1/* SPDX-License-Identifier: GPL-2.0-only */
2/*
3 *
4 * Copyright (c) 2011, Microsoft Corporation.
5 *
6 * Authors:
7 * Haiyang Zhang <haiyangz@microsoft.com>
8 * Hank Janssen <hjanssen@microsoft.com>
9 * K. Y. Srinivasan <kys@microsoft.com>
10 */
11
12#ifndef _HYPERV_H
13#define _HYPERV_H
14
15#include <uapi/linux/hyperv.h>
16
17#include <linux/mm.h>
18#include <linux/types.h>
19#include <linux/scatterlist.h>
20#include <linux/list.h>
21#include <linux/timer.h>
22#include <linux/completion.h>
23#include <linux/device.h>
24#include <linux/mod_devicetable.h>
25#include <linux/interrupt.h>
26#include <linux/reciprocal_div.h>
27#include <asm/hyperv-tlfs.h>
28
29#define MAX_PAGE_BUFFER_COUNT 32
30#define MAX_MULTIPAGE_BUFFER_COUNT 32 /* 128K */
31
32#pragma pack(push, 1)
33
34/*
35 * Types for GPADL, decides is how GPADL header is created.
36 *
37 * It doesn't make much difference between BUFFER and RING if PAGE_SIZE is the
38 * same as HV_HYP_PAGE_SIZE.
39 *
40 * If PAGE_SIZE is bigger than HV_HYP_PAGE_SIZE, the headers of ring buffers
41 * will be of PAGE_SIZE, however, only the first HV_HYP_PAGE will be put
42 * into gpadl, therefore the number for HV_HYP_PAGE and the indexes of each
43 * HV_HYP_PAGE will be different between different types of GPADL, for example
44 * if PAGE_SIZE is 64K:
45 *
46 * BUFFER:
47 *
48 * gva: |-- 64k --|-- 64k --| ... |
49 * gpa: | 4k | 4k | ... | 4k | 4k | 4k | ... | 4k |
50 * index: 0 1 2 15 16 17 18 .. 31 32 ...
51 * | | ... | | | ... | ...
52 * v V V V V V
53 * gpadl: | 4k | 4k | ... | 4k | 4k | 4k | ... | 4k | ... |
54 * index: 0 1 2 ... 15 16 17 18 .. 31 32 ...
55 *
56 * RING:
57 *
58 * | header | data | header | data |
59 * gva: |-- 64k --|-- 64k --| ... |-- 64k --|-- 64k --| ... |
60 * gpa: | 4k | .. | 4k | 4k | ... | 4k | ... | 4k | .. | 4k | .. | ... |
61 * index: 0 1 16 17 18 31 ... n n+1 n+16 ... 2n
62 * | / / / | / /
63 * | / / / | / /
64 * | / / ... / ... | / ... /
65 * | / / / | / /
66 * | / / / | / /
67 * V V V V V V v
68 * gpadl: | 4k | 4k | ... | ... | 4k | 4k | ... |
69 * index: 0 1 2 ... 16 ... n-15 n-14 n-13 ... 2n-30
70 */
71enum hv_gpadl_type {
72 HV_GPADL_BUFFER,
73 HV_GPADL_RING
74};
75
76/* Single-page buffer */
77struct hv_page_buffer {
78 u32 len;
79 u32 offset;
80 u64 pfn;
81};
82
83/* Multiple-page buffer */
84struct hv_multipage_buffer {
85 /* Length and Offset determines the # of pfns in the array */
86 u32 len;
87 u32 offset;
88 u64 pfn_array[MAX_MULTIPAGE_BUFFER_COUNT];
89};
90
91/*
92 * Multiple-page buffer array; the pfn array is variable size:
93 * The number of entries in the PFN array is determined by
94 * "len" and "offset".
95 */
96struct hv_mpb_array {
97 /* Length and Offset determines the # of pfns in the array */
98 u32 len;
99 u32 offset;
100 u64 pfn_array[];
101};
102
103/* 0x18 includes the proprietary packet header */
104#define MAX_PAGE_BUFFER_PACKET (0x18 + \
105 (sizeof(struct hv_page_buffer) * \
106 MAX_PAGE_BUFFER_COUNT))
107#define MAX_MULTIPAGE_BUFFER_PACKET (0x18 + \
108 sizeof(struct hv_multipage_buffer))
109
110
111#pragma pack(pop)
112
113struct hv_ring_buffer {
114 /* Offset in bytes from the start of ring data below */
115 u32 write_index;
116
117 /* Offset in bytes from the start of ring data below */
118 u32 read_index;
119
120 u32 interrupt_mask;
121
122 /*
123 * WS2012/Win8 and later versions of Hyper-V implement interrupt
124 * driven flow management. The feature bit feat_pending_send_sz
125 * is set by the host on the host->guest ring buffer, and by the
126 * guest on the guest->host ring buffer.
