1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * This file is part of UBIFS.
4 *
5 * Copyright (C) 2006-2008 Nokia Corporation
6 *
7 * Authors: Adrian Hunter
8 * Artem Bityutskiy (Битюцкий Артём)
9 */
10
11/*
12 * This file implements functions needed to recover from unclean un-mounts.
13 * When UBIFS is mounted, it checks a flag on the master node to determine if
14 * an un-mount was completed successfully. If not, the process of mounting
15 * incorporates additional checking and fixing of on-flash data structures.
16 * UBIFS always cleans away all remnants of an unclean un-mount, so that
17 * errors do not accumulate. However UBIFS defers recovery if it is mounted
18 * read-only, and the flash is not modified in that case.
19 *
20 * The general UBIFS approach to the recovery is that it recovers from
21 * corruptions which could be caused by power cuts, but it refuses to recover
22 * from corruption caused by other reasons. And UBIFS tries to distinguish
23 * between these 2 reasons of corruptions and silently recover in the former
24 * case and loudly complain in the latter case.
25 *
26 * UBIFS writes only to erased LEBs, so it writes only to the flash space
27 * containing only 0xFFs. UBIFS also always writes strictly from the beginning
28 * of the LEB to the end. And UBIFS assumes that the underlying flash media
29 * writes in @c->max_write_size bytes at a time.
30 *
31 * Hence, if UBIFS finds a corrupted node at offset X, it expects only the min.
32 * I/O unit corresponding to offset X to contain corrupted data, all the
33 * following min. I/O units have to contain empty space (all 0xFFs). If this is
34 * not true, the corruption cannot be the result of a power cut, and UBIFS
35 * refuses to mount.
36 */
37
38#include <linux/crc32.h>
39#include <linux/slab.h>
40#include "ubifs.h"
41
42/**
43 * is_empty - determine whether a buffer is empty (contains all 0xff).
44 * @buf: buffer to clean
45 * @len: length of buffer
46 *
47 * This function returns %1 if the buffer is empty (contains all 0xff) otherwise
48 * %0 is returned.
49 */
50static int is_empty(void *buf, int len)
51{
52 uint8_t *p = buf;
53 int i;
54
55 for (i = 0; i < len; i++)
56 if (*p++ != 0xff)
57 return 0;
58 return 1;
59}
60
61/**
62 * first_non_ff - find offset of the first non-0xff byte.
63 * @buf: buffer to search in
64 * @len: length of buffer
65 *
66 * This function returns offset of the first non-0xff byte in @buf or %-1 if
67 * the buffer contains only 0xff bytes.
68 */
69static int first_non_ff(void *buf, int len)
70{
71 uint8_t *p = buf;
72 int i;
73
74 for (i = 0; i < len; i++)
75 if (*p++ != 0xff)
76 return i;
77 return -1;
78}
79
80/**
81 * get_master_node - get the last valid master node allowing for corruption.
82 * @c: UBIFS file-system description object
83 * @lnum: LEB number
84 * @pbuf: buffer containing the LEB read, is returned here
85 * @mst: master node, if found, is returned here
86 * @cor: corruption, if found, is returned here
87 *
88 * This function allocates a buffer, reads the LEB into it, and finds and
89 * returns the last valid master node allowing for one area of corruption.
90 * The corrupt area, if there is one, must be consistent with the assumption
91 * that it is the result of an unclean unmount while the master node was being
92 * written. Under those circumstances, it is valid to use the previously written
93 * master node.
94 *
95 * This function returns %0 on success and a negative error code on failure.
96 */
97static int get_master_node(const struct ubifs_info *c, int lnum, void **pbuf,
98 struct ubifs_mst_node **mst, void **cor)
99{
100 const int sz = c->mst_node_alsz;
101 int err, offs, len;
102 void *sbuf, *buf;
103
104 sbuf = vmalloc(size: c->leb_size);
105 if (!sbuf)
106 return -ENOMEM;
107
108 err = ubifs_leb_read(c, lnum, buf: sbuf, offs: 0, len: c->leb_size, even_ebadmsg: 0);
109 if (err && err != -EBADMSG)
110 goto out_free;
111
112 /* Find the first position that is definitely not a node */
113 offs = 0;
114 buf = sbuf;
115 len = c->leb_size;
116 while (offs + UBIFS_MST_NODE_SZ <= c->leb_size) {
117 struct ubifs_ch *ch = buf;
118
119 if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC)
120 break;
121 offs += sz;
122 buf += sz;
123 len -= sz;
124 }
125 /* See if there was a valid master node before that */
126 if (offs) {
127 int ret;
128
129 offs -= sz;
130 buf -= sz;
131 len += sz;
132 ret = ubifs_scan_a_node(c, buf, len, lnum, offs, quiet: 1);
133 if (ret != SCANNED_A_NODE && offs) {
134 /* Could have been corruption so check one place back */
135 offs -= sz;
136 buf -= sz;
137 len += sz;
138 ret = ubifs_scan_a_node(c, buf, len, lnum, offs, quiet: 1);
139 if (ret != SCANNED_A_NODE)
140 /*
141 * We accept only one area of corruption because
142 * we are assuming that it was caused while
143 * trying to write a master node.
144 */
145 goto out_err;
146 }
147 if (ret == SCANNED_A_NODE) {
148 struct ubifs_ch *ch = buf;
149
150 if (ch->node_type != UBIFS_MST_NODE)
151 goto out_err;
152 dbg_rcvry("found a master node at %d:%d", lnum, offs);
153 *mst = buf;
154 offs += sz;
155 buf += sz;
156 len -= sz;
157 }
158 }
159 /* Check for corruption */
160 if (offs < c->leb_size) {
161 if (!is_empty(buf, min_t(int, len, sz))) {
162 *cor = buf;
163 dbg_rcvry("found corruption at %d:%d", lnum, offs);
164 }
165 offs += sz;
166 buf += sz;
167 len -= sz;
168 }
169 /* Check remaining empty space */
170 if (offs < c->leb_size)
171 if (!is_empty(buf, len))
172 goto out_err;
173 *pbuf = sbuf;
174 return 0;
175
176out_err:
177 err = -EINVAL;
178out_free:
179 vfree(addr: sbuf);
180 *mst = NULL;
181 *cor = NULL;
182 return err;
183}
184
185/**
186 * write_rcvrd_mst_node - write recovered master node.
187 * @c: UBIFS file-system description object
188 * @mst: master node
189 *
190 * This function returns %0 on success and a negative error code on failure.
191 */
192static int write_rcvrd_mst_node(struct ubifs_info *c,
193 struct ubifs_mst_node *mst)
194{
195 int err = 0, lnum = UBIFS_MST_LNUM, sz = c->mst_node_alsz;
196 __le32 save_flags;
197
198 dbg_rcvry("recovery");
199
200 save_flags = mst->flags;
201 mst->flags |= cpu_to_le32(UBIFS_MST_RCVRY);
202
203 err = ubifs_prepare_node_hmac(c, node: mst, UBIFS_MST_NODE_SZ,
204 offsetof(struct ubifs_mst_node, hmac), pad: 1);
205 if (err)
206 goto out;
207 err = ubifs_leb_change(c, lnum, buf: mst, len: sz);
208 if (err)
209 goto out;
210 err = ubifs_leb_change(c, lnum: lnum + 1, buf: mst, len: sz);
211 if (err)
212 goto out;
213out:
214 mst->flags = save_flags;
215 return err;
216}
217
218/**
219 * ubifs_recover_master_node - recover the master node.
