1// SPDX-License-Identifier: GPL-2.0
2/*
3 * fs/f2fs/gc.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8#include <linux/fs.h>
9#include <linux/module.h>
10#include <linux/init.h>
11#include <linux/f2fs_fs.h>
12#include <linux/kthread.h>
13#include <linux/delay.h>
14#include <linux/freezer.h>
15#include <linux/sched/signal.h>
16#include <linux/random.h>
17#include <linux/sched/mm.h>
18
19#include "f2fs.h"
20#include "node.h"
21#include "segment.h"
22#include "gc.h"
23#include "iostat.h"
24#include <trace/events/f2fs.h>
25
26static struct kmem_cache *victim_entry_slab;
27
28static unsigned int count_bits(const unsigned long *addr,
29 unsigned int offset, unsigned int len);
30
31static int gc_thread_func(void *data)
32{
33 struct f2fs_sb_info *sbi = data;
34 struct f2fs_gc_kthread *gc_th = sbi->gc_thread;
35 wait_queue_head_t *wq = &sbi->gc_thread->gc_wait_queue_head;
36 wait_queue_head_t *fggc_wq = &sbi->gc_thread->fggc_wq;
37 unsigned int wait_ms;
38 struct f2fs_gc_control gc_control = {
39 .victim_segno = NULL_SEGNO,
40 .should_migrate_blocks = false,
41 .err_gc_skipped = false };
42
43 wait_ms = gc_th->min_sleep_time;
44
45 set_freezable();
46 do {
47 bool sync_mode, foreground = false;
48
49 wait_event_interruptible_timeout(*wq,
50 kthread_should_stop() || freezing(current) ||
51 waitqueue_active(fggc_wq) ||
52 gc_th->gc_wake,
53 msecs_to_jiffies(wait_ms));
54
55 if (test_opt(sbi, GC_MERGE) && waitqueue_active(wq_head: fggc_wq))
56 foreground = true;
57
58 /* give it a try one time */
59 if (gc_th->gc_wake)
60 gc_th->gc_wake = false;
61
62 if (try_to_freeze() || f2fs_readonly(sb: sbi->sb)) {
63 stat_other_skip_bggc_count(sbi);
64 continue;
65 }
66 if (kthread_should_stop())
67 break;
68
69 if (sbi->sb->s_writers.frozen >= SB_FREEZE_WRITE) {
70 increase_sleep_time(gc_th, wait: &wait_ms);
71 stat_other_skip_bggc_count(sbi);
72 continue;
73 }
74
75 if (time_to_inject(sbi, FAULT_CHECKPOINT))
76 f2fs_stop_checkpoint(sbi, end_io: false,
77 reason: STOP_CP_REASON_FAULT_INJECT);
78
79 if (!sb_start_write_trylock(sb: sbi->sb)) {
80 stat_other_skip_bggc_count(sbi);
81 continue;
82 }
83
84 /*
85 * [GC triggering condition]
86 * 0. GC is not conducted currently.
87 * 1. There are enough dirty segments.
88 * 2. IO subsystem is idle by checking the # of writeback pages.
89 * 3. IO subsystem is idle by checking the # of requests in
90 * bdev's request list.
91 *
92 * Note) We have to avoid triggering GCs frequently.
93 * Because it is possible that some segments can be
94 * invalidated soon after by user update or deletion.
95 * So, I'd like to wait some time to collect dirty segments.
96 */
97 if (sbi->gc_mode == GC_URGENT_HIGH ||
98 sbi->gc_mode == GC_URGENT_MID) {
99 wait_ms = gc_th->urgent_sleep_time;
100 f2fs_down_write(sem: &sbi->gc_lock);
101 goto do_gc;
102 }
103
104 if (foreground) {
105 f2fs_down_write(sem: &sbi->gc_lock);
106 goto do_gc;
107 } else if (!f2fs_down_write_trylock(sem: &sbi->gc_lock)) {
108 stat_other_skip_bggc_count(sbi);
109 goto next;
110 }
111
112 if (!is_idle(sbi, type: GC_TIME)) {
113 increase_sleep_time(gc_th, wait: &wait_ms);
114 f2fs_up_write(sem: &sbi->gc_lock);
115 stat_io_skip_bggc_count(sbi);
116 goto next;
117 }
118
119 if (has_enough_invalid_blocks(sbi))
120 decrease_sleep_time(gc_th, wait: &wait_ms);
121 else
122 increase_sleep_time(gc_th, wait: &wait_ms);
123do_gc:
124 stat_inc_gc_call_count(sbi, foreground ?
125 FOREGROUND : BACKGROUND);
126
127 sync_mode = F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_SYNC;
128
129 /* foreground GC was been triggered via f2fs_balance_fs() */
130 if (foreground)
131 sync_mode = false;
132
133 gc_control.init_gc_type = sync_mode ? FG_GC : BG_GC;
134 gc_control.no_bg_gc = foreground;
135 gc_control.nr_free_secs = foreground ? 1 : 0;
136
137 /* if return value is not zero, no victim was selected */
138 if (f2fs_gc(sbi, gc_control: &gc_control)) {
139 /* don't bother wait_ms by foreground gc */
140 if (!foreground)
141 wait_ms = gc_th->no_gc_sleep_time;
142 } else {
143 /* reset wait_ms to default sleep time */
144 if (wait_ms == gc_th->no_gc_sleep_time)
145 wait_ms = gc_th->min_sleep_time;
146 }
147
148 if (foreground)
149 wake_up_all(&gc_th->fggc_wq);
150
151 trace_f2fs_background_gc(sb: sbi->sb, wait_ms,
152 prefree: prefree_segments(sbi), free: free_segments(sbi));
153
154 /* balancing f2fs's metadata periodically */
155 f2fs_balance_fs_bg(sbi, from_bg: true);
156next:
157 if (sbi->gc_mode != GC_NORMAL) {
158 spin_lock(lock: &sbi->gc_remaining_trials_lock);
159 if (sbi->gc_remaining_trials) {
160 sbi->gc_remaining_trials--;
161 if (!sbi->gc_remaining_trials)
162 sbi->gc_mode = GC_NORMAL;
163 }
164 spin_unlock(lock: &sbi->gc_remaining_trials_lock);
165 }
166 sb_end_write(sb: sbi->sb);
167
168 } while (!kthread_should_stop());
169 return 0;
170}
171
172int f2fs_start_gc_thread(struct f2fs_sb_info *sbi)
173{
174 struct f2fs_gc_kthread *gc_th;
175 dev_t dev = sbi->sb->s_bdev->bd_dev;
176
177 gc_th = f2fs_kmalloc(sbi, size: sizeof(struct f2fs_gc_kthread), GFP_KERNEL);
178 if (!gc_th)
179 return -ENOMEM;
180
181 gc_th->urgent_sleep_time = DEF_GC_THREAD_URGENT_SLEEP_TIME;
182 gc_th->min_sleep_time = DEF_GC_THREAD_MIN_SLEEP_TIME;
183 gc_th->max_sleep_time = DEF_GC_THREAD_MAX_SLEEP_TIME;
184 gc_th->no_gc_sleep_time = DEF_GC_THREAD_NOGC_SLEEP_TIME;
185
186 gc_th->gc_wake = false;
187
188 sbi->gc_thread = gc_th;
189 init_waitqueue_head(&sbi->gc_thread->gc_wait_queue_head);
190 init_waitqueue_head(&sbi->gc_thread->fggc_wq);
191 sbi->gc_thread->f2fs_gc_task = kthread_run(gc_thread_func, sbi,
192 "f2fs_gc-%u:%u", MAJOR(dev), MINOR(dev));
193 if (IS_ERR(ptr: gc_th->f2fs_gc_task)) {
194 int err = PTR_ERR(ptr: gc_th->f2fs_gc_task);
195
196 kfree(objp: gc_th);
197 sbi->gc_thread = NULL;
198 return err;
199 }
200
201 return 0;
202}
203
204void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi)
205{
206 struct f2fs_gc_kthread *gc_th = sbi->gc_thread;
207
208 if (!gc_th)
209 return;
210 kthread_stop(k: gc_th->f2fs_gc_task);
211 wake_up_all(&gc_th->fggc_wq);
212 kfree(objp: gc_th);
213 sbi->gc_thread = NULL;
214}
215
216static int select_gc_type(struct f2fs_sb_info *sbi, int gc_type)
217{
218 int gc_mode;
219
220 if (gc_type == BG_GC) {
221 if (sbi->am.atgc_enabled)
222 gc_mode = GC_AT;
223 else
224 gc_mode = GC_CB;
225 } else {
226 gc_mode = GC_GREEDY;
227 }
228
229 switch (sbi->gc_mode) {
230 case GC_IDLE_CB:
231 gc_mode = GC_CB;
232 break;
233 case GC_IDLE_GREEDY:
234 case GC_URGENT_HIGH:
235 gc_mode = GC_GREEDY;
236 break;
237 case GC_IDLE_AT:
238 gc_mode = GC_AT;
239 break;
240 }
241
242 return gc_mode;
243}
244
245static void select_policy(struct f2fs_sb_info *sbi, int gc_type,
246 int type, struct victim_sel_policy *p)
247{
248 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
249
250 if (p->alloc_mode == SSR) {
251 p->gc_mode = GC_GREEDY;
252 p->dirty_bitmap = dirty_i->dirty_segmap[type];
253 p->max_search = dirty_i->nr_dirty[type];
254 p->ofs_unit = 1;
255 } else if (p->alloc_mode == AT_SSR) {
256 p->gc_mode = GC_GREEDY;
257 p->dirty_bitmap = dirty_i->dirty_segmap[type];
258 p->max_search = dirty_i->nr_dirty[type];
259 p->ofs_unit = 1;
260 } else {
261 p->gc_mode = select_gc_type(sbi, gc_type);
262 p->ofs_unit = sbi->segs_per_sec;
263 if (__is_large_section(sbi)) {
264 p->dirty_bitmap = dirty_i->dirty_secmap;
265 p->max_search = count_bits(addr: p->dirty_bitmap,
266 offset: 0, MAIN_SECS(sbi));
267 } else {
268 p->dirty_bitmap = dirty_i->dirty_segmap[DIRTY];
269 p->max_search = dirty_i->nr_dirty[DIRTY];
270 }
271 }
272
273 /*
274 * adjust candidates range, should select all dirty segments for
275 * foreground GC and urgent GC cases.
