1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6#include "xfs.h"
7#include "xfs_fs.h"
8#include "xfs_shared.h"
9#include "xfs_format.h"
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
12#include "xfs_bit.h"
13#include "xfs_sb.h"
14#include "xfs_mount.h"
15#include "xfs_inode.h"
16#include "xfs_dir2.h"
17#include "xfs_ialloc.h"
18#include "xfs_alloc.h"
19#include "xfs_rtalloc.h"
20#include "xfs_bmap.h"
21#include "xfs_trans.h"
22#include "xfs_trans_priv.h"
23#include "xfs_log.h"
24#include "xfs_log_priv.h"
25#include "xfs_error.h"
26#include "xfs_quota.h"
27#include "xfs_fsops.h"
28#include "xfs_icache.h"
29#include "xfs_sysfs.h"
30#include "xfs_rmap_btree.h"
31#include "xfs_refcount_btree.h"
32#include "xfs_reflink.h"
33#include "xfs_extent_busy.h"
34#include "xfs_health.h"
35#include "xfs_trace.h"
36#include "xfs_ag.h"
37#include "scrub/stats.h"
38
39static DEFINE_MUTEX(xfs_uuid_table_mutex);
40static int xfs_uuid_table_size;
41static uuid_t *xfs_uuid_table;
42
43void
44xfs_uuid_table_free(void)
45{
46 if (xfs_uuid_table_size == 0)
47 return;
48 kmem_free(ptr: xfs_uuid_table);
49 xfs_uuid_table = NULL;
50 xfs_uuid_table_size = 0;
51}
52
53/*
54 * See if the UUID is unique among mounted XFS filesystems.
55 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
56 */
57STATIC int
58xfs_uuid_mount(
59 struct xfs_mount *mp)
60{
61 uuid_t *uuid = &mp->m_sb.sb_uuid;
62 int hole, i;
63
64 /* Publish UUID in struct super_block */
65 uuid_copy(dst: &mp->m_super->s_uuid, src: uuid);
66
67 if (xfs_has_nouuid(mp))
68 return 0;
69
70 if (uuid_is_null(uuid)) {
71 xfs_warn(mp, "Filesystem has null UUID - can't mount");
72 return -EINVAL;
73 }
74
75 mutex_lock(&xfs_uuid_table_mutex);
76 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
77 if (uuid_is_null(uuid: &xfs_uuid_table[i])) {
78 hole = i;
79 continue;
80 }
81 if (uuid_equal(u1: uuid, u2: &xfs_uuid_table[i]))
82 goto out_duplicate;
83 }
84
85 if (hole < 0) {
86 xfs_uuid_table = krealloc(objp: xfs_uuid_table,
87 new_size: (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
88 GFP_KERNEL | __GFP_NOFAIL);
89 hole = xfs_uuid_table_size++;
90 }
91 xfs_uuid_table[hole] = *uuid;
92 mutex_unlock(lock: &xfs_uuid_table_mutex);
93
94 return 0;
95
96 out_duplicate:
97 mutex_unlock(lock: &xfs_uuid_table_mutex);
98 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
99 return -EINVAL;
100}
101
102STATIC void
103xfs_uuid_unmount(
104 struct xfs_mount *mp)
105{
106 uuid_t *uuid = &mp->m_sb.sb_uuid;
107 int i;
108
109 if (xfs_has_nouuid(mp))
110 return;
111
112 mutex_lock(&xfs_uuid_table_mutex);
113 for (i = 0; i < xfs_uuid_table_size; i++) {
114 if (uuid_is_null(uuid: &xfs_uuid_table[i]))
115 continue;
116 if (!uuid_equal(u1: uuid, u2: &xfs_uuid_table[i]))
117 continue;
118 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
119 break;
120 }
121 ASSERT(i < xfs_uuid_table_size);
122 mutex_unlock(lock: &xfs_uuid_table_mutex);
123}
124
125/*
126 * Check size of device based on the (data/realtime) block count.
127 * Note: this check is used by the growfs code as well as mount.
128 */
129int
130xfs_sb_validate_fsb_count(
131 xfs_sb_t *sbp,
132 uint64_t nblocks)
133{
134 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
135 ASSERT(sbp->sb_blocklog >= BBSHIFT);
136
137 /* Limited by ULONG_MAX of page cache index */
138 if (nblocks >> (PAGE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
139 return -EFBIG;
140 return 0;
141}
142
143/*
144 * xfs_readsb
145 *
146 * Does the initial read of the superblock.
147 */
148int
149xfs_readsb(
150 struct xfs_mount *mp,
151 int flags)
152{
153 unsigned int sector_size;
154 struct xfs_buf *bp;
155 struct xfs_sb *sbp = &mp->m_sb;
156 int error;
157 int loud = !(flags & XFS_MFSI_QUIET);
158 const struct xfs_buf_ops *buf_ops;
159
160 ASSERT(mp->m_sb_bp == NULL);
161 ASSERT(mp->m_ddev_targp != NULL);
162
163 /*
164 * For the initial read, we must guess at the sector
165 * size based on the block device. It's enough to
166 * get the sb_sectsize out of the superblock and
167 * then reread with the proper length.
168 * We don't verify it yet, because it may not be complete.
169 */
170 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
171 buf_ops = NULL;
172
173 /*
174 * Allocate a (locked) buffer to hold the superblock. This will be kept
175 * around at all times to optimize access to the superblock. Therefore,
176 * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count
177 * elevated.
178 */
179reread:
180 error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
181 BTOBB(sector_size), XBF_NO_IOACCT, &bp,
182 buf_ops);
183 if (error) {
184 if (loud)
185 xfs_warn(mp, "SB validate failed with error %d.", error);
186 /* bad CRC means corrupted metadata */
187 if (error == -EFSBADCRC)
188 error = -EFSCORRUPTED;
189 return error;
190 }
191
192 /*
193 * Initialize the mount structure from the superblock.
194 */
195 xfs_sb_from_disk(sbp, bp->b_addr);
196
197 /*
198 * If we haven't validated the superblock, do so now before we try
199 * to check the sector size and reread the superblock appropriately.
