1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _LINUX_FIREWIRE_H
3#define _LINUX_FIREWIRE_H
4
5#include <linux/completion.h>
6#include <linux/device.h>
7#include <linux/dma-mapping.h>
8#include <linux/kernel.h>
9#include <linux/kref.h>
10#include <linux/list.h>
11#include <linux/mutex.h>
12#include <linux/spinlock.h>
13#include <linux/sysfs.h>
14#include <linux/timer.h>
15#include <linux/types.h>
16#include <linux/workqueue.h>
17
18#include <linux/atomic.h>
19#include <asm/byteorder.h>
20
21#define CSR_REGISTER_BASE 0xfffff0000000ULL
22
23/* register offsets are relative to CSR_REGISTER_BASE */
24#define CSR_STATE_CLEAR 0x0
25#define CSR_STATE_SET 0x4
26#define CSR_NODE_IDS 0x8
27#define CSR_RESET_START 0xc
28#define CSR_SPLIT_TIMEOUT_HI 0x18
29#define CSR_SPLIT_TIMEOUT_LO 0x1c
30#define CSR_CYCLE_TIME 0x200
31#define CSR_BUS_TIME 0x204
32#define CSR_BUSY_TIMEOUT 0x210
33#define CSR_PRIORITY_BUDGET 0x218
34#define CSR_BUS_MANAGER_ID 0x21c
35#define CSR_BANDWIDTH_AVAILABLE 0x220
36#define CSR_CHANNELS_AVAILABLE 0x224
37#define CSR_CHANNELS_AVAILABLE_HI 0x224
38#define CSR_CHANNELS_AVAILABLE_LO 0x228
39#define CSR_MAINT_UTILITY 0x230
40#define CSR_BROADCAST_CHANNEL 0x234
41#define CSR_CONFIG_ROM 0x400
42#define CSR_CONFIG_ROM_END 0x800
43#define CSR_OMPR 0x900
44#define CSR_OPCR(i) (0x904 + (i) * 4)
45#define CSR_IMPR 0x980
46#define CSR_IPCR(i) (0x984 + (i) * 4)
47#define CSR_FCP_COMMAND 0xB00
48#define CSR_FCP_RESPONSE 0xD00
49#define CSR_FCP_END 0xF00
50#define CSR_TOPOLOGY_MAP 0x1000
51#define CSR_TOPOLOGY_MAP_END 0x1400
52#define CSR_SPEED_MAP 0x2000
53#define CSR_SPEED_MAP_END 0x3000
54
55#define CSR_OFFSET 0x40
56#define CSR_LEAF 0x80
57#define CSR_DIRECTORY 0xc0
58
59#define CSR_DESCRIPTOR 0x01
60#define CSR_VENDOR 0x03
61#define CSR_HARDWARE_VERSION 0x04
62#define CSR_UNIT 0x11
63#define CSR_SPECIFIER_ID 0x12
64#define CSR_VERSION 0x13
65#define CSR_DEPENDENT_INFO 0x14
66#define CSR_MODEL 0x17
67#define CSR_DIRECTORY_ID 0x20
68
69struct fw_csr_iterator {
70 const u32 *p;
71 const u32 *end;
72};
73
74void fw_csr_iterator_init(struct fw_csr_iterator *ci, const u32 *p);
75int fw_csr_iterator_next(struct fw_csr_iterator *ci, int *key, int *value);
76int fw_csr_string(const u32 *directory, int key, char *buf, size_t size);
77
78extern struct bus_type fw_bus_type;
79
80struct fw_card_driver;
81struct fw_node;
82
83struct fw_card {
84 const struct fw_card_driver *driver;
85 struct device *device;
86 struct kref kref;
87 struct completion done;
88
89 int node_id;
90 int generation;
91 int current_tlabel;
92 u64 tlabel_mask;
93 struct list_head transaction_list;
94 u64 reset_jiffies;
95
96 u32 split_timeout_hi;
97 u32 split_timeout_lo;
98 unsigned int split_timeout_cycles;
99 unsigned int split_timeout_jiffies;
100
101 unsigned long long guid;
102 unsigned max_receive;
103 int link_speed;
104 int config_rom_generation;
105
106 spinlock_t lock; /* Take this lock when handling the lists in
107 * this struct. */
108 struct fw_node *local_node;
109 struct fw_node *root_node;
110 struct fw_node *irm_node;
111 u8 color; /* must be u8 to match the definition in struct fw_node */
