1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Copyright (C) International Business Machines Corp., 2000-2004
4 */
5
6/*
7 * jfs_dtree.c: directory B+-tree manager
8 *
9 * B+-tree with variable length key directory:
10 *
11 * each directory page is structured as an array of 32-byte
12 * directory entry slots initialized as a freelist
13 * to avoid search/compaction of free space at insertion.
14 * when an entry is inserted, a number of slots are allocated
15 * from the freelist as required to store variable length data
16 * of the entry; when the entry is deleted, slots of the entry
17 * are returned to freelist.
18 *
19 * leaf entry stores full name as key and file serial number
20 * (aka inode number) as data.
21 * internal/router entry stores sufffix compressed name
22 * as key and simple extent descriptor as data.
23 *
24 * each directory page maintains a sorted entry index table
25 * which stores the start slot index of sorted entries
26 * to allow binary search on the table.
27 *
28 * directory starts as a root/leaf page in on-disk inode
29 * inline data area.
30 * when it becomes full, it starts a leaf of a external extent
31 * of length of 1 block. each time the first leaf becomes full,
32 * it is extended rather than split (its size is doubled),
33 * until its length becoms 4 KBytes, from then the extent is split
34 * with new 4 Kbyte extent when it becomes full
35 * to reduce external fragmentation of small directories.
36 *
37 * blah, blah, blah, for linear scan of directory in pieces by
38 * readdir().
39 *
40 *
41 * case-insensitive directory file system
42 *
43 * names are stored in case-sensitive way in leaf entry.
44 * but stored, searched and compared in case-insensitive (uppercase) order
45 * (i.e., both search key and entry key are folded for search/compare):
46 * (note that case-sensitive order is BROKEN in storage, e.g.,
47 * sensitive: Ad, aB, aC, aD -> insensitive: aB, aC, aD, Ad
48 *
49 * entries which folds to the same key makes up a equivalent class
50 * whose members are stored as contiguous cluster (may cross page boundary)
51 * but whose order is arbitrary and acts as duplicate, e.g.,
52 * abc, Abc, aBc, abC)
53 *
54 * once match is found at leaf, requires scan forward/backward
55 * either for, in case-insensitive search, duplicate
56 * or for, in case-sensitive search, for exact match
57 *
58 * router entry must be created/stored in case-insensitive way
59 * in internal entry:
60 * (right most key of left page and left most key of right page
61 * are folded, and its suffix compression is propagated as router
62 * key in parent)
63 * (e.g., if split occurs <abc> and <aBd>, <ABD> trather than <aB>
64 * should be made the router key for the split)
65 *
66 * case-insensitive search:
67 *
68 * fold search key;
69 *
70 * case-insensitive search of B-tree:
71 * for internal entry, router key is already folded;
72 * for leaf entry, fold the entry key before comparison.
73 *
74 * if (leaf entry case-insensitive match found)
75 * if (next entry satisfies case-insensitive match)
76 * return EDUPLICATE;
77 * if (prev entry satisfies case-insensitive match)
78 * return EDUPLICATE;
79 * return match;
80 * else
81 * return no match;
82 *
83 * serialization:
84 * target directory inode lock is being held on entry/exit
85 * of all main directory service routines.
86 *
87 * log based recovery:
88 */
89
90#include <linux/fs.h>
91#include <linux/quotaops.h>
92#include <linux/slab.h>
93#include "jfs_incore.h"
94#include "jfs_superblock.h"
95#include "jfs_filsys.h"
96#include "jfs_metapage.h"
97#include "jfs_dmap.h"
98#include "jfs_unicode.h"
99#include "jfs_debug.h"
100
101/* dtree split parameter */
102struct dtsplit {
103 struct metapage *mp;
104 s16 index;
105 s16 nslot;
106 struct component_name *key;
107 ddata_t *data;
108 struct pxdlist *pxdlist;
109};
110
111#define DT_PAGE(IP, MP) BT_PAGE(IP, MP, dtpage_t, i_dtroot)
112
113/* get page buffer for specified block address */
114#define DT_GETPAGE(IP, BN, MP, SIZE, P, RC) \
115do { \
116 BT_GETPAGE(IP, BN, MP, dtpage_t, SIZE, P, RC, i_dtroot); \
117 if (!(RC)) { \
118 if (((P)->header.nextindex > \
119 (((BN) == 0) ? DTROOTMAXSLOT : (P)->header.maxslot)) || \
120 ((BN) && ((P)->header.maxslot > DTPAGEMAXSLOT))) { \
121 BT_PUTPAGE(MP); \
122 jfs_error((IP)->i_sb, \
123 "DT_GETPAGE: dtree page corrupt\n"); \
124 MP = NULL; \
125 RC = -EIO; \
126 } \
127 } \
128} while (0)
129
130/* for consistency */
131#define DT_PUTPAGE(MP) BT_PUTPAGE(MP)
132
133#define DT_GETSEARCH(IP, LEAF, BN, MP, P, INDEX) \
134 BT_GETSEARCH(IP, LEAF, BN, MP, dtpage_t, P, INDEX, i_dtroot)
135
136/*
137 * forward references
138 */
139static int dtSplitUp(tid_t tid, struct inode *ip,
140 struct dtsplit * split, struct btstack * btstack);
141
142static int dtSplitPage(tid_t tid, struct inode *ip, struct dtsplit * split,
143 struct metapage ** rmpp, dtpage_t ** rpp, pxd_t * rxdp);
144
145static int dtExtendPage(tid_t tid, struct inode *ip,
146 struct dtsplit * split, struct btstack * btstack);
147
148static int dtSplitRoot(tid_t tid, struct inode *ip,
149 struct dtsplit * split, struct metapage ** rmpp);
150
151static int dtDeleteUp(tid_t tid, struct inode *ip, struct metapage * fmp,
152 dtpage_t * fp, struct btstack * btstack);
153
154static int dtRelink(tid_t tid, struct inode *ip, dtpage_t * p);
155
156static int dtReadFirst(struct inode *ip, struct btstack * btstack);
157
158static int dtReadNext(struct inode *ip,
159 loff_t * offset, struct btstack * btstack);
160
161static int dtCompare(struct component_name * key, dtpage_t * p, int si);
162
163static int ciCompare(struct component_name * key, dtpage_t * p, int si,
164 int flag);
165
166static void dtGetKey(dtpage_t * p, int i, struct component_name * key,
167 int flag);
168
169static int ciGetLeafPrefixKey(dtpage_t * lp, int li, dtpage_t * rp,
170 int ri, struct component_name * key, int flag);
171
172static void dtInsertEntry(dtpage_t * p, int index, struct component_name * key,
173 ddata_t * data, struct dt_lock **);
174
175static void dtMoveEntry(dtpage_t * sp, int si, dtpage_t * dp,
176 struct dt_lock ** sdtlock, struct dt_lock ** ddtlock,
177 int do_index);
178
179static void dtDeleteEntry(dtpage_t * p, int fi, struct dt_lock ** dtlock);
180
181static void dtTruncateEntry(dtpage_t * p, int ti, struct dt_lock ** dtlock);
182
183static void dtLinelockFreelist(dtpage_t * p, int m, struct dt_lock ** dtlock);
184
185#define ciToUpper(c) UniStrupr((c)->name)
186
187/*
188 * read_index_page()
189 *
190 * Reads a page of a directory's index table.
191 * Having metadata mapped into the directory inode's address space
192 * presents a multitude of problems. We avoid this by mapping to
193 * the absolute address space outside of the *_metapage routines
194 */
195static struct metapage *read_index_page(struct inode *inode, s64 blkno)
196{
197 int rc;
198 s64 xaddr;
199 int xflag;
200 s32 xlen;
201
202 rc = xtLookup(ip: inode, lstart: blkno, llen: 1, pflag: &xflag, paddr: &xaddr, plen: &xlen, flag: 1);
203 if (rc || (xaddr == 0))
204 return NULL;
205
206 return read_metapage(inode, xaddr, PSIZE, 1);
207}
208
209/*
210 * get_index_page()
211 *
212 * Same as get_index_page(), but get's a new page without reading
213 */
214static struct metapage *get_index_page(struct inode *inode, s64 blkno)
215{
216 int rc;
217 s64 xaddr;
218 int xflag;
219 s32 xlen;
220
221 rc = xtLookup(ip: inode, lstart: blkno, llen: 1, pflag: &xflag, paddr: &xaddr, plen: &xlen, flag: 1);
222 if (rc || (xaddr == 0))
223 return NULL;
224
225 return get_metapage(inode, xaddr, PSIZE, 1);
226}
227
228/*
229 * find_index()
230 *
231 * Returns dtree page containing directory table entry for specified
232 * index and pointer to its entry.
233 *
234 * mp must be released by caller.
235 */
236static struct dir_table_slot *find_index(struct inode *ip, u32 index,
237 struct metapage ** mp, s64 *lblock)
238{
239 struct jfs_inode_info *jfs_ip = JFS_IP(inode: ip);
240 s64 blkno;
241 s64 offset;
242 int page_offset;
243 struct dir_table_slot *slot;
244 static int maxWarnings = 10;
245
246 if (index < 2) {
247 if (maxWarnings) {
248 jfs_warn("find_entry called with index = %d", index);
249 maxWarnings--;
250 }
251 return NULL;
252 }
253
254 if (index >= jfs_ip->next_index) {
255 jfs_warn("find_entry called with index >= next_index");
256 return NULL;
257 }
258
259 if (jfs_dirtable_inline(inode: ip)) {
260 /*
261 * Inline directory table
262 */
263 *mp = NULL;
264 slot = &jfs_ip->i_dirtable[index - 2];
265 } else {
266 offset = (index - 2) * sizeof(struct dir_table_slot);
267 page_offset = offset & (PSIZE - 1);
268 blkno = ((offset + 1) >> L2PSIZE) <<
269 JFS_SBI(sb: ip->i_sb)->l2nbperpage;
270
271 if (*mp && (*lblock != blkno)) {
272 release_metapage(*mp);
273 *mp = NULL;
274 }
275 if (!(*mp)) {
276 *lblock = blkno;
277 *mp = read_index_page(inode: ip, blkno);
278 }
279 if (!(*mp)) {
280 jfs_err("free_index: error reading directory table");
281 return NULL;
282 }
283
284 slot =
285 (struct dir_table_slot *) ((char *) (*mp)->data +
286 page_offset);
287 }
288 return slot;
289}
290
291static inline void lock_index(tid_t tid, struct inode *ip, struct metapage * mp,
292 u32 index)
293{
294 struct tlock *tlck;
295 struct linelock *llck;
296 struct lv *lv;
297
298 tlck = txLock(tid, ip, mp, tlckDATA);
299 llck = (struct linelock *) tlck->lock;
300
301 if (llck->index >= llck->maxcnt)
302 llck = txLinelock(llck);
303 lv = &llck->lv[llck->index];
304
305 /*
306 * Linelock slot size is twice the size of directory table
307 * slot size. 512 entries per page.
308 */
309 lv->offset = ((index - 2) & 511) >> 1;
310 lv->length = 1;
311 llck->index++;
312}
313
314/*
315 * add_index()
316 *
317 * Adds an entry to the directory index table. This is used to provide
318 * each directory entry with a persistent index in which to resume
319 * directory traversals
320 */
321static u32 add_index(tid_t tid, struct inode *ip, s64 bn, int slot)
322{
323 struct super_block *sb = ip->i_sb;
324 struct jfs_sb_info *sbi = JFS_SBI(sb);
325 struct jfs_inode_info *jfs_ip = JFS_IP(inode: ip);
326 u64 blkno;
327 struct dir_table_slot *dirtab_slot;
328 u32 index;
329 struct linelock *llck;
330 struct lv *lv;
331 struct metapage *mp;
332 s64 offset;
333 uint page_offset;
334 struct tlock *tlck;
335 s64 xaddr;
336
337 ASSERT(DO_INDEX(ip));
338
339 if (jfs_ip->next_index < 2) {
340 jfs_warn("add_index: next_index = %d. Resetting!",
341 jfs_ip->next_index);
342 jfs_ip->next_index = 2;
343 }
344
345 index = jfs_ip->next_index++;
346
347 if (index <= MAX_INLINE_DIRTABLE_ENTRY) {
348 /*
349 * i_size reflects size of index table, or 8 bytes per entry.
350 */
351 ip->i_size = (loff_t) (index - 1) << 3;
352
353 /*
354 * dir table fits inline within inode
355 */
356 dirtab_slot = &jfs_ip->i_dirtable[index-2];
357 dirtab_slot->flag = DIR_INDEX_VALID;
358 dirtab_slot->slot = slot;
359 DTSaddress(dirtab_slot, bn);
360
361 set_cflag(COMMIT_Dirtable, ip);
362
363 return index;
364 }
365 if (index == (MAX_INLINE_DIRTABLE_ENTRY + 1)) {
366 struct dir_table_slot temp_table[12];
367
368 /*
369 * It's time to move the inline table to an external
370 * page and begin to build the xtree
371 */
372 if (dquot_alloc_block(inode: ip, nr: sbi->nbperpage))
373 goto clean_up;
374 if (dbAlloc(ipbmap: ip, hint: 0, nblocks: sbi->nbperpage, results: &xaddr)) {
375 dquot_free_block(inode: ip, nr: sbi->nbperpage);
376 goto clean_up;
377 }
378
379 /*
380 * Save the table, we're going to overwrite it with the
381 * xtree root
382 */
383 memcpy(temp_table, &jfs_ip->i_dirtable, sizeof(temp_table));
384
385 /*
386 * Initialize empty x-tree
387 */
388 xtInitRoot(tid, ip);
389
390 /*
391 * Add the first block to the xtree
392 */
393 if (xtInsert(tid, ip, xflag: 0, xoff: 0, xlen: sbi->nbperpage, xaddrp: &xaddr, flag: 0)) {
394 /* This really shouldn't fail */
395 jfs_warn("add_index: xtInsert failed!");
396 memcpy(&jfs_ip->i_dirtable, temp_table,
397 sizeof (temp_table));
398 dbFree(ipbmap: ip, blkno: xaddr, nblocks: sbi->nbperpage);
399 dquot_free_block(inode: ip, nr: sbi->nbperpage);
400 goto clean_up;
401 }
402 ip->i_size = PSIZE;
403
404 mp = get_index_page(inode: ip, blkno: 0);
405 if (!mp) {
406 jfs_err("add_index: get_metapage failed!");
407 xtTruncate(tid, ip, newsize: 0, COMMIT_PWMAP);
408 memcpy(&jfs_ip->i_dirtable, temp_table,
409 sizeof (temp_table));
410 goto clean_up;
411 }
412 tlck = txLock(tid, ip, mp, tlckDATA);
413 llck = (struct linelock *) & tlck->lock;
414 ASSERT(llck->index == 0);
415 lv = &llck->lv[0];
416
417 lv->offset = 0;
418 lv->length = 6; /* tlckDATA slot size is 16 bytes */
419 llck->index++;
420
421 memcpy(mp->data, temp_table, sizeof(temp_table));
422
423 mark_metapage_dirty(mp);
424 release_metapage(mp);
425
426 /*
427 * Logging is now directed by xtree tlocks
428 */
429 clear_cflag(COMMIT_Dirtable, ip);
430 }
431
432 offset = (index - 2) * sizeof(struct dir_table_slot);
433 page_offset = offset & (PSIZE - 1);
434 blkno = ((offset + 1) >> L2PSIZE) << sbi->l2nbperpage;
435 if (page_offset == 0) {
436 /*
437 * This will be the beginning of a new page
438 */
439 xaddr = 0;
440 if (xtInsert(tid, ip, xflag: 0, xoff: blkno, xlen: sbi->nbperpage, xaddrp: &xaddr, flag: 0)) {
441 jfs_warn("add_index: xtInsert failed!");
442 goto clean_up;
443 }
444 ip->i_size += PSIZE;
445
446 if ((mp = get_index_page(inode: ip, blkno)))
447 memset(mp->data, 0, PSIZE); /* Just looks better */
448 else
449 xtTruncate(tid, ip, newsize: offset, COMMIT_PWMAP);
450 } else
451 mp = read_index_page(inode: ip, blkno);
452
453 if (!mp) {
454 jfs_err("add_index: get/read_metapage failed!");
455 goto clean_up;
456 }
457
458 lock_index(tid, ip, mp, index);
459
460 dirtab_slot =
461 (struct dir_table_slot *) ((char *) mp->data + page_offset);
462 dirtab_slot->flag = DIR_INDEX_VALID;
463 dirtab_slot->slot = slot;
464 DTSaddress(dirtab_slot, bn);
465
466 mark_metapage_dirty(mp);
467 release_metapage(mp);
468
469 return index;
470
471 clean_up:
472
473 jfs_ip->next_index--;
474
475 return 0;
476}
477
478/*
479 * free_index()
480 *
481 * Marks an entry to the directory index table as free.
