1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * fs/dcache.c
4 *
5 * Complete reimplementation
6 * (C) 1997 Thomas Schoebel-Theuer,
7 * with heavy changes by Linus Torvalds
8 */
9
10/*
11 * Notes on the allocation strategy:
12 *
13 * The dcache is a master of the icache - whenever a dcache entry
14 * exists, the inode will always exist. "iput()" is done either when
15 * the dcache entry is deleted or garbage collected.
16 */
17
18#include <linux/ratelimit.h>
19#include <linux/string.h>
20#include <linux/mm.h>
21#include <linux/fs.h>
22#include <linux/fscrypt.h>
23#include <linux/fsnotify.h>
24#include <linux/slab.h>
25#include <linux/init.h>
26#include <linux/hash.h>
27#include <linux/cache.h>
28#include <linux/export.h>
29#include <linux/security.h>
30#include <linux/seqlock.h>
31#include <linux/memblock.h>
32#include <linux/bit_spinlock.h>
33#include <linux/rculist_bl.h>
34#include <linux/list_lru.h>
35#include "internal.h"
36#include "mount.h"
37
38/*
39 * Usage:
40 * dcache->d_inode->i_lock protects:
41 * - i_dentry, d_u.d_alias, d_inode of aliases
42 * dcache_hash_bucket lock protects:
43 * - the dcache hash table
44 * s_roots bl list spinlock protects:
45 * - the s_roots list (see __d_drop)
46 * dentry->d_sb->s_dentry_lru_lock protects:
47 * - the dcache lru lists and counters
48 * d_lock protects:
49 * - d_flags
50 * - d_name
51 * - d_lru
52 * - d_count
53 * - d_unhashed()
54 * - d_parent and d_subdirs
55 * - childrens' d_child and d_parent
56 * - d_u.d_alias, d_inode
57 *
58 * Ordering:
59 * dentry->d_inode->i_lock
60 * dentry->d_lock
61 * dentry->d_sb->s_dentry_lru_lock
62 * dcache_hash_bucket lock
63 * s_roots lock
64 *
65 * If there is an ancestor relationship:
66 * dentry->d_parent->...->d_parent->d_lock
67 * ...
68 * dentry->d_parent->d_lock
69 * dentry->d_lock
70 *
71 * If no ancestor relationship:
72 * arbitrary, since it's serialized on rename_lock
73 */
74int sysctl_vfs_cache_pressure __read_mostly = 100;
75EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
76
77__cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
78
79EXPORT_SYMBOL(rename_lock);
80
81static struct kmem_cache *dentry_cache __ro_after_init;
82
83const struct qstr empty_name = QSTR_INIT("", 0);
84EXPORT_SYMBOL(empty_name);
85const struct qstr slash_name = QSTR_INIT("/", 1);
86EXPORT_SYMBOL(slash_name);
87const struct qstr dotdot_name = QSTR_INIT("..", 2);
88EXPORT_SYMBOL(dotdot_name);
89
90/*
91 * This is the single most critical data structure when it comes
92 * to the dcache: the hashtable for lookups. Somebody should try
93 * to make this good - I've just made it work.
94 *
95 * This hash-function tries to avoid losing too many bits of hash
96 * information, yet avoid using a prime hash-size or similar.
97 */
98
99static unsigned int d_hash_shift __ro_after_init;
100
101static struct hlist_bl_head *dentry_hashtable __ro_after_init;
102
103static inline struct hlist_bl_head *d_hash(unsigned int hash)
104{
105 return dentry_hashtable + (hash >> d_hash_shift);
106}
107
108#define IN_LOOKUP_SHIFT 10
109static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
110
111static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
112 unsigned int hash)
113{
114 hash += (unsigned long) parent / L1_CACHE_BYTES;
115 return in_lookup_hashtable + hash_32(val: hash, IN_LOOKUP_SHIFT);
116}
117
118struct dentry_stat_t {
119 long nr_dentry;
120 long nr_unused;
121 long age_limit; /* age in seconds */
122 long want_pages; /* pages requested by system */
123 long nr_negative; /* # of unused negative dentries */
124 long dummy; /* Reserved for future use */
125};
126
127static DEFINE_PER_CPU(long, nr_dentry);
128static DEFINE_PER_CPU(long, nr_dentry_unused);
129static DEFINE_PER_CPU(long, nr_dentry_negative);
130
131#if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
132/* Statistics gathering. */
133static struct dentry_stat_t dentry_stat = {
134 .age_limit = 45,
135};
136
137/*
138 * Here we resort to our own counters instead of using generic per-cpu counters
139 * for consistency with what the vfs inode code does. We are expected to harvest
140 * better code and performance by having our own specialized counters.
141 *
142 * Please note that the loop is done over all possible CPUs, not over all online
143 * CPUs. The reason for this is that we don't want to play games with CPUs going
144 * on and off. If one of them goes off, we will just keep their counters.
145 *
146 * glommer: See cffbc8a for details, and if you ever intend to change this,
147 * please update all vfs counters to match.
148 */
149static long get_nr_dentry(void)
150{
151 int i;
152 long sum = 0;
153 for_each_possible_cpu(i)
154 sum += per_cpu(nr_dentry, i);
155 return sum < 0 ? 0 : sum;
156}
157
158static long get_nr_dentry_unused(void)
159{
160 int i;
161 long sum = 0;
162 for_each_possible_cpu(i)
163 sum += per_cpu(nr_dentry_unused, i);
164 return sum < 0 ? 0 : sum;
165}
166
167static long get_nr_dentry_negative(void)
168{
169 int i;
170 long sum = 0;
171
172 for_each_possible_cpu(i)
173 sum += per_cpu(nr_dentry_negative, i);
174 return sum < 0 ? 0 : sum;
175}
176
177static int proc_nr_dentry(struct ctl_table *table, int write, void *buffer,
178 size_t *lenp, loff_t *ppos)
179{
180 dentry_stat.nr_dentry = get_nr_dentry();
181 dentry_stat.nr_unused = get_nr_dentry_unused();
182 dentry_stat.nr_negative = get_nr_dentry_negative();
183 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
184}
185
186static struct ctl_table fs_dcache_sysctls[] = {
187 {
188 .procname = "dentry-state",
189 .data = &dentry_stat,
190 .maxlen = 6*sizeof(long),
191 .mode = 0444,
192 .proc_handler = proc_nr_dentry,
193 },
194 { }
195};
196
197static int __init init_fs_dcache_sysctls(void)
198{
199 register_sysctl_init("fs", fs_dcache_sysctls);
200 return 0;
201}
202fs_initcall(init_fs_dcache_sysctls);
203#endif
204
205/*
206 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
207 * The strings are both count bytes long, and count is non-zero.
208 */
209#ifdef CONFIG_DCACHE_WORD_ACCESS
210
211#include <asm/word-at-a-time.h>
212/*
213 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
214 * aligned allocation for this particular component. We don't
215 * strictly need the load_unaligned_zeropad() safety, but it
216 * doesn't hurt either.
217 *
218 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
219 * need the careful unaligned handling.
220 */
221static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
222{
223 unsigned long a,b,mask;
224
225 for (;;) {
226 a = read_word_at_a_time(addr: cs);
227 b = load_unaligned_zeropad(addr: ct);
228 if (tcount < sizeof(unsigned long))
229 break;
230 if (unlikely(a != b))
231 return 1;
232 cs += sizeof(unsigned long);
233 ct += sizeof(unsigned long);
234 tcount -= sizeof(unsigned long);
235 if (!tcount)
236 return 0;
237 }
238 mask = bytemask_from_count(tcount);
239 return unlikely(!!((a ^ b) & mask));
240}
241
242#else
243
244static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
245{
246 do {
247 if (*cs != *ct)
248 return 1;
249 cs++;
250 ct++;
251 tcount--;
252 } while (tcount);
253 return 0;
254}
255
256#endif
257
258static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
259{
260 /*
261 * Be careful about RCU walk racing with rename:
262 * use 'READ_ONCE' to fetch the name pointer.
263 *
264 * NOTE! Even if a rename will mean that the length
265 * was not loaded atomically, we don't care. The
266 * RCU walk will check the sequence count eventually,
267 * and catch it. And we won't overrun the buffer,
268 * because we're reading the name pointer atomically,
269 * and a dentry name is guaranteed to be properly
270 * terminated with a NUL byte.
271 *
272 * End result: even if 'len' is wrong, we'll exit
273 * early because the data cannot match (there can
274 * be no NUL in the ct/tcount data)
275 */
276 const unsigned char *cs = READ_ONCE(dentry->d_name.name);
277
278 return dentry_string_cmp(cs, ct, tcount);
279}
280
281struct external_name {
282 union {
283 atomic_t count;
284 struct rcu_head head;
285 } u;
286 unsigned char name[];
287};
288
289static inline struct external_name *external_name(struct dentry *dentry)
290{
291 return container_of(dentry->d_name.name, struct external_name, name[0]);
292}
293
294static void __d_free(struct rcu_head *head)
295{
296 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
297
298 kmem_cache_free(s: dentry_cache, objp: dentry);
299}
300
301static void __d_free_external(struct rcu_head *head)
302{
303 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
304 kfree(objp: external_name(dentry));
305 kmem_cache_free(s: dentry_cache, objp: dentry);
306}
307
308static inline int dname_external(const struct dentry *dentry)
309{
310 return dentry->d_name.name != dentry->d_iname;
311}
312
313void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
314{
315 spin_lock(lock: &dentry->d_lock);
316 name->name = dentry->d_name;
317 if (unlikely(dname_external(dentry))) {
318 atomic_inc(v: &external_name(dentry)->u.count);
319 } else {
320 memcpy(name->inline_name, dentry->d_iname,
321 dentry->d_name.len + 1);
322 name->name.name = name->inline_name;
323 }
324 spin_unlock(lock: &dentry->d_lock);
325}
326EXPORT_SYMBOL(take_dentry_name_snapshot);
327
328void release_dentry_name_snapshot(struct name_snapshot *name)
329{
330 if (unlikely(name->name.name != name->inline_name)) {
331 struct external_name *p;
332 p = container_of(name->name.name, struct external_name, name[0]);
333 if (unlikely(atomic_dec_and_test(&p->u.count)))
334 kfree_rcu(p, u.head);
335 }
336}
337EXPORT_SYMBOL(release_dentry_name_snapshot);
338
339static inline void __d_set_inode_and_type(struct dentry *dentry,
340 struct inode *inode,
341 unsigned type_flags)
342{
343 unsigned flags;
344
345 dentry->d_inode = inode;
346 flags = READ_ONCE(dentry->d_flags);
347 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
348 flags |= type_flags;
349 smp_store_release(&dentry->d_flags, flags);
350}
351
352static inline void __d_clear_type_and_inode(struct dentry *dentry)
353{
354 unsigned flags = READ_ONCE(dentry->d_flags);
355
356 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
357 WRITE_ONCE(dentry->d_flags, flags);
358 dentry->d_inode = NULL;
359 if (dentry->d_flags & DCACHE_LRU_LIST)
360 this_cpu_inc(nr_dentry_negative);
361}
362
363static void dentry_free(struct dentry *dentry)
364{
365 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
366 if (unlikely(dname_external(dentry))) {
367 struct external_name *p = external_name(dentry);
368 if (likely(atomic_dec_and_test(&p->u.count))) {
369 call_rcu(head: &dentry->d_u.d_rcu, func: __d_free_external);
370 return;
371 }
372 }
373 /* if dentry was never visible to RCU, immediate free is OK */
374 if (dentry->d_flags & DCACHE_NORCU)
375 __d_free(head: &dentry->d_u.d_rcu);
376 else
377 call_rcu(head: &dentry->d_u.d_rcu, func: __d_free);
378}
379
380/*
381 * Release the dentry's inode, using the filesystem
382 * d_iput() operation if defined.
383 */
384static void dentry_unlink_inode(struct dentry * dentry)
385 __releases(dentry->d_lock)
386 __releases(dentry->d_inode->i_lock)
387{
388 struct inode *inode = dentry->d_inode;
389
390 raw_write_seqcount_begin(&dentry->d_seq);
391 __d_clear_type_and_inode(dentry);
392 hlist_del_init(n: &dentry->d_u.d_alias);
393 raw_write_seqcount_end(&dentry->d_seq);
394 spin_unlock(lock: &dentry->d_lock);
395 spin_unlock(lock: &inode->i_lock);
396 if (!inode->i_nlink)
397 fsnotify_inoderemove(inode);
398 if (dentry->d_op && dentry->d_op->d_iput)
399 dentry->d_op->d_iput(dentry, inode);
400 else
401 iput(inode);
402}
403
404/*
405 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
406 * is in use - which includes both the "real" per-superblock
407 * LRU list _and_ the DCACHE_SHRINK_LIST use.
408 *
409 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
410 * on the shrink list (ie not on the superblock LRU list).
411 *
412 * The per-cpu "nr_dentry_unused" counters are updated with
413 * the DCACHE_LRU_LIST bit.
414 *
415 * The per-cpu "nr_dentry_negative" counters are only updated
416 * when deleted from or added to the per-superblock LRU list, not
417 * from/to the shrink list. That is to avoid an unneeded dec/inc
418 * pair when moving from LRU to shrink list in select_collect().
419 *
420 * These helper functions make sure we always follow the
421 * rules. d_lock must be held by the caller.
422 */
423#define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
424static void d_lru_add(struct dentry *dentry)
425{
426 D_FLAG_VERIFY(dentry, 0);
427 dentry->d_flags |= DCACHE_LRU_LIST;
428 this_cpu_inc(nr_dentry_unused);
429 if (d_is_negative(dentry))
430 this_cpu_inc(nr_dentry_negative);
431 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
432}
433
434static void d_lru_del(struct dentry *dentry)
435{
436 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
437 dentry->d_flags &= ~DCACHE_LRU_LIST;
438 this_cpu_dec(nr_dentry_unused);
439 if (d_is_negative(dentry))
440 this_cpu_dec(nr_dentry_negative);
441 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
442}
443
444static void d_shrink_del(struct dentry *dentry)
445{
446 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
447 list_del_init(entry: &dentry->d_lru);
448 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
449 this_cpu_dec(nr_dentry_unused);
450}
451
452static void d_shrink_add(struct dentry *dentry, struct list_head *list)
453{
454 D_FLAG_VERIFY(dentry, 0);
455 list_add(new: &dentry->d_lru, head: list);
456 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
457 this_cpu_inc(nr_dentry_unused);
458}
459
460/*
461 * These can only be called under the global LRU lock, ie during the
462 * callback for freeing the LRU list. "isolate" removes it from the
463 * LRU lists entirely, while shrink_move moves it to the indicated
464 * private list.