200 */
201 if (sbp->sb_magicnum != XFS_SB_MAGIC) {
202 if (loud)
203 xfs_warn(mp, "Invalid superblock magic number");
204 error = -EINVAL;
205 goto release_buf;
206 }
207
208 /*
209 * We must be able to do sector-sized and sector-aligned IO.
210 */
211 if (sector_size > sbp->sb_sectsize) {
212 if (loud)
213 xfs_warn(mp, "device supports %u byte sectors (not %u)",
214 sector_size, sbp->sb_sectsize);
215 error = -ENOSYS;
216 goto release_buf;
217 }
218
219 if (buf_ops == NULL) {
220 /*
221 * Re-read the superblock so the buffer is correctly sized,
222 * and properly verified.
223 */
224 xfs_buf_relse(bp);
225 sector_size = sbp->sb_sectsize;
226 buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
227 goto reread;
228 }
229
230 mp->m_features |= xfs_sb_version_to_features(sbp);
231 xfs_reinit_percpu_counters(mp);
232
233 /* no need to be quiet anymore, so reset the buf ops */
234 bp->b_ops = &xfs_sb_buf_ops;
235
236 mp->m_sb_bp = bp;
237 xfs_buf_unlock(bp);
238 return 0;
239
240release_buf:
241 xfs_buf_relse(bp);
242 return error;
243}
244
245/*
246 * If the sunit/swidth change would move the precomputed root inode value, we
247 * must reject the ondisk change because repair will stumble over that.
248 * However, we allow the mount to proceed because we never rejected this
249 * combination before. Returns true to update the sb, false otherwise.
250 */
251static inline int
252xfs_check_new_dalign(
253 struct xfs_mount *mp,
254 int new_dalign,
255 bool *update_sb)
256{
257 struct xfs_sb *sbp = &mp->m_sb;
258 xfs_ino_t calc_ino;
259
260 calc_ino = xfs_ialloc_calc_rootino(mp, new_dalign);
261 trace_xfs_check_new_dalign(mp, new_dalign, calc_rootino: calc_ino);
262
263 if (sbp->sb_rootino == calc_ino) {
264 *update_sb = true;
265 return 0;
266 }
267
268 xfs_warn(mp,
269"Cannot change stripe alignment; would require moving root inode.");
270
271 /*
272 * XXX: Next time we add a new incompat feature, this should start
273 * returning -EINVAL to fail the mount. Until then, spit out a warning
274 * that we're ignoring the administrator's instructions.
275 */
276 xfs_warn(mp, "Skipping superblock stripe alignment update.");
277 *update_sb = false;
278 return 0;
279}
280
281/*
282 * If we were provided with new sunit/swidth values as mount options, make sure
283 * that they pass basic alignment and superblock feature checks, and convert
284 * them into the same units (FSB) that everything else expects. This step
285 * /must/ be done before computing the inode geometry.
286 */
287STATIC int
288xfs_validate_new_dalign(
289 struct xfs_mount *mp)
290{
291 if (mp->m_dalign == 0)
292 return 0;
293
294 /*
295 * If stripe unit and stripe width are not multiples
296 * of the fs blocksize turn off alignment.
297 */
298 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
299 (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
300 xfs_warn(mp,
301 "alignment check failed: sunit/swidth vs. blocksize(%d)",
302 mp->m_sb.sb_blocksize);
303 return -EINVAL;
304 }
305
306 /*
307 * Convert the stripe unit and width to FSBs.
308 */
309 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
310 if (mp->m_dalign && (mp->m_sb.sb_agblocks % mp->m_dalign)) {
311 xfs_warn(mp,
312 "alignment check failed: sunit/swidth vs. agsize(%d)",
313 mp->m_sb.sb_agblocks);
314 return -EINVAL;
315 }
316
317 if (!mp->m_dalign) {
318 xfs_warn(mp,
319 "alignment check failed: sunit(%d) less than bsize(%d)",
320 mp->m_dalign, mp->m_sb.sb_blocksize);
321 return -EINVAL;
322 }
323
324 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
325
326 if (!xfs_has_dalign(mp)) {
327 xfs_warn(mp,
328"cannot change alignment: superblock does not support data alignment");
329 return -EINVAL;
330 }
331
332 return 0;
333}
334
335/* Update alignment values based on mount options and sb values. */
336STATIC int
337xfs_update_alignment(
338 struct xfs_mount *mp)
339{
340 struct xfs_sb *sbp = &mp->m_sb;
341
342 if (mp->m_dalign) {
343 bool update_sb;
344 int error;
345
346 if (sbp->sb_unit == mp->m_dalign &&
347 sbp->sb_width == mp->m_swidth)
348 return 0;
349
350 error = xfs_check_new_dalign(mp, new_dalign: mp->m_dalign, update_sb: &update_sb);
351 if (error || !update_sb)
352 return error;
353
354 sbp->sb_unit = mp->m_dalign;
355 sbp->sb_width = mp->m_swidth;
356 mp->m_update_sb = true;
357 } else if (!xfs_has_noalign(mp) && xfs_has_dalign(mp)) {
358 mp->m_dalign = sbp->sb_unit;
359 mp->m_swidth = sbp->sb_width;
360 }
361
362 return 0;
363}
364
365/*
366 * precalculate the low space thresholds for dynamic speculative preallocation.
367 */
368void
369xfs_set_low_space_thresholds(
370 struct xfs_mount *mp)
371{
372 uint64_t dblocks = mp->m_sb.sb_dblocks;
373 uint64_t rtexts = mp->m_sb.sb_rextents;
374 int i;
375
376 do_div(dblocks, 100);
377 do_div(rtexts, 100);
378
379 for (i = 0; i < XFS_LOWSP_MAX; i++) {
380 mp->m_low_space[i] = dblocks * (i + 1);
381 mp->m_low_rtexts[i] = rtexts * (i + 1);
382 }
383}
384
385/*
386 * Check that the data (and log if separate) is an ok size.