220 * @c: UBIFS file-system description object
221 *
222 * This function recovers the master node from corruption that may occur due to
223 * an unclean unmount.
224 *
225 * This function returns %0 on success and a negative error code on failure.
226 */
227int ubifs_recover_master_node(struct ubifs_info *c)
228{
229 void *buf1 = NULL, *buf2 = NULL, *cor1 = NULL, *cor2 = NULL;
230 struct ubifs_mst_node *mst1 = NULL, *mst2 = NULL, *mst;
231 const int sz = c->mst_node_alsz;
232 int err, offs1, offs2;
233
234 dbg_rcvry("recovery");
235
236 err = get_master_node(c, UBIFS_MST_LNUM, pbuf: &buf1, mst: &mst1, cor: &cor1);
237 if (err)
238 goto out_free;
239
240 err = get_master_node(c, UBIFS_MST_LNUM + 1, pbuf: &buf2, mst: &mst2, cor: &cor2);
241 if (err)
242 goto out_free;
243
244 if (mst1) {
245 offs1 = (void *)mst1 - buf1;
246 if ((le32_to_cpu(mst1->flags) & UBIFS_MST_RCVRY) &&
247 (offs1 == 0 && !cor1)) {
248 /*
249 * mst1 was written by recovery at offset 0 with no
250 * corruption.
251 */
252 dbg_rcvry("recovery recovery");
253 mst = mst1;
254 } else if (mst2) {
255 offs2 = (void *)mst2 - buf2;
256 if (offs1 == offs2) {
257 /* Same offset, so must be the same */
258 if (ubifs_compare_master_node(c, m1: mst1, m2: mst2))
259 goto out_err;
260 mst = mst1;
261 } else if (offs2 + sz == offs1) {
262 /* 1st LEB was written, 2nd was not */
263 if (cor1)
264 goto out_err;
265 mst = mst1;
266 } else if (offs1 == 0 &&
267 c->leb_size - offs2 - sz < sz) {
268 /* 1st LEB was unmapped and written, 2nd not */
269 if (cor1)
270 goto out_err;
271 mst = mst1;
272 } else
273 goto out_err;
274 } else {
275 /*
276 * 2nd LEB was unmapped and about to be written, so
277 * there must be only one master node in the first LEB
278 * and no corruption.
279 */
280 if (offs1 != 0 || cor1)
281 goto out_err;
282 mst = mst1;
283 }
284 } else {
285 if (!mst2)
286 goto out_err;
287 /*
288 * 1st LEB was unmapped and about to be written, so there must
289 * be no room left in 2nd LEB.
290 */
291 offs2 = (void *)mst2 - buf2;
292 if (offs2 + sz + sz <= c->leb_size)
293 goto out_err;
294 mst = mst2;
295 }
296
297 ubifs_msg(c, fmt: "recovered master node from LEB %d",
298 (mst == mst1 ? UBIFS_MST_LNUM : UBIFS_MST_LNUM + 1));
299
300 memcpy(c->mst_node, mst, UBIFS_MST_NODE_SZ);
301
302 if (c->ro_mount) {
303 /* Read-only mode. Keep a copy for switching to rw mode */
304 c->rcvrd_mst_node = kmalloc(size: sz, GFP_KERNEL);
305 if (!c->rcvrd_mst_node) {
306 err = -ENOMEM;
307 goto out_free;
308 }
309 memcpy(c->rcvrd_mst_node, c->mst_node, UBIFS_MST_NODE_SZ);
310
311 /*
312 * We had to recover the master node, which means there was an
313 * unclean reboot. However, it is possible that the master node
314 * is clean at this point, i.e., %UBIFS_MST_DIRTY is not set.
315 * E.g., consider the following chain of events:
316 *
317 * 1. UBIFS was cleanly unmounted, so the master node is clean
318 * 2. UBIFS is being mounted R/W and starts changing the master
319 * node in the first (%UBIFS_MST_LNUM). A power cut happens,
320 * so this LEB ends up with some amount of garbage at the
321 * end.
322 * 3. UBIFS is being mounted R/O. We reach this place and
323 * recover the master node from the second LEB
324 * (%UBIFS_MST_LNUM + 1). But we cannot update the media
325 * because we are being mounted R/O. We have to defer the
326 * operation.
327 * 4. However, this master node (@c->mst_node) is marked as
328 * clean (since the step 1). And if we just return, the
329 * mount code will be confused and won't recover the master
330 * node when it is re-mounter R/W later.
331 *
332 * Thus, to force the recovery by marking the master node as
333 * dirty.
334 */
335 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
336 } else {
337 /* Write the recovered master node */
338 c->max_sqnum = le64_to_cpu(mst->ch.sqnum) - 1;
339 err = write_rcvrd_mst_node(c, mst: c->mst_node);
340 if (err)
341 goto out_free;
342 }
343
344 vfree(addr: buf2);
345 vfree(addr: buf1);
346
347 return 0;
348
349out_err:
350 err = -EINVAL;
351out_free:
352 ubifs_err(c, fmt: "failed to recover master node");
353 if (mst1) {
354 ubifs_err(c, fmt: "dumping first master node");
355 ubifs_dump_node(c, node: mst1, node_len: c->leb_size - ((void *)mst1 - buf1));
356 }
357 if (mst2) {
358 ubifs_err(c, fmt: "dumping second master node");
359 ubifs_dump_node(c, node: mst2, node_len: c->leb_size - ((void *)mst2 - buf2));
360 }
361 vfree(addr: buf2);
362 vfree(addr: buf1);
363 return err;
364}
365
366/**
367 * ubifs_write_rcvrd_mst_node - write the recovered master node.
368 * @c: UBIFS file-system description object
369 *
370 * This function writes the master node that was recovered during mounting in
371 * read-only mode and must now be written because we are remounting rw.
372 *
373 * This function returns %0 on success and a negative error code on failure.
374 */
375int ubifs_write_rcvrd_mst_node(struct ubifs_info *c)
376{
377 int err;
378
379 if (!c->rcvrd_mst_node)
380 return 0;
381 c->rcvrd_mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
382 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
383 err = write_rcvrd_mst_node(c, mst: c->rcvrd_mst_node);
384 if (err)
385 return err;
386 kfree(objp: c->rcvrd_mst_node);
387 c->rcvrd_mst_node = NULL;
388 return 0;
389}
390
391/**
392 * is_last_write - determine if an offset was in the last write to a LEB.
393 * @c: UBIFS file-system description object
394 * @buf: buffer to check
395 * @offs: offset to check
396 *
397 * This function returns %1 if @offs was in the last write to the LEB whose data
398 * is in @buf, otherwise %0 is returned. The determination is made by checking
399 * for subsequent empty space starting from the next @c->max_write_size
400 * boundary.
401 */
402static int is_last_write(const struct ubifs_info *c, void *buf, int offs)
403{
404 int empty_offs, check_len;
405 uint8_t *p;
406
407 /*
408 * Round up to the next @c->max_write_size boundary i.e. @offs is in
409 * the last wbuf written. After that should be empty space.
410 */
411 empty_offs = ALIGN(offs + 1, c->max_write_size);
412 check_len = c->leb_size - empty_offs;
413 p = buf + empty_offs - offs;
414 return is_empty(buf: p, len: check_len);
415}
416
417/**
418 * clean_buf - clean the data from an LEB sitting in a buffer.
