1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/fs/exec.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8/*
9 * #!-checking implemented by tytso.
10 */
11/*
12 * Demand-loading implemented 01.12.91 - no need to read anything but
13 * the header into memory. The inode of the executable is put into
14 * "current->executable", and page faults do the actual loading. Clean.
15 *
16 * Once more I can proudly say that linux stood up to being changed: it
17 * was less than 2 hours work to get demand-loading completely implemented.
18 *
19 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
20 * current->executable is only used by the procfs. This allows a dispatch
21 * table to check for several different types of binary formats. We keep
22 * trying until we recognize the file or we run out of supported binary
23 * formats.
24 */
25
26#include <linux/kernel_read_file.h>
27#include <linux/slab.h>
28#include <linux/file.h>
29#include <linux/fdtable.h>
30#include <linux/mm.h>
31#include <linux/stat.h>
32#include <linux/fcntl.h>
33#include <linux/swap.h>
34#include <linux/string.h>
35#include <linux/init.h>
36#include <linux/sched/mm.h>
37#include <linux/sched/coredump.h>
38#include <linux/sched/signal.h>
39#include <linux/sched/numa_balancing.h>
40#include <linux/sched/task.h>
41#include <linux/pagemap.h>
42#include <linux/perf_event.h>
43#include <linux/highmem.h>
44#include <linux/spinlock.h>
45#include <linux/key.h>
46#include <linux/personality.h>
47#include <linux/binfmts.h>
48#include <linux/utsname.h>
49#include <linux/pid_namespace.h>
50#include <linux/module.h>
51#include <linux/namei.h>
52#include <linux/mount.h>
53#include <linux/security.h>
54#include <linux/syscalls.h>
55#include <linux/tsacct_kern.h>
56#include <linux/cn_proc.h>
57#include <linux/audit.h>
58#include <linux/kmod.h>
59#include <linux/fsnotify.h>
60#include <linux/fs_struct.h>
61#include <linux/oom.h>
62#include <linux/compat.h>
63#include <linux/vmalloc.h>
64#include <linux/io_uring.h>
65#include <linux/syscall_user_dispatch.h>
66#include <linux/coredump.h>
67#include <linux/time_namespace.h>
68#include <linux/user_events.h>
69
70#include <linux/uaccess.h>
71#include <asm/mmu_context.h>
72#include <asm/tlb.h>
73
74#include <trace/events/task.h>
75#include "internal.h"
76
77#include <trace/events/sched.h>
78
79static int bprm_creds_from_file(struct linux_binprm *bprm);
80
81int suid_dumpable = 0;
82
83static LIST_HEAD(formats);
84static DEFINE_RWLOCK(binfmt_lock);
85
86void __register_binfmt(struct linux_binfmt * fmt, int insert)
87{
88 write_lock(&binfmt_lock);
89 insert ? list_add(new: &fmt->lh, head: &formats) :
90 list_add_tail(new: &fmt->lh, head: &formats);
91 write_unlock(&binfmt_lock);
92}
93
94EXPORT_SYMBOL(__register_binfmt);
95
96void unregister_binfmt(struct linux_binfmt * fmt)
97{
98 write_lock(&binfmt_lock);
99 list_del(entry: &fmt->lh);
100 write_unlock(&binfmt_lock);
101}
102
103EXPORT_SYMBOL(unregister_binfmt);
104
105static inline void put_binfmt(struct linux_binfmt * fmt)
106{
107 module_put(module: fmt->module);
108}
109
110bool path_noexec(const struct path *path)
111{
112 return (path->mnt->mnt_flags & MNT_NOEXEC) ||
113 (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
114}
115
116#ifdef CONFIG_USELIB
117/*
118 * Note that a shared library must be both readable and executable due to
119 * security reasons.
120 *
121 * Also note that we take the address to load from the file itself.
122 */
123SYSCALL_DEFINE1(uselib, const char __user *, library)
124{
125 struct linux_binfmt *fmt;
126 struct file *file;
127 struct filename *tmp = getname(library);
128 int error = PTR_ERR(ptr: tmp);
129 static const struct open_flags uselib_flags = {
130 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
131 .acc_mode = MAY_READ | MAY_EXEC,
132 .intent = LOOKUP_OPEN,
133 .lookup_flags = LOOKUP_FOLLOW,
134 };
135
136 if (IS_ERR(ptr: tmp))
137 goto out;
138
139 file = do_filp_open(AT_FDCWD, pathname: tmp, op: &uselib_flags);
140 putname(name: tmp);
141 error = PTR_ERR(ptr: file);
142 if (IS_ERR(ptr: file))
143 goto out;
144
145 /*
146 * may_open() has already checked for this, so it should be
147 * impossible to trip now. But we need to be extra cautious
148 * and check again at the very end too.
149 */
150 error = -EACCES;
151 if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
152 path_noexec(&file->f_path)))
153 goto exit;
154
155 error = -ENOEXEC;
156
157 read_lock(&binfmt_lock);
158 list_for_each_entry(fmt, &formats, lh) {
159 if (!fmt->load_shlib)
160 continue;
161 if (!try_module_get(module: fmt->module))
162 continue;
163 read_unlock(&binfmt_lock);
164 error = fmt->load_shlib(file);
165 read_lock(&binfmt_lock);
166 put_binfmt(fmt);
167 if (error != -ENOEXEC)
168 break;
169 }
170 read_unlock(&binfmt_lock);
171exit:
172 fput(file);
173out:
174 return error;
175}
176#endif /* #ifdef CONFIG_USELIB */
177
178#ifdef CONFIG_MMU
179/*
180 * The nascent bprm->mm is not visible until exec_mmap() but it can
181 * use a lot of memory, account these pages in current->mm temporary
182 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
183 * change the counter back via acct_arg_size(0).
184 */
185static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
186{
187 struct mm_struct *mm = current->mm;
188 long diff = (long)(pages - bprm->vma_pages);
189
190 if (!mm || !diff)
191 return;
192
193 bprm->vma_pages = pages;
194 add_mm_counter(mm, member: MM_ANONPAGES, value: diff);
195}
196
197static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
198 int write)
199{
200 struct page *page;
201 struct vm_area_struct *vma = bprm->vma;
202 struct mm_struct *mm = bprm->mm;
203 int ret;
204
205 /*
206 * Avoid relying on expanding the stack down in GUP (which
207 * does not work for STACK_GROWSUP anyway), and just do it
208 * by hand ahead of time.
209 */
210 if (write && pos < vma->vm_start) {
211 mmap_write_lock(mm);
212 ret = expand_downwards(vma, address: pos);
213 if (unlikely(ret < 0)) {
214 mmap_write_unlock(mm);
215 return NULL;
216 }
217 mmap_write_downgrade(mm);
218 } else
219 mmap_read_lock(mm);
220
221 /*
222 * We are doing an exec(). 'current' is the process
223 * doing the exec and 'mm' is the new process's mm.
224 */
225 ret = get_user_pages_remote(mm, start: pos, nr_pages: 1,
226 gup_flags: write ? FOLL_WRITE : 0,
227 pages: &page, NULL);
228 mmap_read_unlock(mm);
229 if (ret <= 0)
230 return NULL;
231
232 if (write)
233 acct_arg_size(bprm, pages: vma_pages(vma));
234
235 return page;
236}
237
238static void put_arg_page(struct page *page)
239{
240 put_page(page);
241}
242
243static void free_arg_pages(struct linux_binprm *bprm)
244{
245}
246
247static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
248 struct page *page)
249{
250 flush_cache_page(vma: bprm->vma, vmaddr: pos, page_to_pfn(page));
251}
252
253static int __bprm_mm_init(struct linux_binprm *bprm)
254{
255 int err;
256 struct vm_area_struct *vma = NULL;
257 struct mm_struct *mm = bprm->mm;
258
259 bprm->vma = vma = vm_area_alloc(mm);
260 if (!vma)
261 return -ENOMEM;
262 vma_set_anonymous(vma);
263
264 if (mmap_write_lock_killable(mm)) {
265 err = -EINTR;
266 goto err_free;
267 }
268
269 /*
270 * Place the stack at the largest stack address the architecture
271 * supports. Later, we'll move this to an appropriate place. We don't
272 * use STACK_TOP because that can depend on attributes which aren't
273 * configured yet.