387 */
388STATIC int
389xfs_check_sizes(
390 struct xfs_mount *mp)
391{
392 struct xfs_buf *bp;
393 xfs_daddr_t d;
394 int error;
395
396 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
397 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
398 xfs_warn(mp, "filesystem size mismatch detected");
399 return -EFBIG;
400 }
401 error = xfs_buf_read_uncached(target: mp->m_ddev_targp,
402 daddr: d - XFS_FSS_TO_BB(mp, 1),
403 numblks: XFS_FSS_TO_BB(mp, 1), flags: 0, bpp: &bp, NULL);
404 if (error) {
405 xfs_warn(mp, "last sector read failed");
406 return error;
407 }
408 xfs_buf_relse(bp);
409
410 if (mp->m_logdev_targp == mp->m_ddev_targp)
411 return 0;
412
413 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
414 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
415 xfs_warn(mp, "log size mismatch detected");
416 return -EFBIG;
417 }
418 error = xfs_buf_read_uncached(target: mp->m_logdev_targp,
419 daddr: d - XFS_FSB_TO_BB(mp, 1),
420 numblks: XFS_FSB_TO_BB(mp, 1), flags: 0, bpp: &bp, NULL);
421 if (error) {
422 xfs_warn(mp, "log device read failed");
423 return error;
424 }
425 xfs_buf_relse(bp);
426 return 0;
427}
428
429/*
430 * Clear the quotaflags in memory and in the superblock.
431 */
432int
433xfs_mount_reset_sbqflags(
434 struct xfs_mount *mp)
435{
436 mp->m_qflags = 0;
437
438 /* It is OK to look at sb_qflags in the mount path without m_sb_lock. */
439 if (mp->m_sb.sb_qflags == 0)
440 return 0;
441 spin_lock(lock: &mp->m_sb_lock);
442 mp->m_sb.sb_qflags = 0;
443 spin_unlock(lock: &mp->m_sb_lock);
444
445 if (!xfs_fs_writable(mp, level: SB_FREEZE_WRITE))
446 return 0;
447
448 return xfs_sync_sb(mp, false);
449}
450
451uint64_t
452xfs_default_resblks(xfs_mount_t *mp)
453{
454 uint64_t resblks;
455
456 /*
457 * We default to 5% or 8192 fsbs of space reserved, whichever is
458 * smaller. This is intended to cover concurrent allocation
459 * transactions when we initially hit enospc. These each require a 4
460 * block reservation. Hence by default we cover roughly 2000 concurrent
461 * allocation reservations.
462 */
463 resblks = mp->m_sb.sb_dblocks;
464 do_div(resblks, 20);
465 resblks = min_t(uint64_t, resblks, 8192);
466 return resblks;
467}
468
469/* Ensure the summary counts are correct. */
470STATIC int
471xfs_check_summary_counts(
472 struct xfs_mount *mp)
473{
474 int error = 0;
475
476 /*
477 * The AG0 superblock verifier rejects in-progress filesystems,
478 * so we should never see the flag set this far into mounting.
479 */
480 if (mp->m_sb.sb_inprogress) {
481 xfs_err(mp, "sb_inprogress set after log recovery??");
482 WARN_ON(1);
483 return -EFSCORRUPTED;
484 }
485
486 /*
487 * Now the log is mounted, we know if it was an unclean shutdown or
488 * not. If it was, with the first phase of recovery has completed, we
489 * have consistent AG blocks on disk. We have not recovered EFIs yet,
490 * but they are recovered transactionally in the second recovery phase
491 * later.
492 *
493 * If the log was clean when we mounted, we can check the summary
494 * counters. If any of them are obviously incorrect, we can recompute
495 * them from the AGF headers in the next step.
496 */
497 if (xfs_is_clean(mp) &&
498 (mp->m_sb.sb_fdblocks > mp->m_sb.sb_dblocks ||
499 !xfs_verify_icount(mp, mp->m_sb.sb_icount) ||
500 mp->m_sb.sb_ifree > mp->m_sb.sb_icount))
501 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
502
503 /*
504 * We can safely re-initialise incore superblock counters from the
505 * per-ag data. These may not be correct if the filesystem was not
506 * cleanly unmounted, so we waited for recovery to finish before doing
507 * this.
508 *
509 * If the filesystem was cleanly unmounted or the previous check did
510 * not flag anything weird, then we can trust the values in the
511 * superblock to be correct and we don't need to do anything here.
512 * Otherwise, recalculate the summary counters.
513 */
514 if ((xfs_has_lazysbcount(mp) && !xfs_is_clean(mp)) ||
515 xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS)) {
516 error = xfs_initialize_perag_data(mp, mp->m_sb.sb_agcount);
517 if (error)
518 return error;
519 }
520
521 /*
522 * Older kernels misused sb_frextents to reflect both incore
523 * reservations made by running transactions and the actual count of
524 * free rt extents in the ondisk metadata. Transactions committed
525 * during runtime can therefore contain a superblock update that
526 * undercounts the number of free rt extents tracked in the rt bitmap.
527 * A clean unmount record will have the correct frextents value since
528 * there can be no other transactions running at that point.
529 *
530 * If we're mounting the rt volume after recovering the log, recompute
531 * frextents from the rtbitmap file to fix the inconsistency.
532 */
533 if (xfs_has_realtime(mp) && !xfs_is_clean(mp)) {
534 error = xfs_rtalloc_reinit_frextents(mp);
535 if (error)
536 return error;
537 }
538
539 return 0;
540}
541
542static void
543xfs_unmount_check(
544 struct xfs_mount *mp)
545{
546 if (xfs_is_shutdown(mp))
547 return;
548
549 if (percpu_counter_sum(fbc: &mp->m_ifree) >
550 percpu_counter_sum(fbc: &mp->m_icount)) {
551 xfs_alert(mp, "ifree/icount mismatch at unmount");
552 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
553 }
554}
555
556/*
557 * Flush and reclaim dirty inodes in preparation for unmount. Inodes and
558 * internal inode structures can be sitting in the CIL and AIL at this point,
559 * so we need to unpin them, write them back and/or reclaim them before unmount
560 * can proceed. In other words, callers are required to have inactivated all
561 * inodes.
562 *
563 * An inode cluster that has been freed can have its buffer still pinned in
564 * memory because the transaction is still sitting in a iclog. The stale inodes
565 * on that buffer will be pinned to the buffer until the transaction hits the
566 * disk and the callbacks run. Pushing the AIL will skip the stale inodes and
567 * may never see the pinned buffer, so nothing will push out the iclog and
568 * unpin the buffer.
569 *
570 * Hence we need to force the log to unpin everything first. However, log
571 * forces don't wait for the discards they issue to complete, so we have to
572 * explicitly wait for them to complete here as well.