127 *
128 * The meaning of the feature bit is a bit complex in that it has
129 * semantics that apply to both ring buffers. If the guest sets
130 * the feature bit in the guest->host ring buffer, the guest is
131 * telling the host that:
132 * 1) It will set the pending_send_sz field in the guest->host ring
133 * buffer when it is waiting for space to become available, and
134 * 2) It will read the pending_send_sz field in the host->guest
135 * ring buffer and interrupt the host when it frees enough space
136 *
137 * Similarly, if the host sets the feature bit in the host->guest
138 * ring buffer, the host is telling the guest that:
139 * 1) It will set the pending_send_sz field in the host->guest ring
140 * buffer when it is waiting for space to become available, and
141 * 2) It will read the pending_send_sz field in the guest->host
142 * ring buffer and interrupt the guest when it frees enough space
143 *
144 * If either the guest or host does not set the feature bit that it
145 * owns, that guest or host must do polling if it encounters a full
146 * ring buffer, and not signal the other end with an interrupt.
147 */
148 u32 pending_send_sz;
149 u32 reserved1[12];
150 union {
151 struct {
152 u32 feat_pending_send_sz:1;
153 };
154 u32 value;
155 } feature_bits;
156
157 /* Pad it to PAGE_SIZE so that data starts on page boundary */
158 u8 reserved2[PAGE_SIZE - 68];
159
160 /*
161 * Ring data starts here + RingDataStartOffset
162 * !!! DO NOT place any fields below this !!!
163 */
164 u8 buffer[];
165} __packed;
166
167/* Calculate the proper size of a ringbuffer, it must be page-aligned */
168#define VMBUS_RING_SIZE(payload_sz) PAGE_ALIGN(sizeof(struct hv_ring_buffer) + \
169 (payload_sz))
170
171struct hv_ring_buffer_info {
172 struct hv_ring_buffer *ring_buffer;
173 u32 ring_size; /* Include the shared header */
174 struct reciprocal_value ring_size_div10_reciprocal;
175 spinlock_t ring_lock;
176
177 u32 ring_datasize; /* < ring_size */
178 u32 priv_read_index;
179 /*
180 * The ring buffer mutex lock. This lock prevents the ring buffer from
181 * being freed while the ring buffer is being accessed.
182 */
183 struct mutex ring_buffer_mutex;
184
185 /* Buffer that holds a copy of an incoming host packet */
186 void *pkt_buffer;
187 u32 pkt_buffer_size;
188};
189
190
191static inline u32 hv_get_bytes_to_read(const struct hv_ring_buffer_info *rbi)
192{
193 u32 read_loc, write_loc, dsize, read;
194
195 dsize = rbi->ring_datasize;
196 read_loc = rbi->ring_buffer->read_index;
197 write_loc = READ_ONCE(rbi->ring_buffer->write_index);
198
199 read = write_loc >= read_loc ? (write_loc - read_loc) :
200 (dsize - read_loc) + write_loc;
201
202 return read;
203}
204
205static inline u32 hv_get_bytes_to_write(const struct hv_ring_buffer_info *rbi)
206{
207 u32 read_loc, write_loc, dsize, write;
208
209 dsize = rbi->ring_datasize;
210 read_loc = READ_ONCE(rbi->ring_buffer->read_index);
211 write_loc = rbi->ring_buffer->write_index;
212
213 write = write_loc >= read_loc ? dsize - (write_loc - read_loc) :
214 read_loc - write_loc;
215 return write;
216}
217
218static inline u32 hv_get_avail_to_write_percent(
219 const struct hv_ring_buffer_info *rbi)
220{
221 u32 avail_write = hv_get_bytes_to_write(rbi);
222
223 return reciprocal_divide(
224 a: (avail_write << 3) + (avail_write << 1),
225 R: rbi->ring_size_div10_reciprocal);
226}
227
228/*
229 * VMBUS version is 32 bit entity broken up into
230 * two 16 bit quantities: major_number. minor_number.
231 *
232 * 0 . 13 (Windows Server 2008)
233 * 1 . 1 (Windows 7, WS2008 R2)
234 * 2 . 4 (Windows 8, WS2012)
235 * 3 . 0 (Windows 8.1, WS2012 R2)
236 * 4 . 0 (Windows 10)
237 * 4 . 1 (Windows 10 RS3)
238 * 5 . 0 (Newer Windows 10)
239 * 5 . 1 (Windows 10 RS4)
240 * 5 . 2 (Windows Server 2019, RS5)
241 * 5 . 3 (Windows Server 2022)
242 *
243 * The WS2008 and WIN7 versions are listed here for
244 * completeness but are no longer supported in the
245 * Linux kernel.