465 */
466static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
467{
468 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
469 dentry->d_flags &= ~DCACHE_LRU_LIST;
470 this_cpu_dec(nr_dentry_unused);
471 if (d_is_negative(dentry))
472 this_cpu_dec(nr_dentry_negative);
473 list_lru_isolate(list: lru, item: &dentry->d_lru);
474}
475
476static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
477 struct list_head *list)
478{
479 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
480 dentry->d_flags |= DCACHE_SHRINK_LIST;
481 if (d_is_negative(dentry))
482 this_cpu_dec(nr_dentry_negative);
483 list_lru_isolate_move(list: lru, item: &dentry->d_lru, head: list);
484}
485
486static void ___d_drop(struct dentry *dentry)
487{
488 struct hlist_bl_head *b;
489 /*
490 * Hashed dentries are normally on the dentry hashtable,
491 * with the exception of those newly allocated by
492 * d_obtain_root, which are always IS_ROOT:
493 */
494 if (unlikely(IS_ROOT(dentry)))
495 b = &dentry->d_sb->s_roots;
496 else
497 b = d_hash(hash: dentry->d_name.hash);
498
499 hlist_bl_lock(b);
500 __hlist_bl_del(n: &dentry->d_hash);
501 hlist_bl_unlock(b);
502}
503
504void __d_drop(struct dentry *dentry)
505{
506 if (!d_unhashed(dentry)) {
507 ___d_drop(dentry);
508 dentry->d_hash.pprev = NULL;
509 write_seqcount_invalidate(&dentry->d_seq);
510 }
511}
512EXPORT_SYMBOL(__d_drop);
513
514/**
515 * d_drop - drop a dentry
516 * @dentry: dentry to drop
517 *
518 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
519 * be found through a VFS lookup any more. Note that this is different from
520 * deleting the dentry - d_delete will try to mark the dentry negative if
521 * possible, giving a successful _negative_ lookup, while d_drop will
522 * just make the cache lookup fail.
523 *
524 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
525 * reason (NFS timeouts or autofs deletes).
526 *
527 * __d_drop requires dentry->d_lock
528 *
529 * ___d_drop doesn't mark dentry as "unhashed"
530 * (dentry->d_hash.pprev will be LIST_POISON2, not NULL).
531 */
532void d_drop(struct dentry *dentry)
533{
534 spin_lock(lock: &dentry->d_lock);
535 __d_drop(dentry);
536 spin_unlock(lock: &dentry->d_lock);
537}
538EXPORT_SYMBOL(d_drop);
539
540static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent)
541{
542 struct dentry *next;
543 /*
544 * Inform d_walk() and shrink_dentry_list() that we are no longer
545 * attached to the dentry tree
546 */
547 dentry->d_flags |= DCACHE_DENTRY_KILLED;
548 if (unlikely(list_empty(&dentry->d_child)))
549 return;
550 __list_del_entry(entry: &dentry->d_child);
551 /*
552 * Cursors can move around the list of children. While we'd been
553 * a normal list member, it didn't matter - ->d_child.next would've
554 * been updated. However, from now on it won't be and for the
555 * things like d_walk() it might end up with a nasty surprise.
556 * Normally d_walk() doesn't care about cursors moving around -
557 * ->d_lock on parent prevents that and since a cursor has no children
558 * of its own, we get through it without ever unlocking the parent.
559 * There is one exception, though - if we ascend from a child that
560 * gets killed as soon as we unlock it, the next sibling is found
561 * using the value left in its ->d_child.next. And if _that_
562 * pointed to a cursor, and cursor got moved (e.g. by lseek())
563 * before d_walk() regains parent->d_lock, we'll end up skipping
564 * everything the cursor had been moved past.
565 *
566 * Solution: make sure that the pointer left behind in ->d_child.next
567 * points to something that won't be moving around. I.e. skip the
568 * cursors.
569 */
570 while (dentry->d_child.next != &parent->d_subdirs) {
571 next = list_entry(dentry->d_child.next, struct dentry, d_child);
572 if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
573 break;
574 dentry->d_child.next = next->d_child.next;
575 }
576}
577
578static void __dentry_kill(struct dentry *dentry)
579{
580 struct dentry *parent = NULL;
581 bool can_free = true;
582 if (!IS_ROOT(dentry))
583 parent = dentry->d_parent;
584
585 /*
586 * The dentry is now unrecoverably dead to the world.
587 */
588 lockref_mark_dead(&dentry->d_lockref);
589
590 /*
591 * inform the fs via d_prune that this dentry is about to be
592 * unhashed and destroyed.
593 */
594 if (dentry->d_flags & DCACHE_OP_PRUNE)
595 dentry->d_op->d_prune(dentry);
596
597 if (dentry->d_flags & DCACHE_LRU_LIST) {
598 if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
599 d_lru_del(dentry);
600 }
601 /* if it was on the hash then remove it */
602 __d_drop(dentry);
603 dentry_unlist(dentry, parent);
604 if (parent)
605 spin_unlock(lock: &parent->d_lock);
606 if (dentry->d_inode)
607 dentry_unlink_inode(dentry);
608 else
609 spin_unlock(lock: &dentry->d_lock);
610 this_cpu_dec(nr_dentry);
611 if (dentry->d_op && dentry->d_op->d_release)
612 dentry->d_op->d_release(dentry);
613
614 spin_lock(lock: &dentry->d_lock);
615 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
616 dentry->d_flags |= DCACHE_MAY_FREE;
617 can_free = false;
618 }
619 spin_unlock(lock: &dentry->d_lock);
620 if (likely(can_free))
621 dentry_free(dentry);
622 cond_resched();
623}
624
625static struct dentry *__lock_parent(struct dentry *dentry)
626{
627 struct dentry *parent;
628 rcu_read_lock();
629 spin_unlock(lock: &dentry->d_lock);
630again:
631 parent = READ_ONCE(dentry->d_parent);
632 spin_lock(lock: &parent->d_lock);
633 /*
634 * We can't blindly lock dentry until we are sure
635 * that we won't violate the locking order.
636 * Any changes of dentry->d_parent must have
637 * been done with parent->d_lock held, so
638 * spin_lock() above is enough of a barrier
639 * for checking if it's still our child.
640 */
641 if (unlikely(parent != dentry->d_parent)) {
642 spin_unlock(lock: &parent->d_lock);
643 goto again;
644 }
645 rcu_read_unlock();
646 if (parent != dentry)
647 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
648 else
649 parent = NULL;
650 return parent;
651}
652
653static inline struct dentry *lock_parent(struct dentry *dentry)
654{
655 struct dentry *parent = dentry->d_parent;
656 if (IS_ROOT(dentry))
657 return NULL;
658 if (likely(spin_trylock(&parent->d_lock)))
659 return parent;
660 return __lock_parent(dentry);
661}
662
663static inline bool retain_dentry(struct dentry *dentry)
664{
665 WARN_ON(d_in_lookup(dentry));
666
667 /* Unreachable? Get rid of it */
668 if (unlikely(d_unhashed(dentry)))
669 return false;
670
671 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
672 return false;
673
674 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
675 if (dentry->d_op->d_delete(dentry))
676 return false;
677 }
678
679 if (unlikely(dentry->d_flags & DCACHE_DONTCACHE))
680 return false;
681
682 /* retain; LRU fodder */
683 dentry->d_lockref.count--;
684 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
685 d_lru_add(dentry);
686 else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED)))
687 dentry->d_flags |= DCACHE_REFERENCED;
688 return true;
689}
690
691void d_mark_dontcache(struct inode *inode)
692{
693 struct dentry *de;
694
695 spin_lock(lock: &inode->i_lock);
696 hlist_for_each_entry(de, &inode->i_dentry, d_u.d_alias) {
697 spin_lock(lock: &de->d_lock);
698 de->d_flags |= DCACHE_DONTCACHE;
699 spin_unlock(lock: &de->d_lock);
700 }
701 inode->i_state |= I_DONTCACHE;
702 spin_unlock(lock: &inode->i_lock);
703}
704EXPORT_SYMBOL(d_mark_dontcache);
705
706/*
707 * Finish off a dentry we've decided to kill.
708 * dentry->d_lock must be held, returns with it unlocked.
709 * Returns dentry requiring refcount drop, or NULL if we're done.
710 */
711static struct dentry *dentry_kill(struct dentry *dentry)
712 __releases(dentry->d_lock)
713{
714 struct inode *inode = dentry->d_inode;
715 struct dentry *parent = NULL;
716
717 if (inode && unlikely(!spin_trylock(&inode->i_lock)))
718 goto slow_positive;
719
720 if (!IS_ROOT(dentry)) {
721 parent = dentry->d_parent;
722 if (unlikely(!spin_trylock(&parent->d_lock))) {
723 parent = __lock_parent(dentry);
724 if (likely(inode || !dentry->d_inode))
725 goto got_locks;
726 /* negative that became positive */
727 if (parent)
728 spin_unlock(lock: &parent->d_lock);
729 inode = dentry->d_inode;
730 goto slow_positive;
731 }
732 }
733 __dentry_kill(dentry);
734 return parent;
735
736slow_positive:
737 spin_unlock(lock: &dentry->d_lock);
738 spin_lock(lock: &inode->i_lock);
739 spin_lock(lock: &dentry->d_lock);
740 parent = lock_parent(dentry);
741got_locks:
742 if (unlikely(dentry->d_lockref.count != 1)) {
743 dentry->d_lockref.count--;
744 } else if (likely(!retain_dentry(dentry))) {
745 __dentry_kill(dentry);
746 return parent;
747 }
748 /* we are keeping it, after all */
749 if (inode)
750 spin_unlock(lock: &inode->i_lock);
751 if (parent)
752 spin_unlock(lock: &parent->d_lock);
753 spin_unlock(lock: &dentry->d_lock);
754 return NULL;
755}
756
757/*
758 * Try to do a lockless dput(), and return whether that was successful.
759 *
760 * If unsuccessful, we return false, having already taken the dentry lock.
761 *
762 * The caller needs to hold the RCU read lock, so that the dentry is
763 * guaranteed to stay around even if the refcount goes down to zero!
764 */
765static inline bool fast_dput(struct dentry *dentry)
766{
767 int ret;
768 unsigned int d_flags;
769
770 /*
771 * If we have a d_op->d_delete() operation, we sould not
772 * let the dentry count go to zero, so use "put_or_lock".
773 */
774 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
775 return lockref_put_or_lock(&dentry->d_lockref);
776
777 /*
778 * .. otherwise, we can try to just decrement the
779 * lockref optimistically.
780 */
781 ret = lockref_put_return(&dentry->d_lockref);
782
783 /*
784 * If the lockref_put_return() failed due to the lock being held
785 * by somebody else, the fast path has failed. We will need to
786 * get the lock, and then check the count again.
787 */
788 if (unlikely(ret < 0)) {
789 spin_lock(lock: &dentry->d_lock);
790 if (dentry->d_lockref.count > 1) {
791 dentry->d_lockref.count--;
792 spin_unlock(lock: &dentry->d_lock);
793 return true;
794 }
795 return false;
796 }
797
798 /*
799 * If we weren't the last ref, we're done.
800 */
801 if (ret)
802 return true;
803
804 /*
805 * Careful, careful. The reference count went down
806 * to zero, but we don't hold the dentry lock, so
807 * somebody else could get it again, and do another
808 * dput(), and we need to not race with that.
809 *
810 * However, there is a very special and common case
811 * where we don't care, because there is nothing to
812 * do: the dentry is still hashed, it does not have
813 * a 'delete' op, and it's referenced and already on
814 * the LRU list.
815 *
816 * NOTE! Since we aren't locked, these values are
817 * not "stable". However, it is sufficient that at
818 * some point after we dropped the reference the
819 * dentry was hashed and the flags had the proper
820 * value. Other dentry users may have re-gotten
821 * a reference to the dentry and change that, but
822 * our work is done - we can leave the dentry
823 * around with a zero refcount.
824 *
825 * Nevertheless, there are two cases that we should kill
826 * the dentry anyway.
827 * 1. free disconnected dentries as soon as their refcount
828 * reached zero.
829 * 2. free dentries if they should not be cached.
830 */
831 smp_rmb();
832 d_flags = READ_ONCE(dentry->d_flags);
833 d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST |
834 DCACHE_DISCONNECTED | DCACHE_DONTCACHE;
835
836 /* Nothing to do? Dropping the reference was all we needed? */
837 if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
838 return true;
839
840 /*
841 * Not the fast normal case? Get the lock. We've already decremented
842 * the refcount, but we'll need to re-check the situation after
843 * getting the lock.
844 */
845 spin_lock(lock: &dentry->d_lock);
846
847 /*
848 * Did somebody else grab a reference to it in the meantime, and
849 * we're no longer the last user after all? Alternatively, somebody
850 * else could have killed it and marked it dead. Either way, we
851 * don't need to do anything else.
852 */
853 if (dentry->d_lockref.count) {
854 spin_unlock(lock: &dentry->d_lock);
855 return true;
856 }
857
858 /*
859 * Re-get the reference we optimistically dropped. We hold the
860 * lock, and we just tested that it was zero, so we can just
861 * set it to 1.
862 */
863 dentry->d_lockref.count = 1;
864 return false;
865}
866
867
868/*
869 * This is dput
870 *
871 * This is complicated by the fact that we do not want to put
872 * dentries that are no longer on any hash chain on the unused
873 * list: we'd much rather just get rid of them immediately.
874 *
875 * However, that implies that we have to traverse the dentry
876 * tree upwards to the parents which might _also_ now be
877 * scheduled for deletion (it may have been only waiting for
878 * its last child to go away).
879 *
880 * This tail recursion is done by hand as we don't want to depend
881 * on the compiler to always get this right (gcc generally doesn't).