573 *
574 * Then we can tell the world we are unmounting so that error handling knows
575 * that the filesystem is going away and we should error out anything that we
576 * have been retrying in the background. This will prevent never-ending
577 * retries in AIL pushing from hanging the unmount.
578 *
579 * Finally, we can push the AIL to clean all the remaining dirty objects, then
580 * reclaim the remaining inodes that are still in memory at this point in time.
581 */
582static void
583xfs_unmount_flush_inodes(
584 struct xfs_mount *mp)
585{
586 xfs_log_force(mp, XFS_LOG_SYNC);
587 xfs_extent_busy_wait_all(mp);
588 flush_workqueue(xfs_discard_wq);
589
590 set_bit(XFS_OPSTATE_UNMOUNTING, addr: &mp->m_opstate);
591
592 xfs_ail_push_all_sync(mp->m_ail);
593 xfs_inodegc_stop(mp);
594 cancel_delayed_work_sync(dwork: &mp->m_reclaim_work);
595 xfs_reclaim_inodes(mp);
596 xfs_health_unmount(mp);
597}
598
599static void
600xfs_mount_setup_inode_geom(
601 struct xfs_mount *mp)
602{
603 struct xfs_ino_geometry *igeo = M_IGEO(mp);
604
605 igeo->attr_fork_offset = xfs_bmap_compute_attr_offset(mp);
606 ASSERT(igeo->attr_fork_offset < XFS_LITINO(mp));
607
608 xfs_ialloc_setup_geometry(mp);
609}
610
611/* Compute maximum possible height for per-AG btree types for this fs. */
612static inline void
613xfs_agbtree_compute_maxlevels(
614 struct xfs_mount *mp)
615{
616 unsigned int levels;
617
618 levels = max(mp->m_alloc_maxlevels, M_IGEO(mp)->inobt_maxlevels);
619 levels = max(levels, mp->m_rmap_maxlevels);
620 mp->m_agbtree_maxlevels = max(levels, mp->m_refc_maxlevels);
621}
622
623/*
624 * This function does the following on an initial mount of a file system:
625 * - reads the superblock from disk and init the mount struct
626 * - if we're a 32-bit kernel, do a size check on the superblock
627 * so we don't mount terabyte filesystems
628 * - init mount struct realtime fields
629 * - allocate inode hash table for fs
630 * - init directory manager
631 * - perform recovery and init the log manager
632 */
633int
634xfs_mountfs(
635 struct xfs_mount *mp)
636{
637 struct xfs_sb *sbp = &(mp->m_sb);
638 struct xfs_inode *rip;
639 struct xfs_ino_geometry *igeo = M_IGEO(mp);
640 uint64_t resblks;
641 uint quotamount = 0;
642 uint quotaflags = 0;
643 int error = 0;
644
645 xfs_sb_mount_common(mp, sbp);
646
647 /*
648 * Check for a mismatched features2 values. Older kernels read & wrote
649 * into the wrong sb offset for sb_features2 on some platforms due to
650 * xfs_sb_t not being 64bit size aligned when sb_features2 was added,
651 * which made older superblock reading/writing routines swap it as a
652 * 64-bit value.
653 *
654 * For backwards compatibility, we make both slots equal.
655 *
656 * If we detect a mismatched field, we OR the set bits into the existing
657 * features2 field in case it has already been modified; we don't want
658 * to lose any features. We then update the bad location with the ORed
659 * value so that older kernels will see any features2 flags. The
660 * superblock writeback code ensures the new sb_features2 is copied to
661 * sb_bad_features2 before it is logged or written to disk.
662 */
663 if (xfs_sb_has_mismatched_features2(sbp)) {
664 xfs_warn(mp, "correcting sb_features alignment problem");
665 sbp->sb_features2 |= sbp->sb_bad_features2;
666 mp->m_update_sb = true;
667 }
668
669
670 /* always use v2 inodes by default now */
671 if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) {
672 mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT;
673 mp->m_features |= XFS_FEAT_NLINK;
674 mp->m_update_sb = true;
675 }
676
677 /*
678 * If we were given new sunit/swidth options, do some basic validation
679 * checks and convert the incore dalign and swidth values to the
680 * same units (FSB) that everything else uses. This /must/ happen
681 * before computing the inode geometry.
682 */
683 error = xfs_validate_new_dalign(mp);
684 if (error)
685 goto out;
686
687 xfs_alloc_compute_maxlevels(mp);
688 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
689 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
690 xfs_mount_setup_inode_geom(mp);
691 xfs_rmapbt_compute_maxlevels(mp);
692 xfs_refcountbt_compute_maxlevels(mp);
693
694 xfs_agbtree_compute_maxlevels(mp);
695
696 /*
697 * Check if sb_agblocks is aligned at stripe boundary. If sb_agblocks
698 * is NOT aligned turn off m_dalign since allocator alignment is within
699 * an ag, therefore ag has to be aligned at stripe boundary. Note that
700 * we must compute the free space and rmap btree geometry before doing
701 * this.
702 */
703 error = xfs_update_alignment(mp);
704 if (error)
705 goto out;
706
707 /* enable fail_at_unmount as default */
708 mp->m_fail_unmount = true;
709
710 error = xfs_sysfs_init(kobj: &mp->m_kobj, ktype: &xfs_mp_ktype,
711 NULL, name: mp->m_super->s_id);
712 if (error)
713 goto out;
714
715 error = xfs_sysfs_init(kobj: &mp->m_stats.xs_kobj, ktype: &xfs_stats_ktype,
716 parent_kobj: &mp->m_kobj, name: "stats");
717 if (error)
718 goto out_remove_sysfs;
719
720 xchk_stats_register(cs: mp->m_scrub_stats, parent: mp->m_debugfs);
721
722 error = xfs_error_sysfs_init(mp);
723 if (error)
724 goto out_remove_scrub_stats;
725
726 error = xfs_errortag_init(mp);
727 if (error)
728 goto out_remove_error_sysfs;
729
730 error = xfs_uuid_mount(mp);
731 if (error)
732 goto out_remove_errortag;
733
734 /*
735 * Update the preferred write size based on the information from the
736 * on-disk superblock.