274 */
275 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
276 vma->vm_end = STACK_TOP_MAX;
277 vma->vm_start = vma->vm_end - PAGE_SIZE;
278 vm_flags_init(vma, VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP);
279 vma->vm_page_prot = vm_get_page_prot(vm_flags: vma->vm_flags);
280
281 err = insert_vm_struct(mm, vma);
282 if (err)
283 goto err;
284
285 mm->stack_vm = mm->total_vm = 1;
286 mmap_write_unlock(mm);
287 bprm->p = vma->vm_end - sizeof(void *);
288 return 0;
289err:
290 mmap_write_unlock(mm);
291err_free:
292 bprm->vma = NULL;
293 vm_area_free(vma);
294 return err;
295}
296
297static bool valid_arg_len(struct linux_binprm *bprm, long len)
298{
299 return len <= MAX_ARG_STRLEN;
300}
301
302#else
303
304static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
305{
306}
307
308static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
309 int write)
310{
311 struct page *page;
312
313 page = bprm->page[pos / PAGE_SIZE];
314 if (!page && write) {
315 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
316 if (!page)
317 return NULL;
318 bprm->page[pos / PAGE_SIZE] = page;
319 }
320
321 return page;
322}
323
324static void put_arg_page(struct page *page)
325{
326}
327
328static void free_arg_page(struct linux_binprm *bprm, int i)
329{
330 if (bprm->page[i]) {
331 __free_page(bprm->page[i]);
332 bprm->page[i] = NULL;
333 }
334}
335
336static void free_arg_pages(struct linux_binprm *bprm)
337{
338 int i;
339
340 for (i = 0; i < MAX_ARG_PAGES; i++)
341 free_arg_page(bprm, i);
342}
343
344static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
345 struct page *page)
346{
347}
348
349static int __bprm_mm_init(struct linux_binprm *bprm)
350{
351 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
352 return 0;
353}
354
355static bool valid_arg_len(struct linux_binprm *bprm, long len)
356{
357 return len <= bprm->p;
358}
359
360#endif /* CONFIG_MMU */
361
362/*
363 * Create a new mm_struct and populate it with a temporary stack
364 * vm_area_struct. We don't have enough context at this point to set the stack
365 * flags, permissions, and offset, so we use temporary values. We'll update
366 * them later in setup_arg_pages().
367 */
368static int bprm_mm_init(struct linux_binprm *bprm)
369{
370 int err;
371 struct mm_struct *mm = NULL;
372
373 bprm->mm = mm = mm_alloc();
374 err = -ENOMEM;
375 if (!mm)
376 goto err;
377
378 /* Save current stack limit for all calculations made during exec. */
379 task_lock(current->group_leader);
380 bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK];
381 task_unlock(current->group_leader);
382
383 err = __bprm_mm_init(bprm);
384 if (err)
385 goto err;
386
387 return 0;
388
389err:
390 if (mm) {
391 bprm->mm = NULL;
392 mmdrop(mm);
393 }
394
395 return err;
396}
397
398struct user_arg_ptr {
399#ifdef CONFIG_COMPAT
400 bool is_compat;
401#endif
402 union {
403 const char __user *const __user *native;
404#ifdef CONFIG_COMPAT
405 const compat_uptr_t __user *compat;
406#endif
407 } ptr;
408};
409
410static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
411{
412 const char __user *native;
413
414#ifdef CONFIG_COMPAT
415 if (unlikely(argv.is_compat)) {
416 compat_uptr_t compat;
417
418 if (get_user(compat, argv.ptr.compat + nr))
419 return ERR_PTR(error: -EFAULT);
420
421 return compat_ptr(uptr: compat);
422 }
423#endif
424
425 if (get_user(native, argv.ptr.native + nr))
426 return ERR_PTR(error: -EFAULT);
427
428 return native;
429}
430
431/*
432 * count() counts the number of strings in array ARGV.
433 */
434static int count(struct user_arg_ptr argv, int max)
435{
436 int i = 0;
437
438 if (argv.ptr.native != NULL) {
439 for (;;) {
440 const char __user *p = get_user_arg_ptr(argv, nr: i);
441
442 if (!p)
443 break;
444
445 if (IS_ERR(ptr: p))
446 return -EFAULT;
447
448 if (i >= max)
449 return -E2BIG;
450 ++i;
451
452 if (fatal_signal_pending(current))
453 return -ERESTARTNOHAND;
454 cond_resched();
455 }
456 }
457 return i;
458}
459
460static int count_strings_kernel(const char *const *argv)
461{
462 int i;
463
464 if (!argv)
465 return 0;
466
467 for (i = 0; argv[i]; ++i) {
468 if (i >= MAX_ARG_STRINGS)
469 return -E2BIG;
470 if (fatal_signal_pending(current))
471 return -ERESTARTNOHAND;
472 cond_resched();
473 }
474 return i;
475}
476
477static int bprm_stack_limits(struct linux_binprm *bprm)
478{
479 unsigned long limit, ptr_size;
480
481 /*
482 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
483 * (whichever is smaller) for the argv+env strings.
484 * This ensures that:
485 * - the remaining binfmt code will not run out of stack space,
486 * - the program will have a reasonable amount of stack left
487 * to work from.
488 */
489 limit = _STK_LIM / 4 * 3;
490 limit = min(limit, bprm->rlim_stack.rlim_cur / 4);
491 /*
492 * We've historically supported up to 32 pages (ARG_MAX)
493 * of argument strings even with small stacks
494 */
495 limit = max_t(unsigned long, limit, ARG_MAX);
496 /*
497 * We must account for the size of all the argv and envp pointers to
498 * the argv and envp strings, since they will also take up space in
499 * the stack. They aren't stored until much later when we can't
500 * signal to the parent that the child has run out of stack space.
501 * Instead, calculate it here so it's possible to fail gracefully.
502 *
503 * In the case of argc = 0, make sure there is space for adding a
504 * empty string (which will bump argc to 1), to ensure confused
505 * userspace programs don't start processing from argv[1], thinking
506 * argc can never be 0, to keep them from walking envp by accident.
507 * See do_execveat_common().
508 */
509 ptr_size = (max(bprm->argc, 1) + bprm->envc) * sizeof(void *);
510 if (limit <= ptr_size)
511 return -E2BIG;
512 limit -= ptr_size;
513
514 bprm->argmin = bprm->p - limit;
515 return 0;
516}
517
518/*
519 * 'copy_strings()' copies argument/environment strings from the old
520 * processes's memory to the new process's stack. The call to get_user_pages()
521 * ensures the destination page is created and not swapped out.
522 */
523static int copy_strings(int argc, struct user_arg_ptr argv,
524 struct linux_binprm *bprm)
525{
526 struct page *kmapped_page = NULL;
527 char *kaddr = NULL;
528 unsigned long kpos = 0;
529 int ret;
530
531 while (argc-- > 0) {
532 const char __user *str;
533 int len;
534 unsigned long pos;
535
536 ret = -EFAULT;
537 str = get_user_arg_ptr(argv, nr: argc);
538 if (IS_ERR(ptr: str))
539 goto out;
540
541 len = strnlen_user(str, MAX_ARG_STRLEN);
542 if (!len)
543 goto out;
544
545 ret = -E2BIG;
546 if (!valid_arg_len(bprm, len))
547 goto out;
548
549 /* We're going to work our way backwards. */
550 pos = bprm->p;
551 str += len;
552 bprm->p -= len;
553#ifdef CONFIG_MMU
554 if (bprm->p < bprm->argmin)
555 goto out;
556#endif
557
558 while (len > 0) {
559 int offset, bytes_to_copy;
560
561 if (fatal_signal_pending(current)) {
562 ret = -ERESTARTNOHAND;
563 goto out;
564 }
565 cond_resched();
566
567 offset = pos % PAGE_SIZE;
568 if (offset == 0)
569 offset = PAGE_SIZE;
570
571 bytes_to_copy = offset;
572 if (bytes_to_copy > len)
573 bytes_to_copy = len;
574
575 offset -= bytes_to_copy;
576 pos -= bytes_to_copy;
577 str -= bytes_to_copy;
578 len -= bytes_to_copy;
579
580 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
581 struct page *page;
582
583 page = get_arg_page(bprm, pos, write: 1);
584 if (!page) {
585 ret = -E2BIG;
586 goto out;
587 }
588
589 if (kmapped_page) {
590 flush_dcache_page(page: kmapped_page);
591 kunmap_local(kaddr);
592 put_arg_page(page: kmapped_page);
593 }
594 kmapped_page = page;
595 kaddr = kmap_local_page(page: kmapped_page);
596 kpos = pos & PAGE_MASK;
597 flush_arg_page(bprm, pos: kpos, page: kmapped_page);
598 }
599 if (copy_from_user(to: kaddr+offset, from: str, n: bytes_to_copy)) {
600 ret = -EFAULT;
601 goto out;
602 }
603 }
604 }
605 ret = 0;
606out:
607 if (kmapped_page) {
608 flush_dcache_page(page: kmapped_page);
609 kunmap_local(kaddr);
610 put_arg_page(page: kmapped_page);
611 }
612 return ret;
613}
614
615/*
616 * Copy and argument/environment string from the kernel to the processes stack.