246 */
247
248#define VERSION_WS2008 ((0 << 16) | (13))
249#define VERSION_WIN7 ((1 << 16) | (1))
250#define VERSION_WIN8 ((2 << 16) | (4))
251#define VERSION_WIN8_1 ((3 << 16) | (0))
252#define VERSION_WIN10 ((4 << 16) | (0))
253#define VERSION_WIN10_V4_1 ((4 << 16) | (1))
254#define VERSION_WIN10_V5 ((5 << 16) | (0))
255#define VERSION_WIN10_V5_1 ((5 << 16) | (1))
256#define VERSION_WIN10_V5_2 ((5 << 16) | (2))
257#define VERSION_WIN10_V5_3 ((5 << 16) | (3))
258
259/* Make maximum size of pipe payload of 16K */
260#define MAX_PIPE_DATA_PAYLOAD (sizeof(u8) * 16384)
261
262/* Define PipeMode values. */
263#define VMBUS_PIPE_TYPE_BYTE 0x00000000
264#define VMBUS_PIPE_TYPE_MESSAGE 0x00000004
265
266/* The size of the user defined data buffer for non-pipe offers. */
267#define MAX_USER_DEFINED_BYTES 120
268
269/* The size of the user defined data buffer for pipe offers. */
270#define MAX_PIPE_USER_DEFINED_BYTES 116
271
272/*
273 * At the center of the Channel Management library is the Channel Offer. This
274 * struct contains the fundamental information about an offer.
275 */
276struct vmbus_channel_offer {
277 guid_t if_type;
278 guid_t if_instance;
279
280 /*
281 * These two fields are not currently used.
282 */
283 u64 reserved1;
284 u64 reserved2;
285
286 u16 chn_flags;
287 u16 mmio_megabytes; /* in bytes * 1024 * 1024 */
288
289 union {
290 /* Non-pipes: The user has MAX_USER_DEFINED_BYTES bytes. */
291 struct {
292 unsigned char user_def[MAX_USER_DEFINED_BYTES];
293 } std;
294
295 /*
296 * Pipes:
297 * The following structure is an integrated pipe protocol, which
298 * is implemented on top of standard user-defined data. Pipe
299 * clients have MAX_PIPE_USER_DEFINED_BYTES left for their own
300 * use.
301 */
302 struct {
303 u32 pipe_mode;
304 unsigned char user_def[MAX_PIPE_USER_DEFINED_BYTES];
305 } pipe;
306 } u;
307 /*
308 * The sub_channel_index is defined in Win8: a value of zero means a
309 * primary channel and a value of non-zero means a sub-channel.
310 *
311 * Before Win8, the field is reserved, meaning it's always zero.
312 */
313 u16 sub_channel_index;
314 u16 reserved3;
315} __packed;
316
317/* Server Flags */
318#define VMBUS_CHANNEL_ENUMERATE_DEVICE_INTERFACE 1
319#define VMBUS_CHANNEL_SERVER_SUPPORTS_TRANSFER_PAGES 2
320#define VMBUS_CHANNEL_SERVER_SUPPORTS_GPADLS 4
321#define VMBUS_CHANNEL_NAMED_PIPE_MODE 0x10
322#define VMBUS_CHANNEL_LOOPBACK_OFFER 0x100
323#define VMBUS_CHANNEL_PARENT_OFFER 0x200
324#define VMBUS_CHANNEL_REQUEST_MONITORED_NOTIFICATION 0x400
325#define VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER 0x2000
326
327struct vmpacket_descriptor {
328 u16 type;
329 u16 offset8;
330 u16 len8;
331 u16 flags;
332 u64 trans_id;
333} __packed;
334
335struct vmpacket_header {
336 u32 prev_pkt_start_offset;
337 struct vmpacket_descriptor descriptor;
338} __packed;
339
340struct vmtransfer_page_range {
341 u32 byte_count;
342 u32 byte_offset;
343} __packed;
344
345struct vmtransfer_page_packet_header {
346 struct vmpacket_descriptor d;
347 u16 xfer_pageset_id;
348 u8 sender_owns_set;
349 u8 reserved;
350 u32 range_cnt;
351 struct vmtransfer_page_range ranges[];
352} __packed;
353
354struct vmgpadl_packet_header {
355 struct vmpacket_descriptor d;
356 u32 gpadl;
357 u32 reserved;
358} __packed;
359
360struct vmadd_remove_transfer_page_set {
361 struct vmpacket_descriptor d;
362 u32 gpadl;
363 u16 xfer_pageset_id;
364 u16 reserved;
365} __packed;
366
367/*
368 * This structure defines a range in guest physical space that can be made to
369 * look virtually contiguous.
370 */
371struct gpa_range {
372 u32 byte_count;
373 u32 byte_offset;
374 u64 pfn_array[];
375};
376
377/*
378 * This is the format for an Establish Gpadl packet, which contains a handle by
379 * which this GPADL will be known and a set of GPA ranges associated with it.