882 * Real recursion would eat up our stack space.
883 */
884
885/*
886 * dput - release a dentry
887 * @dentry: dentry to release
888 *
889 * Release a dentry. This will drop the usage count and if appropriate
890 * call the dentry unlink method as well as removing it from the queues and
891 * releasing its resources. If the parent dentries were scheduled for release
892 * they too may now get deleted.
893 */
894void dput(struct dentry *dentry)
895{
896 while (dentry) {
897 might_sleep();
898
899 rcu_read_lock();
900 if (likely(fast_dput(dentry))) {
901 rcu_read_unlock();
902 return;
903 }
904
905 /* Slow case: now with the dentry lock held */
906 rcu_read_unlock();
907
908 if (likely(retain_dentry(dentry))) {
909 spin_unlock(lock: &dentry->d_lock);
910 return;
911 }
912
913 dentry = dentry_kill(dentry);
914 }
915}
916EXPORT_SYMBOL(dput);
917
918static void __dput_to_list(struct dentry *dentry, struct list_head *list)
919__must_hold(&dentry->d_lock)
920{
921 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
922 /* let the owner of the list it's on deal with it */
923 --dentry->d_lockref.count;
924 } else {
925 if (dentry->d_flags & DCACHE_LRU_LIST)
926 d_lru_del(dentry);
927 if (!--dentry->d_lockref.count)
928 d_shrink_add(dentry, list);
929 }
930}
931
932void dput_to_list(struct dentry *dentry, struct list_head *list)
933{
934 rcu_read_lock();
935 if (likely(fast_dput(dentry))) {
936 rcu_read_unlock();
937 return;
938 }
939 rcu_read_unlock();
940 if (!retain_dentry(dentry))
941 __dput_to_list(dentry, list);
942 spin_unlock(lock: &dentry->d_lock);
943}
944
945/* This must be called with d_lock held */
946static inline void __dget_dlock(struct dentry *dentry)
947{
948 dentry->d_lockref.count++;
949}
950
951static inline void __dget(struct dentry *dentry)
952{
953 lockref_get(&dentry->d_lockref);
954}
955
956struct dentry *dget_parent(struct dentry *dentry)
957{
958 int gotref;
959 struct dentry *ret;
960 unsigned seq;
961
962 /*
963 * Do optimistic parent lookup without any
964 * locking.
965 */
966 rcu_read_lock();
967 seq = raw_seqcount_begin(&dentry->d_seq);
968 ret = READ_ONCE(dentry->d_parent);
969 gotref = lockref_get_not_zero(&ret->d_lockref);
970 rcu_read_unlock();
971 if (likely(gotref)) {
972 if (!read_seqcount_retry(&dentry->d_seq, seq))
973 return ret;
974 dput(ret);
975 }
976
977repeat:
978 /*
979 * Don't need rcu_dereference because we re-check it was correct under
980 * the lock.
981 */
982 rcu_read_lock();
983 ret = dentry->d_parent;
984 spin_lock(lock: &ret->d_lock);
985 if (unlikely(ret != dentry->d_parent)) {
986 spin_unlock(lock: &ret->d_lock);
987 rcu_read_unlock();
988 goto repeat;
989 }
990 rcu_read_unlock();
991 BUG_ON(!ret->d_lockref.count);
992 ret->d_lockref.count++;
993 spin_unlock(lock: &ret->d_lock);
994 return ret;
995}
996EXPORT_SYMBOL(dget_parent);
997
998static struct dentry * __d_find_any_alias(struct inode *inode)
999{
1000 struct dentry *alias;
1001
1002 if (hlist_empty(h: &inode->i_dentry))
1003 return NULL;
1004 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
1005 __dget(dentry: alias);
1006 return alias;
1007}
1008
1009/**
1010 * d_find_any_alias - find any alias for a given inode
1011 * @inode: inode to find an alias for
1012 *
1013 * If any aliases exist for the given inode, take and return a
1014 * reference for one of them. If no aliases exist, return %NULL.
1015 */
1016struct dentry *d_find_any_alias(struct inode *inode)
1017{
1018 struct dentry *de;
1019
1020 spin_lock(lock: &inode->i_lock);
1021 de = __d_find_any_alias(inode);
1022 spin_unlock(lock: &inode->i_lock);
1023 return de;
1024}
1025EXPORT_SYMBOL(d_find_any_alias);
1026
1027static struct dentry *__d_find_alias(struct inode *inode)
1028{
1029 struct dentry *alias;
1030
1031 if (S_ISDIR(inode->i_mode))
1032 return __d_find_any_alias(inode);
1033
1034 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1035 spin_lock(lock: &alias->d_lock);
1036 if (!d_unhashed(dentry: alias)) {
1037 __dget_dlock(dentry: alias);
1038 spin_unlock(lock: &alias->d_lock);
1039 return alias;
1040 }
1041 spin_unlock(lock: &alias->d_lock);
1042 }
1043 return NULL;
1044}
1045
1046/**
1047 * d_find_alias - grab a hashed alias of inode
1048 * @inode: inode in question
1049 *
1050 * If inode has a hashed alias, or is a directory and has any alias,
1051 * acquire the reference to alias and return it. Otherwise return NULL.
1052 * Notice that if inode is a directory there can be only one alias and
1053 * it can be unhashed only if it has no children, or if it is the root
1054 * of a filesystem, or if the directory was renamed and d_revalidate
1055 * was the first vfs operation to notice.
1056 *
1057 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
1058 * any other hashed alias over that one.
1059 */
1060struct dentry *d_find_alias(struct inode *inode)
1061{
1062 struct dentry *de = NULL;
1063
1064 if (!hlist_empty(h: &inode->i_dentry)) {
1065 spin_lock(lock: &inode->i_lock);
1066 de = __d_find_alias(inode);
1067 spin_unlock(lock: &inode->i_lock);
1068 }
1069 return de;
1070}
1071EXPORT_SYMBOL(d_find_alias);
1072
1073/*
1074 * Caller MUST be holding rcu_read_lock() and be guaranteed
1075 * that inode won't get freed until rcu_read_unlock().
1076 */
1077struct dentry *d_find_alias_rcu(struct inode *inode)
1078{
1079 struct hlist_head *l = &inode->i_dentry;
1080 struct dentry *de = NULL;
1081
1082 spin_lock(lock: &inode->i_lock);
1083 // ->i_dentry and ->i_rcu are colocated, but the latter won't be
1084 // used without having I_FREEING set, which means no aliases left
1085 if (likely(!(inode->i_state & I_FREEING) && !hlist_empty(l))) {
1086 if (S_ISDIR(inode->i_mode)) {
1087 de = hlist_entry(l->first, struct dentry, d_u.d_alias);
1088 } else {
1089 hlist_for_each_entry(de, l, d_u.d_alias)
1090 if (!d_unhashed(dentry: de))
1091 break;
1092 }
1093 }
1094 spin_unlock(lock: &inode->i_lock);
1095 return de;
1096}
1097
1098/*
1099 * Try to kill dentries associated with this inode.
1100 * WARNING: you must own a reference to inode.
1101 */
1102void d_prune_aliases(struct inode *inode)
1103{
1104 struct dentry *dentry;
1105restart:
1106 spin_lock(lock: &inode->i_lock);
1107 hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
1108 spin_lock(lock: &dentry->d_lock);
1109 if (!dentry->d_lockref.count) {
1110 struct dentry *parent = lock_parent(dentry);
1111 if (likely(!dentry->d_lockref.count)) {
1112 __dentry_kill(dentry);
1113 dput(parent);
1114 goto restart;
1115 }
1116 if (parent)
1117 spin_unlock(lock: &parent->d_lock);
1118 }
1119 spin_unlock(lock: &dentry->d_lock);
1120 }
1121 spin_unlock(lock: &inode->i_lock);
1122}
1123EXPORT_SYMBOL(d_prune_aliases);
1124
1125/*
1126 * Lock a dentry from shrink list.
1127 * Called under rcu_read_lock() and dentry->d_lock; the former
1128 * guarantees that nothing we access will be freed under us.
1129 * Note that dentry is *not* protected from concurrent dentry_kill(),
1130 * d_delete(), etc.
1131 *
1132 * Return false if dentry has been disrupted or grabbed, leaving
1133 * the caller to kick it off-list. Otherwise, return true and have
1134 * that dentry's inode and parent both locked.
1135 */
1136static bool shrink_lock_dentry(struct dentry *dentry)
1137{
1138 struct inode *inode;
1139 struct dentry *parent;
1140
1141 if (dentry->d_lockref.count)
1142 return false;
1143
1144 inode = dentry->d_inode;
1145 if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
1146 spin_unlock(lock: &dentry->d_lock);
1147 spin_lock(lock: &inode->i_lock);
1148 spin_lock(lock: &dentry->d_lock);
1149 if (unlikely(dentry->d_lockref.count))
1150 goto out;
1151 /* changed inode means that somebody had grabbed it */
1152 if (unlikely(inode != dentry->d_inode))
1153 goto out;
1154 }
1155
1156 parent = dentry->d_parent;
1157 if (IS_ROOT(dentry) || likely(spin_trylock(&parent->d_lock)))
1158 return true;
1159
1160 spin_unlock(lock: &dentry->d_lock);
1161 spin_lock(lock: &parent->d_lock);
1162 if (unlikely(parent != dentry->d_parent)) {
1163 spin_unlock(lock: &parent->d_lock);
1164 spin_lock(lock: &dentry->d_lock);
1165 goto out;
1166 }
1167 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1168 if (likely(!dentry->d_lockref.count))
1169 return true;
1170 spin_unlock(lock: &parent->d_lock);
1171out:
1172 if (inode)
1173 spin_unlock(lock: &inode->i_lock);
1174 return false;
1175}
1176
1177void shrink_dentry_list(struct list_head *list)
1178{
1179 while (!list_empty(head: list)) {
1180 struct dentry *dentry, *parent;
1181
1182 dentry = list_entry(list->prev, struct dentry, d_lru);
1183 spin_lock(lock: &dentry->d_lock);
1184 rcu_read_lock();
1185 if (!shrink_lock_dentry(dentry)) {
1186 bool can_free = false;
1187 rcu_read_unlock();
1188 d_shrink_del(dentry);
1189 if (dentry->d_lockref.count < 0)
1190 can_free = dentry->d_flags & DCACHE_MAY_FREE;
1191 spin_unlock(lock: &dentry->d_lock);
1192 if (can_free)
1193 dentry_free(dentry);
1194 continue;
1195 }
1196 rcu_read_unlock();
1197 d_shrink_del(dentry);
1198 parent = dentry->d_parent;
1199 if (parent != dentry)
1200 __dput_to_list(dentry: parent, list);
1201 __dentry_kill(dentry);
1202 }
1203}
1204
1205static enum lru_status dentry_lru_isolate(struct list_head *item,
1206 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1207{
1208 struct list_head *freeable = arg;
1209 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1210
1211
1212 /*
1213 * we are inverting the lru lock/dentry->d_lock here,
1214 * so use a trylock. If we fail to get the lock, just skip
1215 * it
1216 */
1217 if (!spin_trylock(lock: &dentry->d_lock))
1218 return LRU_SKIP;
1219
1220 /*
1221 * Referenced dentries are still in use. If they have active
1222 * counts, just remove them from the LRU. Otherwise give them
1223 * another pass through the LRU.
1224 */
1225 if (dentry->d_lockref.count) {
1226 d_lru_isolate(lru, dentry);
1227 spin_unlock(lock: &dentry->d_lock);
1228 return LRU_REMOVED;
1229 }
1230
1231 if (dentry->d_flags & DCACHE_REFERENCED) {
1232 dentry->d_flags &= ~DCACHE_REFERENCED;
1233 spin_unlock(lock: &dentry->d_lock);
1234
1235 /*
1236 * The list move itself will be made by the common LRU code. At
1237 * this point, we've dropped the dentry->d_lock but keep the
1238 * lru lock. This is safe to do, since every list movement is
1239 * protected by the lru lock even if both locks are held.
1240 *
1241 * This is guaranteed by the fact that all LRU management
1242 * functions are intermediated by the LRU API calls like
1243 * list_lru_add and list_lru_del. List movement in this file
1244 * only ever occur through this functions or through callbacks
1245 * like this one, that are called from the LRU API.
1246 *
1247 * The only exceptions to this are functions like
1248 * shrink_dentry_list, and code that first checks for the
1249 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
1250 * operating only with stack provided lists after they are
1251 * properly isolated from the main list. It is thus, always a
1252 * local access.
1253 */
1254 return LRU_ROTATE;
1255 }
1256
1257 d_lru_shrink_move(lru, dentry, list: freeable);
1258 spin_unlock(lock: &dentry->d_lock);
1259
1260 return LRU_REMOVED;
1261}
1262
1263/**
1264 * prune_dcache_sb - shrink the dcache
1265 * @sb: superblock
1266 * @sc: shrink control, passed to list_lru_shrink_walk()
1267 *
1268 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1269 * is done when we need more memory and called from the superblock shrinker
1270 * function.
1271 *
1272 * This function may fail to free any resources if all the dentries are in
1273 * use.
1274 */
1275long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1276{
1277 LIST_HEAD(dispose);
1278 long freed;
1279
1280 freed = list_lru_shrink_walk(lru: &sb->s_dentry_lru, sc,
1281 isolate: dentry_lru_isolate, cb_arg: &dispose);
1282 shrink_dentry_list(list: &dispose);
1283 return freed;
1284}
1285
1286static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1287 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1288{
1289 struct list_head *freeable = arg;
1290 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1291
1292 /*
1293 * we are inverting the lru lock/dentry->d_lock here,
1294 * so use a trylock. If we fail to get the lock, just skip
1295 * it
1296 */
1297 if (!spin_trylock(lock: &dentry->d_lock))
1298 return LRU_SKIP;
1299
1300 d_lru_shrink_move(lru, dentry, list: freeable);
1301 spin_unlock(lock: &dentry->d_lock);
1302
1303 return LRU_REMOVED;
1304}
1305
1306
1307/**
1308 * shrink_dcache_sb - shrink dcache for a superblock
1309 * @sb: superblock
1310 *
1311 * Shrink the dcache for the specified super block. This is used to free
1312 * the dcache before unmounting a file system.