482 */
483static void free_index(tid_t tid, struct inode *ip, u32 index, u32 next)
484{
485 struct dir_table_slot *dirtab_slot;
486 s64 lblock;
487 struct metapage *mp = NULL;
488
489 dirtab_slot = find_index(ip, index, mp: &mp, lblock: &lblock);
490
491 if (!dirtab_slot)
492 return;
493
494 dirtab_slot->flag = DIR_INDEX_FREE;
495 dirtab_slot->slot = dirtab_slot->addr1 = 0;
496 dirtab_slot->addr2 = cpu_to_le32(next);
497
498 if (mp) {
499 lock_index(tid, ip, mp, index);
500 mark_metapage_dirty(mp);
501 release_metapage(mp);
502 } else
503 set_cflag(COMMIT_Dirtable, ip);
504}
505
506/*
507 * modify_index()
508 *
509 * Changes an entry in the directory index table
510 */
511static void modify_index(tid_t tid, struct inode *ip, u32 index, s64 bn,
512 int slot, struct metapage ** mp, s64 *lblock)
513{
514 struct dir_table_slot *dirtab_slot;
515
516 dirtab_slot = find_index(ip, index, mp, lblock);
517
518 if (!dirtab_slot)
519 return;
520
521 DTSaddress(dirtab_slot, bn);
522 dirtab_slot->slot = slot;
523
524 if (*mp) {
525 lock_index(tid, ip, mp: *mp, index);
526 mark_metapage_dirty(*mp);
527 } else
528 set_cflag(COMMIT_Dirtable, ip);
529}
530
531/*
532 * read_index()
533 *
534 * reads a directory table slot
535 */
536static int read_index(struct inode *ip, u32 index,
537 struct dir_table_slot * dirtab_slot)
538{
539 s64 lblock;
540 struct metapage *mp = NULL;
541 struct dir_table_slot *slot;
542
543 slot = find_index(ip, index, mp: &mp, lblock: &lblock);
544 if (!slot) {
545 return -EIO;
546 }
547
548 memcpy(dirtab_slot, slot, sizeof(struct dir_table_slot));
549
550 if (mp)
551 release_metapage(mp);
552
553 return 0;
554}
555
556/*
557 * dtSearch()
558 *
559 * function:
560 * Search for the entry with specified key
561 *
562 * parameter:
563 *
564 * return: 0 - search result on stack, leaf page pinned;
565 * errno - I/O error
566 */
567int dtSearch(struct inode *ip, struct component_name * key, ino_t * data,
568 struct btstack * btstack, int flag)
569{
570 int rc = 0;
571 int cmp = 1; /* init for empty page */
572 s64 bn;
573 struct metapage *mp;
574 dtpage_t *p;
575 s8 *stbl;
576 int base, index, lim;
577 struct btframe *btsp;
578 pxd_t *pxd;
579 int psize = 288; /* initial in-line directory */
580 ino_t inumber;
581 struct component_name ciKey;
582 struct super_block *sb = ip->i_sb;
583
584 ciKey.name = kmalloc_array(JFS_NAME_MAX + 1, size: sizeof(wchar_t),
585 GFP_NOFS);
586 if (!ciKey.name) {
587 rc = -ENOMEM;
588 goto dtSearch_Exit2;
589 }
590
591
592 /* uppercase search key for c-i directory */
593 UniStrcpy(ucs1: ciKey.name, ucs2: key->name);
594 ciKey.namlen = key->namlen;
595
596 /* only uppercase if case-insensitive support is on */
597 if ((JFS_SBI(sb)->mntflag & JFS_OS2) == JFS_OS2) {
598 ciToUpper(&ciKey);
599 }
600 BT_CLR(btstack); /* reset stack */
601
602 /* init level count for max pages to split */
603 btstack->nsplit = 1;
604
605 /*
606 * search down tree from root:
607 *
608 * between two consecutive entries of <Ki, Pi> and <Kj, Pj> of
609 * internal page, child page Pi contains entry with k, Ki <= K < Kj.
610 *
611 * if entry with search key K is not found
612 * internal page search find the entry with largest key Ki
613 * less than K which point to the child page to search;
614 * leaf page search find the entry with smallest key Kj
615 * greater than K so that the returned index is the position of
616 * the entry to be shifted right for insertion of new entry.
617 * for empty tree, search key is greater than any key of the tree.
618 *
619 * by convention, root bn = 0.
620 */
621 for (bn = 0;;) {
622 /* get/pin the page to search */
623 DT_GETPAGE(ip, bn, mp, psize, p, rc);
624 if (rc)
625 goto dtSearch_Exit1;
626
627 /* get sorted entry table of the page */
628 stbl = DT_GETSTBL(p);
629
630 /*
631 * binary search with search key K on the current page.
632 */
633 for (base = 0, lim = p->header.nextindex; lim; lim >>= 1) {
634 index = base + (lim >> 1);
635
636 if (p->header.flag & BT_LEAF) {
637 /* uppercase leaf name to compare */
638 cmp =
639 ciCompare(key: &ciKey, p, si: stbl[index],
640 flag: JFS_SBI(sb)->mntflag);
641 } else {
642 /* router key is in uppercase */
643
644 cmp = dtCompare(key: &ciKey, p, si: stbl[index]);
645
646
647 }
648 if (cmp == 0) {
649 /*
650 * search hit
651 */
652 /* search hit - leaf page:
653 * return the entry found
654 */
655 if (p->header.flag & BT_LEAF) {
656 inumber = le32_to_cpu(
657 ((struct ldtentry *) & p->slot[stbl[index]])->inumber);
658
659 /*
660 * search for JFS_LOOKUP
661 */
662 if (flag == JFS_LOOKUP) {
663 *data = inumber;
664 rc = 0;
665 goto out;
666 }
667
668 /*
669 * search for JFS_CREATE
670 */
671 if (flag == JFS_CREATE) {
672 *data = inumber;
673 rc = -EEXIST;
674 goto out;
675 }
676
677 /*
678 * search for JFS_REMOVE or JFS_RENAME
679 */
680 if ((flag == JFS_REMOVE ||
681 flag == JFS_RENAME) &&
682 *data != inumber) {
683 rc = -ESTALE;
684 goto out;
685 }
686
687 /*
688 * JFS_REMOVE|JFS_FINDDIR|JFS_RENAME
689 */
690 /* save search result */
691 *data = inumber;
692 btsp = btstack->top;
693 btsp->bn = bn;
694 btsp->index = index;
695 btsp->mp = mp;
696
697 rc = 0;
698 goto dtSearch_Exit1;
699 }
700
701 /* search hit - internal page:
702 * descend/search its child page
703 */
704 goto getChild;
705 }
706
707 if (cmp > 0) {
708 base = index + 1;
709 --lim;
710 }
711 }
712
713 /*
714 * search miss
715 *
716 * base is the smallest index with key (Kj) greater than
717 * search key (K) and may be zero or (maxindex + 1) index.
718 */
719 /*
720 * search miss - leaf page
721 *
722 * return location of entry (base) where new entry with
723 * search key K is to be inserted.
724 */
725 if (p->header.flag & BT_LEAF) {
726 /*
727 * search for JFS_LOOKUP, JFS_REMOVE, or JFS_RENAME
728 */
729 if (flag == JFS_LOOKUP || flag == JFS_REMOVE ||
730 flag == JFS_RENAME) {
731 rc = -ENOENT;
732 goto out;
733 }
734
735 /*
736 * search for JFS_CREATE|JFS_FINDDIR:
737 *
738 * save search result
739 */
740 *data = 0;
741 btsp = btstack->top;
742 btsp->bn = bn;
743 btsp->index = base;
744 btsp->mp = mp;
745
746 rc = 0;
747 goto dtSearch_Exit1;
748 }
749
750 /*
751 * search miss - internal page
752 *
753 * if base is non-zero, decrement base by one to get the parent
754 * entry of the child page to search.
755 */
756 index = base ? base - 1 : base;
757
758 /*
759 * go down to child page
760 */
761 getChild:
762 /* update max. number of pages to split */
763 if (BT_STACK_FULL(btstack)) {
764 /* Something's corrupted, mark filesystem dirty so
765 * chkdsk will fix it.
766 */
767 jfs_error(sb, "stack overrun!\n");
768 BT_STACK_DUMP(btstack);
769 rc = -EIO;
770 goto out;
771 }
772 btstack->nsplit++;
773
774 /* push (bn, index) of the parent page/entry */
775 BT_PUSH(btstack, bn, index);
776
777 /* get the child page block number */
778 pxd = (pxd_t *) & p->slot[stbl[index]];
779 bn = addressPXD(pxd);
780 psize = lengthPXD(pxd) << JFS_SBI(sb: ip->i_sb)->l2bsize;
781
782 /* unpin the parent page */
783 DT_PUTPAGE(mp);
784 }
785
786 out:
787 DT_PUTPAGE(mp);
788
789 dtSearch_Exit1:
790
791 kfree(objp: ciKey.name);
792
793 dtSearch_Exit2:
794
795 return rc;
796}
797
798
799/*
800 * dtInsert()
801 *
802 * function: insert an entry to directory tree
803 *
804 * parameter:
805 *
806 * return: 0 - success;
807 * errno - failure;
808 */
809int dtInsert(tid_t tid, struct inode *ip,
810 struct component_name * name, ino_t * fsn, struct btstack * btstack)
811{
812 int rc = 0;
813 struct metapage *mp; /* meta-page buffer */
814 dtpage_t *p; /* base B+-tree index page */
815 s64 bn;
816 int index;
817 struct dtsplit split; /* split information */
818 ddata_t data;
819 struct dt_lock *dtlck;
820 int n;
821 struct tlock *tlck;
822 struct lv *lv;
823
824 /*
825 * retrieve search result
826 *
827 * dtSearch() returns (leaf page pinned, index at which to insert).
828 * n.b. dtSearch() may return index of (maxindex + 1) of
829 * the full page.
830 */
831 DT_GETSEARCH(ip, btstack->top, bn, mp, p, index);
832
833 /*
834 * insert entry for new key
835 */
836 if (DO_INDEX(ip)) {
837 if (JFS_IP(inode: ip)->next_index == DIREND) {
838 DT_PUTPAGE(mp);
839 return -EMLINK;
840 }
841 n = NDTLEAF(name->namlen);
842 data.leaf.tid = tid;
843 data.leaf.ip = ip;
844 } else {
845 n = NDTLEAF_LEGACY(name->namlen);
846 data.leaf.ip = NULL; /* signifies legacy directory format */
847 }
848 data.leaf.ino = *fsn;
849
850 /*
851 * leaf page does not have enough room for new entry:
852 *
853 * extend/split the leaf page;
854 *
855 * dtSplitUp() will insert the entry and unpin the leaf page.
856 */
857 if (n > p->header.freecnt) {
858 split.mp = mp;
859 split.index = index;
860 split.nslot = n;
861 split.key = name;
862 split.data = &data;
863 rc = dtSplitUp(tid, ip, split: &split, btstack);
864 return rc;
865 }
866
867 /*
868 * leaf page does have enough room for new entry:
869 *
870 * insert the new data entry into the leaf page;
871 */
872 BT_MARK_DIRTY(mp, ip);
873 /*
874 * acquire a transaction lock on the leaf page
875 */
876 tlck = txLock(tid, ip, mp, tlckDTREE | tlckENTRY);
877 dtlck = (struct dt_lock *) & tlck->lock;
878 ASSERT(dtlck->index == 0);
879 lv = & dtlck->lv[0];
880
881 /* linelock header */
882 lv->offset = 0;
883 lv->length = 1;
884 dtlck->index++;
885
886 dtInsertEntry(p, index, key: name, data: &data, &dtlck);
887
888 /* linelock stbl of non-root leaf page */
889 if (!(p->header.flag & BT_ROOT)) {
890 if (dtlck->index >= dtlck->maxcnt)
891 dtlck = (struct dt_lock *) txLinelock(dtlck);
892 lv = & dtlck->lv[dtlck->index];
893 n = index >> L2DTSLOTSIZE;
894 lv->offset = p->header.stblindex + n;
895 lv->length =
896 ((p->header.nextindex - 1) >> L2DTSLOTSIZE) - n + 1;
897 dtlck->index++;
898 }
899
900 /* unpin the leaf page */
901 DT_PUTPAGE(mp);
902
903 return 0;
904}
905
906
907/*
908 * dtSplitUp()
909 *
910 * function: propagate insertion bottom up;
911 *
912 * parameter:
913 *
914 * return: 0 - success;
915 * errno - failure;
916 * leaf page unpinned;
917 */
918static int dtSplitUp(tid_t tid,
919 struct inode *ip, struct dtsplit * split, struct btstack * btstack)
920{
921 struct jfs_sb_info *sbi = JFS_SBI(sb: ip->i_sb);
922 int rc = 0;
923 struct metapage *smp;
924 dtpage_t *sp; /* split page */
925 struct metapage *rmp;
926 dtpage_t *rp; /* new right page split from sp */
927 pxd_t rpxd; /* new right page extent descriptor */
928 struct metapage *lmp;
929 dtpage_t *lp; /* left child page */
930 int skip; /* index of entry of insertion */
931 struct btframe *parent; /* parent page entry on traverse stack */
932 s64 xaddr, nxaddr;
933 int xlen, xsize;
934 struct pxdlist pxdlist;
935 pxd_t *pxd;
936 struct component_name key = { 0, NULL };
937 ddata_t *data = split->data;
938 int n;
939 struct dt_lock *dtlck;
940 struct tlock *tlck;
941 struct lv *lv;
942 int quota_allocation = 0;
943
944 /* get split page */
945 smp = split->mp;
946 sp = DT_PAGE(ip, smp);
947
948 key.name = kmalloc_array(JFS_NAME_MAX + 2, size: sizeof(wchar_t), GFP_NOFS);
949 if (!key.name) {
950 DT_PUTPAGE(smp);
951 rc = -ENOMEM;
952 goto dtSplitUp_Exit;
953 }
954
955 /*
956 * split leaf page
957 *
958 * The split routines insert the new entry, and
959 * acquire txLock as appropriate.
960 */
961 /*
962 * split root leaf page:
963 */
964 if (sp->header.flag & BT_ROOT) {
965 /*
966 * allocate a single extent child page
967 */
968 xlen = 1;
969 n = sbi->bsize >> L2DTSLOTSIZE;
970 n -= (n + 31) >> L2DTSLOTSIZE; /* stbl size */
971 n -= DTROOTMAXSLOT - sp->header.freecnt; /* header + entries */
972 if (n <= split->nslot)
973 xlen++;
974 if ((rc = dbAlloc(ipbmap: ip, hint: 0, nblocks: (s64) xlen, results: &xaddr))) {
975 DT_PUTPAGE(smp);
976 goto freeKeyName;
977 }
978
979 pxdlist.maxnpxd = 1;
980 pxdlist.npxd = 0;
981 pxd = &pxdlist.pxd[0];
982 PXDaddress(pxd, addr: xaddr);
983 PXDlength(pxd, len: xlen);
984 split->pxdlist = &pxdlist;
985 rc = dtSplitRoot(tid, ip, split, rmpp: &rmp);
986
987 if (rc)
988 dbFree(ipbmap: ip, blkno: xaddr, nblocks: xlen);
989 else
990 DT_PUTPAGE(rmp);
991
992 DT_PUTPAGE(smp);
993
994 if (!DO_INDEX(ip))
995 ip->i_size = xlen << sbi->l2bsize;
996
997 goto freeKeyName;
998 }
999
1000 /*
1001 * extend first leaf page
1002 *
1003 * extend the 1st extent if less than buffer page size
1004 * (dtExtendPage() reurns leaf page unpinned)
1005 */
1006 pxd = &sp->header.self;
1007 xlen = lengthPXD(pxd);
1008 xsize = xlen << sbi->l2bsize;
1009 if (xsize < PSIZE) {
1010 xaddr = addressPXD(pxd);
1011 n = xsize >> L2DTSLOTSIZE;
1012 n -= (n + 31) >> L2DTSLOTSIZE; /* stbl size */
1013 if ((n + sp->header.freecnt) <= split->nslot)
1014 n = xlen + (xlen << 1);
1015 else
1016 n = xlen;
1017
1018 /* Allocate blocks to quota. */
1019 rc = dquot_alloc_block(inode: ip, nr: n);
1020 if (rc)
1021 goto extendOut;
1022 quota_allocation += n;
1023
1024 if ((rc = dbReAlloc(ipbmap: sbi->ipbmap, blkno: xaddr, nblocks: (s64) xlen,
1025 addnblocks: (s64) n, results: &nxaddr)))
1026 goto extendOut;
1027
1028 pxdlist.maxnpxd = 1;
1029 pxdlist.npxd = 0;
1030 pxd = &pxdlist.pxd[0];
1031 PXDaddress(pxd, addr: nxaddr);
1032 PXDlength(pxd, len: xlen + n);
1033 split->pxdlist = &pxdlist;
1034 if ((rc = dtExtendPage(tid, ip, split, btstack))) {
1035 nxaddr = addressPXD(pxd);
1036 if (xaddr != nxaddr) {
1037 /* free relocated extent */
1038 xlen = lengthPXD(pxd);
1039 dbFree(ipbmap: ip, blkno: nxaddr, nblocks: (s64) xlen);
1040 } else {
1041 /* free extended delta */
1042 xlen = lengthPXD(pxd) - n;
1043 xaddr = addressPXD(pxd) + xlen;
1044 dbFree(ipbmap: ip, blkno: xaddr, nblocks: (s64) n);
1045 }
1046 } else if (!DO_INDEX(ip))
1047 ip->i_size = lengthPXD(pxd) << sbi->l2bsize;
1048
1049
1050 extendOut:
1051 DT_PUTPAGE(smp);
1052 goto freeKeyName;
1053 }
1054
1055 /*
1056 * split leaf page <sp> into <sp> and a new right page <rp>.
1057 *
1058 * return <rp> pinned and its extent descriptor <rpxd>
1059 */
1060 /*
1061 * allocate new directory page extent and
1062 * new index page(s) to cover page split(s)
1063 *
1064 * allocation hint: ?