380 * This can be converted to a MDL by the guest OS. If there are multiple GPA
381 * ranges, then the resulting MDL will be "chained," representing multiple VA
382 * ranges.
383 */
384struct vmestablish_gpadl {
385 struct vmpacket_descriptor d;
386 u32 gpadl;
387 u32 range_cnt;
388 struct gpa_range range[1];
389} __packed;
390
391/*
392 * This is the format for a Teardown Gpadl packet, which indicates that the
393 * GPADL handle in the Establish Gpadl packet will never be referenced again.
394 */
395struct vmteardown_gpadl {
396 struct vmpacket_descriptor d;
397 u32 gpadl;
398 u32 reserved; /* for alignment to a 8-byte boundary */
399} __packed;
400
401/*
402 * This is the format for a GPA-Direct packet, which contains a set of GPA
403 * ranges, in addition to commands and/or data.
404 */
405struct vmdata_gpa_direct {
406 struct vmpacket_descriptor d;
407 u32 reserved;
408 u32 range_cnt;
409 struct gpa_range range[1];
410} __packed;
411
412/* This is the format for a Additional Data Packet. */
413struct vmadditional_data {
414 struct vmpacket_descriptor d;
415 u64 total_bytes;
416 u32 offset;
417 u32 byte_cnt;
418 unsigned char data[1];
419} __packed;
420
421union vmpacket_largest_possible_header {
422 struct vmpacket_descriptor simple_hdr;
423 struct vmtransfer_page_packet_header xfer_page_hdr;
424 struct vmgpadl_packet_header gpadl_hdr;
425 struct vmadd_remove_transfer_page_set add_rm_xfer_page_hdr;
426 struct vmestablish_gpadl establish_gpadl_hdr;
427 struct vmteardown_gpadl teardown_gpadl_hdr;
428 struct vmdata_gpa_direct data_gpa_direct_hdr;
429};
430
431#define VMPACKET_DATA_START_ADDRESS(__packet) \
432 (void *)(((unsigned char *)__packet) + \
433 ((struct vmpacket_descriptor)__packet)->offset8 * 8)
434
435#define VMPACKET_DATA_LENGTH(__packet) \
436 ((((struct vmpacket_descriptor)__packet)->len8 - \
437 ((struct vmpacket_descriptor)__packet)->offset8) * 8)
438
439#define VMPACKET_TRANSFER_MODE(__packet) \
440 (((struct IMPACT)__packet)->type)
441
442enum vmbus_packet_type {
443 VM_PKT_INVALID = 0x0,
444 VM_PKT_SYNCH = 0x1,
445 VM_PKT_ADD_XFER_PAGESET = 0x2,
446 VM_PKT_RM_XFER_PAGESET = 0x3,
447 VM_PKT_ESTABLISH_GPADL = 0x4,
448 VM_PKT_TEARDOWN_GPADL = 0x5,
449 VM_PKT_DATA_INBAND = 0x6,
450 VM_PKT_DATA_USING_XFER_PAGES = 0x7,
451 VM_PKT_DATA_USING_GPADL = 0x8,
452 VM_PKT_DATA_USING_GPA_DIRECT = 0x9,
453 VM_PKT_CANCEL_REQUEST = 0xa,
454 VM_PKT_COMP = 0xb,
455 VM_PKT_DATA_USING_ADDITIONAL_PKT = 0xc,
456 VM_PKT_ADDITIONAL_DATA = 0xd
457};
458
459#define VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED 1
460
461
462/* Version 1 messages */
463enum vmbus_channel_message_type {
464 CHANNELMSG_INVALID = 0,
465 CHANNELMSG_OFFERCHANNEL = 1,
466 CHANNELMSG_RESCIND_CHANNELOFFER = 2,
467 CHANNELMSG_REQUESTOFFERS = 3,
468 CHANNELMSG_ALLOFFERS_DELIVERED = 4,
469 CHANNELMSG_OPENCHANNEL = 5,
470 CHANNELMSG_OPENCHANNEL_RESULT = 6,
471 CHANNELMSG_CLOSECHANNEL = 7,
472 CHANNELMSG_GPADL_HEADER = 8,
473 CHANNELMSG_GPADL_BODY = 9,
474 CHANNELMSG_GPADL_CREATED = 10,
475 CHANNELMSG_GPADL_TEARDOWN = 11,
476 CHANNELMSG_GPADL_TORNDOWN = 12,
477 CHANNELMSG_RELID_RELEASED = 13,
478 CHANNELMSG_INITIATE_CONTACT = 14,
479 CHANNELMSG_VERSION_RESPONSE = 15,
480 CHANNELMSG_UNLOAD = 16,
481 CHANNELMSG_UNLOAD_RESPONSE = 17,
482 CHANNELMSG_18 = 18,
483 CHANNELMSG_19 = 19,
484 CHANNELMSG_20 = 20,
485 CHANNELMSG_TL_CONNECT_REQUEST = 21,
486 CHANNELMSG_MODIFYCHANNEL = 22,
487 CHANNELMSG_TL_CONNECT_RESULT = 23,
488 CHANNELMSG_MODIFYCHANNEL_RESPONSE = 24,
489 CHANNELMSG_COUNT
490};
491
492/* Hyper-V supports about 2048 channels, and the RELIDs start with 1. */
493#define INVALID_RELID U32_MAX
494
495struct vmbus_channel_message_header {
496 enum vmbus_channel_message_type msgtype;
497 u32 padding;
498} __packed;
499
500/* Query VMBus Version parameters */
501struct vmbus_channel_query_vmbus_version {
502 struct vmbus_channel_message_header header;
503 u32 version;
504} __packed;
505
506/* VMBus Version Supported parameters */
507struct vmbus_channel_version_supported {
508 struct vmbus_channel_message_header header;
509 u8 version_supported;
510} __packed;
511
512/* Offer Channel parameters */
513struct vmbus_channel_offer_channel {
514 struct vmbus_channel_message_header header;
515 struct vmbus_channel_offer offer;
516 u32 child_relid;
517 u8 monitorid;
518 /*
519 * win7 and beyond splits this field into a bit field.