1313 */
1314void shrink_dcache_sb(struct super_block *sb)
1315{
1316 do {
1317 LIST_HEAD(dispose);
1318
1319 list_lru_walk(lru: &sb->s_dentry_lru,
1320 isolate: dentry_lru_isolate_shrink, cb_arg: &dispose, nr_to_walk: 1024);
1321 shrink_dentry_list(list: &dispose);
1322 } while (list_lru_count(lru: &sb->s_dentry_lru) > 0);
1323}
1324EXPORT_SYMBOL(shrink_dcache_sb);
1325
1326/**
1327 * enum d_walk_ret - action to talke during tree walk
1328 * @D_WALK_CONTINUE: contrinue walk
1329 * @D_WALK_QUIT: quit walk
1330 * @D_WALK_NORETRY: quit when retry is needed
1331 * @D_WALK_SKIP: skip this dentry and its children
1332 */
1333enum d_walk_ret {
1334 D_WALK_CONTINUE,
1335 D_WALK_QUIT,
1336 D_WALK_NORETRY,
1337 D_WALK_SKIP,
1338};
1339
1340/**
1341 * d_walk - walk the dentry tree
1342 * @parent: start of walk
1343 * @data: data passed to @enter() and @finish()
1344 * @enter: callback when first entering the dentry
1345 *
1346 * The @enter() callbacks are called with d_lock held.
1347 */
1348static void d_walk(struct dentry *parent, void *data,
1349 enum d_walk_ret (*enter)(void *, struct dentry *))
1350{
1351 struct dentry *this_parent;
1352 struct list_head *next;
1353 unsigned seq = 0;
1354 enum d_walk_ret ret;
1355 bool retry = true;
1356
1357again:
1358 read_seqbegin_or_lock(lock: &rename_lock, seq: &seq);
1359 this_parent = parent;
1360 spin_lock(lock: &this_parent->d_lock);
1361
1362 ret = enter(data, this_parent);
1363 switch (ret) {
1364 case D_WALK_CONTINUE:
1365 break;
1366 case D_WALK_QUIT:
1367 case D_WALK_SKIP:
1368 goto out_unlock;
1369 case D_WALK_NORETRY:
1370 retry = false;
1371 break;
1372 }
1373repeat:
1374 next = this_parent->d_subdirs.next;
1375resume:
1376 while (next != &this_parent->d_subdirs) {
1377 struct list_head *tmp = next;
1378 struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1379 next = tmp->next;
1380
1381 if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1382 continue;
1383
1384 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1385
1386 ret = enter(data, dentry);
1387 switch (ret) {
1388 case D_WALK_CONTINUE:
1389 break;
1390 case D_WALK_QUIT:
1391 spin_unlock(lock: &dentry->d_lock);
1392 goto out_unlock;
1393 case D_WALK_NORETRY:
1394 retry = false;
1395 break;
1396 case D_WALK_SKIP:
1397 spin_unlock(lock: &dentry->d_lock);
1398 continue;
1399 }
1400
1401 if (!list_empty(head: &dentry->d_subdirs)) {
1402 spin_unlock(lock: &this_parent->d_lock);
1403 spin_release(&dentry->d_lock.dep_map, _RET_IP_);
1404 this_parent = dentry;
1405 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1406 goto repeat;
1407 }
1408 spin_unlock(lock: &dentry->d_lock);
1409 }
1410 /*
1411 * All done at this level ... ascend and resume the search.
1412 */
1413 rcu_read_lock();
1414ascend:
1415 if (this_parent != parent) {
1416 struct dentry *child = this_parent;
1417 this_parent = child->d_parent;
1418
1419 spin_unlock(lock: &child->d_lock);
1420 spin_lock(lock: &this_parent->d_lock);
1421
1422 /* might go back up the wrong parent if we have had a rename. */
1423 if (need_seqretry(lock: &rename_lock, seq))
1424 goto rename_retry;
1425 /* go into the first sibling still alive */
1426 do {
1427 next = child->d_child.next;
1428 if (next == &this_parent->d_subdirs)
1429 goto ascend;
1430 child = list_entry(next, struct dentry, d_child);
1431 } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
1432 rcu_read_unlock();
1433 goto resume;
1434 }
1435 if (need_seqretry(lock: &rename_lock, seq))
1436 goto rename_retry;
1437 rcu_read_unlock();
1438
1439out_unlock:
1440 spin_unlock(lock: &this_parent->d_lock);
1441 done_seqretry(lock: &rename_lock, seq);
1442 return;
1443
1444rename_retry:
1445 spin_unlock(lock: &this_parent->d_lock);
1446 rcu_read_unlock();
1447 BUG_ON(seq & 1);
1448 if (!retry)
1449 return;
1450 seq = 1;
1451 goto again;
1452}
1453
1454struct check_mount {
1455 struct vfsmount *mnt;
1456 unsigned int mounted;
1457};
1458
1459static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1460{
1461 struct check_mount *info = data;
1462 struct path path = { .mnt = info->mnt, .dentry = dentry };
1463
1464 if (likely(!d_mountpoint(dentry)))
1465 return D_WALK_CONTINUE;
1466 if (__path_is_mountpoint(path: &path)) {
1467 info->mounted = 1;
1468 return D_WALK_QUIT;
1469 }
1470 return D_WALK_CONTINUE;
1471}
1472
1473/**
1474 * path_has_submounts - check for mounts over a dentry in the
1475 * current namespace.
1476 * @parent: path to check.
1477 *
1478 * Return true if the parent or its subdirectories contain
1479 * a mount point in the current namespace.
1480 */
1481int path_has_submounts(const struct path *parent)
1482{
1483 struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1484
1485 read_seqlock_excl(sl: &mount_lock);
1486 d_walk(parent: parent->dentry, data: &data, enter: path_check_mount);
1487 read_sequnlock_excl(sl: &mount_lock);
1488
1489 return data.mounted;
1490}
1491EXPORT_SYMBOL(path_has_submounts);
1492
1493/*
1494 * Called by mount code to set a mountpoint and check if the mountpoint is
1495 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1496 * subtree can become unreachable).
1497 *
1498 * Only one of d_invalidate() and d_set_mounted() must succeed. For
1499 * this reason take rename_lock and d_lock on dentry and ancestors.
1500 */
1501int d_set_mounted(struct dentry *dentry)
1502{
1503 struct dentry *p;
1504 int ret = -ENOENT;
1505 write_seqlock(sl: &rename_lock);
1506 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1507 /* Need exclusion wrt. d_invalidate() */
1508 spin_lock(lock: &p->d_lock);
1509 if (unlikely(d_unhashed(p))) {
1510 spin_unlock(lock: &p->d_lock);
1511 goto out;
1512 }
1513 spin_unlock(lock: &p->d_lock);
1514 }
1515 spin_lock(lock: &dentry->d_lock);
1516 if (!d_unlinked(dentry)) {
1517 ret = -EBUSY;
1518 if (!d_mountpoint(dentry)) {
1519 dentry->d_flags |= DCACHE_MOUNTED;
1520 ret = 0;
1521 }
1522 }
1523 spin_unlock(lock: &dentry->d_lock);
1524out:
1525 write_sequnlock(sl: &rename_lock);
1526 return ret;
1527}
1528
1529/*
1530 * Search the dentry child list of the specified parent,
1531 * and move any unused dentries to the end of the unused
1532 * list for prune_dcache(). We descend to the next level
1533 * whenever the d_subdirs list is non-empty and continue
1534 * searching.
1535 *
1536 * It returns zero iff there are no unused children,
1537 * otherwise it returns the number of children moved to
1538 * the end of the unused list. This may not be the total
1539 * number of unused children, because select_parent can
1540 * drop the lock and return early due to latency
1541 * constraints.
1542 */
1543
1544struct select_data {
1545 struct dentry *start;
1546 union {
1547 long found;
1548 struct dentry *victim;
1549 };
1550 struct list_head dispose;
1551};
1552
1553static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1554{
1555 struct select_data *data = _data;
1556 enum d_walk_ret ret = D_WALK_CONTINUE;
1557
1558 if (data->start == dentry)
1559 goto out;
1560
1561 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1562 data->found++;
1563 } else {
1564 if (dentry->d_flags & DCACHE_LRU_LIST)
1565 d_lru_del(dentry);
1566 if (!dentry->d_lockref.count) {
1567 d_shrink_add(dentry, list: &data->dispose);
1568 data->found++;
1569 }
1570 }
1571 /*
1572 * We can return to the caller if we have found some (this
1573 * ensures forward progress). We'll be coming back to find
1574 * the rest.
1575 */
1576 if (!list_empty(head: &data->dispose))
1577 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1578out:
1579 return ret;
1580}
1581
1582static enum d_walk_ret select_collect2(void *_data, struct dentry *dentry)
1583{
1584 struct select_data *data = _data;
1585 enum d_walk_ret ret = D_WALK_CONTINUE;
1586
1587 if (data->start == dentry)
1588 goto out;
1589
1590 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1591 if (!dentry->d_lockref.count) {
1592 rcu_read_lock();
1593 data->victim = dentry;
1594 return D_WALK_QUIT;
1595 }
1596 } else {
1597 if (dentry->d_flags & DCACHE_LRU_LIST)
1598 d_lru_del(dentry);
1599 if (!dentry->d_lockref.count)
1600 d_shrink_add(dentry, list: &data->dispose);
1601 }
1602 /*
1603 * We can return to the caller if we have found some (this
1604 * ensures forward progress). We'll be coming back to find
1605 * the rest.
1606 */
1607 if (!list_empty(head: &data->dispose))
1608 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1609out:
1610 return ret;
1611}
1612
1613/**
1614 * shrink_dcache_parent - prune dcache
1615 * @parent: parent of entries to prune
1616 *
1617 * Prune the dcache to remove unused children of the parent dentry.
1618 */
1619void shrink_dcache_parent(struct dentry *parent)
1620{
1621 for (;;) {
1622 struct select_data data = {.start = parent};
1623
1624 INIT_LIST_HEAD(list: &data.dispose);
1625 d_walk(parent, data: &data, enter: select_collect);
1626
1627 if (!list_empty(head: &data.dispose)) {
1628 shrink_dentry_list(list: &data.dispose);
1629 continue;
1630 }
1631
1632 cond_resched();
1633 if (!data.found)
1634 break;
1635 data.victim = NULL;
1636 d_walk(parent, data: &data, enter: select_collect2);
1637 if (data.victim) {
1638 struct dentry *parent;
1639 spin_lock(lock: &data.victim->d_lock);
1640 if (!shrink_lock_dentry(dentry: data.victim)) {
1641 spin_unlock(lock: &data.victim->d_lock);
1642 rcu_read_unlock();
1643 } else {
1644 rcu_read_unlock();
1645 parent = data.victim->d_parent;
1646 if (parent != data.victim)
1647 __dput_to_list(dentry: parent, list: &data.dispose);
1648 __dentry_kill(dentry: data.victim);
1649 }
1650 }
1651 if (!list_empty(head: &data.dispose))
1652 shrink_dentry_list(list: &data.dispose);
1653 }
1654}
1655EXPORT_SYMBOL(shrink_dcache_parent);
1656
1657static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1658{
1659 /* it has busy descendents; complain about those instead */
1660 if (!list_empty(head: &dentry->d_subdirs))
1661 return D_WALK_CONTINUE;
1662
1663 /* root with refcount 1 is fine */
1664 if (dentry == _data && dentry->d_lockref.count == 1)
1665 return D_WALK_CONTINUE;
1666
1667 WARN(1, "BUG: Dentry %p{i=%lx,n=%pd} "
1668 " still in use (%d) [unmount of %s %s]\n",
1669 dentry,
1670 dentry->d_inode ?
1671 dentry->d_inode->i_ino : 0UL,
1672 dentry,
1673 dentry->d_lockref.count,
1674 dentry->d_sb->s_type->name,
1675 dentry->d_sb->s_id);
1676 return D_WALK_CONTINUE;
1677}
1678
1679static void do_one_tree(struct dentry *dentry)
1680{
1681 shrink_dcache_parent(dentry);
1682 d_walk(parent: dentry, data: dentry, enter: umount_check);
1683 d_drop(dentry);
1684 dput(dentry);
1685}
1686
1687/*
1688 * destroy the dentries attached to a superblock on unmounting
1689 */
1690void shrink_dcache_for_umount(struct super_block *sb)
1691{
1692 struct dentry *dentry;
1693
1694 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1695
1696 dentry = sb->s_root;
1697 sb->s_root = NULL;
1698 do_one_tree(dentry);
1699
1700 while (!hlist_bl_empty(h: &sb->s_roots)) {
1701 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash));
1702 do_one_tree(dentry);
1703 }
1704}
1705
1706static enum d_walk_ret find_submount(void *_data, struct dentry *dentry)
1707{
1708 struct dentry **victim = _data;
1709 if (d_mountpoint(dentry)) {
1710 __dget_dlock(dentry);
1711 *victim = dentry;
1712 return D_WALK_QUIT;
1713 }
1714 return D_WALK_CONTINUE;
1715}
1716
1717/**
1718 * d_invalidate - detach submounts, prune dcache, and drop
1719 * @dentry: dentry to invalidate (aka detach, prune and drop)
1720 */
1721void d_invalidate(struct dentry *dentry)
1722{
1723 bool had_submounts = false;
1724 spin_lock(lock: &dentry->d_lock);
1725 if (d_unhashed(dentry)) {
1726 spin_unlock(lock: &dentry->d_lock);
1727 return;
1728 }
1729 __d_drop(dentry);
1730 spin_unlock(lock: &dentry->d_lock);
1731
1732 /* Negative dentries can be dropped without further checks */
1733 if (!dentry->d_inode)
1734 return;
1735
1736 shrink_dcache_parent(dentry);
1737 for (;;) {
1738 struct dentry *victim = NULL;
1739 d_walk(parent: dentry, data: &victim, enter: find_submount);
1740 if (!victim) {
1741 if (had_submounts)
1742 shrink_dcache_parent(dentry);
1743 return;
1744 }
1745 had_submounts = true;
1746 detach_mounts(dentry: victim);
1747 dput(victim);
1748 }
1749}
1750EXPORT_SYMBOL(d_invalidate);
1751
1752/**
1753 * __d_alloc - allocate a dcache entry
1754 * @sb: filesystem it will belong to
1755 * @name: qstr of the name
1756 *
1757 * Allocates a dentry. It returns %NULL if there is insufficient memory
1758 * available. On a success the dentry is returned. The name passed in is
1759 * copied and the copy passed in may be reused after this call.