617 */
618int copy_string_kernel(const char *arg, struct linux_binprm *bprm)
619{
620 int len = strnlen(p: arg, MAX_ARG_STRLEN) + 1 /* terminating NUL */;
621 unsigned long pos = bprm->p;
622
623 if (len == 0)
624 return -EFAULT;
625 if (!valid_arg_len(bprm, len))
626 return -E2BIG;
627
628 /* We're going to work our way backwards. */
629 arg += len;
630 bprm->p -= len;
631 if (IS_ENABLED(CONFIG_MMU) && bprm->p < bprm->argmin)
632 return -E2BIG;
633
634 while (len > 0) {
635 unsigned int bytes_to_copy = min_t(unsigned int, len,
636 min_not_zero(offset_in_page(pos), PAGE_SIZE));
637 struct page *page;
638
639 pos -= bytes_to_copy;
640 arg -= bytes_to_copy;
641 len -= bytes_to_copy;
642
643 page = get_arg_page(bprm, pos, write: 1);
644 if (!page)
645 return -E2BIG;
646 flush_arg_page(bprm, pos: pos & PAGE_MASK, page);
647 memcpy_to_page(page, offset_in_page(pos), from: arg, len: bytes_to_copy);
648 put_arg_page(page);
649 }
650
651 return 0;
652}
653EXPORT_SYMBOL(copy_string_kernel);
654
655static int copy_strings_kernel(int argc, const char *const *argv,
656 struct linux_binprm *bprm)
657{
658 while (argc-- > 0) {
659 int ret = copy_string_kernel(argv[argc], bprm);
660 if (ret < 0)
661 return ret;
662 if (fatal_signal_pending(current))
663 return -ERESTARTNOHAND;
664 cond_resched();
665 }
666 return 0;
667}
668
669#ifdef CONFIG_MMU
670
671/*
672 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
673 * the binfmt code determines where the new stack should reside, we shift it to
674 * its final location. The process proceeds as follows:
675 *
676 * 1) Use shift to calculate the new vma endpoints.
677 * 2) Extend vma to cover both the old and new ranges. This ensures the
678 * arguments passed to subsequent functions are consistent.
679 * 3) Move vma's page tables to the new range.
680 * 4) Free up any cleared pgd range.
681 * 5) Shrink the vma to cover only the new range.
682 */
683static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
684{
685 struct mm_struct *mm = vma->vm_mm;
686 unsigned long old_start = vma->vm_start;
687 unsigned long old_end = vma->vm_end;
688 unsigned long length = old_end - old_start;
689 unsigned long new_start = old_start - shift;
690 unsigned long new_end = old_end - shift;
691 VMA_ITERATOR(vmi, mm, new_start);
692 struct vm_area_struct *next;
693 struct mmu_gather tlb;
694
695 BUG_ON(new_start > new_end);
696
697 /*
698 * ensure there are no vmas between where we want to go
699 * and where we are
700 */
701 if (vma != vma_next(vmi: &vmi))
702 return -EFAULT;
703
704 vma_iter_prev_range(vmi: &vmi);
705 /*
706 * cover the whole range: [new_start, old_end)
707 */
708 if (vma_expand(vmi: &vmi, vma, start: new_start, end: old_end, pgoff: vma->vm_pgoff, NULL))
709 return -ENOMEM;
710
711 /*
712 * move the page tables downwards, on failure we rely on
713 * process cleanup to remove whatever mess we made.
714 */
715 if (length != move_page_tables(vma, old_addr: old_start,
716 new_vma: vma, new_addr: new_start, len: length, need_rmap_locks: false, for_stack: true))
717 return -ENOMEM;
718
719 lru_add_drain();
720 tlb_gather_mmu(tlb: &tlb, mm);
721 next = vma_next(vmi: &vmi);
722 if (new_end > old_start) {
723 /*
724 * when the old and new regions overlap clear from new_end.
725 */
726 free_pgd_range(tlb: &tlb, addr: new_end, end: old_end, floor: new_end,
727 ceiling: next ? next->vm_start : USER_PGTABLES_CEILING);
728 } else {
729 /*
730 * otherwise, clean from old_start; this is done to not touch
731 * the address space in [new_end, old_start) some architectures
732 * have constraints on va-space that make this illegal (IA64) -
733 * for the others its just a little faster.
734 */
735 free_pgd_range(tlb: &tlb, addr: old_start, end: old_end, floor: new_end,
736 ceiling: next ? next->vm_start : USER_PGTABLES_CEILING);
737 }
738 tlb_finish_mmu(tlb: &tlb);
739
740 vma_prev(vmi: &vmi);
741 /* Shrink the vma to just the new range */
742 return vma_shrink(vmi: &vmi, vma, start: new_start, end: new_end, pgoff: vma->vm_pgoff);
743}
744
745/*
746 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
747 * the stack is optionally relocated, and some extra space is added.
748 */
749int setup_arg_pages(struct linux_binprm *bprm,
750 unsigned long stack_top,
751 int executable_stack)
752{
753 unsigned long ret;
754 unsigned long stack_shift;
755 struct mm_struct *mm = current->mm;
756 struct vm_area_struct *vma = bprm->vma;
757 struct vm_area_struct *prev = NULL;
758 unsigned long vm_flags;
759 unsigned long stack_base;
760 unsigned long stack_size;
761 unsigned long stack_expand;
762 unsigned long rlim_stack;
763 struct mmu_gather tlb;
764 struct vma_iterator vmi;
765
766#ifdef CONFIG_STACK_GROWSUP
767 /* Limit stack size */
768 stack_base = bprm->rlim_stack.rlim_max;
769
770 stack_base = calc_max_stack_size(stack_base);
771
772 /* Add space for stack randomization. */
773 stack_base += (STACK_RND_MASK << PAGE_SHIFT);
774
775 /* Make sure we didn't let the argument array grow too large. */
776 if (vma->vm_end - vma->vm_start > stack_base)
777 return -ENOMEM;
778
779 stack_base = PAGE_ALIGN(stack_top - stack_base);
780
781 stack_shift = vma->vm_start - stack_base;
782 mm->arg_start = bprm->p - stack_shift;
783 bprm->p = vma->vm_end - stack_shift;
784#else
785 stack_top = arch_align_stack(sp: stack_top);
786 stack_top = PAGE_ALIGN(stack_top);
787
788 if (unlikely(stack_top < mmap_min_addr) ||
789 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
790 return -ENOMEM;
791
792 stack_shift = vma->vm_end - stack_top;
793
794 bprm->p -= stack_shift;
795 mm->arg_start = bprm->p;
796#endif
797
798 if (bprm->loader)
799 bprm->loader -= stack_shift;
800 bprm->exec -= stack_shift;
801
802 if (mmap_write_lock_killable(mm))
803 return -EINTR;
804
805 vm_flags = VM_STACK_FLAGS;
806
807 /*
808 * Adjust stack execute permissions; explicitly enable for
809 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
810 * (arch default) otherwise.
811 */
812 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
813 vm_flags |= VM_EXEC;
814 else if (executable_stack == EXSTACK_DISABLE_X)
815 vm_flags &= ~VM_EXEC;
816 vm_flags |= mm->def_flags;
817 vm_flags |= VM_STACK_INCOMPLETE_SETUP;
818
819 vma_iter_init(vmi: &vmi, mm, addr: vma->vm_start);
820
821 tlb_gather_mmu(tlb: &tlb, mm);
822 ret = mprotect_fixup(vmi: &vmi, tlb: &tlb, vma, pprev: &prev, start: vma->vm_start, end: vma->vm_end,
823 newflags: vm_flags);
824 tlb_finish_mmu(tlb: &tlb);
825
826 if (ret)
827 goto out_unlock;
828 BUG_ON(prev != vma);
829
830 if (unlikely(vm_flags & VM_EXEC)) {
831 pr_warn_once("process '%pD4' started with executable stack\n",
832 bprm->file);
833 }
834
835 /* Move stack pages down in memory. */
836 if (stack_shift) {
837 ret = shift_arg_pages(vma, shift: stack_shift);
838 if (ret)
839 goto out_unlock;
840 }
841
842 /* mprotect_fixup is overkill to remove the temporary stack flags */
843 vm_flags_clear(vma, VM_STACK_INCOMPLETE_SETUP);
844
845 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
846 stack_size = vma->vm_end - vma->vm_start;
847 /*
848 * Align this down to a page boundary as expand_stack
849 * will align it up.
850 */
851 rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK;
852
853 stack_expand = min(rlim_stack, stack_size + stack_expand);
854
855#ifdef CONFIG_STACK_GROWSUP
856 stack_base = vma->vm_start + stack_expand;
857#else
858 stack_base = vma->vm_end - stack_expand;
859#endif
860 current->mm->start_stack = bprm->p;
861 ret = expand_stack_locked(vma, address: stack_base);
862 if (ret)
863 ret = -EFAULT;
864
865out_unlock:
866 mmap_write_unlock(mm);
867 return ret;
868}
869EXPORT_SYMBOL(setup_arg_pages);
870
871#else
872
873/*
874 * Transfer the program arguments and environment from the holding pages
875 * onto the stack. The provided stack pointer is adjusted accordingly.