520 */
521 u8 monitor_allocated:1;
522 u8 reserved:7;
523 /*
524 * These are new fields added in win7 and later.
525 * Do not access these fields without checking the
526 * negotiated protocol.
527 *
528 * If "is_dedicated_interrupt" is set, we must not set the
529 * associated bit in the channel bitmap while sending the
530 * interrupt to the host.
531 *
532 * connection_id is to be used in signaling the host.
533 */
534 u16 is_dedicated_interrupt:1;
535 u16 reserved1:15;
536 u32 connection_id;
537} __packed;
538
539/* Rescind Offer parameters */
540struct vmbus_channel_rescind_offer {
541 struct vmbus_channel_message_header header;
542 u32 child_relid;
543} __packed;
544
545/*
546 * Request Offer -- no parameters, SynIC message contains the partition ID
547 * Set Snoop -- no parameters, SynIC message contains the partition ID
548 * Clear Snoop -- no parameters, SynIC message contains the partition ID
549 * All Offers Delivered -- no parameters, SynIC message contains the partition
550 * ID
551 * Flush Client -- no parameters, SynIC message contains the partition ID
552 */
553
554/* Open Channel parameters */
555struct vmbus_channel_open_channel {
556 struct vmbus_channel_message_header header;
557
558 /* Identifies the specific VMBus channel that is being opened. */
559 u32 child_relid;
560
561 /* ID making a particular open request at a channel offer unique. */
562 u32 openid;
563
564 /* GPADL for the channel's ring buffer. */
565 u32 ringbuffer_gpadlhandle;
566
567 /*
568 * Starting with win8, this field will be used to specify
569 * the target virtual processor on which to deliver the interrupt for
570 * the host to guest communication.
571 * Prior to win8, incoming channel interrupts would only
572 * be delivered on cpu 0. Setting this value to 0 would
573 * preserve the earlier behavior.
574 */
575 u32 target_vp;
576
577 /*
578 * The upstream ring buffer begins at offset zero in the memory
579 * described by RingBufferGpadlHandle. The downstream ring buffer
580 * follows it at this offset (in pages).
581 */
582 u32 downstream_ringbuffer_pageoffset;
583
584 /* User-specific data to be passed along to the server endpoint. */
585 unsigned char userdata[MAX_USER_DEFINED_BYTES];
586} __packed;
587
588/* Open Channel Result parameters */
589struct vmbus_channel_open_result {
590 struct vmbus_channel_message_header header;
591 u32 child_relid;
592 u32 openid;
593 u32 status;
594} __packed;
595
596/* Modify Channel Result parameters */
597struct vmbus_channel_modifychannel_response {
598 struct vmbus_channel_message_header header;
599 u32 child_relid;
600 u32 status;
601} __packed;
602
603/* Close channel parameters; */
604struct vmbus_channel_close_channel {
605 struct vmbus_channel_message_header header;
606 u32 child_relid;
607} __packed;
608
609/* Channel Message GPADL */
610#define GPADL_TYPE_RING_BUFFER 1
611#define GPADL_TYPE_SERVER_SAVE_AREA 2
612#define GPADL_TYPE_TRANSACTION 8
613
614/*
615 * The number of PFNs in a GPADL message is defined by the number of
616 * pages that would be spanned by ByteCount and ByteOffset. If the
617 * implied number of PFNs won't fit in this packet, there will be a
618 * follow-up packet that contains more.