1760 */
1761
1762static struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1763{
1764 struct dentry *dentry;
1765 char *dname;
1766 int err;
1767
1768 dentry = kmem_cache_alloc_lru(s: dentry_cache, lru: &sb->s_dentry_lru,
1769 GFP_KERNEL);
1770 if (!dentry)
1771 return NULL;
1772
1773 /*
1774 * We guarantee that the inline name is always NUL-terminated.
1775 * This way the memcpy() done by the name switching in rename
1776 * will still always have a NUL at the end, even if we might
1777 * be overwriting an internal NUL character
1778 */
1779 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1780 if (unlikely(!name)) {
1781 name = &slash_name;
1782 dname = dentry->d_iname;
1783 } else if (name->len > DNAME_INLINE_LEN-1) {
1784 size_t size = offsetof(struct external_name, name[1]);
1785 struct external_name *p = kmalloc(size: size + name->len,
1786 GFP_KERNEL_ACCOUNT |
1787 __GFP_RECLAIMABLE);
1788 if (!p) {
1789 kmem_cache_free(s: dentry_cache, objp: dentry);
1790 return NULL;
1791 }
1792 atomic_set(v: &p->u.count, i: 1);
1793 dname = p->name;
1794 } else {
1795 dname = dentry->d_iname;
1796 }
1797
1798 dentry->d_name.len = name->len;
1799 dentry->d_name.hash = name->hash;
1800 memcpy(dname, name->name, name->len);
1801 dname[name->len] = 0;
1802
1803 /* Make sure we always see the terminating NUL character */
1804 smp_store_release(&dentry->d_name.name, dname); /* ^^^ */
1805
1806 dentry->d_lockref.count = 1;
1807 dentry->d_flags = 0;
1808 spin_lock_init(&dentry->d_lock);
1809 seqcount_spinlock_init(&dentry->d_seq, &dentry->d_lock);
1810 dentry->d_inode = NULL;
1811 dentry->d_parent = dentry;
1812 dentry->d_sb = sb;
1813 dentry->d_op = NULL;
1814 dentry->d_fsdata = NULL;
1815 INIT_HLIST_BL_NODE(h: &dentry->d_hash);
1816 INIT_LIST_HEAD(list: &dentry->d_lru);
1817 INIT_LIST_HEAD(list: &dentry->d_subdirs);
1818 INIT_HLIST_NODE(h: &dentry->d_u.d_alias);
1819 INIT_LIST_HEAD(list: &dentry->d_child);
1820 d_set_d_op(dentry, op: dentry->d_sb->s_d_op);
1821
1822 if (dentry->d_op && dentry->d_op->d_init) {
1823 err = dentry->d_op->d_init(dentry);
1824 if (err) {
1825 if (dname_external(dentry))
1826 kfree(objp: external_name(dentry));
1827 kmem_cache_free(s: dentry_cache, objp: dentry);
1828 return NULL;
1829 }
1830 }
1831
1832 this_cpu_inc(nr_dentry);
1833
1834 return dentry;
1835}
1836
1837/**
1838 * d_alloc - allocate a dcache entry
1839 * @parent: parent of entry to allocate
1840 * @name: qstr of the name
1841 *
1842 * Allocates a dentry. It returns %NULL if there is insufficient memory
1843 * available. On a success the dentry is returned. The name passed in is
1844 * copied and the copy passed in may be reused after this call.
1845 */
1846struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1847{
1848 struct dentry *dentry = __d_alloc(sb: parent->d_sb, name);
1849 if (!dentry)
1850 return NULL;
1851 spin_lock(lock: &parent->d_lock);
1852 /*
1853 * don't need child lock because it is not subject
1854 * to concurrency here
1855 */
1856 __dget_dlock(dentry: parent);
1857 dentry->d_parent = parent;
1858 list_add(new: &dentry->d_child, head: &parent->d_subdirs);
1859 spin_unlock(lock: &parent->d_lock);
1860
1861 return dentry;
1862}
1863EXPORT_SYMBOL(d_alloc);
1864
1865struct dentry *d_alloc_anon(struct super_block *sb)
1866{
1867 return __d_alloc(sb, NULL);
1868}
1869EXPORT_SYMBOL(d_alloc_anon);
1870
1871struct dentry *d_alloc_cursor(struct dentry * parent)
1872{
1873 struct dentry *dentry = d_alloc_anon(parent->d_sb);
1874 if (dentry) {
1875 dentry->d_flags |= DCACHE_DENTRY_CURSOR;
1876 dentry->d_parent = dget(dentry: parent);
1877 }
1878 return dentry;
1879}
1880
1881/**
1882 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1883 * @sb: the superblock
1884 * @name: qstr of the name
1885 *
1886 * For a filesystem that just pins its dentries in memory and never
1887 * performs lookups at all, return an unhashed IS_ROOT dentry.
1888 * This is used for pipes, sockets et.al. - the stuff that should
1889 * never be anyone's children or parents. Unlike all other
1890 * dentries, these will not have RCU delay between dropping the
1891 * last reference and freeing them.
1892 *
1893 * The only user is alloc_file_pseudo() and that's what should
1894 * be considered a public interface. Don't use directly.
1895 */
1896struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1897{
1898 struct dentry *dentry = __d_alloc(sb, name);
1899 if (likely(dentry))
1900 dentry->d_flags |= DCACHE_NORCU;
1901 return dentry;
1902}
1903
1904struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1905{
1906 struct qstr q;
1907
1908 q.name = name;
1909 q.hash_len = hashlen_string(salt: parent, name);
1910 return d_alloc(parent, &q);
1911}
1912EXPORT_SYMBOL(d_alloc_name);
1913
1914void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1915{
1916 WARN_ON_ONCE(dentry->d_op);
1917 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
1918 DCACHE_OP_COMPARE |
1919 DCACHE_OP_REVALIDATE |
1920 DCACHE_OP_WEAK_REVALIDATE |
1921 DCACHE_OP_DELETE |
1922 DCACHE_OP_REAL));
1923 dentry->d_op = op;
1924 if (!op)
1925 return;
1926 if (op->d_hash)
1927 dentry->d_flags |= DCACHE_OP_HASH;
1928 if (op->d_compare)
1929 dentry->d_flags |= DCACHE_OP_COMPARE;
1930 if (op->d_revalidate)
1931 dentry->d_flags |= DCACHE_OP_REVALIDATE;
1932 if (op->d_weak_revalidate)
1933 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1934 if (op->d_delete)
1935 dentry->d_flags |= DCACHE_OP_DELETE;
1936 if (op->d_prune)
1937 dentry->d_flags |= DCACHE_OP_PRUNE;
1938 if (op->d_real)
1939 dentry->d_flags |= DCACHE_OP_REAL;
1940
1941}
1942EXPORT_SYMBOL(d_set_d_op);
1943
1944
1945/*
1946 * d_set_fallthru - Mark a dentry as falling through to a lower layer
1947 * @dentry - The dentry to mark
1948 *
1949 * Mark a dentry as falling through to the lower layer (as set with
1950 * d_pin_lower()). This flag may be recorded on the medium.
1951 */
1952void d_set_fallthru(struct dentry *dentry)
1953{
1954 spin_lock(lock: &dentry->d_lock);
1955 dentry->d_flags |= DCACHE_FALLTHRU;
1956 spin_unlock(lock: &dentry->d_lock);
1957}
1958EXPORT_SYMBOL(d_set_fallthru);
1959
1960static unsigned d_flags_for_inode(struct inode *inode)
1961{
1962 unsigned add_flags = DCACHE_REGULAR_TYPE;
1963
1964 if (!inode)
1965 return DCACHE_MISS_TYPE;
1966
1967 if (S_ISDIR(inode->i_mode)) {
1968 add_flags = DCACHE_DIRECTORY_TYPE;
1969 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1970 if (unlikely(!inode->i_op->lookup))
1971 add_flags = DCACHE_AUTODIR_TYPE;
1972 else
1973 inode->i_opflags |= IOP_LOOKUP;
1974 }
1975 goto type_determined;
1976 }
1977
1978 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1979 if (unlikely(inode->i_op->get_link)) {
1980 add_flags = DCACHE_SYMLINK_TYPE;
1981 goto type_determined;
1982 }
1983 inode->i_opflags |= IOP_NOFOLLOW;
1984 }
1985
1986 if (unlikely(!S_ISREG(inode->i_mode)))
1987 add_flags = DCACHE_SPECIAL_TYPE;
1988
1989type_determined:
1990 if (unlikely(IS_AUTOMOUNT(inode)))
1991 add_flags |= DCACHE_NEED_AUTOMOUNT;
1992 return add_flags;
1993}
1994
1995static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1996{
1997 unsigned add_flags = d_flags_for_inode(inode);
1998 WARN_ON(d_in_lookup(dentry));
1999
2000 spin_lock(lock: &dentry->d_lock);
2001 /*
2002 * Decrement negative dentry count if it was in the LRU list.
2003 */
2004 if (dentry->d_flags & DCACHE_LRU_LIST)
2005 this_cpu_dec(nr_dentry_negative);
2006 hlist_add_head(n: &dentry->d_u.d_alias, h: &inode->i_dentry);
2007 raw_write_seqcount_begin(&dentry->d_seq);
2008 __d_set_inode_and_type(dentry, inode, type_flags: add_flags);
2009 raw_write_seqcount_end(&dentry->d_seq);
2010 fsnotify_update_flags(dentry);
2011 spin_unlock(lock: &dentry->d_lock);
2012}
2013
2014/**
2015 * d_instantiate - fill in inode information for a dentry
2016 * @entry: dentry to complete
2017 * @inode: inode to attach to this dentry
2018 *
2019 * Fill in inode information in the entry.
2020 *
2021 * This turns negative dentries into productive full members
2022 * of society.
2023 *
2024 * NOTE! This assumes that the inode count has been incremented
2025 * (or otherwise set) by the caller to indicate that it is now
2026 * in use by the dcache.
2027 */
2028
2029void d_instantiate(struct dentry *entry, struct inode * inode)
2030{
2031 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
2032 if (inode) {
2033 security_d_instantiate(dentry: entry, inode);
2034 spin_lock(lock: &inode->i_lock);
2035 __d_instantiate(dentry: entry, inode);
2036 spin_unlock(lock: &inode->i_lock);
2037 }
2038}
2039EXPORT_SYMBOL(d_instantiate);
2040
2041/*
2042 * This should be equivalent to d_instantiate() + unlock_new_inode(),
2043 * with lockdep-related part of unlock_new_inode() done before
2044 * anything else. Use that instead of open-coding d_instantiate()/
2045 * unlock_new_inode() combinations.
2046 */
2047void d_instantiate_new(struct dentry *entry, struct inode *inode)
2048{
2049 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
2050 BUG_ON(!inode);
2051 lockdep_annotate_inode_mutex_key(inode);
2052 security_d_instantiate(dentry: entry, inode);
2053 spin_lock(lock: &inode->i_lock);
2054 __d_instantiate(dentry: entry, inode);
2055 WARN_ON(!(inode->i_state & I_NEW));
2056 inode->i_state &= ~I_NEW & ~I_CREATING;
2057 smp_mb();
2058 wake_up_bit(word: &inode->i_state, __I_NEW);
2059 spin_unlock(lock: &inode->i_lock);
2060}
2061EXPORT_SYMBOL(d_instantiate_new);
2062
2063struct dentry *d_make_root(struct inode *root_inode)
2064{
2065 struct dentry *res = NULL;
2066
2067 if (root_inode) {
2068 res = d_alloc_anon(root_inode->i_sb);
2069 if (res)
2070 d_instantiate(res, root_inode);
2071 else
2072 iput(root_inode);
2073 }
2074 return res;
2075}
2076EXPORT_SYMBOL(d_make_root);
2077
2078static struct dentry *__d_instantiate_anon(struct dentry *dentry,
2079 struct inode *inode,
2080 bool disconnected)
2081{
2082 struct dentry *res;
2083 unsigned add_flags;
2084
2085 security_d_instantiate(dentry, inode);
2086 spin_lock(lock: &inode->i_lock);
2087 res = __d_find_any_alias(inode);
2088 if (res) {
2089 spin_unlock(lock: &inode->i_lock);
2090 dput(dentry);
2091 goto out_iput;
2092 }
2093
2094 /* attach a disconnected dentry */
2095 add_flags = d_flags_for_inode(inode);
2096
2097 if (disconnected)
2098 add_flags |= DCACHE_DISCONNECTED;
2099
2100 spin_lock(lock: &dentry->d_lock);
2101 __d_set_inode_and_type(dentry, inode, type_flags: add_flags);
2102 hlist_add_head(n: &dentry->d_u.d_alias, h: &inode->i_dentry);
2103 if (!disconnected) {
2104 hlist_bl_lock(b: &dentry->d_sb->s_roots);
2105 hlist_bl_add_head(n: &dentry->d_hash, h: &dentry->d_sb->s_roots);
2106 hlist_bl_unlock(b: &dentry->d_sb->s_roots);
2107 }
2108 spin_unlock(lock: &dentry->d_lock);
2109 spin_unlock(lock: &inode->i_lock);
2110
2111 return dentry;
2112
2113 out_iput:
2114 iput(inode);
2115 return res;
2116}
2117
2118struct dentry *d_instantiate_anon(struct dentry *dentry, struct inode *inode)
2119{
2120 return __d_instantiate_anon(dentry, inode, disconnected: true);
2121}
2122EXPORT_SYMBOL(d_instantiate_anon);
2123
2124static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected)
2125{
2126 struct dentry *tmp;
2127 struct dentry *res;
2128
2129 if (!inode)
2130 return ERR_PTR(error: -ESTALE);
2131 if (IS_ERR(ptr: inode))
2132 return ERR_CAST(ptr: inode);
2133
2134 res = d_find_any_alias(inode);
2135 if (res)
2136 goto out_iput;
2137
2138 tmp = d_alloc_anon(inode->i_sb);
2139 if (!tmp) {
2140 res = ERR_PTR(error: -ENOMEM);
2141 goto out_iput;
2142 }
2143
2144 return __d_instantiate_anon(dentry: tmp, inode, disconnected);
2145
2146out_iput:
2147 iput(inode);
2148 return res;
2149}
2150
2151/**
2152 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
2153 * @inode: inode to allocate the dentry for
2154 *
2155 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
2156 * similar open by handle operations. The returned dentry may be anonymous,
2157 * or may have a full name (if the inode was already in the cache).
