1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * Linux Socket Filter Data Structures
4 */
5#ifndef __LINUX_FILTER_H__
6#define __LINUX_FILTER_H__
7
8#include <linux/atomic.h>
9#include <linux/bpf.h>
10#include <linux/refcount.h>
11#include <linux/compat.h>
12#include <linux/skbuff.h>
13#include <linux/linkage.h>
14#include <linux/printk.h>
15#include <linux/workqueue.h>
16#include <linux/sched.h>
17#include <linux/sched/clock.h>
18#include <linux/capability.h>
19#include <linux/set_memory.h>
20#include <linux/kallsyms.h>
21#include <linux/if_vlan.h>
22#include <linux/vmalloc.h>
23#include <linux/sockptr.h>
24#include <crypto/sha1.h>
25#include <linux/u64_stats_sync.h>
26
27#include <net/sch_generic.h>
28
29#include <asm/byteorder.h>
30#include <uapi/linux/filter.h>
31
32struct sk_buff;
33struct sock;
34struct seccomp_data;
35struct bpf_prog_aux;
36struct xdp_rxq_info;
37struct xdp_buff;
38struct sock_reuseport;
39struct ctl_table;
40struct ctl_table_header;
41
42/* ArgX, context and stack frame pointer register positions. Note,
43 * Arg1, Arg2, Arg3, etc are used as argument mappings of function
44 * calls in BPF_CALL instruction.
45 */
46#define BPF_REG_ARG1 BPF_REG_1
47#define BPF_REG_ARG2 BPF_REG_2
48#define BPF_REG_ARG3 BPF_REG_3
49#define BPF_REG_ARG4 BPF_REG_4
50#define BPF_REG_ARG5 BPF_REG_5
51#define BPF_REG_CTX BPF_REG_6
52#define BPF_REG_FP BPF_REG_10
53
54/* Additional register mappings for converted user programs. */
55#define BPF_REG_A BPF_REG_0
56#define BPF_REG_X BPF_REG_7
57#define BPF_REG_TMP BPF_REG_2 /* scratch reg */
58#define BPF_REG_D BPF_REG_8 /* data, callee-saved */
59#define BPF_REG_H BPF_REG_9 /* hlen, callee-saved */
60
61/* Kernel hidden auxiliary/helper register. */
62#define BPF_REG_AX MAX_BPF_REG
63#define MAX_BPF_EXT_REG (MAX_BPF_REG + 1)
64#define MAX_BPF_JIT_REG MAX_BPF_EXT_REG
65
66/* unused opcode to mark special call to bpf_tail_call() helper */
67#define BPF_TAIL_CALL 0xf0
68
69/* unused opcode to mark special load instruction. Same as BPF_ABS */
70#define BPF_PROBE_MEM 0x20
71
72/* unused opcode to mark special ldsx instruction. Same as BPF_IND */
73#define BPF_PROBE_MEMSX 0x40
74
75/* unused opcode to mark call to interpreter with arguments */
76#define BPF_CALL_ARGS 0xe0
77
78/* unused opcode to mark speculation barrier for mitigating
79 * Speculative Store Bypass
80 */
81#define BPF_NOSPEC 0xc0
82
83/* As per nm, we expose JITed images as text (code) section for
84 * kallsyms. That way, tools like perf can find it to match
85 * addresses.
86 */
87#define BPF_SYM_ELF_TYPE 't'
88
89/* BPF program can access up to 512 bytes of stack space. */
90#define MAX_BPF_STACK 512
91
92/* Helper macros for filter block array initializers. */
93
94/* ALU ops on registers, bpf_add|sub|...: dst_reg += src_reg */
95
96#define BPF_ALU64_REG_OFF(OP, DST, SRC, OFF) \
97 ((struct bpf_insn) { \
98 .code = BPF_ALU64 | BPF_OP(OP) | BPF_X, \
99 .dst_reg = DST, \
100 .src_reg = SRC, \
101 .off = OFF, \
102 .imm = 0 })
103
104#define BPF_ALU64_REG(OP, DST, SRC) \
105 BPF_ALU64_REG_OFF(OP, DST, SRC, 0)
106
107#define BPF_ALU32_REG_OFF(OP, DST, SRC, OFF) \
108 ((struct bpf_insn) { \
109 .code = BPF_ALU | BPF_OP(OP) | BPF_X, \
110 .dst_reg = DST, \
111 .src_reg = SRC, \
112 .off = OFF, \
113 .imm = 0 })
114
115#define BPF_ALU32_REG(OP, DST, SRC) \
116 BPF_ALU32_REG_OFF(OP, DST, SRC, 0)
117
118/* ALU ops on immediates, bpf_add|sub|...: dst_reg += imm32 */
119
120#define BPF_ALU64_IMM_OFF(OP, DST, IMM, OFF) \
121 ((struct bpf_insn) { \
122 .code = BPF_ALU64 | BPF_OP(OP) | BPF_K, \
123 .dst_reg = DST, \
124 .src_reg = 0, \
125 .off = OFF, \
126 .imm = IMM })
127#define BPF_ALU64_IMM(OP, DST, IMM) \
128 BPF_ALU64_IMM_OFF(OP, DST, IMM, 0)
129
130#define BPF_ALU32_IMM_OFF(OP, DST, IMM, OFF) \
131 ((struct bpf_insn) { \
132 .code = BPF_ALU | BPF_OP(OP) | BPF_K, \
133 .dst_reg = DST, \
134 .src_reg = 0, \
135 .off = OFF, \
136 .imm = IMM })
137#define BPF_ALU32_IMM(OP, DST, IMM) \
138 BPF_ALU32_IMM_OFF(OP, DST, IMM, 0)
139
140/* Endianess conversion, cpu_to_{l,b}e(), {l,b}e_to_cpu() */
141
142#define BPF_ENDIAN(TYPE, DST, LEN) \
143 ((struct bpf_insn) { \
144 .code = BPF_ALU | BPF_END | BPF_SRC(TYPE), \
145 .dst_reg = DST, \
146 .src_reg = 0, \
147 .off = 0, \
148 .imm = LEN })
149
150/* Byte Swap, bswap16/32/64 */
151
152#define BPF_BSWAP(DST, LEN) \
153 ((struct bpf_insn) { \
154 .code = BPF_ALU64 | BPF_END | BPF_SRC(BPF_TO_LE), \
155 .dst_reg = DST, \
156 .src_reg = 0, \
157 .off = 0, \
158 .imm = LEN })
159
160/* Short form of mov, dst_reg = src_reg */
161
162#define BPF_MOV64_REG(DST, SRC) \
163 ((struct bpf_insn) { \
164 .code = BPF_ALU64 | BPF_MOV | BPF_X, \
165 .dst_reg = DST, \
166 .src_reg = SRC, \
167 .off = 0, \
168 .imm = 0 })
169
170#define BPF_MOV32_REG(DST, SRC) \
171 ((struct bpf_insn) { \
172 .code = BPF_ALU | BPF_MOV | BPF_X, \
173 .dst_reg = DST, \
174 .src_reg = SRC, \
175 .off = 0, \
176 .imm = 0 })
177
178/* Short form of mov, dst_reg = imm32 */
179
180#define BPF_MOV64_IMM(DST, IMM) \
181 ((struct bpf_insn) { \
182 .code = BPF_ALU64 | BPF_MOV | BPF_K, \
183 .dst_reg = DST, \
184 .src_reg = 0, \
185 .off = 0, \
186 .imm = IMM })
187
188#define BPF_MOV32_IMM(DST, IMM) \
189 ((struct bpf_insn) { \
190 .code = BPF_ALU | BPF_MOV | BPF_K, \
191 .dst_reg = DST, \
192 .src_reg = 0, \
193 .off = 0, \
194 .imm = IMM })
195
196/* Short form of movsx, dst_reg = (s8,s16,s32)src_reg */
197
198#define BPF_MOVSX64_REG(DST, SRC, OFF) \
199 ((struct bpf_insn) { \
200 .code = BPF_ALU64 | BPF_MOV | BPF_X, \
201 .dst_reg = DST, \
202 .src_reg = SRC, \