276 */
277 if (gc_type != FG_GC &&
278 (sbi->gc_mode != GC_URGENT_HIGH) &&
279 (p->gc_mode != GC_AT && p->alloc_mode != AT_SSR) &&
280 p->max_search > sbi->max_victim_search)
281 p->max_search = sbi->max_victim_search;
282
283 /* let's select beginning hot/small space first in no_heap mode*/
284 if (f2fs_need_rand_seg(sbi))
285 p->offset = get_random_u32_below(MAIN_SECS(sbi) * sbi->segs_per_sec);
286 else if (test_opt(sbi, NOHEAP) &&
287 (type == CURSEG_HOT_DATA || IS_NODESEG(type)))
288 p->offset = 0;
289 else
290 p->offset = SIT_I(sbi)->last_victim[p->gc_mode];
291}
292
293static unsigned int get_max_cost(struct f2fs_sb_info *sbi,
294 struct victim_sel_policy *p)
295{
296 /* SSR allocates in a segment unit */
297 if (p->alloc_mode == SSR)
298 return sbi->blocks_per_seg;
299 else if (p->alloc_mode == AT_SSR)
300 return UINT_MAX;
301
302 /* LFS */
303 if (p->gc_mode == GC_GREEDY)
304 return 2 * sbi->blocks_per_seg * p->ofs_unit;
305 else if (p->gc_mode == GC_CB)
306 return UINT_MAX;
307 else if (p->gc_mode == GC_AT)
308 return UINT_MAX;
309 else /* No other gc_mode */
310 return 0;
311}
312
313static unsigned int check_bg_victims(struct f2fs_sb_info *sbi)
314{
315 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
316 unsigned int secno;
317
318 /*
319 * If the gc_type is FG_GC, we can select victim segments
320 * selected by background GC before.
321 * Those segments guarantee they have small valid blocks.
322 */
323 for_each_set_bit(secno, dirty_i->victim_secmap, MAIN_SECS(sbi)) {
324 if (sec_usage_check(sbi, secno))
325 continue;
326 clear_bit(nr: secno, addr: dirty_i->victim_secmap);
327 return GET_SEG_FROM_SEC(sbi, secno);
328 }
329 return NULL_SEGNO;
330}
331
332static unsigned int get_cb_cost(struct f2fs_sb_info *sbi, unsigned int segno)
333{
334 struct sit_info *sit_i = SIT_I(sbi);
335 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
336 unsigned int start = GET_SEG_FROM_SEC(sbi, secno);
337 unsigned long long mtime = 0;
338 unsigned int vblocks;
339 unsigned char age = 0;
340 unsigned char u;
341 unsigned int i;
342 unsigned int usable_segs_per_sec = f2fs_usable_segs_in_sec(sbi, segno);
343
344 for (i = 0; i < usable_segs_per_sec; i++)
345 mtime += get_seg_entry(sbi, segno: start + i)->mtime;
346 vblocks = get_valid_blocks(sbi, segno, use_section: true);
347
348 mtime = div_u64(dividend: mtime, divisor: usable_segs_per_sec);
349 vblocks = div_u64(dividend: vblocks, divisor: usable_segs_per_sec);
350
351 u = (vblocks * 100) >> sbi->log_blocks_per_seg;
352
353 /* Handle if the system time has changed by the user */
354 if (mtime < sit_i->min_mtime)
355 sit_i->min_mtime = mtime;
356 if (mtime > sit_i->max_mtime)
357 sit_i->max_mtime = mtime;
358 if (sit_i->max_mtime != sit_i->min_mtime)
359 age = 100 - div64_u64(dividend: 100 * (mtime - sit_i->min_mtime),
360 divisor: sit_i->max_mtime - sit_i->min_mtime);
361
362 return UINT_MAX - ((100 * (100 - u) * age) / (100 + u));
363}
364
365static inline unsigned int get_gc_cost(struct f2fs_sb_info *sbi,
366 unsigned int segno, struct victim_sel_policy *p)
367{
368 if (p->alloc_mode == SSR)
369 return get_seg_entry(sbi, segno)->ckpt_valid_blocks;
370
371 /* alloc_mode == LFS */
372 if (p->gc_mode == GC_GREEDY)
373 return get_valid_blocks(sbi, segno, use_section: true);
374 else if (p->gc_mode == GC_CB)
375 return get_cb_cost(sbi, segno);
376
377 f2fs_bug_on(sbi, 1);
378 return 0;
379}
380
381static unsigned int count_bits(const unsigned long *addr,
382 unsigned int offset, unsigned int len)
383{
384 unsigned int end = offset + len, sum = 0;
385
386 while (offset < end) {
387 if (test_bit(offset++, addr))
388 ++sum;
389 }
390 return sum;
391}
392
393static bool f2fs_check_victim_tree(struct f2fs_sb_info *sbi,
394 struct rb_root_cached *root)
395{
396#ifdef CONFIG_F2FS_CHECK_FS
397 struct rb_node *cur = rb_first_cached(root), *next;
398 struct victim_entry *cur_ve, *next_ve;
399
400 while (cur) {
401 next = rb_next(cur);
402 if (!next)
403 return true;
404
405 cur_ve = rb_entry(cur, struct victim_entry, rb_node);
406 next_ve = rb_entry(next, struct victim_entry, rb_node);
407
408 if (cur_ve->mtime > next_ve->mtime) {
409 f2fs_info(sbi, "broken victim_rbtree, "
410 "cur_mtime(%llu) next_mtime(%llu)",
411 cur_ve->mtime, next_ve->mtime);
412 return false;
413 }
414 cur = next;
415 }
416#endif
417 return true;
418}
419
420static struct victim_entry *__lookup_victim_entry(struct f2fs_sb_info *sbi,
421 unsigned long long mtime)
422{
423 struct atgc_management *am = &sbi->am;
424 struct rb_node *node = am->root.rb_root.rb_node;
425 struct victim_entry *ve = NULL;
426
427 while (node) {
428 ve = rb_entry(node, struct victim_entry, rb_node);
429
430 if (mtime < ve->mtime)
431 node = node->rb_left;
432 else
433 node = node->rb_right;
434 }
435 return ve;
436}
437
438static struct victim_entry *__create_victim_entry(struct f2fs_sb_info *sbi,
439 unsigned long long mtime, unsigned int segno)
440{
441 struct atgc_management *am = &sbi->am;
442 struct victim_entry *ve;
443
444 ve = f2fs_kmem_cache_alloc(cachep: victim_entry_slab, GFP_NOFS, nofail: true, NULL);
445
446 ve->mtime = mtime;
447 ve->segno = segno;
448
449 list_add_tail(new: &ve->list, head: &am->victim_list);
450 am->victim_count++;
451
452 return ve;
453}
454
455static void __insert_victim_entry(struct f2fs_sb_info *sbi,
456 unsigned long long mtime, unsigned int segno)
457{
458 struct atgc_management *am = &sbi->am;
459 struct rb_root_cached *root = &am->root;
460 struct rb_node **p = &root->rb_root.rb_node;
461 struct rb_node *parent = NULL;
462 struct victim_entry *ve;
463 bool left_most = true;
464
465 /* look up rb tree to find parent node */
466 while (*p) {
467 parent = *p;
468 ve = rb_entry(parent, struct victim_entry, rb_node);
469
470 if (mtime < ve->mtime) {
471 p = &(*p)->rb_left;
472 } else {
473 p = &(*p)->rb_right;
474 left_most = false;
475 }
476 }
477
478 ve = __create_victim_entry(sbi, mtime, segno);
479
480 rb_link_node(node: &ve->rb_node, parent, rb_link: p);
481 rb_insert_color_cached(node: &ve->rb_node, root, leftmost: left_most);
482}
483
484static void add_victim_entry(struct f2fs_sb_info *sbi,
485 struct victim_sel_policy *p, unsigned int segno)
486{
487 struct sit_info *sit_i = SIT_I(sbi);
488 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
489 unsigned int start = GET_SEG_FROM_SEC(sbi, secno);
490 unsigned long long mtime = 0;
491 unsigned int i;
492
493 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
494 if (p->gc_mode == GC_AT &&
495 get_valid_blocks(sbi, segno, use_section: true) == 0)
496 return;
497 }
498
499 for (i = 0; i < sbi->segs_per_sec; i++)
500 mtime += get_seg_entry(sbi, segno: start + i)->mtime;
501 mtime = div_u64(dividend: mtime, divisor: sbi->segs_per_sec);
502
503 /* Handle if the system time has changed by the user */
504 if (mtime < sit_i->min_mtime)
505 sit_i->min_mtime = mtime;
506 if (mtime > sit_i->max_mtime)
507 sit_i->max_mtime = mtime;
508 if (mtime < sit_i->dirty_min_mtime)
509 sit_i->dirty_min_mtime = mtime;
510 if (mtime > sit_i->dirty_max_mtime)
511 sit_i->dirty_max_mtime = mtime;
512
513 /* don't choose young section as candidate */
514 if (sit_i->dirty_max_mtime - mtime < p->age_threshold)
515 return;
516
517 __insert_victim_entry(sbi, mtime, segno);
518}
519
520static void atgc_lookup_victim(struct f2fs_sb_info *sbi,
521 struct victim_sel_policy *p)
522{
523 struct sit_info *sit_i = SIT_I(sbi);
524 struct atgc_management *am = &sbi->am;
525 struct rb_root_cached *root = &am->root;
526 struct rb_node *node;
527 struct victim_entry *ve;
528 unsigned long long total_time;
529 unsigned long long age, u, accu;
530 unsigned long long max_mtime = sit_i->dirty_max_mtime;
531 unsigned long long min_mtime = sit_i->dirty_min_mtime;
532 unsigned int sec_blocks = CAP_BLKS_PER_SEC(sbi);
533 unsigned int vblocks;
534 unsigned int dirty_threshold = max(am->max_candidate_count,
535 am->candidate_ratio *
536 am->victim_count / 100);
537 unsigned int age_weight = am->age_weight;
538 unsigned int cost;
539 unsigned int iter = 0;
540
541 if (max_mtime < min_mtime)
542 return;
543
544 max_mtime += 1;
545 total_time = max_mtime - min_mtime;
546
547 accu = div64_u64(ULLONG_MAX, divisor: total_time);
548 accu = min_t(unsigned long long, div_u64(accu, 100),
549 DEFAULT_ACCURACY_CLASS);
550
551 node = rb_first_cached(root);
552next:
553 ve = rb_entry_safe(node, struct victim_entry, rb_node);
554 if (!ve)
555 return;
556
557 if (ve->mtime >= max_mtime || ve->mtime < min_mtime)
558 goto skip;
559
560 /* age = 10000 * x% * 60 */