2158 *
2159 * When called on a directory inode, we must ensure that the inode only ever
2160 * has one dentry. If a dentry is found, that is returned instead of
2161 * allocating a new one.
2162 *
2163 * On successful return, the reference to the inode has been transferred
2164 * to the dentry. In case of an error the reference on the inode is released.
2165 * To make it easier to use in export operations a %NULL or IS_ERR inode may
2166 * be passed in and the error will be propagated to the return value,
2167 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
2168 */
2169struct dentry *d_obtain_alias(struct inode *inode)
2170{
2171 return __d_obtain_alias(inode, disconnected: true);
2172}
2173EXPORT_SYMBOL(d_obtain_alias);
2174
2175/**
2176 * d_obtain_root - find or allocate a dentry for a given inode
2177 * @inode: inode to allocate the dentry for
2178 *
2179 * Obtain an IS_ROOT dentry for the root of a filesystem.
2180 *
2181 * We must ensure that directory inodes only ever have one dentry. If a
2182 * dentry is found, that is returned instead of allocating a new one.
2183 *
2184 * On successful return, the reference to the inode has been transferred
2185 * to the dentry. In case of an error the reference on the inode is
2186 * released. A %NULL or IS_ERR inode may be passed in and will be the
2187 * error will be propagate to the return value, with a %NULL @inode
2188 * replaced by ERR_PTR(-ESTALE).
2189 */
2190struct dentry *d_obtain_root(struct inode *inode)
2191{
2192 return __d_obtain_alias(inode, disconnected: false);
2193}
2194EXPORT_SYMBOL(d_obtain_root);
2195
2196/**
2197 * d_add_ci - lookup or allocate new dentry with case-exact name
2198 * @inode: the inode case-insensitive lookup has found
2199 * @dentry: the negative dentry that was passed to the parent's lookup func
2200 * @name: the case-exact name to be associated with the returned dentry
2201 *
2202 * This is to avoid filling the dcache with case-insensitive names to the
2203 * same inode, only the actual correct case is stored in the dcache for
2204 * case-insensitive filesystems.
2205 *
2206 * For a case-insensitive lookup match and if the case-exact dentry
2207 * already exists in the dcache, use it and return it.
2208 *
2209 * If no entry exists with the exact case name, allocate new dentry with
2210 * the exact case, and return the spliced entry.
2211 */
2212struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2213 struct qstr *name)
2214{
2215 struct dentry *found, *res;
2216
2217 /*
2218 * First check if a dentry matching the name already exists,
2219 * if not go ahead and create it now.
2220 */
2221 found = d_hash_and_lookup(dentry->d_parent, name);
2222 if (found) {
2223 iput(inode);
2224 return found;
2225 }
2226 if (d_in_lookup(dentry)) {
2227 found = d_alloc_parallel(dentry->d_parent, name,
2228 dentry->d_wait);
2229 if (IS_ERR(ptr: found) || !d_in_lookup(dentry: found)) {
2230 iput(inode);
2231 return found;
2232 }
2233 } else {
2234 found = d_alloc(dentry->d_parent, name);
2235 if (!found) {
2236 iput(inode);
2237 return ERR_PTR(error: -ENOMEM);
2238 }
2239 }
2240 res = d_splice_alias(inode, found);
2241 if (res) {
2242 d_lookup_done(dentry: found);
2243 dput(found);
2244 return res;
2245 }
2246 return found;
2247}
2248EXPORT_SYMBOL(d_add_ci);
2249
2250/**
2251 * d_same_name - compare dentry name with case-exact name
2252 * @parent: parent dentry
2253 * @dentry: the negative dentry that was passed to the parent's lookup func
2254 * @name: the case-exact name to be associated with the returned dentry
2255 *
2256 * Return: true if names are same, or false
2257 */
2258bool d_same_name(const struct dentry *dentry, const struct dentry *parent,
2259 const struct qstr *name)
2260{
2261 if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2262 if (dentry->d_name.len != name->len)
2263 return false;
2264 return dentry_cmp(dentry, ct: name->name, tcount: name->len) == 0;
2265 }
2266 return parent->d_op->d_compare(dentry,
2267 dentry->d_name.len, dentry->d_name.name,
2268 name) == 0;
2269}
2270EXPORT_SYMBOL_GPL(d_same_name);
2271
2272/*
2273 * This is __d_lookup_rcu() when the parent dentry has
2274 * DCACHE_OP_COMPARE, which makes things much nastier.
2275 */
2276static noinline struct dentry *__d_lookup_rcu_op_compare(
2277 const struct dentry *parent,
2278 const struct qstr *name,
2279 unsigned *seqp)
2280{
2281 u64 hashlen = name->hash_len;
2282 struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
2283 struct hlist_bl_node *node;
2284 struct dentry *dentry;
2285
2286 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2287 int tlen;
2288 const char *tname;
2289 unsigned seq;
2290
2291seqretry:
2292 seq = raw_seqcount_begin(&dentry->d_seq);
2293 if (dentry->d_parent != parent)
2294 continue;
2295 if (d_unhashed(dentry))
2296 continue;
2297 if (dentry->d_name.hash != hashlen_hash(hashlen))
2298 continue;
2299 tlen = dentry->d_name.len;
2300 tname = dentry->d_name.name;
2301 /* we want a consistent (name,len) pair */
2302 if (read_seqcount_retry(&dentry->d_seq, seq)) {
2303 cpu_relax();
2304 goto seqretry;
2305 }
2306 if (parent->d_op->d_compare(dentry, tlen, tname, name) != 0)
2307 continue;
2308 *seqp = seq;
2309 return dentry;
2310 }
2311 return NULL;
2312}
2313
2314/**
2315 * __d_lookup_rcu - search for a dentry (racy, store-free)
2316 * @parent: parent dentry
2317 * @name: qstr of name we wish to find
2318 * @seqp: returns d_seq value at the point where the dentry was found
2319 * Returns: dentry, or NULL
2320 *
2321 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2322 * resolution (store-free path walking) design described in
2323 * Documentation/filesystems/path-lookup.txt.
2324 *
2325 * This is not to be used outside core vfs.
2326 *
2327 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2328 * held, and rcu_read_lock held. The returned dentry must not be stored into
2329 * without taking d_lock and checking d_seq sequence count against @seq
2330 * returned here.
2331 *
2332 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2333 * function.
2334 *
2335 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2336 * the returned dentry, so long as its parent's seqlock is checked after the
2337 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2338 * is formed, giving integrity down the path walk.
2339 *
2340 * NOTE! The caller *has* to check the resulting dentry against the sequence
2341 * number we've returned before using any of the resulting dentry state!
2342 */
2343struct dentry *__d_lookup_rcu(const struct dentry *parent,
2344 const struct qstr *name,
2345 unsigned *seqp)
2346{
2347 u64 hashlen = name->hash_len;
2348 const unsigned char *str = name->name;
2349 struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
2350 struct hlist_bl_node *node;
2351 struct dentry *dentry;
2352
2353 /*
2354 * Note: There is significant duplication with __d_lookup_rcu which is
2355 * required to prevent single threaded performance regressions
2356 * especially on architectures where smp_rmb (in seqcounts) are costly.
2357 * Keep the two functions in sync.
2358 */
2359
2360 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE))
2361 return __d_lookup_rcu_op_compare(parent, name, seqp);
2362
2363 /*
2364 * The hash list is protected using RCU.
2365 *
2366 * Carefully use d_seq when comparing a candidate dentry, to avoid
2367 * races with d_move().
2368 *
2369 * It is possible that concurrent renames can mess up our list
2370 * walk here and result in missing our dentry, resulting in the
2371 * false-negative result. d_lookup() protects against concurrent
2372 * renames using rename_lock seqlock.
2373 *
2374 * See Documentation/filesystems/path-lookup.txt for more details.
2375 */
2376 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2377 unsigned seq;
2378
2379 /*
2380 * The dentry sequence count protects us from concurrent
2381 * renames, and thus protects parent and name fields.
2382 *
2383 * The caller must perform a seqcount check in order
2384 * to do anything useful with the returned dentry.
2385 *
2386 * NOTE! We do a "raw" seqcount_begin here. That means that
2387 * we don't wait for the sequence count to stabilize if it
2388 * is in the middle of a sequence change. If we do the slow
2389 * dentry compare, we will do seqretries until it is stable,
2390 * and if we end up with a successful lookup, we actually
2391 * want to exit RCU lookup anyway.
2392 *
2393 * Note that raw_seqcount_begin still *does* smp_rmb(), so
2394 * we are still guaranteed NUL-termination of ->d_name.name.
2395 */
2396 seq = raw_seqcount_begin(&dentry->d_seq);
2397 if (dentry->d_parent != parent)
2398 continue;
2399 if (d_unhashed(dentry))
2400 continue;
2401 if (dentry->d_name.hash_len != hashlen)
2402 continue;
2403 if (dentry_cmp(dentry, ct: str, hashlen_len(hashlen)) != 0)
2404 continue;
2405 *seqp = seq;
2406 return dentry;
2407 }
2408 return NULL;
2409}
2410
2411/**
2412 * d_lookup - search for a dentry
2413 * @parent: parent dentry
2414 * @name: qstr of name we wish to find
2415 * Returns: dentry, or NULL
2416 *
2417 * d_lookup searches the children of the parent dentry for the name in
2418 * question. If the dentry is found its reference count is incremented and the
2419 * dentry is returned. The caller must use dput to free the entry when it has
2420 * finished using it. %NULL is returned if the dentry does not exist.
2421 */
2422struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2423{
2424 struct dentry *dentry;
2425 unsigned seq;
2426
2427 do {
2428 seq = read_seqbegin(sl: &rename_lock);
2429 dentry = __d_lookup(parent, name);
2430 if (dentry)
2431 break;
2432 } while (read_seqretry(sl: &rename_lock, start: seq));
2433 return dentry;
2434}
2435EXPORT_SYMBOL(d_lookup);
2436
2437/**
2438 * __d_lookup - search for a dentry (racy)
2439 * @parent: parent dentry
2440 * @name: qstr of name we wish to find
2441 * Returns: dentry, or NULL
2442 *
2443 * __d_lookup is like d_lookup, however it may (rarely) return a
2444 * false-negative result due to unrelated rename activity.
2445 *
2446 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2447 * however it must be used carefully, eg. with a following d_lookup in
2448 * the case of failure.
2449 *
2450 * __d_lookup callers must be commented.
2451 */
2452struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2453{
2454 unsigned int hash = name->hash;
2455 struct hlist_bl_head *b = d_hash(hash);
2456 struct hlist_bl_node *node;
2457 struct dentry *found = NULL;
2458 struct dentry *dentry;
2459
2460 /*
2461 * Note: There is significant duplication with __d_lookup_rcu which is
2462 * required to prevent single threaded performance regressions
2463 * especially on architectures where smp_rmb (in seqcounts) are costly.
2464 * Keep the two functions in sync.
2465 */
2466
2467 /*
2468 * The hash list is protected using RCU.
2469 *
2470 * Take d_lock when comparing a candidate dentry, to avoid races
2471 * with d_move().
2472 *
2473 * It is possible that concurrent renames can mess up our list
2474 * walk here and result in missing our dentry, resulting in the
2475 * false-negative result. d_lookup() protects against concurrent
2476 * renames using rename_lock seqlock.
2477 *
2478 * See Documentation/filesystems/path-lookup.txt for more details.
2479 */
2480 rcu_read_lock();
2481
2482 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2483
2484 if (dentry->d_name.hash != hash)
2485 continue;
2486
2487 spin_lock(lock: &dentry->d_lock);
2488 if (dentry->d_parent != parent)
2489 goto next;
2490 if (d_unhashed(dentry))
2491 goto next;
2492
2493 if (!d_same_name(dentry, parent, name))
2494 goto next;
2495
2496 dentry->d_lockref.count++;
2497 found = dentry;
2498 spin_unlock(lock: &dentry->d_lock);
2499 break;
2500next:
2501 spin_unlock(lock: &dentry->d_lock);
2502 }
2503 rcu_read_unlock();
2504
2505 return found;
2506}
2507
2508/**
2509 * d_hash_and_lookup - hash the qstr then search for a dentry
2510 * @dir: Directory to search in
2511 * @name: qstr of name we wish to find
2512 *
2513 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2514 */
2515struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2516{
2517 /*
2518 * Check for a fs-specific hash function. Note that we must
2519 * calculate the standard hash first, as the d_op->d_hash()
2520 * routine may choose to leave the hash value unchanged.
2521 */
2522 name->hash = full_name_hash(salt: dir, name->name, name->len);
2523 if (dir->d_flags & DCACHE_OP_HASH) {
2524 int err = dir->d_op->d_hash(dir, name);
2525 if (unlikely(err < 0))
2526 return ERR_PTR(error: err);
2527 }
2528 return d_lookup(dir, name);
2529}
2530EXPORT_SYMBOL(d_hash_and_lookup);
2531
2532/*
2533 * When a file is deleted, we have two options:
2534 * - turn this dentry into a negative dentry
2535 * - unhash this dentry and free it.
2536 *
2537 * Usually, we want to just turn this into
2538 * a negative dentry, but if anybody else is
2539 * currently using the dentry or the inode
2540 * we can't do that and we fall back on removing
2541 * it from the hash queues and waiting for
2542 * it to be deleted later when it has no users
2543 */
2544
2545/**
2546 * d_delete - delete a dentry
2547 * @dentry: The dentry to delete
2548 *
2549 * Turn the dentry into a negative dentry if possible, otherwise
2550 * remove it from the hash queues so it can be deleted later
2551 */
2552
2553void d_delete(struct dentry * dentry)
2554{
2555 struct inode *inode = dentry->d_inode;
2556
2557 spin_lock(lock: &inode->i_lock);
2558 spin_lock(lock: &dentry->d_lock);
2559 /*
2560 * Are we the only user?