203 .off = OFF, \
204 .imm = 0 })
205
206#define BPF_MOVSX32_REG(DST, SRC, OFF) \
207 ((struct bpf_insn) { \
208 .code = BPF_ALU | BPF_MOV | BPF_X, \
209 .dst_reg = DST, \
210 .src_reg = SRC, \
211 .off = OFF, \
212 .imm = 0 })
213
214/* Special form of mov32, used for doing explicit zero extension on dst. */
215#define BPF_ZEXT_REG(DST) \
216 ((struct bpf_insn) { \
217 .code = BPF_ALU | BPF_MOV | BPF_X, \
218 .dst_reg = DST, \
219 .src_reg = DST, \
220 .off = 0, \
221 .imm = 1 })
222
223static inline bool insn_is_zext(const struct bpf_insn *insn)
224{
225 return insn->code == (BPF_ALU | BPF_MOV | BPF_X) && insn->imm == 1;
226}
227
228/* BPF_LD_IMM64 macro encodes single 'load 64-bit immediate' insn */
229#define BPF_LD_IMM64(DST, IMM) \
230 BPF_LD_IMM64_RAW(DST, 0, IMM)
231
232#define BPF_LD_IMM64_RAW(DST, SRC, IMM) \
233 ((struct bpf_insn) { \
234 .code = BPF_LD | BPF_DW | BPF_IMM, \
235 .dst_reg = DST, \
236 .src_reg = SRC, \
237 .off = 0, \
238 .imm = (__u32) (IMM) }), \
239 ((struct bpf_insn) { \
240 .code = 0, /* zero is reserved opcode */ \
241 .dst_reg = 0, \
242 .src_reg = 0, \
243 .off = 0, \
244 .imm = ((__u64) (IMM)) >> 32 })
245
246/* pseudo BPF_LD_IMM64 insn used to refer to process-local map_fd */
247#define BPF_LD_MAP_FD(DST, MAP_FD) \
248 BPF_LD_IMM64_RAW(DST, BPF_PSEUDO_MAP_FD, MAP_FD)
249
250/* Short form of mov based on type, BPF_X: dst_reg = src_reg, BPF_K: dst_reg = imm32 */
251
252#define BPF_MOV64_RAW(TYPE, DST, SRC, IMM) \
253 ((struct bpf_insn) { \
254 .code = BPF_ALU64 | BPF_MOV | BPF_SRC(TYPE), \
255 .dst_reg = DST, \
256 .src_reg = SRC, \
257 .off = 0, \
258 .imm = IMM })
259
260#define BPF_MOV32_RAW(TYPE, DST, SRC, IMM) \
261 ((struct bpf_insn) { \
262 .code = BPF_ALU | BPF_MOV | BPF_SRC(TYPE), \
263 .dst_reg = DST, \
264 .src_reg = SRC, \
265 .off = 0, \
266 .imm = IMM })
267
268/* Direct packet access, R0 = *(uint *) (skb->data + imm32) */
269
270#define BPF_LD_ABS(SIZE, IMM) \
271 ((struct bpf_insn) { \
272 .code = BPF_LD | BPF_SIZE(SIZE) | BPF_ABS, \
273 .dst_reg = 0, \
274 .src_reg = 0, \
275 .off = 0, \
276 .imm = IMM })
277
278/* Indirect packet access, R0 = *(uint *) (skb->data + src_reg + imm32) */
279
280#define BPF_LD_IND(SIZE, SRC, IMM) \
281 ((struct bpf_insn) { \
282 .code = BPF_LD | BPF_SIZE(SIZE) | BPF_IND, \
283 .dst_reg = 0, \
284 .src_reg = SRC, \
285 .off = 0, \
286 .imm = IMM })
287
288/* Memory load, dst_reg = *(uint *) (src_reg + off16) */
289
290#define BPF_LDX_MEM(SIZE, DST, SRC, OFF) \
291 ((struct bpf_insn) { \
292 .code = BPF_LDX | BPF_SIZE(SIZE) | BPF_MEM, \
293 .dst_reg = DST, \
294 .src_reg = SRC, \
295 .off = OFF, \
296 .imm = 0 })
297
298/* Memory load, dst_reg = *(signed size *) (src_reg + off16) */
299
300#define BPF_LDX_MEMSX(SIZE, DST, SRC, OFF) \
301 ((struct bpf_insn) { \
302 .code = BPF_LDX | BPF_SIZE(SIZE) | BPF_MEMSX, \
303 .dst_reg = DST, \
304 .src_reg = SRC, \
305 .off = OFF, \
306 .imm = 0 })
307
308/* Memory store, *(uint *) (dst_reg + off16) = src_reg */
309
310#define BPF_STX_MEM(SIZE, DST, SRC, OFF) \
311 ((struct bpf_insn) { \
312 .code = BPF_STX | BPF_SIZE(SIZE) | BPF_MEM, \
313 .dst_reg = DST, \
314 .src_reg = SRC, \
315 .off = OFF, \
316 .imm = 0 })
317
318
319/*
320 * Atomic operations:
321 *
322 * BPF_ADD *(uint *) (dst_reg + off16) += src_reg
323 * BPF_AND *(uint *) (dst_reg + off16) &= src_reg
324 * BPF_OR *(uint *) (dst_reg + off16) |= src_reg
325 * BPF_XOR *(uint *) (dst_reg + off16) ^= src_reg
326 * BPF_ADD | BPF_FETCH src_reg = atomic_fetch_add(dst_reg + off16, src_reg);
327 * BPF_AND | BPF_FETCH src_reg = atomic_fetch_and(dst_reg + off16, src_reg);
328 * BPF_OR | BPF_FETCH src_reg = atomic_fetch_or(dst_reg + off16, src_reg);
329 * BPF_XOR | BPF_FETCH src_reg = atomic_fetch_xor(dst_reg + off16, src_reg);
330 * BPF_XCHG src_reg = atomic_xchg(dst_reg + off16, src_reg)
331 * BPF_CMPXCHG r0 = atomic_cmpxchg(dst_reg + off16, r0, src_reg)
332 */
333
334#define BPF_ATOMIC_OP(SIZE, OP, DST, SRC, OFF) \
335 ((struct bpf_insn) { \
336 .code = BPF_STX | BPF_SIZE(SIZE) | BPF_ATOMIC, \
337 .dst_reg = DST, \
338 .src_reg = SRC, \
339 .off = OFF, \
340 .imm = OP })
341
342/* Legacy alias */
343#define BPF_STX_XADD(SIZE, DST, SRC, OFF) BPF_ATOMIC_OP(SIZE, BPF_ADD, DST, SRC, OFF)
344
345/* Memory store, *(uint *) (dst_reg + off16) = imm32 */
346
347#define BPF_ST_MEM(SIZE, DST, OFF, IMM) \
348 ((struct bpf_insn) { \
349 .code = BPF_ST | BPF_SIZE(SIZE) | BPF_MEM, \
350 .dst_reg = DST, \
351 .src_reg = 0, \
352 .off = OFF, \
353 .imm = IMM })
354
355/* Conditional jumps against registers, if (dst_reg 'op' src_reg) goto pc + off16 */
356
357#define BPF_JMP_REG(OP, DST, SRC, OFF) \
358 ((struct bpf_insn) { \
359 .code = BPF_JMP | BPF_OP(OP) | BPF_X, \
360 .dst_reg = DST, \
361 .src_reg = SRC, \
362 .off = OFF, \
363 .imm = 0 })
364
365/* Conditional jumps against immediates, if (dst_reg 'op' imm32) goto pc + off16 */
366
367#define BPF_JMP_IMM(OP, DST, IMM, OFF) \
368 ((struct bpf_insn) { \
369 .code = BPF_JMP | BPF_OP(OP) | BPF_K, \
370 .dst_reg = DST, \
371 .src_reg = 0, \
372 .off = OFF, \
373 .imm = IMM })
374
375/* Like BPF_JMP_REG, but with 32-bit wide operands for comparison. */
376
377#define BPF_JMP32_REG(OP, DST, SRC, OFF) \
378 ((struct bpf_insn) { \
379 .code = BPF_JMP32 | BPF_OP(OP) | BPF_X, \
380 .dst_reg = DST, \
381 .src_reg = SRC, \
382 .off = OFF, \
383 .imm = 0 })
384
385/* Like BPF_JMP_IMM, but with 32-bit wide operands for comparison. */
386
387#define BPF_JMP32_IMM(OP, DST, IMM, OFF) \
388 ((struct bpf_insn) { \
389 .code = BPF_JMP32 | BPF_OP(OP) | BPF_K, \