561 age = div64_u64(dividend: accu * (max_mtime - ve->mtime), divisor: total_time) *
562 age_weight;
563
564 vblocks = get_valid_blocks(sbi, segno: ve->segno, use_section: true);
565 f2fs_bug_on(sbi, !vblocks || vblocks == sec_blocks);
566
567 /* u = 10000 * x% * 40 */
568 u = div64_u64(dividend: accu * (sec_blocks - vblocks), divisor: sec_blocks) *
569 (100 - age_weight);
570
571 f2fs_bug_on(sbi, age + u >= UINT_MAX);
572
573 cost = UINT_MAX - (age + u);
574 iter++;
575
576 if (cost < p->min_cost ||
577 (cost == p->min_cost && age > p->oldest_age)) {
578 p->min_cost = cost;
579 p->oldest_age = age;
580 p->min_segno = ve->segno;
581 }
582skip:
583 if (iter < dirty_threshold) {
584 node = rb_next(node);
585 goto next;
586 }
587}
588
589/*
590 * select candidates around source section in range of
591 * [target - dirty_threshold, target + dirty_threshold]
592 */
593static void atssr_lookup_victim(struct f2fs_sb_info *sbi,
594 struct victim_sel_policy *p)
595{
596 struct sit_info *sit_i = SIT_I(sbi);
597 struct atgc_management *am = &sbi->am;
598 struct victim_entry *ve;
599 unsigned long long age;
600 unsigned long long max_mtime = sit_i->dirty_max_mtime;
601 unsigned long long min_mtime = sit_i->dirty_min_mtime;
602 unsigned int seg_blocks = sbi->blocks_per_seg;
603 unsigned int vblocks;
604 unsigned int dirty_threshold = max(am->max_candidate_count,
605 am->candidate_ratio *
606 am->victim_count / 100);
607 unsigned int cost, iter;
608 int stage = 0;
609
610 if (max_mtime < min_mtime)
611 return;
612 max_mtime += 1;
613next_stage:
614 iter = 0;
615 ve = __lookup_victim_entry(sbi, mtime: p->age);
616next_node:
617 if (!ve) {
618 if (stage++ == 0)
619 goto next_stage;
620 return;
621 }
622
623 if (ve->mtime >= max_mtime || ve->mtime < min_mtime)
624 goto skip_node;
625
626 age = max_mtime - ve->mtime;
627
628 vblocks = get_seg_entry(sbi, segno: ve->segno)->ckpt_valid_blocks;
629 f2fs_bug_on(sbi, !vblocks);
630
631 /* rare case */
632 if (vblocks == seg_blocks)
633 goto skip_node;
634
635 iter++;
636
637 age = max_mtime - abs(p->age - age);
638 cost = UINT_MAX - vblocks;
639
640 if (cost < p->min_cost ||
641 (cost == p->min_cost && age > p->oldest_age)) {
642 p->min_cost = cost;
643 p->oldest_age = age;
644 p->min_segno = ve->segno;
645 }
646skip_node:
647 if (iter < dirty_threshold) {
648 ve = rb_entry(stage == 0 ? rb_prev(&ve->rb_node) :
649 rb_next(&ve->rb_node),
650 struct victim_entry, rb_node);
651 goto next_node;
652 }
653
654 if (stage++ == 0)
655 goto next_stage;
656}
657
658static void lookup_victim_by_age(struct f2fs_sb_info *sbi,
659 struct victim_sel_policy *p)
660{
661 f2fs_bug_on(sbi, !f2fs_check_victim_tree(sbi, &sbi->am.root));
662
663 if (p->gc_mode == GC_AT)
664 atgc_lookup_victim(sbi, p);
665 else if (p->alloc_mode == AT_SSR)
666 atssr_lookup_victim(sbi, p);
667 else
668 f2fs_bug_on(sbi, 1);
669}
670
671static void release_victim_entry(struct f2fs_sb_info *sbi)
672{
673 struct atgc_management *am = &sbi->am;
674 struct victim_entry *ve, *tmp;
675
676 list_for_each_entry_safe(ve, tmp, &am->victim_list, list) {
677 list_del(entry: &ve->list);
678 kmem_cache_free(s: victim_entry_slab, objp: ve);
679 am->victim_count--;
680 }
681
682 am->root = RB_ROOT_CACHED;
683
684 f2fs_bug_on(sbi, am->victim_count);
685 f2fs_bug_on(sbi, !list_empty(&am->victim_list));
686}
687
688static bool f2fs_pin_section(struct f2fs_sb_info *sbi, unsigned int segno)
689{
690 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
691 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
692
693 if (!dirty_i->enable_pin_section)
694 return false;
695 if (!test_and_set_bit(nr: secno, addr: dirty_i->pinned_secmap))
696 dirty_i->pinned_secmap_cnt++;
697 return true;
698}
699
700static bool f2fs_pinned_section_exists(struct dirty_seglist_info *dirty_i)
701{
702 return dirty_i->pinned_secmap_cnt;
703}
704
705static bool f2fs_section_is_pinned(struct dirty_seglist_info *dirty_i,
706 unsigned int secno)
707{
708 return dirty_i->enable_pin_section &&
709 f2fs_pinned_section_exists(dirty_i) &&
710 test_bit(secno, dirty_i->pinned_secmap);
711}
712
713static void f2fs_unpin_all_sections(struct f2fs_sb_info *sbi, bool enable)
714{
715 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
716
717 if (f2fs_pinned_section_exists(dirty_i: DIRTY_I(sbi))) {
718 memset(DIRTY_I(sbi)->pinned_secmap, 0, bitmap_size);
719 DIRTY_I(sbi)->pinned_secmap_cnt = 0;
720 }
721 DIRTY_I(sbi)->enable_pin_section = enable;
722}
723
724static int f2fs_gc_pinned_control(struct inode *inode, int gc_type,
725 unsigned int segno)
726{
727 if (!f2fs_is_pinned_file(inode))
728 return 0;
729 if (gc_type != FG_GC)
730 return -EBUSY;
731 if (!f2fs_pin_section(sbi: F2FS_I_SB(inode), segno))
732 f2fs_pin_file_control(inode, inc: true);
733 return -EAGAIN;
734}
735
736/*
737 * This function is called from two paths.
738 * One is garbage collection and the other is SSR segment selection.
739 * When it is called during GC, it just gets a victim segment
740 * and it does not remove it from dirty seglist.
741 * When it is called from SSR segment selection, it finds a segment
742 * which has minimum valid blocks and removes it from dirty seglist.
743 */
744int f2fs_get_victim(struct f2fs_sb_info *sbi, unsigned int *result,
745 int gc_type, int type, char alloc_mode,
746 unsigned long long age)
747{
748 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
749 struct sit_info *sm = SIT_I(sbi);
750 struct victim_sel_policy p;
751 unsigned int secno, last_victim;
752 unsigned int last_segment;
753 unsigned int nsearched;
754 bool is_atgc;
755 int ret = 0;
756
757 mutex_lock(&dirty_i->seglist_lock);
758 last_segment = MAIN_SECS(sbi) * sbi->segs_per_sec;
759
760 p.alloc_mode = alloc_mode;
761 p.age = age;
762 p.age_threshold = sbi->am.age_threshold;
763
764retry:
765 select_policy(sbi, gc_type, type, p: &p);
766 p.min_segno = NULL_SEGNO;
767 p.oldest_age = 0;
768 p.min_cost = get_max_cost(sbi, p: &p);
769
770 is_atgc = (p.gc_mode == GC_AT || p.alloc_mode == AT_SSR);
771 nsearched = 0;
772
773 if (is_atgc)
774 SIT_I(sbi)->dirty_min_mtime = ULLONG_MAX;
775
776 if (*result != NULL_SEGNO) {
777 if (!get_valid_blocks(sbi, segno: *result, use_section: false)) {
778 ret = -ENODATA;
779 goto out;
780 }
781
782 if (sec_usage_check(sbi, GET_SEC_FROM_SEG(sbi, *result)))
783 ret = -EBUSY;
784 else
785 p.min_segno = *result;
786 goto out;
787 }
788
789 ret = -ENODATA;
790 if (p.max_search == 0)
791 goto out;
792
793 if (__is_large_section(sbi) && p.alloc_mode == LFS) {
794 if (sbi->next_victim_seg[BG_GC] != NULL_SEGNO) {
795 p.min_segno = sbi->next_victim_seg[BG_GC];
796 *result = p.min_segno;
797 sbi->next_victim_seg[BG_GC] = NULL_SEGNO;
798 goto got_result;
799 }
800 if (gc_type == FG_GC &&
801 sbi->next_victim_seg[FG_GC] != NULL_SEGNO) {
802 p.min_segno = sbi->next_victim_seg[FG_GC];
803 *result = p.min_segno;
804 sbi->next_victim_seg[FG_GC] = NULL_SEGNO;
805 goto got_result;
806 }
807 }
808
809 last_victim = sm->last_victim[p.gc_mode];
810 if (p.alloc_mode == LFS && gc_type == FG_GC) {
811 p.min_segno = check_bg_victims(sbi);
812 if (p.min_segno != NULL_SEGNO)
813 goto got_it;
814 }
815
816 while (1) {
817 unsigned long cost, *dirty_bitmap;
818 unsigned int unit_no, segno;
819
820 dirty_bitmap = p.dirty_bitmap;
821 unit_no = find_next_bit(addr: dirty_bitmap,
822 size: last_segment / p.ofs_unit,
823 offset: p.offset / p.ofs_unit);
824 segno = unit_no * p.ofs_unit;
825 if (segno >= last_segment) {
826 if (sm->last_victim[p.gc_mode]) {
827 last_segment =
828 sm->last_victim[p.gc_mode];
829 sm->last_victim[p.gc_mode] = 0;
830 p.offset = 0;
831 continue;
832 }
833 break;
834 }
835
836 p.offset = segno + p.ofs_unit;
837 nsearched++;
838
839#ifdef CONFIG_F2FS_CHECK_FS
840 /*
841 * skip selecting the invalid segno (that is failed due to block
842 * validity check failure during GC) to avoid endless GC loop in
843 * such cases.
844 */
845 if (test_bit(segno, sm->invalid_segmap))
846 goto next;
847#endif
848
849 secno = GET_SEC_FROM_SEG(sbi, segno);
850
851 if (sec_usage_check(sbi, secno))
852 goto next;
853
854 /* Don't touch checkpointed data */
855 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
856 if (p.alloc_mode == LFS) {
857 /*
858 * LFS is set to find source section during GC.
859 * The victim should have no checkpointed data.
860 */
861 if (get_ckpt_valid_blocks(sbi, segno, use_section: true))
862 goto next;
863 } else {
864 /*
865 * SSR | AT_SSR are set to find target segment
866 * for writes which can be full by checkpointed
867 * and newly written blocks.