419 * @c: UBIFS file-system description object
420 * @buf: buffer to clean
421 * @lnum: LEB number to clean
422 * @offs: offset from which to clean
423 * @len: length of buffer
424 *
425 * This function pads up to the next min_io_size boundary (if there is one) and
426 * sets empty space to all 0xff. @buf, @offs and @len are updated to the next
427 * @c->min_io_size boundary.
428 */
429static void clean_buf(const struct ubifs_info *c, void **buf, int lnum,
430 int *offs, int *len)
431{
432 int empty_offs, pad_len;
433
434 dbg_rcvry("cleaning corruption at %d:%d", lnum, *offs);
435
436 ubifs_assert(c, !(*offs & 7));
437 empty_offs = ALIGN(*offs, c->min_io_size);
438 pad_len = empty_offs - *offs;
439 ubifs_pad(c, buf: *buf, pad: pad_len);
440 *offs += pad_len;
441 *buf += pad_len;
442 *len -= pad_len;
443 memset(*buf, 0xff, c->leb_size - empty_offs);
444}
445
446/**
447 * no_more_nodes - determine if there are no more nodes in a buffer.
448 * @c: UBIFS file-system description object
449 * @buf: buffer to check
450 * @len: length of buffer
451 * @lnum: LEB number of the LEB from which @buf was read
452 * @offs: offset from which @buf was read
453 *
454 * This function ensures that the corrupted node at @offs is the last thing
455 * written to a LEB. This function returns %1 if more data is not found and
456 * %0 if more data is found.
457 */
458static int no_more_nodes(const struct ubifs_info *c, void *buf, int len,
459 int lnum, int offs)
460{
461 struct ubifs_ch *ch = buf;
462 int skip, dlen = le32_to_cpu(ch->len);
463
464 /* Check for empty space after the corrupt node's common header */
465 skip = ALIGN(offs + UBIFS_CH_SZ, c->max_write_size) - offs;
466 if (is_empty(buf: buf + skip, len: len - skip))
467 return 1;
468 /*
469 * The area after the common header size is not empty, so the common
470 * header must be intact. Check it.
471 */
472 if (ubifs_check_node(c, buf, len, lnum, offs, quiet: 1, must_chk_crc: 0) != -EUCLEAN) {
473 dbg_rcvry("unexpected bad common header at %d:%d", lnum, offs);
474 return 0;
475 }
476 /* Now we know the corrupt node's length we can skip over it */
477 skip = ALIGN(offs + dlen, c->max_write_size) - offs;
478 /* After which there should be empty space */
479 if (is_empty(buf: buf + skip, len: len - skip))
480 return 1;
481 dbg_rcvry("unexpected data at %d:%d", lnum, offs + skip);
482 return 0;
483}
484
485/**
486 * fix_unclean_leb - fix an unclean LEB.
487 * @c: UBIFS file-system description object
488 * @sleb: scanned LEB information
489 * @start: offset where scan started
490 */
491static int fix_unclean_leb(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
492 int start)
493{
494 int lnum = sleb->lnum, endpt = start;
495
496 /* Get the end offset of the last node we are keeping */
497 if (!list_empty(head: &sleb->nodes)) {
498 struct ubifs_scan_node *snod;
499
500 snod = list_entry(sleb->nodes.prev,
501 struct ubifs_scan_node, list);
502 endpt = snod->offs + snod->len;
503 }
504
505 if (c->ro_mount && !c->remounting_rw) {
506 /* Add to recovery list */
507 struct ubifs_unclean_leb *ucleb;
508
509 dbg_rcvry("need to fix LEB %d start %d endpt %d",
510 lnum, start, sleb->endpt);
511 ucleb = kzalloc(size: sizeof(struct ubifs_unclean_leb), GFP_NOFS);
512 if (!ucleb)
513 return -ENOMEM;
514 ucleb->lnum = lnum;
515 ucleb->endpt = endpt;
516 list_add_tail(new: &ucleb->list, head: &c->unclean_leb_list);
517 } else {
518 /* Write the fixed LEB back to flash */
519 int err;
520
521 dbg_rcvry("fixing LEB %d start %d endpt %d",
522 lnum, start, sleb->endpt);
523 if (endpt == 0) {
524 err = ubifs_leb_unmap(c, lnum);
525 if (err)
526 return err;
527 } else {
528 int len = ALIGN(endpt, c->min_io_size);
529
530 if (start) {
531 err = ubifs_leb_read(c, lnum, buf: sleb->buf, offs: 0,
532 len: start, even_ebadmsg: 1);
533 if (err)
534 return err;
535 }
536 /* Pad to min_io_size */
537 if (len > endpt) {
538 int pad_len = len - ALIGN(endpt, 8);
539
540 if (pad_len > 0) {
541 void *buf = sleb->buf + len - pad_len;
542
543 ubifs_pad(c, buf, pad: pad_len);
544 }
545 }
546 err = ubifs_leb_change(c, lnum, buf: sleb->buf, len);
547 if (err)
548 return err;
549 }
550 }
551 return 0;
552}
553
554/**
555 * drop_last_group - drop the last group of nodes.
556 * @sleb: scanned LEB information
557 * @offs: offset of dropped nodes is returned here
558 *
559 * This is a helper function for 'ubifs_recover_leb()' which drops the last
560 * group of nodes of the scanned LEB.
561 */
562static void drop_last_group(struct ubifs_scan_leb *sleb, int *offs)
563{
564 while (!list_empty(head: &sleb->nodes)) {
565 struct ubifs_scan_node *snod;
566 struct ubifs_ch *ch;
567
568 snod = list_entry(sleb->nodes.prev, struct ubifs_scan_node,
569 list);
570 ch = snod->node;
571 if (ch->group_type != UBIFS_IN_NODE_GROUP)
572 break;
573
574 dbg_rcvry("dropping grouped node at %d:%d",
575 sleb->lnum, snod->offs);
576 *offs = snod->offs;
577 list_del(entry: &snod->list);
578 kfree(objp: snod);
579 sleb->nodes_cnt -= 1;
580 }
581}
582
583/**
584 * drop_last_node - drop the last node.
585 * @sleb: scanned LEB information
586 * @offs: offset of dropped nodes is returned here
587 *
588 * This is a helper function for 'ubifs_recover_leb()' which drops the last
589 * node of the scanned LEB.
590 */
591static void drop_last_node(struct ubifs_scan_leb *sleb, int *offs)
592{
593 struct ubifs_scan_node *snod;
594
595 if (!list_empty(head: &sleb->nodes)) {
596 snod = list_entry(sleb->nodes.prev, struct ubifs_scan_node,
597 list);
598
599 dbg_rcvry("dropping last node at %d:%d",
600 sleb->lnum, snod->offs);
601 *offs = snod->offs;
602 list_del(entry: &snod->list);
603 kfree(objp: snod);
604 sleb->nodes_cnt -= 1;
605 }
606}
607
608/**
609 * ubifs_recover_leb - scan and recover a LEB.
610 * @c: UBIFS file-system description object
611 * @lnum: LEB number
612 * @offs: offset
613 * @sbuf: LEB-sized buffer to use
614 * @jhead: journal head number this LEB belongs to (%-1 if the LEB does not
615 * belong to any journal head)
616 *
617 * This function does a scan of a LEB, but caters for errors that might have
618 * been caused by the unclean unmount from which we are attempting to recover.