390 .dst_reg = DST, \
391 .src_reg = 0, \
392 .off = OFF, \
393 .imm = IMM })
394
395/* Unconditional jumps, goto pc + off16 */
396
397#define BPF_JMP_A(OFF) \
398 ((struct bpf_insn) { \
399 .code = BPF_JMP | BPF_JA, \
400 .dst_reg = 0, \
401 .src_reg = 0, \
402 .off = OFF, \
403 .imm = 0 })
404
405/* Relative call */
406
407#define BPF_CALL_REL(TGT) \
408 ((struct bpf_insn) { \
409 .code = BPF_JMP | BPF_CALL, \
410 .dst_reg = 0, \
411 .src_reg = BPF_PSEUDO_CALL, \
412 .off = 0, \
413 .imm = TGT })
414
415/* Convert function address to BPF immediate */
416
417#define BPF_CALL_IMM(x) ((void *)(x) - (void *)__bpf_call_base)
418
419#define BPF_EMIT_CALL(FUNC) \
420 ((struct bpf_insn) { \
421 .code = BPF_JMP | BPF_CALL, \
422 .dst_reg = 0, \
423 .src_reg = 0, \
424 .off = 0, \
425 .imm = BPF_CALL_IMM(FUNC) })
426
427/* Raw code statement block */
428
429#define BPF_RAW_INSN(CODE, DST, SRC, OFF, IMM) \
430 ((struct bpf_insn) { \
431 .code = CODE, \
432 .dst_reg = DST, \
433 .src_reg = SRC, \
434 .off = OFF, \
435 .imm = IMM })
436
437/* Program exit */
438
439#define BPF_EXIT_INSN() \
440 ((struct bpf_insn) { \
441 .code = BPF_JMP | BPF_EXIT, \
442 .dst_reg = 0, \
443 .src_reg = 0, \
444 .off = 0, \
445 .imm = 0 })
446
447/* Speculation barrier */
448
449#define BPF_ST_NOSPEC() \
450 ((struct bpf_insn) { \
451 .code = BPF_ST | BPF_NOSPEC, \
452 .dst_reg = 0, \
453 .src_reg = 0, \
454 .off = 0, \
455 .imm = 0 })
456
457/* Internal classic blocks for direct assignment */
458
459#define __BPF_STMT(CODE, K) \
460 ((struct sock_filter) BPF_STMT(CODE, K))
461
462#define __BPF_JUMP(CODE, K, JT, JF) \
463 ((struct sock_filter) BPF_JUMP(CODE, K, JT, JF))
464
465#define bytes_to_bpf_size(bytes) \
466({ \
467 int bpf_size = -EINVAL; \
468 \
469 if (bytes == sizeof(u8)) \
470 bpf_size = BPF_B; \
471 else if (bytes == sizeof(u16)) \
472 bpf_size = BPF_H; \
473 else if (bytes == sizeof(u32)) \
474 bpf_size = BPF_W; \
475 else if (bytes == sizeof(u64)) \
476 bpf_size = BPF_DW; \
477 \
478 bpf_size; \
479})
480
481#define bpf_size_to_bytes(bpf_size) \
482({ \
483 int bytes = -EINVAL; \
484 \
485 if (bpf_size == BPF_B) \
486 bytes = sizeof(u8); \
487 else if (bpf_size == BPF_H) \
488 bytes = sizeof(u16); \
489 else if (bpf_size == BPF_W) \
490 bytes = sizeof(u32); \
491 else if (bpf_size == BPF_DW) \
492 bytes = sizeof(u64); \
493 \
494 bytes; \
495})
496
497#define BPF_SIZEOF(type) \
498 ({ \
499 const int __size = bytes_to_bpf_size(sizeof(type)); \
500 BUILD_BUG_ON(__size < 0); \
501 __size; \
502 })
503
504#define BPF_FIELD_SIZEOF(type, field) \
505 ({ \
506 const int __size = bytes_to_bpf_size(sizeof_field(type, field)); \
507 BUILD_BUG_ON(__size < 0); \
508 __size; \
509 })
510
511#define BPF_LDST_BYTES(insn) \
512 ({ \
513 const int __size = bpf_size_to_bytes(BPF_SIZE((insn)->code)); \
514 WARN_ON(__size < 0); \
515 __size; \
516 })
517
518#define __BPF_MAP_0(m, v, ...) v
519#define __BPF_MAP_1(m, v, t, a, ...) m(t, a)
520#define __BPF_MAP_2(m, v, t, a, ...) m(t, a), __BPF_MAP_1(m, v, __VA_ARGS__)
521#define __BPF_MAP_3(m, v, t, a, ...) m(t, a), __BPF_MAP_2(m, v, __VA_ARGS__)
522#define __BPF_MAP_4(m, v, t, a, ...) m(t, a), __BPF_MAP_3(m, v, __VA_ARGS__)
523#define __BPF_MAP_5(m, v, t, a, ...) m(t, a), __BPF_MAP_4(m, v, __VA_ARGS__)
524
525#define __BPF_REG_0(...) __BPF_PAD(5)
526#define __BPF_REG_1(...) __BPF_MAP(1, __VA_ARGS__), __BPF_PAD(4)
527#define __BPF_REG_2(...) __BPF_MAP(2, __VA_ARGS__), __BPF_PAD(3)
528#define __BPF_REG_3(...) __BPF_MAP(3, __VA_ARGS__), __BPF_PAD(2)
529#define __BPF_REG_4(...) __BPF_MAP(4, __VA_ARGS__), __BPF_PAD(1)
530#define __BPF_REG_5(...) __BPF_MAP(5, __VA_ARGS__)
531
532#define __BPF_MAP(n, ...) __BPF_MAP_##n(__VA_ARGS__)
533#define __BPF_REG(n, ...) __BPF_REG_##n(__VA_ARGS__)
534
535#define __BPF_CAST(t, a) \
536 (__force t) \
537 (__force \
538 typeof(__builtin_choose_expr(sizeof(t) == sizeof(unsigned long), \
539 (unsigned long)0, (t)0))) a
540#define __BPF_V void
541#define __BPF_N
542
543#define __BPF_DECL_ARGS(t, a) t a
544#define __BPF_DECL_REGS(t, a) u64 a
545
546#define __BPF_PAD(n) \
547 __BPF_MAP(n, __BPF_DECL_ARGS, __BPF_N, u64, __ur_1, u64, __ur_2, \
548 u64, __ur_3, u64, __ur_4, u64, __ur_5)
549
550#define BPF_CALL_x(x, name, ...) \
551 static __always_inline \
552 u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)); \
553 typedef u64 (*btf_##name)(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)); \
554 u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__)); \
555 u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__)) \
556 { \
557 return ((btf_##name)____##name)(__BPF_MAP(x,__BPF_CAST,__BPF_N,__VA_ARGS__));\
558 } \
559 static __always_inline \
560 u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__))
561
562#define BPF_CALL_0(name, ...) BPF_CALL_x(0, name, __VA_ARGS__)
563#define BPF_CALL_1(name, ...) BPF_CALL_x(1, name, __VA_ARGS__)
564#define BPF_CALL_2(name, ...) BPF_CALL_x(2, name, __VA_ARGS__)
565#define BPF_CALL_3(name, ...) BPF_CALL_x(3, name, __VA_ARGS__)
566#define BPF_CALL_4(name, ...) BPF_CALL_x(4, name, __VA_ARGS__)
567#define BPF_CALL_5(name, ...) BPF_CALL_x(5, name, __VA_ARGS__)
568
569#define bpf_ctx_range(TYPE, MEMBER) \
570 offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1
571#define bpf_ctx_range_till(TYPE, MEMBER1, MEMBER2) \
572 offsetof(TYPE, MEMBER1) ... offsetofend(TYPE, MEMBER2) - 1
573#if BITS_PER_LONG == 64
574# define bpf_ctx_range_ptr(TYPE, MEMBER) \
575 offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1
576#else
577# define bpf_ctx_range_ptr(TYPE, MEMBER) \