876 */
877int transfer_args_to_stack(struct linux_binprm *bprm,
878 unsigned long *sp_location)
879{
880 unsigned long index, stop, sp;
881 int ret = 0;
882
883 stop = bprm->p >> PAGE_SHIFT;
884 sp = *sp_location;
885
886 for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
887 unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
888 char *src = kmap_local_page(bprm->page[index]) + offset;
889 sp -= PAGE_SIZE - offset;
890 if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
891 ret = -EFAULT;
892 kunmap_local(src);
893 if (ret)
894 goto out;
895 }
896
897 *sp_location = sp;
898
899out:
900 return ret;
901}
902EXPORT_SYMBOL(transfer_args_to_stack);
903
904#endif /* CONFIG_MMU */
905
906static struct file *do_open_execat(int fd, struct filename *name, int flags)
907{
908 struct file *file;
909 int err;
910 struct open_flags open_exec_flags = {
911 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
912 .acc_mode = MAY_EXEC,
913 .intent = LOOKUP_OPEN,
914 .lookup_flags = LOOKUP_FOLLOW,
915 };
916
917 if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
918 return ERR_PTR(error: -EINVAL);
919 if (flags & AT_SYMLINK_NOFOLLOW)
920 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
921 if (flags & AT_EMPTY_PATH)
922 open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
923
924 file = do_filp_open(dfd: fd, pathname: name, op: &open_exec_flags);
925 if (IS_ERR(ptr: file))
926 goto out;
927
928 /*
929 * may_open() has already checked for this, so it should be
930 * impossible to trip now. But we need to be extra cautious
931 * and check again at the very end too.
932 */
933 err = -EACCES;
934 if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
935 path_noexec(&file->f_path)))
936 goto exit;
937
938 err = deny_write_access(file);
939 if (err)
940 goto exit;
941
942out:
943 return file;
944
945exit:
946 fput(file);
947 return ERR_PTR(error: err);
948}
949
950struct file *open_exec(const char *name)
951{
952 struct filename *filename = getname_kernel(name);
953 struct file *f = ERR_CAST(ptr: filename);
954
955 if (!IS_ERR(ptr: filename)) {
956 f = do_open_execat(AT_FDCWD, name: filename, flags: 0);
957 putname(name: filename);
958 }
959 return f;
960}
961EXPORT_SYMBOL(open_exec);
962
963#if defined(CONFIG_BINFMT_FLAT) || defined(CONFIG_BINFMT_ELF_FDPIC)
964ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
965{
966 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
967 if (res > 0)
968 flush_icache_user_range(addr, addr + len);
969 return res;
970}
971EXPORT_SYMBOL(read_code);
972#endif
973
974/*
975 * Maps the mm_struct mm into the current task struct.
976 * On success, this function returns with exec_update_lock
977 * held for writing.
978 */
979static int exec_mmap(struct mm_struct *mm)
980{
981 struct task_struct *tsk;
982 struct mm_struct *old_mm, *active_mm;
983 int ret;
984
985 /* Notify parent that we're no longer interested in the old VM */
986 tsk = current;
987 old_mm = current->mm;
988 exec_mm_release(tsk, old_mm);
989
990 ret = down_write_killable(sem: &tsk->signal->exec_update_lock);
991 if (ret)
992 return ret;
993
994 if (old_mm) {
995 /*
996 * If there is a pending fatal signal perhaps a signal
997 * whose default action is to create a coredump get
998 * out and die instead of going through with the exec.
999 */
1000 ret = mmap_read_lock_killable(mm: old_mm);
1001 if (ret) {
1002 up_write(sem: &tsk->signal->exec_update_lock);
1003 return ret;
1004 }
1005 }
1006
1007 task_lock(p: tsk);
1008 membarrier_exec_mmap(mm);
1009
1010 local_irq_disable();
1011 active_mm = tsk->active_mm;
1012 tsk->active_mm = mm;
1013 tsk->mm = mm;
1014 mm_init_cid(mm);
1015 /*
1016 * This prevents preemption while active_mm is being loaded and
1017 * it and mm are being updated, which could cause problems for
1018 * lazy tlb mm refcounting when these are updated by context
1019 * switches. Not all architectures can handle irqs off over
1020 * activate_mm yet.
1021 */
1022 if (!IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1023 local_irq_enable();
1024 activate_mm(active_mm, mm);
1025 if (IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1026 local_irq_enable();
1027 lru_gen_add_mm(mm);
1028 task_unlock(p: tsk);
1029 lru_gen_use_mm(mm);
1030 if (old_mm) {
1031 mmap_read_unlock(mm: old_mm);
1032 BUG_ON(active_mm != old_mm);
1033 setmax_mm_hiwater_rss(maxrss: &tsk->signal->maxrss, mm: old_mm);
1034 mm_update_next_owner(mm: old_mm);
1035 mmput(old_mm);
1036 return 0;
1037 }
1038 mmdrop_lazy_tlb(mm: active_mm);
1039 return 0;
1040}
1041
1042static int de_thread(struct task_struct *tsk)
1043{
1044 struct signal_struct *sig = tsk->signal;
1045 struct sighand_struct *oldsighand = tsk->sighand;
1046 spinlock_t *lock = &oldsighand->siglock;
1047
1048 if (thread_group_empty(p: tsk))
1049 goto no_thread_group;
1050
1051 /*
1052 * Kill all other threads in the thread group.
1053 */
1054 spin_lock_irq(lock);
1055 if ((sig->flags & SIGNAL_GROUP_EXIT) || sig->group_exec_task) {
1056 /*
1057 * Another group action in progress, just
1058 * return so that the signal is processed.
1059 */
1060 spin_unlock_irq(lock);
1061 return -EAGAIN;
1062 }
1063
1064 sig->group_exec_task = tsk;
1065 sig->notify_count = zap_other_threads(p: tsk);
1066 if (!thread_group_leader(p: tsk))
1067 sig->notify_count--;
1068
1069 while (sig->notify_count) {
1070 __set_current_state(TASK_KILLABLE);
1071 spin_unlock_irq(lock);
1072 schedule();
1073 if (__fatal_signal_pending(p: tsk))
1074 goto killed;
1075 spin_lock_irq(lock);
1076 }
1077 spin_unlock_irq(lock);
1078
1079 /*
1080 * At this point all other threads have exited, all we have to
1081 * do is to wait for the thread group leader to become inactive,
1082 * and to assume its PID:
1083 */
1084 if (!thread_group_leader(p: tsk)) {
1085 struct task_struct *leader = tsk->group_leader;
1086
1087 for (;;) {
1088 cgroup_threadgroup_change_begin(tsk);
1089 write_lock_irq(&tasklist_lock);
1090 /*
1091 * Do this under tasklist_lock to ensure that
1092 * exit_notify() can't miss ->group_exec_task
1093 */
1094 sig->notify_count = -1;
1095 if (likely(leader->exit_state))
1096 break;
1097 __set_current_state(TASK_KILLABLE);
1098 write_unlock_irq(&tasklist_lock);
1099 cgroup_threadgroup_change_end(tsk);
1100 schedule();
1101 if (__fatal_signal_pending(p: tsk))
1102 goto killed;
1103 }
1104
1105 /*
1106 * The only record we have of the real-time age of a
1107 * process, regardless of execs it's done, is start_time.
1108 * All the past CPU time is accumulated in signal_struct
1109 * from sister threads now dead. But in this non-leader
1110 * exec, nothing survives from the original leader thread,
1111 * whose birth marks the true age of this process now.
1112 * When we take on its identity by switching to its PID, we
1113 * also take its birthdate (always earlier than our own).
1114 */
1115 tsk->start_time = leader->start_time;
1116 tsk->start_boottime = leader->start_boottime;
1117
1118 BUG_ON(!same_thread_group(leader, tsk));
1119 /*
1120 * An exec() starts a new thread group with the
1121 * TGID of the previous thread group. Rehash the
1122 * two threads with a switched PID, and release
1123 * the former thread group leader:
1124 */
1125
1126 /* Become a process group leader with the old leader's pid.
1127 * The old leader becomes a thread of the this thread group.
1128 */
1129 exchange_tids(task: tsk, old: leader);
1130 transfer_pid(old: leader, new: tsk, PIDTYPE_TGID);
1131 transfer_pid(old: leader, new: tsk, PIDTYPE_PGID);
1132 transfer_pid(old: leader, new: tsk, PIDTYPE_SID);
1133
1134 list_replace_rcu(old: &leader->tasks, new: &tsk->tasks);
1135 list_replace_init(old: &leader->sibling, new: &tsk->sibling);
1136
1137 tsk->group_leader = tsk;
1138 leader->group_leader = tsk;
1139
1140 tsk->exit_signal = SIGCHLD;
1141 leader->exit_signal = -1;
1142
1143 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1144 leader->exit_state = EXIT_DEAD;
1145
1146 /*
1147 * We are going to release_task()->ptrace_unlink() silently,
1148 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1149 * the tracer won't block again waiting for this thread.
