1// SPDX-License-Identifier: GPL-2.0
2/*
3 * fs/f2fs/checkpoint.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8#include <linux/fs.h>
9#include <linux/bio.h>
10#include <linux/mpage.h>
11#include <linux/writeback.h>
12#include <linux/blkdev.h>
13#include <linux/f2fs_fs.h>
14#include <linux/pagevec.h>
15#include <linux/swap.h>
16#include <linux/kthread.h>
17
18#include "f2fs.h"
19#include "node.h"
20#include "segment.h"
21#include "iostat.h"
22#include <trace/events/f2fs.h>
23
24#define DEFAULT_CHECKPOINT_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
25
26static struct kmem_cache *ino_entry_slab;
27struct kmem_cache *f2fs_inode_entry_slab;
28
29void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io,
30 unsigned char reason)
31{
32 f2fs_build_fault_attr(sbi, rate: 0, type: 0);
33 if (!end_io)
34 f2fs_flush_merged_writes(sbi);
35 f2fs_handle_critical_error(sbi, reason, irq_context: end_io);
36}
37
38/*
39 * We guarantee no failure on the returned page.
40 */
41struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
42{
43 struct address_space *mapping = META_MAPPING(sbi);
44 struct page *page;
45repeat:
46 page = f2fs_grab_cache_page(mapping, index, for_write: false);
47 if (!page) {
48 cond_resched();
49 goto repeat;
50 }
51 f2fs_wait_on_page_writeback(page, type: META, ordered: true, locked: true);
52 if (!PageUptodate(page))
53 SetPageUptodate(page);
54 return page;
55}
56
57static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index,
58 bool is_meta)
59{
60 struct address_space *mapping = META_MAPPING(sbi);
61 struct page *page;
62 struct f2fs_io_info fio = {
63 .sbi = sbi,
64 .type = META,
65 .op = REQ_OP_READ,
66 .op_flags = REQ_META | REQ_PRIO,
67 .old_blkaddr = index,
68 .new_blkaddr = index,
69 .encrypted_page = NULL,
70 .is_por = !is_meta ? 1 : 0,
71 };
72 int err;
73
74 if (unlikely(!is_meta))
75 fio.op_flags &= ~REQ_META;
76repeat:
77 page = f2fs_grab_cache_page(mapping, index, for_write: false);
78 if (!page) {
79 cond_resched();
80 goto repeat;
81 }
82 if (PageUptodate(page))
83 goto out;
84
85 fio.page = page;
86
87 err = f2fs_submit_page_bio(fio: &fio);
88 if (err) {
89 f2fs_put_page(page, unlock: 1);
90 return ERR_PTR(error: err);
91 }
92
93 f2fs_update_iostat(sbi, NULL, type: FS_META_READ_IO, F2FS_BLKSIZE);
94
95 lock_page(page);
96 if (unlikely(page->mapping != mapping)) {
97 f2fs_put_page(page, unlock: 1);
98 goto repeat;
99 }
100
101 if (unlikely(!PageUptodate(page))) {
102 f2fs_handle_page_eio(sbi, ofs: page->index, type: META);
103 f2fs_put_page(page, unlock: 1);
104 return ERR_PTR(error: -EIO);
105 }
106out:
107 return page;
108}
109
110struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
111{
112 return __get_meta_page(sbi, index, is_meta: true);
113}
114
115struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index)
116{
117 struct page *page;
118 int count = 0;
119
120retry:
121 page = __get_meta_page(sbi, index, is_meta: true);
122 if (IS_ERR(ptr: page)) {
123 if (PTR_ERR(ptr: page) == -EIO &&
124 ++count <= DEFAULT_RETRY_IO_COUNT)
125 goto retry;
126 f2fs_stop_checkpoint(sbi, end_io: false, reason: STOP_CP_REASON_META_PAGE);
127 }
128 return page;
129}
130
131/* for POR only */
132struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index)
133{
134 return __get_meta_page(sbi, index, is_meta: false);
135}
136
137static bool __is_bitmap_valid(struct f2fs_sb_info *sbi, block_t blkaddr,
138 int type)
139{
140 struct seg_entry *se;
141 unsigned int segno, offset;
142 bool exist;
143
144 if (type == DATA_GENERIC)
145 return true;
146
147 segno = GET_SEGNO(sbi, blkaddr);
148 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
149 se = get_seg_entry(sbi, segno);
150
151 exist = f2fs_test_bit(nr: offset, addr: se->cur_valid_map);
152
153 /* skip data, if we already have an error in checkpoint. */
154 if (unlikely(f2fs_cp_error(sbi)))
155 return exist;
156
157 if (exist && type == DATA_GENERIC_ENHANCE_UPDATE) {
158 f2fs_err(sbi, "Inconsistent error blkaddr:%u, sit bitmap:%d",
159 blkaddr, exist);
160 set_sbi_flag(sbi, type: SBI_NEED_FSCK);
161 return exist;
162 }
163
164 if (!exist && type == DATA_GENERIC_ENHANCE) {
165 f2fs_err(sbi, "Inconsistent error blkaddr:%u, sit bitmap:%d",
166 blkaddr, exist);
167 set_sbi_flag(sbi, type: SBI_NEED_FSCK);
168 dump_stack();
169 }
170 return exist;
171}
172
173bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
174 block_t blkaddr, int type)
175{
176 if (time_to_inject(sbi, FAULT_BLKADDR))
177 return false;
178
179 switch (type) {
180 case META_NAT:
181 break;
182 case META_SIT:
183 if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
184 return false;
185 break;
186 case META_SSA:
187 if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
188 blkaddr < SM_I(sbi)->ssa_blkaddr))
189 return false;
190 break;
191 case META_CP:
192 if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
193 blkaddr < __start_cp_addr(sbi)))
194 return false;
195 break;
196 case META_POR:
197 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
198 blkaddr < MAIN_BLKADDR(sbi)))
199 return false;
200 break;
201 case DATA_GENERIC:
202 case DATA_GENERIC_ENHANCE:
203 case DATA_GENERIC_ENHANCE_READ:
204 case DATA_GENERIC_ENHANCE_UPDATE:
205 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
206 blkaddr < MAIN_BLKADDR(sbi))) {
207
208 /* Skip to emit an error message. */
209 if (unlikely(f2fs_cp_error(sbi)))
210 return false;
211
212 f2fs_warn(sbi, "access invalid blkaddr:%u",
213 blkaddr);
214 set_sbi_flag(sbi, type: SBI_NEED_FSCK);
215 dump_stack();
216 return false;
217 } else {
218 return __is_bitmap_valid(sbi, blkaddr, type);
219 }
220 break;
221 case META_GENERIC:
222 if (unlikely(blkaddr < SEG0_BLKADDR(sbi) ||
223 blkaddr >= MAIN_BLKADDR(sbi)))
224 return false;
225 break;
226 default:
227 BUG();
228 }
229
230 return true;
231}
232
233/*
234 * Readahead CP/NAT/SIT/SSA/POR pages
235 */
236int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
237 int type, bool sync)
238{
239 struct page *page;
240 block_t blkno = start;
241 struct f2fs_io_info fio = {
242 .sbi = sbi,
243 .type = META,
244 .op = REQ_OP_READ,
245 .op_flags = sync ? (REQ_META | REQ_PRIO) : REQ_RAHEAD,
246 .encrypted_page = NULL,
247 .in_list = 0,
248 .is_por = (type == META_POR) ? 1 : 0,
249 };
250 struct blk_plug plug;
251 int err;
252
253 if (unlikely(type == META_POR))
254 fio.op_flags &= ~REQ_META;
255
256 blk_start_plug(&plug);
257 for (; nrpages-- > 0; blkno++) {
258
259 if (!f2fs_is_valid_blkaddr(sbi, blkaddr: blkno, type))
260 goto out;
261
262 switch (type) {
263 case META_NAT:
264 if (unlikely(blkno >=
265 NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
266 blkno = 0;
267 /* get nat block addr */
268 fio.new_blkaddr = current_nat_addr(sbi,
269 start: blkno * NAT_ENTRY_PER_BLOCK);
270 break;
271 case META_SIT:
272 if (unlikely(blkno >= TOTAL_SEGS(sbi)))
273 goto out;
274 /* get sit block addr */
275 fio.new_blkaddr = current_sit_addr(sbi,
276 start: blkno * SIT_ENTRY_PER_BLOCK);