619 */
620struct vmbus_channel_gpadl_header {
621 struct vmbus_channel_message_header header;
622 u32 child_relid;
623 u32 gpadl;
624 u16 range_buflen;
625 u16 rangecount;
626 struct gpa_range range[];
627} __packed;
628
629/* This is the followup packet that contains more PFNs. */
630struct vmbus_channel_gpadl_body {
631 struct vmbus_channel_message_header header;
632 u32 msgnumber;
633 u32 gpadl;
634 u64 pfn[];
635} __packed;
636
637struct vmbus_channel_gpadl_created {
638 struct vmbus_channel_message_header header;
639 u32 child_relid;
640 u32 gpadl;
641 u32 creation_status;
642} __packed;
643
644struct vmbus_channel_gpadl_teardown {
645 struct vmbus_channel_message_header header;
646 u32 child_relid;
647 u32 gpadl;
648} __packed;
649
650struct vmbus_channel_gpadl_torndown {
651 struct vmbus_channel_message_header header;
652 u32 gpadl;
653} __packed;
654
655struct vmbus_channel_relid_released {
656 struct vmbus_channel_message_header header;
657 u32 child_relid;
658} __packed;
659
660struct vmbus_channel_initiate_contact {
661 struct vmbus_channel_message_header header;
662 u32 vmbus_version_requested;
663 u32 target_vcpu; /* The VCPU the host should respond to */
664 union {
665 u64 interrupt_page;
666 struct {
667 u8 msg_sint;
668 u8 msg_vtl;
669 u8 reserved[6];
670 };
671 };
672 u64 monitor_page1;
673 u64 monitor_page2;
674} __packed;
675
676/* Hyper-V socket: guest's connect()-ing to host */
677struct vmbus_channel_tl_connect_request {
678 struct vmbus_channel_message_header header;
679 guid_t guest_endpoint_id;
680 guid_t host_service_id;
681} __packed;
682
683/* Modify Channel parameters, cf. vmbus_send_modifychannel() */
684struct vmbus_channel_modifychannel {
685 struct vmbus_channel_message_header header;
686 u32 child_relid;
687 u32 target_vp;
688} __packed;
689
690struct vmbus_channel_version_response {
691 struct vmbus_channel_message_header header;
692 u8 version_supported;
693
694 u8 connection_state;
695 u16 padding;
696
697 /*
698 * On new hosts that support VMBus protocol 5.0, we must use
699 * VMBUS_MESSAGE_CONNECTION_ID_4 for the Initiate Contact Message,
700 * and for subsequent messages, we must use the Message Connection ID
701 * field in the host-returned Version Response Message.
702 *
703 * On old hosts, we should always use VMBUS_MESSAGE_CONNECTION_ID (1).
704 */
705 u32 msg_conn_id;
706} __packed;
707
708enum vmbus_channel_state {
709 CHANNEL_OFFER_STATE,
710 CHANNEL_OPENING_STATE,
711 CHANNEL_OPEN_STATE,
712 CHANNEL_OPENED_STATE,
713};
714
715/*
716 * Represents each channel msg on the vmbus connection This is a
717 * variable-size data structure depending on the msg type itself
718 */
719struct vmbus_channel_msginfo {
720 /* Bookkeeping stuff */
721 struct list_head msglistentry;
722
723 /* So far, this is only used to handle gpadl body message */
724 struct list_head submsglist;
725
726 /* Synchronize the request/response if needed */
727 struct completion waitevent;
728 struct vmbus_channel *waiting_channel;
729 union {
730 struct vmbus_channel_version_supported version_supported;
731 struct vmbus_channel_open_result open_result;
732 struct vmbus_channel_gpadl_torndown gpadl_torndown;
733 struct vmbus_channel_gpadl_created gpadl_created;
734 struct vmbus_channel_version_response version_response;
735 struct vmbus_channel_modifychannel_response modify_response;
736 } response;
737
738 u32 msgsize;
739 /*
740 * The channel message that goes out on the "wire".
741 * It will contain at minimum the VMBUS_CHANNEL_MESSAGE_HEADER header
742 */
743 unsigned char msg[];
744};
745
746struct vmbus_close_msg {
747 struct vmbus_channel_msginfo info;
748 struct vmbus_channel_close_channel msg;
749};
750
751/* Define connection identifier type. */
752union hv_connection_id {
753 u32 asu32;
754 struct {
755 u32 id:24;
756 u32 reserved:8;
757 } u;
758};
759
760enum vmbus_device_type {
761 HV_IDE = 0,
762 HV_SCSI,
763 HV_FC,
764 HV_NIC,
765 HV_ND,
766 HV_PCIE,
767 HV_FB,
768 HV_KBD,
769 HV_MOUSE,
770 HV_KVP,
771 HV_TS,
772 HV_HB,
773 HV_SHUTDOWN,
774 HV_FCOPY,
775 HV_BACKUP,
776 HV_DM,
777 HV_UNKNOWN,
778};
779
780/*
781 * Provides request ids for VMBus. Encapsulates guest memory
782 * addresses and stores the next available slot in req_arr
783 * to generate new ids in constant time.