619 * Returns the scanned information on success and a negative error code on
620 * failure.
621 */
622struct ubifs_scan_leb *ubifs_recover_leb(struct ubifs_info *c, int lnum,
623 int offs, void *sbuf, int jhead)
624{
625 int ret = 0, err, len = c->leb_size - offs, start = offs, min_io_unit;
626 int grouped = jhead == -1 ? 0 : c->jheads[jhead].grouped;
627 struct ubifs_scan_leb *sleb;
628 void *buf = sbuf + offs;
629
630 dbg_rcvry("%d:%d, jhead %d, grouped %d", lnum, offs, jhead, grouped);
631
632 sleb = ubifs_start_scan(c, lnum, offs, sbuf);
633 if (IS_ERR(ptr: sleb))
634 return sleb;
635
636 ubifs_assert(c, len >= 8);
637 while (len >= 8) {
638 dbg_scan("look at LEB %d:%d (%d bytes left)",
639 lnum, offs, len);
640
641 cond_resched();
642
643 /*
644 * Scan quietly until there is an error from which we cannot
645 * recover
646 */
647 ret = ubifs_scan_a_node(c, buf, len, lnum, offs, quiet: 1);
648 if (ret == SCANNED_A_NODE) {
649 /* A valid node, and not a padding node */
650 struct ubifs_ch *ch = buf;
651 int node_len;
652
653 err = ubifs_add_snod(c, sleb, buf, offs);
654 if (err)
655 goto error;
656 node_len = ALIGN(le32_to_cpu(ch->len), 8);
657 offs += node_len;
658 buf += node_len;
659 len -= node_len;
660 } else if (ret > 0) {
661 /* Padding bytes or a valid padding node */
662 offs += ret;
663 buf += ret;
664 len -= ret;
665 } else if (ret == SCANNED_EMPTY_SPACE ||
666 ret == SCANNED_GARBAGE ||
667 ret == SCANNED_A_BAD_PAD_NODE ||
668 ret == SCANNED_A_CORRUPT_NODE) {
669 dbg_rcvry("found corruption (%d) at %d:%d",
670 ret, lnum, offs);
671 break;
672 } else {
673 ubifs_err(c, fmt: "unexpected return value %d", ret);
674 err = -EINVAL;
675 goto error;
676 }
677 }
678
679 if (ret == SCANNED_GARBAGE || ret == SCANNED_A_BAD_PAD_NODE) {
680 if (!is_last_write(c, buf, offs))
681 goto corrupted_rescan;
682 } else if (ret == SCANNED_A_CORRUPT_NODE) {
683 if (!no_more_nodes(c, buf, len, lnum, offs))
684 goto corrupted_rescan;
685 } else if (!is_empty(buf, len)) {
686 if (!is_last_write(c, buf, offs)) {
687 int corruption = first_non_ff(buf, len);
688
689 /*
690 * See header comment for this file for more
691 * explanations about the reasons we have this check.
692 */
693 ubifs_err(c, fmt: "corrupt empty space LEB %d:%d, corruption starts at %d",
694 lnum, offs, corruption);
695 /* Make sure we dump interesting non-0xFF data */
696 offs += corruption;
697 buf += corruption;
698 goto corrupted;
699 }
700 }
701
702 min_io_unit = round_down(offs, c->min_io_size);
703 if (grouped)
704 /*
705 * If nodes are grouped, always drop the incomplete group at
706 * the end.
707 */
708 drop_last_group(sleb, offs: &offs);
709
710 if (jhead == GCHD) {
711 /*
712 * If this LEB belongs to the GC head then while we are in the
713 * middle of the same min. I/O unit keep dropping nodes. So
714 * basically, what we want is to make sure that the last min.
715 * I/O unit where we saw the corruption is dropped completely
716 * with all the uncorrupted nodes which may possibly sit there.
717 *
718 * In other words, let's name the min. I/O unit where the
719 * corruption starts B, and the previous min. I/O unit A. The
720 * below code tries to deal with a situation when half of B
721 * contains valid nodes or the end of a valid node, and the
722 * second half of B contains corrupted data or garbage. This
723 * means that UBIFS had been writing to B just before the power
724 * cut happened. I do not know how realistic is this scenario
725 * that half of the min. I/O unit had been written successfully
726 * and the other half not, but this is possible in our 'failure
727 * mode emulation' infrastructure at least.
728 *
729 * So what is the problem, why we need to drop those nodes? Why
730 * can't we just clean-up the second half of B by putting a
731 * padding node there? We can, and this works fine with one
732 * exception which was reproduced with power cut emulation
733 * testing and happens extremely rarely.
734 *
735 * Imagine the file-system is full, we run GC which starts
736 * moving valid nodes from LEB X to LEB Y (obviously, LEB Y is
737 * the current GC head LEB). The @c->gc_lnum is -1, which means
738 * that GC will retain LEB X and will try to continue. Imagine
739 * that LEB X is currently the dirtiest LEB, and the amount of
740 * used space in LEB Y is exactly the same as amount of free
741 * space in LEB X.
742 *
743 * And a power cut happens when nodes are moved from LEB X to
744 * LEB Y. We are here trying to recover LEB Y which is the GC
745 * head LEB. We find the min. I/O unit B as described above.
746 * Then we clean-up LEB Y by padding min. I/O unit. And later
747 * 'ubifs_rcvry_gc_commit()' function fails, because it cannot
748 * find a dirty LEB which could be GC'd into LEB Y! Even LEB X
749 * does not match because the amount of valid nodes there does
750 * not fit the free space in LEB Y any more! And this is
751 * because of the padding node which we added to LEB Y. The
752 * user-visible effect of this which I once observed and
753 * analysed is that we cannot mount the file-system with
754 * -ENOSPC error.
755 *
756 * So obviously, to make sure that situation does not happen we
757 * should free min. I/O unit B in LEB Y completely and the last
758 * used min. I/O unit in LEB Y should be A. This is basically
759 * what the below code tries to do.
760 */
761 while (offs > min_io_unit)
762 drop_last_node(sleb, offs: &offs);
763 }
764
765 buf = sbuf + offs;
766 len = c->leb_size - offs;
767
768 clean_buf(c, buf: &buf, lnum, offs: &offs, len: &len);
769 ubifs_end_scan(c, sleb, lnum, offs);
770
771 err = fix_unclean_leb(c, sleb, start);
772 if (err)
773 goto error;
774
775 return sleb;
776
777corrupted_rescan:
778 /* Re-scan the corrupted data with verbose messages */
779 ubifs_err(c, fmt: "corruption %d", ret);
780 ubifs_scan_a_node(c, buf, len, lnum, offs, quiet: 0);
781corrupted:
782 ubifs_scanned_corruption(c, lnum, offs, buf);
783 err = -EUCLEAN;
784error:
785 ubifs_err(c, fmt: "LEB %d scanning failed", lnum);
786 ubifs_scan_destroy(sleb);
787 return ERR_PTR(error: err);
788}
789
790/**
791 * get_cs_sqnum - get commit start sequence number.
792 * @c: UBIFS file-system description object
793 * @lnum: LEB number of commit start node
794 * @offs: offset of commit start node
795 * @cs_sqnum: commit start sequence number is returned here
796 *
797 * This function returns %0 on success and a negative error code on failure.