868 */
869 if (!f2fs_segment_has_free_slot(sbi, segno))
870 goto next;
871 }
872 }
873
874 if (gc_type == BG_GC && test_bit(secno, dirty_i->victim_secmap))
875 goto next;
876
877 if (gc_type == FG_GC && f2fs_section_is_pinned(dirty_i, secno))
878 goto next;
879
880 if (is_atgc) {
881 add_victim_entry(sbi, p: &p, segno);
882 goto next;
883 }
884
885 cost = get_gc_cost(sbi, segno, p: &p);
886
887 if (p.min_cost > cost) {
888 p.min_segno = segno;
889 p.min_cost = cost;
890 }
891next:
892 if (nsearched >= p.max_search) {
893 if (!sm->last_victim[p.gc_mode] && segno <= last_victim)
894 sm->last_victim[p.gc_mode] =
895 last_victim + p.ofs_unit;
896 else
897 sm->last_victim[p.gc_mode] = segno + p.ofs_unit;
898 sm->last_victim[p.gc_mode] %=
899 (MAIN_SECS(sbi) * sbi->segs_per_sec);
900 break;
901 }
902 }
903
904 /* get victim for GC_AT/AT_SSR */
905 if (is_atgc) {
906 lookup_victim_by_age(sbi, p: &p);
907 release_victim_entry(sbi);
908 }
909
910 if (is_atgc && p.min_segno == NULL_SEGNO &&
911 sm->elapsed_time < p.age_threshold) {
912 p.age_threshold = 0;
913 goto retry;
914 }
915
916 if (p.min_segno != NULL_SEGNO) {
917got_it:
918 *result = (p.min_segno / p.ofs_unit) * p.ofs_unit;
919got_result:
920 if (p.alloc_mode == LFS) {
921 secno = GET_SEC_FROM_SEG(sbi, p.min_segno);
922 if (gc_type == FG_GC)
923 sbi->cur_victim_sec = secno;
924 else
925 set_bit(nr: secno, addr: dirty_i->victim_secmap);
926 }
927 ret = 0;
928
929 }
930out:
931 if (p.min_segno != NULL_SEGNO)
932 trace_f2fs_get_victim(sb: sbi->sb, type, gc_type, p: &p,
933 pre_victim: sbi->cur_victim_sec,
934 prefree: prefree_segments(sbi), free: free_segments(sbi));
935 mutex_unlock(lock: &dirty_i->seglist_lock);
936
937 return ret;
938}
939
940static struct inode *find_gc_inode(struct gc_inode_list *gc_list, nid_t ino)
941{
942 struct inode_entry *ie;
943
944 ie = radix_tree_lookup(&gc_list->iroot, ino);
945 if (ie)
946 return ie->inode;
947 return NULL;
948}
949
950static void add_gc_inode(struct gc_inode_list *gc_list, struct inode *inode)
951{
952 struct inode_entry *new_ie;
953
954 if (inode == find_gc_inode(gc_list, ino: inode->i_ino)) {
955 iput(inode);
956 return;
957 }
958 new_ie = f2fs_kmem_cache_alloc(cachep: f2fs_inode_entry_slab,
959 GFP_NOFS, nofail: true, NULL);
960 new_ie->inode = inode;
961
962 f2fs_radix_tree_insert(root: &gc_list->iroot, index: inode->i_ino, item: new_ie);
963 list_add_tail(new: &new_ie->list, head: &gc_list->ilist);
964}
965
966static void put_gc_inode(struct gc_inode_list *gc_list)
967{
968 struct inode_entry *ie, *next_ie;
969
970 list_for_each_entry_safe(ie, next_ie, &gc_list->ilist, list) {
971 radix_tree_delete(&gc_list->iroot, ie->inode->i_ino);
972 iput(ie->inode);
973 list_del(entry: &ie->list);
974 kmem_cache_free(s: f2fs_inode_entry_slab, objp: ie);
975 }
976}
977
978static int check_valid_map(struct f2fs_sb_info *sbi,
979 unsigned int segno, int offset)
980{
981 struct sit_info *sit_i = SIT_I(sbi);
982 struct seg_entry *sentry;
983 int ret;
984
985 down_read(sem: &sit_i->sentry_lock);
986 sentry = get_seg_entry(sbi, segno);
987 ret = f2fs_test_bit(nr: offset, addr: sentry->cur_valid_map);
988 up_read(sem: &sit_i->sentry_lock);
989 return ret;
990}
991
992/*
993 * This function compares node address got in summary with that in NAT.
994 * On validity, copy that node with cold status, otherwise (invalid node)
995 * ignore that.
996 */
997static int gc_node_segment(struct f2fs_sb_info *sbi,
998 struct f2fs_summary *sum, unsigned int segno, int gc_type)
999{
1000 struct f2fs_summary *entry;
1001 block_t start_addr;
1002 int off;
1003 int phase = 0;
1004 bool fggc = (gc_type == FG_GC);
1005 int submitted = 0;
1006 unsigned int usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno);
1007
1008 start_addr = START_BLOCK(sbi, segno);
1009
1010next_step:
1011 entry = sum;
1012
1013 if (fggc && phase == 2)
1014 atomic_inc(v: &sbi->wb_sync_req[NODE]);
1015
1016 for (off = 0; off < usable_blks_in_seg; off++, entry++) {
1017 nid_t nid = le32_to_cpu(entry->nid);
1018 struct page *node_page;
1019 struct node_info ni;
1020 int err;
1021
1022 /* stop BG_GC if there is not enough free sections. */
1023 if (gc_type == BG_GC && has_not_enough_free_secs(sbi, freed: 0, needed: 0))
1024 return submitted;
1025
1026 if (check_valid_map(sbi, segno, offset: off) == 0)
1027 continue;
1028
1029 if (phase == 0) {
1030 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), nrpages: 1,
1031 type: META_NAT, sync: true);
1032 continue;
1033 }
1034
1035 if (phase == 1) {
1036 f2fs_ra_node_page(sbi, nid);
1037 continue;
1038 }
1039
1040 /* phase == 2 */
1041 node_page = f2fs_get_node_page(sbi, nid);
1042 if (IS_ERR(ptr: node_page))
1043 continue;
1044
1045 /* block may become invalid during f2fs_get_node_page */
1046 if (check_valid_map(sbi, segno, offset: off) == 0) {
1047 f2fs_put_page(page: node_page, unlock: 1);
1048 continue;
1049 }
1050
1051 if (f2fs_get_node_info(sbi, nid, ni: &ni, checkpoint_context: false)) {
1052 f2fs_put_page(page: node_page, unlock: 1);
1053 continue;
1054 }
1055
1056 if (ni.blk_addr != start_addr + off) {
1057 f2fs_put_page(page: node_page, unlock: 1);
1058 continue;
1059 }
1060
1061 err = f2fs_move_node_page(node_page, gc_type);
1062 if (!err && gc_type == FG_GC)
1063 submitted++;
1064 stat_inc_node_blk_count(sbi, 1, gc_type);
1065 }
1066
1067 if (++phase < 3)
1068 goto next_step;
1069
1070 if (fggc)
1071 atomic_dec(v: &sbi->wb_sync_req[NODE]);
1072 return submitted;
1073}
1074
1075/*
1076 * Calculate start block index indicating the given node offset.
1077 * Be careful, caller should give this node offset only indicating direct node
1078 * blocks. If any node offsets, which point the other types of node blocks such
1079 * as indirect or double indirect node blocks, are given, it must be a caller's
1080 * bug.
1081 */
1082block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode)
1083{
1084 unsigned int indirect_blks = 2 * NIDS_PER_BLOCK + 4;
1085 unsigned int bidx;
1086
1087 if (node_ofs == 0)
1088 return 0;
1089
1090 if (node_ofs <= 2) {
1091 bidx = node_ofs - 1;
1092 } else if (node_ofs <= indirect_blks) {
1093 int dec = (node_ofs - 4) / (NIDS_PER_BLOCK + 1);
1094
1095 bidx = node_ofs - 2 - dec;
1096 } else {
1097 int dec = (node_ofs - indirect_blks - 3) / (NIDS_PER_BLOCK + 1);
1098
1099 bidx = node_ofs - 5 - dec;
1100 }
1101 return bidx * ADDRS_PER_BLOCK(inode) + ADDRS_PER_INODE(inode);
1102}
1103
1104static bool is_alive(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
1105 struct node_info *dni, block_t blkaddr, unsigned int *nofs)
1106{
1107 struct page *node_page;
1108 nid_t nid;
1109 unsigned int ofs_in_node, max_addrs, base;
1110 block_t source_blkaddr;
1111
1112 nid = le32_to_cpu(sum->nid);
1113 ofs_in_node = le16_to_cpu(sum->ofs_in_node);
1114
1115 node_page = f2fs_get_node_page(sbi, nid);
1116 if (IS_ERR(ptr: node_page))
1117 return false;
1118
1119 if (f2fs_get_node_info(sbi, nid, ni: dni, checkpoint_context: false)) {
1120 f2fs_put_page(page: node_page, unlock: 1);
1121 return false;
1122 }
1123
1124 if (sum->version != dni->version) {
1125 f2fs_warn(sbi, "%s: valid data with mismatched node version.",
1126 __func__);
1127 set_sbi_flag(sbi, type: SBI_NEED_FSCK);
1128 }
1129
1130 if (f2fs_check_nid_range(sbi, nid: dni->ino)) {
1131 f2fs_put_page(page: node_page, unlock: 1);
1132 return false;
1133 }
1134
1135 if (IS_INODE(page: node_page)) {
1136 base = offset_in_addr(i: F2FS_INODE(page: node_page));
1137 max_addrs = DEF_ADDRS_PER_INODE;
1138 } else {
1139 base = 0;
1140 max_addrs = DEF_ADDRS_PER_BLOCK;
1141 }
1142
1143 if (base + ofs_in_node >= max_addrs) {
1144 f2fs_err(sbi, "Inconsistent blkaddr offset: base:%u, ofs_in_node:%u, max:%u, ino:%u, nid:%u",
1145 base, ofs_in_node, max_addrs, dni->ino, dni->nid);
1146 f2fs_put_page(page: node_page, unlock: 1);
1147 return false;
1148 }
1149
1150 *nofs = ofs_of_node(node_page);
1151 source_blkaddr = data_blkaddr(NULL, node_page, offset: ofs_in_node);
1152 f2fs_put_page(page: node_page, unlock: 1);
1153
1154 if (source_blkaddr != blkaddr) {
1155#ifdef CONFIG_F2FS_CHECK_FS
1156 unsigned int segno = GET_SEGNO(sbi, blkaddr);
1157 unsigned long offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
1158
1159 if (unlikely(check_valid_map(sbi, segno, offset))) {
1160 if (!test_and_set_bit(nr: segno, addr: SIT_I(sbi)->invalid_segmap)) {
1161 f2fs_err(sbi, "mismatched blkaddr %u (source_blkaddr %u) in seg %u",
1162 blkaddr, source_blkaddr, segno);
1163 set_sbi_flag(sbi, type: SBI_NEED_FSCK);
1164 }
1165 }
1166#endif
1167 return false;
1168 }
1169 return true;
1170}
1171
1172static int ra_data_block(struct inode *inode, pgoff_t index)
1173{
1174 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1175 struct address_space *mapping = inode->i_mapping;
1176 struct dnode_of_data dn;
1177 struct page *page;
1178 struct f2fs_io_info fio = {
1179 .sbi = sbi,
1180 .ino = inode->i_ino,
1181 .type = DATA,
1182 .temp = COLD,
1183 .op = REQ_OP_READ,
1184 .op_flags = 0,
1185 .encrypted_page = NULL,
1186 .in_list = 0,
1187 .retry = 0,
1188 };
1189 int err;
1190
1191 page = f2fs_grab_cache_page(mapping, index, for_write: true);
1192 if (!page)
1193 return -ENOMEM;
1194
1195 if (f2fs_lookup_read_extent_cache_block(inode, index,
1196 blkaddr: &dn.data_blkaddr)) {
1197 if (unlikely(!f2fs_is_valid_blkaddr(sbi, dn.data_blkaddr,
1198 DATA_GENERIC_ENHANCE_READ))) {
1199 err = -EFSCORRUPTED;
1200 f2fs_handle_error(sbi, error: ERROR_INVALID_BLKADDR);
1201 goto put_page;
1202 }
1203 goto got_it;
1204 }
1205
1206 set_new_dnode(dn: &dn, inode, NULL, NULL, nid: 0);
1207 err = f2fs_get_dnode_of_data(dn: &dn, index, mode: LOOKUP_NODE);
1208 if (err)
1209 goto put_page;
1210 f2fs_put_dnode(dn: &dn);
1211
1212 if (!__is_valid_data_blkaddr(blkaddr: dn.data_blkaddr)) {
1213 err = -ENOENT;
1214 goto put_page;
1215 }
1216 if (unlikely(!f2fs_is_valid_blkaddr(sbi, dn.data_blkaddr,
1217 DATA_GENERIC_ENHANCE))) {
1218 err = -EFSCORRUPTED;
1219 f2fs_handle_error(sbi, error: ERROR_INVALID_BLKADDR);
1220 goto put_page;
1221 }
1222got_it:
1223 /* read page */
1224 fio.page = page;
1225 fio.new_blkaddr = fio.old_blkaddr = dn.data_blkaddr;
1226
1227 /*
1228 * don't cache encrypted data into meta inode until previous dirty
1229 * data were writebacked to avoid racing between GC and flush.
