_leaf(root, path);
7867 if (ret < 0)
7868 goto out;
7869 /* No dev extents at all? Not good */
7870 if (ret > 0) {
7871 ret = -EUCLEAN;
7872 goto out;
7873 }
7874 }
7875 while (1) {
7876 struct extent_buffer *leaf = path->nodes[0];
7877 struct btrfs_dev_extent *dext;
7878 int slot = path->slots[0];
7879 u64 chunk_offset;
7880 u64 physical_offset;
7881 u64 physical_len;
7882 u64 devid;
7883
7884 btrfs_item_key_to_cpu(eb: leaf, cpu_key: &key, nr: slot);
7885 if (key.type != BTRFS_DEV_EXTENT_KEY)
7886 break;
7887 devid = key.objectid;
7888 physical_offset = key.offset;
7889
7890 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
7891 chunk_offset = btrfs_dev_extent_chunk_offset(eb: leaf, s: dext);
7892 physical_len = btrfs_dev_extent_length(eb: leaf, s: dext);
7893
7894 /* Check if this dev extent overlaps with the previous one */
7895 if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
7896 btrfs_err(fs_info,
7897"dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
7898 devid, physical_offset, prev_dev_ext_end);
7899 ret = -EUCLEAN;
7900 goto out;
7901 }
7902
7903 ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
7904 physical_offset, physical_len);
7905 if (ret < 0)
7906 goto out;
7907 prev_devid = devid;
7908 prev_dev_ext_end = physical_offset + physical_len;
7909
7910 ret = btrfs_next_item(root, p: path);
7911 if (ret < 0)
7912 goto out;
7913 if (ret > 0) {
7914 ret = 0;
7915 break;
7916 }
7917 }
7918
7919 /* Ensure all chunks have corresponding dev extents */
7920 ret = verify_chunk_dev_extent_mapping(fs_info);
7921out:
7922 btrfs_free_path(p: path);
7923 return ret;
7924}
7925
7926/*
7927 * Check whether the given block group or device is pinned by any inode being
7928 * used as a swapfile.
7929 */
7930bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
7931{
7932 struct btrfs_swapfile_pin *sp;
7933 struct rb_node *node;
7934
7935 spin_lock(lock: &fs_info->swapfile_pins_lock);
7936 node = fs_info->swapfile_pins.rb_node;
7937 while (node) {
7938 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
7939 if (ptr < sp->ptr)
7940 node = node->rb_left;
7941 else if (ptr > sp->ptr)
7942 node = node->rb_right;
7943 else
7944 break;
7945 }
7946 spin_unlock(lock: &fs_info->swapfile_pins_lock);
7947 return node != NULL;
7948}
7949
7950static int relocating_repair_kthread(void *data)
7951{
7952 struct btrfs_block_group *cache = data;
7953 struct btrfs_fs_info *fs_info = cache->fs_info;
7954 u64 target;
7955 int ret = 0;
7956
7957 target = cache->start;
7958 btrfs_put_block_group(cache);
7959
7960 sb_start_write(sb: fs_info->sb);
7961 if (!btrfs_exclop_start(fs_info, type: BTRFS_EXCLOP_BALANCE)) {
7962 btrfs_info(fs_info,
7963 "zoned: skip relocating block group %llu to repair: EBUSY",
7964 target);
7965 sb_end_write(sb: fs_info->sb);
7966 return -EBUSY;
7967 }
7968
7969 mutex_lock(&fs_info->reclaim_bgs_lock);
7970
7971 /* Ensure block group still exists */
7972 cache = btrfs_lookup_block_group(info: fs_info, bytenr: target);
7973 if (!cache)
7974 goto out;
7975
7976 if (!test_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags))
7977 goto out;
7978
7979 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset: target);
7980 if (ret < 0)
7981 goto out;
7982
7983 btrfs_info(fs_info,