1065 */
1066 n = btstack->nsplit;
1067 pxdlist.maxnpxd = pxdlist.npxd = 0;
1068 xlen = sbi->nbperpage;
1069 for (pxd = pxdlist.pxd; n > 0; n--, pxd++) {
1070 if ((rc = dbAlloc(ipbmap: ip, hint: 0, nblocks: (s64) xlen, results: &xaddr)) == 0) {
1071 PXDaddress(pxd, addr: xaddr);
1072 PXDlength(pxd, len: xlen);
1073 pxdlist.maxnpxd++;
1074 continue;
1075 }
1076
1077 DT_PUTPAGE(smp);
1078
1079 /* undo allocation */
1080 goto splitOut;
1081 }
1082
1083 split->pxdlist = &pxdlist;
1084 if ((rc = dtSplitPage(tid, ip, split, rmpp: &rmp, rpp: &rp, rxdp: &rpxd))) {
1085 DT_PUTPAGE(smp);
1086
1087 /* undo allocation */
1088 goto splitOut;
1089 }
1090
1091 if (!DO_INDEX(ip))
1092 ip->i_size += PSIZE;
1093
1094 /*
1095 * propagate up the router entry for the leaf page just split
1096 *
1097 * insert a router entry for the new page into the parent page,
1098 * propagate the insert/split up the tree by walking back the stack
1099 * of (bn of parent page, index of child page entry in parent page)
1100 * that were traversed during the search for the page that split.
1101 *
1102 * the propagation of insert/split up the tree stops if the root
1103 * splits or the page inserted into doesn't have to split to hold
1104 * the new entry.
1105 *
1106 * the parent entry for the split page remains the same, and
1107 * a new entry is inserted at its right with the first key and
1108 * block number of the new right page.
1109 *
1110 * There are a maximum of 4 pages pinned at any time:
1111 * two children, left parent and right parent (when the parent splits).
1112 * keep the child pages pinned while working on the parent.
1113 * make sure that all pins are released at exit.
1114 */
1115 while ((parent = BT_POP(btstack)) != NULL) {
1116 /* parent page specified by stack frame <parent> */
1117
1118 /* keep current child pages (<lp>, <rp>) pinned */
1119 lmp = smp;
1120 lp = sp;
1121
1122 /*
1123 * insert router entry in parent for new right child page <rp>
1124 */
1125 /* get the parent page <sp> */
1126 DT_GETPAGE(ip, parent->bn, smp, PSIZE, sp, rc);
1127 if (rc) {
1128 DT_PUTPAGE(lmp);
1129 DT_PUTPAGE(rmp);
1130 goto splitOut;
1131 }
1132
1133 /*
1134 * The new key entry goes ONE AFTER the index of parent entry,
1135 * because the split was to the right.
1136 */
1137 skip = parent->index + 1;
1138
1139 /*
1140 * compute the key for the router entry
1141 *
1142 * key suffix compression:
1143 * for internal pages that have leaf pages as children,
1144 * retain only what's needed to distinguish between
1145 * the new entry and the entry on the page to its left.
1146 * If the keys compare equal, retain the entire key.
1147 *
1148 * note that compression is performed only at computing
1149 * router key at the lowest internal level.
1150 * further compression of the key between pairs of higher
1151 * level internal pages loses too much information and
1152 * the search may fail.
1153 * (e.g., two adjacent leaf pages of {a, ..., x} {xx, ...,}
1154 * results in two adjacent parent entries (a)(xx).
1155 * if split occurs between these two entries, and
1156 * if compression is applied, the router key of parent entry
1157 * of right page (x) will divert search for x into right
1158 * subtree and miss x in the left subtree.)
1159 *
1160 * the entire key must be retained for the next-to-leftmost
1161 * internal key at any level of the tree, or search may fail
1162 * (e.g., ?)
1163 */
1164 switch (rp->header.flag & BT_TYPE) {
1165 case BT_LEAF:
1166 /*
1167 * compute the length of prefix for suffix compression
1168 * between last entry of left page and first entry
1169 * of right page
1170 */
1171 if ((sp->header.flag & BT_ROOT && skip > 1) ||
1172 sp->header.prev != 0 || skip > 1) {
1173 /* compute uppercase router prefix key */
1174 rc = ciGetLeafPrefixKey(lp,
1175 li: lp->header.nextindex-1,
1176 rp, ri: 0, key: &key,
1177 flag: sbi->mntflag);
1178 if (rc) {
1179 DT_PUTPAGE(lmp);
1180 DT_PUTPAGE(rmp);
1181 DT_PUTPAGE(smp);
1182 goto splitOut;
1183 }
1184 } else {
1185 /* next to leftmost entry of
1186 lowest internal level */
1187
1188 /* compute uppercase router key */
1189 dtGetKey(p: rp, i: 0, key: &key, flag: sbi->mntflag);
1190 key.name[key.namlen] = 0;
1191
1192 if ((sbi->mntflag & JFS_OS2) == JFS_OS2)
1193 ciToUpper(&key);
1194 }
1195
1196 n = NDTINTERNAL(key.namlen);
1197 break;
1198
1199 case BT_INTERNAL:
1200 dtGetKey(p: rp, i: 0, key: &key, flag: sbi->mntflag);
1201 n = NDTINTERNAL(key.namlen);
1202 break;
1203
1204 default:
1205 jfs_err("dtSplitUp(): UFO!");
1206 break;
1207 }
1208
1209 /* unpin left child page */
1210 DT_PUTPAGE(lmp);
1211
1212 /*
1213 * compute the data for the router entry
1214 */
1215 data->xd = rpxd; /* child page xd */
1216
1217 /*
1218 * parent page is full - split the parent page
1219 */
1220 if (n > sp->header.freecnt) {
1221 /* init for parent page split */
1222 split->mp = smp;
1223 split->index = skip; /* index at insert */
1224 split->nslot = n;
1225 split->key = &key;
1226 /* split->data = data; */
1227
1228 /* unpin right child page */
1229 DT_PUTPAGE(rmp);
1230
1231 /* The split routines insert the new entry,
1232 * acquire txLock as appropriate.
1233 * return <rp> pinned and its block number <rbn>.
1234 */
1235 rc = (sp->header.flag & BT_ROOT) ?
1236 dtSplitRoot(tid, ip, split, rmpp: &rmp) :
1237 dtSplitPage(tid, ip, split, rmpp: &rmp, rpp: &rp, rxdp: &rpxd);
1238 if (rc) {
1239 DT_PUTPAGE(smp);
1240 goto splitOut;
1241 }
1242
1243 /* smp and rmp are pinned */
1244 }
1245 /*
1246 * parent page is not full - insert router entry in parent page
1247 */
1248 else {
1249 BT_MARK_DIRTY(smp, ip);
1250 /*
1251 * acquire a transaction lock on the parent page
1252 */
1253 tlck = txLock(tid, ip, smp, tlckDTREE | tlckENTRY);
1254 dtlck = (struct dt_lock *) & tlck->lock;
1255 ASSERT(dtlck->index == 0);
1256 lv = & dtlck->lv[0];
1257
1258 /* linelock header */
1259 lv->offset = 0;
1260 lv->length = 1;
1261 dtlck->index++;
1262
1263 /* linelock stbl of non-root parent page */
1264 if (!(sp->header.flag & BT_ROOT)) {
1265 lv++;
1266 n = skip >> L2DTSLOTSIZE;
1267 lv->offset = sp->header.stblindex + n;
1268 lv->length =
1269 ((sp->header.nextindex -
1270 1) >> L2DTSLOTSIZE) - n + 1;
1271 dtlck->index++;
1272 }
1273
1274 dtInsertEntry(p: sp, index: skip, key: &key, data, &dtlck);
1275
1276 /* exit propagate up */
1277 break;
1278 }
1279 }
1280
1281 /* unpin current split and its right page */
1282 DT_PUTPAGE(smp);
1283 DT_PUTPAGE(rmp);
1284
1285 /*
1286 * free remaining extents allocated for split
1287 */
1288 splitOut:
1289 n = pxdlist.npxd;
1290 pxd = &pxdlist.pxd[n];
1291 for (; n < pxdlist.maxnpxd; n++, pxd++)
1292 dbFree(ipbmap: ip, blkno: addressPXD(pxd), nblocks: (s64) lengthPXD(pxd));
1293
1294 freeKeyName:
1295 kfree(objp: key.name);
1296
1297 /* Rollback quota allocation */
1298 if (rc && quota_allocation)
1299 dquot_free_block(inode: ip, nr: quota_allocation);
1300
1301 dtSplitUp_Exit:
1302
1303 return rc;
1304}
1305
1306
1307/*
1308 * dtSplitPage()
1309 *
1310 * function: Split a non-root page of a btree.
1311 *
1312 * parameter:
1313 *
1314 * return: 0 - success;
1315 * errno - failure;
1316 * return split and new page pinned;
1317 */
1318static int dtSplitPage(tid_t tid, struct inode *ip, struct dtsplit * split,
1319 struct metapage ** rmpp, dtpage_t ** rpp, pxd_t * rpxdp)
1320{
1321 int rc = 0;
1322 struct metapage *smp;
1323 dtpage_t *sp;
1324 struct metapage *rmp;
1325 dtpage_t *rp; /* new right page allocated */
1326 s64 rbn; /* new right page block number */
1327 struct metapage *mp;
1328 dtpage_t *p;
1329 s64 nextbn;
1330 struct pxdlist *pxdlist;
1331 pxd_t *pxd;
1332 int skip, nextindex, half, left, nxt, off, si;
1333 struct ldtentry *ldtentry;
1334 struct idtentry *idtentry;
1335 u8 *stbl;
1336 struct dtslot *f;
1337 int fsi, stblsize;
1338 int n;
1339 struct dt_lock *sdtlck, *rdtlck;
1340 struct tlock *tlck;
1341 struct dt_lock *dtlck;
1342 struct lv *slv, *rlv, *lv;
1343
1344 /* get split page */
1345 smp = split->mp;
1346 sp = DT_PAGE(ip, smp);
1347
1348 /*
1349 * allocate the new right page for the split
1350 */
1351 pxdlist = split->pxdlist;
1352 pxd = &pxdlist->pxd[pxdlist->npxd];
1353 pxdlist->npxd++;
1354 rbn = addressPXD(pxd);
1355 rmp = get_metapage(ip, rbn, PSIZE, 1);
1356 if (rmp == NULL)
1357 return -EIO;
1358
1359 /* Allocate blocks to quota. */
1360 rc = dquot_alloc_block(inode: ip, nr: lengthPXD(pxd));
1361 if (rc) {
1362 release_metapage(rmp);
1363 return rc;
1364 }
1365
1366 jfs_info("dtSplitPage: ip:0x%p smp:0x%p rmp:0x%p", ip, smp, rmp);
1367
1368 BT_MARK_DIRTY(rmp, ip);
1369 /*
1370 * acquire a transaction lock on the new right page
1371 */
1372 tlck = txLock(tid, ip, rmp, tlckDTREE | tlckNEW);
1373 rdtlck = (struct dt_lock *) & tlck->lock;
1374
1375 rp = (dtpage_t *) rmp->data;
1376 *rpp = rp;
1377 rp->header.self = *pxd;
1378
1379 BT_MARK_DIRTY(smp, ip);
1380 /*
1381 * acquire a transaction lock on the split page
1382 *
1383 * action:
1384 */
1385 tlck = txLock(tid, ip, smp, tlckDTREE | tlckENTRY);
1386 sdtlck = (struct dt_lock *) & tlck->lock;
1387
1388 /* linelock header of split page */
1389 ASSERT(sdtlck->index == 0);
1390 slv = & sdtlck->lv[0];
1391 slv->offset = 0;
1392 slv->length = 1;
1393 sdtlck->index++;
1394
1395 /*
1396 * initialize/update sibling pointers between sp and rp
1397 */
1398 nextbn = le64_to_cpu(sp->header.next);
1399 rp->header.next = cpu_to_le64(nextbn);
1400 rp->header.prev = cpu_to_le64(addressPXD(&sp->header.self));
1401 sp->header.next = cpu_to_le64(rbn);
1402
1403 /*
1404 * initialize new right page
1405 */
1406 rp->header.flag = sp->header.flag;
1407
1408 /* compute sorted entry table at start of extent data area */
1409 rp->header.nextindex = 0;
1410 rp->header.stblindex = 1;
1411
1412 n = PSIZE >> L2DTSLOTSIZE;
1413 rp->header.maxslot = n;
1414 stblsize = (n + 31) >> L2DTSLOTSIZE; /* in unit of slot */
1415
1416 /* init freelist */
1417 fsi = rp->header.stblindex + stblsize;
1418 rp->header.freelist = fsi;
1419 rp->header.freecnt = rp->header.maxslot - fsi;
1420
1421 /*
1422 * sequential append at tail: append without split
1423 *
1424 * If splitting the last page on a level because of appending
1425 * a entry to it (skip is maxentry), it's likely that the access is
1426 * sequential. Adding an empty page on the side of the level is less
1427 * work and can push the fill factor much higher than normal.
1428 * If we're wrong it's no big deal, we'll just do the split the right
1429 * way next time.
1430 * (It may look like it's equally easy to do a similar hack for
1431 * reverse sorted data, that is, split the tree left,
1432 * but it's not. Be my guest.)
1433 */
1434 if (nextbn == 0 && split->index == sp->header.nextindex) {
1435 /* linelock header + stbl (first slot) of new page */
1436 rlv = & rdtlck->lv[rdtlck->index];
1437 rlv->offset = 0;
1438 rlv->length = 2;
1439 rdtlck->index++;
1440
1441 /*
1442 * initialize freelist of new right page
1443 */
1444 f = &rp->slot[fsi];
1445 for (fsi++; fsi < rp->header.maxslot; f++, fsi++)
1446 f->next = fsi;
1447 f->next = -1;
1448
1449 /* insert entry at the first entry of the new right page */
1450 dtInsertEntry(p: rp, index: 0, key: split->key, data: split->data, &rdtlck);
1451
1452 goto out;
1453 }
1454
1455 /*
1456 * non-sequential insert (at possibly middle page)
1457 */
1458
1459 /*
1460 * update prev pointer of previous right sibling page;
1461 */
1462 if (nextbn != 0) {
1463 DT_GETPAGE(ip, nextbn, mp, PSIZE, p, rc);
1464 if (rc) {
1465 discard_metapage(mp: rmp);
1466 return rc;
1467 }
1468
1469 BT_MARK_DIRTY(mp, ip);
1470 /*
1471 * acquire a transaction lock on the next page
1472 */
1473 tlck = txLock(tid, ip, mp, tlckDTREE | tlckRELINK);
1474 jfs_info("dtSplitPage: tlck = 0x%p, ip = 0x%p, mp=0x%p",
1475 tlck, ip, mp);
1476 dtlck = (struct dt_lock *) & tlck->lock;
1477
1478 /* linelock header of previous right sibling page */
1479 lv = & dtlck->lv[dtlck->index];
1480 lv->offset = 0;
1481 lv->length = 1;
1482 dtlck->index++;
1483
1484 p->header.prev = cpu_to_le64(rbn);
1485
1486 DT_PUTPAGE(mp);
1487 }
1488
1489 /*
1490 * split the data between the split and right pages.