1150 */
1151 if (unlikely(leader->ptrace))
1152 __wake_up_parent(p: leader, parent: leader->parent);
1153 write_unlock_irq(&tasklist_lock);
1154 cgroup_threadgroup_change_end(tsk);
1155
1156 release_task(p: leader);
1157 }
1158
1159 sig->group_exec_task = NULL;
1160 sig->notify_count = 0;
1161
1162no_thread_group:
1163 /* we have changed execution domain */
1164 tsk->exit_signal = SIGCHLD;
1165
1166 BUG_ON(!thread_group_leader(tsk));
1167 return 0;
1168
1169killed:
1170 /* protects against exit_notify() and __exit_signal() */
1171 read_lock(&tasklist_lock);
1172 sig->group_exec_task = NULL;
1173 sig->notify_count = 0;
1174 read_unlock(&tasklist_lock);
1175 return -EAGAIN;
1176}
1177
1178
1179/*
1180 * This function makes sure the current process has its own signal table,
1181 * so that flush_signal_handlers can later reset the handlers without
1182 * disturbing other processes. (Other processes might share the signal
1183 * table via the CLONE_SIGHAND option to clone().)
1184 */
1185static int unshare_sighand(struct task_struct *me)
1186{
1187 struct sighand_struct *oldsighand = me->sighand;
1188
1189 if (refcount_read(r: &oldsighand->count) != 1) {
1190 struct sighand_struct *newsighand;
1191 /*
1192 * This ->sighand is shared with the CLONE_SIGHAND
1193 * but not CLONE_THREAD task, switch to the new one.
1194 */
1195 newsighand = kmem_cache_alloc(cachep: sighand_cachep, GFP_KERNEL);
1196 if (!newsighand)
1197 return -ENOMEM;
1198
1199 refcount_set(r: &newsighand->count, n: 1);
1200
1201 write_lock_irq(&tasklist_lock);
1202 spin_lock(lock: &oldsighand->siglock);
1203 memcpy(newsighand->action, oldsighand->action,
1204 sizeof(newsighand->action));
1205 rcu_assign_pointer(me->sighand, newsighand);
1206 spin_unlock(lock: &oldsighand->siglock);
1207 write_unlock_irq(&tasklist_lock);
1208
1209 __cleanup_sighand(oldsighand);
1210 }
1211 return 0;
1212}
1213
1214char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk)
1215{
1216 task_lock(p: tsk);
1217 /* Always NUL terminated and zero-padded */
1218 strscpy_pad(dest: buf, src: tsk->comm, count: buf_size);
1219 task_unlock(p: tsk);
1220 return buf;
1221}
1222EXPORT_SYMBOL_GPL(__get_task_comm);
1223
1224/*
1225 * These functions flushes out all traces of the currently running executable
1226 * so that a new one can be started
1227 */
1228
1229void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1230{
1231 task_lock(p: tsk);
1232 trace_task_rename(task: tsk, comm: buf);
1233 strscpy_pad(dest: tsk->comm, src: buf, count: sizeof(tsk->comm));
1234 task_unlock(p: tsk);
1235 perf_event_comm(tsk, exec);
1236}
1237
1238/*
1239 * Calling this is the point of no return. None of the failures will be
1240 * seen by userspace since either the process is already taking a fatal
1241 * signal (via de_thread() or coredump), or will have SEGV raised
1242 * (after exec_mmap()) by search_binary_handler (see below).
1243 */
1244int begin_new_exec(struct linux_binprm * bprm)
1245{
1246 struct task_struct *me = current;
1247 int retval;
1248
1249 /* Once we are committed compute the creds */
1250 retval = bprm_creds_from_file(bprm);
1251 if (retval)
1252 return retval;
1253
1254 /*
1255 * Ensure all future errors are fatal.
1256 */
1257 bprm->point_of_no_return = true;
1258
1259 /*
1260 * Make this the only thread in the thread group.
1261 */
1262 retval = de_thread(tsk: me);
1263 if (retval)
1264 goto out;
1265
1266 /*
1267 * Cancel any io_uring activity across execve
1268 */
1269 io_uring_task_cancel();
1270
1271 /* Ensure the files table is not shared. */
1272 retval = unshare_files();
1273 if (retval)
1274 goto out;
1275
1276 /*
1277 * Must be called _before_ exec_mmap() as bprm->mm is
1278 * not visible until then. Doing it here also ensures
1279 * we don't race against replace_mm_exe_file().
1280 */
1281 retval = set_mm_exe_file(mm: bprm->mm, new_exe_file: bprm->file);
1282 if (retval)
1283 goto out;
1284
1285 /* If the binary is not readable then enforce mm->dumpable=0 */
1286 would_dump(bprm, bprm->file);
1287 if (bprm->have_execfd)
1288 would_dump(bprm, bprm->executable);
1289
1290 /*
1291 * Release all of the old mmap stuff
1292 */
1293 acct_arg_size(bprm, pages: 0);
1294 retval = exec_mmap(mm: bprm->mm);
1295 if (retval)
1296 goto out;
1297
1298 bprm->mm = NULL;
1299
1300 retval = exec_task_namespaces();
1301 if (retval)
1302 goto out_unlock;
1303
1304#ifdef CONFIG_POSIX_TIMERS
1305 spin_lock_irq(lock: &me->sighand->siglock);
1306 posix_cpu_timers_exit(task: me);
1307 spin_unlock_irq(lock: &me->sighand->siglock);
1308 exit_itimers(me);
1309 flush_itimer_signals();
1310#endif
1311
1312 /*
1313 * Make the signal table private.
1314 */
1315 retval = unshare_sighand(me);
1316 if (retval)
1317 goto out_unlock;
1318
1319 me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC |
1320 PF_NOFREEZE | PF_NO_SETAFFINITY);
1321 flush_thread();
1322 me->personality &= ~bprm->per_clear;
1323
1324 clear_syscall_work_syscall_user_dispatch(me);
1325
1326 /*
1327 * We have to apply CLOEXEC before we change whether the process is
1328 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1329 * trying to access the should-be-closed file descriptors of a process
1330 * undergoing exec(2).
1331 */
1332 do_close_on_exec(me->files);
1333
1334 if (bprm->secureexec) {
1335 /* Make sure parent cannot signal privileged process. */
1336 me->pdeath_signal = 0;
1337
1338 /*
1339 * For secureexec, reset the stack limit to sane default to
1340 * avoid bad behavior from the prior rlimits. This has to
1341 * happen before arch_pick_mmap_layout(), which examines
1342 * RLIMIT_STACK, but after the point of no return to avoid
1343 * needing to clean up the change on failure.
1344 */
1345 if (bprm->rlim_stack.rlim_cur > _STK_LIM)
1346 bprm->rlim_stack.rlim_cur = _STK_LIM;
1347 }
1348
1349 me->sas_ss_sp = me->sas_ss_size = 0;
1350
1351 /*
1352 * Figure out dumpability. Note that this checking only of current
1353 * is wrong, but userspace depends on it. This should be testing
1354 * bprm->secureexec instead.
1355 */
1356 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP ||
1357 !(uid_eq(current_euid(), current_uid()) &&
1358 gid_eq(current_egid(), current_gid())))
1359 set_dumpable(current->mm, value: suid_dumpable);
1360 else
1361 set_dumpable(current->mm, SUID_DUMP_USER);
1362
1363 perf_event_exec();
1364 __set_task_comm(tsk: me, buf: kbasename(path: bprm->filename), exec: true);
1365
1366 /* An exec changes our domain. We are no longer part of the thread
1367 group */
1368 WRITE_ONCE(me->self_exec_id, me->self_exec_id + 1);
1369 flush_signal_handlers(me, force_default: 0);
1370
1371 retval = set_cred_ucounts(bprm->cred);
1372 if (retval < 0)
1373 goto out_unlock;
1374
1375 /*
1376 * install the new credentials for this executable
1377 */
1378 security_bprm_committing_creds(bprm);
1379
1380 commit_creds(bprm->cred);
1381 bprm->cred = NULL;
1382
1383 /*
1384 * Disable monitoring for regular users
1385 * when executing setuid binaries. Must
1386 * wait until new credentials are committed
1387 * by commit_creds() above
1388 */
1389 if (get_dumpable(mm: me->mm) != SUID_DUMP_USER)
1390 perf_event_exit_task(child: me);
1391 /*
1392 * cred_guard_mutex must be held at least to this point to prevent
1393 * ptrace_attach() from altering our determination of the task's
1394 * credentials; any time after this it may be unlocked.