798 */
799static int get_cs_sqnum(struct ubifs_info *c, int lnum, int offs,
800 unsigned long long *cs_sqnum)
801{
802 struct ubifs_cs_node *cs_node = NULL;
803 int err, ret;
804
805 dbg_rcvry("at %d:%d", lnum, offs);
806 cs_node = kmalloc(UBIFS_CS_NODE_SZ, GFP_KERNEL);
807 if (!cs_node)
808 return -ENOMEM;
809 if (c->leb_size - offs < UBIFS_CS_NODE_SZ)
810 goto out_err;
811 err = ubifs_leb_read(c, lnum, buf: (void *)cs_node, offs,
812 UBIFS_CS_NODE_SZ, even_ebadmsg: 0);
813 if (err && err != -EBADMSG)
814 goto out_free;
815 ret = ubifs_scan_a_node(c, buf: cs_node, UBIFS_CS_NODE_SZ, lnum, offs, quiet: 0);
816 if (ret != SCANNED_A_NODE) {
817 ubifs_err(c, fmt: "Not a valid node");
818 goto out_err;
819 }
820 if (cs_node->ch.node_type != UBIFS_CS_NODE) {
821 ubifs_err(c, fmt: "Not a CS node, type is %d", cs_node->ch.node_type);
822 goto out_err;
823 }
824 if (le64_to_cpu(cs_node->cmt_no) != c->cmt_no) {
825 ubifs_err(c, fmt: "CS node cmt_no %llu != current cmt_no %llu",
826 (unsigned long long)le64_to_cpu(cs_node->cmt_no),
827 c->cmt_no);
828 goto out_err;
829 }
830 *cs_sqnum = le64_to_cpu(cs_node->ch.sqnum);
831 dbg_rcvry("commit start sqnum %llu", *cs_sqnum);
832 kfree(objp: cs_node);
833 return 0;
834
835out_err:
836 err = -EINVAL;
837out_free:
838 ubifs_err(c, fmt: "failed to get CS sqnum");
839 kfree(objp: cs_node);
840 return err;
841}
842
843/**
844 * ubifs_recover_log_leb - scan and recover a log LEB.
845 * @c: UBIFS file-system description object
846 * @lnum: LEB number
847 * @offs: offset
848 * @sbuf: LEB-sized buffer to use
849 *
850 * This function does a scan of a LEB, but caters for errors that might have
851 * been caused by unclean reboots from which we are attempting to recover
852 * (assume that only the last log LEB can be corrupted by an unclean reboot).
853 *
854 * This function returns %0 on success and a negative error code on failure.
855 */
856struct ubifs_scan_leb *ubifs_recover_log_leb(struct ubifs_info *c, int lnum,
857 int offs, void *sbuf)
858{
859 struct ubifs_scan_leb *sleb;
860 int next_lnum;
861
862 dbg_rcvry("LEB %d", lnum);
863 next_lnum = lnum + 1;
864 if (next_lnum >= UBIFS_LOG_LNUM + c->log_lebs)
865 next_lnum = UBIFS_LOG_LNUM;
866 if (next_lnum != c->ltail_lnum) {
867 /*
868 * We can only recover at the end of the log, so check that the
869 * next log LEB is empty or out of date.
870 */
871 sleb = ubifs_scan(c, lnum: next_lnum, offs: 0, sbuf, quiet: 0);
872 if (IS_ERR(ptr: sleb))
873 return sleb;
874 if (sleb->nodes_cnt) {
875 struct ubifs_scan_node *snod;
876 unsigned long long cs_sqnum = c->cs_sqnum;
877
878 snod = list_entry(sleb->nodes.next,
879 struct ubifs_scan_node, list);
880 if (cs_sqnum == 0) {
881 int err;
882
883 err = get_cs_sqnum(c, lnum, offs, cs_sqnum: &cs_sqnum);
884 if (err) {
885 ubifs_scan_destroy(sleb);
886 return ERR_PTR(error: err);
887 }
888 }
889 if (snod->sqnum > cs_sqnum) {
890 ubifs_err(c, fmt: "unrecoverable log corruption in LEB %d",
891 lnum);
892 ubifs_scan_destroy(sleb);
893 return ERR_PTR(error: -EUCLEAN);
894 }
895 }
896 ubifs_scan_destroy(sleb);
897 }
898 return ubifs_recover_leb(c, lnum, offs, sbuf, jhead: -1);
899}
900
901/**
902 * recover_head - recover a head.
903 * @c: UBIFS file-system description object
904 * @lnum: LEB number of head to recover
905 * @offs: offset of head to recover
906 * @sbuf: LEB-sized buffer to use
907 *
908 * This function ensures that there is no data on the flash at a head location.
909 *
910 * This function returns %0 on success and a negative error code on failure.
911 */
912static int recover_head(struct ubifs_info *c, int lnum, int offs, void *sbuf)
913{
914 int len = c->max_write_size, err;
915
916 if (offs + len > c->leb_size)
917 len = c->leb_size - offs;
918
919 if (!len)
920 return 0;
921
922 /* Read at the head location and check it is empty flash */
923 err = ubifs_leb_read(c, lnum, buf: sbuf, offs, len, even_ebadmsg: 1);
924 if (err || !is_empty(buf: sbuf, len)) {
925 dbg_rcvry("cleaning head at %d:%d", lnum, offs);
926 if (offs == 0)
927 return ubifs_leb_unmap(c, lnum);
928 err = ubifs_leb_read(c, lnum, buf: sbuf, offs: 0, len: offs, even_ebadmsg: 1);
929 if (err)
930 return err;
931 return ubifs_leb_change(c, lnum, buf: sbuf, len: offs);
932 }
933
934 return 0;
935}
936
937/**
938 * ubifs_recover_inl_heads - recover index and LPT heads.
939 * @c: UBIFS file-system description object
940 * @sbuf: LEB-sized buffer to use
941 *
942 * This function ensures that there is no data on the flash at the index and
943 * LPT head locations.
944 *
945 * This deals with the recovery of a half-completed journal commit. UBIFS is
946 * careful never to overwrite the last version of the index or the LPT. Because
947 * the index and LPT are wandering trees, data from a half-completed commit will
948 * not be referenced anywhere in UBIFS. The data will be either in LEBs that are
949 * assumed to be empty and will be unmapped anyway before use, or in the index
950 * and LPT heads.
951 *
952 * This function returns %0 on success and a negative error code on failure.
953 */
954int ubifs_recover_inl_heads(struct ubifs_info *c, void *sbuf)
955{
956 int err;
957
958 ubifs_assert(c, !c->ro_mount || c->remounting_rw);
959
960 dbg_rcvry("checking index head at %d:%d", c->ihead_lnum, c->ihead_offs);
961 err = recover_head(c, lnum: c->ihead_lnum, offs: c->ihead_offs, sbuf);
962 if (err)
963 return err;
964
965 dbg_rcvry("checking LPT head at %d:%d", c->nhead_lnum, c->nhead_offs);
966
967 return recover_head(c, lnum: c->nhead_lnum, offs: c->nhead_offs, sbuf);
968}
969
970/**
971 * clean_an_unclean_leb - read and write a LEB to remove corruption.