112 int gap_count;
113 bool beta_repeaters_present;
114
115 int index;
116 struct list_head link;
117
118 struct list_head phy_receiver_list;
119
120 struct delayed_work br_work; /* bus reset job */
121 bool br_short;
122
123 struct delayed_work bm_work; /* bus manager job */
124 int bm_retries;
125 int bm_generation;
126 int bm_node_id;
127 bool bm_abdicate;
128
129 bool priority_budget_implemented; /* controller feature */
130 bool broadcast_channel_auto_allocated; /* controller feature */
131
132 bool broadcast_channel_allocated;
133 u32 broadcast_channel;
134 __be32 topology_map[(CSR_TOPOLOGY_MAP_END - CSR_TOPOLOGY_MAP) / 4];
135
136 __be32 maint_utility_register;
137};
138
139static inline struct fw_card *fw_card_get(struct fw_card *card)
140{
141 kref_get(&card->kref);
142
143 return card;
144}
145
146void fw_card_release(struct kref *kref);
147
148static inline void fw_card_put(struct fw_card *card)
149{
150 kref_put(&card->kref, fw_card_release);
151}
152
153struct fw_attribute_group {
154 struct attribute_group *groups[2];
155 struct attribute_group group;
156 struct attribute *attrs[13];
157};
158
159enum fw_device_state {
160 FW_DEVICE_INITIALIZING,
161 FW_DEVICE_RUNNING,
162 FW_DEVICE_GONE,
163 FW_DEVICE_SHUTDOWN,
164};
165
166/*
167 * Note, fw_device.generation always has to be read before fw_device.node_id.
168 * Use SMP memory barriers to ensure this. Otherwise requests will be sent
169 * to an outdated node_id if the generation was updated in the meantime due
170 * to a bus reset.
171 *
172 * Likewise, fw-core will take care to update .node_id before .generation so
173 * that whenever fw_device.generation is current WRT the actual bus generation,
174 * fw_device.node_id is guaranteed to be current too.
175 *
176 * The same applies to fw_device.card->node_id vs. fw_device.generation.
177 *
178 * fw_device.config_rom and fw_device.config_rom_length may be accessed during
179 * the lifetime of any fw_unit belonging to the fw_device, before device_del()
180 * was called on the last fw_unit. Alternatively, they may be accessed while
181 * holding fw_device_rwsem.
182 */
183struct fw_device {
184 atomic_t state;
185 struct fw_node *node;
186 int node_id;
187 int generation;
188 unsigned max_speed;
189 struct fw_card *card;
190 struct device device;
191
192 struct mutex client_list_mutex;
193 struct list_head client_list;
194
195 const u32 *config_rom;
196 size_t config_rom_length;
197 int config_rom_retries;
198 unsigned is_local:1;
199 unsigned max_rec:4;
200 unsigned cmc:1;
201 unsigned irmc:1;
202 unsigned bc_implemented:2;
203
204 work_func_t workfn;
205 struct delayed_work work;
206 struct fw_attribute_group attribute_group;
207};
208
209static inline struct fw_device *fw_device(struct device *dev)
210{
211 return container_of(dev, struct fw_device, device);
212}
213
214static inline int fw_device_is_shutdown(struct fw_device *device)
215{
216 return atomic_read(&device->state) == FW_DEVICE_SHUTDOWN;
217}
218
219int fw_device_enable_phys_dma(struct fw_device *device);
220
221/*
222 * fw_unit.directory must not be accessed after device_del(&fw_unit.device).