1491 */
1492 skip = split->index;
1493 half = (PSIZE >> L2DTSLOTSIZE) >> 1; /* swag */
1494 left = 0;
1495
1496 /*
1497 * compute fill factor for split pages
1498 *
1499 * <nxt> traces the next entry to move to rp
1500 * <off> traces the next entry to stay in sp
1501 */
1502 stbl = (u8 *) & sp->slot[sp->header.stblindex];
1503 nextindex = sp->header.nextindex;
1504 for (nxt = off = 0; nxt < nextindex; ++off) {
1505 if (off == skip)
1506 /* check for fill factor with new entry size */
1507 n = split->nslot;
1508 else {
1509 si = stbl[nxt];
1510 switch (sp->header.flag & BT_TYPE) {
1511 case BT_LEAF:
1512 ldtentry = (struct ldtentry *) & sp->slot[si];
1513 if (DO_INDEX(ip))
1514 n = NDTLEAF(ldtentry->namlen);
1515 else
1516 n = NDTLEAF_LEGACY(ldtentry->
1517 namlen);
1518 break;
1519
1520 case BT_INTERNAL:
1521 idtentry = (struct idtentry *) & sp->slot[si];
1522 n = NDTINTERNAL(idtentry->namlen);
1523 break;
1524
1525 default:
1526 break;
1527 }
1528
1529 ++nxt; /* advance to next entry to move in sp */
1530 }
1531
1532 left += n;
1533 if (left >= half)
1534 break;
1535 }
1536
1537 /* <nxt> poins to the 1st entry to move */
1538
1539 /*
1540 * move entries to right page
1541 *
1542 * dtMoveEntry() initializes rp and reserves entry for insertion
1543 *
1544 * split page moved out entries are linelocked;
1545 * new/right page moved in entries are linelocked;
1546 */
1547 /* linelock header + stbl of new right page */
1548 rlv = & rdtlck->lv[rdtlck->index];
1549 rlv->offset = 0;
1550 rlv->length = 5;
1551 rdtlck->index++;
1552
1553 dtMoveEntry(sp, si: nxt, dp: rp, sdtlock: &sdtlck, ddtlock: &rdtlck, DO_INDEX(ip));
1554
1555 sp->header.nextindex = nxt;
1556
1557 /*
1558 * finalize freelist of new right page
1559 */
1560 fsi = rp->header.freelist;
1561 f = &rp->slot[fsi];
1562 for (fsi++; fsi < rp->header.maxslot; f++, fsi++)
1563 f->next = fsi;
1564 f->next = -1;
1565
1566 /*
1567 * Update directory index table for entries now in right page
1568 */
1569 if ((rp->header.flag & BT_LEAF) && DO_INDEX(ip)) {
1570 s64 lblock;
1571
1572 mp = NULL;
1573 stbl = DT_GETSTBL(rp);
1574 for (n = 0; n < rp->header.nextindex; n++) {
1575 ldtentry = (struct ldtentry *) & rp->slot[stbl[n]];
1576 modify_index(tid, ip, le32_to_cpu(ldtentry->index),
1577 bn: rbn, slot: n, mp: &mp, lblock: &lblock);
1578 }
1579 if (mp)
1580 release_metapage(mp);
1581 }
1582
1583 /*
1584 * the skipped index was on the left page,
1585 */
1586 if (skip <= off) {
1587 /* insert the new entry in the split page */
1588 dtInsertEntry(p: sp, index: skip, key: split->key, data: split->data, &sdtlck);
1589
1590 /* linelock stbl of split page */
1591 if (sdtlck->index >= sdtlck->maxcnt)
1592 sdtlck = (struct dt_lock *) txLinelock(sdtlck);
1593 slv = & sdtlck->lv[sdtlck->index];
1594 n = skip >> L2DTSLOTSIZE;
1595 slv->offset = sp->header.stblindex + n;
1596 slv->length =
1597 ((sp->header.nextindex - 1) >> L2DTSLOTSIZE) - n + 1;
1598 sdtlck->index++;
1599 }
1600 /*
1601 * the skipped index was on the right page,
1602 */
1603 else {
1604 /* adjust the skip index to reflect the new position */
1605 skip -= nxt;
1606
1607 /* insert the new entry in the right page */
1608 dtInsertEntry(p: rp, index: skip, key: split->key, data: split->data, &rdtlck);
1609 }
1610
1611 out:
1612 *rmpp = rmp;
1613 *rpxdp = *pxd;
1614
1615 return rc;
1616}
1617
1618
1619/*
1620 * dtExtendPage()
1621 *
1622 * function: extend 1st/only directory leaf page
1623 *
1624 * parameter:
1625 *
1626 * return: 0 - success;
1627 * errno - failure;
1628 * return extended page pinned;
1629 */
1630static int dtExtendPage(tid_t tid,
1631 struct inode *ip, struct dtsplit * split, struct btstack * btstack)
1632{
1633 struct super_block *sb = ip->i_sb;
1634 int rc;
1635 struct metapage *smp, *pmp, *mp;
1636 dtpage_t *sp, *pp;
1637 struct pxdlist *pxdlist;
1638 pxd_t *pxd, *tpxd;
1639 int xlen, xsize;
1640 int newstblindex, newstblsize;
1641 int oldstblindex, oldstblsize;
1642 int fsi, last;
1643 struct dtslot *f;
1644 struct btframe *parent;
1645 int n;
1646 struct dt_lock *dtlck;
1647 s64 xaddr, txaddr;
1648 struct tlock *tlck;
1649 struct pxd_lock *pxdlock;
1650 struct lv *lv;
1651 uint type;
1652 struct ldtentry *ldtentry;
1653 u8 *stbl;
1654
1655 /* get page to extend */
1656 smp = split->mp;
1657 sp = DT_PAGE(ip, smp);
1658
1659 /* get parent/root page */
1660 parent = BT_POP(btstack);
1661 DT_GETPAGE(ip, parent->bn, pmp, PSIZE, pp, rc);
1662 if (rc)
1663 return (rc);
1664
1665 /*
1666 * extend the extent
1667 */
1668 pxdlist = split->pxdlist;
1669 pxd = &pxdlist->pxd[pxdlist->npxd];
1670 pxdlist->npxd++;
1671
1672 xaddr = addressPXD(pxd);
1673 tpxd = &sp->header.self;
1674 txaddr = addressPXD(pxd: tpxd);
1675 /* in-place extension */
1676 if (xaddr == txaddr) {
1677 type = tlckEXTEND;
1678 }
1679 /* relocation */
1680 else {
1681 type = tlckNEW;
1682
1683 /* save moved extent descriptor for later free */
1684 tlck = txMaplock(tid, ip, tlckDTREE | tlckRELOCATE);
1685 pxdlock = (struct pxd_lock *) & tlck->lock;
1686 pxdlock->flag = mlckFREEPXD;
1687 pxdlock->pxd = sp->header.self;
1688 pxdlock->index = 1;
1689
1690 /*
1691 * Update directory index table to reflect new page address
1692 */
1693 if (DO_INDEX(ip)) {
1694 s64 lblock;
1695
1696 mp = NULL;
1697 stbl = DT_GETSTBL(sp);
1698 for (n = 0; n < sp->header.nextindex; n++) {
1699 ldtentry =
1700 (struct ldtentry *) & sp->slot[stbl[n]];
1701 modify_index(tid, ip,
1702 le32_to_cpu(ldtentry->index),
1703 bn: xaddr, slot: n, mp: &mp, lblock: &lblock);
1704 }
1705 if (mp)
1706 release_metapage(mp);
1707 }
1708 }
1709
1710 /*
1711 * extend the page
1712 */
1713 sp->header.self = *pxd;
1714
1715 jfs_info("dtExtendPage: ip:0x%p smp:0x%p sp:0x%p", ip, smp, sp);
1716
1717 BT_MARK_DIRTY(smp, ip);
1718 /*
1719 * acquire a transaction lock on the extended/leaf page
1720 */
1721 tlck = txLock(tid, ip, smp, tlckDTREE | type);
1722 dtlck = (struct dt_lock *) & tlck->lock;
1723 lv = & dtlck->lv[0];
1724
1725 /* update buffer extent descriptor of extended page */
1726 xlen = lengthPXD(pxd);
1727 xsize = xlen << JFS_SBI(sb)->l2bsize;
1728
1729 /*
1730 * copy old stbl to new stbl at start of extended area
1731 */
1732 oldstblindex = sp->header.stblindex;
1733 oldstblsize = (sp->header.maxslot + 31) >> L2DTSLOTSIZE;
1734 newstblindex = sp->header.maxslot;
1735 n = xsize >> L2DTSLOTSIZE;
1736 newstblsize = (n + 31) >> L2DTSLOTSIZE;
1737 memcpy(&sp->slot[newstblindex], &sp->slot[oldstblindex],
1738 sp->header.nextindex);
1739
1740 /*
1741 * in-line extension: linelock old area of extended page
1742 */
1743 if (type == tlckEXTEND) {
1744 /* linelock header */
1745 lv->offset = 0;
1746 lv->length = 1;
1747 dtlck->index++;
1748 lv++;
1749
1750 /* linelock new stbl of extended page */
1751 lv->offset = newstblindex;
1752 lv->length = newstblsize;
1753 }
1754 /*
1755 * relocation: linelock whole relocated area
1756 */
1757 else {
1758 lv->offset = 0;
1759 lv->length = sp->header.maxslot + newstblsize;
1760 }
1761
1762 dtlck->index++;
1763
1764 sp->header.maxslot = n;
1765 sp->header.stblindex = newstblindex;
1766 /* sp->header.nextindex remains the same */
1767
1768 /*
1769 * add old stbl region at head of freelist
1770 */
1771 fsi = oldstblindex;
1772 f = &sp->slot[fsi];
1773 last = sp->header.freelist;
1774 for (n = 0; n < oldstblsize; n++, fsi++, f++) {
1775 f->next = last;
1776 last = fsi;
1777 }
1778 sp->header.freelist = last;
1779 sp->header.freecnt += oldstblsize;
1780
1781 /*
1782 * append free region of newly extended area at tail of freelist
1783 */
1784 /* init free region of newly extended area */
1785 fsi = n = newstblindex + newstblsize;
1786 f = &sp->slot[fsi];
1787 for (fsi++; fsi < sp->header.maxslot; f++, fsi++)
1788 f->next = fsi;
1789 f->next = -1;
1790
1791 /* append new free region at tail of old freelist */
1792 fsi = sp->header.freelist;
1793 if (fsi == -1)
1794 sp->header.freelist = n;
1795 else {
1796 do {
1797 f = &sp->slot[fsi];
1798 fsi = f->next;
1799 } while (fsi != -1);
1800
1801 f->next = n;
1802 }
1803
1804 sp->header.freecnt += sp->header.maxslot - n;
1805
1806 /*
1807 * insert the new entry
1808 */
1809 dtInsertEntry(p: sp, index: split->index, key: split->key, data: split->data, &dtlck);
1810
1811 BT_MARK_DIRTY(pmp, ip);
1812 /*
1813 * linelock any freeslots residing in old extent
1814 */
1815 if (type == tlckEXTEND) {
1816 n = sp->header.maxslot >> 2;
1817 if (sp->header.freelist < n)
1818 dtLinelockFreelist(p: sp, m: n, dtlock: &dtlck);
1819 }
1820
1821 /*
1822 * update parent entry on the parent/root page
1823 */
1824 /*
1825 * acquire a transaction lock on the parent/root page
1826 */
1827 tlck = txLock(tid, ip, pmp, tlckDTREE | tlckENTRY);
1828 dtlck = (struct dt_lock *) & tlck->lock;
1829 lv = & dtlck->lv[dtlck->index];
1830
1831 /* linelock parent entry - 1st slot */
1832 lv->offset = 1;
1833 lv->length = 1;
1834 dtlck->index++;
1835
1836 /* update the parent pxd for page extension */
1837 tpxd = (pxd_t *) & pp->slot[1];
1838 *tpxd = *pxd;
1839
1840 DT_PUTPAGE(pmp);
1841 return 0;
1842}
1843
1844
1845/*
1846 * dtSplitRoot()
1847 *
1848 * function:
1849 * split the full root page into
1850 * original/root/split page and new right page
1851 * i.e., root remains fixed in tree anchor (inode) and
1852 * the root is copied to a single new right child page
1853 * since root page << non-root page, and
1854 * the split root page contains a single entry for the
1855 * new right child page.
1856 *
1857 * parameter:
1858 *
1859 * return: 0 - success;
1860 * errno - failure;
1861 * return new page pinned;
1862 */
1863static int dtSplitRoot(tid_t tid,
1864 struct inode *ip, struct dtsplit * split, struct metapage ** rmpp)
1865{
1866 struct super_block *sb = ip->i_sb;
1867 struct metapage *smp;
1868 dtroot_t *sp;
1869 struct metapage *rmp;
1870 dtpage_t *rp;
1871 s64 rbn;
1872 int xlen;
1873 int xsize;
1874 struct dtslot *f;
1875 s8 *stbl;
1876 int fsi, stblsize, n;
1877 struct idtentry *s;
1878 pxd_t *ppxd;
1879 struct pxdlist *pxdlist;
1880 pxd_t *pxd;
1881 struct dt_lock *dtlck;
1882 struct tlock *tlck;
1883 struct lv *lv;
1884 int rc;
1885
1886 /* get split root page */
1887 smp = split->mp;
1888 sp = &JFS_IP(inode: ip)->i_dtroot;
1889
1890 /*
1891 * allocate/initialize a single (right) child page
1892 *
1893 * N.B. at first split, a one (or two) block to fit new entry
1894 * is allocated; at subsequent split, a full page is allocated;
1895 */
1896 pxdlist = split->pxdlist;
1897 pxd = &pxdlist->pxd[pxdlist->npxd];
1898 pxdlist->npxd++;
1899 rbn = addressPXD(pxd);
1900 xlen = lengthPXD(pxd);
1901 xsize = xlen << JFS_SBI(sb)->l2bsize;
1902 rmp = get_metapage(ip, rbn, xsize, 1);
1903 if (!rmp)
1904 return -EIO;
1905
1906 rp = rmp->data;
1907
1908 /* Allocate blocks to quota. */
1909 rc = dquot_alloc_block(inode: ip, nr: lengthPXD(pxd));
1910 if (rc) {
1911 release_metapage(rmp);
1912 return rc;
1913 }
1914
1915 BT_MARK_DIRTY(rmp, ip);
1916 /*
1917 * acquire a transaction lock on the new right page
1918 */
1919 tlck = txLock(tid, ip, rmp, tlckDTREE | tlckNEW);
1920 dtlck = (struct dt_lock *) & tlck->lock;
1921
1922 rp->header.flag =
1923 (sp->header.flag & BT_LEAF) ? BT_LEAF : BT_INTERNAL;
1924 rp->header.self = *pxd;
1925
1926 /* initialize sibling pointers */
1927 rp->header.next = 0;
1928 rp->header.prev = 0;
1929
1930 /*
1931 * move in-line root page into new right page extent
1932 */
1933 /* linelock header + copied entries + new stbl (1st slot) in new page */
1934 ASSERT(dtlck->index == 0);
1935 lv = & dtlck->lv[0];
1936 lv->offset = 0;
1937 lv->length = 10; /* 1 + 8 + 1 */
1938 dtlck->index++;
1939
1940 n = xsize >> L2DTSLOTSIZE;
1941 rp->header.maxslot = n;
1942 stblsize = (n + 31) >> L2DTSLOTSIZE;
1943
1944 /* copy old stbl to new stbl at start of extended area */
1945 rp->header.stblindex = DTROOTMAXSLOT;
1946 stbl = (s8 *) & rp->slot[DTROOTMAXSLOT];
1947 memcpy(stbl, sp->header.stbl, sp->header.nextindex);
1948 rp->header.nextindex = sp->header.nextindex;
1949
1950 /* copy old data area to start of new data area */
1951 memcpy(&rp->slot[1], &sp->slot[1], IDATASIZE);
1952
1953 /*
1954 * append free region of newly extended area at tail of freelist
1955 */
1956 /* init free region of newly extended area */
1957 fsi = n = DTROOTMAXSLOT + stblsize;
1958 f = &rp->slot[fsi];
1959 for (fsi++; fsi < rp->header.maxslot; f++, fsi++)
1960 f->next = fsi;
1961 f->next = -1;
1962
1963 /* append new free region at tail of old freelist */
1964 fsi = sp->header.freelist;
1965 if (fsi == -1)
1966 rp->header.freelist = n;
1967 else {
1968 rp->header.freelist = fsi;
1969
1970 do {
1971 f = &rp->slot[fsi];
1972 fsi = f->next;
1973 } while (fsi != -1);
1974
1975 f->next = n;
1976 }
1977
1978 rp->header.freecnt = sp->header.freecnt + rp->header.maxslot - n;
1979
1980 /*
1981 * Update directory index table for entries now in right page
1982 */
1983 if ((rp->header.flag & BT_LEAF) && DO_INDEX(ip)) {
1984 s64 lblock;
1985 struct metapage *mp = NULL;
1986 struct ldtentry *ldtentry;
1987
1988 stbl = DT_GETSTBL(rp);
1989 for (n = 0; n < rp->header.nextindex; n++) {
1990 ldtentry = (struct ldtentry *) & rp->slot[stbl[n]];
1991 modify_index(tid, ip, le32_to_cpu(ldtentry->index),
1992 bn: rbn, slot: n, mp: &mp, lblock: &lblock);
1993 }
1994 if (mp)
1995 release_metapage(mp);
1996 }
1997 /*
1998 * insert the new entry into the new right/child page
1999 * (skip index in the new right page will not change)
2000 */
2001 dtInsertEntry(p: rp, index: split->index, key: split->key, data: split->data, &dtlck);
2002
2003 /*
2004 * reset parent/root page
2005 *
2006 * set the 1st entry offset to 0, which force the left-most key
2007 * at any level of the tree to be less than any search key.
2008 *
2009 * The btree comparison code guarantees that the left-most key on any
2010 * level of the tree is never used, so it doesn't need to be filled in.
2011 */
2012 BT_MARK_DIRTY(smp, ip);
2013 /*
2014 * acquire a transaction lock on the root page (in-memory inode)
2015 */
2016 tlck = txLock(tid, ip, smp, tlckDTREE | tlckNEW | tlckBTROOT);
2017 dtlck = (struct dt_lock *) & tlck->lock;
2018
2019 /* linelock root */
2020 ASSERT(dtlck->index == 0);
2021 lv = & dtlck->lv[0];
2022 lv->offset = 0;
2023 lv->length = DTROOTMAXSLOT;
2024 dtlck->index++;
2025
2026 /* update page header of root */
2027 if (sp->header.flag & BT_LEAF) {
2028 sp->header.flag &= ~BT_LEAF;
2029 sp->header.flag |= BT_INTERNAL;
2030 }
2031
2032 /* init the first entry */
2033 s = (struct idtentry *) & sp->slot[DTENTRYSTART];
2034 ppxd = (pxd_t *) s;
2035 *ppxd = *pxd;
2036 s->next = -1;
2037 s->namlen = 0;
2038
2039 stbl = sp->header.stbl;
2040 stbl[0] = DTENTRYSTART;
2041 sp->header.nextindex = 1;
2042
2043 /* init freelist */
2044 fsi = DTENTRYSTART + 1;
2045 f = &sp->slot[fsi];
2046
2047 /* init free region of remaining area */
2048 for (fsi++; fsi < DTROOTMAXSLOT; f++, fsi++)
2049 f->next = fsi;
2050 f->next = -1;
2051
2052 sp->header.freelist = DTENTRYSTART + 1;
2053 sp->header.freecnt = DTROOTMAXSLOT - (DTENTRYSTART + 1);
2054
2055 *rmpp = rmp;
2056
2057 return 0;
2058}
2059
2060
2061/*
2062 * dtDelete()
2063 *
2064 * function: delete the entry(s) referenced by a key.