972 * @c: UBIFS file-system description object
973 * @ucleb: unclean LEB information
974 * @sbuf: LEB-sized buffer to use
975 *
976 * This function reads a LEB up to a point pre-determined by the mount recovery,
977 * checks the nodes, and writes the result back to the flash, thereby cleaning
978 * off any following corruption, or non-fatal ECC errors.
979 *
980 * This function returns %0 on success and a negative error code on failure.
981 */
982static int clean_an_unclean_leb(struct ubifs_info *c,
983 struct ubifs_unclean_leb *ucleb, void *sbuf)
984{
985 int err, lnum = ucleb->lnum, offs = 0, len = ucleb->endpt, quiet = 1;
986 void *buf = sbuf;
987
988 dbg_rcvry("LEB %d len %d", lnum, len);
989
990 if (len == 0) {
991 /* Nothing to read, just unmap it */
992 return ubifs_leb_unmap(c, lnum);
993 }
994
995 err = ubifs_leb_read(c, lnum, buf, offs, len, even_ebadmsg: 0);
996 if (err && err != -EBADMSG)
997 return err;
998
999 while (len >= 8) {
1000 int ret;
1001
1002 cond_resched();
1003
1004 /* Scan quietly until there is an error */
1005 ret = ubifs_scan_a_node(c, buf, len, lnum, offs, quiet);
1006
1007 if (ret == SCANNED_A_NODE) {
1008 /* A valid node, and not a padding node */
1009 struct ubifs_ch *ch = buf;
1010 int node_len;
1011
1012 node_len = ALIGN(le32_to_cpu(ch->len), 8);
1013 offs += node_len;
1014 buf += node_len;
1015 len -= node_len;
1016 continue;
1017 }
1018
1019 if (ret > 0) {
1020 /* Padding bytes or a valid padding node */
1021 offs += ret;
1022 buf += ret;
1023 len -= ret;
1024 continue;
1025 }
1026
1027 if (ret == SCANNED_EMPTY_SPACE) {
1028 ubifs_err(c, fmt: "unexpected empty space at %d:%d",
1029 lnum, offs);
1030 return -EUCLEAN;
1031 }
1032
1033 if (quiet) {
1034 /* Redo the last scan but noisily */
1035 quiet = 0;
1036 continue;
1037 }
1038
1039 ubifs_scanned_corruption(c, lnum, offs, buf);
1040 return -EUCLEAN;
1041 }
1042
1043 /* Pad to min_io_size */
1044 len = ALIGN(ucleb->endpt, c->min_io_size);
1045 if (len > ucleb->endpt) {
1046 int pad_len = len - ALIGN(ucleb->endpt, 8);
1047
1048 if (pad_len > 0) {
1049 buf = c->sbuf + len - pad_len;
1050 ubifs_pad(c, buf, pad: pad_len);
1051 }
1052 }
1053
1054 /* Write back the LEB atomically */
1055 err = ubifs_leb_change(c, lnum, buf: sbuf, len);
1056 if (err)
1057 return err;
1058
1059 dbg_rcvry("cleaned LEB %d", lnum);
1060
1061 return 0;
1062}
1063
1064/**
1065 * ubifs_clean_lebs - clean LEBs recovered during read-only mount.
1066 * @c: UBIFS file-system description object
1067 * @sbuf: LEB-sized buffer to use
1068 *
1069 * This function cleans a LEB identified during recovery that needs to be
1070 * written but was not because UBIFS was mounted read-only. This happens when
1071 * remounting to read-write mode.
1072 *
1073 * This function returns %0 on success and a negative error code on failure.
1074 */
1075int ubifs_clean_lebs(struct ubifs_info *c, void *sbuf)
1076{
1077 dbg_rcvry("recovery");
1078 while (!list_empty(head: &c->unclean_leb_list)) {
1079 struct ubifs_unclean_leb *ucleb;
1080 int err;
1081
1082 ucleb = list_entry(c->unclean_leb_list.next,
1083 struct ubifs_unclean_leb, list);
1084 err = clean_an_unclean_leb(c, ucleb, sbuf);
1085 if (err)
1086 return err;
1087 list_del(entry: &ucleb->list);
1088 kfree(objp: ucleb);
1089 }
1090 return 0;
1091}
1092
1093/**
1094 * grab_empty_leb - grab an empty LEB to use as GC LEB and run commit.
1095 * @c: UBIFS file-system description object
1096 *
1097 * This is a helper function for 'ubifs_rcvry_gc_commit()' which grabs an empty
1098 * LEB to be used as GC LEB (@c->gc_lnum), and then runs the commit. Returns
1099 * zero in case of success and a negative error code in case of failure.
1100 */
1101static int grab_empty_leb(struct ubifs_info *c)
1102{
1103 int lnum, err;
1104
1105 /*
1106 * Note, it is very important to first search for an empty LEB and then
1107 * run the commit, not vice-versa. The reason is that there might be
1108 * only one empty LEB at the moment, the one which has been the
1109 * @c->gc_lnum just before the power cut happened. During the regular
1110 * UBIFS operation (not now) @c->gc_lnum is marked as "taken", so no
1111 * one but GC can grab it. But at this moment this single empty LEB is
1112 * not marked as taken, so if we run commit - what happens? Right, the
1113 * commit will grab it and write the index there. Remember that the
1114 * index always expands as long as there is free space, and it only
1115 * starts consolidating when we run out of space.
1116 *
1117 * IOW, if we run commit now, we might not be able to find a free LEB
1118 * after this.
1119 */
1120 lnum = ubifs_find_free_leb_for_idx(c);
1121 if (lnum < 0) {
1122 ubifs_err(c, fmt: "could not find an empty LEB");
1123 ubifs_dump_lprops(c);
1124 ubifs_dump_budg(c, bi: &c->bi);
1125 return lnum;
1126 }
1127
1128 /* Reset the index flag */
1129 err = ubifs_change_one_lp(c, lnum, LPROPS_NC, LPROPS_NC, flags_set: 0,
1130 flags_clean: LPROPS_INDEX, idx_gc_cnt: 0);
1131 if (err)
1132 return err;
1133
1134 c->gc_lnum = lnum;
1135 dbg_rcvry("found empty LEB %d, run commit", lnum);
1136
1137 return ubifs_run_commit(c);
1138}
1139
1140/**
1141 * ubifs_rcvry_gc_commit - recover the GC LEB number and run the commit.
1142 * @c: UBIFS file-system description object
1143 *
1144 * Out-of-place garbage collection requires always one empty LEB with which to
1145 * start garbage collection. The LEB number is recorded in c->gc_lnum and is
1146 * written to the master node on unmounting. In the case of an unclean unmount
1147 * the value of gc_lnum recorded in the master node is out of date and cannot
1148 * be used. Instead, recovery must allocate an empty LEB for this purpose.
1149 * However, there may not be enough empty space, in which case it must be
1150 * possible to GC the dirtiest LEB into the GC head LEB.
1151 *
1152 * This function also runs the commit which causes the TNC updates from
1153 * size-recovery and orphans to be written to the flash. That is important to
1154 * ensure correct replay order for subsequent mounts.
1155 *
1156 * This function returns %0 on success and a negative error code on failure.
