1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * (C) 1997 Linus Torvalds
4 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
5 */
6#include <linux/export.h>
7#include <linux/fs.h>
8#include <linux/filelock.h>
9#include <linux/mm.h>
10#include <linux/backing-dev.h>
11#include <linux/hash.h>
12#include <linux/swap.h>
13#include <linux/security.h>
14#include <linux/cdev.h>
15#include <linux/memblock.h>
16#include <linux/fsnotify.h>
17#include <linux/mount.h>
18#include <linux/posix_acl.h>
19#include <linux/buffer_head.h> /* for inode_has_buffers */
20#include <linux/ratelimit.h>
21#include <linux/list_lru.h>
22#include <linux/iversion.h>
23#include <trace/events/writeback.h>
24#include "internal.h"
25
26/*
27 * Inode locking rules:
28 *
29 * inode->i_lock protects:
30 * inode->i_state, inode->i_hash, __iget(), inode->i_io_list
31 * Inode LRU list locks protect:
32 * inode->i_sb->s_inode_lru, inode->i_lru
33 * inode->i_sb->s_inode_list_lock protects:
34 * inode->i_sb->s_inodes, inode->i_sb_list
35 * bdi->wb.list_lock protects:
36 * bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
37 * inode_hash_lock protects:
38 * inode_hashtable, inode->i_hash
39 *
40 * Lock ordering:
41 *
42 * inode->i_sb->s_inode_list_lock
43 * inode->i_lock
44 * Inode LRU list locks
45 *
46 * bdi->wb.list_lock
47 * inode->i_lock
48 *
49 * inode_hash_lock
50 * inode->i_sb->s_inode_list_lock
51 * inode->i_lock
52 *
53 * iunique_lock
54 * inode_hash_lock
55 */
56
57static unsigned int i_hash_mask __ro_after_init;
58static unsigned int i_hash_shift __ro_after_init;
59static struct hlist_head *inode_hashtable __ro_after_init;
60static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
61
62/*
63 * Empty aops. Can be used for the cases where the user does not
64 * define any of the address_space operations.
65 */
66const struct address_space_operations empty_aops = {
67};
68EXPORT_SYMBOL(empty_aops);
69
70static DEFINE_PER_CPU(unsigned long, nr_inodes);
71static DEFINE_PER_CPU(unsigned long, nr_unused);
72
73static struct kmem_cache *inode_cachep __ro_after_init;
74
75static long get_nr_inodes(void)
76{
77 int i;
78 long sum = 0;
79 for_each_possible_cpu(i)
80 sum += per_cpu(nr_inodes, i);
81 return sum < 0 ? 0 : sum;
82}
83
84static inline long get_nr_inodes_unused(void)
85{
86 int i;
87 long sum = 0;
88 for_each_possible_cpu(i)
89 sum += per_cpu(nr_unused, i);
90 return sum < 0 ? 0 : sum;
91}
92
93long get_nr_dirty_inodes(void)
94{
95 /* not actually dirty inodes, but a wild approximation */
96 long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
97 return nr_dirty > 0 ? nr_dirty : 0;
98}
99
100/*
101 * Handle nr_inode sysctl
102 */
103#ifdef CONFIG_SYSCTL
104/*
105 * Statistics gathering..
106 */
107static struct inodes_stat_t inodes_stat;
108
109static int proc_nr_inodes(struct ctl_table *table, int write, void *buffer,
110 size_t *lenp, loff_t *ppos)
111{
112 inodes_stat.nr_inodes = get_nr_inodes();
113 inodes_stat.nr_unused = get_nr_inodes_unused();
114 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
115}
116
117static struct ctl_table inodes_sysctls[] = {
118 {
119 .procname = "inode-nr",
120 .data = &inodes_stat,
121 .maxlen = 2*sizeof(long),
122 .mode = 0444,
123 .proc_handler = proc_nr_inodes,
124 },
125 {
126 .procname = "inode-state",
127 .data = &inodes_stat,
128 .maxlen = 7*sizeof(long),
129 .mode = 0444,
130 .proc_handler = proc_nr_inodes,
131 },
132 { }
133};
134
135static int __init init_fs_inode_sysctls(void)
136{
137 register_sysctl_init("fs", inodes_sysctls);
138 return 0;
139}
140early_initcall(init_fs_inode_sysctls);
141#endif
142
143static int no_open(struct inode *inode, struct file *file)
144{
145 return -ENXIO;
146}
147
148/**
149 * inode_init_always - perform inode structure initialisation
150 * @sb: superblock inode belongs to
151 * @inode: inode to initialise
152 *
153 * These are initializations that need to be done on every inode
154 * allocation as the fields are not initialised by slab allocation.
155 */
156int inode_init_always(struct super_block *sb, struct inode *inode)
157{
158 static const struct inode_operations empty_iops;
159 static const struct file_operations no_open_fops = {.open = no_open};
160 struct address_space *const mapping = &inode->i_data;
161
162 inode->i_sb = sb;
163 inode->i_blkbits = sb->s_blocksize_bits;
164 inode->i_flags = 0;
165 atomic64_set(v: &inode->i_sequence, i: 0);
166 atomic_set(v: &inode->i_count, i: 1);
167 inode->i_op = &empty_iops;
168 inode->i_fop = &no_open_fops;
169 inode->i_ino = 0;
170 inode->__i_nlink = 1;
171 inode->i_opflags = 0;
172 if (sb->s_xattr)
173 inode->i_opflags |= IOP_XATTR;
174 i_uid_write(inode, uid: 0);
175 i_gid_write(inode, gid: 0);
176 atomic_set(v: &inode->i_writecount, i: 0);
177 inode->i_size = 0;
178 inode->i_write_hint = WRITE_LIFE_NOT_SET;
179 inode->i_blocks = 0;
180 inode->i_bytes = 0;
181 inode->i_generation = 0;
182 inode->i_pipe = NULL;
183 inode->i_cdev = NULL;
184 inode->i_link = NULL;
185 inode->i_dir_seq = 0;
186 inode->i_rdev = 0;
187 inode->dirtied_when = 0;
188
189#ifdef CONFIG_CGROUP_WRITEBACK
190 inode->i_wb_frn_winner = 0;
191 inode->i_wb_frn_avg_time = 0;
192 inode->i_wb_frn_history = 0;
193#endif
194
195 spin_lock_init(&inode->i_lock);
196 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
197
198 init_rwsem(&inode->i_rwsem);
199 lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key);
200
201 atomic_set(v: &inode->i_dio_count, i: 0);
202
203 mapping->a_ops = &empty_aops;
204 mapping->host = inode;
205 mapping->flags = 0;
206 mapping->wb_err = 0;
207 atomic_set(v: &mapping->i_mmap_writable, i: 0);
208#ifdef CONFIG_READ_ONLY_THP_FOR_FS
209 atomic_set(v: &mapping->nr_thps, i: 0);
210#endif
211 mapping_set_gfp_mask(m: mapping, GFP_HIGHUSER_MOVABLE);
212 mapping->private_data = NULL;
213 mapping->writeback_index = 0;
214 init_rwsem(&mapping->invalidate_lock);
215 lockdep_set_class_and_name(&mapping->invalidate_lock,
216 &sb->s_type->invalidate_lock_key,
217 "mapping.invalidate_lock");
218 inode->i_private = NULL;
219 inode->i_mapping = mapping;
220 INIT_HLIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */
221#ifdef CONFIG_FS_POSIX_ACL
222 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
223#endif
224
225#ifdef CONFIG_FSNOTIFY
226 inode->i_fsnotify_mask = 0;
227#endif
228 inode->i_flctx = NULL;
229
230 if (unlikely(security_inode_alloc(inode)))
231 return -ENOMEM;
232 this_cpu_inc(nr_inodes);
233
234 return 0;
235}
236EXPORT_SYMBOL(inode_init_always);
237
238void free_inode_nonrcu(struct inode *inode)
239{
240 kmem_cache_free(s: inode_cachep, objp: inode);
241}
242EXPORT_SYMBOL(free_inode_nonrcu);
243
244static void i_callback(struct rcu_head *head)
245{
246 struct inode *inode = container_of(head, struct inode, i_rcu);
247 if (inode->free_inode)
248 inode->free_inode(inode);
249 else
250 free_inode_nonrcu(inode);
251}
252
253static struct inode *alloc_inode(struct super_block *sb)
254{
255 const struct super_operations *ops = sb->s_op;
256 struct inode *inode;
257
258 if (ops->alloc_inode)
259 inode = ops->alloc_inode(sb);
260 else
261 inode = alloc_inode_sb(sb, cache: inode_cachep, GFP_KERNEL);
262
263 if (!inode)
264 return NULL;
265
266 if (unlikely(inode_init_always(sb, inode))) {
267 if (ops->destroy_inode) {
268 ops->destroy_inode(inode);
269 if (!ops->free_inode)
270 return NULL;
271 }
272 inode->free_inode = ops->free_inode;
273 i_callback(head: &inode->i_rcu);
274 return NULL;
275 }
276
277 return inode;
278}
279
280void __destroy_inode(struct inode *inode)
281{
282 BUG_ON(inode_has_buffers(inode));
283 inode_detach_wb(inode);
284 security_inode_free(inode);
285 fsnotify_inode_delete(inode);
286 locks_free_lock_context(inode);
287 if (!inode->i_nlink) {
288 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
289 atomic_long_dec(v: &inode->i_sb->s_remove_count);
290 }
291
292#ifdef CONFIG_FS_POSIX_ACL
293 if (inode->i_acl && !is_uncached_acl(acl: inode->i_acl))
294 posix_acl_release(acl: inode->i_acl);
295 if (inode->i_default_acl && !is_uncached_acl(acl: inode->i_default_acl))
296 posix_acl_release(acl: inode->i_default_acl);
297#endif
298 this_cpu_dec(nr_inodes);
299}
300EXPORT_SYMBOL(__destroy_inode);
301
302static void destroy_inode(struct inode *inode)
303{
304 const struct super_operations *ops = inode->i_sb->s_op;
305
306 BUG_ON(!list_empty(&inode->i_lru));
307 __destroy_inode(inode);
308 if (ops->destroy_inode) {
309 ops->destroy_inode(inode);
310 if (!ops->free_inode)
311 return;
312 }
313 inode->free_inode = ops->free_inode;
314 call_rcu(head: &inode->i_rcu, func: i_callback);
315}
316
317/**
318 * drop_nlink - directly drop an inode's link count
319 * @inode: inode
320 *
321 * This is a low-level filesystem helper to replace any
322 * direct filesystem manipulation of i_nlink. In cases
323 * where we are attempting to track writes to the
324 * filesystem, a decrement to zero means an imminent
325 * write when the file is truncated and actually unlinked
326 * on the filesystem.
327 */
328void drop_nlink(struct inode *inode)
329{
330 WARN_ON(inode->i_nlink == 0);
331 inode->__i_nlink--;
332 if (!inode->i_nlink)
333 atomic_long_inc(v: &inode->i_sb->s_remove_count);
334}
335EXPORT_SYMBOL(drop_nlink);
336
337/**
338 * clear_nlink - directly zero an inode's link count
339 * @inode: inode
340 *
341 * This is a low-level filesystem helper to replace any
342 * direct filesystem manipulation of i_nlink. See
343 * drop_nlink() for why we care about i_nlink hitting zero.