737 */
738 mp->m_allocsize_log =
739 max_t(uint32_t, sbp->sb_blocklog, mp->m_allocsize_log);
740 mp->m_allocsize_blocks = 1U << (mp->m_allocsize_log - sbp->sb_blocklog);
741
742 /* set the low space thresholds for dynamic preallocation */
743 xfs_set_low_space_thresholds(mp);
744
745 /*
746 * If enabled, sparse inode chunk alignment is expected to match the
747 * cluster size. Full inode chunk alignment must match the chunk size,
748 * but that is checked on sb read verification...
749 */
750 if (xfs_has_sparseinodes(mp) &&
751 mp->m_sb.sb_spino_align !=
752 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw)) {
753 xfs_warn(mp,
754 "Sparse inode block alignment (%u) must match cluster size (%llu).",
755 mp->m_sb.sb_spino_align,
756 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw));
757 error = -EINVAL;
758 goto out_remove_uuid;
759 }
760
761 /*
762 * Check that the data (and log if separate) is an ok size.
763 */
764 error = xfs_check_sizes(mp);
765 if (error)
766 goto out_remove_uuid;
767
768 /*
769 * Initialize realtime fields in the mount structure
770 */
771 error = xfs_rtmount_init(mp);
772 if (error) {
773 xfs_warn(mp, "RT mount failed");
774 goto out_remove_uuid;
775 }
776
777 /*
778 * Copies the low order bits of the timestamp and the randomly
779 * set "sequence" number out of a UUID.
780 */
781 mp->m_fixedfsid[0] =
782 (get_unaligned_be16(p: &sbp->sb_uuid.b[8]) << 16) |
783 get_unaligned_be16(p: &sbp->sb_uuid.b[4]);
784 mp->m_fixedfsid[1] = get_unaligned_be32(p: &sbp->sb_uuid.b[0]);
785
786 error = xfs_da_mount(mp);
787 if (error) {
788 xfs_warn(mp, "Failed dir/attr init: %d", error);
789 goto out_remove_uuid;
790 }
791
792 /*
793 * Initialize the precomputed transaction reservations values.
794 */
795 xfs_trans_init(mp);
796
797 /*
798 * Allocate and initialize the per-ag data.
799 */
800 error = xfs_initialize_perag(mp, sbp->sb_agcount, mp->m_sb.sb_dblocks,
801 &mp->m_maxagi);
802 if (error) {
803 xfs_warn(mp, "Failed per-ag init: %d", error);
804 goto out_free_dir;
805 }
806
807 if (XFS_IS_CORRUPT(mp, !sbp->sb_logblocks)) {
808 xfs_warn(mp, "no log defined");
809 error = -EFSCORRUPTED;
810 goto out_free_perag;
811 }
812
813 error = xfs_inodegc_register_shrinker(mp);
814 if (error)
815 goto out_fail_wait;
816
817 /*
818 * Log's mount-time initialization. The first part of recovery can place
819 * some items on the AIL, to be handled when recovery is finished or
820 * cancelled.
821 */
822 error = xfs_log_mount(mp, log_target: mp->m_logdev_targp,
823 start_block: XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
824 num_bblocks: XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
825 if (error) {
826 xfs_warn(mp, "log mount failed");
827 goto out_inodegc_shrinker;
828 }
829
830 /* Enable background inode inactivation workers. */
831 xfs_inodegc_start(mp);
832 xfs_blockgc_start(mp);
833
834 /*
835 * Now that we've recovered any pending superblock feature bit
836 * additions, we can finish setting up the attr2 behaviour for the
837 * mount. The noattr2 option overrides the superblock flag, so only
838 * check the superblock feature flag if the mount option is not set.
839 */
840 if (xfs_has_noattr2(mp)) {
841 mp->m_features &= ~XFS_FEAT_ATTR2;
842 } else if (!xfs_has_attr2(mp) &&
843 (mp->m_sb.sb_features2 & XFS_SB_VERSION2_ATTR2BIT)) {
844 mp->m_features |= XFS_FEAT_ATTR2;
845 }
846
847 /*
848 * Get and sanity-check the root inode.
849 * Save the pointer to it in the mount structure.
850 */
851 error = xfs_iget(mp, NULL, ino: sbp->sb_rootino, XFS_IGET_UNTRUSTED,
852 XFS_ILOCK_EXCL, ipp: &rip);
853 if (error) {
854 xfs_warn(mp,
855 "Failed to read root inode 0x%llx, error %d",
856 sbp->sb_rootino, -error);
857 goto out_log_dealloc;
858 }
859
860 ASSERT(rip != NULL);
861
862 if (XFS_IS_CORRUPT(mp, !S_ISDIR(VFS_I(rip)->i_mode))) {
863 xfs_warn(mp, "corrupted root inode %llu: not a directory",
864 (unsigned long long)rip->i_ino);
865 xfs_iunlock(rip, XFS_ILOCK_EXCL);
866 error = -EFSCORRUPTED;
867 goto out_rele_rip;
868 }
869 mp->m_rootip = rip; /* save it */
870
871 xfs_iunlock(rip, XFS_ILOCK_EXCL);
872
873 /*
874 * Initialize realtime inode pointers in the mount structure
875 */
876 error = xfs_rtmount_inodes(mp);
877 if (error) {
878 /*
879 * Free up the root inode.
880 */
881 xfs_warn(mp, "failed to read RT inodes");
882 goto out_rele_rip;
883 }
884
885 /* Make sure the summary counts are ok. */
886 error = xfs_check_summary_counts(mp);
887 if (error)
888 goto out_rtunmount;
889
890 /*
891 * If this is a read-only mount defer the superblock updates until
892 * the next remount into writeable mode. Otherwise we would never
893 * perform the update e.g. for the root filesystem.
894 */
895 if (mp->m_update_sb && !xfs_is_readonly(mp)) {
896 error = xfs_sync_sb(mp, false);
897 if (error) {
898 xfs_warn(mp, "failed to write sb changes");
899 goto out_rtunmount;
900 }
901 }
902
903 /*
904 * Initialise the XFS quota management subsystem for this mount
905 */
906 if (XFS_IS_QUOTA_ON(mp)) {
907 error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
908 if (error)
909 goto out_rtunmount;
910 } else {
911 /*
912 * If a file system had quotas running earlier, but decided to
913 * mount without -o uquota/pquota/gquota options, revoke the
914 * quotachecked license.