1395 */
1396 security_bprm_committed_creds(bprm);
1397
1398 /* Pass the opened binary to the interpreter. */
1399 if (bprm->have_execfd) {
1400 retval = get_unused_fd_flags(flags: 0);
1401 if (retval < 0)
1402 goto out_unlock;
1403 fd_install(fd: retval, file: bprm->executable);
1404 bprm->executable = NULL;
1405 bprm->execfd = retval;
1406 }
1407 return 0;
1408
1409out_unlock:
1410 up_write(sem: &me->signal->exec_update_lock);
1411out:
1412 return retval;
1413}
1414EXPORT_SYMBOL(begin_new_exec);
1415
1416void would_dump(struct linux_binprm *bprm, struct file *file)
1417{
1418 struct inode *inode = file_inode(f: file);
1419 struct mnt_idmap *idmap = file_mnt_idmap(file);
1420 if (inode_permission(idmap, inode, MAY_READ) < 0) {
1421 struct user_namespace *old, *user_ns;
1422 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1423
1424 /* Ensure mm->user_ns contains the executable */
1425 user_ns = old = bprm->mm->user_ns;
1426 while ((user_ns != &init_user_ns) &&
1427 !privileged_wrt_inode_uidgid(ns: user_ns, idmap, inode))
1428 user_ns = user_ns->parent;
1429
1430 if (old != user_ns) {
1431 bprm->mm->user_ns = get_user_ns(ns: user_ns);
1432 put_user_ns(ns: old);
1433 }
1434 }
1435}
1436EXPORT_SYMBOL(would_dump);
1437
1438void setup_new_exec(struct linux_binprm * bprm)
1439{
1440 /* Setup things that can depend upon the personality */
1441 struct task_struct *me = current;
1442
1443 arch_pick_mmap_layout(mm: me->mm, rlim_stack: &bprm->rlim_stack);
1444
1445 arch_setup_new_exec();
1446
1447 /* Set the new mm task size. We have to do that late because it may
1448 * depend on TIF_32BIT which is only updated in flush_thread() on
1449 * some architectures like powerpc
1450 */
1451 me->mm->task_size = TASK_SIZE;
1452 up_write(sem: &me->signal->exec_update_lock);
1453 mutex_unlock(lock: &me->signal->cred_guard_mutex);
1454}
1455EXPORT_SYMBOL(setup_new_exec);
1456
1457/* Runs immediately before start_thread() takes over. */
1458void finalize_exec(struct linux_binprm *bprm)
1459{
1460 /* Store any stack rlimit changes before starting thread. */
1461 task_lock(current->group_leader);
1462 current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack;
1463 task_unlock(current->group_leader);
1464}
1465EXPORT_SYMBOL(finalize_exec);
1466
1467/*
1468 * Prepare credentials and lock ->cred_guard_mutex.
1469 * setup_new_exec() commits the new creds and drops the lock.
1470 * Or, if exec fails before, free_bprm() should release ->cred
1471 * and unlock.
1472 */
1473static int prepare_bprm_creds(struct linux_binprm *bprm)
1474{
1475 if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1476 return -ERESTARTNOINTR;
1477
1478 bprm->cred = prepare_exec_creds();
1479 if (likely(bprm->cred))
1480 return 0;
1481
1482 mutex_unlock(lock: &current->signal->cred_guard_mutex);
1483 return -ENOMEM;
1484}
1485
1486static void free_bprm(struct linux_binprm *bprm)
1487{
1488 if (bprm->mm) {
1489 acct_arg_size(bprm, pages: 0);
1490 mmput(bprm->mm);
1491 }
1492 free_arg_pages(bprm);
1493 if (bprm->cred) {
1494 mutex_unlock(lock: &current->signal->cred_guard_mutex);
1495 abort_creds(bprm->cred);
1496 }
1497 if (bprm->file) {
1498 allow_write_access(file: bprm->file);
1499 fput(bprm->file);
1500 }
1501 if (bprm->executable)
1502 fput(bprm->executable);
1503 /* If a binfmt changed the interp, free it. */
1504 if (bprm->interp != bprm->filename)
1505 kfree(objp: bprm->interp);
1506 kfree(objp: bprm->fdpath);
1507 kfree(objp: bprm);
1508}
1509
1510static struct linux_binprm *alloc_bprm(int fd, struct filename *filename)
1511{
1512 struct linux_binprm *bprm = kzalloc(size: sizeof(*bprm), GFP_KERNEL);
1513 int retval = -ENOMEM;
1514 if (!bprm)
1515 goto out;
1516
1517 if (fd == AT_FDCWD || filename->name[0] == '/') {
1518 bprm->filename = filename->name;
1519 } else {
1520 if (filename->name[0] == '\0')
1521 bprm->fdpath = kasprintf(GFP_KERNEL, fmt: "/dev/fd/%d", fd);
1522 else
1523 bprm->fdpath = kasprintf(GFP_KERNEL, fmt: "/dev/fd/%d/%s",
1524 fd, filename->name);
1525 if (!bprm->fdpath)
1526 goto out_free;
1527
1528 bprm->filename = bprm->fdpath;
1529 }
1530 bprm->interp = bprm->filename;
1531
1532 retval = bprm_mm_init(bprm);
1533 if (retval)
1534 goto out_free;
1535 return bprm;
1536
1537out_free:
1538 free_bprm(bprm);
1539out:
1540 return ERR_PTR(error: retval);
1541}
1542
1543int bprm_change_interp(const char *interp, struct linux_binprm *bprm)
1544{
1545 /* If a binfmt changed the interp, free it first. */
1546 if (bprm->interp != bprm->filename)
1547 kfree(objp: bprm->interp);
1548 bprm->interp = kstrdup(s: interp, GFP_KERNEL);
1549 if (!bprm->interp)
1550 return -ENOMEM;
1551 return 0;
1552}
1553EXPORT_SYMBOL(bprm_change_interp);
1554
1555/*
1556 * determine how safe it is to execute the proposed program
1557 * - the caller must hold ->cred_guard_mutex to protect against
1558 * PTRACE_ATTACH or seccomp thread-sync
1559 */
1560static void check_unsafe_exec(struct linux_binprm *bprm)
1561{
1562 struct task_struct *p = current, *t;
1563 unsigned n_fs;
1564
1565 if (p->ptrace)
1566 bprm->unsafe |= LSM_UNSAFE_PTRACE;
1567
1568 /*
1569 * This isn't strictly necessary, but it makes it harder for LSMs to
1570 * mess up.
1571 */
1572 if (task_no_new_privs(current))
1573 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1574
1575 /*
1576 * If another task is sharing our fs, we cannot safely
1577 * suid exec because the differently privileged task
1578 * will be able to manipulate the current directory, etc.
1579 * It would be nice to force an unshare instead...
1580 */
1581 t = p;
1582 n_fs = 1;
1583 spin_lock(lock: &p->fs->lock);
1584 rcu_read_lock();
1585 while_each_thread(p, t) {
1586 if (t->fs == p->fs)
1587 n_fs++;
1588 }
1589 rcu_read_unlock();
1590
1591 if (p->fs->users > n_fs)
1592 bprm->unsafe |= LSM_UNSAFE_SHARE;
1593 else
1594 p->fs->in_exec = 1;
1595 spin_unlock(lock: &p->fs->lock);
1596}
1597
1598static void bprm_fill_uid(struct linux_binprm *bprm, struct file *file)
1599{
1600 /* Handle suid and sgid on files */
1601 struct mnt_idmap *idmap;
1602 struct inode *inode = file_inode(f: file);
1603 unsigned int mode;
1604 vfsuid_t vfsuid;
1605 vfsgid_t vfsgid;
1606
1607 if (!mnt_may_suid(mnt: file->f_path.mnt))
1608 return;
1609
1610 if (task_no_new_privs(current))
1611 return;
1612
1613 mode = READ_ONCE(inode->i_mode);
1614 if (!(mode & (S_ISUID|S_ISGID)))
1615 return;
1616
1617 idmap = file_mnt_idmap(file);
1618
1619 /* Be careful if suid/sgid is set */
1620 inode_lock(inode);
1621
1622 /* reload atomically mode/uid/gid now that lock held */
1623 mode = inode->i_mode;
1624 vfsuid = i_uid_into_vfsuid(idmap, inode);
1625 vfsgid = i_gid_into_vfsgid(idmap, inode);
1626 inode_unlock(inode);
1627
1628 /* We ignore suid/sgid if there are no mappings for them in the ns */
1629 if (!vfsuid_has_mapping(userns: bprm->cred->user_ns, vfsuid) ||
1630 !vfsgid_has_mapping(userns: bprm->cred->user_ns, vfsgid))
1631 return;
1632
1633 if (mode & S_ISUID) {
1634 bprm->per_clear |= PER_CLEAR_ON_SETID;
1635 bprm->cred->euid = vfsuid_into_kuid(vfsuid);
1636 }
1637
1638 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1639 bprm->per_clear |= PER_CLEAR_ON_SETID;
1640 bprm->cred->egid = vfsgid_into_kgid(vfsgid);
1641 }
1642}
1643
1644/*
1645 * Compute brpm->cred based upon the final binary.