784 */
785struct vmbus_requestor {
786 u64 *req_arr;
787 unsigned long *req_bitmap; /* is a given slot available? */
788 u32 size;
789 u64 next_request_id;
790 spinlock_t req_lock; /* provides atomicity */
791};
792
793#define VMBUS_NO_RQSTOR U64_MAX
794#define VMBUS_RQST_ERROR (U64_MAX - 1)
795#define VMBUS_RQST_ADDR_ANY U64_MAX
796/* NetVSC-specific */
797#define VMBUS_RQST_ID_NO_RESPONSE (U64_MAX - 2)
798/* StorVSC-specific */
799#define VMBUS_RQST_INIT (U64_MAX - 2)
800#define VMBUS_RQST_RESET (U64_MAX - 3)
801
802struct vmbus_device {
803 u16 dev_type;
804 guid_t guid;
805 bool perf_device;
806 bool allowed_in_isolated;
807};
808
809#define VMBUS_DEFAULT_MAX_PKT_SIZE 4096
810
811struct vmbus_gpadl {
812 u32 gpadl_handle;
813 u32 size;
814 void *buffer;
815};
816
817struct vmbus_channel {
818 struct list_head listentry;
819
820 struct hv_device *device_obj;
821
822 enum vmbus_channel_state state;
823
824 struct vmbus_channel_offer_channel offermsg;
825 /*
826 * These are based on the OfferMsg.MonitorId.
827 * Save it here for easy access.
828 */
829 u8 monitor_grp;
830 u8 monitor_bit;
831
832 bool rescind; /* got rescind msg */
833 bool rescind_ref; /* got rescind msg, got channel reference */
834 struct completion rescind_event;
835
836 struct vmbus_gpadl ringbuffer_gpadlhandle;
837
838 /* Allocated memory for ring buffer */
839 struct page *ringbuffer_page;
840 u32 ringbuffer_pagecount;
841 u32 ringbuffer_send_offset;
842 struct hv_ring_buffer_info outbound; /* send to parent */
843 struct hv_ring_buffer_info inbound; /* receive from parent */
844
845 struct vmbus_close_msg close_msg;
846
847 /* Statistics */
848 u64 interrupts; /* Host to Guest interrupts */
849 u64 sig_events; /* Guest to Host events */
850
851 /*
852 * Guest to host interrupts caused by the outbound ring buffer changing
853 * from empty to not empty.
854 */
855 u64 intr_out_empty;
856
857 /*
858 * Indicates that a full outbound ring buffer was encountered. The flag
859 * is set to true when a full outbound ring buffer is encountered and
860 * set to false when a write to the outbound ring buffer is completed.
861 */
862 bool out_full_flag;
863
864 /* Channel callback's invoked in softirq context */
865 struct tasklet_struct callback_event;
866 void (*onchannel_callback)(void *context);
867 void *channel_callback_context;
868
869 void (*change_target_cpu_callback)(struct vmbus_channel *channel,
870 u32 old, u32 new);
871
872 /*
873 * Synchronize channel scheduling and channel removal; see the inline
874 * comments in vmbus_chan_sched() and vmbus_reset_channel_cb().
875 */
876 spinlock_t sched_lock;
877
878 /*
879 * A channel can be marked for one of three modes of reading:
880 * BATCHED - callback called from taslket and should read
881 * channel until empty. Interrupts from the host
882 * are masked while read is in process (default).
883 * DIRECT - callback called from tasklet (softirq).
884 * ISR - callback called in interrupt context and must
885 * invoke its own deferred processing.
886 * Host interrupts are disabled and must be re-enabled
887 * when ring is empty.
888 */
889 enum hv_callback_mode {
890 HV_CALL_BATCHED,
891 HV_CALL_DIRECT,
892 HV_CALL_ISR
893 } callback_mode;
894
895 bool is_dedicated_interrupt;
896 u64 sig_event;
897
898 /*
899 * Starting with win8, this field will be used to specify the
900 * target CPU on which to deliver the interrupt for the host
901 * to guest communication.
902 *
903 * Prior to win8, incoming channel interrupts would only be
904 * delivered on CPU 0. Setting this value to 0 would preserve
905 * the earlier behavior.
906 */
907 u32 target_cpu;
908 /*
909 * Support for sub-channels. For high performance devices,
910 * it will be useful to have multiple sub-channels to support
911 * a scalable communication infrastructure with the host.
912 * The support for sub-channels is implemented as an extension
913 * to the current infrastructure.
914 * The initial offer is considered the primary channel and this
915 * offer message will indicate if the host supports sub-channels.
916 * The guest is free to ask for sub-channels to be offered and can
917 * open these sub-channels as a normal "primary" channel. However,
918 * all sub-channels will have the same type and instance guids as the
919 * primary channel. Requests sent on a given channel will result in a
920 * response on the same channel.