915 */
916 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
917 xfs_notice(mp, "resetting quota flags");
918 error = xfs_mount_reset_sbqflags(mp);
919 if (error)
920 goto out_rtunmount;
921 }
922 }
923
924 /*
925 * Finish recovering the file system. This part needed to be delayed
926 * until after the root and real-time bitmap inodes were consistently
927 * read in. Temporarily create per-AG space reservations for metadata
928 * btree shape changes because space freeing transactions (for inode
929 * inactivation) require the per-AG reservation in lieu of reserving
930 * blocks.
931 */
932 error = xfs_fs_reserve_ag_blocks(mp);
933 if (error && error == -ENOSPC)
934 xfs_warn(mp,
935 "ENOSPC reserving per-AG metadata pool, log recovery may fail.");
936 error = xfs_log_mount_finish(mp);
937 xfs_fs_unreserve_ag_blocks(mp);
938 if (error) {
939 xfs_warn(mp, "log mount finish failed");
940 goto out_rtunmount;
941 }
942
943 /*
944 * Now the log is fully replayed, we can transition to full read-only
945 * mode for read-only mounts. This will sync all the metadata and clean
946 * the log so that the recovery we just performed does not have to be
947 * replayed again on the next mount.
948 *
949 * We use the same quiesce mechanism as the rw->ro remount, as they are
950 * semantically identical operations.
951 */
952 if (xfs_is_readonly(mp) && !xfs_has_norecovery(mp))
953 xfs_log_clean(mp);
954
955 /*
956 * Complete the quota initialisation, post-log-replay component.
957 */
958 if (quotamount) {
959 ASSERT(mp->m_qflags == 0);
960 mp->m_qflags = quotaflags;
961
962 xfs_qm_mount_quotas(mp);
963 }
964
965 /*
966 * Now we are mounted, reserve a small amount of unused space for
967 * privileged transactions. This is needed so that transaction
968 * space required for critical operations can dip into this pool
969 * when at ENOSPC. This is needed for operations like create with
970 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
971 * are not allowed to use this reserved space.
972 *
973 * This may drive us straight to ENOSPC on mount, but that implies
974 * we were already there on the last unmount. Warn if this occurs.
975 */
976 if (!xfs_is_readonly(mp)) {
977 resblks = xfs_default_resblks(mp);
978 error = xfs_reserve_blocks(mp, &resblks, NULL);
979 if (error)
980 xfs_warn(mp,
981 "Unable to allocate reserve blocks. Continuing without reserve pool.");
982
983 /* Reserve AG blocks for future btree expansion. */
984 error = xfs_fs_reserve_ag_blocks(mp);
985 if (error && error != -ENOSPC)
986 goto out_agresv;
987 }
988
989 return 0;
990
991 out_agresv:
992 xfs_fs_unreserve_ag_blocks(mp);
993 xfs_qm_unmount_quotas(mp);
994 out_rtunmount:
995 xfs_rtunmount_inodes(mp);
996 out_rele_rip:
997 xfs_irele(ip: rip);
998 /* Clean out dquots that might be in memory after quotacheck. */
999 xfs_qm_unmount(mp);
1000
1001 /*
1002 * Inactivate all inodes that might still be in memory after a log
1003 * intent recovery failure so that reclaim can free them. Metadata
1004 * inodes and the root directory shouldn't need inactivation, but the
1005 * mount failed for some reason, so pull down all the state and flee.
1006 */
1007 xfs_inodegc_flush(mp);
1008
1009 /*
1010 * Flush all inode reclamation work and flush the log.
1011 * We have to do this /after/ rtunmount and qm_unmount because those
1012 * two will have scheduled delayed reclaim for the rt/quota inodes.
1013 *
1014 * This is slightly different from the unmountfs call sequence
1015 * because we could be tearing down a partially set up mount. In
1016 * particular, if log_mount_finish fails we bail out without calling
1017 * qm_unmount_quotas and therefore rely on qm_unmount to release the
1018 * quota inodes.
1019 */
1020 xfs_unmount_flush_inodes(mp);
1021 out_log_dealloc:
1022 xfs_log_mount_cancel(mp);
1023 out_inodegc_shrinker:
1024 shrinker_free(shrinker: mp->m_inodegc_shrinker);
1025 out_fail_wait:
1026 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
1027 xfs_buftarg_drain(mp->m_logdev_targp);
1028 xfs_buftarg_drain(mp->m_ddev_targp);
1029 out_free_perag:
1030 xfs_free_perag(mp);
1031 out_free_dir:
1032 xfs_da_unmount(mp);
1033 out_remove_uuid:
1034 xfs_uuid_unmount(mp);
1035 out_remove_errortag:
1036 xfs_errortag_del(mp);
1037 out_remove_error_sysfs:
1038 xfs_error_sysfs_del(mp);
1039 out_remove_scrub_stats:
1040 xchk_stats_unregister(cs: mp->m_scrub_stats);
1041 xfs_sysfs_del(kobj: &mp->m_stats.xs_kobj);
1042 out_remove_sysfs:
1043 xfs_sysfs_del(kobj: &mp->m_kobj);
1044 out:
1045 return error;
1046}
1047
1048/*
1049 * This flushes out the inodes,dquots and the superblock, unmounts the
1050 * log and makes sure that incore structures are freed.
1051 */
1052void
1053xfs_unmountfs(
1054 struct xfs_mount *mp)
1055{
1056 uint64_t resblks;
1057 int error;
1058
1059 /*
1060 * Perform all on-disk metadata updates required to inactivate inodes
1061 * that the VFS evicted earlier in the unmount process. Freeing inodes
1062 * and discarding CoW fork preallocations can cause shape changes to
1063 * the free inode and refcount btrees, respectively, so we must finish
1064 * this before we discard the metadata space reservations. Metadata
1065 * inodes and the root directory do not require inactivation.