1646 */
1647static int bprm_creds_from_file(struct linux_binprm *bprm)
1648{
1649 /* Compute creds based on which file? */
1650 struct file *file = bprm->execfd_creds ? bprm->executable : bprm->file;
1651
1652 bprm_fill_uid(bprm, file);
1653 return security_bprm_creds_from_file(bprm, file);
1654}
1655
1656/*
1657 * Fill the binprm structure from the inode.
1658 * Read the first BINPRM_BUF_SIZE bytes
1659 *
1660 * This may be called multiple times for binary chains (scripts for example).
1661 */
1662static int prepare_binprm(struct linux_binprm *bprm)
1663{
1664 loff_t pos = 0;
1665
1666 memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1667 return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos);
1668}
1669
1670/*
1671 * Arguments are '\0' separated strings found at the location bprm->p
1672 * points to; chop off the first by relocating brpm->p to right after
1673 * the first '\0' encountered.
1674 */
1675int remove_arg_zero(struct linux_binprm *bprm)
1676{
1677 int ret = 0;
1678 unsigned long offset;
1679 char *kaddr;
1680 struct page *page;
1681
1682 if (!bprm->argc)
1683 return 0;
1684
1685 do {
1686 offset = bprm->p & ~PAGE_MASK;
1687 page = get_arg_page(bprm, pos: bprm->p, write: 0);
1688 if (!page) {
1689 ret = -EFAULT;
1690 goto out;
1691 }
1692 kaddr = kmap_local_page(page);
1693
1694 for (; offset < PAGE_SIZE && kaddr[offset];
1695 offset++, bprm->p++)
1696 ;
1697
1698 kunmap_local(kaddr);
1699 put_arg_page(page);
1700 } while (offset == PAGE_SIZE);
1701
1702 bprm->p++;
1703 bprm->argc--;
1704 ret = 0;
1705
1706out:
1707 return ret;
1708}
1709EXPORT_SYMBOL(remove_arg_zero);
1710
1711#define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1712/*
1713 * cycle the list of binary formats handler, until one recognizes the image
1714 */
1715static int search_binary_handler(struct linux_binprm *bprm)
1716{
1717 bool need_retry = IS_ENABLED(CONFIG_MODULES);
1718 struct linux_binfmt *fmt;
1719 int retval;
1720
1721 retval = prepare_binprm(bprm);
1722 if (retval < 0)
1723 return retval;
1724
1725 retval = security_bprm_check(bprm);
1726 if (retval)
1727 return retval;
1728
1729 retval = -ENOENT;
1730 retry:
1731 read_lock(&binfmt_lock);
1732 list_for_each_entry(fmt, &formats, lh) {
1733 if (!try_module_get(module: fmt->module))
1734 continue;
1735 read_unlock(&binfmt_lock);
1736
1737 retval = fmt->load_binary(bprm);
1738
1739 read_lock(&binfmt_lock);
1740 put_binfmt(fmt);
1741 if (bprm->point_of_no_return || (retval != -ENOEXEC)) {
1742 read_unlock(&binfmt_lock);
1743 return retval;
1744 }
1745 }
1746 read_unlock(&binfmt_lock);
1747
1748 if (need_retry) {
1749 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1750 printable(bprm->buf[2]) && printable(bprm->buf[3]))
1751 return retval;
1752 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1753 return retval;
1754 need_retry = false;
1755 goto retry;
1756 }
1757
1758 return retval;
1759}
1760
1761/* binfmt handlers will call back into begin_new_exec() on success. */
1762static int exec_binprm(struct linux_binprm *bprm)
1763{
1764 pid_t old_pid, old_vpid;
1765 int ret, depth;
1766
1767 /* Need to fetch pid before load_binary changes it */
1768 old_pid = current->pid;
1769 rcu_read_lock();
1770 old_vpid = task_pid_nr_ns(current, ns: task_active_pid_ns(current->parent));
1771 rcu_read_unlock();
1772
1773 /* This allows 4 levels of binfmt rewrites before failing hard. */
1774 for (depth = 0;; depth++) {
1775 struct file *exec;
1776 if (depth > 5)
1777 return -ELOOP;
1778
1779 ret = search_binary_handler(bprm);
1780 if (ret < 0)
1781 return ret;
1782 if (!bprm->interpreter)
1783 break;
1784
1785 exec = bprm->file;
1786 bprm->file = bprm->interpreter;
1787 bprm->interpreter = NULL;
1788
1789 allow_write_access(file: exec);
1790 if (unlikely(bprm->have_execfd)) {
1791 if (bprm->executable) {
1792 fput(exec);
1793 return -ENOEXEC;
1794 }
1795 bprm->executable = exec;
1796 } else
1797 fput(exec);
1798 }
1799
1800 audit_bprm(bprm);
1801 trace_sched_process_exec(current, old_pid, bprm);
1802 ptrace_event(PTRACE_EVENT_EXEC, message: old_vpid);
1803 proc_exec_connector(current);
1804 return 0;
1805}
1806
1807/*
1808 * sys_execve() executes a new program.
1809 */
1810static int bprm_execve(struct linux_binprm *bprm,
1811 int fd, struct filename *filename, int flags)
1812{
1813 struct file *file;
1814 int retval;
1815
1816 retval = prepare_bprm_creds(bprm);
1817 if (retval)
1818 return retval;
1819
1820 /*
1821 * Check for unsafe execution states before exec_binprm(), which
1822 * will call back into begin_new_exec(), into bprm_creds_from_file(),
1823 * where setuid-ness is evaluated.
1824 */
1825 check_unsafe_exec(bprm);
1826 current->in_execve = 1;
1827 sched_mm_cid_before_execve(current);
1828
1829 file = do_open_execat(fd, name: filename, flags);
1830 retval = PTR_ERR(ptr: file);
1831 if (IS_ERR(ptr: file))
1832 goto out_unmark;
1833
1834 sched_exec();
1835
1836 bprm->file = file;
1837 /*
1838 * Record that a name derived from an O_CLOEXEC fd will be
1839 * inaccessible after exec. This allows the code in exec to
1840 * choose to fail when the executable is not mmaped into the
1841 * interpreter and an open file descriptor is not passed to
1842 * the interpreter. This makes for a better user experience
1843 * than having the interpreter start and then immediately fail
1844 * when it finds the executable is inaccessible.
1845 */
1846 if (bprm->fdpath && get_close_on_exec(fd))
1847 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1848
1849 /* Set the unchanging part of bprm->cred */
1850 retval = security_bprm_creds_for_exec(bprm);
1851 if (retval)
1852 goto out;
1853
1854 retval = exec_binprm(bprm);
1855 if (retval < 0)
1856 goto out;
1857
1858 sched_mm_cid_after_execve(current);
1859 /* execve succeeded */
1860 current->fs->in_exec = 0;
1861 current->in_execve = 0;
1862 rseq_execve(current);
1863 user_events_execve(current);
1864 acct_update_integrals(current);
1865 task_numa_free(current, final: false);
1866 return retval;
1867
1868out:
1869 /*
1870 * If past the point of no return ensure the code never
1871 * returns to the userspace process. Use an existing fatal
1872 * signal if present otherwise terminate the process with
1873 * SIGSEGV.
1874 */
1875 if (bprm->point_of_no_return && !fatal_signal_pending(current))
1876 force_fatal_sig(SIGSEGV);
1877
1878out_unmark:
1879 sched_mm_cid_after_execve(current);
1880 current->fs->in_exec = 0;
1881 current->in_execve = 0;
1882
1883 return retval;
1884}
1885
1886static int do_execveat_common(int fd, struct filename *filename,
1887 struct user_arg_ptr argv,
1888 struct user_arg_ptr envp,
1889 int flags)
1890{
1891 struct linux_binprm *bprm;
1892 int retval;
1893
1894 if (IS_ERR(ptr: filename))
1895 return PTR_ERR(ptr: filename);
1896
1897 /*
1898 * We move the actual failure in case of RLIMIT_NPROC excess from
1899 * set*uid() to execve() because too many poorly written programs
1900 * don't check setuid() return code. Here we additionally recheck
1901 * whether NPROC limit is still exceeded.