1230 */
1231 f2fs_wait_on_page_writeback(page, type: DATA, ordered: true, locked: true);
1232
1233 f2fs_wait_on_block_writeback(inode, blkaddr: dn.data_blkaddr);
1234
1235 fio.encrypted_page = f2fs_pagecache_get_page(mapping: META_MAPPING(sbi),
1236 index: dn.data_blkaddr,
1237 FGP_LOCK | FGP_CREAT, GFP_NOFS);
1238 if (!fio.encrypted_page) {
1239 err = -ENOMEM;
1240 goto put_page;
1241 }
1242
1243 err = f2fs_submit_page_bio(fio: &fio);
1244 if (err)
1245 goto put_encrypted_page;
1246 f2fs_put_page(page: fio.encrypted_page, unlock: 0);
1247 f2fs_put_page(page, unlock: 1);
1248
1249 f2fs_update_iostat(sbi, inode, type: FS_DATA_READ_IO, F2FS_BLKSIZE);
1250 f2fs_update_iostat(sbi, NULL, type: FS_GDATA_READ_IO, F2FS_BLKSIZE);
1251
1252 return 0;
1253put_encrypted_page:
1254 f2fs_put_page(page: fio.encrypted_page, unlock: 1);
1255put_page:
1256 f2fs_put_page(page, unlock: 1);
1257 return err;
1258}
1259
1260/*
1261 * Move data block via META_MAPPING while keeping locked data page.
1262 * This can be used to move blocks, aka LBAs, directly on disk.
1263 */
1264static int move_data_block(struct inode *inode, block_t bidx,
1265 int gc_type, unsigned int segno, int off)
1266{
1267 struct f2fs_io_info fio = {
1268 .sbi = F2FS_I_SB(inode),
1269 .ino = inode->i_ino,
1270 .type = DATA,
1271 .temp = COLD,
1272 .op = REQ_OP_READ,
1273 .op_flags = 0,
1274 .encrypted_page = NULL,
1275 .in_list = 0,
1276 .retry = 0,
1277 };
1278 struct dnode_of_data dn;
1279 struct f2fs_summary sum;
1280 struct node_info ni;
1281 struct page *page, *mpage;
1282 block_t newaddr;
1283 int err = 0;
1284 bool lfs_mode = f2fs_lfs_mode(sbi: fio.sbi);
1285 int type = fio.sbi->am.atgc_enabled && (gc_type == BG_GC) &&
1286 (fio.sbi->gc_mode != GC_URGENT_HIGH) ?
1287 CURSEG_ALL_DATA_ATGC : CURSEG_COLD_DATA;
1288
1289 /* do not read out */
1290 page = f2fs_grab_cache_page(mapping: inode->i_mapping, index: bidx, for_write: false);
1291 if (!page)
1292 return -ENOMEM;
1293
1294 if (!check_valid_map(sbi: F2FS_I_SB(inode), segno, offset: off)) {
1295 err = -ENOENT;
1296 goto out;
1297 }
1298
1299 err = f2fs_gc_pinned_control(inode, gc_type, segno);
1300 if (err)
1301 goto out;
1302
1303 set_new_dnode(dn: &dn, inode, NULL, NULL, nid: 0);
1304 err = f2fs_get_dnode_of_data(dn: &dn, index: bidx, mode: LOOKUP_NODE);
1305 if (err)
1306 goto out;
1307
1308 if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
1309 ClearPageUptodate(page);
1310 err = -ENOENT;
1311 goto put_out;
1312 }
1313
1314 /*
1315 * don't cache encrypted data into meta inode until previous dirty
1316 * data were writebacked to avoid racing between GC and flush.
1317 */
1318 f2fs_wait_on_page_writeback(page, type: DATA, ordered: true, locked: true);
1319
1320 f2fs_wait_on_block_writeback(inode, blkaddr: dn.data_blkaddr);
1321
1322 err = f2fs_get_node_info(sbi: fio.sbi, nid: dn.nid, ni: &ni, checkpoint_context: false);
1323 if (err)
1324 goto put_out;
1325
1326 /* read page */
1327 fio.page = page;
1328 fio.new_blkaddr = fio.old_blkaddr = dn.data_blkaddr;
1329
1330 if (lfs_mode)
1331 f2fs_down_write(sem: &fio.sbi->io_order_lock);
1332
1333 mpage = f2fs_grab_cache_page(mapping: META_MAPPING(sbi: fio.sbi),
1334 index: fio.old_blkaddr, for_write: false);
1335 if (!mpage) {
1336 err = -ENOMEM;
1337 goto up_out;
1338 }
1339
1340 fio.encrypted_page = mpage;
1341
1342 /* read source block in mpage */
1343 if (!PageUptodate(page: mpage)) {
1344 err = f2fs_submit_page_bio(fio: &fio);
1345 if (err) {
1346 f2fs_put_page(page: mpage, unlock: 1);
1347 goto up_out;
1348 }
1349
1350 f2fs_update_iostat(sbi: fio.sbi, inode, type: FS_DATA_READ_IO,
1351 F2FS_BLKSIZE);
1352 f2fs_update_iostat(sbi: fio.sbi, NULL, type: FS_GDATA_READ_IO,
1353 F2FS_BLKSIZE);
1354
1355 lock_page(page: mpage);
1356 if (unlikely(mpage->mapping != META_MAPPING(fio.sbi) ||
1357 !PageUptodate(mpage))) {
1358 err = -EIO;
1359 f2fs_put_page(page: mpage, unlock: 1);
1360 goto up_out;
1361 }
1362 }
1363
1364 set_summary(sum: &sum, nid: dn.nid, ofs_in_node: dn.ofs_in_node, version: ni.version);
1365
1366 /* allocate block address */
1367 f2fs_allocate_data_block(sbi: fio.sbi, NULL, old_blkaddr: fio.old_blkaddr, new_blkaddr: &newaddr,
1368 sum: &sum, type, NULL);
1369
1370 fio.encrypted_page = f2fs_pagecache_get_page(mapping: META_MAPPING(sbi: fio.sbi),
1371 index: newaddr, FGP_LOCK | FGP_CREAT, GFP_NOFS);
1372 if (!fio.encrypted_page) {
1373 err = -ENOMEM;
1374 f2fs_put_page(page: mpage, unlock: 1);
1375 goto recover_block;
1376 }
1377
1378 /* write target block */
1379 f2fs_wait_on_page_writeback(page: fio.encrypted_page, type: DATA, ordered: true, locked: true);
1380 memcpy(page_address(fio.encrypted_page),
1381 page_address(mpage), PAGE_SIZE);
1382 f2fs_put_page(page: mpage, unlock: 1);
1383 invalidate_mapping_pages(mapping: META_MAPPING(sbi: fio.sbi),
1384 start: fio.old_blkaddr, end: fio.old_blkaddr);
1385 f2fs_invalidate_compress_page(sbi: fio.sbi, blkaddr: fio.old_blkaddr);
1386
1387 set_page_dirty(fio.encrypted_page);
1388 if (clear_page_dirty_for_io(page: fio.encrypted_page))
1389 dec_page_count(sbi: fio.sbi, count_type: F2FS_DIRTY_META);
1390
1391 set_page_writeback(fio.encrypted_page);
1392
1393 fio.op = REQ_OP_WRITE;
1394 fio.op_flags = REQ_SYNC;
1395 fio.new_blkaddr = newaddr;
1396 f2fs_submit_page_write(fio: &fio);
1397 if (fio.retry) {
1398 err = -EAGAIN;
1399 if (PageWriteback(page: fio.encrypted_page))
1400 end_page_writeback(page: fio.encrypted_page);
1401 goto put_page_out;
1402 }
1403
1404 f2fs_update_iostat(sbi: fio.sbi, NULL, type: FS_GC_DATA_IO, F2FS_BLKSIZE);
1405
1406 f2fs_update_data_blkaddr(dn: &dn, blkaddr: newaddr);
1407 set_inode_flag(inode, flag: FI_APPEND_WRITE);
1408 if (page->index == 0)
1409 set_inode_flag(inode, flag: FI_FIRST_BLOCK_WRITTEN);
1410put_page_out:
1411 f2fs_put_page(page: fio.encrypted_page, unlock: 1);
1412recover_block:
1413 if (err)
1414 f2fs_do_replace_block(sbi: fio.sbi, sum: &sum, old_blkaddr: newaddr, new_blkaddr: fio.old_blkaddr,
1415 recover_curseg: true, recover_newaddr: true, from_gc: true);
1416up_out:
1417 if (lfs_mode)
1418 f2fs_up_write(sem: &fio.sbi->io_order_lock);
1419put_out:
1420 f2fs_put_dnode(dn: &dn);
1421out:
1422 f2fs_put_page(page, unlock: 1);
1423 return err;
1424}
1425
1426static int move_data_page(struct inode *inode, block_t bidx, int gc_type,
1427 unsigned int segno, int off)
1428{
1429 struct page *page;
1430 int err = 0;
1431
1432 page = f2fs_get_lock_data_page(inode, index: bidx, for_write: true);
1433 if (IS_ERR(ptr: page))
1434 return PTR_ERR(ptr: page);
1435
1436 if (!check_valid_map(sbi: F2FS_I_SB(inode), segno, offset: off)) {
1437 err = -ENOENT;
1438 goto out;
1439 }
1440
1441 err = f2fs_gc_pinned_control(inode, gc_type, segno);
1442 if (err)
1443 goto out;
1444
1445 if (gc_type == BG_GC) {
1446 if (PageWriteback(page)) {
1447 err = -EAGAIN;
1448 goto out;
1449 }
1450 set_page_dirty(page);
1451 set_page_private_gcing(page);
1452 } else {
1453 struct f2fs_io_info fio = {
1454 .sbi = F2FS_I_SB(inode),
1455 .ino = inode->i_ino,
1456 .type = DATA,
1457 .temp = COLD,
1458 .op = REQ_OP_WRITE,
1459 .op_flags = REQ_SYNC,
1460 .old_blkaddr = NULL_ADDR,
1461 .page = page,
1462 .encrypted_page = NULL,
1463 .need_lock = LOCK_REQ,
1464 .io_type = FS_GC_DATA_IO,
1465 };
1466 bool is_dirty = PageDirty(page);
1467
1468retry:
1469 f2fs_wait_on_page_writeback(page, type: DATA, ordered: true, locked: true);
1470
1471 set_page_dirty(page);
1472 if (clear_page_dirty_for_io(page)) {
1473 inode_dec_dirty_pages(inode);
1474 f2fs_remove_dirty_inode(inode);
1475 }
1476
1477 set_page_private_gcing(page);
1478
1479 err = f2fs_do_write_data_page(fio: &fio);
1480 if (err) {
1481 clear_page_private_gcing(page);
1482 if (err == -ENOMEM) {
1483 memalloc_retry_wait(GFP_NOFS);
1484 goto retry;
1485 }
1486 if (is_dirty)
1487 set_page_dirty(page);
1488 }
1489 }
1490out:
1491 f2fs_put_page(page, unlock: 1);
1492 return err;
1493}
1494
1495/*
1496 * This function tries to get parent node of victim data block, and identifies
1497 * data block validity. If the block is valid, copy that with cold status and
1498 * modify parent node.