344 */
345void clear_nlink(struct inode *inode)
346{
347 if (inode->i_nlink) {
348 inode->__i_nlink = 0;
349 atomic_long_inc(v: &inode->i_sb->s_remove_count);
350 }
351}
352EXPORT_SYMBOL(clear_nlink);
353
354/**
355 * set_nlink - directly set an inode's link count
356 * @inode: inode
357 * @nlink: new nlink (should be non-zero)
358 *
359 * This is a low-level filesystem helper to replace any
360 * direct filesystem manipulation of i_nlink.
361 */
362void set_nlink(struct inode *inode, unsigned int nlink)
363{
364 if (!nlink) {
365 clear_nlink(inode);
366 } else {
367 /* Yes, some filesystems do change nlink from zero to one */
368 if (inode->i_nlink == 0)
369 atomic_long_dec(v: &inode->i_sb->s_remove_count);
370
371 inode->__i_nlink = nlink;
372 }
373}
374EXPORT_SYMBOL(set_nlink);
375
376/**
377 * inc_nlink - directly increment an inode's link count
378 * @inode: inode
379 *
380 * This is a low-level filesystem helper to replace any
381 * direct filesystem manipulation of i_nlink. Currently,
382 * it is only here for parity with dec_nlink().
383 */
384void inc_nlink(struct inode *inode)
385{
386 if (unlikely(inode->i_nlink == 0)) {
387 WARN_ON(!(inode->i_state & I_LINKABLE));
388 atomic_long_dec(v: &inode->i_sb->s_remove_count);
389 }
390
391 inode->__i_nlink++;
392}
393EXPORT_SYMBOL(inc_nlink);
394
395static void __address_space_init_once(struct address_space *mapping)
396{
397 xa_init_flags(xa: &mapping->i_pages, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT);
398 init_rwsem(&mapping->i_mmap_rwsem);
399 INIT_LIST_HEAD(list: &mapping->private_list);
400 spin_lock_init(&mapping->private_lock);
401 mapping->i_mmap = RB_ROOT_CACHED;
402}
403
404void address_space_init_once(struct address_space *mapping)
405{
406 memset(mapping, 0, sizeof(*mapping));
407 __address_space_init_once(mapping);
408}
409EXPORT_SYMBOL(address_space_init_once);
410
411/*
412 * These are initializations that only need to be done
413 * once, because the fields are idempotent across use
414 * of the inode, so let the slab aware of that.
415 */
416void inode_init_once(struct inode *inode)
417{
418 memset(inode, 0, sizeof(*inode));
419 INIT_HLIST_NODE(h: &inode->i_hash);
420 INIT_LIST_HEAD(list: &inode->i_devices);
421 INIT_LIST_HEAD(list: &inode->i_io_list);
422 INIT_LIST_HEAD(list: &inode->i_wb_list);
423 INIT_LIST_HEAD(list: &inode->i_lru);
424 INIT_LIST_HEAD(list: &inode->i_sb_list);
425 __address_space_init_once(mapping: &inode->i_data);
426 i_size_ordered_init(inode);
427}
428EXPORT_SYMBOL(inode_init_once);
429
430static void init_once(void *foo)
431{
432 struct inode *inode = (struct inode *) foo;
433
434 inode_init_once(inode);
435}
436
437/*
438 * inode->i_lock must be held
439 */
440void __iget(struct inode *inode)
441{
442 atomic_inc(v: &inode->i_count);
443}
444
445/*
446 * get additional reference to inode; caller must already hold one.
447 */
448void ihold(struct inode *inode)
449{
450 WARN_ON(atomic_inc_return(&inode->i_count) < 2);
451}
452EXPORT_SYMBOL(ihold);
453
454static void __inode_add_lru(struct inode *inode, bool rotate)
455{
456 if (inode->i_state & (I_DIRTY_ALL | I_SYNC | I_FREEING | I_WILL_FREE))
457 return;
458 if (atomic_read(v: &inode->i_count))
459 return;
460 if (!(inode->i_sb->s_flags & SB_ACTIVE))
461 return;
462 if (!mapping_shrinkable(mapping: &inode->i_data))
463 return;
464
465 if (list_lru_add(lru: &inode->i_sb->s_inode_lru, item: &inode->i_lru))
466 this_cpu_inc(nr_unused);
467 else if (rotate)
468 inode->i_state |= I_REFERENCED;
469}
470
471/*
472 * Add inode to LRU if needed (inode is unused and clean).
473 *
474 * Needs inode->i_lock held.
475 */
476void inode_add_lru(struct inode *inode)
477{
478 __inode_add_lru(inode, rotate: false);
479}
480
481static void inode_lru_list_del(struct inode *inode)
482{
483 if (list_lru_del(lru: &inode->i_sb->s_inode_lru, item: &inode->i_lru))
484 this_cpu_dec(nr_unused);
485}
486
487/**
488 * inode_sb_list_add - add inode to the superblock list of inodes
489 * @inode: inode to add
490 */
491void inode_sb_list_add(struct inode *inode)
492{
493 spin_lock(lock: &inode->i_sb->s_inode_list_lock);
494 list_add(new: &inode->i_sb_list, head: &inode->i_sb->s_inodes);
495 spin_unlock(lock: &inode->i_sb->s_inode_list_lock);
496}
497EXPORT_SYMBOL_GPL(inode_sb_list_add);
498
499static inline void inode_sb_list_del(struct inode *inode)
500{
501 if (!list_empty(head: &inode->i_sb_list)) {
502 spin_lock(lock: &inode->i_sb->s_inode_list_lock);
503 list_del_init(entry: &inode->i_sb_list);
504 spin_unlock(lock: &inode->i_sb->s_inode_list_lock);
505 }
506}
507
508static unsigned long hash(struct super_block *sb, unsigned long hashval)
509{
510 unsigned long tmp;
511
512 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
513 L1_CACHE_BYTES;
514 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
515 return tmp & i_hash_mask;
516}
517
518/**
519 * __insert_inode_hash - hash an inode
520 * @inode: unhashed inode
521 * @hashval: unsigned long value used to locate this object in the
522 * inode_hashtable.
523 *
524 * Add an inode to the inode hash for this superblock.
525 */
526void __insert_inode_hash(struct inode *inode, unsigned long hashval)
527{
528 struct hlist_head *b = inode_hashtable + hash(sb: inode->i_sb, hashval);
529
530 spin_lock(lock: &inode_hash_lock);
531 spin_lock(lock: &inode->i_lock);
532 hlist_add_head_rcu(n: &inode->i_hash, h: b);
533 spin_unlock(lock: &inode->i_lock);
534 spin_unlock(lock: &inode_hash_lock);
535}
536EXPORT_SYMBOL(__insert_inode_hash);
537
538/**
539 * __remove_inode_hash - remove an inode from the hash
540 * @inode: inode to unhash
541 *
542 * Remove an inode from the superblock.
543 */
544void __remove_inode_hash(struct inode *inode)
545{
546 spin_lock(lock: &inode_hash_lock);
547 spin_lock(lock: &inode->i_lock);
548 hlist_del_init_rcu(n: &inode->i_hash);
549 spin_unlock(lock: &inode->i_lock);
550 spin_unlock(lock: &inode_hash_lock);
551}
552EXPORT_SYMBOL(__remove_inode_hash);
553
554void dump_mapping(const struct address_space *mapping)
555{
556 struct inode *host;
557 const struct address_space_operations *a_ops;
558 struct hlist_node *dentry_first;
559 struct dentry *dentry_ptr;
560 struct dentry dentry;
561 unsigned long ino;
562
563 /*
564 * If mapping is an invalid pointer, we don't want to crash
565 * accessing it, so probe everything depending on it carefully.
566 */
567 if (get_kernel_nofault(host, &mapping->host) ||
568 get_kernel_nofault(a_ops, &mapping->a_ops)) {
569 pr_warn("invalid mapping:%px\n", mapping);
570 return;
571 }
572
573 if (!host) {
574 pr_warn("aops:%ps\n", a_ops);
575 return;
576 }
577
578 if (get_kernel_nofault(dentry_first, &host->i_dentry.first) ||
579 get_kernel_nofault(ino, &host->i_ino)) {
580 pr_warn("aops:%ps invalid inode:%px\n", a_ops, host);
581 return;
582 }
583
584 if (!dentry_first) {
585 pr_warn("aops:%ps ino:%lx\n", a_ops, ino);
586 return;
587 }
588
589 dentry_ptr = container_of(dentry_first, struct dentry, d_u.d_alias);
590 if (get_kernel_nofault(dentry, dentry_ptr)) {
591 pr_warn("aops:%ps ino:%lx invalid dentry:%px\n",
592 a_ops, ino, dentry_ptr);
593 return;
594 }
595
596 /*
597 * if dentry is corrupted, the %pd handler may still crash,
598 * but it's unlikely that we reach here with a corrupt mapping
599 */
600 pr_warn("aops:%ps ino:%lx dentry name:\"%pd\"\n", a_ops, ino, &dentry);
601}
602
603void clear_inode(struct inode *inode)
604{
605 /*
606 * We have to cycle the i_pages lock here because reclaim can be in the
607 * process of removing the last page (in __filemap_remove_folio())
608 * and we must not free the mapping under it.
609 */
610 xa_lock_irq(&inode->i_data.i_pages);
611 BUG_ON(inode->i_data.nrpages);
612 /*
613 * Almost always, mapping_empty(&inode->i_data) here; but there are
614 * two known and long-standing ways in which nodes may get left behind
615 * (when deep radix-tree node allocation failed partway; or when THP
616 * collapse_file() failed). Until those two known cases are cleaned up,
617 * or a cleanup function is called here, do not BUG_ON(!mapping_empty),
618 * nor even WARN_ON(!mapping_empty).
619 */
620 xa_unlock_irq(&inode->i_data.i_pages);
621 BUG_ON(!list_empty(&inode->i_data.private_list));
622 BUG_ON(!(inode->i_state & I_FREEING));
623 BUG_ON(inode->i_state & I_CLEAR);
624 BUG_ON(!list_empty(&inode->i_wb_list));
625 /* don't need i_lock here, no concurrent mods to i_state */
626 inode->i_state = I_FREEING | I_CLEAR;
627}
628EXPORT_SYMBOL(clear_inode);
629
630/*
631 * Free the inode passed in, removing it from the lists it is still connected
632 * to. We remove any pages still attached to the inode and wait for any IO that
633 * is still in progress before finally destroying the inode.
634 *
635 * An inode must already be marked I_FREEING so that we avoid the inode being
636 * moved back onto lists if we race with other code that manipulates the lists
637 * (e.g. writeback_single_inode). The caller is responsible for setting this.
638 *
639 * An inode must already be removed from the LRU list before being evicted from
640 * the cache. This should occur atomically with setting the I_FREEING state
641 * flag, so no inodes here should ever be on the LRU when being evicted.
642 */
643static void evict(struct inode *inode)
644{
645 const struct super_operations *op = inode->i_sb->s_op;
646
647 BUG_ON(!(inode->i_state & I_FREEING));
648 BUG_ON(!list_empty(&inode->i_lru));
649
650 if (!list_empty(head: &inode->i_io_list))
651 inode_io_list_del(inode);
652
653 inode_sb_list_del(inode);
654
655 /*
656 * Wait for flusher thread to be done with the inode so that filesystem
657 * does not start destroying it while writeback is still running. Since
658 * the inode has I_FREEING set, flusher thread won't start new work on
659 * the inode. We just have to wait for running writeback to finish.