277 break;
278 case META_SSA:
279 case META_CP:
280 case META_POR:
281 fio.new_blkaddr = blkno;
282 break;
283 default:
284 BUG();
285 }
286
287 page = f2fs_grab_cache_page(mapping: META_MAPPING(sbi),
288 index: fio.new_blkaddr, for_write: false);
289 if (!page)
290 continue;
291 if (PageUptodate(page)) {
292 f2fs_put_page(page, unlock: 1);
293 continue;
294 }
295
296 fio.page = page;
297 err = f2fs_submit_page_bio(fio: &fio);
298 f2fs_put_page(page, unlock: err ? 1 : 0);
299
300 if (!err)
301 f2fs_update_iostat(sbi, NULL, type: FS_META_READ_IO,
302 F2FS_BLKSIZE);
303 }
304out:
305 blk_finish_plug(&plug);
306 return blkno - start;
307}
308
309void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index,
310 unsigned int ra_blocks)
311{
312 struct page *page;
313 bool readahead = false;
314
315 if (ra_blocks == RECOVERY_MIN_RA_BLOCKS)
316 return;
317
318 page = find_get_page(mapping: META_MAPPING(sbi), offset: index);
319 if (!page || !PageUptodate(page))
320 readahead = true;
321 f2fs_put_page(page, unlock: 0);
322
323 if (readahead)
324 f2fs_ra_meta_pages(sbi, start: index, nrpages: ra_blocks, type: META_POR, sync: true);
325}
326
327static int __f2fs_write_meta_page(struct page *page,
328 struct writeback_control *wbc,
329 enum iostat_type io_type)
330{
331 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
332
333 trace_f2fs_writepage(page, type: META);
334
335 if (unlikely(f2fs_cp_error(sbi))) {
336 if (is_sbi_flag_set(sbi, type: SBI_IS_CLOSE)) {
337 ClearPageUptodate(page);
338 dec_page_count(sbi, count_type: F2FS_DIRTY_META);
339 unlock_page(page);
340 return 0;
341 }
342 goto redirty_out;
343 }
344 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
345 goto redirty_out;
346 if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
347 goto redirty_out;
348
349 f2fs_do_write_meta_page(sbi, page, io_type);
350 dec_page_count(sbi, count_type: F2FS_DIRTY_META);
351
352 if (wbc->for_reclaim)
353 f2fs_submit_merged_write_cond(sbi, NULL, page, ino: 0, type: META);
354
355 unlock_page(page);
356
357 if (unlikely(f2fs_cp_error(sbi)))
358 f2fs_submit_merged_write(sbi, type: META);
359
360 return 0;
361
362redirty_out:
363 redirty_page_for_writepage(wbc, page);
364 return AOP_WRITEPAGE_ACTIVATE;
365}
366
367static int f2fs_write_meta_page(struct page *page,
368 struct writeback_control *wbc)
369{
370 return __f2fs_write_meta_page(page, wbc, io_type: FS_META_IO);
371}
372
373static int f2fs_write_meta_pages(struct address_space *mapping,
374 struct writeback_control *wbc)
375{
376 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
377 long diff, written;
378
379 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
380 goto skip_write;
381
382 /* collect a number of dirty meta pages and write together */
383 if (wbc->sync_mode != WB_SYNC_ALL &&
384 get_pages(sbi, count_type: F2FS_DIRTY_META) <
385 nr_pages_to_skip(sbi, type: META))
386 goto skip_write;
387
388 /* if locked failed, cp will flush dirty pages instead */
389 if (!f2fs_down_write_trylock(sem: &sbi->cp_global_sem))
390 goto skip_write;
391
392 trace_f2fs_writepages(inode: mapping->host, wbc, type: META);
393 diff = nr_pages_to_write(sbi, type: META, wbc);
394 written = f2fs_sync_meta_pages(sbi, type: META, nr_to_write: wbc->nr_to_write, io_type: FS_META_IO);
395 f2fs_up_write(sem: &sbi->cp_global_sem);
396 wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
397 return 0;
398
399skip_write:
400 wbc->pages_skipped += get_pages(sbi, count_type: F2FS_DIRTY_META);
401 trace_f2fs_writepages(inode: mapping->host, wbc, type: META);
402 return 0;
403}
404
405long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
406 long nr_to_write, enum iostat_type io_type)
407{
408 struct address_space *mapping = META_MAPPING(sbi);
409 pgoff_t index = 0, prev = ULONG_MAX;
410 struct folio_batch fbatch;
411 long nwritten = 0;
412 int nr_folios;
413 struct writeback_control wbc = {
414 .for_reclaim = 0,
415 };
416 struct blk_plug plug;
417
418 folio_batch_init(fbatch: &fbatch);
419
420 blk_start_plug(&plug);
421
422 while ((nr_folios = filemap_get_folios_tag(mapping, start: &index,
423 end: (pgoff_t)-1,
424 PAGECACHE_TAG_DIRTY, fbatch: &fbatch))) {
425 int i;
426
427 for (i = 0; i < nr_folios; i++) {
428 struct folio *folio = fbatch.folios[i];
429
430 if (nr_to_write != LONG_MAX && i != 0 &&
431 folio->index != prev +
432 folio_nr_pages(folio: fbatch.folios[i-1])) {
433 folio_batch_release(fbatch: &fbatch);
434 goto stop;
435 }
436
437 folio_lock(folio);
438
439 if (unlikely(folio->mapping != mapping)) {
440continue_unlock:
441 folio_unlock(folio);
442 continue;
443 }
444 if (!folio_test_dirty(folio)) {
445 /* someone wrote it for us */
446 goto continue_unlock;
447 }
448
449 f2fs_wait_on_page_writeback(page: &folio->page, type: META,
450 ordered: true, locked: true);
451
452 if (!folio_clear_dirty_for_io(folio))
453 goto continue_unlock;
454
455 if (__f2fs_write_meta_page(page: &folio->page, wbc: &wbc,
456 io_type)) {
457 folio_unlock(folio);
458 break;
459 }
460 nwritten += folio_nr_pages(folio);
461 prev = folio->index;
462 if (unlikely(nwritten >= nr_to_write))
463 break;
464 }
465 folio_batch_release(fbatch: &fbatch);
466 cond_resched();
467 }
468stop:
469 if (nwritten)
470 f2fs_submit_merged_write(sbi, type);
471
472 blk_finish_plug(&plug);
473
474 return nwritten;
475}
476
477static bool f2fs_dirty_meta_folio(struct address_space *mapping,
478 struct folio *folio)
479{
480 trace_f2fs_set_page_dirty(page: &folio->page, type: META);
481
482 if (!folio_test_uptodate(folio))
483 folio_mark_uptodate(folio);
484 if (filemap_dirty_folio(mapping, folio)) {
485 inc_page_count(sbi: F2FS_M_SB(mapping), count_type: F2FS_DIRTY_META);
486 set_page_private_reference(&folio->page);
487 return true;
488 }
489 return false;
490}
491
492const struct address_space_operations f2fs_meta_aops = {
493 .writepage = f2fs_write_meta_page,
494 .writepages = f2fs_write_meta_pages,
495 .dirty_folio = f2fs_dirty_meta_folio,
496 .invalidate_folio = f2fs_invalidate_folio,
497 .release_folio = f2fs_release_folio,
498 .migrate_folio = filemap_migrate_folio,
499};
500
501static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino,
502 unsigned int devidx, int type)
503{
504 struct inode_management *im = &sbi->im[type];
505 struct ino_entry *e = NULL, *new = NULL;
506
507 if (type == FLUSH_INO) {
508 rcu_read_lock();
509 e = radix_tree_lookup(&im->ino_root, ino);
510 rcu_read_unlock();
511 }
512
513retry:
514 if (!e)
515 new = f2fs_kmem_cache_alloc(cachep: ino_entry_slab,
516 GFP_NOFS, nofail: true, NULL);
517
518 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
519
520 spin_lock(lock: &im->ino_lock);
521 e = radix_tree_lookup(&im->ino_root, ino);
522 if (!e) {
523 if (!new) {
524 spin_unlock(lock: &im->ino_lock);
525 radix_tree_preload_end();
526 goto retry;
527 }
528 e = new;
529 if (unlikely(radix_tree_insert(&im->ino_root, ino, e)))
530 f2fs_bug_on(sbi, 1);
531
532 memset(e, 0, sizeof(struct ino_entry));
533 e->ino = ino;