1499 * If the parent node is not valid or the data block address is different,
1500 * the victim data block is ignored.
1501 */
1502static int gc_data_segment(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
1503 struct gc_inode_list *gc_list, unsigned int segno, int gc_type,
1504 bool force_migrate)
1505{
1506 struct super_block *sb = sbi->sb;
1507 struct f2fs_summary *entry;
1508 block_t start_addr;
1509 int off;
1510 int phase = 0;
1511 int submitted = 0;
1512 unsigned int usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno);
1513
1514 start_addr = START_BLOCK(sbi, segno);
1515
1516next_step:
1517 entry = sum;
1518
1519 for (off = 0; off < usable_blks_in_seg; off++, entry++) {
1520 struct page *data_page;
1521 struct inode *inode;
1522 struct node_info dni; /* dnode info for the data */
1523 unsigned int ofs_in_node, nofs;
1524 block_t start_bidx;
1525 nid_t nid = le32_to_cpu(entry->nid);
1526
1527 /*
1528 * stop BG_GC if there is not enough free sections.
1529 * Or, stop GC if the segment becomes fully valid caused by
1530 * race condition along with SSR block allocation.
1531 */
1532 if ((gc_type == BG_GC && has_not_enough_free_secs(sbi, freed: 0, needed: 0)) ||
1533 (!force_migrate && get_valid_blocks(sbi, segno, use_section: true) ==
1534 CAP_BLKS_PER_SEC(sbi)))
1535 return submitted;
1536
1537 if (check_valid_map(sbi, segno, offset: off) == 0)
1538 continue;
1539
1540 if (phase == 0) {
1541 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), nrpages: 1,
1542 type: META_NAT, sync: true);
1543 continue;
1544 }
1545
1546 if (phase == 1) {
1547 f2fs_ra_node_page(sbi, nid);
1548 continue;
1549 }
1550
1551 /* Get an inode by ino with checking validity */
1552 if (!is_alive(sbi, sum: entry, dni: &dni, blkaddr: start_addr + off, nofs: &nofs))
1553 continue;
1554
1555 if (phase == 2) {
1556 f2fs_ra_node_page(sbi, nid: dni.ino);
1557 continue;
1558 }
1559
1560 ofs_in_node = le16_to_cpu(entry->ofs_in_node);
1561
1562 if (phase == 3) {
1563 int err;
1564
1565 inode = f2fs_iget(sb, ino: dni.ino);
1566 if (IS_ERR(ptr: inode) || is_bad_inode(inode) ||
1567 special_file(inode->i_mode))
1568 continue;
1569
1570 err = f2fs_gc_pinned_control(inode, gc_type, segno);
1571 if (err == -EAGAIN) {
1572 iput(inode);
1573 return submitted;
1574 }
1575
1576 if (!f2fs_down_write_trylock(
1577 sem: &F2FS_I(inode)->i_gc_rwsem[WRITE])) {
1578 iput(inode);
1579 sbi->skipped_gc_rwsem++;
1580 continue;
1581 }
1582
1583 start_bidx = f2fs_start_bidx_of_node(node_ofs: nofs, inode) +
1584 ofs_in_node;
1585
1586 if (f2fs_post_read_required(inode)) {
1587 int err = ra_data_block(inode, index: start_bidx);
1588
1589 f2fs_up_write(sem: &F2FS_I(inode)->i_gc_rwsem[WRITE]);
1590 if (err) {
1591 iput(inode);
1592 continue;
1593 }
1594 add_gc_inode(gc_list, inode);
1595 continue;
1596 }
1597
1598 data_page = f2fs_get_read_data_page(inode, index: start_bidx,
1599 REQ_RAHEAD, for_write: true, NULL);
1600 f2fs_up_write(sem: &F2FS_I(inode)->i_gc_rwsem[WRITE]);
1601 if (IS_ERR(ptr: data_page)) {
1602 iput(inode);
1603 continue;
1604 }
1605
1606 f2fs_put_page(page: data_page, unlock: 0);
1607 add_gc_inode(gc_list, inode);
1608 continue;
1609 }
1610
1611 /* phase 4 */
1612 inode = find_gc_inode(gc_list, ino: dni.ino);
1613 if (inode) {
1614 struct f2fs_inode_info *fi = F2FS_I(inode);
1615 bool locked = false;
1616 int err;
1617
1618 if (S_ISREG(inode->i_mode)) {
1619 if (!f2fs_down_write_trylock(sem: &fi->i_gc_rwsem[WRITE])) {
1620 sbi->skipped_gc_rwsem++;
1621 continue;
1622 }
1623 if (!f2fs_down_write_trylock(
1624 sem: &fi->i_gc_rwsem[READ])) {
1625 sbi->skipped_gc_rwsem++;
1626 f2fs_up_write(sem: &fi->i_gc_rwsem[WRITE]);
1627 continue;
1628 }
1629 locked = true;
1630
1631 /* wait for all inflight aio data */
1632 inode_dio_wait(inode);
1633 }
1634
1635 start_bidx = f2fs_start_bidx_of_node(node_ofs: nofs, inode)
1636 + ofs_in_node;
1637 if (f2fs_post_read_required(inode))
1638 err = move_data_block(inode, bidx: start_bidx,
1639 gc_type, segno, off);
1640 else
1641 err = move_data_page(inode, bidx: start_bidx, gc_type,
1642 segno, off);
1643
1644 if (!err && (gc_type == FG_GC ||
1645 f2fs_post_read_required(inode)))
1646 submitted++;
1647
1648 if (locked) {
1649 f2fs_up_write(sem: &fi->i_gc_rwsem[READ]);
1650 f2fs_up_write(sem: &fi->i_gc_rwsem[WRITE]);
1651 }
1652
1653 stat_inc_data_blk_count(sbi, 1, gc_type);
1654 }
1655 }
1656
1657 if (++phase < 5)
1658 goto next_step;
1659
1660 return submitted;
1661}
1662
1663static int __get_victim(struct f2fs_sb_info *sbi, unsigned int *victim,
1664 int gc_type)
1665{
1666 struct sit_info *sit_i = SIT_I(sbi);
1667 int ret;
1668
1669 down_write(sem: &sit_i->sentry_lock);
1670 ret = f2fs_get_victim(sbi, result: victim, gc_type, type: NO_CHECK_TYPE, alloc_mode: LFS, age: 0);
1671 up_write(sem: &sit_i->sentry_lock);
1672 return ret;
1673}
1674
1675static int do_garbage_collect(struct f2fs_sb_info *sbi,
1676 unsigned int start_segno,
1677 struct gc_inode_list *gc_list, int gc_type,
1678 bool force_migrate)
1679{
1680 struct page *sum_page;
1681 struct f2fs_summary_block *sum;
1682 struct blk_plug plug;
1683 unsigned int segno = start_segno;
1684 unsigned int end_segno = start_segno + sbi->segs_per_sec;
1685 int seg_freed = 0, migrated = 0;
1686 unsigned char type = IS_DATASEG(get_seg_entry(sbi, segno)->type) ?