578 offsetof(TYPE, MEMBER) ... offsetof(TYPE, MEMBER) + 8 - 1
579#endif /* BITS_PER_LONG == 64 */
580
581#define bpf_target_off(TYPE, MEMBER, SIZE, PTR_SIZE) \
582 ({ \
583 BUILD_BUG_ON(sizeof_field(TYPE, MEMBER) != (SIZE)); \
584 *(PTR_SIZE) = (SIZE); \
585 offsetof(TYPE, MEMBER); \
586 })
587
588/* A struct sock_filter is architecture independent. */
589struct compat_sock_fprog {
590 u16 len;
591 compat_uptr_t filter; /* struct sock_filter * */
592};
593
594struct sock_fprog_kern {
595 u16 len;
596 struct sock_filter *filter;
597};
598
599/* Some arches need doubleword alignment for their instructions and/or data */
600#define BPF_IMAGE_ALIGNMENT 8
601
602struct bpf_binary_header {
603 u32 size;
604 u8 image[] __aligned(BPF_IMAGE_ALIGNMENT);
605};
606
607struct bpf_prog_stats {
608 u64_stats_t cnt;
609 u64_stats_t nsecs;
610 u64_stats_t misses;
611 struct u64_stats_sync syncp;
612} __aligned(2 * sizeof(u64));
613
614struct sk_filter {
615 refcount_t refcnt;
616 struct rcu_head rcu;
617 struct bpf_prog *prog;
618};
619
620DECLARE_STATIC_KEY_FALSE(bpf_stats_enabled_key);
621
622extern struct mutex nf_conn_btf_access_lock;
623extern int (*nfct_btf_struct_access)(struct bpf_verifier_log *log,
624 const struct bpf_reg_state *reg,
625 int off, int size);
626
627typedef unsigned int (*bpf_dispatcher_fn)(const void *ctx,
628 const struct bpf_insn *insnsi,
629 unsigned int (*bpf_func)(const void *,
630 const struct bpf_insn *));
631
632static __always_inline u32 __bpf_prog_run(const struct bpf_prog *prog,
633 const void *ctx,
634 bpf_dispatcher_fn dfunc)
635{
636 u32 ret;
637
638 cant_migrate();
639 if (static_branch_unlikely(&bpf_stats_enabled_key)) {
640 struct bpf_prog_stats *stats;
641 u64 start = sched_clock();
642 unsigned long flags;
643
644 ret = dfunc(ctx, prog->insnsi, prog->bpf_func);
645 stats = this_cpu_ptr(prog->stats);
646 flags = u64_stats_update_begin_irqsave(syncp: &stats->syncp);
647 u64_stats_inc(p: &stats->cnt);
648 u64_stats_add(p: &stats->nsecs, val: sched_clock() - start);
649 u64_stats_update_end_irqrestore(syncp: &stats->syncp, flags);
650 } else {
651 ret = dfunc(ctx, prog->insnsi, prog->bpf_func);
652 }
653 return ret;
654}
655
656static __always_inline u32 bpf_prog_run(const struct bpf_prog *prog, const void *ctx)
657{
658 return __bpf_prog_run(prog, ctx, dfunc: bpf_dispatcher_nop_func);
659}
660
661/*
662 * Use in preemptible and therefore migratable context to make sure that
663 * the execution of the BPF program runs on one CPU.
664 *
665 * This uses migrate_disable/enable() explicitly to document that the
666 * invocation of a BPF program does not require reentrancy protection
667 * against a BPF program which is invoked from a preempting task.
668 */
669static inline u32 bpf_prog_run_pin_on_cpu(const struct bpf_prog *prog,
670 const void *ctx)
671{
672 u32 ret;
673
674 migrate_disable();
675 ret = bpf_prog_run(prog, ctx);
676 migrate_enable();
677 return ret;
678}
679
680#define BPF_SKB_CB_LEN QDISC_CB_PRIV_LEN
681
682struct bpf_skb_data_end {
683 struct qdisc_skb_cb qdisc_cb;
684 void *data_meta;
685 void *data_end;
686};
687
688struct bpf_nh_params {
689 u32 nh_family;
690 union {
691 u32 ipv4_nh;
692 struct in6_addr ipv6_nh;
693 };
694};
695
696struct bpf_redirect_info {
697 u64 tgt_index;
698 void *tgt_value;
699 struct bpf_map *map;
700 u32 flags;
701 u32 kern_flags;
702 u32 map_id;
703 enum bpf_map_type map_type;
704 struct bpf_nh_params nh;
705};
706
707DECLARE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info);
708
709/* flags for bpf_redirect_info kern_flags */
710#define BPF_RI_F_RF_NO_DIRECT BIT(0) /* no napi_direct on return_frame */
711
712/* Compute the linear packet data range [data, data_end) which
713 * will be accessed by various program types (cls_bpf, act_bpf,
714 * lwt, ...). Subsystems allowing direct data access must (!)
715 * ensure that cb[] area can be written to when BPF program is
716 * invoked (otherwise cb[] save/restore is necessary).
717 */
718static inline void bpf_compute_data_pointers(struct sk_buff *skb)
719{
720 struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
721
722 BUILD_BUG_ON(sizeof(*cb) > sizeof_field(struct sk_buff, cb));
723 cb->data_meta = skb->data - skb_metadata_len(skb);
724 cb->data_end = skb->data + skb_headlen(skb);
725}
726
727/* Similar to bpf_compute_data_pointers(), except that save orginal
728 * data in cb->data and cb->meta_data for restore.
729 */
730static inline void bpf_compute_and_save_data_end(
731 struct sk_buff *skb, void **saved_data_end)
732{
733 struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
734
735 *saved_data_end = cb->data_end;
736 cb->data_end = skb->data + skb_headlen(skb);
737}
738
739/* Restore data saved by bpf_compute_and_save_data_end(). */
740static inline void bpf_restore_data_end(
741 struct sk_buff *skb, void *saved_data_end)
742{
743 struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
744
745 cb->data_end = saved_data_end;
746}
747
748static inline u8 *bpf_skb_cb(const struct sk_buff *skb)
749{
750 /* eBPF programs may read/write skb->cb[] area to transfer meta
751 * data between tail calls. Since this also needs to work with
752 * tc, that scratch memory is mapped to qdisc_skb_cb's data area.
753 *
754 * In some socket filter cases, the cb unfortunately needs to be
755 * saved/restored so that protocol specific skb->cb[] data won't
756 * be lost. In any case, due to unpriviledged eBPF programs
757 * attached to sockets, we need to clear the bpf_skb_cb() area
758 * to not leak previous contents to user space.