2561 */
2562 if (dentry->d_lockref.count == 1) {
2563 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2564 dentry_unlink_inode(dentry);
2565 } else {
2566 __d_drop(dentry);
2567 spin_unlock(lock: &dentry->d_lock);
2568 spin_unlock(lock: &inode->i_lock);
2569 }
2570}
2571EXPORT_SYMBOL(d_delete);
2572
2573static void __d_rehash(struct dentry *entry)
2574{
2575 struct hlist_bl_head *b = d_hash(hash: entry->d_name.hash);
2576
2577 hlist_bl_lock(b);
2578 hlist_bl_add_head_rcu(n: &entry->d_hash, h: b);
2579 hlist_bl_unlock(b);
2580}
2581
2582/**
2583 * d_rehash - add an entry back to the hash
2584 * @entry: dentry to add to the hash
2585 *
2586 * Adds a dentry to the hash according to its name.
2587 */
2588
2589void d_rehash(struct dentry * entry)
2590{
2591 spin_lock(lock: &entry->d_lock);
2592 __d_rehash(entry);
2593 spin_unlock(lock: &entry->d_lock);
2594}
2595EXPORT_SYMBOL(d_rehash);
2596
2597static inline unsigned start_dir_add(struct inode *dir)
2598{
2599 preempt_disable_nested();
2600 for (;;) {
2601 unsigned n = dir->i_dir_seq;
2602 if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2603 return n;
2604 cpu_relax();
2605 }
2606}
2607
2608static inline void end_dir_add(struct inode *dir, unsigned int n,
2609 wait_queue_head_t *d_wait)
2610{
2611 smp_store_release(&dir->i_dir_seq, n + 2);
2612 preempt_enable_nested();
2613 wake_up_all(d_wait);
2614}
2615
2616static void d_wait_lookup(struct dentry *dentry)
2617{
2618 if (d_in_lookup(dentry)) {
2619 DECLARE_WAITQUEUE(wait, current);
2620 add_wait_queue(wq_head: dentry->d_wait, wq_entry: &wait);
2621 do {
2622 set_current_state(TASK_UNINTERRUPTIBLE);
2623 spin_unlock(lock: &dentry->d_lock);
2624 schedule();
2625 spin_lock(lock: &dentry->d_lock);
2626 } while (d_in_lookup(dentry));
2627 }
2628}
2629
2630struct dentry *d_alloc_parallel(struct dentry *parent,
2631 const struct qstr *name,
2632 wait_queue_head_t *wq)
2633{
2634 unsigned int hash = name->hash;
2635 struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2636 struct hlist_bl_node *node;
2637 struct dentry *new = d_alloc(parent, name);
2638 struct dentry *dentry;
2639 unsigned seq, r_seq, d_seq;
2640
2641 if (unlikely(!new))
2642 return ERR_PTR(error: -ENOMEM);
2643
2644retry:
2645 rcu_read_lock();
2646 seq = smp_load_acquire(&parent->d_inode->i_dir_seq);
2647 r_seq = read_seqbegin(sl: &rename_lock);
2648 dentry = __d_lookup_rcu(parent, name, seqp: &d_seq);
2649 if (unlikely(dentry)) {
2650 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2651 rcu_read_unlock();
2652 goto retry;
2653 }
2654 if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2655 rcu_read_unlock();
2656 dput(dentry);
2657 goto retry;
2658 }
2659 rcu_read_unlock();
2660 dput(new);
2661 return dentry;
2662 }
2663 if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2664 rcu_read_unlock();
2665 goto retry;
2666 }
2667
2668 if (unlikely(seq & 1)) {
2669 rcu_read_unlock();
2670 goto retry;
2671 }
2672
2673 hlist_bl_lock(b);
2674 if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) {
2675 hlist_bl_unlock(b);
2676 rcu_read_unlock();
2677 goto retry;
2678 }
2679 /*
2680 * No changes for the parent since the beginning of d_lookup().
2681 * Since all removals from the chain happen with hlist_bl_lock(),
2682 * any potential in-lookup matches are going to stay here until
2683 * we unlock the chain. All fields are stable in everything
2684 * we encounter.
2685 */
2686 hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2687 if (dentry->d_name.hash != hash)
2688 continue;
2689 if (dentry->d_parent != parent)
2690 continue;
2691 if (!d_same_name(dentry, parent, name))
2692 continue;
2693 hlist_bl_unlock(b);
2694 /* now we can try to grab a reference */
2695 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2696 rcu_read_unlock();
2697 goto retry;
2698 }
2699
2700 rcu_read_unlock();
2701 /*
2702 * somebody is likely to be still doing lookup for it;
2703 * wait for them to finish
2704 */
2705 spin_lock(lock: &dentry->d_lock);
2706 d_wait_lookup(dentry);
2707 /*
2708 * it's not in-lookup anymore; in principle we should repeat
2709 * everything from dcache lookup, but it's likely to be what
2710 * d_lookup() would've found anyway. If it is, just return it;
2711 * otherwise we really have to repeat the whole thing.
2712 */
2713 if (unlikely(dentry->d_name.hash != hash))
2714 goto mismatch;
2715 if (unlikely(dentry->d_parent != parent))
2716 goto mismatch;
2717 if (unlikely(d_unhashed(dentry)))
2718 goto mismatch;
2719 if (unlikely(!d_same_name(dentry, parent, name)))
2720 goto mismatch;
2721 /* OK, it *is* a hashed match; return it */
2722 spin_unlock(lock: &dentry->d_lock);
2723 dput(new);
2724 return dentry;
2725 }
2726 rcu_read_unlock();
2727 /* we can't take ->d_lock here; it's OK, though. */
2728 new->d_flags |= DCACHE_PAR_LOOKUP;
2729 new->d_wait = wq;
2730 hlist_bl_add_head_rcu(n: &new->d_u.d_in_lookup_hash, h: b);
2731 hlist_bl_unlock(b);
2732 return new;
2733mismatch:
2734 spin_unlock(lock: &dentry->d_lock);
2735 dput(dentry);
2736 goto retry;
2737}
2738EXPORT_SYMBOL(d_alloc_parallel);
2739
2740/*
2741 * - Unhash the dentry
2742 * - Retrieve and clear the waitqueue head in dentry
2743 * - Return the waitqueue head
2744 */
2745static wait_queue_head_t *__d_lookup_unhash(struct dentry *dentry)
2746{
2747 wait_queue_head_t *d_wait;
2748 struct hlist_bl_head *b;
2749
2750 lockdep_assert_held(&dentry->d_lock);
2751
2752 b = in_lookup_hash(parent: dentry->d_parent, hash: dentry->d_name.hash);
2753 hlist_bl_lock(b);
2754 dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
2755 __hlist_bl_del(n: &dentry->d_u.d_in_lookup_hash);
2756 d_wait = dentry->d_wait;
2757 dentry->d_wait = NULL;
2758 hlist_bl_unlock(b);
2759 INIT_HLIST_NODE(h: &dentry->d_u.d_alias);
2760 INIT_LIST_HEAD(list: &dentry->d_lru);
2761 return d_wait;
2762}
2763
2764void __d_lookup_unhash_wake(struct dentry *dentry)
2765{
2766 spin_lock(lock: &dentry->d_lock);
2767 wake_up_all(__d_lookup_unhash(dentry));
2768 spin_unlock(lock: &dentry->d_lock);
2769}
2770EXPORT_SYMBOL(__d_lookup_unhash_wake);
2771
2772/* inode->i_lock held if inode is non-NULL */
2773
2774static inline void __d_add(struct dentry *dentry, struct inode *inode)
2775{
2776 wait_queue_head_t *d_wait;
2777 struct inode *dir = NULL;
2778 unsigned n;
2779 spin_lock(lock: &dentry->d_lock);
2780 if (unlikely(d_in_lookup(dentry))) {
2781 dir = dentry->d_parent->d_inode;
2782 n = start_dir_add(dir);
2783 d_wait = __d_lookup_unhash(dentry);
2784 }
2785 if (inode) {
2786 unsigned add_flags = d_flags_for_inode(inode);
2787 hlist_add_head(n: &dentry->d_u.d_alias, h: &inode->i_dentry);
2788 raw_write_seqcount_begin(&dentry->d_seq);
2789 __d_set_inode_and_type(dentry, inode, type_flags: add_flags);
2790 raw_write_seqcount_end(&dentry->d_seq);
2791 fsnotify_update_flags(dentry);
2792 }
2793 __d_rehash(entry: dentry);
2794 if (dir)
2795 end_dir_add(dir, n, d_wait);
2796 spin_unlock(lock: &dentry->d_lock);
2797 if (inode)
2798 spin_unlock(lock: &inode->i_lock);
2799}
2800
2801/**
2802 * d_add - add dentry to hash queues
2803 * @entry: dentry to add
2804 * @inode: The inode to attach to this dentry
2805 *
2806 * This adds the entry to the hash queues and initializes @inode.
2807 * The entry was actually filled in earlier during d_alloc().
2808 */
2809
2810void d_add(struct dentry *entry, struct inode *inode)
2811{
2812 if (inode) {
2813 security_d_instantiate(dentry: entry, inode);
2814 spin_lock(lock: &inode->i_lock);
2815 }
2816 __d_add(dentry: entry, inode);
2817}
2818EXPORT_SYMBOL(d_add);
2819
2820/**
2821 * d_exact_alias - find and hash an exact unhashed alias
2822 * @entry: dentry to add
2823 * @inode: The inode to go with this dentry
2824 *
2825 * If an unhashed dentry with the same name/parent and desired
2826 * inode already exists, hash and return it. Otherwise, return
2827 * NULL.
2828 *
2829 * Parent directory should be locked.
2830 */
2831struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2832{
2833 struct dentry *alias;
2834 unsigned int hash = entry->d_name.hash;
2835
2836 spin_lock(lock: &inode->i_lock);
2837 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2838 /*
2839 * Don't need alias->d_lock here, because aliases with
2840 * d_parent == entry->d_parent are not subject to name or
2841 * parent changes, because the parent inode i_mutex is held.
2842 */
2843 if (alias->d_name.hash != hash)
2844 continue;
2845 if (alias->d_parent != entry->d_parent)
2846 continue;
2847 if (!d_same_name(alias, entry->d_parent, &entry->d_name))
2848 continue;
2849 spin_lock(lock: &alias->d_lock);
2850 if (!d_unhashed(dentry: alias)) {
2851 spin_unlock(lock: &alias->d_lock);
2852 alias = NULL;
2853 } else {
2854 __dget_dlock(dentry: alias);
2855 __d_rehash(entry: alias);
2856 spin_unlock(lock: &alias->d_lock);
2857 }
2858 spin_unlock(lock: &inode->i_lock);
2859 return alias;
2860 }
2861 spin_unlock(lock: &inode->i_lock);
2862 return NULL;
2863}
2864EXPORT_SYMBOL(d_exact_alias);
2865
2866static void swap_names(struct dentry *dentry, struct dentry *target)
2867{
2868 if (unlikely(dname_external(target))) {
2869 if (unlikely(dname_external(dentry))) {
2870 /*
2871 * Both external: swap the pointers
2872 */
2873 swap(target->d_name.name, dentry->d_name.name);
2874 } else {
2875 /*
2876 * dentry:internal, target:external. Steal target's
2877 * storage and make target internal.
2878 */
2879 memcpy(target->d_iname, dentry->d_name.name,
2880 dentry->d_name.len + 1);
2881 dentry->d_name.name = target->d_name.name;
2882 target->d_name.name = target->d_iname;
2883 }
2884 } else {
2885 if (unlikely(dname_external(dentry))) {
2886 /*
2887 * dentry:external, target:internal. Give dentry's
2888 * storage to target and make dentry internal
2889 */
2890 memcpy(dentry->d_iname, target->d_name.name,
2891 target->d_name.len + 1);
2892 target->d_name.name = dentry->d_name.name;
2893 dentry->d_name.name = dentry->d_iname;
2894 } else {
2895 /*
2896 * Both are internal.