534
535 list_add_tail(new: &e->list, head: &im->ino_list);
536 if (type != ORPHAN_INO)
537 im->ino_num++;
538 }
539
540 if (type == FLUSH_INO)
541 f2fs_set_bit(nr: devidx, addr: (char *)&e->dirty_device);
542
543 spin_unlock(lock: &im->ino_lock);
544 radix_tree_preload_end();
545
546 if (new && e != new)
547 kmem_cache_free(s: ino_entry_slab, objp: new);
548}
549
550static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
551{
552 struct inode_management *im = &sbi->im[type];
553 struct ino_entry *e;
554
555 spin_lock(lock: &im->ino_lock);
556 e = radix_tree_lookup(&im->ino_root, ino);
557 if (e) {
558 list_del(entry: &e->list);
559 radix_tree_delete(&im->ino_root, ino);
560 im->ino_num--;
561 spin_unlock(lock: &im->ino_lock);
562 kmem_cache_free(s: ino_entry_slab, objp: e);
563 return;
564 }
565 spin_unlock(lock: &im->ino_lock);
566}
567
568void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
569{
570 /* add new dirty ino entry into list */
571 __add_ino_entry(sbi, ino, devidx: 0, type);
572}
573
574void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
575{
576 /* remove dirty ino entry from list */
577 __remove_ino_entry(sbi, ino, type);
578}
579
580/* mode should be APPEND_INO, UPDATE_INO or TRANS_DIR_INO */
581bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
582{
583 struct inode_management *im = &sbi->im[mode];
584 struct ino_entry *e;
585
586 spin_lock(lock: &im->ino_lock);
587 e = radix_tree_lookup(&im->ino_root, ino);
588 spin_unlock(lock: &im->ino_lock);
589 return e ? true : false;
590}
591
592void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all)
593{
594 struct ino_entry *e, *tmp;
595 int i;
596
597 for (i = all ? ORPHAN_INO : APPEND_INO; i < MAX_INO_ENTRY; i++) {
598 struct inode_management *im = &sbi->im[i];
599
600 spin_lock(lock: &im->ino_lock);
601 list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
602 list_del(entry: &e->list);
603 radix_tree_delete(&im->ino_root, e->ino);
604 kmem_cache_free(s: ino_entry_slab, objp: e);
605 im->ino_num--;
606 }
607 spin_unlock(lock: &im->ino_lock);
608 }
609}
610
611void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
612 unsigned int devidx, int type)
613{
614 __add_ino_entry(sbi, ino, devidx, type);
615}
616
617bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
618 unsigned int devidx, int type)
619{
620 struct inode_management *im = &sbi->im[type];
621 struct ino_entry *e;
622 bool is_dirty = false;
623
624 spin_lock(lock: &im->ino_lock);
625 e = radix_tree_lookup(&im->ino_root, ino);
626 if (e && f2fs_test_bit(nr: devidx, addr: (char *)&e->dirty_device))
627 is_dirty = true;
628 spin_unlock(lock: &im->ino_lock);
629 return is_dirty;
630}
631
632int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi)
633{
634 struct inode_management *im = &sbi->im[ORPHAN_INO];
635 int err = 0;
636
637 spin_lock(lock: &im->ino_lock);
638
639 if (time_to_inject(sbi, FAULT_ORPHAN)) {
640 spin_unlock(lock: &im->ino_lock);
641 return -ENOSPC;
642 }
643
644 if (unlikely(im->ino_num >= sbi->max_orphans))
645 err = -ENOSPC;
646 else
647 im->ino_num++;
648 spin_unlock(lock: &im->ino_lock);
649
650 return err;
651}
652
653void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi)
654{
655 struct inode_management *im = &sbi->im[ORPHAN_INO];
656
657 spin_lock(lock: &im->ino_lock);
658 f2fs_bug_on(sbi, im->ino_num == 0);
659 im->ino_num--;
660 spin_unlock(lock: &im->ino_lock);
661}
662
663void f2fs_add_orphan_inode(struct inode *inode)
664{
665 /* add new orphan ino entry into list */
666 __add_ino_entry(sbi: F2FS_I_SB(inode), ino: inode->i_ino, devidx: 0, type: ORPHAN_INO);
667 f2fs_update_inode_page(inode);
668}
669
670void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
671{
672 /* remove orphan entry from orphan list */
673 __remove_ino_entry(sbi, ino, type: ORPHAN_INO);
674}
675
676static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
677{
678 struct inode *inode;
679 struct node_info ni;
680 int err;
681
682 inode = f2fs_iget_retry(sb: sbi->sb, ino);
683 if (IS_ERR(ptr: inode)) {
684 /*
685 * there should be a bug that we can't find the entry
686 * to orphan inode.
687 */
688 f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT);
689 return PTR_ERR(ptr: inode);
690 }
691
692 err = f2fs_dquot_initialize(inode);
693 if (err) {
694 iput(inode);
695 goto err_out;
696 }
697
698 clear_nlink(inode);
699
700 /* truncate all the data during iput */
701 iput(inode);
702
703 err = f2fs_get_node_info(sbi, nid: ino, ni: &ni, checkpoint_context: false);
704 if (err)
705 goto err_out;
706
707 /* ENOMEM was fully retried in f2fs_evict_inode. */
708 if (ni.blk_addr != NULL_ADDR) {
709 err = -EIO;
710 goto err_out;
711 }
712 return 0;
713
714err_out:
715 set_sbi_flag(sbi, type: SBI_NEED_FSCK);
716 f2fs_warn(sbi, "%s: orphan failed (ino=%x), run fsck to fix.",
717 __func__, ino);
718 return err;
719}
720
721int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi)
722{
723 block_t start_blk, orphan_blocks, i, j;
724 int err = 0;
725
726 if (!is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG))
727 return 0;
728
729 if (f2fs_hw_is_readonly(sbi)) {
730 f2fs_info(sbi, "write access unavailable, skipping orphan cleanup");
731 return 0;
732 }
733
734 if (is_sbi_flag_set(sbi, type: SBI_IS_WRITABLE))
735 f2fs_info(sbi, "orphan cleanup on readonly fs");
736
737 start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi);
738 orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi);
739
740 f2fs_ra_meta_pages(sbi, start: start_blk, nrpages: orphan_blocks, type: META_CP, sync: true);
741
742 for (i = 0; i < orphan_blocks; i++) {
743 struct page *page;
744 struct f2fs_orphan_block *orphan_blk;
745
746 page = f2fs_get_meta_page(sbi, index: start_blk + i);
747 if (IS_ERR(ptr: page)) {
748 err = PTR_ERR(ptr: page);
749 goto out;
750 }
751
752 orphan_blk = (struct f2fs_orphan_block *)page_address(page);
753 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
754 nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
755
756 err = recover_orphan_inode(sbi, ino);
757 if (err) {
758 f2fs_put_page(page, unlock: 1);
759 goto out;
760 }
761 }
762 f2fs_put_page(page, unlock: 1);
763 }
764 /* clear Orphan Flag */
765 clear_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG);
766out:
767 set_sbi_flag(sbi, type: SBI_IS_RECOVERED);
768
769 return err;
770}
771
772static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
773{
774 struct list_head *head;
775 struct f2fs_orphan_block *orphan_blk = NULL;
776 unsigned int nentries = 0;
777 unsigned short index = 1;
778 unsigned short orphan_blocks;
779 struct page *page = NULL;
780 struct ino_entry *orphan = NULL;
781 struct inode_management *im = &sbi->im[ORPHAN_INO];
782
783 orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
784
785 /*
786 * we don't need to do spin_lock(&im->ino_lock) here, since all the
787 * orphan inode operations are covered under f2fs_lock_op().
788 * And, spin_lock should be avoided due to page operations below.