759 */
760 BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) != BPF_SKB_CB_LEN);
761 BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) !=
762 sizeof_field(struct qdisc_skb_cb, data));
763
764 return qdisc_skb_cb(skb)->data;
765}
766
767/* Must be invoked with migration disabled */
768static inline u32 __bpf_prog_run_save_cb(const struct bpf_prog *prog,
769 const void *ctx)
770{
771 const struct sk_buff *skb = ctx;
772 u8 *cb_data = bpf_skb_cb(skb);
773 u8 cb_saved[BPF_SKB_CB_LEN];
774 u32 res;
775
776 if (unlikely(prog->cb_access)) {
777 memcpy(cb_saved, cb_data, sizeof(cb_saved));
778 memset(cb_data, 0, sizeof(cb_saved));
779 }
780
781 res = bpf_prog_run(prog, ctx: skb);
782
783 if (unlikely(prog->cb_access))
784 memcpy(cb_data, cb_saved, sizeof(cb_saved));
785
786 return res;
787}
788
789static inline u32 bpf_prog_run_save_cb(const struct bpf_prog *prog,
790 struct sk_buff *skb)
791{
792 u32 res;
793
794 migrate_disable();
795 res = __bpf_prog_run_save_cb(prog, ctx: skb);
796 migrate_enable();
797 return res;
798}
799
800static inline u32 bpf_prog_run_clear_cb(const struct bpf_prog *prog,
801 struct sk_buff *skb)
802{
803 u8 *cb_data = bpf_skb_cb(skb);
804 u32 res;
805
806 if (unlikely(prog->cb_access))
807 memset(cb_data, 0, BPF_SKB_CB_LEN);
808
809 res = bpf_prog_run_pin_on_cpu(prog, ctx: skb);
810 return res;
811}
812
813DECLARE_BPF_DISPATCHER(xdp)
814
815DECLARE_STATIC_KEY_FALSE(bpf_master_redirect_enabled_key);
816
817u32 xdp_master_redirect(struct xdp_buff *xdp);
818
819void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog);
820
821static inline u32 bpf_prog_insn_size(const struct bpf_prog *prog)
822{
823 return prog->len * sizeof(struct bpf_insn);
824}
825
826static inline u32 bpf_prog_tag_scratch_size(const struct bpf_prog *prog)
827{
828 return round_up(bpf_prog_insn_size(prog) +
829 sizeof(__be64) + 1, SHA1_BLOCK_SIZE);
830}
831
832static inline unsigned int bpf_prog_size(unsigned int proglen)
833{
834 return max(sizeof(struct bpf_prog),
835 offsetof(struct bpf_prog, insns[proglen]));
836}
837
838static inline bool bpf_prog_was_classic(const struct bpf_prog *prog)
839{
840 /* When classic BPF programs have been loaded and the arch
841 * does not have a classic BPF JIT (anymore), they have been
842 * converted via bpf_migrate_filter() to eBPF and thus always
843 * have an unspec program type.
844 */
845 return prog->type == BPF_PROG_TYPE_UNSPEC;
846}
847
848static inline u32 bpf_ctx_off_adjust_machine(u32 size)
849{
850 const u32 size_machine = sizeof(unsigned long);
851
852 if (size > size_machine && size % size_machine == 0)
853 size = size_machine;
854
855 return size;
856}
857
858static inline bool
859bpf_ctx_narrow_access_ok(u32 off, u32 size, u32 size_default)
860{
861 return size <= size_default && (size & (size - 1)) == 0;
862}
863
864static inline u8
865bpf_ctx_narrow_access_offset(u32 off, u32 size, u32 size_default)
866{
867 u8 access_off = off & (size_default - 1);
868
869#ifdef __LITTLE_ENDIAN
870 return access_off;
871#else
872 return size_default - (access_off + size);
873#endif
874}
875
876#define bpf_ctx_wide_access_ok(off, size, type, field) \
877 (size == sizeof(__u64) && \
878 off >= offsetof(type, field) && \
879 off + sizeof(__u64) <= offsetofend(type, field) && \
880 off % sizeof(__u64) == 0)
881
882#define bpf_classic_proglen(fprog) (fprog->len * sizeof(fprog->filter[0]))
883
884static inline void bpf_prog_lock_ro(struct bpf_prog *fp)
885{
886#ifndef CONFIG_BPF_JIT_ALWAYS_ON
887 if (!fp->jited) {
888 set_vm_flush_reset_perms(fp);
889 set_memory_ro((unsigned long)fp, fp->pages);
890 }
891#endif
892}
893
894static inline void bpf_jit_binary_lock_ro(struct bpf_binary_header *hdr)
895{
896 set_vm_flush_reset_perms(hdr);
897 set_memory_rox(addr: (unsigned long)hdr, numpages: hdr->size >> PAGE_SHIFT);
898}
899
900int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap);
901static inline int sk_filter(struct sock *sk, struct sk_buff *skb)
902{
903 return sk_filter_trim_cap(sk, skb, cap: 1);
904}
905
906struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err);
907void bpf_prog_free(struct bpf_prog *fp);
908
909bool bpf_opcode_in_insntable(u8 code);
910
911void bpf_prog_fill_jited_linfo(struct bpf_prog *prog,
912 const u32 *insn_to_jit_off);
913int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog);
914void bpf_prog_jit_attempt_done(struct bpf_prog *prog);
915
916struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags);
917struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags);
918struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
919 gfp_t gfp_extra_flags);
920void __bpf_prog_free(struct bpf_prog *fp);
921
922static inline void bpf_prog_unlock_free(struct bpf_prog *fp)
923{
924 __bpf_prog_free(fp);
925}
926
927typedef int (*bpf_aux_classic_check_t)(struct sock_filter *filter,
928 unsigned int flen);
929
930int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog);
931int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
932 bpf_aux_classic_check_t trans, bool save_orig);
933void bpf_prog_destroy(struct bpf_prog *fp);
934
935int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk);
936int sk_attach_bpf(u32 ufd, struct sock *sk);
937int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk);
938int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk);
939void sk_reuseport_prog_free(struct bpf_prog *prog);
940int sk_detach_filter(struct sock *sk);
941int sk_get_filter(struct sock *sk, sockptr_t optval, unsigned int len);
942
943bool sk_filter_charge(struct sock *sk, struct sk_filter *fp);
944void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp);
945
946u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
947#define __bpf_call_base_args \
948 ((u64 (*)(u64, u64, u64, u64, u64, const struct bpf_insn *)) \
949 (void *)__bpf_call_base)
950
951struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog);
952void bpf_jit_compile(struct bpf_prog *prog);
953bool bpf_jit_needs_zext(void);
954bool bpf_jit_supports_subprog_tailcalls(void);
955bool bpf_jit_supports_kfunc_call(void);
956bool bpf_jit_supports_far_kfunc_call(void);
957bool bpf_jit_supports_exceptions(void);
958void arch_bpf_stack_walk(bool (*consume_fn)(void *cookie, u64 ip, u64 sp, u64 bp), void *cookie);
959bool bpf_helper_changes_pkt_data(void *func);
960
961static inline bool bpf_dump_raw_ok(const struct cred *cred)
962{
963 /* Reconstruction of call-sites is dependent on kallsyms,
964 * thus make dump the same restriction.
965 */
966 return kallsyms_show_value(cred);
967}
968
969struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
970 const struct bpf_insn *patch, u32 len);
971int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt);
972
973void bpf_clear_redirect_map(struct bpf_map *map);
974
975static inline bool xdp_return_frame_no_direct(void)
976{
977 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
978
979 return ri->kern_flags & BPF_RI_F_RF_NO_DIRECT;
980}
981
982static inline void xdp_set_return_frame_no_direct(void)
983{
984 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
985
986 ri->kern_flags |= BPF_RI_F_RF_NO_DIRECT;
987}
988
989static inline void xdp_clear_return_frame_no_direct(void)
990{
991 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
992
993 ri->kern_flags &= ~BPF_RI_F_RF_NO_DIRECT;
994}
995
996static inline int xdp_ok_fwd_dev(const struct net_device *fwd,
997 unsigned int pktlen)
998{
999 unsigned int len;
1000
1001 if (unlikely(!(fwd->flags & IFF_UP)))
1002 return -ENETDOWN;
1003
1004 len = fwd->mtu + fwd->hard_header_len + VLAN_HLEN;
1005 if (pktlen > len)
1006 return -EMSGSIZE;
1007
1008 return 0;
1009}
1010
1011/* The pair of xdp_do_redirect and xdp_do_flush MUST be called in the
1012 * same cpu context. Further for best results no more than a single map
1013 * for the do_redirect/do_flush pair should be used. This limitation is
1014 * because we only track one map and force a flush when the map changes.