660 */
661 inode_wait_for_writeback(inode);
662
663 if (op->evict_inode) {
664 op->evict_inode(inode);
665 } else {
666 truncate_inode_pages_final(&inode->i_data);
667 clear_inode(inode);
668 }
669 if (S_ISCHR(inode->i_mode) && inode->i_cdev)
670 cd_forget(inode);
671
672 remove_inode_hash(inode);
673
674 spin_lock(lock: &inode->i_lock);
675 wake_up_bit(word: &inode->i_state, __I_NEW);
676 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
677 spin_unlock(lock: &inode->i_lock);
678
679 destroy_inode(inode);
680}
681
682/*
683 * dispose_list - dispose of the contents of a local list
684 * @head: the head of the list to free
685 *
686 * Dispose-list gets a local list with local inodes in it, so it doesn't
687 * need to worry about list corruption and SMP locks.
688 */
689static void dispose_list(struct list_head *head)
690{
691 while (!list_empty(head)) {
692 struct inode *inode;
693
694 inode = list_first_entry(head, struct inode, i_lru);
695 list_del_init(entry: &inode->i_lru);
696
697 evict(inode);
698 cond_resched();
699 }
700}
701
702/**
703 * evict_inodes - evict all evictable inodes for a superblock
704 * @sb: superblock to operate on
705 *
706 * Make sure that no inodes with zero refcount are retained. This is
707 * called by superblock shutdown after having SB_ACTIVE flag removed,
708 * so any inode reaching zero refcount during or after that call will
709 * be immediately evicted.
710 */
711void evict_inodes(struct super_block *sb)
712{
713 struct inode *inode, *next;
714 LIST_HEAD(dispose);
715
716again:
717 spin_lock(lock: &sb->s_inode_list_lock);
718 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
719 if (atomic_read(v: &inode->i_count))
720 continue;
721
722 spin_lock(lock: &inode->i_lock);
723 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
724 spin_unlock(lock: &inode->i_lock);
725 continue;
726 }
727
728 inode->i_state |= I_FREEING;
729 inode_lru_list_del(inode);
730 spin_unlock(lock: &inode->i_lock);
731 list_add(new: &inode->i_lru, head: &dispose);
732
733 /*
734 * We can have a ton of inodes to evict at unmount time given
735 * enough memory, check to see if we need to go to sleep for a
736 * bit so we don't livelock.
737 */
738 if (need_resched()) {
739 spin_unlock(lock: &sb->s_inode_list_lock);
740 cond_resched();
741 dispose_list(head: &dispose);
742 goto again;
743 }
744 }
745 spin_unlock(lock: &sb->s_inode_list_lock);
746
747 dispose_list(head: &dispose);
748}
749EXPORT_SYMBOL_GPL(evict_inodes);
750
751/**
752 * invalidate_inodes - attempt to free all inodes on a superblock
753 * @sb: superblock to operate on
754 *
755 * Attempts to free all inodes (including dirty inodes) for a given superblock.
756 */
757void invalidate_inodes(struct super_block *sb)
758{
759 struct inode *inode, *next;
760 LIST_HEAD(dispose);
761
762again:
763 spin_lock(lock: &sb->s_inode_list_lock);
764 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
765 spin_lock(lock: &inode->i_lock);
766 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
767 spin_unlock(lock: &inode->i_lock);
768 continue;
769 }
770 if (atomic_read(v: &inode->i_count)) {
771 spin_unlock(lock: &inode->i_lock);
772 continue;
773 }
774
775 inode->i_state |= I_FREEING;
776 inode_lru_list_del(inode);
777 spin_unlock(lock: &inode->i_lock);
778 list_add(new: &inode->i_lru, head: &dispose);
779 if (need_resched()) {
780 spin_unlock(lock: &sb->s_inode_list_lock);
781 cond_resched();
782 dispose_list(head: &dispose);
783 goto again;
784 }
785 }
786 spin_unlock(lock: &sb->s_inode_list_lock);
787
788 dispose_list(head: &dispose);
789}
790
791/*
792 * Isolate the inode from the LRU in preparation for freeing it.
793 *
794 * If the inode has the I_REFERENCED flag set, then it means that it has been
795 * used recently - the flag is set in iput_final(). When we encounter such an
796 * inode, clear the flag and move it to the back of the LRU so it gets another
797 * pass through the LRU before it gets reclaimed. This is necessary because of
798 * the fact we are doing lazy LRU updates to minimise lock contention so the
799 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
800 * with this flag set because they are the inodes that are out of order.
801 */
802static enum lru_status inode_lru_isolate(struct list_head *item,
803 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
804{
805 struct list_head *freeable = arg;
806 struct inode *inode = container_of(item, struct inode, i_lru);
807
808 /*
809 * We are inverting the lru lock/inode->i_lock here, so use a
810 * trylock. If we fail to get the lock, just skip it.
811 */
812 if (!spin_trylock(lock: &inode->i_lock))
813 return LRU_SKIP;
814
815 /*
816 * Inodes can get referenced, redirtied, or repopulated while
817 * they're already on the LRU, and this can make them
818 * unreclaimable for a while. Remove them lazily here; iput,
819 * sync, or the last page cache deletion will requeue them.
820 */
821 if (atomic_read(v: &inode->i_count) ||
822 (inode->i_state & ~I_REFERENCED) ||
823 !mapping_shrinkable(mapping: &inode->i_data)) {
824 list_lru_isolate(list: lru, item: &inode->i_lru);
825 spin_unlock(lock: &inode->i_lock);
826 this_cpu_dec(nr_unused);
827 return LRU_REMOVED;
828 }
829
830 /* Recently referenced inodes get one more pass */
831 if (inode->i_state & I_REFERENCED) {
832 inode->i_state &= ~I_REFERENCED;
833 spin_unlock(lock: &inode->i_lock);
834 return LRU_ROTATE;
835 }
836
837 /*
838 * On highmem systems, mapping_shrinkable() permits dropping
839 * page cache in order to free up struct inodes: lowmem might
840 * be under pressure before the cache inside the highmem zone.
841 */
842 if (inode_has_buffers(inode) || !mapping_empty(mapping: &inode->i_data)) {
843 __iget(inode);
844 spin_unlock(lock: &inode->i_lock);
845 spin_unlock(lock: lru_lock);
846 if (remove_inode_buffers(inode)) {
847 unsigned long reap;
848 reap = invalidate_mapping_pages(mapping: &inode->i_data, start: 0, end: -1);
849 if (current_is_kswapd())
850 __count_vm_events(item: KSWAPD_INODESTEAL, delta: reap);
851 else
852 __count_vm_events(item: PGINODESTEAL, delta: reap);
853 mm_account_reclaimed_pages(pages: reap);
854 }
855 iput(inode);
856 spin_lock(lock: lru_lock);
857 return LRU_RETRY;
858 }
859
860 WARN_ON(inode->i_state & I_NEW);
861 inode->i_state |= I_FREEING;
862 list_lru_isolate_move(list: lru, item: &inode->i_lru, head: freeable);
863 spin_unlock(lock: &inode->i_lock);
864
865 this_cpu_dec(nr_unused);
866 return LRU_REMOVED;
867}
868
869/*
870 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
871 * This is called from the superblock shrinker function with a number of inodes
872 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
873 * then are freed outside inode_lock by dispose_list().
874 */
875long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
876{
877 LIST_HEAD(freeable);
878 long freed;
879
880 freed = list_lru_shrink_walk(lru: &sb->s_inode_lru, sc,
881 isolate: inode_lru_isolate, cb_arg: &freeable);
882 dispose_list(head: &freeable);
883 return freed;
884}
885
886static void __wait_on_freeing_inode(struct inode *inode);
887/*
888 * Called with the inode lock held.
889 */
890static struct inode *find_inode(struct super_block *sb,
891 struct hlist_head *head,
892 int (*test)(struct inode *, void *),
893 void *data)
894{
895 struct inode *inode = NULL;
896
897repeat:
898 hlist_for_each_entry(inode, head, i_hash) {
899 if (inode->i_sb != sb)
900 continue;
901 if (!test(inode, data))
902 continue;
903 spin_lock(lock: &inode->i_lock);
904 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
905 __wait_on_freeing_inode(inode);
906 goto repeat;
907 }
908 if (unlikely(inode->i_state & I_CREATING)) {
909 spin_unlock(lock: &inode->i_lock);
910 return ERR_PTR(error: -ESTALE);
911 }
912 __iget(inode);
913 spin_unlock(lock: &inode->i_lock);
914 return inode;
915 }
916 return NULL;
917}
918
919/*
920 * find_inode_fast is the fast path version of find_inode, see the comment at
921 * iget_locked for details.
922 */
923static struct inode *find_inode_fast(struct super_block *sb,
924 struct hlist_head *head, unsigned long ino)
925{
926 struct inode *inode = NULL;
927
928repeat:
929 hlist_for_each_entry(inode, head, i_hash) {
930 if (inode->i_ino != ino)
931 continue;
932 if (inode->i_sb != sb)
933 continue;
934 spin_lock(lock: &inode->i_lock);
935 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
936 __wait_on_freeing_inode(inode);
937 goto repeat;
938 }
939 if (unlikely(inode->i_state & I_CREATING)) {
940 spin_unlock(lock: &inode->i_lock);
941 return ERR_PTR(error: -ESTALE);
942 }
943 __iget(inode);
944 spin_unlock(lock: &inode->i_lock);
945 return inode;
946 }
947 return NULL;
948}
949
950/*
951 * Each cpu owns a range of LAST_INO_BATCH numbers.
952 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
953 * to renew the exhausted range.
954 *
955 * This does not significantly increase overflow rate because every CPU can
956 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
957 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
958 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
959 * overflow rate by 2x, which does not seem too significant.
960 *
961 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
962 * error if st_ino won't fit in target struct field. Use 32bit counter
963 * here to attempt to avoid that.
964 */
965#define LAST_INO_BATCH 1024
966static DEFINE_PER_CPU(unsigned int, last_ino);
967
968unsigned int get_next_ino(void)
969{
970 unsigned int *p = &get_cpu_var(last_ino);
971 unsigned int res = *p;
972
973#ifdef CONFIG_SMP
974 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
975 static atomic_t shared_last_ino;
976 int next = atomic_add_return(LAST_INO_BATCH, v: &shared_last_ino);
977
978 res = next - LAST_INO_BATCH;
979 }
980#endif
981
982 res++;
983 /* get_next_ino should not provide a 0 inode number */
984 if (unlikely(!res))
985 res++;
986 *p = res;
987 put_cpu_var(last_ino);
988 return res;
989}
990EXPORT_SYMBOL(get_next_ino);
991
992/**
993 * new_inode_pseudo - obtain an inode
994 * @sb: superblock
995 *
996 * Allocates a new inode for given superblock.