2897 */
2898 unsigned int i;
2899 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2900 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2901 swap(((long *) &dentry->d_iname)[i],
2902 ((long *) &target->d_iname)[i]);
2903 }
2904 }
2905 }
2906 swap(dentry->d_name.hash_len, target->d_name.hash_len);
2907}
2908
2909static void copy_name(struct dentry *dentry, struct dentry *target)
2910{
2911 struct external_name *old_name = NULL;
2912 if (unlikely(dname_external(dentry)))
2913 old_name = external_name(dentry);
2914 if (unlikely(dname_external(target))) {
2915 atomic_inc(v: &external_name(dentry: target)->u.count);
2916 dentry->d_name = target->d_name;
2917 } else {
2918 memcpy(dentry->d_iname, target->d_name.name,
2919 target->d_name.len + 1);
2920 dentry->d_name.name = dentry->d_iname;
2921 dentry->d_name.hash_len = target->d_name.hash_len;
2922 }
2923 if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2924 kfree_rcu(old_name, u.head);
2925}
2926
2927/*
2928 * __d_move - move a dentry
2929 * @dentry: entry to move
2930 * @target: new dentry
2931 * @exchange: exchange the two dentries
2932 *
2933 * Update the dcache to reflect the move of a file name. Negative
2934 * dcache entries should not be moved in this way. Caller must hold
2935 * rename_lock, the i_mutex of the source and target directories,
2936 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2937 */
2938static void __d_move(struct dentry *dentry, struct dentry *target,
2939 bool exchange)
2940{
2941 struct dentry *old_parent, *p;
2942 wait_queue_head_t *d_wait;
2943 struct inode *dir = NULL;
2944 unsigned n;
2945
2946 WARN_ON(!dentry->d_inode);
2947 if (WARN_ON(dentry == target))
2948 return;
2949
2950 BUG_ON(d_ancestor(target, dentry));
2951 old_parent = dentry->d_parent;
2952 p = d_ancestor(old_parent, target);
2953 if (IS_ROOT(dentry)) {
2954 BUG_ON(p);
2955 spin_lock(lock: &target->d_parent->d_lock);
2956 } else if (!p) {
2957 /* target is not a descendent of dentry->d_parent */
2958 spin_lock(lock: &target->d_parent->d_lock);
2959 spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED);
2960 } else {
2961 BUG_ON(p == dentry);
2962 spin_lock(lock: &old_parent->d_lock);
2963 if (p != target)
2964 spin_lock_nested(&target->d_parent->d_lock,
2965 DENTRY_D_LOCK_NESTED);
2966 }
2967 spin_lock_nested(&dentry->d_lock, 2);
2968 spin_lock_nested(&target->d_lock, 3);
2969
2970 if (unlikely(d_in_lookup(target))) {
2971 dir = target->d_parent->d_inode;
2972 n = start_dir_add(dir);
2973 d_wait = __d_lookup_unhash(dentry: target);
2974 }
2975
2976 write_seqcount_begin(&dentry->d_seq);
2977 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2978
2979 /* unhash both */
2980 if (!d_unhashed(dentry))
2981 ___d_drop(dentry);
2982 if (!d_unhashed(dentry: target))
2983 ___d_drop(dentry: target);
2984
2985 /* ... and switch them in the tree */
2986 dentry->d_parent = target->d_parent;
2987 if (!exchange) {
2988 copy_name(dentry, target);
2989 target->d_hash.pprev = NULL;
2990 dentry->d_parent->d_lockref.count++;
2991 if (dentry != old_parent) /* wasn't IS_ROOT */
2992 WARN_ON(!--old_parent->d_lockref.count);
2993 } else {
2994 target->d_parent = old_parent;
2995 swap_names(dentry, target);
2996 list_move(list: &target->d_child, head: &target->d_parent->d_subdirs);
2997 __d_rehash(entry: target);
2998 fsnotify_update_flags(dentry: target);
2999 }
3000 list_move(list: &dentry->d_child, head: &dentry->d_parent->d_subdirs);
3001 __d_rehash(entry: dentry);
3002 fsnotify_update_flags(dentry);
3003 fscrypt_handle_d_move(dentry);
3004
3005 write_seqcount_end(&target->d_seq);
3006 write_seqcount_end(&dentry->d_seq);
3007
3008 if (dir)
3009 end_dir_add(dir, n, d_wait);
3010
3011 if (dentry->d_parent != old_parent)
3012 spin_unlock(lock: &dentry->d_parent->d_lock);
3013 if (dentry != old_parent)
3014 spin_unlock(lock: &old_parent->d_lock);
3015 spin_unlock(lock: &target->d_lock);
3016 spin_unlock(lock: &dentry->d_lock);
3017}
3018
3019/*
3020 * d_move - move a dentry
3021 * @dentry: entry to move
3022 * @target: new dentry
3023 *
3024 * Update the dcache to reflect the move of a file name. Negative
3025 * dcache entries should not be moved in this way. See the locking
3026 * requirements for __d_move.
3027 */
3028void d_move(struct dentry *dentry, struct dentry *target)
3029{
3030 write_seqlock(sl: &rename_lock);
3031 __d_move(dentry, target, exchange: false);
3032 write_sequnlock(sl: &rename_lock);
3033}
3034EXPORT_SYMBOL(d_move);
3035
3036/*
3037 * d_exchange - exchange two dentries
3038 * @dentry1: first dentry
3039 * @dentry2: second dentry
3040 */
3041void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
3042{
3043 write_seqlock(sl: &rename_lock);
3044
3045 WARN_ON(!dentry1->d_inode);
3046 WARN_ON(!dentry2->d_inode);
3047 WARN_ON(IS_ROOT(dentry1));
3048 WARN_ON(IS_ROOT(dentry2));
3049
3050 __d_move(dentry: dentry1, target: dentry2, exchange: true);
3051
3052 write_sequnlock(sl: &rename_lock);
3053}
3054
3055/**
3056 * d_ancestor - search for an ancestor
3057 * @p1: ancestor dentry
3058 * @p2: child dentry
3059 *
3060 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
3061 * an ancestor of p2, else NULL.
3062 */
3063struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
3064{
3065 struct dentry *p;
3066
3067 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
3068 if (p->d_parent == p1)
3069 return p;
3070 }
3071 return NULL;
3072}
3073
3074/*
3075 * This helper attempts to cope with remotely renamed directories
3076 *
3077 * It assumes that the caller is already holding
3078 * dentry->d_parent->d_inode->i_mutex, and rename_lock
3079 *
3080 * Note: If ever the locking in lock_rename() changes, then please
3081 * remember to update this too...
3082 */
3083static int __d_unalias(struct inode *inode,
3084 struct dentry *dentry, struct dentry *alias)
3085{
3086 struct mutex *m1 = NULL;
3087 struct rw_semaphore *m2 = NULL;
3088 int ret = -ESTALE;
3089
3090 /* If alias and dentry share a parent, then no extra locks required */
3091 if (alias->d_parent == dentry->d_parent)
3092 goto out_unalias;
3093
3094 /* See lock_rename() */
3095 if (!mutex_trylock(lock: &dentry->d_sb->s_vfs_rename_mutex))
3096 goto out_err;
3097 m1 = &dentry->d_sb->s_vfs_rename_mutex;
3098 if (!inode_trylock_shared(inode: alias->d_parent->d_inode))
3099 goto out_err;
3100 m2 = &alias->d_parent->d_inode->i_rwsem;
3101out_unalias:
3102 __d_move(dentry: alias, target: dentry, exchange: false);
3103 ret = 0;
3104out_err:
3105 if (m2)
3106 up_read(sem: m2);
3107 if (m1)
3108 mutex_unlock(lock: m1);
3109 return ret;
3110}
3111
3112/**
3113 * d_splice_alias - splice a disconnected dentry into the tree if one exists
3114 * @inode: the inode which may have a disconnected dentry
3115 * @dentry: a negative dentry which we want to point to the inode.
3116 *
3117 * If inode is a directory and has an IS_ROOT alias, then d_move that in
3118 * place of the given dentry and return it, else simply d_add the inode
3119 * to the dentry and return NULL.
3120 *
3121 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
3122 * we should error out: directories can't have multiple aliases.
3123 *
3124 * This is needed in the lookup routine of any filesystem that is exportable
3125 * (via knfsd) so that we can build dcache paths to directories effectively.
3126 *
3127 * If a dentry was found and moved, then it is returned. Otherwise NULL
3128 * is returned. This matches the expected return value of ->lookup.
3129 *
3130 * Cluster filesystems may call this function with a negative, hashed dentry.
3131 * In that case, we know that the inode will be a regular file, and also this
3132 * will only occur during atomic_open. So we need to check for the dentry
3133 * being already hashed only in the final case.
3134 */
3135struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
3136{
3137 if (IS_ERR(ptr: inode))
3138 return ERR_CAST(ptr: inode);
3139
3140 BUG_ON(!d_unhashed(dentry));
3141
3142 if (!inode)
3143 goto out;
3144
3145 security_d_instantiate(dentry, inode);
3146 spin_lock(lock: &inode->i_lock);
3147 if (S_ISDIR(inode->i_mode)) {
3148 struct dentry *new = __d_find_any_alias(inode);
3149 if (unlikely(new)) {
3150 /* The reference to new ensures it remains an alias */
3151 spin_unlock(lock: &inode->i_lock);
3152 write_seqlock(sl: &rename_lock);
3153 if (unlikely(d_ancestor(new, dentry))) {
3154 write_sequnlock(sl: &rename_lock);
3155 dput(new);
3156 new = ERR_PTR(error: -ELOOP);
3157 pr_warn_ratelimited(
3158 "VFS: Lookup of '%s' in %s %s"
3159 " would have caused loop\n",
3160 dentry->d_name.name,
3161 inode->i_sb->s_type->name,
3162 inode->i_sb->s_id);
3163 } else if (!IS_ROOT(new)) {
3164 struct dentry *old_parent = dget(dentry: new->d_parent);
3165 int err = __d_unalias(inode, dentry, alias: new);
3166 write_sequnlock(sl: &rename_lock);
3167 if (err) {
3168 dput(new);
3169 new = ERR_PTR(error: err);
3170 }
3171 dput(old_parent);
3172 } else {
3173 __d_move(dentry: new, target: dentry, exchange: false);
3174 write_sequnlock(sl: &rename_lock);
3175 }
3176 iput(inode);
3177 return new;
3178 }
3179 }
3180out:
3181 __d_add(dentry, inode);
3182 return NULL;
3183}
3184EXPORT_SYMBOL(d_splice_alias);
3185
3186/*
3187 * Test whether new_dentry is a subdirectory of old_dentry.
3188 *
3189 * Trivially implemented using the dcache structure
3190 */
3191
3192/**
3193 * is_subdir - is new dentry a subdirectory of old_dentry
3194 * @new_dentry: new dentry
3195 * @old_dentry: old dentry
3196 *
3197 * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3198 * Returns false otherwise.
3199 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3200 */
3201
3202bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3203{
3204 bool result;
3205 unsigned seq;
3206
3207 if (new_dentry == old_dentry)
3208 return true;
3209
3210 do {
3211 /* for restarting inner loop in case of seq retry */
3212 seq = read_seqbegin(sl: &rename_lock);
3213 /*
3214 * Need rcu_readlock to protect against the d_parent trashing
3215 * due to d_move
3216 */
3217 rcu_read_lock();
3218 if (d_ancestor(p1: old_dentry, p2: new_dentry))
3219 result = true;
3220 else
3221 result = false;
3222 rcu_read_unlock();
3223 } while (read_seqretry(sl: &rename_lock, start: seq));
3224
3225 return result;
3226}
3227EXPORT_SYMBOL(is_subdir);
3228
3229static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3230{
3231 struct dentry *root = data;
3232 if (dentry != root) {
3233 if (d_unhashed(dentry) || !dentry->d_inode)
3234 return D_WALK_SKIP;
3235
3236 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3237 dentry->d_flags |= DCACHE_GENOCIDE;
3238 dentry->d_lockref.count--;
3239 }
3240 }
3241 return D_WALK_CONTINUE;
3242}
3243
3244void d_genocide(struct dentry *parent)
3245{
3246 d_walk(parent, data: parent, enter: d_genocide_kill);
3247}
3248
3249void d_mark_tmpfile(struct file *file, struct inode *inode)
3250{
3251 struct dentry *dentry = file->f_path.dentry;
3252
3253 BUG_ON(dentry->d_name.name != dentry->d_iname ||
3254 !hlist_unhashed(&dentry->d_u.d_alias) ||
3255 !d_unlinked(dentry));
3256 spin_lock(lock: &dentry->d_parent->d_lock);
3257 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3258 dentry->d_name.len = sprintf(buf: dentry->d_iname, fmt: "#%llu",
3259 (unsigned long long)inode->i_ino);
3260 spin_unlock(lock: &dentry->d_lock);
3261 spin_unlock(lock: &dentry->d_parent->d_lock);
3262}
3263EXPORT_SYMBOL(d_mark_tmpfile);
3264
3265void d_tmpfile(struct file *file, struct inode *inode)
3266{
3267 struct dentry *dentry = file->f_path.dentry;
3268
3269 inode_dec_link_count(inode);
3270 d_mark_tmpfile(file, inode);
3271 d_instantiate(dentry, inode);
3272}
3273EXPORT_SYMBOL(d_tmpfile);
3274
3275static __initdata unsigned long dhash_entries;
3276static int __init set_dhash_entries(char *str)
3277{
3278 if (!str)
3279 return 0;
3280 dhash_entries = simple_strtoul(str, &str, 0);
3281 return 1;
3282}
3283__setup("dhash_entries=", set_dhash_entries);
3284
3285static void __init dcache_init_early(void)
3286{
3287 /* If hashes are distributed across NUMA nodes, defer
3288 * hash allocation until vmalloc space is available.
3289 */
3290 if (hashdist)
3291 return;
3292
3293 dentry_hashtable =
3294 alloc_large_system_hash(tablename: "Dentry cache",
3295 bucketsize: sizeof(struct hlist_bl_head),
3296 numentries: dhash_entries,
3297 scale: 13,
3298 HASH_EARLY | HASH_ZERO,
3299 hash_shift: &d_hash_shift,
3300 NULL,
3301 low_limit: 0,
3302 high_limit: 0);
3303 d_hash_shift = 32 - d_hash_shift;
3304}
3305
3306static void __init dcache_init(void)
3307{
3308 /*
3309 * A constructor could be added for stable state like the lists,
3310 * but it is probably not worth it because of the cache nature
3311 * of the dcache.
3312 */
3313 dentry_cache = KMEM_CACHE_USERCOPY(dentry,
3314 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT,
3315 d_iname);
3316
3317 /* Hash may have been set up in dcache_init_early */
3318 if (!hashdist)
3319 return;
3320
3321 dentry_hashtable =
3322 alloc_large_system_hash(tablename: "Dentry cache",
3323 bucketsize: sizeof(struct hlist_bl_head),
3324 numentries: dhash_entries,
3325 scale: 13,
3326 HASH_ZERO,
3327 hash_shift: &d_hash_shift,
3328 NULL,
3329 low_limit: 0,
3330 high_limit: 0);
3331 d_hash_shift = 32 - d_hash_shift;
3332}
3333
3334/* SLAB cache for __getname() consumers */
3335struct kmem_cache *names_cachep __ro_after_init;
3336EXPORT_SYMBOL(names_cachep);
3337
3338void __init vfs_caches_init_early(void)
3339{
3340 int i;
3341
3342 for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++)
3343 INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]);
3344
3345 dcache_init_early();
3346 inode_init_early();
3347}
3348
3349void __init vfs_caches_init(void)
3350{
3351 names_cachep = kmem_cache_create_usercopy(name: "names_cache", PATH_MAX, align: 0,
3352 SLAB_HWCACHE_ALIGN|SLAB_PANIC, useroffset: 0, PATH_MAX, NULL);
3353
3354 dcache_init();
3355 inode_init();
3356 files_init();
3357 files_maxfiles_init();
3358 mnt_init();
3359 bdev_cache_init();
3360 chrdev_init();
3361}
3362

source code of linux/fs/dcache.c