223 */
224struct fw_unit {
225 struct device device;
226 const u32 *directory;
227 struct fw_attribute_group attribute_group;
228};
229
230static inline struct fw_unit *fw_unit(struct device *dev)
231{
232 return container_of(dev, struct fw_unit, device);
233}
234
235static inline struct fw_unit *fw_unit_get(struct fw_unit *unit)
236{
237 get_device(&unit->device);
238
239 return unit;
240}
241
242static inline void fw_unit_put(struct fw_unit *unit)
243{
244 put_device(&unit->device);
245}
246
247static inline struct fw_device *fw_parent_device(struct fw_unit *unit)
248{
249 return fw_device(unit->device.parent);
250}
251
252struct ieee1394_device_id;
253
254struct fw_driver {
255 struct device_driver driver;
256 int (*probe)(struct fw_unit *unit, const struct ieee1394_device_id *id);
257 /* Called when the parent device sits through a bus reset. */
258 void (*update)(struct fw_unit *unit);
259 void (*remove)(struct fw_unit *unit);
260 const struct ieee1394_device_id *id_table;
261};
262
263struct fw_packet;
264struct fw_request;
265
266typedef void (*fw_packet_callback_t)(struct fw_packet *packet,
267 struct fw_card *card, int status);
268typedef void (*fw_transaction_callback_t)(struct fw_card *card, int rcode,
269 void *data, size_t length,
270 void *callback_data);
271/*
272 * This callback handles an inbound request subaction. It is called in
273 * RCU read-side context, therefore must not sleep.
274 *
275 * The callback should not initiate outbound request subactions directly.
276 * Otherwise there is a danger of recursion of inbound and outbound
277 * transactions from and to the local node.
278 *
279 * The callback is responsible that either fw_send_response() or kfree()
280 * is called on the @request, except for FCP registers for which the core
281 * takes care of that.
282 */
283typedef void (*fw_address_callback_t)(struct fw_card *card,
284 struct fw_request *request,
285 int tcode, int destination, int source,
286 int generation,
287 unsigned long long offset,
288 void *data, size_t length,
289 void *callback_data);
290
291struct fw_packet {
292 int speed;
293 int generation;
294 u32 header[4];
295 size_t header_length;
296 void *payload;
297 size_t payload_length;
298 dma_addr_t payload_bus;
299 bool payload_mapped;
300 u32 timestamp;
301
302 /*
303 * This callback is called when the packet transmission has completed.
304 * For successful transmission, the status code is the ack received
305 * from the destination. Otherwise it is one of the juju-specific
306 * rcodes: RCODE_SEND_ERROR, _CANCELLED, _BUSY, _GENERATION, _NO_ACK.
307 * The callback can be called from tasklet context and thus
308 * must never block.
309 */
310 fw_packet_callback_t callback;
311 int ack;
312 struct list_head link;
313 void *driver_data;
314};
315
316struct fw_transaction {
317 int node_id; /* The generation is implied; it is always the current. */
318 int tlabel;
319 struct list_head link;
320 struct fw_card *card;
321 bool is_split_transaction;
322 struct timer_list split_timeout_timer;
323
324 struct fw_packet packet;
325
326 /*
327 * The data passed to the callback is valid only during the
328 * callback.
329 */
330 fw_transaction_callback_t callback;
331 void *callback_data;
332};
333
334struct fw_address_handler {
335 u64 offset;
336 u64 length;
337 fw_address_callback_t address_callback;
338 void *callback_data;
339 struct list_head link;
340};
341
342struct fw_address_region {
343 u64 start;
344 u64 end;
345};
346
347extern const struct fw_address_region fw_high_memory_region;
348
349int fw_core_add_address_handler(struct fw_address_handler *handler,
350 const struct fw_address_region *region);
351void fw_core_remove_address_handler(struct fw_address_handler *handler);
352void fw_send_response(struct fw_card *card,
353 struct fw_request *request, int rcode);
354int fw_get_request_speed(struct fw_request *request);
355void fw_send_request(struct fw_card *card, struct fw_transaction *t,
356 int tcode, int destination_id, int generation, int speed,
357 unsigned long long offset, void *payload, size_t length,
358 fw_transaction_callback_t callback, void *callback_data);
359int fw_cancel_transaction(struct fw_card *card,
360 struct fw_transaction *transaction);
361int fw_run_transaction(struct fw_card *card, int tcode, int destination_id,
362 int generation, int speed, unsigned long long offset,
363 void *payload, size_t length);
364const char *fw_rcode_string(int rcode);
365
366static inline int fw_stream_packet_destination_id(int tag, int channel, int sy)
367{
368 return tag << 14 | channel << 8 | sy;
369}
370
371void fw_schedule_bus_reset(struct fw_card *card, bool delayed,
372 bool short_reset);
373
374struct fw_descriptor {
375 struct list_head link;
376 size_t length;
377 u32 immediate;
378 u32 key;
379 const u32 *data;
380};
381
382int fw_core_add_descriptor(struct fw_descriptor *desc);
383void fw_core_remove_descriptor(struct fw_descriptor *desc);
384
385/*
386 * The iso packet format allows for an immediate header/payload part
387 * stored in 'header' immediately after the packet info plus an
388 * indirect payload part that is pointer to by the 'payload' field.