997 * Inode wont be chained in superblock s_inodes list
998 * This means :
999 * - fs can't be unmount
1000 * - quotas, fsnotify, writeback can't work
1001 */
1002struct inode *new_inode_pseudo(struct super_block *sb)
1003{
1004 struct inode *inode = alloc_inode(sb);
1005
1006 if (inode) {
1007 spin_lock(lock: &inode->i_lock);
1008 inode->i_state = 0;
1009 spin_unlock(lock: &inode->i_lock);
1010 }
1011 return inode;
1012}
1013
1014/**
1015 * new_inode - obtain an inode
1016 * @sb: superblock
1017 *
1018 * Allocates a new inode for given superblock. The default gfp_mask
1019 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
1020 * If HIGHMEM pages are unsuitable or it is known that pages allocated
1021 * for the page cache are not reclaimable or migratable,
1022 * mapping_set_gfp_mask() must be called with suitable flags on the
1023 * newly created inode's mapping
1024 *
1025 */
1026struct inode *new_inode(struct super_block *sb)
1027{
1028 struct inode *inode;
1029
1030 inode = new_inode_pseudo(sb);
1031 if (inode)
1032 inode_sb_list_add(inode);
1033 return inode;
1034}
1035EXPORT_SYMBOL(new_inode);
1036
1037#ifdef CONFIG_DEBUG_LOCK_ALLOC
1038void lockdep_annotate_inode_mutex_key(struct inode *inode)
1039{
1040 if (S_ISDIR(inode->i_mode)) {
1041 struct file_system_type *type = inode->i_sb->s_type;
1042
1043 /* Set new key only if filesystem hasn't already changed it */
1044 if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) {
1045 /*
1046 * ensure nobody is actually holding i_mutex
1047 */
1048 // mutex_destroy(&inode->i_mutex);
1049 init_rwsem(&inode->i_rwsem);
1050 lockdep_set_class(&inode->i_rwsem,
1051 &type->i_mutex_dir_key);
1052 }
1053 }
1054}
1055EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
1056#endif
1057
1058/**
1059 * unlock_new_inode - clear the I_NEW state and wake up any waiters
1060 * @inode: new inode to unlock
1061 *
1062 * Called when the inode is fully initialised to clear the new state of the
1063 * inode and wake up anyone waiting for the inode to finish initialisation.
1064 */
1065void unlock_new_inode(struct inode *inode)
1066{
1067 lockdep_annotate_inode_mutex_key(inode);
1068 spin_lock(lock: &inode->i_lock);
1069 WARN_ON(!(inode->i_state & I_NEW));
1070 inode->i_state &= ~I_NEW & ~I_CREATING;
1071 smp_mb();
1072 wake_up_bit(word: &inode->i_state, __I_NEW);
1073 spin_unlock(lock: &inode->i_lock);
1074}
1075EXPORT_SYMBOL(unlock_new_inode);
1076
1077void discard_new_inode(struct inode *inode)
1078{
1079 lockdep_annotate_inode_mutex_key(inode);
1080 spin_lock(lock: &inode->i_lock);
1081 WARN_ON(!(inode->i_state & I_NEW));
1082 inode->i_state &= ~I_NEW;
1083 smp_mb();
1084 wake_up_bit(word: &inode->i_state, __I_NEW);
1085 spin_unlock(lock: &inode->i_lock);
1086 iput(inode);
1087}
1088EXPORT_SYMBOL(discard_new_inode);
1089
1090/**
1091 * lock_two_inodes - lock two inodes (may be regular files but also dirs)
1092 *
1093 * Lock any non-NULL argument. The caller must make sure that if he is passing
1094 * in two directories, one is not ancestor of the other. Zero, one or two
1095 * objects may be locked by this function.
1096 *
1097 * @inode1: first inode to lock
1098 * @inode2: second inode to lock
1099 * @subclass1: inode lock subclass for the first lock obtained
1100 * @subclass2: inode lock subclass for the second lock obtained
1101 */
1102void lock_two_inodes(struct inode *inode1, struct inode *inode2,
1103 unsigned subclass1, unsigned subclass2)
1104{
1105 if (!inode1 || !inode2) {
1106 /*
1107 * Make sure @subclass1 will be used for the acquired lock.
1108 * This is not strictly necessary (no current caller cares) but
1109 * let's keep things consistent.
1110 */
1111 if (!inode1)
1112 swap(inode1, inode2);
1113 goto lock;
1114 }
1115
1116 /*
1117 * If one object is directory and the other is not, we must make sure
1118 * to lock directory first as the other object may be its child.
1119 */
1120 if (S_ISDIR(inode2->i_mode) == S_ISDIR(inode1->i_mode)) {
1121 if (inode1 > inode2)
1122 swap(inode1, inode2);
1123 } else if (!S_ISDIR(inode1->i_mode))
1124 swap(inode1, inode2);
1125lock:
1126 if (inode1)
1127 inode_lock_nested(inode: inode1, subclass: subclass1);
1128 if (inode2 && inode2 != inode1)
1129 inode_lock_nested(inode: inode2, subclass: subclass2);
1130}
1131
1132/**
1133 * lock_two_nondirectories - take two i_mutexes on non-directory objects
1134 *
1135 * Lock any non-NULL argument. Passed objects must not be directories.
1136 * Zero, one or two objects may be locked by this function.
1137 *
1138 * @inode1: first inode to lock
1139 * @inode2: second inode to lock
1140 */
1141void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1142{
1143 if (inode1)
1144 WARN_ON_ONCE(S_ISDIR(inode1->i_mode));
1145 if (inode2)
1146 WARN_ON_ONCE(S_ISDIR(inode2->i_mode));
1147 lock_two_inodes(inode1, inode2, subclass1: I_MUTEX_NORMAL, subclass2: I_MUTEX_NONDIR2);
1148}
1149EXPORT_SYMBOL(lock_two_nondirectories);
1150
1151/**
1152 * unlock_two_nondirectories - release locks from lock_two_nondirectories()
1153 * @inode1: first inode to unlock
1154 * @inode2: second inode to unlock
1155 */
1156void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1157{
1158 if (inode1) {
1159 WARN_ON_ONCE(S_ISDIR(inode1->i_mode));
1160 inode_unlock(inode: inode1);
1161 }
1162 if (inode2 && inode2 != inode1) {
1163 WARN_ON_ONCE(S_ISDIR(inode2->i_mode));
1164 inode_unlock(inode: inode2);
1165 }
1166}
1167EXPORT_SYMBOL(unlock_two_nondirectories);
1168
1169/**
1170 * inode_insert5 - obtain an inode from a mounted file system
1171 * @inode: pre-allocated inode to use for insert to cache
1172 * @hashval: hash value (usually inode number) to get
1173 * @test: callback used for comparisons between inodes
1174 * @set: callback used to initialize a new struct inode
1175 * @data: opaque data pointer to pass to @test and @set
1176 *
1177 * Search for the inode specified by @hashval and @data in the inode cache,
1178 * and if present it is return it with an increased reference count. This is
1179 * a variant of iget5_locked() for callers that don't want to fail on memory
1180 * allocation of inode.
1181 *
1182 * If the inode is not in cache, insert the pre-allocated inode to cache and
1183 * return it locked, hashed, and with the I_NEW flag set. The file system gets
1184 * to fill it in before unlocking it via unlock_new_inode().
1185 *
1186 * Note both @test and @set are called with the inode_hash_lock held, so can't
1187 * sleep.
1188 */
1189struct inode *inode_insert5(struct inode *inode, unsigned long hashval,
1190 int (*test)(struct inode *, void *),
1191 int (*set)(struct inode *, void *), void *data)
1192{
1193 struct hlist_head *head = inode_hashtable + hash(sb: inode->i_sb, hashval);
1194 struct inode *old;
1195
1196again:
1197 spin_lock(lock: &inode_hash_lock);
1198 old = find_inode(sb: inode->i_sb, head, test, data);
1199 if (unlikely(old)) {
1200 /*
1201 * Uhhuh, somebody else created the same inode under us.
1202 * Use the old inode instead of the preallocated one.
1203 */
1204 spin_unlock(lock: &inode_hash_lock);
1205 if (IS_ERR(ptr: old))
1206 return NULL;
1207 wait_on_inode(inode: old);
1208 if (unlikely(inode_unhashed(old))) {
1209 iput(old);
1210 goto again;
1211 }
1212 return old;
1213 }
1214
1215 if (set && unlikely(set(inode, data))) {
1216 inode = NULL;
1217 goto unlock;
1218 }
1219
1220 /*
1221 * Return the locked inode with I_NEW set, the
1222 * caller is responsible for filling in the contents
1223 */
1224 spin_lock(lock: &inode->i_lock);
1225 inode->i_state |= I_NEW;
1226 hlist_add_head_rcu(n: &inode->i_hash, h: head);
1227 spin_unlock(lock: &inode->i_lock);
1228
1229 /*
1230 * Add inode to the sb list if it's not already. It has I_NEW at this
1231 * point, so it should be safe to test i_sb_list locklessly.
1232 */
1233 if (list_empty(head: &inode->i_sb_list))
1234 inode_sb_list_add(inode);
1235unlock:
1236 spin_unlock(lock: &inode_hash_lock);
1237
1238 return inode;
1239}
1240EXPORT_SYMBOL(inode_insert5);
1241
1242/**
1243 * iget5_locked - obtain an inode from a mounted file system
1244 * @sb: super block of file system
1245 * @hashval: hash value (usually inode number) to get
1246 * @test: callback used for comparisons between inodes
1247 * @set: callback used to initialize a new struct inode
1248 * @data: opaque data pointer to pass to @test and @set
1249 *
1250 * Search for the inode specified by @hashval and @data in the inode cache,
1251 * and if present it is return it with an increased reference count. This is
1252 * a generalized version of iget_locked() for file systems where the inode
1253 * number is not sufficient for unique identification of an inode.
1254 *
1255 * If the inode is not in cache, allocate a new inode and return it locked,
1256 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1257 * before unlocking it via unlock_new_inode().
1258 *
1259 * Note both @test and @set are called with the inode_hash_lock held, so can't
1260 * sleep.
1261 */
1262struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1263 int (*test)(struct inode *, void *),
1264 int (*set)(struct inode *, void *), void *data)
1265{
1266 struct inode *inode = ilookup5(sb, hashval, test, data);
1267
1268 if (!inode) {
1269 struct inode *new = alloc_inode(sb);
1270
1271 if (new) {
1272 new->i_state = 0;
1273 inode = inode_insert5(new, hashval, test, set, data);
1274 if (unlikely(inode != new))
1275 destroy_inode(inode: new);
1276 }
1277 }
1278 return inode;
1279}
1280EXPORT_SYMBOL(iget5_locked);
1281
1282/**
1283 * iget_locked - obtain an inode from a mounted file system
1284 * @sb: super block of file system
1285 * @ino: inode number to get
1286 *
1287 * Search for the inode specified by @ino in the inode cache and if present
1288 * return it with an increased reference count. This is for file systems
1289 * where the inode number is sufficient for unique identification of an inode.
1290 *
1291 * If the inode is not in cache, allocate a new inode and return it locked,
1292 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1293 * before unlocking it via unlock_new_inode().
1294 */
1295struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1296{
1297 struct hlist_head *head = inode_hashtable + hash(sb, hashval: ino);
1298 struct inode *inode;
1299again:
1300 spin_lock(lock: &inode_hash_lock);
1301 inode = find_inode_fast(sb, head, ino);
1302 spin_unlock(lock: &inode_hash_lock);
1303 if (inode) {
1304 if (IS_ERR(ptr: inode))
1305 return NULL;
1306 wait_on_inode(inode);
1307 if (unlikely(inode_unhashed(inode))) {
1308 iput(inode);
1309 goto again;
1310 }
1311 return inode;
1312 }
1313
1314 inode = alloc_inode(sb);
1315 if (inode) {
1316 struct inode *old;
1317
1318 spin_lock(lock: &inode_hash_lock);
1319 /* We released the lock, so.. */
1320 old = find_inode_fast(sb, head, ino);
1321 if (!old) {
1322 inode->i_ino = ino;
1323 spin_lock(lock: &inode->i_lock);
1324 inode->i_state = I_NEW;
1325 hlist_add_head_rcu(n: &inode->i_hash, h: head);
1326 spin_unlock(lock: &inode->i_lock);
1327 inode_sb_list_add(inode);
1328 spin_unlock(lock: &inode_hash_lock);
1329
1330 /* Return the locked inode with I_NEW set, the
1331 * caller is responsible for filling in the contents
1332 */
1333 return inode;
1334 }
1335
1336 /*
1337 * Uhhuh, somebody else created the same inode under
1338 * us. Use the old inode instead of the one we just
1339 * allocated.