2065 *
2066 * parameter:
2067 *
2068 * return:
2069 */
2070int dtDelete(tid_t tid,
2071 struct inode *ip, struct component_name * key, ino_t * ino, int flag)
2072{
2073 int rc = 0;
2074 s64 bn;
2075 struct metapage *mp, *imp;
2076 dtpage_t *p;
2077 int index;
2078 struct btstack btstack;
2079 struct dt_lock *dtlck;
2080 struct tlock *tlck;
2081 struct lv *lv;
2082 int i;
2083 struct ldtentry *ldtentry;
2084 u8 *stbl;
2085 u32 table_index, next_index;
2086 struct metapage *nmp;
2087 dtpage_t *np;
2088
2089 /*
2090 * search for the entry to delete:
2091 *
2092 * dtSearch() returns (leaf page pinned, index at which to delete).
2093 */
2094 if ((rc = dtSearch(ip, key, data: ino, btstack: &btstack, flag)))
2095 return rc;
2096
2097 /* retrieve search result */
2098 DT_GETSEARCH(ip, btstack.top, bn, mp, p, index);
2099
2100 /*
2101 * We need to find put the index of the next entry into the
2102 * directory index table in order to resume a readdir from this
2103 * entry.
2104 */
2105 if (DO_INDEX(ip)) {
2106 stbl = DT_GETSTBL(p);
2107 ldtentry = (struct ldtentry *) & p->slot[stbl[index]];
2108 table_index = le32_to_cpu(ldtentry->index);
2109 if (index == (p->header.nextindex - 1)) {
2110 /*
2111 * Last entry in this leaf page
2112 */
2113 if ((p->header.flag & BT_ROOT)
2114 || (p->header.next == 0))
2115 next_index = -1;
2116 else {
2117 /* Read next leaf page */
2118 DT_GETPAGE(ip, le64_to_cpu(p->header.next),
2119 nmp, PSIZE, np, rc);
2120 if (rc)
2121 next_index = -1;
2122 else {
2123 stbl = DT_GETSTBL(np);
2124 ldtentry =
2125 (struct ldtentry *) & np->
2126 slot[stbl[0]];
2127 next_index =
2128 le32_to_cpu(ldtentry->index);
2129 DT_PUTPAGE(nmp);
2130 }
2131 }
2132 } else {
2133 ldtentry =
2134 (struct ldtentry *) & p->slot[stbl[index + 1]];
2135 next_index = le32_to_cpu(ldtentry->index);
2136 }
2137 free_index(tid, ip, index: table_index, next: next_index);
2138 }
2139 /*
2140 * the leaf page becomes empty, delete the page
2141 */
2142 if (p->header.nextindex == 1) {
2143 /* delete empty page */
2144 rc = dtDeleteUp(tid, ip, fmp: mp, fp: p, btstack: &btstack);
2145 }
2146 /*
2147 * the leaf page has other entries remaining:
2148 *
2149 * delete the entry from the leaf page.
2150 */
2151 else {
2152 BT_MARK_DIRTY(mp, ip);
2153 /*
2154 * acquire a transaction lock on the leaf page
2155 */
2156 tlck = txLock(tid, ip, mp, tlckDTREE | tlckENTRY);
2157 dtlck = (struct dt_lock *) & tlck->lock;
2158
2159 /*
2160 * Do not assume that dtlck->index will be zero. During a
2161 * rename within a directory, this transaction may have
2162 * modified this page already when adding the new entry.
2163 */
2164
2165 /* linelock header */
2166 if (dtlck->index >= dtlck->maxcnt)
2167 dtlck = (struct dt_lock *) txLinelock(dtlck);
2168 lv = & dtlck->lv[dtlck->index];
2169 lv->offset = 0;
2170 lv->length = 1;
2171 dtlck->index++;
2172
2173 /* linelock stbl of non-root leaf page */
2174 if (!(p->header.flag & BT_ROOT)) {
2175 if (dtlck->index >= dtlck->maxcnt)
2176 dtlck = (struct dt_lock *) txLinelock(dtlck);
2177 lv = & dtlck->lv[dtlck->index];
2178 i = index >> L2DTSLOTSIZE;
2179 lv->offset = p->header.stblindex + i;
2180 lv->length =
2181 ((p->header.nextindex - 1) >> L2DTSLOTSIZE) -
2182 i + 1;
2183 dtlck->index++;
2184 }
2185
2186 /* free the leaf entry */
2187 dtDeleteEntry(p, fi: index, dtlock: &dtlck);
2188
2189 /*
2190 * Update directory index table for entries moved in stbl
2191 */
2192 if (DO_INDEX(ip) && index < p->header.nextindex) {
2193 s64 lblock;
2194
2195 imp = NULL;
2196 stbl = DT_GETSTBL(p);
2197 for (i = index; i < p->header.nextindex; i++) {
2198 ldtentry =
2199 (struct ldtentry *) & p->slot[stbl[i]];
2200 modify_index(tid, ip,
2201 le32_to_cpu(ldtentry->index),
2202 bn, slot: i, mp: &imp, lblock: &lblock);
2203 }
2204 if (imp)
2205 release_metapage(imp);
2206 }
2207
2208 DT_PUTPAGE(mp);
2209 }
2210
2211 return rc;
2212}
2213
2214
2215/*
2216 * dtDeleteUp()
2217 *
2218 * function:
2219 * free empty pages as propagating deletion up the tree
2220 *
2221 * parameter:
2222 *
2223 * return:
2224 */
2225static int dtDeleteUp(tid_t tid, struct inode *ip,
2226 struct metapage * fmp, dtpage_t * fp, struct btstack * btstack)
2227{
2228 int rc = 0;
2229 struct metapage *mp;
2230 dtpage_t *p;
2231 int index, nextindex;
2232 int xlen;
2233 struct btframe *parent;
2234 struct dt_lock *dtlck;
2235 struct tlock *tlck;
2236 struct lv *lv;
2237 struct pxd_lock *pxdlock;
2238 int i;
2239
2240 /*
2241 * keep the root leaf page which has become empty
2242 */
2243 if (BT_IS_ROOT(fmp)) {
2244 /*
2245 * reset the root
2246 *
2247 * dtInitRoot() acquires txlock on the root
2248 */
2249 dtInitRoot(tid, ip, PARENT(ip));
2250
2251 DT_PUTPAGE(fmp);
2252
2253 return 0;
2254 }
2255
2256 /*
2257 * free the non-root leaf page
2258 */
2259 /*
2260 * acquire a transaction lock on the page
2261 *
2262 * write FREEXTENT|NOREDOPAGE log record
2263 * N.B. linelock is overlaid as freed extent descriptor, and
2264 * the buffer page is freed;
2265 */
2266 tlck = txMaplock(tid, ip, tlckDTREE | tlckFREE);
2267 pxdlock = (struct pxd_lock *) & tlck->lock;
2268 pxdlock->flag = mlckFREEPXD;
2269 pxdlock->pxd = fp->header.self;
2270 pxdlock->index = 1;
2271
2272 /* update sibling pointers */
2273 if ((rc = dtRelink(tid, ip, p: fp))) {
2274 BT_PUTPAGE(fmp);
2275 return rc;
2276 }
2277
2278 xlen = lengthPXD(pxd: &fp->header.self);
2279
2280 /* Free quota allocation. */
2281 dquot_free_block(inode: ip, nr: xlen);
2282
2283 /* free/invalidate its buffer page */
2284 discard_metapage(mp: fmp);
2285
2286 /*
2287 * propagate page deletion up the directory tree
2288 *
2289 * If the delete from the parent page makes it empty,
2290 * continue all the way up the tree.
2291 * stop if the root page is reached (which is never deleted) or
2292 * if the entry deletion does not empty the page.
2293 */
2294 while ((parent = BT_POP(btstack)) != NULL) {
2295 /* pin the parent page <sp> */
2296 DT_GETPAGE(ip, parent->bn, mp, PSIZE, p, rc);
2297 if (rc)
2298 return rc;
2299
2300 /*
2301 * free the extent of the child page deleted
2302 */
2303 index = parent->index;
2304
2305 /*
2306 * delete the entry for the child page from parent
2307 */
2308 nextindex = p->header.nextindex;
2309
2310 /*
2311 * the parent has the single entry being deleted:
2312 *
2313 * free the parent page which has become empty.
2314 */
2315 if (nextindex == 1) {
2316 /*
2317 * keep the root internal page which has become empty
2318 */
2319 if (p->header.flag & BT_ROOT) {
2320 /*
2321 * reset the root
2322 *
2323 * dtInitRoot() acquires txlock on the root
2324 */
2325 dtInitRoot(tid, ip, PARENT(ip));
2326
2327 DT_PUTPAGE(mp);
2328
2329 return 0;
2330 }
2331 /*
2332 * free the parent page
2333 */
2334 else {
2335 /*
2336 * acquire a transaction lock on the page
2337 *
2338 * write FREEXTENT|NOREDOPAGE log record
2339 */
2340 tlck =
2341 txMaplock(tid, ip,
2342 tlckDTREE | tlckFREE);
2343 pxdlock = (struct pxd_lock *) & tlck->lock;
2344 pxdlock->flag = mlckFREEPXD;
2345 pxdlock->pxd = p->header.self;
2346 pxdlock->index = 1;
2347
2348 /* update sibling pointers */
2349 if ((rc = dtRelink(tid, ip, p))) {
2350 DT_PUTPAGE(mp);
2351 return rc;
2352 }
2353
2354 xlen = lengthPXD(pxd: &p->header.self);
2355
2356 /* Free quota allocation */
2357 dquot_free_block(inode: ip, nr: xlen);
2358
2359 /* free/invalidate its buffer page */
2360 discard_metapage(mp);
2361
2362 /* propagate up */
2363 continue;
2364 }
2365 }
2366
2367 /*
2368 * the parent has other entries remaining:
2369 *
2370 * delete the router entry from the parent page.
2371 */
2372 BT_MARK_DIRTY(mp, ip);
2373 /*
2374 * acquire a transaction lock on the page
2375 *
2376 * action: router entry deletion
2377 */
2378 tlck = txLock(tid, ip, mp, tlckDTREE | tlckENTRY);
2379 dtlck = (struct dt_lock *) & tlck->lock;
2380
2381 /* linelock header */
2382 if (dtlck->index >= dtlck->maxcnt)
2383 dtlck = (struct dt_lock *) txLinelock(dtlck);
2384 lv = & dtlck->lv[dtlck->index];
2385 lv->offset = 0;
2386 lv->length = 1;
2387 dtlck->index++;
2388
2389 /* linelock stbl of non-root leaf page */
2390 if (!(p->header.flag & BT_ROOT)) {
2391 if (dtlck->index < dtlck->maxcnt)
2392 lv++;
2393 else {
2394 dtlck = (struct dt_lock *) txLinelock(dtlck);
2395 lv = & dtlck->lv[0];
2396 }
2397 i = index >> L2DTSLOTSIZE;
2398 lv->offset = p->header.stblindex + i;
2399 lv->length =
2400 ((p->header.nextindex - 1) >> L2DTSLOTSIZE) -
2401 i + 1;
2402 dtlck->index++;
2403 }
2404
2405 /* free the router entry */
2406 dtDeleteEntry(p, fi: index, dtlock: &dtlck);
2407
2408 /* reset key of new leftmost entry of level (for consistency) */
2409 if (index == 0 &&
2410 ((p->header.flag & BT_ROOT) || p->header.prev == 0))
2411 dtTruncateEntry(p, ti: 0, dtlock: &dtlck);
2412
2413 /* unpin the parent page */
2414 DT_PUTPAGE(mp);
2415
2416 /* exit propagation up */
2417 break;
2418 }
2419
2420 if (!DO_INDEX(ip))
2421 ip->i_size -= PSIZE;
2422
2423 return 0;
2424}
2425
2426/*
2427 * dtRelink()
2428 *
2429 * function:
2430 * link around a freed page.
2431 *
2432 * parameter:
2433 * fp: page to be freed
2434 *
2435 * return:
2436 */
2437static int dtRelink(tid_t tid, struct inode *ip, dtpage_t * p)
2438{
2439 int rc;
2440 struct metapage *mp;
2441 s64 nextbn, prevbn;
2442 struct tlock *tlck;
2443 struct dt_lock *dtlck;
2444 struct lv *lv;
2445
2446 nextbn = le64_to_cpu(p->header.next);
2447 prevbn = le64_to_cpu(p->header.prev);
2448
2449 /* update prev pointer of the next page */
2450 if (nextbn != 0) {
2451 DT_GETPAGE(ip, nextbn, mp, PSIZE, p, rc);
2452 if (rc)
2453 return rc;
2454
2455 BT_MARK_DIRTY(mp, ip);
2456 /*
2457 * acquire a transaction lock on the next page
2458 *
2459 * action: update prev pointer;
2460 */
2461 tlck = txLock(tid, ip, mp, tlckDTREE | tlckRELINK);
2462 jfs_info("dtRelink nextbn: tlck = 0x%p, ip = 0x%p, mp=0x%p",
2463 tlck, ip, mp);
2464 dtlck = (struct dt_lock *) & tlck->lock;
2465
2466 /* linelock header */
2467 if (dtlck->index >= dtlck->maxcnt)
2468 dtlck = (struct dt_lock *) txLinelock(dtlck);
2469 lv = & dtlck->lv[dtlck->index];
2470 lv->offset = 0;
2471 lv->length = 1;
2472 dtlck->index++;
2473
2474 p->header.prev = cpu_to_le64(prevbn);
2475 DT_PUTPAGE(mp);
2476 }
2477
2478 /* update next pointer of the previous page */
2479 if (prevbn != 0) {
2480 DT_GETPAGE(ip, prevbn, mp, PSIZE, p, rc);
2481 if (rc)
2482 return rc;
2483
2484 BT_MARK_DIRTY(mp, ip);
2485 /*
2486 * acquire a transaction lock on the prev page
2487 *
2488 * action: update next pointer;
2489 */
2490 tlck = txLock(tid, ip, mp, tlckDTREE | tlckRELINK);
2491 jfs_info("dtRelink prevbn: tlck = 0x%p, ip = 0x%p, mp=0x%p",
2492 tlck, ip, mp);
2493 dtlck = (struct dt_lock *) & tlck->lock;
2494
2495 /* linelock header */
2496 if (dtlck->index >= dtlck->maxcnt)
2497 dtlck = (struct dt_lock *) txLinelock(dtlck);
2498 lv = & dtlck->lv[dtlck->index];
2499 lv->offset = 0;
2500 lv->length = 1;
2501 dtlck->index++;
2502
2503 p->header.next = cpu_to_le64(nextbn);
2504 DT_PUTPAGE(mp);
2505 }
2506
2507 return 0;
2508}
2509
2510
2511/*
2512 * dtInitRoot()
2513 *
2514 * initialize directory root (inline in inode)
2515 */
2516void dtInitRoot(tid_t tid, struct inode *ip, u32 idotdot)
2517{
2518 struct jfs_inode_info *jfs_ip = JFS_IP(inode: ip);
2519 dtroot_t *p;
2520 int fsi;
2521 struct dtslot *f;
2522 struct tlock *tlck;
2523 struct dt_lock *dtlck;
2524 struct lv *lv;
2525 u16 xflag_save;
2526
2527 /*
2528 * If this was previously an non-empty directory, we need to remove
2529 * the old directory table.
2530 */
2531 if (DO_INDEX(ip)) {
2532 if (!jfs_dirtable_inline(inode: ip)) {
2533 struct tblock *tblk = tid_to_tblock(tid);
2534 /*
2535 * We're playing games with the tid's xflag. If
2536 * we're removing a regular file, the file's xtree
2537 * is committed with COMMIT_PMAP, but we always
2538 * commit the directories xtree with COMMIT_PWMAP.
2539 */
2540 xflag_save = tblk->xflag;
2541 tblk->xflag = 0;
2542 /*
2543 * xtTruncate isn't guaranteed to fully truncate
2544 * the xtree. The caller needs to check i_size
2545 * after committing the transaction to see if
2546 * additional truncation is needed. The
2547 * COMMIT_Stale flag tells caller that we
2548 * initiated the truncation.
2549 */
2550 xtTruncate(tid, ip, newsize: 0, COMMIT_PWMAP);
2551 set_cflag(COMMIT_Stale, ip);
2552
2553 tblk->xflag = xflag_save;
2554 } else
2555 ip->i_size = 1;
2556
2557 jfs_ip->next_index = 2;
2558 } else
2559 ip->i_size = IDATASIZE;
2560
2561 /*
2562 * acquire a transaction lock on the root
2563 *
2564 * action: directory initialization;
2565 */
2566 tlck = txLock(tid, ip, (struct metapage *) & jfs_ip->bxflag,
2567 tlckDTREE | tlckENTRY | tlckBTROOT);
2568 dtlck = (struct dt_lock *) & tlck->lock;
2569
2570 /* linelock root */
2571 ASSERT(dtlck->index == 0);
2572 lv = & dtlck->lv[0];
2573 lv->offset = 0;
2574 lv->length = DTROOTMAXSLOT;
2575 dtlck->index++;
2576
2577 p = &jfs_ip->i_dtroot;
2578
2579 p->header.flag = DXD_INDEX | BT_ROOT | BT_LEAF;
2580
2581 p->header.nextindex = 0;
2582
2583 /* init freelist */
2584 fsi = 1;
2585 f = &p->slot[fsi];
2586
2587 /* init data area of root */
2588 for (fsi++; fsi < DTROOTMAXSLOT; f++, fsi++)
2589 f->next = fsi;
2590 f->next = -1;
2591
2592 p->header.freelist = 1;
2593 p->header.freecnt = 8;
2594
2595 /* init '..' entry */
2596 p->header.idotdot = cpu_to_le32(idotdot);
2597
2598 return;
2599}
2600
2601/*
2602 * add_missing_indices()
2603 *
2604 * function: Fix dtree page in which one or more entries has an invalid index.