1066 */
1067 xfs_inodegc_flush(mp);
1068
1069 xfs_blockgc_stop(mp);
1070 xfs_fs_unreserve_ag_blocks(mp);
1071 xfs_qm_unmount_quotas(mp);
1072 xfs_rtunmount_inodes(mp);
1073 xfs_irele(ip: mp->m_rootip);
1074
1075 xfs_unmount_flush_inodes(mp);
1076
1077 xfs_qm_unmount(mp);
1078
1079 /*
1080 * Unreserve any blocks we have so that when we unmount we don't account
1081 * the reserved free space as used. This is really only necessary for
1082 * lazy superblock counting because it trusts the incore superblock
1083 * counters to be absolutely correct on clean unmount.
1084 *
1085 * We don't bother correcting this elsewhere for lazy superblock
1086 * counting because on mount of an unclean filesystem we reconstruct the
1087 * correct counter value and this is irrelevant.
1088 *
1089 * For non-lazy counter filesystems, this doesn't matter at all because
1090 * we only every apply deltas to the superblock and hence the incore
1091 * value does not matter....
1092 */
1093 resblks = 0;
1094 error = xfs_reserve_blocks(mp, &resblks, NULL);
1095 if (error)
1096 xfs_warn(mp, "Unable to free reserved block pool. "
1097 "Freespace may not be correct on next mount.");
1098 xfs_unmount_check(mp);
1099
1100 xfs_log_unmount(mp);
1101 xfs_da_unmount(mp);
1102 xfs_uuid_unmount(mp);
1103
1104#if defined(DEBUG)
1105 xfs_errortag_clearall(mp);
1106#endif
1107 shrinker_free(shrinker: mp->m_inodegc_shrinker);
1108 xfs_free_perag(mp);
1109
1110 xfs_errortag_del(mp);
1111 xfs_error_sysfs_del(mp);
1112 xchk_stats_unregister(cs: mp->m_scrub_stats);
1113 xfs_sysfs_del(kobj: &mp->m_stats.xs_kobj);
1114 xfs_sysfs_del(kobj: &mp->m_kobj);
1115}
1116
1117/*
1118 * Determine whether modifications can proceed. The caller specifies the minimum
1119 * freeze level for which modifications should not be allowed. This allows
1120 * certain operations to proceed while the freeze sequence is in progress, if
1121 * necessary.
1122 */
1123bool
1124xfs_fs_writable(
1125 struct xfs_mount *mp,
1126 int level)
1127{
1128 ASSERT(level > SB_UNFROZEN);
1129 if ((mp->m_super->s_writers.frozen >= level) ||
1130 xfs_is_shutdown(mp) || xfs_is_readonly(mp))
1131 return false;
1132
1133 return true;
1134}
1135
1136/* Adjust m_fdblocks or m_frextents. */
1137int
1138xfs_mod_freecounter(
1139 struct xfs_mount *mp,
1140 struct percpu_counter *counter,
1141 int64_t delta,
1142 bool rsvd)
1143{
1144 int64_t lcounter;
1145 long long res_used;
1146 uint64_t set_aside = 0;
1147 s32 batch;
1148 bool has_resv_pool;
1149
1150 ASSERT(counter == &mp->m_fdblocks || counter == &mp->m_frextents);
1151 has_resv_pool = (counter == &mp->m_fdblocks);
1152 if (rsvd)
1153 ASSERT(has_resv_pool);
1154
1155 if (delta > 0) {
1156 /*
1157 * If the reserve pool is depleted, put blocks back into it
1158 * first. Most of the time the pool is full.
1159 */
1160 if (likely(!has_resv_pool ||
1161 mp->m_resblks == mp->m_resblks_avail)) {
1162 percpu_counter_add(fbc: counter, amount: delta);
1163 return 0;
1164 }
1165
1166 spin_lock(lock: &mp->m_sb_lock);
1167 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1168
1169 if (res_used > delta) {
1170 mp->m_resblks_avail += delta;
1171 } else {
1172 delta -= res_used;
1173 mp->m_resblks_avail = mp->m_resblks;
1174 percpu_counter_add(fbc: counter, amount: delta);
1175 }
1176 spin_unlock(lock: &mp->m_sb_lock);
1177 return 0;
1178 }
1179
1180 /*
1181 * Taking blocks away, need to be more accurate the closer we
1182 * are to zero.
1183 *
1184 * If the counter has a value of less than 2 * max batch size,
1185 * then make everything serialise as we are real close to
1186 * ENOSPC.
1187 */
1188 if (__percpu_counter_compare(fbc: counter, rhs: 2 * XFS_FDBLOCKS_BATCH,
1189 XFS_FDBLOCKS_BATCH) < 0)
1190 batch = 1;
1191 else
1192 batch = XFS_FDBLOCKS_BATCH;
1193
1194 /*
1195 * Set aside allocbt blocks because these blocks are tracked as free
1196 * space but not available for allocation. Technically this means that a
1197 * single reservation cannot consume all remaining free space, but the
1198 * ratio of allocbt blocks to usable free blocks should be rather small.
1199 * The tradeoff without this is that filesystems that maintain high
1200 * perag block reservations can over reserve physical block availability
1201 * and fail physical allocation, which leads to much more serious
1202 * problems (i.e. transaction abort, pagecache discards, etc.) than
1203 * slightly premature -ENOSPC.
1204 */
1205 if (has_resv_pool)
1206 set_aside = xfs_fdblocks_unavailable(mp);
1207 percpu_counter_add_batch(fbc: counter, amount: delta, batch);
1208 if (__percpu_counter_compare(fbc: counter, rhs: set_aside,
1209 XFS_FDBLOCKS_BATCH) >= 0) {
1210 /* we had space! */
1211 return 0;
1212 }
1213
1214 /*
1215 * lock up the sb for dipping into reserves before releasing the space
1216 * that took us to ENOSPC.
1217 */
1218 spin_lock(lock: &mp->m_sb_lock);
1219 percpu_counter_add(fbc: counter, amount: -delta);
1220 if (!has_resv_pool || !rsvd)
1221 goto fdblocks_enospc;
1222
1223 lcounter = (long long)mp->m_resblks_avail + delta;
1224 if (lcounter >= 0) {
1225 mp->m_resblks_avail = lcounter;
1226 spin_unlock(lock: &mp->m_sb_lock);
1227 return 0;
1228 }
1229 xfs_warn_once(mp,
1230"Reserve blocks depleted! Consider increasing reserve pool size.");
1231
1232fdblocks_enospc:
1233 spin_unlock(lock: &mp->m_sb_lock);
1234 return -ENOSPC;
1235}
1236
1237/*
1238 * Used to free the superblock along various error paths.