789 */
790 head = &im->ino_list;
791
792 /* loop for each orphan inode entry and write them in journal block */
793 list_for_each_entry(orphan, head, list) {
794 if (!page) {
795 page = f2fs_grab_meta_page(sbi, index: start_blk++);
796 orphan_blk =
797 (struct f2fs_orphan_block *)page_address(page);
798 memset(orphan_blk, 0, sizeof(*orphan_blk));
799 }
800
801 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
802
803 if (nentries == F2FS_ORPHANS_PER_BLOCK) {
804 /*
805 * an orphan block is full of 1020 entries,
806 * then we need to flush current orphan blocks
807 * and bring another one in memory
808 */
809 orphan_blk->blk_addr = cpu_to_le16(index);
810 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
811 orphan_blk->entry_count = cpu_to_le32(nentries);
812 set_page_dirty(page);
813 f2fs_put_page(page, unlock: 1);
814 index++;
815 nentries = 0;
816 page = NULL;
817 }
818 }
819
820 if (page) {
821 orphan_blk->blk_addr = cpu_to_le16(index);
822 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
823 orphan_blk->entry_count = cpu_to_le32(nentries);
824 set_page_dirty(page);
825 f2fs_put_page(page, unlock: 1);
826 }
827}
828
829static __u32 f2fs_checkpoint_chksum(struct f2fs_sb_info *sbi,
830 struct f2fs_checkpoint *ckpt)
831{
832 unsigned int chksum_ofs = le32_to_cpu(ckpt->checksum_offset);
833 __u32 chksum;
834
835 chksum = f2fs_crc32(sbi, address: ckpt, length: chksum_ofs);
836 if (chksum_ofs < CP_CHKSUM_OFFSET) {
837 chksum_ofs += sizeof(chksum);
838 chksum = f2fs_chksum(sbi, crc: chksum, address: (__u8 *)ckpt + chksum_ofs,
839 F2FS_BLKSIZE - chksum_ofs);
840 }
841 return chksum;
842}
843
844static int get_checkpoint_version(struct f2fs_sb_info *sbi, block_t cp_addr,
845 struct f2fs_checkpoint **cp_block, struct page **cp_page,
846 unsigned long long *version)
847{
848 size_t crc_offset = 0;
849 __u32 crc;
850
851 *cp_page = f2fs_get_meta_page(sbi, index: cp_addr);
852 if (IS_ERR(ptr: *cp_page))
853 return PTR_ERR(ptr: *cp_page);
854
855 *cp_block = (struct f2fs_checkpoint *)page_address(*cp_page);
856
857 crc_offset = le32_to_cpu((*cp_block)->checksum_offset);
858 if (crc_offset < CP_MIN_CHKSUM_OFFSET ||
859 crc_offset > CP_CHKSUM_OFFSET) {
860 f2fs_put_page(page: *cp_page, unlock: 1);
861 f2fs_warn(sbi, "invalid crc_offset: %zu", crc_offset);
862 return -EINVAL;
863 }
864
865 crc = f2fs_checkpoint_chksum(sbi, ckpt: *cp_block);
866 if (crc != cur_cp_crc(cp: *cp_block)) {
867 f2fs_put_page(page: *cp_page, unlock: 1);
868 f2fs_warn(sbi, "invalid crc value");
869 return -EINVAL;
870 }
871
872 *version = cur_cp_version(cp: *cp_block);
873 return 0;
874}
875
876static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
877 block_t cp_addr, unsigned long long *version)
878{
879 struct page *cp_page_1 = NULL, *cp_page_2 = NULL;
880 struct f2fs_checkpoint *cp_block = NULL;
881 unsigned long long cur_version = 0, pre_version = 0;
882 unsigned int cp_blocks;
883 int err;
884
885 err = get_checkpoint_version(sbi, cp_addr, cp_block: &cp_block,
886 cp_page: &cp_page_1, version);
887 if (err)
888 return NULL;
889
890 cp_blocks = le32_to_cpu(cp_block->cp_pack_total_block_count);
891
892 if (cp_blocks > sbi->blocks_per_seg || cp_blocks <= F2FS_CP_PACKS) {
893 f2fs_warn(sbi, "invalid cp_pack_total_block_count:%u",
894 le32_to_cpu(cp_block->cp_pack_total_block_count));
895 goto invalid_cp;
896 }
897 pre_version = *version;
898
899 cp_addr += cp_blocks - 1;
900 err = get_checkpoint_version(sbi, cp_addr, cp_block: &cp_block,
901 cp_page: &cp_page_2, version);
902 if (err)
903 goto invalid_cp;
904 cur_version = *version;
905
906 if (cur_version == pre_version) {
907 *version = cur_version;
908 f2fs_put_page(page: cp_page_2, unlock: 1);
909 return cp_page_1;
910 }
911 f2fs_put_page(page: cp_page_2, unlock: 1);
912invalid_cp:
913 f2fs_put_page(page: cp_page_1, unlock: 1);
914 return NULL;
915}
916
917int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi)
918{
919 struct f2fs_checkpoint *cp_block;
920 struct f2fs_super_block *fsb = sbi->raw_super;
921 struct page *cp1, *cp2, *cur_page;
922 unsigned long blk_size = sbi->blocksize;
923 unsigned long long cp1_version = 0, cp2_version = 0;
924 unsigned long long cp_start_blk_no;
925 unsigned int cp_blks = 1 + __cp_payload(sbi);
926 block_t cp_blk_no;
927 int i;
928 int err;
929
930 sbi->ckpt = f2fs_kvzalloc(sbi, array_size(blk_size, cp_blks),
931 GFP_KERNEL);
932 if (!sbi->ckpt)
933 return -ENOMEM;
934 /*
935 * Finding out valid cp block involves read both
936 * sets( cp pack 1 and cp pack 2)
937 */
938 cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
939 cp1 = validate_checkpoint(sbi, cp_addr: cp_start_blk_no, version: &cp1_version);
940
941 /* The second checkpoint pack should start at the next segment */
942 cp_start_blk_no += ((unsigned long long)1) <<
943 le32_to_cpu(fsb->log_blocks_per_seg);
944 cp2 = validate_checkpoint(sbi, cp_addr: cp_start_blk_no, version: &cp2_version);
945
946 if (cp1 && cp2) {
947 if (ver_after(cp2_version, cp1_version))
948 cur_page = cp2;
949 else
950 cur_page = cp1;
951 } else if (cp1) {
952 cur_page = cp1;
953 } else if (cp2) {
954 cur_page = cp2;
955 } else {
956 err = -EFSCORRUPTED;
957 goto fail_no_cp;
958 }
959
960 cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
961 memcpy(sbi->ckpt, cp_block, blk_size);
962
963 if (cur_page == cp1)
964 sbi->cur_cp_pack = 1;
965 else
966 sbi->cur_cp_pack = 2;
967
968 /* Sanity checking of checkpoint */
969 if (f2fs_sanity_check_ckpt(sbi)) {
970 err = -EFSCORRUPTED;
971 goto free_fail_no_cp;
972 }
973
974 if (cp_blks <= 1)
975 goto done;
976
977 cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
978 if (cur_page == cp2)
979 cp_blk_no += BIT(le32_to_cpu(fsb->log_blocks_per_seg));
980
981 for (i = 1; i < cp_blks; i++) {
982 void *sit_bitmap_ptr;
983 unsigned char *ckpt = (unsigned char *)sbi->ckpt;
984
985 cur_page = f2fs_get_meta_page(sbi, index: cp_blk_no + i);
986 if (IS_ERR(ptr: cur_page)) {
987 err = PTR_ERR(ptr: cur_page);
988 goto free_fail_no_cp;
989 }
990 sit_bitmap_ptr = page_address(cur_page);
991 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
992 f2fs_put_page(page: cur_page, unlock: 1);
993 }
994done:
995 f2fs_put_page(page: cp1, unlock: 1);
996 f2fs_put_page(page: cp2, unlock: 1);
997 return 0;
998
999free_fail_no_cp:
1000 f2fs_put_page(page: cp1, unlock: 1);
1001 f2fs_put_page(page: cp2, unlock: 1);
1002fail_no_cp:
1003 kvfree(addr: sbi->ckpt);
1004 return err;
1005}
1006
1007static void __add_dirty_inode(struct inode *inode, enum inode_type type)
1008{
1009 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1010 int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
1011
1012 if (is_inode_flag_set(inode, flag))
1013 return;
1014
1015 set_inode_flag(inode, flag);
1016 list_add_tail(new: &F2FS_I(inode)->dirty_list, head: &sbi->inode_list[type]);
1017 stat_inc_dirty_inode(sbi, type);
1018}
1019
1020static void __remove_dirty_inode(struct inode *inode, enum inode_type type)
1021{
1022 int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
1023
1024 if (get_dirty_pages(inode) || !is_inode_flag_set(inode, flag))
1025 return;
1026
1027 list_del_init(entry: &F2FS_I(inode)->dirty_list);
1028 clear_inode_flag(inode, flag);
1029 stat_dec_dirty_inode(F2FS_I_SB(inode), type);
1030}
1031
1032void f2fs_update_dirty_folio(struct inode *inode, struct folio *folio)
1033{
1034 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1035 enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
1036
1037 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1038 !S_ISLNK(inode->i_mode))
1039 return;
1040
1041 spin_lock(lock: &sbi->inode_lock[type]);
1042 if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH))
1043 __add_dirty_inode(inode, type);
1044 inode_inc_dirty_pages(inode);
1045 spin_unlock(lock: &sbi->inode_lock[type]);
1046
1047 set_page_private_reference(&folio->page);
1048}
1049
1050void f2fs_remove_dirty_inode(struct inode *inode)
1051{
1052 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1053 enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
1054
1055 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1056 !S_ISLNK(inode->i_mode))
1057 return;
1058
1059 if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH))
1060 return;
1061
1062 spin_lock(lock: &sbi->inode_lock[type]);
1063 __remove_dirty_inode(inode, type);
1064 spin_unlock(lock: &sbi->inode_lock[type]);
1065}
1066
1067int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type,
1068 bool from_cp)
1069{
1070 struct list_head *head;
1071 struct inode *inode;
1072 struct f2fs_inode_info *fi;
1073 bool is_dir = (type == DIR_INODE);
1074 unsigned long ino = 0;
1075
1076 trace_f2fs_sync_dirty_inodes_enter(sb: sbi->sb, type: is_dir,
1077 count: get_pages(sbi, count_type: is_dir ?
1078 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
1079retry:
1080 if (unlikely(f2fs_cp_error(sbi))) {
1081 trace_f2fs_sync_dirty_inodes_exit(sb: sbi->sb, type: is_dir,
1082 count: get_pages(sbi, count_type: is_dir ?
1083 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
1084 return -EIO;
1085 }
1086
1087 spin_lock(lock: &sbi->inode_lock[type]);
1088
1089 head = &sbi->inode_list[type];
1090 if (list_empty(head)) {
1091 spin_unlock(lock: &sbi->inode_lock[type]);
1092 trace_f2fs_sync_dirty_inodes_exit(sb: sbi->sb, type: is_dir,
1093 count: get_pages(sbi, count_type: is_dir ?