1015 * This does not appear to be a real limitation for existing software.
1016 */
1017int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
1018 struct xdp_buff *xdp, struct bpf_prog *prog);
1019int xdp_do_redirect(struct net_device *dev,
1020 struct xdp_buff *xdp,
1021 struct bpf_prog *prog);
1022int xdp_do_redirect_frame(struct net_device *dev,
1023 struct xdp_buff *xdp,
1024 struct xdp_frame *xdpf,
1025 struct bpf_prog *prog);
1026void xdp_do_flush(void);
1027
1028void bpf_warn_invalid_xdp_action(struct net_device *dev, struct bpf_prog *prog, u32 act);
1029
1030#ifdef CONFIG_INET
1031struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
1032 struct bpf_prog *prog, struct sk_buff *skb,
1033 struct sock *migrating_sk,
1034 u32 hash);
1035#else
1036static inline struct sock *
1037bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
1038 struct bpf_prog *prog, struct sk_buff *skb,
1039 struct sock *migrating_sk,
1040 u32 hash)
1041{
1042 return NULL;
1043}
1044#endif
1045
1046#ifdef CONFIG_BPF_JIT
1047extern int bpf_jit_enable;
1048extern int bpf_jit_harden;
1049extern int bpf_jit_kallsyms;
1050extern long bpf_jit_limit;
1051extern long bpf_jit_limit_max;
1052
1053typedef void (*bpf_jit_fill_hole_t)(void *area, unsigned int size);
1054
1055void bpf_jit_fill_hole_with_zero(void *area, unsigned int size);
1056
1057struct bpf_binary_header *
1058bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
1059 unsigned int alignment,
1060 bpf_jit_fill_hole_t bpf_fill_ill_insns);
1061void bpf_jit_binary_free(struct bpf_binary_header *hdr);
1062u64 bpf_jit_alloc_exec_limit(void);
1063void *bpf_jit_alloc_exec(unsigned long size);
1064void bpf_jit_free_exec(void *addr);
1065void bpf_jit_free(struct bpf_prog *fp);
1066struct bpf_binary_header *
1067bpf_jit_binary_pack_hdr(const struct bpf_prog *fp);
1068
1069void *bpf_prog_pack_alloc(u32 size, bpf_jit_fill_hole_t bpf_fill_ill_insns);
1070void bpf_prog_pack_free(struct bpf_binary_header *hdr);
1071
1072static inline bool bpf_prog_kallsyms_verify_off(const struct bpf_prog *fp)
1073{
1074 return list_empty(head: &fp->aux->ksym.lnode) ||
1075 fp->aux->ksym.lnode.prev == LIST_POISON2;
1076}
1077
1078struct bpf_binary_header *
1079bpf_jit_binary_pack_alloc(unsigned int proglen, u8 **ro_image,
1080 unsigned int alignment,
1081 struct bpf_binary_header **rw_hdr,
1082 u8 **rw_image,
1083 bpf_jit_fill_hole_t bpf_fill_ill_insns);
1084int bpf_jit_binary_pack_finalize(struct bpf_prog *prog,
1085 struct bpf_binary_header *ro_header,
1086 struct bpf_binary_header *rw_header);
1087void bpf_jit_binary_pack_free(struct bpf_binary_header *ro_header,
1088 struct bpf_binary_header *rw_header);
1089
1090int bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
1091 struct bpf_jit_poke_descriptor *poke);
1092
1093int bpf_jit_get_func_addr(const struct bpf_prog *prog,
1094 const struct bpf_insn *insn, bool extra_pass,
1095 u64 *func_addr, bool *func_addr_fixed);
1096
1097struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *fp);
1098void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other);
1099
1100static inline void bpf_jit_dump(unsigned int flen, unsigned int proglen,
1101 u32 pass, void *image)
1102{
1103 pr_err("flen=%u proglen=%u pass=%u image=%pK from=%s pid=%d\n", flen,
1104 proglen, pass, image, current->comm, task_pid_nr(current));
1105
1106 if (image)
1107 print_hex_dump(KERN_ERR, prefix_str: "JIT code: ", prefix_type: DUMP_PREFIX_OFFSET,
1108 rowsize: 16, groupsize: 1, buf: image, len: proglen, ascii: false);
1109}
1110
1111static inline bool bpf_jit_is_ebpf(void)
1112{
1113# ifdef CONFIG_HAVE_EBPF_JIT
1114 return true;
1115# else
1116 return false;
1117# endif
1118}
1119
1120static inline bool ebpf_jit_enabled(void)
1121{
1122 return bpf_jit_enable && bpf_jit_is_ebpf();
1123}
1124
1125static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp)
1126{
1127 return fp->jited && bpf_jit_is_ebpf();
1128}
1129
1130static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog)
1131{
1132 /* These are the prerequisites, should someone ever have the
1133 * idea to call blinding outside of them, we make sure to
1134 * bail out.
1135 */
1136 if (!bpf_jit_is_ebpf())
1137 return false;
1138 if (!prog->jit_requested)
1139 return false;
1140 if (!bpf_jit_harden)
1141 return false;
1142 if (bpf_jit_harden == 1 && bpf_capable())
1143 return false;
1144
1145 return true;
1146}
1147
1148static inline bool bpf_jit_kallsyms_enabled(void)
1149{
1150 /* There are a couple of corner cases where kallsyms should
1151 * not be enabled f.e. on hardening.