1687 SUM_TYPE_DATA : SUM_TYPE_NODE;
1688 unsigned char data_type = (type == SUM_TYPE_DATA) ? DATA : NODE;
1689 int submitted = 0;
1690
1691 if (__is_large_section(sbi))
1692 end_segno = rounddown(end_segno, sbi->segs_per_sec);
1693
1694 /*
1695 * zone-capacity can be less than zone-size in zoned devices,
1696 * resulting in less than expected usable segments in the zone,
1697 * calculate the end segno in the zone which can be garbage collected
1698 */
1699 if (f2fs_sb_has_blkzoned(sbi))
1700 end_segno -= sbi->segs_per_sec -
1701 f2fs_usable_segs_in_sec(sbi, segno);
1702
1703 sanity_check_seg_type(sbi, seg_type: get_seg_entry(sbi, segno)->type);
1704
1705 /* readahead multi ssa blocks those have contiguous address */
1706 if (__is_large_section(sbi))
1707 f2fs_ra_meta_pages(sbi, GET_SUM_BLOCK(sbi, segno),
1708 nrpages: end_segno - segno, type: META_SSA, sync: true);
1709
1710 /* reference all summary page */
1711 while (segno < end_segno) {
1712 sum_page = f2fs_get_sum_page(sbi, segno: segno++);
1713 if (IS_ERR(ptr: sum_page)) {
1714 int err = PTR_ERR(ptr: sum_page);
1715
1716 end_segno = segno - 1;
1717 for (segno = start_segno; segno < end_segno; segno++) {
1718 sum_page = find_get_page(mapping: META_MAPPING(sbi),
1719 GET_SUM_BLOCK(sbi, segno));
1720 f2fs_put_page(page: sum_page, unlock: 0);
1721 f2fs_put_page(page: sum_page, unlock: 0);
1722 }
1723 return err;
1724 }
1725 unlock_page(page: sum_page);
1726 }
1727
1728 blk_start_plug(&plug);
1729
1730 for (segno = start_segno; segno < end_segno; segno++) {
1731
1732 /* find segment summary of victim */
1733 sum_page = find_get_page(mapping: META_MAPPING(sbi),
1734 GET_SUM_BLOCK(sbi, segno));
1735 f2fs_put_page(page: sum_page, unlock: 0);
1736
1737 if (get_valid_blocks(sbi, segno, use_section: false) == 0)
1738 goto freed;
1739 if (gc_type == BG_GC && __is_large_section(sbi) &&
1740 migrated >= sbi->migration_granularity)
1741 goto skip;
1742 if (!PageUptodate(page: sum_page) || unlikely(f2fs_cp_error(sbi)))
1743 goto skip;
1744
1745 sum = page_address(sum_page);
1746 if (type != GET_SUM_TYPE((&sum->footer))) {
1747 f2fs_err(sbi, "Inconsistent segment (%u) type [%d, %d] in SSA and SIT",
1748 segno, type, GET_SUM_TYPE((&sum->footer)));
1749 set_sbi_flag(sbi, type: SBI_NEED_FSCK);
1750 f2fs_stop_checkpoint(sbi, end_io: false,
1751 reason: STOP_CP_REASON_CORRUPTED_SUMMARY);
1752 goto skip;
1753 }
1754
1755 /*
1756 * this is to avoid deadlock:
1757 * - lock_page(sum_page) - f2fs_replace_block
1758 * - check_valid_map() - down_write(sentry_lock)
1759 * - down_read(sentry_lock) - change_curseg()
1760 * - lock_page(sum_page)
1761 */
1762 if (type == SUM_TYPE_NODE)
1763 submitted += gc_node_segment(sbi, sum: sum->entries, segno,
1764 gc_type);
1765 else
1766 submitted += gc_data_segment(sbi, sum: sum->entries, gc_list,
1767 segno, gc_type,
1768 force_migrate);
1769
1770 stat_inc_gc_seg_count(sbi, data_type, gc_type);
1771 sbi->gc_reclaimed_segs[sbi->gc_mode]++;
1772 migrated++;
1773
1774freed:
1775 if (gc_type == FG_GC &&
1776 get_valid_blocks(sbi, segno, use_section: false) == 0)
1777 seg_freed++;
1778
1779 if (__is_large_section(sbi))
1780 sbi->next_victim_seg[gc_type] =
1781 (segno + 1 < end_segno) ? segno + 1 : NULL_SEGNO;
1782skip:
1783 f2fs_put_page(page: sum_page, unlock: 0);
1784 }
1785
1786 if (submitted)
1787 f2fs_submit_merged_write(sbi, type: data_type);
1788
1789 blk_finish_plug(&plug);
1790
1791 if (migrated)
1792 stat_inc_gc_sec_count(sbi, data_type, gc_type);
1793
1794 return seg_freed;
1795}
1796
1797int f2fs_gc(struct f2fs_sb_info *sbi, struct f2fs_gc_control *gc_control)
1798{
1799 int gc_type = gc_control->init_gc_type;
1800 unsigned int segno = gc_control->victim_segno;
1801 int sec_freed = 0, seg_freed = 0, total_freed = 0, total_sec_freed = 0;
1802 int ret = 0;
1803 struct cp_control cpc;
1804 struct gc_inode_list gc_list = {
1805 .ilist = LIST_HEAD_INIT(gc_list.ilist),
1806 .iroot = RADIX_TREE_INIT(gc_list.iroot, GFP_NOFS),
1807 };
1808 unsigned int skipped_round = 0, round = 0;
1809 unsigned int upper_secs;
1810
1811 trace_f2fs_gc_begin(sb: sbi->sb, gc_type, no_bg_gc: gc_control->no_bg_gc,
1812 nr_free_secs: gc_control->nr_free_secs,
1813 dirty_nodes: get_pages(sbi, count_type: F2FS_DIRTY_NODES),
1814 dirty_dents: get_pages(sbi, count_type: F2FS_DIRTY_DENTS),
1815 dirty_imeta: get_pages(sbi, count_type: F2FS_DIRTY_IMETA),
1816 free_sec: free_sections(sbi),
1817 free_seg: free_segments(sbi),
1818 reserved_seg: reserved_segments(sbi),
1819 prefree_seg: prefree_segments(sbi));
1820
1821 cpc.reason = __get_cp_reason(sbi);
1822gc_more:
1823 sbi->skipped_gc_rwsem = 0;
1824 if (unlikely(!(sbi->sb->s_flags & SB_ACTIVE))) {
1825 ret = -EINVAL;
1826 goto stop;
1827 }
1828 if (unlikely(f2fs_cp_error(sbi))) {
1829 ret = -EIO;
1830 goto stop;
1831 }
1832
1833 /* Let's run FG_GC, if we don't have enough space. */
1834 if (has_not_enough_free_secs(sbi, freed: 0, needed: 0)) {
1835 gc_type = FG_GC;
1836
1837 /*
1838 * For example, if there are many prefree_segments below given
1839 * threshold, we can make them free by checkpoint. Then, we
1840 * secure free segments which doesn't need fggc any more.
1841 */
1842 if (prefree_segments(sbi)) {
1843 stat_inc_cp_call_count(sbi, TOTAL_CALL);
1844 ret = f2fs_write_checkpoint(sbi, cpc: &cpc);
1845 if (ret)
1846 goto stop;
1847 /* Reset due to checkpoint */
1848 sec_freed = 0;
1849 }
1850 }
1851
1852 /* f2fs_balance_fs doesn't need to do BG_GC in critical path. */
1853 if (gc_type == BG_GC && gc_control->no_bg_gc) {
1854 ret = -EINVAL;
1855 goto stop;
1856 }
1857retry:
1858 ret = __get_victim(sbi, victim: &segno, gc_type);
1859 if (ret) {
1860 /* allow to search victim from sections has pinned data */
1861 if (ret == -ENODATA && gc_type == FG_GC &&
1862 f2fs_pinned_section_exists(dirty_i: DIRTY_I(sbi))) {
1863 f2fs_unpin_all_sections(sbi, enable: false);
1864 goto retry;
1865 }
1866 goto stop;
1867 }
1868
1869 seg_freed = do_garbage_collect(sbi, start_segno: segno, gc_list: &gc_list, gc_type,
1870 force_migrate: gc_control->should_migrate_blocks);
1871 total_freed += seg_freed;
1872
1873 if (seg_freed == f2fs_usable_segs_in_sec(sbi, segno)) {
1874 sec_freed++;
1875 total_sec_freed++;
1876 }
1877
1878 if (gc_type == FG_GC) {
1879 sbi->cur_victim_sec = NULL_SEGNO;
1880
1881 if (has_enough_free_secs(sbi, freed: sec_freed, needed: 0)) {
1882 if (!gc_control->no_bg_gc &&
1883 total_sec_freed < gc_control->nr_free_secs)
1884 goto go_gc_more;
1885 goto stop;
1886 }
1887 if (sbi->skipped_gc_rwsem)
1888 skipped_round++;
1889 round++;
1890 if (skipped_round > MAX_SKIP_GC_COUNT &&
1891 skipped_round * 2 >= round) {
1892 stat_inc_cp_call_count(sbi, TOTAL_CALL);
1893 ret = f2fs_write_checkpoint(sbi, cpc: &cpc);
1894 goto stop;
1895 }
1896 } else if (has_enough_free_secs(sbi, freed: 0, needed: 0)) {
1897 goto stop;
1898 }
1899
1900 __get_secs_required(sbi, NULL, upper_p: &upper_secs, NULL);
1901
1902 /*
1903 * Write checkpoint to reclaim prefree segments.
1904 * We need more three extra sections for writer's data/node/dentry.
1905 */
1906 if (free_sections(sbi) <= upper_secs + NR_GC_CHECKPOINT_SECS &&
1907 prefree_segments(sbi)) {
1908 stat_inc_cp_call_count(sbi, TOTAL_CALL);
1909 ret = f2fs_write_checkpoint(sbi, cpc: &cpc);
1910 if (ret)
1911 goto stop;
1912 /* Reset due to checkpoint */
1913 sec_freed = 0;
1914 }
1915go_gc_more:
1916 segno = NULL_SEGNO;
1917 goto gc_more;
1918
1919stop:
1920 SIT_I(sbi)->last_victim[ALLOC_NEXT] = 0;
1921 SIT_I(sbi)->last_victim[FLUSH_DEVICE] = gc_control->victim_segno;
1922
1923 if (gc_type == FG_GC)
1924 f2fs_unpin_all_sections(sbi, enable: true);
1925
1926 trace_f2fs_gc_end(sb: sbi->sb, ret, seg_freed: total_freed, sec_freed: total_sec_freed,
1927 dirty_nodes: get_pages(sbi, count_type: F2FS_DIRTY_NODES),
1928 dirty_dents: get_pages(sbi, count_type: F2FS_DIRTY_DENTS),
1929 dirty_imeta: get_pages(sbi, count_type: F2FS_DIRTY_IMETA),
1930 free_sec: free_sections(sbi),
1931 free_seg: free_segments(sbi),
1932 reserved_seg: reserved_segments(sbi),
1933 prefree_seg: prefree_segments(sbi));
1934
1935 f2fs_up_write(sem: &sbi->gc_lock);
1936
1937 put_gc_inode(gc_list: &gc_list);
1938
1939 if (gc_control->err_gc_skipped && !ret)
1940 ret = total_sec_freed ? 0 : -EAGAIN;
1941 return ret;
1942}
1943
1944int __init f2fs_create_garbage_collection_cache(void)
1945{
1946 victim_entry_slab = f2fs_kmem_cache_create(name: "f2fs_victim_entry",
1947 size: sizeof(struct victim_entry));
1948 return victim_entry_slab ? 0 : -ENOMEM;
1949}
1950
1951void f2fs_destroy_garbage_collection_cache(void)
1952{
1953 kmem_cache_destroy(s: victim_entry_slab);
1954}
1955
1956static void init_atgc_management(struct f2fs_sb_info *sbi)
1957{
1958 struct atgc_management *am = &sbi->am;
1959
1960 if (test_opt(sbi, ATGC) &&
1961 SIT_I(sbi)->elapsed_time >= DEF_GC_THREAD_AGE_THRESHOLD)
1962 am->atgc_enabled = true;
1963
1964 am->root = RB_ROOT_CACHED;
1965 INIT_LIST_HEAD(list: &am->victim_list);
1966 am->victim_count = 0;
1967
1968 am->candidate_ratio = DEF_GC_THREAD_CANDIDATE_RATIO;
1969 am->max_candidate_count = DEF_GC_THREAD_MAX_CANDIDATE_COUNT;