1340 */
1341 spin_unlock(lock: &inode_hash_lock);
1342 destroy_inode(inode);
1343 if (IS_ERR(ptr: old))
1344 return NULL;
1345 inode = old;
1346 wait_on_inode(inode);
1347 if (unlikely(inode_unhashed(inode))) {
1348 iput(inode);
1349 goto again;
1350 }
1351 }
1352 return inode;
1353}
1354EXPORT_SYMBOL(iget_locked);
1355
1356/*
1357 * search the inode cache for a matching inode number.
1358 * If we find one, then the inode number we are trying to
1359 * allocate is not unique and so we should not use it.
1360 *
1361 * Returns 1 if the inode number is unique, 0 if it is not.
1362 */
1363static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1364{
1365 struct hlist_head *b = inode_hashtable + hash(sb, hashval: ino);
1366 struct inode *inode;
1367
1368 hlist_for_each_entry_rcu(inode, b, i_hash) {
1369 if (inode->i_ino == ino && inode->i_sb == sb)
1370 return 0;
1371 }
1372 return 1;
1373}
1374
1375/**
1376 * iunique - get a unique inode number
1377 * @sb: superblock
1378 * @max_reserved: highest reserved inode number
1379 *
1380 * Obtain an inode number that is unique on the system for a given
1381 * superblock. This is used by file systems that have no natural
1382 * permanent inode numbering system. An inode number is returned that
1383 * is higher than the reserved limit but unique.
1384 *
1385 * BUGS:
1386 * With a large number of inodes live on the file system this function
1387 * currently becomes quite slow.
1388 */
1389ino_t iunique(struct super_block *sb, ino_t max_reserved)
1390{
1391 /*
1392 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1393 * error if st_ino won't fit in target struct field. Use 32bit counter
1394 * here to attempt to avoid that.
1395 */
1396 static DEFINE_SPINLOCK(iunique_lock);
1397 static unsigned int counter;
1398 ino_t res;
1399
1400 rcu_read_lock();
1401 spin_lock(lock: &iunique_lock);
1402 do {
1403 if (counter <= max_reserved)
1404 counter = max_reserved + 1;
1405 res = counter++;
1406 } while (!test_inode_iunique(sb, ino: res));
1407 spin_unlock(lock: &iunique_lock);
1408 rcu_read_unlock();
1409
1410 return res;
1411}
1412EXPORT_SYMBOL(iunique);
1413
1414struct inode *igrab(struct inode *inode)
1415{
1416 spin_lock(lock: &inode->i_lock);
1417 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1418 __iget(inode);
1419 spin_unlock(lock: &inode->i_lock);
1420 } else {
1421 spin_unlock(lock: &inode->i_lock);
1422 /*
1423 * Handle the case where s_op->clear_inode is not been
1424 * called yet, and somebody is calling igrab
1425 * while the inode is getting freed.
1426 */
1427 inode = NULL;
1428 }
1429 return inode;
1430}
1431EXPORT_SYMBOL(igrab);
1432
1433/**
1434 * ilookup5_nowait - search for an inode in the inode cache
1435 * @sb: super block of file system to search
1436 * @hashval: hash value (usually inode number) to search for
1437 * @test: callback used for comparisons between inodes
1438 * @data: opaque data pointer to pass to @test
1439 *
1440 * Search for the inode specified by @hashval and @data in the inode cache.
1441 * If the inode is in the cache, the inode is returned with an incremented
1442 * reference count.
1443 *
1444 * Note: I_NEW is not waited upon so you have to be very careful what you do
1445 * with the returned inode. You probably should be using ilookup5() instead.
1446 *
1447 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1448 */
1449struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1450 int (*test)(struct inode *, void *), void *data)
1451{
1452 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1453 struct inode *inode;
1454
1455 spin_lock(lock: &inode_hash_lock);
1456 inode = find_inode(sb, head, test, data);
1457 spin_unlock(lock: &inode_hash_lock);
1458
1459 return IS_ERR(ptr: inode) ? NULL : inode;
1460}
1461EXPORT_SYMBOL(ilookup5_nowait);
1462
1463/**
1464 * ilookup5 - search for an inode in the inode cache
1465 * @sb: super block of file system to search
1466 * @hashval: hash value (usually inode number) to search for
1467 * @test: callback used for comparisons between inodes
1468 * @data: opaque data pointer to pass to @test
1469 *
1470 * Search for the inode specified by @hashval and @data in the inode cache,
1471 * and if the inode is in the cache, return the inode with an incremented
1472 * reference count. Waits on I_NEW before returning the inode.
1473 * returned with an incremented reference count.
1474 *
1475 * This is a generalized version of ilookup() for file systems where the
1476 * inode number is not sufficient for unique identification of an inode.
1477 *
1478 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1479 */
1480struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1481 int (*test)(struct inode *, void *), void *data)
1482{
1483 struct inode *inode;
1484again:
1485 inode = ilookup5_nowait(sb, hashval, test, data);
1486 if (inode) {
1487 wait_on_inode(inode);
1488 if (unlikely(inode_unhashed(inode))) {
1489 iput(inode);
1490 goto again;
1491 }
1492 }
1493 return inode;
1494}
1495EXPORT_SYMBOL(ilookup5);
1496
1497/**
1498 * ilookup - search for an inode in the inode cache
1499 * @sb: super block of file system to search
1500 * @ino: inode number to search for
1501 *
1502 * Search for the inode @ino in the inode cache, and if the inode is in the
1503 * cache, the inode is returned with an incremented reference count.
1504 */
1505struct inode *ilookup(struct super_block *sb, unsigned long ino)
1506{
1507 struct hlist_head *head = inode_hashtable + hash(sb, hashval: ino);
1508 struct inode *inode;
1509again:
1510 spin_lock(lock: &inode_hash_lock);
1511 inode = find_inode_fast(sb, head, ino);
1512 spin_unlock(lock: &inode_hash_lock);
1513
1514 if (inode) {
1515 if (IS_ERR(ptr: inode))
1516 return NULL;
1517 wait_on_inode(inode);
1518 if (unlikely(inode_unhashed(inode))) {
1519 iput(inode);
1520 goto again;
1521 }
1522 }
1523 return inode;
1524}
1525EXPORT_SYMBOL(ilookup);
1526
1527/**
1528 * find_inode_nowait - find an inode in the inode cache
1529 * @sb: super block of file system to search
1530 * @hashval: hash value (usually inode number) to search for
1531 * @match: callback used for comparisons between inodes
1532 * @data: opaque data pointer to pass to @match
1533 *
1534 * Search for the inode specified by @hashval and @data in the inode
1535 * cache, where the helper function @match will return 0 if the inode
1536 * does not match, 1 if the inode does match, and -1 if the search
1537 * should be stopped. The @match function must be responsible for
1538 * taking the i_lock spin_lock and checking i_state for an inode being
1539 * freed or being initialized, and incrementing the reference count
1540 * before returning 1. It also must not sleep, since it is called with
1541 * the inode_hash_lock spinlock held.
1542 *
1543 * This is a even more generalized version of ilookup5() when the
1544 * function must never block --- find_inode() can block in
1545 * __wait_on_freeing_inode() --- or when the caller can not increment
1546 * the reference count because the resulting iput() might cause an
1547 * inode eviction. The tradeoff is that the @match funtion must be
1548 * very carefully implemented.
1549 */
1550struct inode *find_inode_nowait(struct super_block *sb,
1551 unsigned long hashval,
1552 int (*match)(struct inode *, unsigned long,
1553 void *),
1554 void *data)
1555{
1556 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1557 struct inode *inode, *ret_inode = NULL;
1558 int mval;
1559
1560 spin_lock(lock: &inode_hash_lock);
1561 hlist_for_each_entry(inode, head, i_hash) {
1562 if (inode->i_sb != sb)
1563 continue;
1564 mval = match(inode, hashval, data);
1565 if (mval == 0)
1566 continue;
1567 if (mval == 1)
1568 ret_inode = inode;
1569 goto out;
1570 }
1571out:
1572 spin_unlock(lock: &inode_hash_lock);
1573 return ret_inode;
1574}
1575EXPORT_SYMBOL(find_inode_nowait);
1576
1577/**
1578 * find_inode_rcu - find an inode in the inode cache
1579 * @sb: Super block of file system to search
1580 * @hashval: Key to hash
1581 * @test: Function to test match on an inode
1582 * @data: Data for test function
1583 *
1584 * Search for the inode specified by @hashval and @data in the inode cache,
1585 * where the helper function @test will return 0 if the inode does not match
1586 * and 1 if it does. The @test function must be responsible for taking the
1587 * i_lock spin_lock and checking i_state for an inode being freed or being
1588 * initialized.
1589 *
1590 * If successful, this will return the inode for which the @test function
1591 * returned 1 and NULL otherwise.
1592 *
1593 * The @test function is not permitted to take a ref on any inode presented.
1594 * It is also not permitted to sleep.
1595 *
1596 * The caller must hold the RCU read lock.
1597 */
1598struct inode *find_inode_rcu(struct super_block *sb, unsigned long hashval,
1599 int (*test)(struct inode *, void *), void *data)
1600{
1601 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1602 struct inode *inode;
1603
1604 RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1605 "suspicious find_inode_rcu() usage");
1606
1607 hlist_for_each_entry_rcu(inode, head, i_hash) {
1608 if (inode->i_sb == sb &&
1609 !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)) &&
1610 test(inode, data))
1611 return inode;
1612 }
1613 return NULL;
1614}
1615EXPORT_SYMBOL(find_inode_rcu);
1616
1617/**
1618 * find_inode_by_ino_rcu - Find an inode in the inode cache
1619 * @sb: Super block of file system to search
1620 * @ino: The inode number to match
1621 *
1622 * Search for the inode specified by @hashval and @data in the inode cache,
1623 * where the helper function @test will return 0 if the inode does not match
1624 * and 1 if it does. The @test function must be responsible for taking the
1625 * i_lock spin_lock and checking i_state for an inode being freed or being
1626 * initialized.
1627 *
1628 * If successful, this will return the inode for which the @test function
1629 * returned 1 and NULL otherwise.
1630 *
1631 * The @test function is not permitted to take a ref on any inode presented.
1632 * It is also not permitted to sleep.
1633 *
1634 * The caller must hold the RCU read lock.