1239 */
1240void
1241xfs_freesb(
1242 struct xfs_mount *mp)
1243{
1244 struct xfs_buf *bp = mp->m_sb_bp;
1245
1246 xfs_buf_lock(bp);
1247 mp->m_sb_bp = NULL;
1248 xfs_buf_relse(bp);
1249}
1250
1251/*
1252 * If the underlying (data/log/rt) device is readonly, there are some
1253 * operations that cannot proceed.
1254 */
1255int
1256xfs_dev_is_read_only(
1257 struct xfs_mount *mp,
1258 char *message)
1259{
1260 if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1261 xfs_readonly_buftarg(mp->m_logdev_targp) ||
1262 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
1263 xfs_notice(mp, "%s required on read-only device.", message);
1264 xfs_notice(mp, "write access unavailable, cannot proceed.");
1265 return -EROFS;
1266 }
1267 return 0;
1268}
1269
1270/* Force the summary counters to be recalculated at next mount. */
1271void
1272xfs_force_summary_recalc(
1273 struct xfs_mount *mp)
1274{
1275 if (!xfs_has_lazysbcount(mp))
1276 return;
1277
1278 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
1279}
1280
1281/*
1282 * Enable a log incompat feature flag in the primary superblock. The caller
1283 * cannot have any other transactions in progress.
1284 */
1285int
1286xfs_add_incompat_log_feature(
1287 struct xfs_mount *mp,
1288 uint32_t feature)
1289{
1290 struct xfs_dsb *dsb;
1291 int error;
1292
1293 ASSERT(hweight32(feature) == 1);
1294 ASSERT(!(feature & XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
1295
1296 /*
1297 * Force the log to disk and kick the background AIL thread to reduce
1298 * the chances that the bwrite will stall waiting for the AIL to unpin
1299 * the primary superblock buffer. This isn't a data integrity
1300 * operation, so we don't need a synchronous push.
1301 */
1302 error = xfs_log_force(mp, XFS_LOG_SYNC);
1303 if (error)
1304 return error;
1305 xfs_ail_push_all(mp->m_ail);
1306
1307 /*
1308 * Lock the primary superblock buffer to serialize all callers that
1309 * are trying to set feature bits.
1310 */
1311 xfs_buf_lock(mp->m_sb_bp);
1312 xfs_buf_hold(bp: mp->m_sb_bp);
1313
1314 if (xfs_is_shutdown(mp)) {
1315 error = -EIO;
1316 goto rele;
1317 }
1318
1319 if (xfs_sb_has_incompat_log_feature(&mp->m_sb, feature))
1320 goto rele;
1321
1322 /*
1323 * Write the primary superblock to disk immediately, because we need
1324 * the log_incompat bit to be set in the primary super now to protect
1325 * the log items that we're going to commit later.
1326 */
1327 dsb = mp->m_sb_bp->b_addr;
1328 xfs_sb_to_disk(dsb, &mp->m_sb);
1329 dsb->sb_features_log_incompat |= cpu_to_be32(feature);
1330 error = xfs_bwrite(bp: mp->m_sb_bp);
1331 if (error)
1332 goto shutdown;
1333
1334 /*
1335 * Add the feature bits to the incore superblock before we unlock the
1336 * buffer.
1337 */
1338 xfs_sb_add_incompat_log_features(&mp->m_sb, feature);
1339 xfs_buf_relse(bp: mp->m_sb_bp);
1340
1341 /* Log the superblock to disk. */
1342 return xfs_sync_sb(mp, false);
1343shutdown:
1344 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1345rele:
1346 xfs_buf_relse(bp: mp->m_sb_bp);
1347 return error;
1348}
1349
1350/*
1351 * Clear all the log incompat flags from the superblock.
1352 *
1353 * The caller cannot be in a transaction, must ensure that the log does not
1354 * contain any log items protected by any log incompat bit, and must ensure
1355 * that there are no other threads that depend on the state of the log incompat
1356 * feature flags in the primary super.
1357 *
1358 * Returns true if the superblock is dirty.
1359 */
1360bool
1361xfs_clear_incompat_log_features(
1362 struct xfs_mount *mp)
1363{
1364 bool ret = false;
1365
1366 if (!xfs_has_crc(mp) ||
1367 !xfs_sb_has_incompat_log_feature(&mp->m_sb,
1368 XFS_SB_FEAT_INCOMPAT_LOG_ALL) ||
1369 xfs_is_shutdown(mp))
1370 return false;
1371
1372 /*
1373 * Update the incore superblock. We synchronize on the primary super
1374 * buffer lock to be consistent with the add function, though at least
1375 * in theory this shouldn't be necessary.
1376 */
1377 xfs_buf_lock(mp->m_sb_bp);
1378 xfs_buf_hold(bp: mp->m_sb_bp);
1379
1380 if (xfs_sb_has_incompat_log_feature(&mp->m_sb,
1381 XFS_SB_FEAT_INCOMPAT_LOG_ALL)) {
1382 xfs_sb_remove_incompat_log_features(&mp->m_sb);
1383 ret = true;
1384 }
1385
1386 xfs_buf_relse(bp: mp->m_sb_bp);
1387 return ret;
1388}
1389
1390/*
1391 * Update the in-core delayed block counter.
1392 *
1393 * We prefer to update the counter without having to take a spinlock for every
1394 * counter update (i.e. batching). Each change to delayed allocation
1395 * reservations can change can easily exceed the default percpu counter
1396 * batching, so we use a larger batch factor here.
1397 *
1398 * Note that we don't currently have any callers requiring fast summation
1399 * (e.g. percpu_counter_read) so we can use a big batch value here.
1400 */
1401#define XFS_DELALLOC_BATCH (4096)
1402void
1403xfs_mod_delalloc(
1404 struct xfs_mount *mp,
1405 int64_t delta)
1406{
1407 percpu_counter_add_batch(fbc: &mp->m_delalloc_blks, amount: delta,
1408 XFS_DELALLOC_BATCH);
1409}
1410

source code of linux/fs/xfs/xfs_mount.c