1970 am->age_weight = DEF_GC_THREAD_AGE_WEIGHT;
1971 am->age_threshold = DEF_GC_THREAD_AGE_THRESHOLD;
1972}
1973
1974void f2fs_build_gc_manager(struct f2fs_sb_info *sbi)
1975{
1976 sbi->gc_pin_file_threshold = DEF_GC_FAILED_PINNED_FILES;
1977
1978 /* give warm/cold data area from slower device */
1979 if (f2fs_is_multi_device(sbi) && !__is_large_section(sbi))
1980 SIT_I(sbi)->last_victim[ALLOC_NEXT] =
1981 GET_SEGNO(sbi, FDEV(0).end_blk) + 1;
1982
1983 init_atgc_management(sbi);
1984}
1985
1986static int free_segment_range(struct f2fs_sb_info *sbi,
1987 unsigned int secs, bool gc_only)
1988{
1989 unsigned int segno, next_inuse, start, end;
1990 struct cp_control cpc = { CP_RESIZE, 0, 0, 0 };
1991 int gc_mode, gc_type;
1992 int err = 0;
1993 int type;
1994
1995 /* Force block allocation for GC */
1996 MAIN_SECS(sbi) -= secs;
1997 start = MAIN_SECS(sbi) * sbi->segs_per_sec;
1998 end = MAIN_SEGS(sbi) - 1;
1999
2000 mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2001 for (gc_mode = 0; gc_mode < MAX_GC_POLICY; gc_mode++)
2002 if (SIT_I(sbi)->last_victim[gc_mode] >= start)
2003 SIT_I(sbi)->last_victim[gc_mode] = 0;
2004
2005 for (gc_type = BG_GC; gc_type <= FG_GC; gc_type++)
2006 if (sbi->next_victim_seg[gc_type] >= start)
2007 sbi->next_victim_seg[gc_type] = NULL_SEGNO;
2008 mutex_unlock(lock: &DIRTY_I(sbi)->seglist_lock);
2009
2010 /* Move out cursegs from the target range */
2011 for (type = CURSEG_HOT_DATA; type < NR_CURSEG_PERSIST_TYPE; type++)
2012 f2fs_allocate_segment_for_resize(sbi, type, start, end);
2013
2014 /* do GC to move out valid blocks in the range */
2015 for (segno = start; segno <= end; segno += sbi->segs_per_sec) {
2016 struct gc_inode_list gc_list = {
2017 .ilist = LIST_HEAD_INIT(gc_list.ilist),
2018 .iroot = RADIX_TREE_INIT(gc_list.iroot, GFP_NOFS),
2019 };
2020
2021 do_garbage_collect(sbi, start_segno: segno, gc_list: &gc_list, gc_type: FG_GC, force_migrate: true);
2022 put_gc_inode(gc_list: &gc_list);
2023
2024 if (!gc_only && get_valid_blocks(sbi, segno, use_section: true)) {
2025 err = -EAGAIN;
2026 goto out;
2027 }
2028 if (fatal_signal_pending(current)) {
2029 err = -ERESTARTSYS;
2030 goto out;
2031 }
2032 }
2033 if (gc_only)
2034 goto out;
2035
2036 stat_inc_cp_call_count(sbi, TOTAL_CALL);
2037 err = f2fs_write_checkpoint(sbi, cpc: &cpc);
2038 if (err)
2039 goto out;
2040
2041 next_inuse = find_next_inuse(free_i: FREE_I(sbi), max: end + 1, segno: start);
2042 if (next_inuse <= end) {
2043 f2fs_err(sbi, "segno %u should be free but still inuse!",
2044 next_inuse);
2045 f2fs_bug_on(sbi, 1);
2046 }
2047out:
2048 MAIN_SECS(sbi) += secs;
2049 return err;
2050}
2051
2052static void update_sb_metadata(struct f2fs_sb_info *sbi, int secs)
2053{
2054 struct f2fs_super_block *raw_sb = F2FS_RAW_SUPER(sbi);
2055 int section_count;
2056 int segment_count;
2057 int segment_count_main;
2058 long long block_count;
2059 int segs = secs * sbi->segs_per_sec;
2060
2061 f2fs_down_write(sem: &sbi->sb_lock);
2062
2063 section_count = le32_to_cpu(raw_sb->section_count);
2064 segment_count = le32_to_cpu(raw_sb->segment_count);
2065 segment_count_main = le32_to_cpu(raw_sb->segment_count_main);
2066 block_count = le64_to_cpu(raw_sb->block_count);
2067
2068 raw_sb->section_count = cpu_to_le32(section_count + secs);
2069 raw_sb->segment_count = cpu_to_le32(segment_count + segs);
2070 raw_sb->segment_count_main = cpu_to_le32(segment_count_main + segs);
2071 raw_sb->block_count = cpu_to_le64(block_count +
2072 (long long)segs * sbi->blocks_per_seg);
2073 if (f2fs_is_multi_device(sbi)) {
2074 int last_dev = sbi->s_ndevs - 1;
2075 int dev_segs =
2076 le32_to_cpu(raw_sb->devs[last_dev].total_segments);
2077
2078 raw_sb->devs[last_dev].total_segments =
2079 cpu_to_le32(dev_segs + segs);
2080 }
2081
2082 f2fs_up_write(sem: &sbi->sb_lock);
2083}
2084
2085static void update_fs_metadata(struct f2fs_sb_info *sbi, int secs)
2086{
2087 int segs = secs * sbi->segs_per_sec;
2088 long long blks = (long long)segs * sbi->blocks_per_seg;
2089 long long user_block_count =
2090 le64_to_cpu(F2FS_CKPT(sbi)->user_block_count);
2091
2092 SM_I(sbi)->segment_count = (int)SM_I(sbi)->segment_count + segs;
2093 MAIN_SEGS(sbi) = (int)MAIN_SEGS(sbi) + segs;
2094 MAIN_SECS(sbi) += secs;
2095 FREE_I(sbi)->free_sections = (int)FREE_I(sbi)->free_sections + secs;
2096 FREE_I(sbi)->free_segments = (int)FREE_I(sbi)->free_segments + segs;
2097 F2FS_CKPT(sbi)->user_block_count = cpu_to_le64(user_block_count + blks);
2098
2099 if (f2fs_is_multi_device(sbi)) {
2100 int last_dev = sbi->s_ndevs - 1;
2101
2102 FDEV(last_dev).total_segments =
2103 (int)FDEV(last_dev).total_segments + segs;
2104 FDEV(last_dev).end_blk =
2105 (long long)FDEV(last_dev).end_blk + blks;
2106#ifdef CONFIG_BLK_DEV_ZONED
2107 FDEV(last_dev).nr_blkz = FDEV(last_dev).nr_blkz +
2108 div_u64(dividend: blks, divisor: sbi->blocks_per_blkz);
2109#endif
2110 }
2111}
2112
2113int f2fs_resize_fs(struct file *filp, __u64 block_count)
2114{
2115 struct f2fs_sb_info *sbi = F2FS_I_SB(inode: file_inode(f: filp));
2116 __u64 old_block_count, shrunk_blocks;
2117 struct cp_control cpc = { CP_RESIZE, 0, 0, 0 };
2118 unsigned int secs;
2119 int err = 0;
2120 __u32 rem;
2121
2122 old_block_count = le64_to_cpu(F2FS_RAW_SUPER(sbi)->block_count);
2123 if (block_count > old_block_count)
2124 return -EINVAL;
2125
2126 if (f2fs_is_multi_device(sbi)) {
2127 int last_dev = sbi->s_ndevs - 1;
2128 __u64 last_segs = FDEV(last_dev).total_segments;
2129
2130 if (block_count + last_segs * sbi->blocks_per_seg <=
2131 old_block_count)
2132 return -EINVAL;
2133 }
2134
2135 /* new fs size should align to section size */
2136 div_u64_rem(dividend: block_count, BLKS_PER_SEC(sbi), remainder: &rem);
2137 if (rem)
2138 return -EINVAL;
2139
2140 if (block_count == old_block_count)
2141 return 0;
2142
2143 if (is_sbi_flag_set(sbi, type: SBI_NEED_FSCK)) {
2144 f2fs_err(sbi, "Should run fsck to repair first.");
2145 return -EFSCORRUPTED;
2146 }
2147
2148 if (test_opt(sbi, DISABLE_CHECKPOINT)) {
2149 f2fs_err(sbi, "Checkpoint should be enabled.");
2150 return -EINVAL;
2151 }
2152
2153 err = mnt_want_write_file(file: filp);
2154 if (err)
2155 return err;
2156
2157 shrunk_blocks = old_block_count - block_count;
2158 secs = div_u64(dividend: shrunk_blocks, BLKS_PER_SEC(sbi));
2159
2160 /* stop other GC */
2161 if (!f2fs_down_write_trylock(sem: &sbi->gc_lock)) {
2162 err = -EAGAIN;
2163 goto out_drop_write;
2164 }
2165
2166 /* stop CP to protect MAIN_SEC in free_segment_range */
2167 f2fs_lock_op(sbi);
2168
2169 spin_lock(lock: &sbi->stat_lock);
2170 if (shrunk_blocks + valid_user_blocks(sbi) +
2171 sbi->current_reserved_blocks + sbi->unusable_block_count +
2172 F2FS_OPTION(sbi).root_reserved_blocks > sbi->user_block_count)
2173 err = -ENOSPC;
2174 spin_unlock(lock: &sbi->stat_lock);
2175
2176 if (err)
2177 goto out_unlock;
2178
2179 err = free_segment_range(sbi, secs, gc_only: true);
2180
2181out_unlock:
2182 f2fs_unlock_op(sbi);
2183 f2fs_up_write(sem: &sbi->gc_lock);
2184out_drop_write:
2185 mnt_drop_write_file(file: filp);
2186 if (err)
2187 return err;
2188
2189 err = freeze_super(super: sbi->sb, who: FREEZE_HOLDER_USERSPACE);
2190 if (err)
2191 return err;
2192
2193 if (f2fs_readonly(sb: sbi->sb)) {
2194 err = thaw_super(super: sbi->sb, who: FREEZE_HOLDER_USERSPACE);
2195 if (err)
2196 return err;
2197 return -EROFS;
2198 }
2199
2200 f2fs_down_write(sem: &sbi->gc_lock);
2201 f2fs_down_write(sem: &sbi->cp_global_sem);
2202
2203 spin_lock(lock: &sbi->stat_lock);
2204 if (shrunk_blocks + valid_user_blocks(sbi) +
2205 sbi->current_reserved_blocks + sbi->unusable_block_count +
2206 F2FS_OPTION(sbi).root_reserved_blocks > sbi->user_block_count)
2207 err = -ENOSPC;
2208 else
2209 sbi->user_block_count -= shrunk_blocks;
2210 spin_unlock(lock: &sbi->stat_lock);
2211 if (err)
2212 goto out_err;
2213
2214 set_sbi_flag(sbi, type: SBI_IS_RESIZEFS);
2215 err = free_segment_range(sbi, secs, gc_only: false);
2216 if (err)
2217 goto recover_out;
2218
2219 update_sb_metadata(sbi, secs: -secs);
2220
2221 err = f2fs_commit_super(sbi, recover: false);
2222 if (err) {
2223 update_sb_metadata(sbi, secs);
2224 goto recover_out;
2225 }
2226
2227 update_fs_metadata(sbi, secs: -secs);
2228 clear_sbi_flag(sbi, type: SBI_IS_RESIZEFS);
2229 set_sbi_flag(sbi, type: SBI_IS_DIRTY);
2230
2231 stat_inc_cp_call_count(sbi, TOTAL_CALL);
2232 err = f2fs_write_checkpoint(sbi, cpc: &cpc);
2233 if (err) {
2234 update_fs_metadata(sbi, secs);
2235 update_sb_metadata(sbi, secs);
2236 f2fs_commit_super(sbi, recover: false);
2237 }
2238recover_out:
2239 clear_sbi_flag(sbi, type: SBI_IS_RESIZEFS);
2240 if (err) {
2241 set_sbi_flag(sbi, type: SBI_NEED_FSCK);
2242 f2fs_err(sbi, "resize_fs failed, should run fsck to repair!");
2243
2244 spin_lock(lock: &sbi->stat_lock);
2245 sbi->user_block_count += shrunk_blocks;
2246 spin_unlock(lock: &sbi->stat_lock);
2247 }
2248out_err:
2249 f2fs_up_write(sem: &sbi->cp_global_sem);
2250 f2fs_up_write(sem: &sbi->gc_lock);
2251 thaw_super(super: sbi->sb, who: FREEZE_HOLDER_USERSPACE);
2252 return err;
2253}
2254

source code of linux/fs/f2fs/gc.c