1635 */
1636struct inode *find_inode_by_ino_rcu(struct super_block *sb,
1637 unsigned long ino)
1638{
1639 struct hlist_head *head = inode_hashtable + hash(sb, hashval: ino);
1640 struct inode *inode;
1641
1642 RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1643 "suspicious find_inode_by_ino_rcu() usage");
1644
1645 hlist_for_each_entry_rcu(inode, head, i_hash) {
1646 if (inode->i_ino == ino &&
1647 inode->i_sb == sb &&
1648 !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)))
1649 return inode;
1650 }
1651 return NULL;
1652}
1653EXPORT_SYMBOL(find_inode_by_ino_rcu);
1654
1655int insert_inode_locked(struct inode *inode)
1656{
1657 struct super_block *sb = inode->i_sb;
1658 ino_t ino = inode->i_ino;
1659 struct hlist_head *head = inode_hashtable + hash(sb, hashval: ino);
1660
1661 while (1) {
1662 struct inode *old = NULL;
1663 spin_lock(lock: &inode_hash_lock);
1664 hlist_for_each_entry(old, head, i_hash) {
1665 if (old->i_ino != ino)
1666 continue;
1667 if (old->i_sb != sb)
1668 continue;
1669 spin_lock(lock: &old->i_lock);
1670 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1671 spin_unlock(lock: &old->i_lock);
1672 continue;
1673 }
1674 break;
1675 }
1676 if (likely(!old)) {
1677 spin_lock(lock: &inode->i_lock);
1678 inode->i_state |= I_NEW | I_CREATING;
1679 hlist_add_head_rcu(n: &inode->i_hash, h: head);
1680 spin_unlock(lock: &inode->i_lock);
1681 spin_unlock(lock: &inode_hash_lock);
1682 return 0;
1683 }
1684 if (unlikely(old->i_state & I_CREATING)) {
1685 spin_unlock(lock: &old->i_lock);
1686 spin_unlock(lock: &inode_hash_lock);
1687 return -EBUSY;
1688 }
1689 __iget(inode: old);
1690 spin_unlock(lock: &old->i_lock);
1691 spin_unlock(lock: &inode_hash_lock);
1692 wait_on_inode(inode: old);
1693 if (unlikely(!inode_unhashed(old))) {
1694 iput(old);
1695 return -EBUSY;
1696 }
1697 iput(old);
1698 }
1699}
1700EXPORT_SYMBOL(insert_inode_locked);
1701
1702int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1703 int (*test)(struct inode *, void *), void *data)
1704{
1705 struct inode *old;
1706
1707 inode->i_state |= I_CREATING;
1708 old = inode_insert5(inode, hashval, test, NULL, data);
1709
1710 if (old != inode) {
1711 iput(old);
1712 return -EBUSY;
1713 }
1714 return 0;
1715}
1716EXPORT_SYMBOL(insert_inode_locked4);
1717
1718
1719int generic_delete_inode(struct inode *inode)
1720{
1721 return 1;
1722}
1723EXPORT_SYMBOL(generic_delete_inode);
1724
1725/*
1726 * Called when we're dropping the last reference
1727 * to an inode.
1728 *
1729 * Call the FS "drop_inode()" function, defaulting to
1730 * the legacy UNIX filesystem behaviour. If it tells
1731 * us to evict inode, do so. Otherwise, retain inode
1732 * in cache if fs is alive, sync and evict if fs is
1733 * shutting down.
1734 */
1735static void iput_final(struct inode *inode)
1736{
1737 struct super_block *sb = inode->i_sb;
1738 const struct super_operations *op = inode->i_sb->s_op;
1739 unsigned long state;
1740 int drop;
1741
1742 WARN_ON(inode->i_state & I_NEW);
1743
1744 if (op->drop_inode)
1745 drop = op->drop_inode(inode);
1746 else
1747 drop = generic_drop_inode(inode);
1748
1749 if (!drop &&
1750 !(inode->i_state & I_DONTCACHE) &&
1751 (sb->s_flags & SB_ACTIVE)) {
1752 __inode_add_lru(inode, rotate: true);
1753 spin_unlock(lock: &inode->i_lock);
1754 return;
1755 }
1756
1757 state = inode->i_state;
1758 if (!drop) {
1759 WRITE_ONCE(inode->i_state, state | I_WILL_FREE);
1760 spin_unlock(lock: &inode->i_lock);
1761
1762 write_inode_now(inode, sync: 1);
1763
1764 spin_lock(lock: &inode->i_lock);
1765 state = inode->i_state;
1766 WARN_ON(state & I_NEW);
1767 state &= ~I_WILL_FREE;
1768 }
1769
1770 WRITE_ONCE(inode->i_state, state | I_FREEING);
1771 if (!list_empty(head: &inode->i_lru))
1772 inode_lru_list_del(inode);
1773 spin_unlock(lock: &inode->i_lock);
1774
1775 evict(inode);
1776}
1777
1778/**
1779 * iput - put an inode
1780 * @inode: inode to put
1781 *
1782 * Puts an inode, dropping its usage count. If the inode use count hits
1783 * zero, the inode is then freed and may also be destroyed.
1784 *
1785 * Consequently, iput() can sleep.
1786 */
1787void iput(struct inode *inode)
1788{
1789 if (!inode)
1790 return;
1791 BUG_ON(inode->i_state & I_CLEAR);
1792retry:
1793 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1794 if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1795 atomic_inc(v: &inode->i_count);
1796 spin_unlock(lock: &inode->i_lock);
1797 trace_writeback_lazytime_iput(inode);
1798 mark_inode_dirty_sync(inode);
1799 goto retry;
1800 }
1801 iput_final(inode);
1802 }
1803}
1804EXPORT_SYMBOL(iput);
1805
1806#ifdef CONFIG_BLOCK
1807/**
1808 * bmap - find a block number in a file
1809 * @inode: inode owning the block number being requested
1810 * @block: pointer containing the block to find
1811 *
1812 * Replaces the value in ``*block`` with the block number on the device holding
1813 * corresponding to the requested block number in the file.
1814 * That is, asked for block 4 of inode 1 the function will replace the
1815 * 4 in ``*block``, with disk block relative to the disk start that holds that
1816 * block of the file.
1817 *
1818 * Returns -EINVAL in case of error, 0 otherwise. If mapping falls into a
1819 * hole, returns 0 and ``*block`` is also set to 0.
1820 */
1821int bmap(struct inode *inode, sector_t *block)
1822{
1823 if (!inode->i_mapping->a_ops->bmap)
1824 return -EINVAL;
1825
1826 *block = inode->i_mapping->a_ops->bmap(inode->i_mapping, *block);
1827 return 0;
1828}
1829EXPORT_SYMBOL(bmap);
1830#endif
1831
1832/*
1833 * With relative atime, only update atime if the previous atime is
1834 * earlier than or equal to either the ctime or mtime,
1835 * or if at least a day has passed since the last atime update.
1836 */
1837static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1838 struct timespec64 now)
1839{
1840 struct timespec64 atime, mtime, ctime;
1841
1842 if (!(mnt->mnt_flags & MNT_RELATIME))
1843 return 1;
1844 /*
1845 * Is mtime younger than or equal to atime? If yes, update atime:
1846 */
1847 atime = inode_get_atime(inode);
1848 mtime = inode_get_mtime(inode);
1849 if (timespec64_compare(lhs: &mtime, rhs: &atime) >= 0)
1850 return 1;
1851 /*
1852 * Is ctime younger than or equal to atime? If yes, update atime:
1853 */
1854 ctime = inode_get_ctime(inode);
1855 if (timespec64_compare(lhs: &ctime, rhs: &atime) >= 0)
1856 return 1;
1857
1858 /*
1859 * Is the previous atime value older than a day? If yes,
1860 * update atime:
1861 */
1862 if ((long)(now.tv_sec - atime.tv_sec) >= 24*60*60)
1863 return 1;
1864 /*
1865 * Good, we can skip the atime update:
1866 */
1867 return 0;
1868}
1869
1870/**
1871 * inode_update_timestamps - update the timestamps on the inode
1872 * @inode: inode to be updated
1873 * @flags: S_* flags that needed to be updated
1874 *
1875 * The update_time function is called when an inode's timestamps need to be
1876 * updated for a read or write operation. This function handles updating the
1877 * actual timestamps. It's up to the caller to ensure that the inode is marked
1878 * dirty appropriately.
1879 *
1880 * In the case where any of S_MTIME, S_CTIME, or S_VERSION need to be updated,
1881 * attempt to update all three of them. S_ATIME updates can be handled
1882 * independently of the rest.
1883 *
1884 * Returns a set of S_* flags indicating which values changed.
1885 */
1886int inode_update_timestamps(struct inode *inode, int flags)
1887{
1888 int updated = 0;
1889 struct timespec64 now;
1890
1891 if (flags & (S_MTIME|S_CTIME|S_VERSION)) {
1892 struct timespec64 ctime = inode_get_ctime(inode);
1893 struct timespec64 mtime = inode_get_mtime(inode);
1894
1895 now = inode_set_ctime_current(inode);
1896 if (!timespec64_equal(a: &now, b: &ctime))
1897 updated |= S_CTIME;
1898 if (!timespec64_equal(a: &now, b: &mtime)) {
1899 inode_set_mtime_to_ts(inode, ts: now);
1900 updated |= S_MTIME;
1901 }
1902 if (IS_I_VERSION(inode) && inode_maybe_inc_iversion(inode, force: updated))
1903 updated |= S_VERSION;
1904 } else {
1905 now = current_time(inode);
1906 }
1907
1908 if (flags & S_ATIME) {
1909 struct timespec64 atime = inode_get_atime(inode);
1910
1911 if (!timespec64_equal(a: &now, b: &atime)) {
1912 inode_set_atime_to_ts(inode, ts: now);
1913 updated |= S_ATIME;
1914 }
1915 }
1916 return updated;
1917}
1918EXPORT_SYMBOL(inode_update_timestamps);
1919
1920/**
1921 * generic_update_time - update the timestamps on the inode
1922 * @inode: inode to be updated
1923 * @flags: S_* flags that needed to be updated
1924 *
1925 * The update_time function is called when an inode's timestamps need to be
1926 * updated for a read or write operation. In the case where any of S_MTIME, S_CTIME,
1927 * or S_VERSION need to be updated we attempt to update all three of them. S_ATIME
1928 * updates can be handled done independently of the rest.
1929 *
1930 * Returns a S_* mask indicating which fields were updated.
1931 */
1932int generic_update_time(struct inode *inode, int flags)
1933{
1934 int updated = inode_update_timestamps(inode, flags);
1935 int dirty_flags = 0;
1936
1937 if (updated & (S_ATIME|S_MTIME|S_CTIME))
1938 dirty_flags = inode->i_sb->s_flags & SB_LAZYTIME ? I_DIRTY_TIME : I_DIRTY_SYNC;
1939 if (updated & S_VERSION)
1940 dirty_flags |= I_DIRTY_SYNC;
1941 __mark_inode_dirty(inode, dirty_flags);
1942 return updated;
1943}
1944EXPORT_SYMBOL(generic_update_time);
1945
1946/*
1947 * This does the actual work of updating an inodes time or version. Must have
1948 * had called mnt_want_write() before calling this.
1949 */
1950int inode_update_time(struct inode *inode, int flags)
1951{
1952 if (inode->i_op->update_time)
1953 return inode->i_op->update_time(inode, flags);
1954 generic_update_time(inode, flags);
1955 return 0;
1956}
1957EXPORT_SYMBOL(inode_update_time);
1958
1959/**
1960 * atime_needs_update - update the access time
1961 * @path: the &struct path to update
1962 * @inode: inode to update
1963 *
1964 * Update the accessed time on an inode and mark it for writeback.
1965 * This function automatically handles read only file systems and media,
1966 * as well as the "noatime" flag and inode specific "noatime" markers.