7984 "zoned: relocating block group %llu to repair IO failure",
7985 target);
7986 ret = btrfs_relocate_chunk(fs_info, chunk_offset: target);
7987
7988out:
7989 if (cache)
7990 btrfs_put_block_group(cache);
7991 mutex_unlock(lock: &fs_info->reclaim_bgs_lock);
7992 btrfs_exclop_finish(fs_info);
7993 sb_end_write(sb: fs_info->sb);
7994
7995 return ret;
7996}
7997
7998bool btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical)
7999{
8000 struct btrfs_block_group *cache;
8001
8002 if (!btrfs_is_zoned(fs_info))
8003 return false;
8004
8005 /* Do not attempt to repair in degraded state */
8006 if (btrfs_test_opt(fs_info, DEGRADED))
8007 return true;
8008
8009 cache = btrfs_lookup_block_group(info: fs_info, bytenr: logical);
8010 if (!cache)
8011 return true;
8012
8013 if (test_and_set_bit(nr: BLOCK_GROUP_FLAG_RELOCATING_REPAIR, addr: &cache->runtime_flags)) {
8014 btrfs_put_block_group(cache);
8015 return true;
8016 }
8017
8018 kthread_run(relocating_repair_kthread, cache,
8019 "btrfs-relocating-repair");
8020
8021 return true;
8022}
8023
8024static void map_raid56_repair_block(struct btrfs_io_context *bioc,
8025 struct btrfs_io_stripe *smap,
8026 u64 logical)
8027{
8028 int data_stripes = nr_bioc_data_stripes(bioc);
8029 int i;
8030
8031 for (i = 0; i < data_stripes; i++) {
8032 u64 stripe_start = bioc->full_stripe_logical +
8033 btrfs_stripe_nr_to_offset(stripe_nr: i);
8034
8035 if (logical >= stripe_start &&
8036 logical < stripe_start + BTRFS_STRIPE_LEN)
8037 break;
8038 }
8039 ASSERT(i < data_stripes);
8040 smap->dev = bioc->stripes[i].dev;
8041 smap->physical = bioc->stripes[i].physical +
8042 ((logical - bioc->full_stripe_logical) &
8043 BTRFS_STRIPE_LEN_MASK);
8044}
8045
8046/*
8047 * Map a repair write into a single device.
8048 *
8049 * A repair write is triggered by read time repair or scrub, which would only
8050 * update the contents of a single device.
8051 * Not update any other mirrors nor go through RMW path.
8052 *
8053 * Callers should ensure:
8054 *
8055 * - Call btrfs_bio_counter_inc_blocked() first
8056 * - The range does not cross stripe boundary
8057 * - Has a valid @mirror_num passed in.
8058 */
8059int btrfs_map_repair_block(struct btrfs_fs_info *fs_info,
8060 struct btrfs_io_stripe *smap, u64 logical,
8061 u32 length, int mirror_num)
8062{
8063 struct btrfs_io_context *bioc = NULL;
8064 u64 map_length = length;
8065 int mirror_ret = mirror_num;
8066 int ret;
8067
8068 ASSERT(mirror_num > 0);
8069
8070 ret = btrfs_map_block(fs_info, op: BTRFS_MAP_WRITE, logical, length: &map_length,
8071 bioc_ret: &bioc, smap, mirror_num_ret: &mirror_ret);
8072 if (ret < 0)
8073 return ret;
8074
8075 /* The map range should not cross stripe boundary. */
8076 ASSERT(map_length >= length);
8077
8078 /* Already mapped to single stripe. */
8079 if (!bioc)
8080 goto out;
8081
8082 /* Map the RAID56 multi-stripe writes to a single one. */
8083 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
8084 map_raid56_repair_block(bioc, smap, logical);
8085 goto out;
8086 }
8087
8088 ASSERT(mirror_num <= bioc->num_stripes);
8089 smap->dev = bioc->stripes[mirror_num - 1].dev;
8090 smap->physical = bioc->stripes[mirror_num - 1].physical;
8091out:
8092 btrfs_put_bioc(bioc);
8093 ASSERT(smap->dev);
8094 return 0;
8095}
8096

source code of linux/fs/btrfs/volumes.c