389 * Applications can use one or the other or both to implement simple
390 * low-bandwidth streaming (e.g. audio) or more advanced
391 * scatter-gather streaming (e.g. assembling video frame automatically).
392 */
393struct fw_iso_packet {
394 u16 payload_length; /* Length of indirect payload */
395 u32 interrupt:1; /* Generate interrupt on this packet */
396 u32 skip:1; /* tx: Set to not send packet at all */
397 /* rx: Sync bit, wait for matching sy */
398 u32 tag:2; /* tx: Tag in packet header */
399 u32 sy:4; /* tx: Sy in packet header */
400 u32 header_length:8; /* Length of immediate header */
401 u32 header[0]; /* tx: Top of 1394 isoch. data_block */
402};
403
404#define FW_ISO_CONTEXT_TRANSMIT 0
405#define FW_ISO_CONTEXT_RECEIVE 1
406#define FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL 2
407
408#define FW_ISO_CONTEXT_MATCH_TAG0 1
409#define FW_ISO_CONTEXT_MATCH_TAG1 2
410#define FW_ISO_CONTEXT_MATCH_TAG2 4
411#define FW_ISO_CONTEXT_MATCH_TAG3 8
412#define FW_ISO_CONTEXT_MATCH_ALL_TAGS 15
413
414/*
415 * An iso buffer is just a set of pages mapped for DMA in the
416 * specified direction. Since the pages are to be used for DMA, they
417 * are not mapped into the kernel virtual address space. We store the
418 * DMA address in the page private. The helper function
419 * fw_iso_buffer_map() will map the pages into a given vma.
420 */
421struct fw_iso_buffer {
422 enum dma_data_direction direction;
423 struct page **pages;
424 int page_count;
425 int page_count_mapped;
426};
427
428int fw_iso_buffer_init(struct fw_iso_buffer *buffer, struct fw_card *card,
429 int page_count, enum dma_data_direction direction);
430void fw_iso_buffer_destroy(struct fw_iso_buffer *buffer, struct fw_card *card);
431size_t fw_iso_buffer_lookup(struct fw_iso_buffer *buffer, dma_addr_t completed);
432
433struct fw_iso_context;
434typedef void (*fw_iso_callback_t)(struct fw_iso_context *context,
435 u32 cycle, size_t header_length,
436 void *header, void *data);
437typedef void (*fw_iso_mc_callback_t)(struct fw_iso_context *context,
438 dma_addr_t completed, void *data);
439struct fw_iso_context {
440 struct fw_card *card;
441 int type;
442 int channel;
443 int speed;
444 bool drop_overflow_headers;
445 size_t header_size;
446 union {
447 fw_iso_callback_t sc;
448 fw_iso_mc_callback_t mc;
449 } callback;
450 void *callback_data;
451};
452
453struct fw_iso_context *fw_iso_context_create(struct fw_card *card,
454 int type, int channel, int speed, size_t header_size,
455 fw_iso_callback_t callback, void *callback_data);
456int fw_iso_context_set_channels(struct fw_iso_context *ctx, u64 *channels);
457int fw_iso_context_queue(struct fw_iso_context *ctx,
458 struct fw_iso_packet *packet,
459 struct fw_iso_buffer *buffer,
460 unsigned long payload);
461void fw_iso_context_queue_flush(struct fw_iso_context *ctx);
462int fw_iso_context_flush_completions(struct fw_iso_context *ctx);
463int fw_iso_context_start(struct fw_iso_context *ctx,
464 int cycle, int sync, int tags);
465int fw_iso_context_stop(struct fw_iso_context *ctx);
466void fw_iso_context_destroy(struct fw_iso_context *ctx);
467void fw_iso_resource_manage(struct fw_card *card, int generation,
468 u64 channels_mask, int *channel, int *bandwidth,
469 bool allocate);
470
471extern struct workqueue_struct *fw_workqueue;
472
473#endif /* _LINUX_FIREWIRE_H */
474