1967 */
1968bool atime_needs_update(const struct path *path, struct inode *inode)
1969{
1970 struct vfsmount *mnt = path->mnt;
1971 struct timespec64 now, atime;
1972
1973 if (inode->i_flags & S_NOATIME)
1974 return false;
1975
1976 /* Atime updates will likely cause i_uid and i_gid to be written
1977 * back improprely if their true value is unknown to the vfs.
1978 */
1979 if (HAS_UNMAPPED_ID(idmap: mnt_idmap(mnt), inode))
1980 return false;
1981
1982 if (IS_NOATIME(inode))
1983 return false;
1984 if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode))
1985 return false;
1986
1987 if (mnt->mnt_flags & MNT_NOATIME)
1988 return false;
1989 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1990 return false;
1991
1992 now = current_time(inode);
1993
1994 if (!relatime_need_update(mnt, inode, now))
1995 return false;
1996
1997 atime = inode_get_atime(inode);
1998 if (timespec64_equal(a: &atime, b: &now))
1999 return false;
2000
2001 return true;
2002}
2003
2004void touch_atime(const struct path *path)
2005{
2006 struct vfsmount *mnt = path->mnt;
2007 struct inode *inode = d_inode(dentry: path->dentry);
2008
2009 if (!atime_needs_update(path, inode))
2010 return;
2011
2012 if (!sb_start_write_trylock(sb: inode->i_sb))
2013 return;
2014
2015 if (mnt_get_write_access(mnt) != 0)
2016 goto skip_update;
2017 /*
2018 * File systems can error out when updating inodes if they need to
2019 * allocate new space to modify an inode (such is the case for
2020 * Btrfs), but since we touch atime while walking down the path we
2021 * really don't care if we failed to update the atime of the file,
2022 * so just ignore the return value.
2023 * We may also fail on filesystems that have the ability to make parts
2024 * of the fs read only, e.g. subvolumes in Btrfs.
2025 */
2026 inode_update_time(inode, S_ATIME);
2027 mnt_put_write_access(mnt);
2028skip_update:
2029 sb_end_write(sb: inode->i_sb);
2030}
2031EXPORT_SYMBOL(touch_atime);
2032
2033/*
2034 * Return mask of changes for notify_change() that need to be done as a
2035 * response to write or truncate. Return 0 if nothing has to be changed.
2036 * Negative value on error (change should be denied).
2037 */
2038int dentry_needs_remove_privs(struct mnt_idmap *idmap,
2039 struct dentry *dentry)
2040{
2041 struct inode *inode = d_inode(dentry);
2042 int mask = 0;
2043 int ret;
2044
2045 if (IS_NOSEC(inode))
2046 return 0;
2047
2048 mask = setattr_should_drop_suidgid(idmap, inode);
2049 ret = security_inode_need_killpriv(dentry);
2050 if (ret < 0)
2051 return ret;
2052 if (ret)
2053 mask |= ATTR_KILL_PRIV;
2054 return mask;
2055}
2056
2057static int __remove_privs(struct mnt_idmap *idmap,
2058 struct dentry *dentry, int kill)
2059{
2060 struct iattr newattrs;
2061
2062 newattrs.ia_valid = ATTR_FORCE | kill;
2063 /*
2064 * Note we call this on write, so notify_change will not
2065 * encounter any conflicting delegations:
2066 */
2067 return notify_change(idmap, dentry, &newattrs, NULL);
2068}
2069
2070static int __file_remove_privs(struct file *file, unsigned int flags)
2071{
2072 struct dentry *dentry = file_dentry(file);
2073 struct inode *inode = file_inode(f: file);
2074 int error = 0;
2075 int kill;
2076
2077 if (IS_NOSEC(inode) || !S_ISREG(inode->i_mode))
2078 return 0;
2079
2080 kill = dentry_needs_remove_privs(idmap: file_mnt_idmap(file), dentry);
2081 if (kill < 0)
2082 return kill;
2083
2084 if (kill) {
2085 if (flags & IOCB_NOWAIT)
2086 return -EAGAIN;
2087
2088 error = __remove_privs(idmap: file_mnt_idmap(file), dentry, kill);
2089 }
2090
2091 if (!error)
2092 inode_has_no_xattr(inode);
2093 return error;
2094}
2095
2096/**
2097 * file_remove_privs - remove special file privileges (suid, capabilities)
2098 * @file: file to remove privileges from
2099 *
2100 * When file is modified by a write or truncation ensure that special
2101 * file privileges are removed.
2102 *
2103 * Return: 0 on success, negative errno on failure.
2104 */
2105int file_remove_privs(struct file *file)
2106{
2107 return __file_remove_privs(file, flags: 0);
2108}
2109EXPORT_SYMBOL(file_remove_privs);
2110
2111static int inode_needs_update_time(struct inode *inode)
2112{
2113 int sync_it = 0;
2114 struct timespec64 now = current_time(inode);
2115 struct timespec64 ts;
2116
2117 /* First try to exhaust all avenues to not sync */
2118 if (IS_NOCMTIME(inode))
2119 return 0;
2120
2121 ts = inode_get_mtime(inode);
2122 if (!timespec64_equal(a: &ts, b: &now))
2123 sync_it = S_MTIME;
2124
2125 ts = inode_get_ctime(inode);
2126 if (!timespec64_equal(a: &ts, b: &now))
2127 sync_it |= S_CTIME;
2128
2129 if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode))
2130 sync_it |= S_VERSION;
2131
2132 return sync_it;
2133}
2134
2135static int __file_update_time(struct file *file, int sync_mode)
2136{
2137 int ret = 0;
2138 struct inode *inode = file_inode(f: file);
2139
2140 /* try to update time settings */
2141 if (!mnt_get_write_access_file(file)) {
2142 ret = inode_update_time(inode, sync_mode);
2143 mnt_put_write_access_file(file);
2144 }
2145
2146 return ret;
2147}
2148
2149/**
2150 * file_update_time - update mtime and ctime time
2151 * @file: file accessed
2152 *
2153 * Update the mtime and ctime members of an inode and mark the inode for
2154 * writeback. Note that this function is meant exclusively for usage in
2155 * the file write path of filesystems, and filesystems may choose to
2156 * explicitly ignore updates via this function with the _NOCMTIME inode
2157 * flag, e.g. for network filesystem where these imestamps are handled
2158 * by the server. This can return an error for file systems who need to
2159 * allocate space in order to update an inode.
2160 *
2161 * Return: 0 on success, negative errno on failure.
2162 */
2163int file_update_time(struct file *file)
2164{
2165 int ret;
2166 struct inode *inode = file_inode(f: file);
2167
2168 ret = inode_needs_update_time(inode);
2169 if (ret <= 0)
2170 return ret;
2171
2172 return __file_update_time(file, sync_mode: ret);
2173}
2174EXPORT_SYMBOL(file_update_time);
2175
2176/**
2177 * file_modified_flags - handle mandated vfs changes when modifying a file
2178 * @file: file that was modified
2179 * @flags: kiocb flags
2180 *
2181 * When file has been modified ensure that special
2182 * file privileges are removed and time settings are updated.
2183 *
2184 * If IOCB_NOWAIT is set, special file privileges will not be removed and
2185 * time settings will not be updated. It will return -EAGAIN.
2186 *
2187 * Context: Caller must hold the file's inode lock.
2188 *
2189 * Return: 0 on success, negative errno on failure.
2190 */
2191static int file_modified_flags(struct file *file, int flags)
2192{
2193 int ret;
2194 struct inode *inode = file_inode(f: file);
2195
2196 /*
2197 * Clear the security bits if the process is not being run by root.
2198 * This keeps people from modifying setuid and setgid binaries.
2199 */
2200 ret = __file_remove_privs(file, flags);
2201 if (ret)
2202 return ret;
2203
2204 if (unlikely(file->f_mode & FMODE_NOCMTIME))
2205 return 0;
2206
2207 ret = inode_needs_update_time(inode);
2208 if (ret <= 0)
2209 return ret;
2210 if (flags & IOCB_NOWAIT)
2211 return -EAGAIN;
2212
2213 return __file_update_time(file, sync_mode: ret);
2214}
2215
2216/**
2217 * file_modified - handle mandated vfs changes when modifying a file
2218 * @file: file that was modified
2219 *
2220 * When file has been modified ensure that special
2221 * file privileges are removed and time settings are updated.
2222 *
2223 * Context: Caller must hold the file's inode lock.
2224 *
2225 * Return: 0 on success, negative errno on failure.
2226 */
2227int file_modified(struct file *file)
2228{
2229 return file_modified_flags(file, flags: 0);
2230}
2231EXPORT_SYMBOL(file_modified);
2232
2233/**
2234 * kiocb_modified - handle mandated vfs changes when modifying a file
2235 * @iocb: iocb that was modified
2236 *
2237 * When file has been modified ensure that special
2238 * file privileges are removed and time settings are updated.
2239 *
2240 * Context: Caller must hold the file's inode lock.
2241 *
2242 * Return: 0 on success, negative errno on failure.
2243 */
2244int kiocb_modified(struct kiocb *iocb)
2245{
2246 return file_modified_flags(file: iocb->ki_filp, flags: iocb->ki_flags);
2247}
2248EXPORT_SYMBOL_GPL(kiocb_modified);
2249
2250int inode_needs_sync(struct inode *inode)
2251{
2252 if (IS_SYNC(inode))
2253 return 1;
2254 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
2255 return 1;
2256 return 0;
2257}
2258EXPORT_SYMBOL(inode_needs_sync);
2259
2260/*
2261 * If we try to find an inode in the inode hash while it is being
2262 * deleted, we have to wait until the filesystem completes its
2263 * deletion before reporting that it isn't found. This function waits
2264 * until the deletion _might_ have completed. Callers are responsible
2265 * to recheck inode state.
2266 *
2267 * It doesn't matter if I_NEW is not set initially, a call to
2268 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
2269 * will DTRT.
2270 */
2271static void __wait_on_freeing_inode(struct inode *inode)
2272{
2273 wait_queue_head_t *wq;
2274 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
2275 wq = bit_waitqueue(word: &inode->i_state, __I_NEW);
2276 prepare_to_wait(wq_head: wq, wq_entry: &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2277 spin_unlock(lock: &inode->i_lock);
2278 spin_unlock(lock: &inode_hash_lock);
2279 schedule();
2280 finish_wait(wq_head: wq, wq_entry: &wait.wq_entry);
2281 spin_lock(lock: &inode_hash_lock);
2282}
2283
2284static __initdata unsigned long ihash_entries;
2285static int __init set_ihash_entries(char *str)
2286{
2287 if (!str)
2288 return 0;
2289 ihash_entries = simple_strtoul(str, &str, 0);
2290 return 1;
2291}
2292__setup("ihash_entries=", set_ihash_entries);
2293
2294/*
2295 * Initialize the waitqueues and inode hash table.
2296 */
2297void __init inode_init_early(void)
2298{
2299 /* If hashes are distributed across NUMA nodes, defer
2300 * hash allocation until vmalloc space is available.