1094 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
1095 return 0;
1096 }
1097 fi = list_first_entry(head, struct f2fs_inode_info, dirty_list);
1098 inode = igrab(&fi->vfs_inode);
1099 spin_unlock(lock: &sbi->inode_lock[type]);
1100 if (inode) {
1101 unsigned long cur_ino = inode->i_ino;
1102
1103 if (from_cp)
1104 F2FS_I(inode)->cp_task = current;
1105 F2FS_I(inode)->wb_task = current;
1106
1107 filemap_fdatawrite(inode->i_mapping);
1108
1109 F2FS_I(inode)->wb_task = NULL;
1110 if (from_cp)
1111 F2FS_I(inode)->cp_task = NULL;
1112
1113 iput(inode);
1114 /* We need to give cpu to another writers. */
1115 if (ino == cur_ino)
1116 cond_resched();
1117 else
1118 ino = cur_ino;
1119 } else {
1120 /*
1121 * We should submit bio, since it exists several
1122 * writebacking dentry pages in the freeing inode.
1123 */
1124 f2fs_submit_merged_write(sbi, type: DATA);
1125 cond_resched();
1126 }
1127 goto retry;
1128}
1129
1130static int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi)
1131{
1132 struct list_head *head = &sbi->inode_list[DIRTY_META];
1133 struct inode *inode;
1134 struct f2fs_inode_info *fi;
1135 s64 total = get_pages(sbi, count_type: F2FS_DIRTY_IMETA);
1136
1137 while (total--) {
1138 if (unlikely(f2fs_cp_error(sbi)))
1139 return -EIO;
1140
1141 spin_lock(lock: &sbi->inode_lock[DIRTY_META]);
1142 if (list_empty(head)) {
1143 spin_unlock(lock: &sbi->inode_lock[DIRTY_META]);
1144 return 0;
1145 }
1146 fi = list_first_entry(head, struct f2fs_inode_info,
1147 gdirty_list);
1148 inode = igrab(&fi->vfs_inode);
1149 spin_unlock(lock: &sbi->inode_lock[DIRTY_META]);
1150 if (inode) {
1151 sync_inode_metadata(inode, wait: 0);
1152
1153 /* it's on eviction */
1154 if (is_inode_flag_set(inode, flag: FI_DIRTY_INODE))
1155 f2fs_update_inode_page(inode);
1156 iput(inode);
1157 }
1158 }
1159 return 0;
1160}
1161
1162static void __prepare_cp_block(struct f2fs_sb_info *sbi)
1163{
1164 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1165 struct f2fs_nm_info *nm_i = NM_I(sbi);
1166 nid_t last_nid = nm_i->next_scan_nid;
1167
1168 next_free_nid(sbi, nid: &last_nid);
1169 ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
1170 ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
1171 ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
1172 ckpt->next_free_nid = cpu_to_le32(last_nid);
1173}
1174
1175static bool __need_flush_quota(struct f2fs_sb_info *sbi)
1176{
1177 bool ret = false;
1178
1179 if (!is_journalled_quota(sbi))
1180 return false;
1181
1182 if (!f2fs_down_write_trylock(sem: &sbi->quota_sem))
1183 return true;
1184 if (is_sbi_flag_set(sbi, type: SBI_QUOTA_SKIP_FLUSH)) {
1185 ret = false;
1186 } else if (is_sbi_flag_set(sbi, type: SBI_QUOTA_NEED_REPAIR)) {
1187 ret = false;
1188 } else if (is_sbi_flag_set(sbi, type: SBI_QUOTA_NEED_FLUSH)) {
1189 clear_sbi_flag(sbi, type: SBI_QUOTA_NEED_FLUSH);
1190 ret = true;
1191 } else if (get_pages(sbi, count_type: F2FS_DIRTY_QDATA)) {
1192 ret = true;
1193 }
1194 f2fs_up_write(sem: &sbi->quota_sem);
1195 return ret;
1196}
1197
1198/*
1199 * Freeze all the FS-operations for checkpoint.
1200 */
1201static int block_operations(struct f2fs_sb_info *sbi)
1202{
1203 struct writeback_control wbc = {
1204 .sync_mode = WB_SYNC_ALL,
1205 .nr_to_write = LONG_MAX,
1206 .for_reclaim = 0,
1207 };
1208 int err = 0, cnt = 0;
1209
1210 /*
1211 * Let's flush inline_data in dirty node pages.
1212 */
1213 f2fs_flush_inline_data(sbi);
1214
1215retry_flush_quotas:
1216 f2fs_lock_all(sbi);
1217 if (__need_flush_quota(sbi)) {
1218 int locked;
1219
1220 if (++cnt > DEFAULT_RETRY_QUOTA_FLUSH_COUNT) {
1221 set_sbi_flag(sbi, type: SBI_QUOTA_SKIP_FLUSH);
1222 set_sbi_flag(sbi, type: SBI_QUOTA_NEED_FLUSH);
1223 goto retry_flush_dents;
1224 }
1225 f2fs_unlock_all(sbi);
1226
1227 /* only failed during mount/umount/freeze/quotactl */
1228 locked = down_read_trylock(sem: &sbi->sb->s_umount);
1229 f2fs_quota_sync(sb: sbi->sb, type: -1);
1230 if (locked)
1231 up_read(sem: &sbi->sb->s_umount);
1232 cond_resched();
1233 goto retry_flush_quotas;
1234 }
1235
1236retry_flush_dents:
1237 /* write all the dirty dentry pages */
1238 if (get_pages(sbi, count_type: F2FS_DIRTY_DENTS)) {
1239 f2fs_unlock_all(sbi);
1240 err = f2fs_sync_dirty_inodes(sbi, type: DIR_INODE, from_cp: true);
1241 if (err)
1242 return err;
1243 cond_resched();
1244 goto retry_flush_quotas;
1245 }
1246
1247 /*
1248 * POR: we should ensure that there are no dirty node pages
1249 * until finishing nat/sit flush. inode->i_blocks can be updated.
1250 */
1251 f2fs_down_write(sem: &sbi->node_change);
1252
1253 if (get_pages(sbi, count_type: F2FS_DIRTY_IMETA)) {
1254 f2fs_up_write(sem: &sbi->node_change);
1255 f2fs_unlock_all(sbi);
1256 err = f2fs_sync_inode_meta(sbi);
1257 if (err)
1258 return err;
1259 cond_resched();
1260 goto retry_flush_quotas;
1261 }
1262
1263retry_flush_nodes:
1264 f2fs_down_write(sem: &sbi->node_write);
1265
1266 if (get_pages(sbi, count_type: F2FS_DIRTY_NODES)) {
1267 f2fs_up_write(sem: &sbi->node_write);
1268 atomic_inc(v: &sbi->wb_sync_req[NODE]);
1269 err = f2fs_sync_node_pages(sbi, wbc: &wbc, do_balance: false, io_type: FS_CP_NODE_IO);
1270 atomic_dec(v: &sbi->wb_sync_req[NODE]);
1271 if (err) {
1272 f2fs_up_write(sem: &sbi->node_change);
1273 f2fs_unlock_all(sbi);
1274 return err;
1275 }
1276 cond_resched();
1277 goto retry_flush_nodes;
1278 }
1279
1280 /*
1281 * sbi->node_change is used only for AIO write_begin path which produces
1282 * dirty node blocks and some checkpoint values by block allocation.