1902 */
1903 if ((current->flags & PF_NPROC_EXCEEDED) &&
1904 is_rlimit_overlimit(current_ucounts(), type: UCOUNT_RLIMIT_NPROC, max: rlimit(RLIMIT_NPROC))) {
1905 retval = -EAGAIN;
1906 goto out_ret;
1907 }
1908
1909 /* We're below the limit (still or again), so we don't want to make
1910 * further execve() calls fail. */
1911 current->flags &= ~PF_NPROC_EXCEEDED;
1912
1913 bprm = alloc_bprm(fd, filename);
1914 if (IS_ERR(ptr: bprm)) {
1915 retval = PTR_ERR(ptr: bprm);
1916 goto out_ret;
1917 }
1918
1919 retval = count(argv, MAX_ARG_STRINGS);
1920 if (retval == 0)
1921 pr_warn_once("process '%s' launched '%s' with NULL argv: empty string added\n",
1922 current->comm, bprm->filename);
1923 if (retval < 0)
1924 goto out_free;
1925 bprm->argc = retval;
1926
1927 retval = count(argv: envp, MAX_ARG_STRINGS);
1928 if (retval < 0)
1929 goto out_free;
1930 bprm->envc = retval;
1931
1932 retval = bprm_stack_limits(bprm);
1933 if (retval < 0)
1934 goto out_free;
1935
1936 retval = copy_string_kernel(bprm->filename, bprm);
1937 if (retval < 0)
1938 goto out_free;
1939 bprm->exec = bprm->p;
1940
1941 retval = copy_strings(argc: bprm->envc, argv: envp, bprm);
1942 if (retval < 0)
1943 goto out_free;
1944
1945 retval = copy_strings(argc: bprm->argc, argv, bprm);
1946 if (retval < 0)
1947 goto out_free;
1948
1949 /*
1950 * When argv is empty, add an empty string ("") as argv[0] to
1951 * ensure confused userspace programs that start processing
1952 * from argv[1] won't end up walking envp. See also
1953 * bprm_stack_limits().
1954 */
1955 if (bprm->argc == 0) {
1956 retval = copy_string_kernel("", bprm);
1957 if (retval < 0)
1958 goto out_free;
1959 bprm->argc = 1;
1960 }
1961
1962 retval = bprm_execve(bprm, fd, filename, flags);
1963out_free:
1964 free_bprm(bprm);
1965
1966out_ret:
1967 putname(name: filename);
1968 return retval;
1969}
1970
1971int kernel_execve(const char *kernel_filename,
1972 const char *const *argv, const char *const *envp)
1973{
1974 struct filename *filename;
1975 struct linux_binprm *bprm;
1976 int fd = AT_FDCWD;
1977 int retval;
1978
1979 /* It is non-sense for kernel threads to call execve */
1980 if (WARN_ON_ONCE(current->flags & PF_KTHREAD))
1981 return -EINVAL;
1982
1983 filename = getname_kernel(kernel_filename);
1984 if (IS_ERR(ptr: filename))
1985 return PTR_ERR(ptr: filename);
1986
1987 bprm = alloc_bprm(fd, filename);
1988 if (IS_ERR(ptr: bprm)) {
1989 retval = PTR_ERR(ptr: bprm);
1990 goto out_ret;
1991 }
1992
1993 retval = count_strings_kernel(argv);
1994 if (WARN_ON_ONCE(retval == 0))
1995 retval = -EINVAL;
1996 if (retval < 0)
1997 goto out_free;
1998 bprm->argc = retval;
1999
2000 retval = count_strings_kernel(argv: envp);
2001 if (retval < 0)
2002 goto out_free;
2003 bprm->envc = retval;
2004
2005 retval = bprm_stack_limits(bprm);
2006 if (retval < 0)
2007 goto out_free;
2008
2009 retval = copy_string_kernel(bprm->filename, bprm);
2010 if (retval < 0)
2011 goto out_free;
2012 bprm->exec = bprm->p;
2013
2014 retval = copy_strings_kernel(argc: bprm->envc, argv: envp, bprm);
2015 if (retval < 0)
2016 goto out_free;
2017
2018 retval = copy_strings_kernel(argc: bprm->argc, argv, bprm);
2019 if (retval < 0)
2020 goto out_free;
2021
2022 retval = bprm_execve(bprm, fd, filename, flags: 0);
2023out_free:
2024 free_bprm(bprm);
2025out_ret:
2026 putname(name: filename);
2027 return retval;
2028}
2029
2030static int do_execve(struct filename *filename,
2031 const char __user *const __user *__argv,
2032 const char __user *const __user *__envp)
2033{
2034 struct user_arg_ptr argv = { .ptr.native = __argv };
2035 struct user_arg_ptr envp = { .ptr.native = __envp };
2036 return do_execveat_common(AT_FDCWD, filename, argv, envp, flags: 0);
2037}
2038
2039static int do_execveat(int fd, struct filename *filename,
2040 const char __user *const __user *__argv,
2041 const char __user *const __user *__envp,
2042 int flags)
2043{
2044 struct user_arg_ptr argv = { .ptr.native = __argv };
2045 struct user_arg_ptr envp = { .ptr.native = __envp };
2046
2047 return do_execveat_common(fd, filename, argv, envp, flags);
2048}
2049
2050#ifdef CONFIG_COMPAT
2051static int compat_do_execve(struct filename *filename,
2052 const compat_uptr_t __user *__argv,
2053 const compat_uptr_t __user *__envp)
2054{
2055 struct user_arg_ptr argv = {
2056 .is_compat = true,
2057 .ptr.compat = __argv,
2058 };
2059 struct user_arg_ptr envp = {
2060 .is_compat = true,
2061 .ptr.compat = __envp,
2062 };
2063 return do_execveat_common(AT_FDCWD, filename, argv, envp, flags: 0);
2064}
2065
2066static int compat_do_execveat(int fd, struct filename *filename,
2067 const compat_uptr_t __user *__argv,
2068 const compat_uptr_t __user *__envp,
2069 int flags)
2070{
2071 struct user_arg_ptr argv = {
2072 .is_compat = true,
2073 .ptr.compat = __argv,
2074 };
2075 struct user_arg_ptr envp = {
2076 .is_compat = true,
2077 .ptr.compat = __envp,
2078 };
2079 return do_execveat_common(fd, filename, argv, envp, flags);
2080}
2081#endif
2082
2083void set_binfmt(struct linux_binfmt *new)
2084{
2085 struct mm_struct *mm = current->mm;
2086
2087 if (mm->binfmt)
2088 module_put(module: mm->binfmt->module);
2089
2090 mm->binfmt = new;
2091 if (new)
2092 __module_get(module: new->module);
2093}
2094EXPORT_SYMBOL(set_binfmt);
2095
2096/*
2097 * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
2098 */
2099void set_dumpable(struct mm_struct *mm, int value)
2100{
2101 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
2102 return;
2103
2104 set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value);
2105}
2106
2107SYSCALL_DEFINE3(execve,
2108 const char __user *, filename,
2109 const char __user *const __user *, argv,
2110 const char __user *const __user *, envp)
2111{
2112 return do_execve(filename: getname(filename), argv: argv, envp: envp);
2113}
2114
2115SYSCALL_DEFINE5(execveat,
2116 int, fd, const char __user *, filename,
2117 const char __user *const __user *, argv,
2118 const char __user *const __user *, envp,
2119 int, flags)
2120{
2121 return do_execveat(fd,
2122 filename: getname_uflags(filename, flags),
2123 argv: argv, envp: envp, flags);
2124}
2125
2126#ifdef CONFIG_COMPAT
2127COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
2128 const compat_uptr_t __user *, argv,
2129 const compat_uptr_t __user *, envp)
2130{
2131 return compat_do_execve(filename: getname(filename), argv: argv, envp: envp);
2132}
2133
2134COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
2135 const char __user *, filename,
2136 const compat_uptr_t __user *, argv,
2137 const compat_uptr_t __user *, envp,
2138 int, flags)
2139{
2140 return compat_do_execveat(fd,
2141 filename: getname_uflags(filename, flags),
2142 argv: argv, envp: envp, flags);
2143}
2144#endif
2145
2146#ifdef CONFIG_SYSCTL
2147
2148static int proc_dointvec_minmax_coredump(struct ctl_table *table, int write,
2149 void *buffer, size_t *lenp, loff_t *ppos)
2150{
2151 int error = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2152
2153 if (!error)
2154 validate_coredump_safety();
2155 return error;
2156}
2157
2158static struct ctl_table fs_exec_sysctls[] = {
2159 {
2160 .procname = "suid_dumpable",
2161 .data = &suid_dumpable,
2162 .maxlen = sizeof(int),
2163 .mode = 0644,
2164 .proc_handler = proc_dointvec_minmax_coredump,
2165 .extra1 = SYSCTL_ZERO,
2166 .extra2 = SYSCTL_TWO,
2167 },
2168 { }
2169};
2170
2171static int __init init_fs_exec_sysctls(void)
2172{
2173 register_sysctl_init("fs", fs_exec_sysctls);
2174 return 0;
2175}
2176
2177fs_initcall(init_fs_exec_sysctls);
2178#endif /* CONFIG_SYSCTL */
2179

source code of linux/fs/exec.c