2301 */
2302 if (hashdist)
2303 return;
2304
2305 inode_hashtable =
2306 alloc_large_system_hash(tablename: "Inode-cache",
2307 bucketsize: sizeof(struct hlist_head),
2308 numentries: ihash_entries,
2309 scale: 14,
2310 HASH_EARLY | HASH_ZERO,
2311 hash_shift: &i_hash_shift,
2312 hash_mask: &i_hash_mask,
2313 low_limit: 0,
2314 high_limit: 0);
2315}
2316
2317void __init inode_init(void)
2318{
2319 /* inode slab cache */
2320 inode_cachep = kmem_cache_create(name: "inode_cache",
2321 size: sizeof(struct inode),
2322 align: 0,
2323 flags: (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
2324 SLAB_MEM_SPREAD|SLAB_ACCOUNT),
2325 ctor: init_once);
2326
2327 /* Hash may have been set up in inode_init_early */
2328 if (!hashdist)
2329 return;
2330
2331 inode_hashtable =
2332 alloc_large_system_hash(tablename: "Inode-cache",
2333 bucketsize: sizeof(struct hlist_head),
2334 numentries: ihash_entries,
2335 scale: 14,
2336 HASH_ZERO,
2337 hash_shift: &i_hash_shift,
2338 hash_mask: &i_hash_mask,
2339 low_limit: 0,
2340 high_limit: 0);
2341}
2342
2343void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
2344{
2345 inode->i_mode = mode;
2346 if (S_ISCHR(mode)) {
2347 inode->i_fop = &def_chr_fops;
2348 inode->i_rdev = rdev;
2349 } else if (S_ISBLK(mode)) {
2350 if (IS_ENABLED(CONFIG_BLOCK))
2351 inode->i_fop = &def_blk_fops;
2352 inode->i_rdev = rdev;
2353 } else if (S_ISFIFO(mode))
2354 inode->i_fop = &pipefifo_fops;
2355 else if (S_ISSOCK(mode))
2356 ; /* leave it no_open_fops */
2357 else
2358 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
2359 " inode %s:%lu\n", mode, inode->i_sb->s_id,
2360 inode->i_ino);
2361}
2362EXPORT_SYMBOL(init_special_inode);
2363
2364/**
2365 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
2366 * @idmap: idmap of the mount the inode was created from
2367 * @inode: New inode
2368 * @dir: Directory inode
2369 * @mode: mode of the new inode
2370 *
2371 * If the inode has been created through an idmapped mount the idmap of
2372 * the vfsmount must be passed through @idmap. This function will then take
2373 * care to map the inode according to @idmap before checking permissions
2374 * and initializing i_uid and i_gid. On non-idmapped mounts or if permission
2375 * checking is to be performed on the raw inode simply pass @nop_mnt_idmap.
2376 */
2377void inode_init_owner(struct mnt_idmap *idmap, struct inode *inode,
2378 const struct inode *dir, umode_t mode)
2379{
2380 inode_fsuid_set(inode, idmap);
2381 if (dir && dir->i_mode & S_ISGID) {
2382 inode->i_gid = dir->i_gid;
2383
2384 /* Directories are special, and always inherit S_ISGID */
2385 if (S_ISDIR(mode))
2386 mode |= S_ISGID;
2387 } else
2388 inode_fsgid_set(inode, idmap);
2389 inode->i_mode = mode;
2390}
2391EXPORT_SYMBOL(inode_init_owner);
2392
2393/**
2394 * inode_owner_or_capable - check current task permissions to inode
2395 * @idmap: idmap of the mount the inode was found from
2396 * @inode: inode being checked
2397 *
2398 * Return true if current either has CAP_FOWNER in a namespace with the
2399 * inode owner uid mapped, or owns the file.
2400 *
2401 * If the inode has been found through an idmapped mount the idmap of
2402 * the vfsmount must be passed through @idmap. This function will then take
2403 * care to map the inode according to @idmap before checking permissions.
2404 * On non-idmapped mounts or if permission checking is to be performed on the
2405 * raw inode simply passs @nop_mnt_idmap.
2406 */
2407bool inode_owner_or_capable(struct mnt_idmap *idmap,
2408 const struct inode *inode)
2409{
2410 vfsuid_t vfsuid;
2411 struct user_namespace *ns;
2412
2413 vfsuid = i_uid_into_vfsuid(idmap, inode);
2414 if (vfsuid_eq_kuid(vfsuid, current_fsuid()))
2415 return true;
2416
2417 ns = current_user_ns();
2418 if (vfsuid_has_mapping(userns: ns, vfsuid) && ns_capable(ns, CAP_FOWNER))
2419 return true;
2420 return false;
2421}
2422EXPORT_SYMBOL(inode_owner_or_capable);
2423
2424/*
2425 * Direct i/o helper functions
2426 */
2427static void __inode_dio_wait(struct inode *inode)
2428{
2429 wait_queue_head_t *wq = bit_waitqueue(word: &inode->i_state, __I_DIO_WAKEUP);
2430 DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
2431
2432 do {
2433 prepare_to_wait(wq_head: wq, wq_entry: &q.wq_entry, TASK_UNINTERRUPTIBLE);
2434 if (atomic_read(v: &inode->i_dio_count))
2435 schedule();
2436 } while (atomic_read(v: &inode->i_dio_count));
2437 finish_wait(wq_head: wq, wq_entry: &q.wq_entry);
2438}
2439
2440/**
2441 * inode_dio_wait - wait for outstanding DIO requests to finish
2442 * @inode: inode to wait for
2443 *
2444 * Waits for all pending direct I/O requests to finish so that we can
2445 * proceed with a truncate or equivalent operation.
2446 *
2447 * Must be called under a lock that serializes taking new references
2448 * to i_dio_count, usually by inode->i_mutex.
2449 */
2450void inode_dio_wait(struct inode *inode)
2451{
2452 if (atomic_read(v: &inode->i_dio_count))
2453 __inode_dio_wait(inode);
2454}
2455EXPORT_SYMBOL(inode_dio_wait);
2456
2457/*
2458 * inode_set_flags - atomically set some inode flags
2459 *
2460 * Note: the caller should be holding i_mutex, or else be sure that
2461 * they have exclusive access to the inode structure (i.e., while the
2462 * inode is being instantiated). The reason for the cmpxchg() loop
2463 * --- which wouldn't be necessary if all code paths which modify
2464 * i_flags actually followed this rule, is that there is at least one
2465 * code path which doesn't today so we use cmpxchg() out of an abundance
2466 * of caution.
2467 *
2468 * In the long run, i_mutex is overkill, and we should probably look
2469 * at using the i_lock spinlock to protect i_flags, and then make sure
2470 * it is so documented in include/linux/fs.h and that all code follows
2471 * the locking convention!!
2472 */
2473void inode_set_flags(struct inode *inode, unsigned int flags,
2474 unsigned int mask)
2475{
2476 WARN_ON_ONCE(flags & ~mask);
2477 set_mask_bits(&inode->i_flags, mask, flags);
2478}
2479EXPORT_SYMBOL(inode_set_flags);
2480
2481void inode_nohighmem(struct inode *inode)
2482{
2483 mapping_set_gfp_mask(m: inode->i_mapping, GFP_USER);
2484}
2485EXPORT_SYMBOL(inode_nohighmem);
2486
2487/**
2488 * timestamp_truncate - Truncate timespec to a granularity
2489 * @t: Timespec
2490 * @inode: inode being updated
2491 *
2492 * Truncate a timespec to the granularity supported by the fs
2493 * containing the inode. Always rounds down. gran must
2494 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
2495 */
2496struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode)
2497{
2498 struct super_block *sb = inode->i_sb;
2499 unsigned int gran = sb->s_time_gran;
2500
2501 t.tv_sec = clamp(t.tv_sec, sb->s_time_min, sb->s_time_max);
2502 if (unlikely(t.tv_sec == sb->s_time_max || t.tv_sec == sb->s_time_min))
2503 t.tv_nsec = 0;
2504
2505 /* Avoid division in the common cases 1 ns and 1 s. */
2506 if (gran == 1)
2507 ; /* nothing */
2508 else if (gran == NSEC_PER_SEC)
2509 t.tv_nsec = 0;
2510 else if (gran > 1 && gran < NSEC_PER_SEC)
2511 t.tv_nsec -= t.tv_nsec % gran;
2512 else
2513 WARN(1, "invalid file time granularity: %u", gran);
2514 return t;
2515}
2516EXPORT_SYMBOL(timestamp_truncate);
2517
2518/**
2519 * current_time - Return FS time
2520 * @inode: inode.
2521 *
2522 * Return the current time truncated to the time granularity supported by
2523 * the fs.
2524 *
2525 * Note that inode and inode->sb cannot be NULL.
2526 * Otherwise, the function warns and returns time without truncation.
2527 */
2528struct timespec64 current_time(struct inode *inode)
2529{
2530 struct timespec64 now;
2531
2532 ktime_get_coarse_real_ts64(ts: &now);
2533 return timestamp_truncate(now, inode);
2534}
2535EXPORT_SYMBOL(current_time);
2536
2537/**
2538 * inode_set_ctime_current - set the ctime to current_time
2539 * @inode: inode
2540 *
2541 * Set the inode->i_ctime to the current value for the inode. Returns
2542 * the current value that was assigned to i_ctime.
2543 */
2544struct timespec64 inode_set_ctime_current(struct inode *inode)
2545{
2546 struct timespec64 now = current_time(inode);
2547
2548 inode_set_ctime(inode, sec: now.tv_sec, nsec: now.tv_nsec);
2549 return now;
2550}
2551EXPORT_SYMBOL(inode_set_ctime_current);
2552
2553/**
2554 * in_group_or_capable - check whether caller is CAP_FSETID privileged
2555 * @idmap: idmap of the mount @inode was found from
2556 * @inode: inode to check
2557 * @vfsgid: the new/current vfsgid of @inode
2558 *
2559 * Check wether @vfsgid is in the caller's group list or if the caller is
2560 * privileged with CAP_FSETID over @inode. This can be used to determine
2561 * whether the setgid bit can be kept or must be dropped.
2562 *
2563 * Return: true if the caller is sufficiently privileged, false if not.
2564 */
2565bool in_group_or_capable(struct mnt_idmap *idmap,
2566 const struct inode *inode, vfsgid_t vfsgid)
2567{
2568 if (vfsgid_in_group_p(vfsgid))
2569 return true;
2570 if (capable_wrt_inode_uidgid(idmap, inode, CAP_FSETID))
2571 return true;
2572 return false;
2573}
2574
2575/**
2576 * mode_strip_sgid - handle the sgid bit for non-directories
2577 * @idmap: idmap of the mount the inode was created from
2578 * @dir: parent directory inode
2579 * @mode: mode of the file to be created in @dir
2580 *
2581 * If the @mode of the new file has both the S_ISGID and S_IXGRP bit
2582 * raised and @dir has the S_ISGID bit raised ensure that the caller is
2583 * either in the group of the parent directory or they have CAP_FSETID
2584 * in their user namespace and are privileged over the parent directory.
2585 * In all other cases, strip the S_ISGID bit from @mode.
2586 *
2587 * Return: the new mode to use for the file
2588 */
2589umode_t mode_strip_sgid(struct mnt_idmap *idmap,
2590 const struct inode *dir, umode_t mode)
2591{
2592 if ((mode & (S_ISGID | S_IXGRP)) != (S_ISGID | S_IXGRP))
2593 return mode;
2594 if (S_ISDIR(mode) || !dir || !(dir->i_mode & S_ISGID))
2595 return mode;
2596 if (in_group_or_capable(idmap, inode: dir, vfsgid: i_gid_into_vfsgid(idmap, inode: dir)))
2597 return mode;
2598 return mode & ~S_ISGID;
2599}
2600EXPORT_SYMBOL(mode_strip_sgid);
2601

source code of linux/fs/inode.c