1283 */
1284 __prepare_cp_block(sbi);
1285 f2fs_up_write(sem: &sbi->node_change);
1286 return err;
1287}
1288
1289static void unblock_operations(struct f2fs_sb_info *sbi)
1290{
1291 f2fs_up_write(sem: &sbi->node_write);
1292 f2fs_unlock_all(sbi);
1293}
1294
1295void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type)
1296{
1297 DEFINE_WAIT(wait);
1298
1299 for (;;) {
1300 if (!get_pages(sbi, count_type: type))
1301 break;
1302
1303 if (unlikely(f2fs_cp_error(sbi) &&
1304 !is_sbi_flag_set(sbi, SBI_IS_CLOSE)))
1305 break;
1306
1307 if (type == F2FS_DIRTY_META)
1308 f2fs_sync_meta_pages(sbi, type: META, LONG_MAX,
1309 io_type: FS_CP_META_IO);
1310 else if (type == F2FS_WB_CP_DATA)
1311 f2fs_submit_merged_write(sbi, type: DATA);
1312
1313 prepare_to_wait(wq_head: &sbi->cp_wait, wq_entry: &wait, TASK_UNINTERRUPTIBLE);
1314 io_schedule_timeout(DEFAULT_IO_TIMEOUT);
1315 }
1316 finish_wait(wq_head: &sbi->cp_wait, wq_entry: &wait);
1317}
1318
1319static void update_ckpt_flags(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1320{
1321 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
1322 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1323 unsigned long flags;
1324
1325 if (cpc->reason & CP_UMOUNT) {
1326 if (le32_to_cpu(ckpt->cp_pack_total_block_count) +
1327 NM_I(sbi)->nat_bits_blocks > sbi->blocks_per_seg) {
1328 clear_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1329 f2fs_notice(sbi, "Disable nat_bits due to no space");
1330 } else if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG) &&
1331 f2fs_nat_bitmap_enabled(sbi)) {
1332 f2fs_enable_nat_bits(sbi);
1333 set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1334 f2fs_notice(sbi, "Rebuild and enable nat_bits");
1335 }
1336 }
1337
1338 spin_lock_irqsave(&sbi->cp_lock, flags);
1339
1340 if (cpc->reason & CP_TRIMMED)
1341 __set_ckpt_flags(cp: ckpt, CP_TRIMMED_FLAG);
1342 else
1343 __clear_ckpt_flags(cp: ckpt, CP_TRIMMED_FLAG);
1344
1345 if (cpc->reason & CP_UMOUNT)
1346 __set_ckpt_flags(cp: ckpt, CP_UMOUNT_FLAG);
1347 else
1348 __clear_ckpt_flags(cp: ckpt, CP_UMOUNT_FLAG);
1349
1350 if (cpc->reason & CP_FASTBOOT)
1351 __set_ckpt_flags(cp: ckpt, CP_FASTBOOT_FLAG);
1352 else
1353 __clear_ckpt_flags(cp: ckpt, CP_FASTBOOT_FLAG);
1354
1355 if (orphan_num)
1356 __set_ckpt_flags(cp: ckpt, CP_ORPHAN_PRESENT_FLAG);
1357 else
1358 __clear_ckpt_flags(cp: ckpt, CP_ORPHAN_PRESENT_FLAG);
1359
1360 if (is_sbi_flag_set(sbi, type: SBI_NEED_FSCK))
1361 __set_ckpt_flags(cp: ckpt, CP_FSCK_FLAG);
1362
1363 if (is_sbi_flag_set(sbi, type: SBI_IS_RESIZEFS))
1364 __set_ckpt_flags(cp: ckpt, CP_RESIZEFS_FLAG);
1365 else
1366 __clear_ckpt_flags(cp: ckpt, CP_RESIZEFS_FLAG);
1367
1368 if (is_sbi_flag_set(sbi, type: SBI_CP_DISABLED))
1369 __set_ckpt_flags(cp: ckpt, CP_DISABLED_FLAG);
1370 else
1371 __clear_ckpt_flags(cp: ckpt, CP_DISABLED_FLAG);
1372
1373 if (is_sbi_flag_set(sbi, type: SBI_CP_DISABLED_QUICK))
1374 __set_ckpt_flags(cp: ckpt, CP_DISABLED_QUICK_FLAG);
1375 else
1376 __clear_ckpt_flags(cp: ckpt, CP_DISABLED_QUICK_FLAG);
1377
1378 if (is_sbi_flag_set(sbi, type: SBI_QUOTA_SKIP_FLUSH))
1379 __set_ckpt_flags(cp: ckpt, CP_QUOTA_NEED_FSCK_FLAG);
1380 else
1381 __clear_ckpt_flags(cp: ckpt, CP_QUOTA_NEED_FSCK_FLAG);
1382
1383 if (is_sbi_flag_set(sbi, type: SBI_QUOTA_NEED_REPAIR))
1384 __set_ckpt_flags(cp: ckpt, CP_QUOTA_NEED_FSCK_FLAG);
1385
1386 /* set this flag to activate crc|cp_ver for recovery */
1387 __set_ckpt_flags(cp: ckpt, CP_CRC_RECOVERY_FLAG);
1388 __clear_ckpt_flags(cp: ckpt, CP_NOCRC_RECOVERY_FLAG);
1389
1390 spin_unlock_irqrestore(lock: &sbi->cp_lock, flags);
1391}
1392
1393static void commit_checkpoint(struct f2fs_sb_info *sbi,
1394 void *src, block_t blk_addr)
1395{
1396 struct writeback_control wbc = {
1397 .for_reclaim = 0,
1398 };
1399
1400 /*
1401 * filemap_get_folios_tag and lock_page again will take
1402 * some extra time. Therefore, f2fs_update_meta_pages and
1403 * f2fs_sync_meta_pages are combined in this function.
1404 */
1405 struct page *page = f2fs_grab_meta_page(sbi, index: blk_addr);
1406 int err;
1407
1408 f2fs_wait_on_page_writeback(page, type: META, ordered: true, locked: true);
1409
1410 memcpy(page_address(page), src, PAGE_SIZE);
1411
1412 set_page_dirty(page);
1413 if (unlikely(!clear_page_dirty_for_io(page)))
1414 f2fs_bug_on(sbi, 1);
1415
1416 /* writeout cp pack 2 page */
1417 err = __f2fs_write_meta_page(page, wbc: &wbc, io_type: FS_CP_META_IO);
1418 if (unlikely(err && f2fs_cp_error(sbi))) {
1419 f2fs_put_page(page, unlock: 1);
1420 return;
1421 }
1422
1423 f2fs_bug_on(sbi, err);
1424 f2fs_put_page(page, unlock: 0);
1425
1426 /* submit checkpoint (with barrier if NOBARRIER is not set) */
1427 f2fs_submit_merged_write(sbi, type: META_FLUSH);
1428}
1429
1430static inline u64 get_sectors_written(struct block_device *bdev)
1431{
1432 return (u64)part_stat_read(bdev, sectors[STAT_WRITE]);
1433}
1434
1435u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi)
1436{
1437 if (f2fs_is_multi_device(sbi)) {
1438 u64 sectors = 0;
1439 int i;
1440
1441 for (i = 0; i < sbi->s_ndevs; i++)
1442 sectors += get_sectors_written(FDEV(i).bdev);
1443
1444 return sectors;
1445 }
1446
1447 return get_sectors_written(bdev: sbi->sb->s_bdev);
1448}
1449
1450static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1451{
1452 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1453 struct f2fs_nm_info *nm_i = NM_I(sbi);
1454 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num, flags;
1455 block_t start_blk;
1456 unsigned int data_sum_blocks, orphan_blocks;
1457 __u32 crc32 = 0;
1458 int i;
1459 int cp_payload_blks = __cp_payload(sbi);
1460 struct curseg_info *seg_i = CURSEG_I(sbi, type: CURSEG_HOT_NODE);
1461 u64 kbytes_written;
1462 int err;
1463
1464 /* Flush all the NAT/SIT pages */
1465 f2fs_sync_meta_pages(sbi, type: META, LONG_MAX, io_type: FS_CP_META_IO);
1466
1467 /* start to update checkpoint, cp ver is already updated previously */
1468 ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi, true));
1469 ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
1470 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
1471 struct curseg_info *curseg = CURSEG_I(sbi, type: i + CURSEG_HOT_NODE);
1472
1473 ckpt->cur_node_segno[i] = cpu_to_le32(curseg->segno);
1474 ckpt->cur_node_blkoff[i] = cpu_to_le16(curseg->next_blkoff);
1475 ckpt->alloc_type[i + CURSEG_HOT_NODE] = curseg->alloc_type;
1476 }
1477 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
1478 struct curseg_info *curseg = CURSEG_I(sbi, type: i + CURSEG_HOT_DATA);
1479
1480 ckpt->cur_data_segno[i] = cpu_to_le32(curseg->segno);
1481 ckpt->cur_data_blkoff[i] = cpu_to_le16(curseg->next_blkoff);
1482 ckpt->alloc_type[i + CURSEG_HOT_DATA] = curseg->alloc_type;
1483 }
1484
1485 /* 2 cp + n data seg summary + orphan inode blocks */
1486 data_sum_blocks = f2fs_npages_for_summary_flush(sbi, for_ra: false);
1487 spin_lock_irqsave(&sbi->cp_lock, flags);
1488 if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
1489 __set_ckpt_flags(cp: ckpt, CP_COMPACT_SUM_FLAG);
1490 else
1491 __clear_ckpt_flags(cp: ckpt, CP_COMPACT_SUM_FLAG);
1492 spin_unlock_irqrestore(lock: &sbi->cp_lock, flags);