1152 */
1153 if (bpf_jit_harden)
1154 return false;
1155 if (!bpf_jit_kallsyms)
1156 return false;
1157 if (bpf_jit_kallsyms == 1)
1158 return true;
1159
1160 return false;
1161}
1162
1163const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
1164 unsigned long *off, char *sym);
1165bool is_bpf_text_address(unsigned long addr);
1166int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
1167 char *sym);
1168struct bpf_prog *bpf_prog_ksym_find(unsigned long addr);
1169
1170static inline const char *
1171bpf_address_lookup(unsigned long addr, unsigned long *size,
1172 unsigned long *off, char **modname, char *sym)
1173{
1174 const char *ret = __bpf_address_lookup(addr, size, off, sym);
1175
1176 if (ret && modname)
1177 *modname = NULL;
1178 return ret;
1179}
1180
1181void bpf_prog_kallsyms_add(struct bpf_prog *fp);
1182void bpf_prog_kallsyms_del(struct bpf_prog *fp);
1183
1184#else /* CONFIG_BPF_JIT */
1185
1186static inline bool ebpf_jit_enabled(void)
1187{
1188 return false;
1189}
1190
1191static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog)
1192{
1193 return false;
1194}
1195
1196static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp)
1197{
1198 return false;
1199}
1200
1201static inline int
1202bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
1203 struct bpf_jit_poke_descriptor *poke)
1204{
1205 return -ENOTSUPP;
1206}
1207
1208static inline void bpf_jit_free(struct bpf_prog *fp)
1209{
1210 bpf_prog_unlock_free(fp);
1211}
1212
1213static inline bool bpf_jit_kallsyms_enabled(void)
1214{
1215 return false;
1216}
1217
1218static inline const char *
1219__bpf_address_lookup(unsigned long addr, unsigned long *size,
1220 unsigned long *off, char *sym)
1221{
1222 return NULL;
1223}
1224
1225static inline bool is_bpf_text_address(unsigned long addr)
1226{
1227 return false;
1228}
1229
1230static inline int bpf_get_kallsym(unsigned int symnum, unsigned long *value,
1231 char *type, char *sym)
1232{
1233 return -ERANGE;
1234}
1235
1236static inline struct bpf_prog *bpf_prog_ksym_find(unsigned long addr)
1237{
1238 return NULL;
1239}
1240
1241static inline const char *
1242bpf_address_lookup(unsigned long addr, unsigned long *size,
1243 unsigned long *off, char **modname, char *sym)
1244{
1245 return NULL;
1246}
1247
1248static inline void bpf_prog_kallsyms_add(struct bpf_prog *fp)
1249{
1250}
1251
1252static inline void bpf_prog_kallsyms_del(struct bpf_prog *fp)
1253{
1254}
1255
1256#endif /* CONFIG_BPF_JIT */
1257
1258void bpf_prog_kallsyms_del_all(struct bpf_prog *fp);
1259
1260#define BPF_ANC BIT(15)
1261
1262static inline bool bpf_needs_clear_a(const struct sock_filter *first)
1263{
1264 switch (first->code) {
1265 case BPF_RET | BPF_K:
1266 case BPF_LD | BPF_W | BPF_LEN:
1267 return false;
1268
1269 case BPF_LD | BPF_W | BPF_ABS:
1270 case BPF_LD | BPF_H | BPF_ABS:
1271 case BPF_LD | BPF_B | BPF_ABS:
1272 if (first->k == SKF_AD_OFF + SKF_AD_ALU_XOR_X)
1273 return true;
1274 return false;
1275
1276 default:
1277 return true;
1278 }
1279}
1280
1281static inline u16 bpf_anc_helper(const struct sock_filter *ftest)
1282{
1283 BUG_ON(ftest->code & BPF_ANC);
1284
1285 switch (ftest->code) {
1286 case BPF_LD | BPF_W | BPF_ABS:
1287 case BPF_LD | BPF_H | BPF_ABS:
1288 case BPF_LD | BPF_B | BPF_ABS:
1289#define BPF_ANCILLARY(CODE) case SKF_AD_OFF + SKF_AD_##CODE: \
1290 return BPF_ANC | SKF_AD_##CODE
1291 switch (ftest->k) {
1292 BPF_ANCILLARY(PROTOCOL);
1293 BPF_ANCILLARY(PKTTYPE);
1294 BPF_ANCILLARY(IFINDEX);
1295 BPF_ANCILLARY(NLATTR);
1296 BPF_ANCILLARY(NLATTR_NEST);
1297 BPF_ANCILLARY(MARK);
1298 BPF_ANCILLARY(QUEUE);
1299 BPF_ANCILLARY(HATYPE);
1300 BPF_ANCILLARY(RXHASH);
1301 BPF_ANCILLARY(CPU);
1302 BPF_ANCILLARY(ALU_XOR_X);
1303 BPF_ANCILLARY(VLAN_TAG);
1304 BPF_ANCILLARY(VLAN_TAG_PRESENT);
1305 BPF_ANCILLARY(PAY_OFFSET);
1306 BPF_ANCILLARY(RANDOM);
1307 BPF_ANCILLARY(VLAN_TPID);
1308 }
1309 fallthrough;
1310 default:
1311 return ftest->code;
1312 }
1313}
1314
1315void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb,
1316 int k, unsigned int size);
1317
1318static inline int bpf_tell_extensions(void)
1319{
1320 return SKF_AD_MAX;
1321}
1322
1323struct bpf_sock_addr_kern {
1324 struct sock *sk;
1325 struct sockaddr *uaddr;
1326 /* Temporary "register" to make indirect stores to nested structures
1327 * defined above. We need three registers to make such a store, but
1328 * only two (src and dst) are available at convert_ctx_access time
1329 */
1330 u64 tmp_reg;
1331 void *t_ctx; /* Attach type specific context. */
1332 u32 uaddrlen;
1333};
1334
1335struct bpf_sock_ops_kern {
1336 struct sock *sk;
1337 union {
1338 u32 args[4];
1339 u32 reply;
1340 u32 replylong[4];
1341 };
1342 struct sk_buff *syn_skb;
1343 struct sk_buff *skb;
1344 void *skb_data_end;
1345 u8 op;
1346 u8 is_fullsock;
1347 u8 remaining_opt_len;
1348 u64 temp; /* temp and everything after is not
1349 * initialized to 0 before calling
1350 * the BPF program. New fields that
1351 * should be initialized to 0 should
1352 * be inserted before temp.
1353 * temp is scratch storage used by
1354 * sock_ops_convert_ctx_access
1355 * as temporary storage of a register.
1356 */
1357};
1358
1359struct bpf_sysctl_kern {
1360 struct ctl_table_header *head;
1361 struct ctl_table *table;
1362 void *cur_val;
1363 size_t cur_len;
1364 void *new_val;
1365 size_t new_len;
1366 int new_updated;
1367 int write;
1368 loff_t *ppos;
1369 /* Temporary "register" for indirect stores to ppos. */
1370 u64 tmp_reg;
1371};
1372
1373#define BPF_SOCKOPT_KERN_BUF_SIZE 32
1374struct bpf_sockopt_buf {
1375 u8 data[BPF_SOCKOPT_KERN_BUF_SIZE];
1376};
1377
1378struct bpf_sockopt_kern {
1379 struct sock *sk;
1380 u8 *optval;
1381 u8 *optval_end;
1382 s32 level;
1383 s32 optname;
1384 s32 optlen;
1385 /* for retval in struct bpf_cg_run_ctx */
1386 struct task_struct *current_task;
1387 /* Temporary "register" for indirect stores to ppos. */
1388 u64 tmp_reg;
1389};
1390
1391int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len);
1392
1393struct bpf_sk_lookup_kern {
1394 u16 family;
1395 u16 protocol;
1396 __be16 sport;
1397 u16 dport;
1398 struct {
1399 __be32 saddr;
1400 __be32 daddr;
1401 } v4;
1402 struct {
1403 const struct in6_addr *saddr;
1404 const struct in6_addr *daddr;
1405 } v6;
1406 struct sock *selected_sk;
1407 u32 ingress_ifindex;
1408 bool no_reuseport;
1409};
1410
1411extern struct static_key_false bpf_sk_lookup_enabled;
1412
1413/* Runners for BPF_SK_LOOKUP programs to invoke on socket lookup.
1414 *
1415 * Allowed return values for a BPF SK_LOOKUP program are SK_PASS and
1416 * SK_DROP. Their meaning is as follows:
1417 *
1418 * SK_PASS && ctx.selected_sk != NULL: use selected_sk as lookup result
1419 * SK_PASS && ctx.selected_sk == NULL: continue to htable-based socket lookup
1420 * SK_DROP : terminate lookup with -ECONNREFUSED
1421 *
1422 * This macro aggregates return values and selected sockets from
1423 * multiple BPF programs according to following rules in order:
1424 *
1425 * 1. If any program returned SK_PASS and a non-NULL ctx.selected_sk,
1426 * macro result is SK_PASS and last ctx.selected_sk is used.
1427 * 2. If any program returned SK_DROP return value,
1428 * macro result is SK_DROP.
1429 * 3. Otherwise result is SK_PASS and ctx.selected_sk is NULL.
1430 *
1431 * Caller must ensure that the prog array is non-NULL, and that the
1432 * array as well as the programs it contains remain valid.