2605 * fsck.jfs should really fix this, but it currently does not.
2606 * Called from jfs_readdir when bad index is detected.
2607 */
2608static void add_missing_indices(struct inode *inode, s64 bn)
2609{
2610 struct ldtentry *d;
2611 struct dt_lock *dtlck;
2612 int i;
2613 uint index;
2614 struct lv *lv;
2615 struct metapage *mp;
2616 dtpage_t *p;
2617 int rc;
2618 s8 *stbl;
2619 tid_t tid;
2620 struct tlock *tlck;
2621
2622 tid = txBegin(inode->i_sb, 0);
2623
2624 DT_GETPAGE(inode, bn, mp, PSIZE, p, rc);
2625
2626 if (rc) {
2627 printk(KERN_ERR "DT_GETPAGE failed!\n");
2628 goto end;
2629 }
2630 BT_MARK_DIRTY(mp, inode);
2631
2632 ASSERT(p->header.flag & BT_LEAF);
2633
2634 tlck = txLock(tid, inode, mp, tlckDTREE | tlckENTRY);
2635 if (BT_IS_ROOT(mp))
2636 tlck->type |= tlckBTROOT;
2637
2638 dtlck = (struct dt_lock *) &tlck->lock;
2639
2640 stbl = DT_GETSTBL(p);
2641 for (i = 0; i < p->header.nextindex; i++) {
2642 d = (struct ldtentry *) &p->slot[stbl[i]];
2643 index = le32_to_cpu(d->index);
2644 if ((index < 2) || (index >= JFS_IP(inode)->next_index)) {
2645 d->index = cpu_to_le32(add_index(tid, inode, bn, i));
2646 if (dtlck->index >= dtlck->maxcnt)
2647 dtlck = (struct dt_lock *) txLinelock(dtlck);
2648 lv = &dtlck->lv[dtlck->index];
2649 lv->offset = stbl[i];
2650 lv->length = 1;
2651 dtlck->index++;
2652 }
2653 }
2654
2655 DT_PUTPAGE(mp);
2656 (void) txCommit(tid, 1, &inode, 0);
2657end:
2658 txEnd(tid);
2659}
2660
2661/*
2662 * Buffer to hold directory entry info while traversing a dtree page
2663 * before being fed to the filldir function
2664 */
2665struct jfs_dirent {
2666 loff_t position;
2667 int ino;
2668 u16 name_len;
2669 char name[];
2670};
2671
2672/*
2673 * function to determine next variable-sized jfs_dirent in buffer
2674 */
2675static inline struct jfs_dirent *next_jfs_dirent(struct jfs_dirent *dirent)
2676{
2677 return (struct jfs_dirent *)
2678 ((char *)dirent +
2679 ((sizeof (struct jfs_dirent) + dirent->name_len + 1 +
2680 sizeof (loff_t) - 1) &
2681 ~(sizeof (loff_t) - 1)));
2682}
2683
2684/*
2685 * jfs_readdir()
2686 *
2687 * function: read directory entries sequentially
2688 * from the specified entry offset
2689 *
2690 * parameter:
2691 *
2692 * return: offset = (pn, index) of start entry
2693 * of next jfs_readdir()/dtRead()
2694 */
2695int jfs_readdir(struct file *file, struct dir_context *ctx)
2696{
2697 struct inode *ip = file_inode(f: file);
2698 struct nls_table *codepage = JFS_SBI(sb: ip->i_sb)->nls_tab;
2699 int rc = 0;
2700 loff_t dtpos; /* legacy OS/2 style position */
2701 struct dtoffset {
2702 s16 pn;
2703 s16 index;
2704 s32 unused;
2705 } *dtoffset = (struct dtoffset *) &dtpos;
2706 s64 bn;
2707 struct metapage *mp;
2708 dtpage_t *p;
2709 int index;
2710 s8 *stbl;
2711 struct btstack btstack;
2712 int i, next;
2713 struct ldtentry *d;
2714 struct dtslot *t;
2715 int d_namleft, len, outlen;
2716 unsigned long dirent_buf;
2717 char *name_ptr;
2718 u32 dir_index;
2719 int do_index = 0;
2720 uint loop_count = 0;
2721 struct jfs_dirent *jfs_dirent;
2722 int jfs_dirents;
2723 int overflow, fix_page, page_fixed = 0;
2724 static int unique_pos = 2; /* If we can't fix broken index */
2725
2726 if (ctx->pos == DIREND)
2727 return 0;
2728
2729 if (DO_INDEX(ip)) {
2730 /*
2731 * persistent index is stored in directory entries.
2732 * Special cases: 0 = .
2733 * 1 = ..
2734 * -1 = End of directory
2735 */
2736 do_index = 1;
2737
2738 dir_index = (u32) ctx->pos;
2739
2740 /*
2741 * NFSv4 reserves cookies 1 and 2 for . and .. so the value
2742 * we return to the vfs is one greater than the one we use
2743 * internally.
2744 */
2745 if (dir_index)
2746 dir_index--;
2747
2748 if (dir_index > 1) {
2749 struct dir_table_slot dirtab_slot;
2750
2751 if (dtEmpty(ip) ||
2752 (dir_index >= JFS_IP(inode: ip)->next_index)) {
2753 /* Stale position. Directory has shrunk */
2754 ctx->pos = DIREND;
2755 return 0;
2756 }
2757 repeat:
2758 rc = read_index(ip, index: dir_index, dirtab_slot: &dirtab_slot);
2759 if (rc) {
2760 ctx->pos = DIREND;
2761 return rc;
2762 }
2763 if (dirtab_slot.flag == DIR_INDEX_FREE) {
2764 if (loop_count++ > JFS_IP(inode: ip)->next_index) {
2765 jfs_err("jfs_readdir detected infinite loop!");
2766 ctx->pos = DIREND;
2767 return 0;
2768 }
2769 dir_index = le32_to_cpu(dirtab_slot.addr2);
2770 if (dir_index == -1) {
2771 ctx->pos = DIREND;
2772 return 0;
2773 }
2774 goto repeat;
2775 }
2776 bn = addressDTS(&dirtab_slot);
2777 index = dirtab_slot.slot;
2778 DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
2779 if (rc) {
2780 ctx->pos = DIREND;
2781 return 0;
2782 }
2783 if (p->header.flag & BT_INTERNAL) {
2784 jfs_err("jfs_readdir: bad index table");
2785 DT_PUTPAGE(mp);
2786 ctx->pos = DIREND;
2787 return 0;
2788 }
2789 } else {
2790 if (dir_index == 0) {
2791 /*
2792 * self "."
2793 */
2794 ctx->pos = 1;
2795 if (!dir_emit(ctx, name: ".", namelen: 1, ino: ip->i_ino, DT_DIR))
2796 return 0;
2797 }
2798 /*
2799 * parent ".."
2800 */
2801 ctx->pos = 2;
2802 if (!dir_emit(ctx, name: "..", namelen: 2, PARENT(ip), DT_DIR))
2803 return 0;
2804
2805 /*
2806 * Find first entry of left-most leaf
2807 */
2808 if (dtEmpty(ip)) {
2809 ctx->pos = DIREND;
2810 return 0;
2811 }
2812
2813 if ((rc = dtReadFirst(ip, btstack: &btstack)))
2814 return rc;
2815
2816 DT_GETSEARCH(ip, btstack.top, bn, mp, p, index);
2817 }
2818 } else {
2819 /*
2820 * Legacy filesystem - OS/2 & Linux JFS < 0.3.6
2821 *
2822 * pn = 0; index = 1: First entry "."
2823 * pn = 0; index = 2: Second entry ".."
2824 * pn > 0: Real entries, pn=1 -> leftmost page
2825 * pn = index = -1: No more entries
2826 */
2827 dtpos = ctx->pos;
2828 if (dtpos < 2) {
2829 /* build "." entry */
2830 ctx->pos = 1;
2831 if (!dir_emit(ctx, name: ".", namelen: 1, ino: ip->i_ino, DT_DIR))
2832 return 0;
2833 dtoffset->index = 2;
2834 ctx->pos = dtpos;
2835 }
2836
2837 if (dtoffset->pn == 0) {
2838 if (dtoffset->index == 2) {
2839 /* build ".." entry */
2840 if (!dir_emit(ctx, name: "..", namelen: 2, PARENT(ip), DT_DIR))
2841 return 0;
2842 } else {
2843 jfs_err("jfs_readdir called with invalid offset!");
2844 }
2845 dtoffset->pn = 1;
2846 dtoffset->index = 0;
2847 ctx->pos = dtpos;
2848 }
2849
2850 if (dtEmpty(ip)) {
2851 ctx->pos = DIREND;
2852 return 0;
2853 }
2854
2855 if ((rc = dtReadNext(ip, offset: &ctx->pos, btstack: &btstack))) {
2856 jfs_err("jfs_readdir: unexpected rc = %d from dtReadNext",
2857 rc);
2858 ctx->pos = DIREND;
2859 return 0;
2860 }
2861 /* get start leaf page and index */
2862 DT_GETSEARCH(ip, btstack.top, bn, mp, p, index);
2863
2864 /* offset beyond directory eof ? */
2865 if (bn < 0) {
2866 ctx->pos = DIREND;
2867 return 0;
2868 }
2869 }
2870
2871 dirent_buf = __get_free_page(GFP_KERNEL);
2872 if (dirent_buf == 0) {
2873 DT_PUTPAGE(mp);
2874 jfs_warn("jfs_readdir: __get_free_page failed!");
2875 ctx->pos = DIREND;
2876 return -ENOMEM;
2877 }
2878
2879 while (1) {
2880 jfs_dirent = (struct jfs_dirent *) dirent_buf;
2881 jfs_dirents = 0;
2882 overflow = fix_page = 0;
2883
2884 stbl = DT_GETSTBL(p);
2885
2886 for (i = index; i < p->header.nextindex; i++) {
2887 d = (struct ldtentry *) & p->slot[stbl[i]];
2888
2889 if (((long) jfs_dirent + d->namlen + 1) >
2890 (dirent_buf + PAGE_SIZE)) {
2891 /* DBCS codepages could overrun dirent_buf */
2892 index = i;
2893 overflow = 1;
2894 break;
2895 }
2896
2897 d_namleft = d->namlen;
2898 name_ptr = jfs_dirent->name;
2899 jfs_dirent->ino = le32_to_cpu(d->inumber);
2900
2901 if (do_index) {
2902 len = min(d_namleft, DTLHDRDATALEN);
2903 jfs_dirent->position = le32_to_cpu(d->index);
2904 /*
2905 * d->index should always be valid, but it
2906 * isn't. fsck.jfs doesn't create the
2907 * directory index for the lost+found
2908 * directory. Rather than let it go,
2909 * we can try to fix it.
2910 */
2911 if ((jfs_dirent->position < 2) ||
2912 (jfs_dirent->position >=
2913 JFS_IP(inode: ip)->next_index)) {
2914 if (!page_fixed && !isReadOnly(inode: ip)) {
2915 fix_page = 1;
2916 /*
2917 * setting overflow and setting
2918 * index to i will cause the
2919 * same page to be processed
2920 * again starting here
2921 */
2922 overflow = 1;
2923 index = i;
2924 break;
2925 }
2926 jfs_dirent->position = unique_pos++;
2927 }
2928 /*
2929 * We add 1 to the index because we may
2930 * use a value of 2 internally, and NFSv4
2931 * doesn't like that.
2932 */
2933 jfs_dirent->position++;
2934 } else {
2935 jfs_dirent->position = dtpos;
2936 len = min(d_namleft, DTLHDRDATALEN_LEGACY);
2937 }
2938
2939 /* copy the name of head/only segment */
2940 outlen = jfs_strfromUCS_le(name_ptr, d->name, len,
2941 codepage);
2942 jfs_dirent->name_len = outlen;
2943
2944 /* copy name in the additional segment(s) */
2945 next = d->next;
2946 while (next >= 0) {
2947 t = (struct dtslot *) & p->slot[next];
2948 name_ptr += outlen;
2949 d_namleft -= len;
2950 /* Sanity Check */
2951 if (d_namleft == 0) {
2952 jfs_error(ip->i_sb,
2953 "JFS:Dtree error: ino = %ld, bn=%lld, index = %d\n",
2954 (long)ip->i_ino,
2955 (long long)bn,
2956 i);
2957 goto skip_one;
2958 }
2959 len = min(d_namleft, DTSLOTDATALEN);
2960 outlen = jfs_strfromUCS_le(name_ptr, t->name,
2961 len, codepage);
2962 jfs_dirent->name_len += outlen;
2963
2964 next = t->next;
2965 }
2966
2967 jfs_dirents++;
2968 jfs_dirent = next_jfs_dirent(dirent: jfs_dirent);
2969skip_one:
2970 if (!do_index)
2971 dtoffset->index++;
2972 }
2973
2974 if (!overflow) {
2975 /* Point to next leaf page */
2976 if (p->header.flag & BT_ROOT)
2977 bn = 0;
2978 else {
2979 bn = le64_to_cpu(p->header.next);
2980 index = 0;
2981 /* update offset (pn:index) for new page */
2982 if (!do_index) {
2983 dtoffset->pn++;
2984 dtoffset->index = 0;
2985 }
2986 }
2987 page_fixed = 0;
2988 }
2989
2990 /* unpin previous leaf page */
2991 DT_PUTPAGE(mp);
2992
2993 jfs_dirent = (struct jfs_dirent *) dirent_buf;
2994 while (jfs_dirents--) {
2995 ctx->pos = jfs_dirent->position;
2996 if (!dir_emit(ctx, name: jfs_dirent->name,
2997 namelen: jfs_dirent->name_len,
2998 ino: jfs_dirent->ino, DT_UNKNOWN))
2999 goto out;
3000 jfs_dirent = next_jfs_dirent(dirent: jfs_dirent);
3001 }
3002
3003 if (fix_page) {
3004 add_missing_indices(inode: ip, bn);
3005 page_fixed = 1;
3006 }
3007
3008 if (!overflow && (bn == 0)) {
3009 ctx->pos = DIREND;
3010 break;
3011 }
3012
3013 DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
3014 if (rc) {
3015 free_page(dirent_buf);
3016 return rc;
3017 }
3018 }
3019
3020 out:
3021 free_page(dirent_buf);
3022
3023 return rc;
3024}
3025
3026
3027/*
3028 * dtReadFirst()
3029 *
3030 * function: get the leftmost page of the directory
3031 */
3032static int dtReadFirst(struct inode *ip, struct btstack * btstack)
3033{
3034 int rc = 0;
3035 s64 bn;
3036 int psize = 288; /* initial in-line directory */
3037 struct metapage *mp;
3038 dtpage_t *p;
3039 s8 *stbl;
3040 struct btframe *btsp;
3041 pxd_t *xd;
3042
3043 BT_CLR(btstack); /* reset stack */
3044
3045 /*
3046 * descend leftmost path of the tree
3047 *
3048 * by convention, root bn = 0.