1493
1494 orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
1495 ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
1496 orphan_blocks);
1497
1498 if (__remain_node_summaries(reason: cpc->reason))
1499 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
1500 cp_payload_blks + data_sum_blocks +
1501 orphan_blocks + NR_CURSEG_NODE_TYPE);
1502 else
1503 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
1504 cp_payload_blks + data_sum_blocks +
1505 orphan_blocks);
1506
1507 /* update ckpt flag for checkpoint */
1508 update_ckpt_flags(sbi, cpc);
1509
1510 /* update SIT/NAT bitmap */
1511 get_sit_bitmap(sbi, dst_addr: __bitmap_ptr(sbi, flag: SIT_BITMAP));
1512 get_nat_bitmap(sbi, addr: __bitmap_ptr(sbi, flag: NAT_BITMAP));
1513
1514 crc32 = f2fs_checkpoint_chksum(sbi, ckpt);
1515 *((__le32 *)((unsigned char *)ckpt +
1516 le32_to_cpu(ckpt->checksum_offset)))
1517 = cpu_to_le32(crc32);
1518
1519 start_blk = __start_cp_next_addr(sbi);
1520
1521 /* write nat bits */
1522 if ((cpc->reason & CP_UMOUNT) &&
1523 is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG)) {
1524 __u64 cp_ver = cur_cp_version(cp: ckpt);
1525 block_t blk;
1526
1527 cp_ver |= ((__u64)crc32 << 32);
1528 *(__le64 *)nm_i->nat_bits = cpu_to_le64(cp_ver);
1529
1530 blk = start_blk + sbi->blocks_per_seg - nm_i->nat_bits_blocks;
1531 for (i = 0; i < nm_i->nat_bits_blocks; i++)
1532 f2fs_update_meta_page(sbi, src: nm_i->nat_bits +
1533 (i << F2FS_BLKSIZE_BITS), blk_addr: blk + i);
1534 }
1535
1536 /* write out checkpoint buffer at block 0 */
1537 f2fs_update_meta_page(sbi, src: ckpt, blk_addr: start_blk++);
1538
1539 for (i = 1; i < 1 + cp_payload_blks; i++)
1540 f2fs_update_meta_page(sbi, src: (char *)ckpt + i * F2FS_BLKSIZE,
1541 blk_addr: start_blk++);
1542
1543 if (orphan_num) {
1544 write_orphan_inodes(sbi, start_blk);
1545 start_blk += orphan_blocks;
1546 }
1547
1548 f2fs_write_data_summaries(sbi, start_blk);
1549 start_blk += data_sum_blocks;
1550
1551 /* Record write statistics in the hot node summary */
1552 kbytes_written = sbi->kbytes_written;
1553 kbytes_written += (f2fs_get_sectors_written(sbi) -
1554 sbi->sectors_written_start) >> 1;
1555 seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written);
1556
1557 if (__remain_node_summaries(reason: cpc->reason)) {
1558 f2fs_write_node_summaries(sbi, start_blk);
1559 start_blk += NR_CURSEG_NODE_TYPE;
1560 }
1561
1562 /* update user_block_counts */
1563 sbi->last_valid_block_count = sbi->total_valid_block_count;
1564 percpu_counter_set(fbc: &sbi->alloc_valid_block_count, amount: 0);
1565 percpu_counter_set(fbc: &sbi->rf_node_block_count, amount: 0);
1566
1567 /* Here, we have one bio having CP pack except cp pack 2 page */
1568 f2fs_sync_meta_pages(sbi, type: META, LONG_MAX, io_type: FS_CP_META_IO);
1569 /* Wait for all dirty meta pages to be submitted for IO */
1570 f2fs_wait_on_all_pages(sbi, type: F2FS_DIRTY_META);
1571
1572 /* wait for previous submitted meta pages writeback */
1573 f2fs_wait_on_all_pages(sbi, type: F2FS_WB_CP_DATA);
1574
1575 /* flush all device cache */
1576 err = f2fs_flush_device_cache(sbi);
1577 if (err)
1578 return err;
1579
1580 /* barrier and flush checkpoint cp pack 2 page if it can */
1581 commit_checkpoint(sbi, src: ckpt, blk_addr: start_blk);
1582 f2fs_wait_on_all_pages(sbi, type: F2FS_WB_CP_DATA);
1583
1584 /*
1585 * invalidate intermediate page cache borrowed from meta inode which are
1586 * used for migration of encrypted, verity or compressed inode's blocks.
1587 */
1588 if (f2fs_sb_has_encrypt(sbi) || f2fs_sb_has_verity(sbi) ||
1589 f2fs_sb_has_compression(sbi))
1590 invalidate_mapping_pages(mapping: META_MAPPING(sbi),
1591 MAIN_BLKADDR(sbi), MAX_BLKADDR(sbi) - 1);
1592
1593 f2fs_release_ino_entry(sbi, all: false);
1594
1595 f2fs_reset_fsync_node_info(sbi);
1596
1597 clear_sbi_flag(sbi, type: SBI_IS_DIRTY);
1598 clear_sbi_flag(sbi, type: SBI_NEED_CP);
1599 clear_sbi_flag(sbi, type: SBI_QUOTA_SKIP_FLUSH);
1600
1601 spin_lock(lock: &sbi->stat_lock);
1602 sbi->unusable_block_count = 0;
1603 spin_unlock(lock: &sbi->stat_lock);
1604
1605 __set_cp_next_pack(sbi);
1606
1607 /*
1608 * redirty superblock if metadata like node page or inode cache is
1609 * updated during writing checkpoint.
1610 */
1611 if (get_pages(sbi, count_type: F2FS_DIRTY_NODES) ||
1612 get_pages(sbi, count_type: F2FS_DIRTY_IMETA))
1613 set_sbi_flag(sbi, type: SBI_IS_DIRTY);
1614
1615 f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_DENTS));
1616
1617 return unlikely(f2fs_cp_error(sbi)) ? -EIO : 0;
1618}
1619
1620int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1621{
1622 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1623 unsigned long long ckpt_ver;
1624 int err = 0;
1625
1626 if (f2fs_readonly(sb: sbi->sb) || f2fs_hw_is_readonly(sbi))
1627 return -EROFS;
1628
1629 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
1630 if (cpc->reason != CP_PAUSE)
1631 return 0;
1632 f2fs_warn(sbi, "Start checkpoint disabled!");
1633 }
1634 if (cpc->reason != CP_RESIZE)
1635 f2fs_down_write(sem: &sbi->cp_global_sem);
1636
1637 if (!is_sbi_flag_set(sbi, type: SBI_IS_DIRTY) &&
1638 ((cpc->reason & CP_FASTBOOT) || (cpc->reason & CP_SYNC) ||
1639 ((cpc->reason & CP_DISCARD) && !sbi->discard_blks)))
1640 goto out;
1641 if (unlikely(f2fs_cp_error(sbi))) {
1642 err = -EIO;
1643 goto out;
1644 }
1645
1646 trace_f2fs_write_checkpoint(sb: sbi->sb, reason: cpc->reason, msg: "start block_ops");
1647
1648 err = block_operations(sbi);
1649 if (err)
1650 goto out;
1651
1652 trace_f2fs_write_checkpoint(sb: sbi->sb, reason: cpc->reason, msg: "finish block_ops");
1653
1654 f2fs_flush_merged_writes(sbi);
1655
1656 /* this is the case of multiple fstrims without any changes */
1657 if (cpc->reason & CP_DISCARD) {
1658 if (!f2fs_exist_trim_candidates(sbi, cpc)) {
1659 unblock_operations(sbi);
1660 goto out;
1661 }
1662
1663 if (NM_I(sbi)->nat_cnt[DIRTY_NAT] == 0 &&
1664 SIT_I(sbi)->dirty_sentries == 0 &&
1665 prefree_segments(sbi) == 0) {
1666 f2fs_flush_sit_entries(sbi, cpc);
1667 f2fs_clear_prefree_segments(sbi, cpc);
1668 unblock_operations(sbi);
1669 goto out;
1670 }
1671 }
1672
1673 /*
1674 * update checkpoint pack index
1675 * Increase the version number so that
1676 * SIT entries and seg summaries are written at correct place
1677 */
1678 ckpt_ver = cur_cp_version(cp: ckpt);
1679 ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
1680
1681 /* write cached NAT/SIT entries to NAT/SIT area */
1682 err = f2fs_flush_nat_entries(sbi, cpc);
1683 if (err) {
1684 f2fs_err(sbi, "f2fs_flush_nat_entries failed err:%d, stop checkpoint", err);
1685 f2fs_bug_on(sbi, !f2fs_cp_error(sbi));
1686 goto stop;
1687 }
1688
1689 f2fs_flush_sit_entries(sbi, cpc);
1690
1691 /* save inmem log status */
1692 f2fs_save_inmem_curseg(sbi);
1693
1694 err = do_checkpoint(sbi, cpc);
1695 if (err) {
1696 f2fs_err(sbi, "do_checkpoint failed err:%d, stop checkpoint", err);
1697 f2fs_bug_on(sbi, !f2fs_cp_error(sbi));
1698 f2fs_release_discard_addrs(sbi);
1699 } else {
1700 f2fs_clear_prefree_segments(sbi, cpc);
1701 }
1702
1703 f2fs_restore_inmem_curseg(sbi);
1704 stat_inc_cp_count(sbi);
1705stop:
1706 unblock_operations(sbi);
1707
1708 if (cpc->reason & CP_RECOVERY)
1709 f2fs_notice(sbi, "checkpoint: version = %llx", ckpt_ver);
1710
1711 /* update CP_TIME to trigger checkpoint periodically */
1712 f2fs_update_time(sbi, type: CP_TIME);
1713 trace_f2fs_write_checkpoint(sb: sbi->sb, reason: cpc->reason, msg: "finish checkpoint");
1714out:
1715 if (cpc->reason != CP_RESIZE)
1716 f2fs_up_write(sem: &sbi->cp_global_sem);
1717 return err;
1718}
1719
1720void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi)
1721{
1722 int i;
1723
1724 for (i = 0; i < MAX_INO_ENTRY; i++) {
1725 struct inode_management *im = &sbi->im[i];
1726
1727 INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
1728 spin_lock_init(&im->ino_lock);
1729 INIT_LIST_HEAD(list: &im->ino_list);
1730 im->ino_num = 0;
1731 }
1732
1733 sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
1734 NR_CURSEG_PERSIST_TYPE - __cp_payload(sbi)) *
1735 F2FS_ORPHANS_PER_BLOCK;
1736}
1737
1738int __init f2fs_create_checkpoint_caches(void)
1739{
1740 ino_entry_slab = f2fs_kmem_cache_create(name: "f2fs_ino_entry",
1741 size: sizeof(struct ino_entry));
1742 if (!ino_entry_slab)
1743 return -ENOMEM;
1744 f2fs_inode_entry_slab = f2fs_kmem_cache_create(name: "f2fs_inode_entry",
1745 size: sizeof(struct inode_entry));
1746 if (!f2fs_inode_entry_slab) {
1747 kmem_cache_destroy(s: ino_entry_slab);
1748 return -ENOMEM;
1749 }
1750 return 0;
1751}
1752
1753void f2fs_destroy_checkpoint_caches(void)
1754{
1755 kmem_cache_destroy(s: ino_entry_slab);
1756 kmem_cache_destroy(s: f2fs_inode_entry_slab);
1757}
1758
1759static int __write_checkpoint_sync(struct f2fs_sb_info *sbi)
1760{
1761 struct cp_control cpc = { .reason = CP_SYNC, };
1762 int err;
1763
1764 f2fs_down_write(sem: &sbi->gc_lock);
1765 err = f2fs_write_checkpoint(sbi, cpc: &cpc);
1766 f2fs_up_write(sem: &sbi->gc_lock);
1767
1768 return err;
1769}
1770
1771static void __checkpoint_and_complete_reqs(struct f2fs_sb_info *sbi)
1772{
1773 struct ckpt_req_control *cprc = &sbi->cprc_info;
1774 struct ckpt_req *req, *next;
1775 struct llist_node *dispatch_list;
1776 u64 sum_diff = 0, diff, count = 0;
1777 int ret;
1778
1779 dispatch_list = llist_del_all(head: &cprc->issue_list);
1780 if (!dispatch_list)
1781 return;
1782 dispatch_list = llist_reverse_order(head: dispatch_list);
1783
1784 ret = __write_checkpoint_sync(sbi);
1785 atomic_inc(v: &cprc->issued_ckpt);
1786
1787 llist_for_each_entry_safe(req, next, dispatch_list, llnode) {
1788 diff = (u64)ktime_ms_delta(later: ktime_get(), earlier: req->queue_time);
1789 req->ret = ret;
1790 complete(&req->wait);
1791
1792 sum_diff += diff;
1793 count++;
1794 }
1795 atomic_sub(i: count, v: &cprc->queued_ckpt);
1796 atomic_add(i: count, v: &cprc->total_ckpt);
1797
1798 spin_lock(lock: &cprc->stat_lock);
1799 cprc->cur_time = (unsigned int)div64_u64(dividend: sum_diff, divisor: count);
1800 if (cprc->peak_time < cprc->cur_time)
1801 cprc->peak_time = cprc->cur_time;
1802 spin_unlock(lock: &cprc->stat_lock);
1803}
1804
1805static int issue_checkpoint_thread(void *data)
1806{
1807 struct f2fs_sb_info *sbi = data;
1808 struct ckpt_req_control *cprc = &sbi->cprc_info;
1809 wait_queue_head_t *q = &cprc->ckpt_wait_queue;
1810repeat:
1811 if (kthread_should_stop())
1812 return 0;
1813
1814 if (!llist_empty(head: &cprc->issue_list))
1815 __checkpoint_and_complete_reqs(sbi);
1816
1817 wait_event_interruptible(*q,
1818 kthread_should_stop() || !llist_empty(&cprc->issue_list));
1819 goto repeat;
1820}
1821
1822static void flush_remained_ckpt_reqs(struct f2fs_sb_info *sbi,
1823 struct ckpt_req *wait_req)
1824{
1825 struct ckpt_req_control *cprc = &sbi->cprc_info;
1826
1827 if (!llist_empty(head: &cprc->issue_list)) {
1828 __checkpoint_and_complete_reqs(sbi);
1829 } else {
1830 /* already dispatched by issue_checkpoint_thread */
1831 if (wait_req)
1832 wait_for_completion(&wait_req->wait);
1833 }
1834}
1835
1836static void init_ckpt_req(struct ckpt_req *req)
1837{
1838 memset(req, 0, sizeof(struct ckpt_req));
1839
1840 init_completion(x: &req->wait);
1841 req->queue_time = ktime_get();
1842}
1843
1844int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi)
1845{
1846 struct ckpt_req_control *cprc = &sbi->cprc_info;
1847 struct ckpt_req req;
1848 struct cp_control cpc;
1849
1850 cpc.reason = __get_cp_reason(sbi);
1851 if (!test_opt(sbi, MERGE_CHECKPOINT) || cpc.reason != CP_SYNC) {
1852 int ret;
1853
1854 f2fs_down_write(sem: &sbi->gc_lock);
1855 ret = f2fs_write_checkpoint(sbi, cpc: &cpc);
1856 f2fs_up_write(sem: &sbi->gc_lock);
1857
1858 return ret;
1859 }
1860
1861 if (!cprc->f2fs_issue_ckpt)
1862 return __write_checkpoint_sync(sbi);
1863
1864 init_ckpt_req(req: &req);
1865
1866 llist_add(new: &req.llnode, head: &cprc->issue_list);
1867 atomic_inc(v: &cprc->queued_ckpt);
1868
1869 /*
1870 * update issue_list before we wake up issue_checkpoint thread,
1871 * this smp_mb() pairs with another barrier in ___wait_event(),
1872 * see more details in comments of waitqueue_active().
1873 */
1874 smp_mb();
1875
1876 if (waitqueue_active(wq_head: &cprc->ckpt_wait_queue))
1877 wake_up(&cprc->ckpt_wait_queue);
1878
1879 if (cprc->f2fs_issue_ckpt)
1880 wait_for_completion(&req.wait);
1881 else
1882 flush_remained_ckpt_reqs(sbi, wait_req: &req);
1883
1884 return req.ret;
1885}
1886
1887int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi)
1888{
1889 dev_t dev = sbi->sb->s_bdev->bd_dev;
1890 struct ckpt_req_control *cprc = &sbi->cprc_info;
1891
1892 if (cprc->f2fs_issue_ckpt)
1893 return 0;
1894
1895 cprc->f2fs_issue_ckpt = kthread_run(issue_checkpoint_thread, sbi,
1896 "f2fs_ckpt-%u:%u", MAJOR(dev), MINOR(dev));
1897 if (IS_ERR(ptr: cprc->f2fs_issue_ckpt)) {
1898 int err = PTR_ERR(ptr: cprc->f2fs_issue_ckpt);
1899
1900 cprc->f2fs_issue_ckpt = NULL;
1901 return err;
1902 }
1903
1904 set_task_ioprio(task: cprc->f2fs_issue_ckpt, ioprio: cprc->ckpt_thread_ioprio);
1905
1906 return 0;
1907}
1908
1909void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi)
1910{
1911 struct ckpt_req_control *cprc = &sbi->cprc_info;
1912 struct task_struct *ckpt_task;
1913
1914 if (!cprc->f2fs_issue_ckpt)
1915 return;
1916
1917 ckpt_task = cprc->f2fs_issue_ckpt;
1918 cprc->f2fs_issue_ckpt = NULL;
1919 kthread_stop(k: ckpt_task);
1920
1921 f2fs_flush_ckpt_thread(sbi);
1922}
1923
1924void f2fs_flush_ckpt_thread(struct f2fs_sb_info *sbi)
1925{
1926 struct ckpt_req_control *cprc = &sbi->cprc_info;
1927
1928 flush_remained_ckpt_reqs(sbi, NULL);
1929
1930 /* Let's wait for the previous dispatched checkpoint. */
1931 while (atomic_read(v: &cprc->queued_ckpt))
1932 io_schedule_timeout(DEFAULT_IO_TIMEOUT);
1933}
1934
1935void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi)
1936{
1937 struct ckpt_req_control *cprc = &sbi->cprc_info;
1938
1939 atomic_set(v: &cprc->issued_ckpt, i: 0);
1940 atomic_set(v: &cprc->total_ckpt, i: 0);
1941 atomic_set(v: &cprc->queued_ckpt, i: 0);
1942 cprc->ckpt_thread_ioprio = DEFAULT_CHECKPOINT_IOPRIO;
1943 init_waitqueue_head(&cprc->ckpt_wait_queue);
1944 init_llist_head(list: &cprc->issue_list);
1945 spin_lock_init(&cprc->stat_lock);
1946}
1947

source code of linux/fs/f2fs/checkpoint.c