1157 */
1158int ubifs_rcvry_gc_commit(struct ubifs_info *c)
1159{
1160 struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
1161 struct ubifs_lprops lp;
1162 int err;
1163
1164 dbg_rcvry("GC head LEB %d, offs %d", wbuf->lnum, wbuf->offs);
1165
1166 c->gc_lnum = -1;
1167 if (wbuf->lnum == -1 || wbuf->offs == c->leb_size)
1168 return grab_empty_leb(c);
1169
1170 err = ubifs_find_dirty_leb(c, ret_lp: &lp, min_space: wbuf->offs, pick_free: 2);
1171 if (err) {
1172 if (err != -ENOSPC)
1173 return err;
1174
1175 dbg_rcvry("could not find a dirty LEB");
1176 return grab_empty_leb(c);
1177 }
1178
1179 ubifs_assert(c, !(lp.flags & LPROPS_INDEX));
1180 ubifs_assert(c, lp.free + lp.dirty >= wbuf->offs);
1181
1182 /*
1183 * We run the commit before garbage collection otherwise subsequent
1184 * mounts will see the GC and orphan deletion in a different order.
1185 */
1186 dbg_rcvry("committing");
1187 err = ubifs_run_commit(c);
1188 if (err)
1189 return err;
1190
1191 dbg_rcvry("GC'ing LEB %d", lp.lnum);
1192 mutex_lock_nested(lock: &wbuf->io_mutex, subclass: wbuf->jhead);
1193 err = ubifs_garbage_collect_leb(c, lp: &lp);
1194 if (err >= 0) {
1195 int err2 = ubifs_wbuf_sync_nolock(wbuf);
1196
1197 if (err2)
1198 err = err2;
1199 }
1200 mutex_unlock(lock: &wbuf->io_mutex);
1201 if (err < 0) {
1202 ubifs_err(c, fmt: "GC failed, error %d", err);
1203 if (err == -EAGAIN)
1204 err = -EINVAL;
1205 return err;
1206 }
1207
1208 ubifs_assert(c, err == LEB_RETAINED);
1209 if (err != LEB_RETAINED)
1210 return -EINVAL;
1211
1212 err = ubifs_leb_unmap(c, lnum: c->gc_lnum);
1213 if (err)
1214 return err;
1215
1216 dbg_rcvry("allocated LEB %d for GC", lp.lnum);
1217 return 0;
1218}
1219
1220/**
1221 * struct size_entry - inode size information for recovery.
1222 * @rb: link in the RB-tree of sizes
1223 * @inum: inode number
1224 * @i_size: size on inode
1225 * @d_size: maximum size based on data nodes
1226 * @exists: indicates whether the inode exists
1227 * @inode: inode if pinned in memory awaiting rw mode to fix it
1228 */
1229struct size_entry {
1230 struct rb_node rb;
1231 ino_t inum;
1232 loff_t i_size;
1233 loff_t d_size;
1234 int exists;
1235 struct inode *inode;
1236};
1237
1238/**
1239 * add_ino - add an entry to the size tree.
1240 * @c: UBIFS file-system description object
1241 * @inum: inode number
1242 * @i_size: size on inode
1243 * @d_size: maximum size based on data nodes
1244 * @exists: indicates whether the inode exists
1245 */
1246static int add_ino(struct ubifs_info *c, ino_t inum, loff_t i_size,
1247 loff_t d_size, int exists)
1248{
1249 struct rb_node **p = &c->size_tree.rb_node, *parent = NULL;
1250 struct size_entry *e;
1251
1252 while (*p) {
1253 parent = *p;
1254 e = rb_entry(parent, struct size_entry, rb);
1255 if (inum < e->inum)
1256 p = &(*p)->rb_left;
1257 else
1258 p = &(*p)->rb_right;
1259 }
1260
1261 e = kzalloc(size: sizeof(struct size_entry), GFP_KERNEL);
1262 if (!e)
1263 return -ENOMEM;
1264
1265 e->inum = inum;
1266 e->i_size = i_size;
1267 e->d_size = d_size;
1268 e->exists = exists;
1269
1270 rb_link_node(node: &e->rb, parent, rb_link: p);
1271 rb_insert_color(&e->rb, &c->size_tree);
1272
1273 return 0;
1274}
1275
1276/**
1277 * find_ino - find an entry on the size tree.
1278 * @c: UBIFS file-system description object
1279 * @inum: inode number
1280 */
1281static struct size_entry *find_ino(struct ubifs_info *c, ino_t inum)
1282{
1283 struct rb_node *p = c->size_tree.rb_node;
1284 struct size_entry *e;
1285
1286 while (p) {
1287 e = rb_entry(p, struct size_entry, rb);
1288 if (inum < e->inum)
1289 p = p->rb_left;
1290 else if (inum > e->inum)
1291 p = p->rb_right;
1292 else
1293 return e;
1294 }
1295 return NULL;
1296}
1297
1298/**
1299 * remove_ino - remove an entry from the size tree.
1300 * @c: UBIFS file-system description object
1301 * @inum: inode number
1302 */
1303static void remove_ino(struct ubifs_info *c, ino_t inum)
1304{
1305 struct size_entry *e = find_ino(c, inum);
1306
1307 if (!e)
1308 return;
1309 rb_erase(&e->rb, &c->size_tree);
1310 kfree(objp: e);
1311}
1312
1313/**
1314 * ubifs_destroy_size_tree - free resources related to the size tree.
1315 * @c: UBIFS file-system description object
1316 */
1317void ubifs_destroy_size_tree(struct ubifs_info *c)
1318{
1319 struct size_entry *e, *n;
1320
1321 rbtree_postorder_for_each_entry_safe(e, n, &c->size_tree, rb) {
1322 iput(e->inode);
1323 kfree(objp: e);
1324 }
1325
1326 c->size_tree = RB_ROOT;
1327}
1328
1329/**
1330 * ubifs_recover_size_accum - accumulate inode sizes for recovery.
1331 * @c: UBIFS file-system description object
1332 * @key: node key
1333 * @deletion: node is for a deletion
1334 * @new_size: inode size
1335 *
1336 * This function has two purposes:
1337 * 1) to ensure there are no data nodes that fall outside the inode size
1338 * 2) to ensure there are no data nodes for inodes that do not exist
1339 * To accomplish those purposes, a rb-tree is constructed containing an entry
1340 * for each inode number in the journal that has not been deleted, and recording
1341 * the size from the inode node, the maximum size of any data node (also altered
1342 * by truncations) and a flag indicating a inode number for which no inode node
1343 * was present in the journal.
1344 *
1345 * Note that there is still the possibility that there are data nodes that have
1346 * been committed that are beyond the inode size, however the only way to find
1347 * them would be to scan the entire index. Alternatively, some provision could
1348 * be made to record the size of inodes at the start of commit, which would seem
1349 * very cumbersome for a scenario that is quite unlikely and the only negative
1350 * consequence of which is wasted space.
1351 *
1352 * This functions returns %0 on success and a negative error code on failure.