3049 */
3050 for (bn = 0;;) {
3051 DT_GETPAGE(ip, bn, mp, psize, p, rc);
3052 if (rc)
3053 return rc;
3054
3055 /*
3056 * leftmost leaf page
3057 */
3058 if (p->header.flag & BT_LEAF) {
3059 /* return leftmost entry */
3060 btsp = btstack->top;
3061 btsp->bn = bn;
3062 btsp->index = 0;
3063 btsp->mp = mp;
3064
3065 return 0;
3066 }
3067
3068 /*
3069 * descend down to leftmost child page
3070 */
3071 if (BT_STACK_FULL(btstack)) {
3072 DT_PUTPAGE(mp);
3073 jfs_error(ip->i_sb, "btstack overrun\n");
3074 BT_STACK_DUMP(btstack);
3075 return -EIO;
3076 }
3077 /* push (bn, index) of the parent page/entry */
3078 BT_PUSH(btstack, bn, 0);
3079
3080 /* get the leftmost entry */
3081 stbl = DT_GETSTBL(p);
3082 xd = (pxd_t *) & p->slot[stbl[0]];
3083
3084 /* get the child page block address */
3085 bn = addressPXD(pxd: xd);
3086 psize = lengthPXD(pxd: xd) << JFS_SBI(sb: ip->i_sb)->l2bsize;
3087
3088 /* unpin the parent page */
3089 DT_PUTPAGE(mp);
3090 }
3091}
3092
3093
3094/*
3095 * dtReadNext()
3096 *
3097 * function: get the page of the specified offset (pn:index)
3098 *
3099 * return: if (offset > eof), bn = -1;
3100 *
3101 * note: if index > nextindex of the target leaf page,
3102 * start with 1st entry of next leaf page;
3103 */
3104static int dtReadNext(struct inode *ip, loff_t * offset,
3105 struct btstack * btstack)
3106{
3107 int rc = 0;
3108 struct dtoffset {
3109 s16 pn;
3110 s16 index;
3111 s32 unused;
3112 } *dtoffset = (struct dtoffset *) offset;
3113 s64 bn;
3114 struct metapage *mp;
3115 dtpage_t *p;
3116 int index;
3117 int pn;
3118 s8 *stbl;
3119 struct btframe *btsp, *parent;
3120 pxd_t *xd;
3121
3122 /*
3123 * get leftmost leaf page pinned
3124 */
3125 if ((rc = dtReadFirst(ip, btstack)))
3126 return rc;
3127
3128 /* get leaf page */
3129 DT_GETSEARCH(ip, btstack->top, bn, mp, p, index);
3130
3131 /* get the start offset (pn:index) */
3132 pn = dtoffset->pn - 1; /* Now pn = 0 represents leftmost leaf */
3133 index = dtoffset->index;
3134
3135 /* start at leftmost page ? */
3136 if (pn == 0) {
3137 /* offset beyond eof ? */
3138 if (index < p->header.nextindex)
3139 goto out;
3140
3141 if (p->header.flag & BT_ROOT) {
3142 bn = -1;
3143 goto out;
3144 }
3145
3146 /* start with 1st entry of next leaf page */
3147 dtoffset->pn++;
3148 dtoffset->index = index = 0;
3149 goto a;
3150 }
3151
3152 /* start at non-leftmost page: scan parent pages for large pn */
3153 if (p->header.flag & BT_ROOT) {
3154 bn = -1;
3155 goto out;
3156 }
3157
3158 /* start after next leaf page ? */
3159 if (pn > 1)
3160 goto b;
3161
3162 /* get leaf page pn = 1 */
3163 a:
3164 bn = le64_to_cpu(p->header.next);
3165
3166 /* unpin leaf page */
3167 DT_PUTPAGE(mp);
3168
3169 /* offset beyond eof ? */
3170 if (bn == 0) {
3171 bn = -1;
3172 goto out;
3173 }
3174
3175 goto c;
3176
3177 /*
3178 * scan last internal page level to get target leaf page
3179 */
3180 b:
3181 /* unpin leftmost leaf page */
3182 DT_PUTPAGE(mp);
3183
3184 /* get left most parent page */
3185 btsp = btstack->top;
3186 parent = btsp - 1;
3187 bn = parent->bn;
3188 DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
3189 if (rc)
3190 return rc;
3191
3192 /* scan parent pages at last internal page level */
3193 while (pn >= p->header.nextindex) {
3194 pn -= p->header.nextindex;
3195
3196 /* get next parent page address */
3197 bn = le64_to_cpu(p->header.next);
3198
3199 /* unpin current parent page */
3200 DT_PUTPAGE(mp);
3201
3202 /* offset beyond eof ? */
3203 if (bn == 0) {
3204 bn = -1;
3205 goto out;
3206 }
3207
3208 /* get next parent page */
3209 DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
3210 if (rc)
3211 return rc;
3212
3213 /* update parent page stack frame */
3214 parent->bn = bn;
3215 }
3216
3217 /* get leaf page address */
3218 stbl = DT_GETSTBL(p);
3219 xd = (pxd_t *) & p->slot[stbl[pn]];
3220 bn = addressPXD(pxd: xd);
3221
3222 /* unpin parent page */
3223 DT_PUTPAGE(mp);
3224
3225 /*
3226 * get target leaf page
3227 */
3228 c:
3229 DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
3230 if (rc)
3231 return rc;
3232
3233 /*
3234 * leaf page has been completed:
3235 * start with 1st entry of next leaf page
3236 */
3237 if (index >= p->header.nextindex) {
3238 bn = le64_to_cpu(p->header.next);
3239
3240 /* unpin leaf page */
3241 DT_PUTPAGE(mp);
3242
3243 /* offset beyond eof ? */
3244 if (bn == 0) {
3245 bn = -1;
3246 goto out;
3247 }
3248
3249 /* get next leaf page */
3250 DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
3251 if (rc)
3252 return rc;
3253
3254 /* start with 1st entry of next leaf page */
3255 dtoffset->pn++;
3256 dtoffset->index = 0;
3257 }
3258
3259 out:
3260 /* return target leaf page pinned */
3261 btsp = btstack->top;
3262 btsp->bn = bn;
3263 btsp->index = dtoffset->index;
3264 btsp->mp = mp;
3265
3266 return 0;
3267}
3268
3269
3270/*
3271 * dtCompare()
3272 *
3273 * function: compare search key with an internal entry
3274 *
3275 * return:
3276 * < 0 if k is < record
3277 * = 0 if k is = record
3278 * > 0 if k is > record
3279 */
3280static int dtCompare(struct component_name * key, /* search key */
3281 dtpage_t * p, /* directory page */
3282 int si)
3283{ /* entry slot index */
3284 wchar_t *kname;
3285 __le16 *name;
3286 int klen, namlen, len, rc;
3287 struct idtentry *ih;
3288 struct dtslot *t;
3289
3290 /*
3291 * force the left-most key on internal pages, at any level of
3292 * the tree, to be less than any search key.
3293 * this obviates having to update the leftmost key on an internal
3294 * page when the user inserts a new key in the tree smaller than
3295 * anything that has been stored.
3296 *
3297 * (? if/when dtSearch() narrows down to 1st entry (index = 0),
3298 * at any internal page at any level of the tree,
3299 * it descends to child of the entry anyway -
3300 * ? make the entry as min size dummy entry)
3301 *
3302 * if (e->index == 0 && h->prevpg == P_INVALID && !(h->flags & BT_LEAF))
3303 * return (1);
3304 */
3305
3306 kname = key->name;
3307 klen = key->namlen;
3308
3309 ih = (struct idtentry *) & p->slot[si];
3310 si = ih->next;
3311 name = ih->name;
3312 namlen = ih->namlen;
3313 len = min(namlen, DTIHDRDATALEN);
3314
3315 /* compare with head/only segment */
3316 len = min(klen, len);
3317 if ((rc = UniStrncmp_le(ucs1: kname, ucs2: name, n: len)))
3318 return rc;
3319
3320 klen -= len;
3321 namlen -= len;
3322
3323 /* compare with additional segment(s) */
3324 kname += len;
3325 while (klen > 0 && namlen > 0) {
3326 /* compare with next name segment */
3327 t = (struct dtslot *) & p->slot[si];
3328 len = min(namlen, DTSLOTDATALEN);
3329 len = min(klen, len);
3330 name = t->name;
3331 if ((rc = UniStrncmp_le(ucs1: kname, ucs2: name, n: len)))
3332 return rc;
3333
3334 klen -= len;
3335 namlen -= len;
3336 kname += len;
3337 si = t->next;
3338 }
3339
3340 return (klen - namlen);
3341}
3342
3343
3344
3345
3346/*
3347 * ciCompare()
3348 *
3349 * function: compare search key with an (leaf/internal) entry
3350 *
3351 * return:
3352 * < 0 if k is < record
3353 * = 0 if k is = record
3354 * > 0 if k is > record
3355 */
3356static int ciCompare(struct component_name * key, /* search key */
3357 dtpage_t * p, /* directory page */
3358 int si, /* entry slot index */
3359 int flag)
3360{
3361 wchar_t *kname, x;
3362 __le16 *name;
3363 int klen, namlen, len, rc;
3364 struct ldtentry *lh;
3365 struct idtentry *ih;
3366 struct dtslot *t;
3367 int i;
3368
3369 /*
3370 * force the left-most key on internal pages, at any level of
3371 * the tree, to be less than any search key.
3372 * this obviates having to update the leftmost key on an internal
3373 * page when the user inserts a new key in the tree smaller than
3374 * anything that has been stored.
3375 *
3376 * (? if/when dtSearch() narrows down to 1st entry (index = 0),
3377 * at any internal page at any level of the tree,
3378 * it descends to child of the entry anyway -
3379 * ? make the entry as min size dummy entry)
3380 *
3381 * if (e->index == 0 && h->prevpg == P_INVALID && !(h->flags & BT_LEAF))
3382 * return (1);
3383 */
3384
3385 kname = key->name;
3386 klen = key->namlen;
3387
3388 /*
3389 * leaf page entry
3390 */
3391 if (p->header.flag & BT_LEAF) {
3392 lh = (struct ldtentry *) & p->slot[si];
3393 si = lh->next;
3394 name = lh->name;
3395 namlen = lh->namlen;
3396 if (flag & JFS_DIR_INDEX)
3397 len = min(namlen, DTLHDRDATALEN);
3398 else
3399 len = min(namlen, DTLHDRDATALEN_LEGACY);
3400 }
3401 /*
3402 * internal page entry
3403 */
3404 else {
3405 ih = (struct idtentry *) & p->slot[si];
3406 si = ih->next;
3407 name = ih->name;
3408 namlen = ih->namlen;
3409 len = min(namlen, DTIHDRDATALEN);
3410 }
3411
3412 /* compare with head/only segment */
3413 len = min(klen, len);
3414 for (i = 0; i < len; i++, kname++, name++) {
3415 /* only uppercase if case-insensitive support is on */
3416 if ((flag & JFS_OS2) == JFS_OS2)
3417 x = UniToupper(le16_to_cpu(*name));
3418 else
3419 x = le16_to_cpu(*name);
3420 if ((rc = *kname - x))
3421 return rc;
3422 }
3423
3424 klen -= len;
3425 namlen -= len;
3426
3427 /* compare with additional segment(s) */
3428 while (klen > 0 && namlen > 0) {
3429 /* compare with next name segment */
3430 t = (struct dtslot *) & p->slot[si];
3431 len = min(namlen, DTSLOTDATALEN);
3432 len = min(klen, len);
3433 name = t->name;
3434 for (i = 0; i < len; i++, kname++, name++) {
3435 /* only uppercase if case-insensitive support is on */
3436 if ((flag & JFS_OS2) == JFS_OS2)
3437 x = UniToupper(le16_to_cpu(*name));
3438 else
3439 x = le16_to_cpu(*name);
3440
3441 if ((rc = *kname - x))
3442 return rc;
3443 }
3444
3445 klen -= len;
3446 namlen -= len;
3447 si = t->next;
3448 }
3449
3450 return (klen - namlen);
3451}
3452
3453
3454/*
3455 * ciGetLeafPrefixKey()
3456 *
3457 * function: compute prefix of suffix compression
3458 * from two adjacent leaf entries
3459 * across page boundary
3460 *
3461 * return: non-zero on error
3462 *
3463 */
3464static int ciGetLeafPrefixKey(dtpage_t * lp, int li, dtpage_t * rp,
3465 int ri, struct component_name * key, int flag)
3466{
3467 int klen, namlen;
3468 wchar_t *pl, *pr, *kname;
3469 struct component_name lkey;
3470 struct component_name rkey;
3471
3472 lkey.name = kmalloc_array(JFS_NAME_MAX + 1, size: sizeof(wchar_t),
3473 GFP_KERNEL);
3474 if (lkey.name == NULL)
3475 return -ENOMEM;
3476
3477 rkey.name = kmalloc_array(JFS_NAME_MAX + 1, size: sizeof(wchar_t),
3478 GFP_KERNEL);
3479 if (rkey.name == NULL) {
3480 kfree(objp: lkey.name);
3481 return -ENOMEM;
3482 }
3483
3484 /* get left and right key */
3485 dtGetKey(p: lp, i: li, key: &lkey, flag);
3486 lkey.name[lkey.namlen] = 0;
3487
3488 if ((flag & JFS_OS2) == JFS_OS2)
3489 ciToUpper(&lkey);
3490
3491 dtGetKey(p: rp, i: ri, key: &rkey, flag);
3492 rkey.name[rkey.namlen] = 0;
3493
3494
3495 if ((flag & JFS_OS2) == JFS_OS2)
3496 ciToUpper(&rkey);
3497
3498 /* compute prefix */
3499 klen = 0;
3500 kname = key->name;
3501 namlen = min(lkey.namlen, rkey.namlen);
3502 for (pl = lkey.name, pr = rkey.name;
3503 namlen; pl++, pr++, namlen--, klen++, kname++) {
3504 *kname = *pr;
3505 if (*pl != *pr) {
3506 key->namlen = klen + 1;
3507 goto free_names;
3508 }
3509 }
3510
3511 /* l->namlen <= r->namlen since l <= r */
3512 if (lkey.namlen < rkey.namlen) {
3513 *kname = *pr;
3514 key->namlen = klen + 1;
3515 } else /* l->namelen == r->namelen */
3516 key->namlen = klen;
3517
3518free_names:
3519 kfree(objp: lkey.name);
3520 kfree(objp: rkey.name);
3521 return 0;
3522}
3523
3524
3525
3526/*
3527 * dtGetKey()
3528 *
3529 * function: get key of the entry
3530 */
3531static void dtGetKey(dtpage_t * p, int i, /* entry index */
3532 struct component_name * key, int flag)
3533{
3534 int si;
3535 s8 *stbl;
3536 struct ldtentry *lh;
3537 struct idtentry *ih;
3538 struct dtslot *t;
3539 int namlen, len;
3540 wchar_t *kname;
3541 __le16 *name;
3542
3543 /* get entry */
3544 stbl = DT_GETSTBL(p);
3545 si = stbl[i];
3546 if (p->header.flag & BT_LEAF) {
3547 lh = (struct ldtentry *) & p->slot[si];
3548 si = lh->next;
3549 namlen = lh->namlen;
3550 name = lh->name;
3551 if (flag & JFS_DIR_INDEX)
3552 len = min(namlen, DTLHDRDATALEN);
3553 else
3554 len = min(namlen, DTLHDRDATALEN_LEGACY);
3555 } else {
3556 ih = (struct idtentry *) & p->slot[si];
3557 si = ih->next;
3558 namlen = ih->namlen;
3559 name = ih->name;
3560 len = min(namlen, DTIHDRDATALEN);
3561 }
3562
3563 key->namlen = namlen;
3564 kname = key->name;
3565
3566 /*
3567 * move head/only segment
3568 */
3569 UniStrncpy_from_le(ucs1: kname, ucs2: name, n: len);
3570
3571 /*
3572 * move additional segment(s)
3573 */
3574 while (si >= 0) {
3575 /* get next segment */
3576 t = &p->slot[si];
3577 kname += len;
3578 namlen -= len;
3579 len = min(namlen, DTSLOTDATALEN);
3580 UniStrncpy_from_le(ucs1: kname, ucs2: t->name, n: len);
3581
3582 si = t->next;
3583 }
3584}
3585
3586
3587/*
3588 * dtInsertEntry()
3589 *
3590 * function: allocate free slot(s) and
3591 * write a leaf/internal entry
3592 *
3593 * return: entry slot index
3594 */
3595static void dtInsertEntry(dtpage_t * p, int index, struct component_name * key,
3596 ddata_t * data, struct dt_lock ** dtlock)
3597{
3598 struct dtslot *h, *t;
3599 struct ldtentry *lh = NULL;
3600 struct idtentry *ih = NULL;
3601 int hsi, fsi, klen, len, nextindex;
3602 wchar_t *kname;
3603 __le16 *name;
3604 s8 *stbl;
3605 pxd_t *xd;
3606 struct dt_lock *dtlck = *dtlock;
3607 struct lv *lv;
3608 int xsi, n;
3609 s64 bn = 0;
3610 struct metapage *mp = NULL;
3611
3612 klen = key->namlen;
3613 kname = key->name;
3614
3615 /* allocate a free slot */
3616 hsi = fsi = p->header.freelist;
3617 h = &p->slot[fsi];
3618 p->header.freelist = h->next;
3619 --p->header.freecnt;
3620
3621 /* open new linelock */
3622 if (dtlck->index >= dtlck->maxcnt)
3623 dtlck = (struct dt_lock *) txLinelock(dtlck);
3624
3625 lv = & dtlck->lv[dtlck->index];
3626 lv->offset = hsi;
3627
3628 /* write head/only segment */
3629 if (p->header.flag & BT_LEAF) {
3630 lh = (struct ldtentry *) h;
3631 lh->next = h->next;
3632 lh->inumber = cpu_to_le32(data->leaf.ino);
3633 lh->namlen = klen;
3634 name = lh->name;
3635 if (data->leaf.ip) {
3636 len = min(klen, DTLHDRDATALEN);
3637 if (!(p->header.flag & BT_ROOT))
3638 bn = addressPXD(pxd: &p->header.self);
3639 lh->index = cpu_to_le32(add_index(data->leaf.tid,
3640 data->leaf.ip,
3641 bn, index));
3642 } else
3643 len = min(klen, DTLHDRDATALEN_LEGACY);
3644 } else {
3645 ih = (struct idtentry *) h;
3646 ih->next = h->next;
3647 xd = (pxd_t *) ih;
3648 *xd = data->xd;
3649 ih->namlen = klen;
3650 name = ih->name;
3651 len = min(klen, DTIHDRDATALEN);
3652 }
3653
3654 UniStrncpy_to_le(ucs1: name, ucs2: kname, n: len);
3655
3656 n = 1;
3657 xsi = hsi;
3658
3659 /* write additional segment(s) */
3660 t = h;
3661 klen -= len;
3662 while (klen) {
3663 /* get free slot */
3664 fsi = p->header.freelist;
3665 t = &p->slot[fsi];
3666 p->header.freelist = t->next;
3667 --p->header.freecnt;
3668
3669 /* is next slot contiguous ? */
3670 if (fsi != xsi + 1) {
3671 /* close current linelock */
3672 lv->length = n;
3673 dtlck->index++;
3674
3675 /* open new linelock */
3676 if (dtlck->index < dtlck->maxcnt)
3677 lv++;
3678 else {
3679 dtlck = (struct dt_lock *) txLinelock(dtlck);
3680 lv = & dtlck->lv[0];
3681 }
3682
3683 lv->offset = fsi;
3684 n = 0;
3685 }
3686
3687 kname += len;
3688 len = min(klen, DTSLOTDATALEN);
3689 UniStrncpy_to_le(ucs1: t->name, ucs2: kname, n: len);
3690
3691 n++;
3692 xsi = fsi;
3693 klen -= len;
3694 }
3695
3696 /* close current linelock */
3697 lv->length = n;
3698 dtlck->index++;
3699
3700 *dtlock = dtlck;
3701
3702 /* terminate last/only segment */
3703 if (h == t) {
3704 /* single segment entry */
3705 if (p->header.flag & BT_LEAF)
3706 lh->next = -1;
3707 else
3708 ih->next = -1;
3709 } else
3710 /* multi-segment entry */
3711 t->next = -1;
3712
3713 /* if insert into middle, shift right succeeding entries in stbl */
3714 stbl = DT_GETSTBL(p);
3715 nextindex = p->header.nextindex;
3716 if (index < nextindex) {
3717 memmove(stbl + index + 1, stbl + index, nextindex - index);
3718
3719 if ((p->header.flag & BT_LEAF) && data->leaf.ip) {
3720 s64 lblock;
3721
3722 /*
3723 * Need to update slot number for entries that moved
3724 * in the stbl
3725 */
3726 mp = NULL;
3727 for (n = index + 1; n <= nextindex; n++) {
3728 lh = (struct ldtentry *) & (p->slot[stbl[n]]);
3729 modify_index(tid: data->leaf.tid, ip: data->leaf.ip,
3730 le32_to_cpu(lh->index), bn, slot: n,
3731 mp: &mp, lblock: &lblock);
3732 }
3733 if (mp)
3734 release_metapage(mp);
3735 }
3736 }
3737
3738 stbl[index] = hsi;
3739
3740 /* advance next available entry index of stbl */
3741 ++p->header.nextindex;
3742}
3743
3744
3745/*
3746 * dtMoveEntry()
3747 *
3748 * function: move entries from split/left page to new/right page
3749 *
3750 * nextindex of dst page and freelist/freecnt of both pages
3751 * are updated.