1433 */
1434#define BPF_PROG_SK_LOOKUP_RUN_ARRAY(array, ctx, func) \
1435 ({ \
1436 struct bpf_sk_lookup_kern *_ctx = &(ctx); \
1437 struct bpf_prog_array_item *_item; \
1438 struct sock *_selected_sk = NULL; \
1439 bool _no_reuseport = false; \
1440 struct bpf_prog *_prog; \
1441 bool _all_pass = true; \
1442 u32 _ret; \
1443 \
1444 migrate_disable(); \
1445 _item = &(array)->items[0]; \
1446 while ((_prog = READ_ONCE(_item->prog))) { \
1447 /* restore most recent selection */ \
1448 _ctx->selected_sk = _selected_sk; \
1449 _ctx->no_reuseport = _no_reuseport; \
1450 \
1451 _ret = func(_prog, _ctx); \
1452 if (_ret == SK_PASS && _ctx->selected_sk) { \
1453 /* remember last non-NULL socket */ \
1454 _selected_sk = _ctx->selected_sk; \
1455 _no_reuseport = _ctx->no_reuseport; \
1456 } else if (_ret == SK_DROP && _all_pass) { \
1457 _all_pass = false; \
1458 } \
1459 _item++; \
1460 } \
1461 _ctx->selected_sk = _selected_sk; \
1462 _ctx->no_reuseport = _no_reuseport; \
1463 migrate_enable(); \
1464 _all_pass || _selected_sk ? SK_PASS : SK_DROP; \
1465 })
1466
1467static inline bool bpf_sk_lookup_run_v4(struct net *net, int protocol,
1468 const __be32 saddr, const __be16 sport,
1469 const __be32 daddr, const u16 dport,
1470 const int ifindex, struct sock **psk)
1471{
1472 struct bpf_prog_array *run_array;
1473 struct sock *selected_sk = NULL;
1474 bool no_reuseport = false;
1475
1476 rcu_read_lock();
1477 run_array = rcu_dereference(net->bpf.run_array[NETNS_BPF_SK_LOOKUP]);
1478 if (run_array) {
1479 struct bpf_sk_lookup_kern ctx = {
1480 .family = AF_INET,
1481 .protocol = protocol,
1482 .v4.saddr = saddr,
1483 .v4.daddr = daddr,
1484 .sport = sport,
1485 .dport = dport,
1486 .ingress_ifindex = ifindex,
1487 };
1488 u32 act;
1489
1490 act = BPF_PROG_SK_LOOKUP_RUN_ARRAY(run_array, ctx, bpf_prog_run);
1491 if (act == SK_PASS) {
1492 selected_sk = ctx.selected_sk;
1493 no_reuseport = ctx.no_reuseport;
1494 } else {
1495 selected_sk = ERR_PTR(error: -ECONNREFUSED);
1496 }
1497 }
1498 rcu_read_unlock();
1499 *psk = selected_sk;
1500 return no_reuseport;
1501}
1502
1503#if IS_ENABLED(CONFIG_IPV6)
1504static inline bool bpf_sk_lookup_run_v6(struct net *net, int protocol,
1505 const struct in6_addr *saddr,
1506 const __be16 sport,
1507 const struct in6_addr *daddr,
1508 const u16 dport,
1509 const int ifindex, struct sock **psk)
1510{
1511 struct bpf_prog_array *run_array;
1512 struct sock *selected_sk = NULL;
1513 bool no_reuseport = false;
1514
1515 rcu_read_lock();
1516 run_array = rcu_dereference(net->bpf.run_array[NETNS_BPF_SK_LOOKUP]);
1517 if (run_array) {
1518 struct bpf_sk_lookup_kern ctx = {
1519 .family = AF_INET6,
1520 .protocol = protocol,
1521 .v6.saddr = saddr,
1522 .v6.daddr = daddr,
1523 .sport = sport,
1524 .dport = dport,
1525 .ingress_ifindex = ifindex,
1526 };
1527 u32 act;
1528
1529 act = BPF_PROG_SK_LOOKUP_RUN_ARRAY(run_array, ctx, bpf_prog_run);
1530 if (act == SK_PASS) {
1531 selected_sk = ctx.selected_sk;
1532 no_reuseport = ctx.no_reuseport;
1533 } else {
1534 selected_sk = ERR_PTR(error: -ECONNREFUSED);
1535 }
1536 }
1537 rcu_read_unlock();
1538 *psk = selected_sk;
1539 return no_reuseport;
1540}
1541#endif /* IS_ENABLED(CONFIG_IPV6) */
1542
1543static __always_inline long __bpf_xdp_redirect_map(struct bpf_map *map, u64 index,
1544 u64 flags, const u64 flag_mask,
1545 void *lookup_elem(struct bpf_map *map, u32 key))
1546{
1547 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
1548 const u64 action_mask = XDP_ABORTED | XDP_DROP | XDP_PASS | XDP_TX;
1549
1550 /* Lower bits of the flags are used as return code on lookup failure */
1551 if (unlikely(flags & ~(action_mask | flag_mask)))
1552 return XDP_ABORTED;
1553
1554 ri->tgt_value = lookup_elem(map, index);
1555 if (unlikely(!ri->tgt_value) && !(flags & BPF_F_BROADCAST)) {
1556 /* If the lookup fails we want to clear out the state in the
1557 * redirect_info struct completely, so that if an eBPF program
1558 * performs multiple lookups, the last one always takes
1559 * precedence.
1560 */
1561 ri->map_id = INT_MAX; /* Valid map id idr range: [1,INT_MAX[ */
1562 ri->map_type = BPF_MAP_TYPE_UNSPEC;
1563 return flags & action_mask;
1564 }
1565
1566 ri->tgt_index = index;
1567 ri->map_id = map->id;
1568 ri->map_type = map->map_type;
1569
1570 if (flags & BPF_F_BROADCAST) {
1571 WRITE_ONCE(ri->map, map);
1572 ri->flags = flags;
1573 } else {
1574 WRITE_ONCE(ri->map, NULL);
1575 ri->flags = 0;
1576 }
1577
1578 return XDP_REDIRECT;
1579}
1580
1581#ifdef CONFIG_NET
1582int __bpf_skb_load_bytes(const struct sk_buff *skb, u32 offset, void *to, u32 len);
1583int __bpf_skb_store_bytes(struct sk_buff *skb, u32 offset, const void *from,
1584 u32 len, u64 flags);
1585int __bpf_xdp_load_bytes(struct xdp_buff *xdp, u32 offset, void *buf, u32 len);
1586int __bpf_xdp_store_bytes(struct xdp_buff *xdp, u32 offset, void *buf, u32 len);
1587void *bpf_xdp_pointer(struct xdp_buff *xdp, u32 offset, u32 len);
1588void bpf_xdp_copy_buf(struct xdp_buff *xdp, unsigned long off,
1589 void *buf, unsigned long len, bool flush);
1590#else /* CONFIG_NET */
1591static inline int __bpf_skb_load_bytes(const struct sk_buff *skb, u32 offset,
1592 void *to, u32 len)
1593{
1594 return -EOPNOTSUPP;
1595}
1596
1597static inline int __bpf_skb_store_bytes(struct sk_buff *skb, u32 offset,
1598 const void *from, u32 len, u64 flags)
1599{
1600 return -EOPNOTSUPP;
1601}
1602
1603static inline int __bpf_xdp_load_bytes(struct xdp_buff *xdp, u32 offset,
1604 void *buf, u32 len)
1605{
1606 return -EOPNOTSUPP;
1607}
1608
1609static inline int __bpf_xdp_store_bytes(struct xdp_buff *xdp, u32 offset,
1610 void *buf, u32 len)
1611{
1612 return -EOPNOTSUPP;
1613}
1614
1615static inline void *bpf_xdp_pointer(struct xdp_buff *xdp, u32 offset, u32 len)
1616{
1617 return NULL;
1618}
1619
1620static inline void bpf_xdp_copy_buf(struct xdp_buff *xdp, unsigned long off, void *buf,
1621 unsigned long len, bool flush)
1622{
1623}
1624#endif /* CONFIG_NET */
1625
1626#endif /* __LINUX_FILTER_H__ */
1627

source code of linux/include/linux/filter.h