1353 */
1354int ubifs_recover_size_accum(struct ubifs_info *c, union ubifs_key *key,
1355 int deletion, loff_t new_size)
1356{
1357 ino_t inum = key_inum(c, k: key);
1358 struct size_entry *e;
1359 int err;
1360
1361 switch (key_type(c, key)) {
1362 case UBIFS_INO_KEY:
1363 if (deletion)
1364 remove_ino(c, inum);
1365 else {
1366 e = find_ino(c, inum);
1367 if (e) {
1368 e->i_size = new_size;
1369 e->exists = 1;
1370 } else {
1371 err = add_ino(c, inum, i_size: new_size, d_size: 0, exists: 1);
1372 if (err)
1373 return err;
1374 }
1375 }
1376 break;
1377 case UBIFS_DATA_KEY:
1378 e = find_ino(c, inum);
1379 if (e) {
1380 if (new_size > e->d_size)
1381 e->d_size = new_size;
1382 } else {
1383 err = add_ino(c, inum, i_size: 0, d_size: new_size, exists: 0);
1384 if (err)
1385 return err;
1386 }
1387 break;
1388 case UBIFS_TRUN_KEY:
1389 e = find_ino(c, inum);
1390 if (e)
1391 e->d_size = new_size;
1392 break;
1393 }
1394 return 0;
1395}
1396
1397/**
1398 * fix_size_in_place - fix inode size in place on flash.
1399 * @c: UBIFS file-system description object
1400 * @e: inode size information for recovery
1401 */
1402static int fix_size_in_place(struct ubifs_info *c, struct size_entry *e)
1403{
1404 struct ubifs_ino_node *ino = c->sbuf;
1405 unsigned char *p;
1406 union ubifs_key key;
1407 int err, lnum, offs, len;
1408 loff_t i_size;
1409 uint32_t crc;
1410
1411 /* Locate the inode node LEB number and offset */
1412 ino_key_init(c, key: &key, inum: e->inum);
1413 err = ubifs_tnc_locate(c, key: &key, node: ino, lnum: &lnum, offs: &offs);
1414 if (err)
1415 goto out;
1416 /*
1417 * If the size recorded on the inode node is greater than the size that
1418 * was calculated from nodes in the journal then don't change the inode.
1419 */
1420 i_size = le64_to_cpu(ino->size);
1421 if (i_size >= e->d_size)
1422 return 0;
1423 /* Read the LEB */
1424 err = ubifs_leb_read(c, lnum, buf: c->sbuf, offs: 0, len: c->leb_size, even_ebadmsg: 1);
1425 if (err)
1426 goto out;
1427 /* Change the size field and recalculate the CRC */
1428 ino = c->sbuf + offs;
1429 ino->size = cpu_to_le64(e->d_size);
1430 len = le32_to_cpu(ino->ch.len);
1431 crc = crc32(UBIFS_CRC32_INIT, (void *)ino + 8, len - 8);
1432 ino->ch.crc = cpu_to_le32(crc);
1433 /* Work out where data in the LEB ends and free space begins */
1434 p = c->sbuf;
1435 len = c->leb_size - 1;
1436 while (p[len] == 0xff)
1437 len -= 1;
1438 len = ALIGN(len + 1, c->min_io_size);
1439 /* Atomically write the fixed LEB back again */
1440 err = ubifs_leb_change(c, lnum, buf: c->sbuf, len);
1441 if (err)
1442 goto out;
1443 dbg_rcvry("inode %lu at %d:%d size %lld -> %lld",
1444 (unsigned long)e->inum, lnum, offs, i_size, e->d_size);
1445 return 0;
1446
1447out:
1448 ubifs_warn(c, fmt: "inode %lu failed to fix size %lld -> %lld error %d",
1449 (unsigned long)e->inum, e->i_size, e->d_size, err);
1450 return err;
1451}
1452
1453/**
1454 * inode_fix_size - fix inode size
1455 * @c: UBIFS file-system description object
1456 * @e: inode size information for recovery
1457 */
1458static int inode_fix_size(struct ubifs_info *c, struct size_entry *e)
1459{
1460 struct inode *inode;
1461 struct ubifs_inode *ui;
1462 int err;
1463
1464 if (c->ro_mount)
1465 ubifs_assert(c, !e->inode);
1466
1467 if (e->inode) {
1468 /* Remounting rw, pick up inode we stored earlier */
1469 inode = e->inode;
1470 } else {
1471 inode = ubifs_iget(sb: c->vfs_sb, inum: e->inum);
1472 if (IS_ERR(ptr: inode))
1473 return PTR_ERR(ptr: inode);
1474
1475 if (inode->i_size >= e->d_size) {
1476 /*
1477 * The original inode in the index already has a size
1478 * big enough, nothing to do
1479 */
1480 iput(inode);
1481 return 0;
1482 }
1483
1484 dbg_rcvry("ino %lu size %lld -> %lld",
1485 (unsigned long)e->inum,
1486 inode->i_size, e->d_size);
1487
1488 ui = ubifs_inode(inode);
1489
1490 inode->i_size = e->d_size;
1491 ui->ui_size = e->d_size;
1492 ui->synced_i_size = e->d_size;
1493
1494 e->inode = inode;
1495 }
1496
1497 /*
1498 * In readonly mode just keep the inode pinned in memory until we go
1499 * readwrite. In readwrite mode write the inode to the journal with the
1500 * fixed size.
1501 */
1502 if (c->ro_mount)
1503 return 0;
1504
1505 err = ubifs_jnl_write_inode(c, inode);
1506
1507 iput(inode);
1508
1509 if (err)
1510 return err;
1511
1512 rb_erase(&e->rb, &c->size_tree);
1513 kfree(objp: e);
1514
1515 return 0;
1516}
1517
1518/**
1519 * ubifs_recover_size - recover inode size.
1520 * @c: UBIFS file-system description object
1521 * @in_place: If true, do a in-place size fixup
1522 *
1523 * This function attempts to fix inode size discrepancies identified by the
1524 * 'ubifs_recover_size_accum()' function.
1525 *
1526 * This functions returns %0 on success and a negative error code on failure.
1527 */
1528int ubifs_recover_size(struct ubifs_info *c, bool in_place)
1529{
1530 struct rb_node *this = rb_first(&c->size_tree);
1531
1532 while (this) {
1533 struct size_entry *e;
1534 int err;
1535
1536 e = rb_entry(this, struct size_entry, rb);
1537
1538 this = rb_next(this);
1539
1540 if (!e->exists) {
1541 union ubifs_key key;
1542
1543 ino_key_init(c, key: &key, inum: e->inum);
1544 err = ubifs_tnc_lookup(c, key: &key, node: c->sbuf);
1545 if (err && err != -ENOENT)
1546 return err;
1547 if (err == -ENOENT) {
1548 /* Remove data nodes that have no inode */
1549 dbg_rcvry("removing ino %lu",
1550 (unsigned long)e->inum);
1551 err = ubifs_tnc_remove_ino(c, inum: e->inum);
1552 if (err)
1553 return err;
1554 } else {
1555 struct ubifs_ino_node *ino = c->sbuf;
1556
1557 e->exists = 1;
1558 e->i_size = le64_to_cpu(ino->size);
1559 }
1560 }
1561
1562 if (e->exists && e->i_size < e->d_size) {
1563 ubifs_assert(c, !(c->ro_mount && in_place));
1564
1565 /*
1566 * We found data that is outside the found inode size,
1567 * fixup the inode size
1568 */
1569
1570 if (in_place) {
1571 err = fix_size_in_place(c, e);
1572 if (err)
1573 return err;
1574 iput(e->inode);
1575 } else {
1576 err = inode_fix_size(c, e);
1577 if (err)
1578 return err;
1579 continue;
1580 }
1581 }
1582
1583 rb_erase(&e->rb, &c->size_tree);
1584 kfree(objp: e);
1585 }
1586
1587 return 0;
1588}
1589

source code of linux/fs/ubifs/recovery.c