3752 */
3753static void dtMoveEntry(dtpage_t * sp, int si, dtpage_t * dp,
3754 struct dt_lock ** sdtlock, struct dt_lock ** ddtlock,
3755 int do_index)
3756{
3757 int ssi, next; /* src slot index */
3758 int di; /* dst entry index */
3759 int dsi; /* dst slot index */
3760 s8 *sstbl, *dstbl; /* sorted entry table */
3761 int snamlen, len;
3762 struct ldtentry *slh, *dlh = NULL;
3763 struct idtentry *sih, *dih = NULL;
3764 struct dtslot *h, *s, *d;
3765 struct dt_lock *sdtlck = *sdtlock, *ddtlck = *ddtlock;
3766 struct lv *slv, *dlv;
3767 int xssi, ns, nd;
3768 int sfsi;
3769
3770 sstbl = (s8 *) & sp->slot[sp->header.stblindex];
3771 dstbl = (s8 *) & dp->slot[dp->header.stblindex];
3772
3773 dsi = dp->header.freelist; /* first (whole page) free slot */
3774 sfsi = sp->header.freelist;
3775
3776 /* linelock destination entry slot */
3777 dlv = & ddtlck->lv[ddtlck->index];
3778 dlv->offset = dsi;
3779
3780 /* linelock source entry slot */
3781 slv = & sdtlck->lv[sdtlck->index];
3782 slv->offset = sstbl[si];
3783 xssi = slv->offset - 1;
3784
3785 /*
3786 * move entries
3787 */
3788 ns = nd = 0;
3789 for (di = 0; si < sp->header.nextindex; si++, di++) {
3790 ssi = sstbl[si];
3791 dstbl[di] = dsi;
3792
3793 /* is next slot contiguous ? */
3794 if (ssi != xssi + 1) {
3795 /* close current linelock */
3796 slv->length = ns;
3797 sdtlck->index++;
3798
3799 /* open new linelock */
3800 if (sdtlck->index < sdtlck->maxcnt)
3801 slv++;
3802 else {
3803 sdtlck = (struct dt_lock *) txLinelock(sdtlck);
3804 slv = & sdtlck->lv[0];
3805 }
3806
3807 slv->offset = ssi;
3808 ns = 0;
3809 }
3810
3811 /*
3812 * move head/only segment of an entry
3813 */
3814 /* get dst slot */
3815 h = d = &dp->slot[dsi];
3816
3817 /* get src slot and move */
3818 s = &sp->slot[ssi];
3819 if (sp->header.flag & BT_LEAF) {
3820 /* get source entry */
3821 slh = (struct ldtentry *) s;
3822 dlh = (struct ldtentry *) h;
3823 snamlen = slh->namlen;
3824
3825 if (do_index) {
3826 len = min(snamlen, DTLHDRDATALEN);
3827 dlh->index = slh->index; /* little-endian */
3828 } else
3829 len = min(snamlen, DTLHDRDATALEN_LEGACY);
3830
3831 memcpy(dlh, slh, 6 + len * 2);
3832
3833 next = slh->next;
3834
3835 /* update dst head/only segment next field */
3836 dsi++;
3837 dlh->next = dsi;
3838 } else {
3839 sih = (struct idtentry *) s;
3840 snamlen = sih->namlen;
3841
3842 len = min(snamlen, DTIHDRDATALEN);
3843 dih = (struct idtentry *) h;
3844 memcpy(dih, sih, 10 + len * 2);
3845 next = sih->next;
3846
3847 dsi++;
3848 dih->next = dsi;
3849 }
3850
3851 /* free src head/only segment */
3852 s->next = sfsi;
3853 s->cnt = 1;
3854 sfsi = ssi;
3855
3856 ns++;
3857 nd++;
3858 xssi = ssi;
3859
3860 /*
3861 * move additional segment(s) of the entry
3862 */
3863 snamlen -= len;
3864 while ((ssi = next) >= 0) {
3865 /* is next slot contiguous ? */
3866 if (ssi != xssi + 1) {
3867 /* close current linelock */
3868 slv->length = ns;
3869 sdtlck->index++;
3870
3871 /* open new linelock */
3872 if (sdtlck->index < sdtlck->maxcnt)
3873 slv++;
3874 else {
3875 sdtlck =
3876 (struct dt_lock *)
3877 txLinelock(sdtlck);
3878 slv = & sdtlck->lv[0];
3879 }
3880
3881 slv->offset = ssi;
3882 ns = 0;
3883 }
3884
3885 /* get next source segment */
3886 s = &sp->slot[ssi];
3887
3888 /* get next destination free slot */
3889 d++;
3890
3891 len = min(snamlen, DTSLOTDATALEN);
3892 UniStrncpy_le(ucs1: d->name, ucs2: s->name, n: len);
3893
3894 ns++;
3895 nd++;
3896 xssi = ssi;
3897
3898 dsi++;
3899 d->next = dsi;
3900
3901 /* free source segment */
3902 next = s->next;
3903 s->next = sfsi;
3904 s->cnt = 1;
3905 sfsi = ssi;
3906
3907 snamlen -= len;
3908 } /* end while */
3909
3910 /* terminate dst last/only segment */
3911 if (h == d) {
3912 /* single segment entry */
3913 if (dp->header.flag & BT_LEAF)
3914 dlh->next = -1;
3915 else
3916 dih->next = -1;
3917 } else
3918 /* multi-segment entry */
3919 d->next = -1;
3920 } /* end for */
3921
3922 /* close current linelock */
3923 slv->length = ns;
3924 sdtlck->index++;
3925 *sdtlock = sdtlck;
3926
3927 dlv->length = nd;
3928 ddtlck->index++;
3929 *ddtlock = ddtlck;
3930
3931 /* update source header */
3932 sp->header.freelist = sfsi;
3933 sp->header.freecnt += nd;
3934
3935 /* update destination header */
3936 dp->header.nextindex = di;
3937
3938 dp->header.freelist = dsi;
3939 dp->header.freecnt -= nd;
3940}
3941
3942
3943/*
3944 * dtDeleteEntry()
3945 *
3946 * function: free a (leaf/internal) entry
3947 *
3948 * log freelist header, stbl, and each segment slot of entry
3949 * (even though last/only segment next field is modified,
3950 * physical image logging requires all segment slots of
3951 * the entry logged to avoid applying previous updates
3952 * to the same slots)
3953 */
3954static void dtDeleteEntry(dtpage_t * p, int fi, struct dt_lock ** dtlock)
3955{
3956 int fsi; /* free entry slot index */
3957 s8 *stbl;
3958 struct dtslot *t;
3959 int si, freecnt;
3960 struct dt_lock *dtlck = *dtlock;
3961 struct lv *lv;
3962 int xsi, n;
3963
3964 /* get free entry slot index */
3965 stbl = DT_GETSTBL(p);
3966 fsi = stbl[fi];
3967
3968 /* open new linelock */
3969 if (dtlck->index >= dtlck->maxcnt)
3970 dtlck = (struct dt_lock *) txLinelock(dtlck);
3971 lv = & dtlck->lv[dtlck->index];
3972
3973 lv->offset = fsi;
3974
3975 /* get the head/only segment */
3976 t = &p->slot[fsi];
3977 if (p->header.flag & BT_LEAF)
3978 si = ((struct ldtentry *) t)->next;
3979 else
3980 si = ((struct idtentry *) t)->next;
3981 t->next = si;
3982 t->cnt = 1;
3983
3984 n = freecnt = 1;
3985 xsi = fsi;
3986
3987 /* find the last/only segment */
3988 while (si >= 0) {
3989 /* is next slot contiguous ? */
3990 if (si != xsi + 1) {
3991 /* close current linelock */
3992 lv->length = n;
3993 dtlck->index++;
3994
3995 /* open new linelock */
3996 if (dtlck->index < dtlck->maxcnt)
3997 lv++;
3998 else {
3999 dtlck = (struct dt_lock *) txLinelock(dtlck);
4000 lv = & dtlck->lv[0];
4001 }
4002
4003 lv->offset = si;
4004 n = 0;
4005 }
4006
4007 n++;
4008 xsi = si;
4009 freecnt++;
4010
4011 t = &p->slot[si];
4012 t->cnt = 1;
4013 si = t->next;
4014 }
4015
4016 /* close current linelock */
4017 lv->length = n;
4018 dtlck->index++;
4019
4020 *dtlock = dtlck;
4021
4022 /* update freelist */
4023 t->next = p->header.freelist;
4024 p->header.freelist = fsi;
4025 p->header.freecnt += freecnt;
4026
4027 /* if delete from middle,
4028 * shift left the succedding entries in the stbl
4029 */
4030 si = p->header.nextindex;
4031 if (fi < si - 1)
4032 memmove(&stbl[fi], &stbl[fi + 1], si - fi - 1);
4033
4034 p->header.nextindex--;
4035}
4036
4037
4038/*
4039 * dtTruncateEntry()
4040 *
4041 * function: truncate a (leaf/internal) entry
4042 *
4043 * log freelist header, stbl, and each segment slot of entry
4044 * (even though last/only segment next field is modified,
4045 * physical image logging requires all segment slots of
4046 * the entry logged to avoid applying previous updates
4047 * to the same slots)
4048 */
4049static void dtTruncateEntry(dtpage_t * p, int ti, struct dt_lock ** dtlock)
4050{
4051 int tsi; /* truncate entry slot index */
4052 s8 *stbl;
4053 struct dtslot *t;
4054 int si, freecnt;
4055 struct dt_lock *dtlck = *dtlock;
4056 struct lv *lv;
4057 int fsi, xsi, n;
4058
4059 /* get free entry slot index */
4060 stbl = DT_GETSTBL(p);
4061 tsi = stbl[ti];
4062
4063 /* open new linelock */
4064 if (dtlck->index >= dtlck->maxcnt)
4065 dtlck = (struct dt_lock *) txLinelock(dtlck);
4066 lv = & dtlck->lv[dtlck->index];
4067
4068 lv->offset = tsi;
4069
4070 /* get the head/only segment */
4071 t = &p->slot[tsi];
4072 ASSERT(p->header.flag & BT_INTERNAL);
4073 ((struct idtentry *) t)->namlen = 0;
4074 si = ((struct idtentry *) t)->next;
4075 ((struct idtentry *) t)->next = -1;
4076
4077 n = 1;
4078 freecnt = 0;
4079 fsi = si;
4080 xsi = tsi;
4081
4082 /* find the last/only segment */
4083 while (si >= 0) {
4084 /* is next slot contiguous ? */
4085 if (si != xsi + 1) {
4086 /* close current linelock */
4087 lv->length = n;
4088 dtlck->index++;
4089
4090 /* open new linelock */
4091 if (dtlck->index < dtlck->maxcnt)
4092 lv++;
4093 else {
4094 dtlck = (struct dt_lock *) txLinelock(dtlck);
4095 lv = & dtlck->lv[0];
4096 }
4097
4098 lv->offset = si;
4099 n = 0;
4100 }
4101
4102 n++;
4103 xsi = si;
4104 freecnt++;
4105
4106 t = &p->slot[si];
4107 t->cnt = 1;
4108 si = t->next;
4109 }
4110
4111 /* close current linelock */
4112 lv->length = n;
4113 dtlck->index++;
4114
4115 *dtlock = dtlck;
4116
4117 /* update freelist */
4118 if (freecnt == 0)
4119 return;
4120 t->next = p->header.freelist;
4121 p->header.freelist = fsi;
4122 p->header.freecnt += freecnt;
4123}
4124
4125
4126/*
4127 * dtLinelockFreelist()
4128 */
4129static void dtLinelockFreelist(dtpage_t * p, /* directory page */
4130 int m, /* max slot index */
4131 struct dt_lock ** dtlock)
4132{
4133 int fsi; /* free entry slot index */
4134 struct dtslot *t;
4135 int si;
4136 struct dt_lock *dtlck = *dtlock;
4137 struct lv *lv;
4138 int xsi, n;
4139
4140 /* get free entry slot index */
4141 fsi = p->header.freelist;
4142
4143 /* open new linelock */
4144 if (dtlck->index >= dtlck->maxcnt)
4145 dtlck = (struct dt_lock *) txLinelock(dtlck);
4146 lv = & dtlck->lv[dtlck->index];
4147
4148 lv->offset = fsi;
4149
4150 n = 1;
4151 xsi = fsi;
4152
4153 t = &p->slot[fsi];
4154 si = t->next;
4155
4156 /* find the last/only segment */
4157 while (si < m && si >= 0) {
4158 /* is next slot contiguous ? */
4159 if (si != xsi + 1) {
4160 /* close current linelock */
4161 lv->length = n;
4162 dtlck->index++;
4163
4164 /* open new linelock */
4165 if (dtlck->index < dtlck->maxcnt)
4166 lv++;
4167 else {
4168 dtlck = (struct dt_lock *) txLinelock(dtlck);
4169 lv = & dtlck->lv[0];
4170 }
4171
4172 lv->offset = si;
4173 n = 0;
4174 }
4175
4176 n++;
4177 xsi = si;
4178
4179 t = &p->slot[si];
4180 si = t->next;
4181 }
4182
4183 /* close current linelock */
4184 lv->length = n;
4185 dtlck->index++;
4186
4187 *dtlock = dtlck;
4188}
4189
4190
4191/*
4192 * NAME: dtModify
4193 *
4194 * FUNCTION: Modify the inode number part of a directory entry
4195 *
4196 * PARAMETERS:
4197 * tid - Transaction id
4198 * ip - Inode of parent directory
4199 * key - Name of entry to be modified
4200 * orig_ino - Original inode number expected in entry
4201 * new_ino - New inode number to put into entry
4202 * flag - JFS_RENAME
4203 *
4204 * RETURNS:
4205 * -ESTALE - If entry found does not match orig_ino passed in
4206 * -ENOENT - If no entry can be found to match key
4207 * 0 - If successfully modified entry
4208 */
4209int dtModify(tid_t tid, struct inode *ip,
4210 struct component_name * key, ino_t * orig_ino, ino_t new_ino, int flag)
4211{
4212 int rc;
4213 s64 bn;
4214 struct metapage *mp;
4215 dtpage_t *p;
4216 int index;
4217 struct btstack btstack;
4218 struct tlock *tlck;
4219 struct dt_lock *dtlck;
4220 struct lv *lv;
4221 s8 *stbl;
4222 int entry_si; /* entry slot index */
4223 struct ldtentry *entry;
4224
4225 /*
4226 * search for the entry to modify:
4227 *
4228 * dtSearch() returns (leaf page pinned, index at which to modify).
4229 */
4230 if ((rc = dtSearch(ip, key, data: orig_ino, btstack: &btstack, flag)))
4231 return rc;
4232
4233 /* retrieve search result */
4234 DT_GETSEARCH(ip, btstack.top, bn, mp, p, index);
4235
4236 BT_MARK_DIRTY(mp, ip);
4237 /*
4238 * acquire a transaction lock on the leaf page of named entry
4239 */
4240 tlck = txLock(tid, ip, mp, tlckDTREE | tlckENTRY);
4241 dtlck = (struct dt_lock *) & tlck->lock;
4242
4243 /* get slot index of the entry */
4244 stbl = DT_GETSTBL(p);
4245 entry_si = stbl[index];
4246
4247 /* linelock entry */
4248 ASSERT(dtlck->index == 0);
4249 lv = & dtlck->lv[0];
4250 lv->offset = entry_si;
4251 lv->length = 1;
4252 dtlck->index++;
4253
4254 /* get the head/only segment */
4255 entry = (struct ldtentry *) & p->slot[entry_si];
4256
4257 /* substitute the inode number of the entry */
4258 entry->inumber = cpu_to_le32(new_ino);
4259
4260 /* unpin the leaf page */
4261 DT_PUTPAGE(mp);
4262
4263 return 0;
4264}
4265

source code of linux/fs/jfs/jfs_dtree.c