921 */
922
923 /*
924 * Sub-channel creation callback. This callback will be called in
925 * process context when a sub-channel offer is received from the host.
926 * The guest can open the sub-channel in the context of this callback.
927 */
928 void (*sc_creation_callback)(struct vmbus_channel *new_sc);
929
930 /*
931 * Channel rescind callback. Some channels (the hvsock ones), need to
932 * register a callback which is invoked in vmbus_onoffer_rescind().
933 */
934 void (*chn_rescind_callback)(struct vmbus_channel *channel);
935
936 /*
937 * All Sub-channels of a primary channel are linked here.
938 */
939 struct list_head sc_list;
940 /*
941 * The primary channel this sub-channel belongs to.
942 * This will be NULL for the primary channel.
943 */
944 struct vmbus_channel *primary_channel;
945 /*
946 * Support per-channel state for use by vmbus drivers.
947 */
948 void *per_channel_state;
949
950 /*
951 * Defer freeing channel until after all cpu's have
952 * gone through grace period.
953 */
954 struct rcu_head rcu;
955
956 /*
957 * For sysfs per-channel properties.
958 */
959 struct kobject kobj;
960
961 /*
962 * For performance critical channels (storage, networking
963 * etc,), Hyper-V has a mechanism to enhance the throughput
964 * at the expense of latency:
965 * When the host is to be signaled, we just set a bit in a shared page
966 * and this bit will be inspected by the hypervisor within a certain
967 * window and if the bit is set, the host will be signaled. The window
968 * of time is the monitor latency - currently around 100 usecs. This
969 * mechanism improves throughput by:
970 *
971 * A) Making the host more efficient - each time it wakes up,
972 * potentially it will process more number of packets. The
973 * monitor latency allows a batch to build up.
974 * B) By deferring the hypercall to signal, we will also minimize
975 * the interrupts.
976 *
977 * Clearly, these optimizations improve throughput at the expense of
978 * latency. Furthermore, since the channel is shared for both
979 * control and data messages, control messages currently suffer
980 * unnecessary latency adversely impacting performance and boot
981 * time. To fix this issue, permit tagging the channel as being
982 * in "low latency" mode. In this mode, we will bypass the monitor
983 * mechanism.
984 */
985 bool low_latency;
986
987 bool probe_done;
988
989 /*
990 * Cache the device ID here for easy access; this is useful, in
991 * particular, in situations where the channel's device_obj has
992 * not been allocated/initialized yet.
993 */
994 u16 device_id;
995
996 /*
997 * We must offload the handling of the primary/sub channels
998 * from the single-threaded vmbus_connection.work_queue to
999 * two different workqueue, otherwise we can block
1000 * vmbus_connection.work_queue and hang: see vmbus_process_offer().
1001 */
1002 struct work_struct add_channel_work;
1003
1004 /*
1005 * Guest to host interrupts caused by the inbound ring buffer changing
1006 * from full to not full while a packet is waiting.
1007 */
1008 u64 intr_in_full;
1009
1010 /*
1011 * The total number of write operations that encountered a full
1012 * outbound ring buffer.
1013 */
1014 u64 out_full_total;
1015
1016 /*
1017 * The number of write operations that were the first to encounter a
1018 * full outbound ring buffer.
1019 */
1020 u64 out_full_first;
1021
1022 /* enabling/disabling fuzz testing on the channel (default is false)*/
1023 bool fuzz_testing_state;
1024
1025 /*
1026 * Interrupt delay will delay the guest from emptying the ring buffer
1027 * for a specific amount of time. The delay is in microseconds and will
1028 * be between 1 to a maximum of 1000, its default is 0 (no delay).
1029 * The Message delay will delay guest reading on a per message basis
1030 * in microseconds between 1 to 1000 with the default being 0
1031 * (no delay).
1032 */
1033 u32 fuzz_testing_interrupt_delay;
1034 u32 fuzz_testing_message_delay;
1035
1036 /* callback to generate a request ID from a request address */
1037 u64 (*next_request_id_callback)(struct vmbus_channel *channel, u64 rqst_addr);
1038 /* callback to retrieve a request address from a request ID */
1039 u64 (*request_addr_callback)(struct vmbus_channel *channel, u64 rqst_id);
1040
1041 /* request/transaction ids for VMBus */
1042 struct vmbus_requestor requestor;
1043 u32 rqstor_size;
1044
1045 /* The max size of a packet on this channel */
1046 u32 max_pkt_size;
1047};
1048
1049#define lock_requestor(channel, flags) \
1050do { \
1051 struct vmbus_requestor *rqstor = &(channel)->requestor; \
1052 \
1053 spin_lock_irqsave(&rqstor->req_lock, flags); \
1054} while (0)
1055
1056static __always_inline void unlock_requestor(struct vmbus_channel *channel,
1057 unsigned long flags)
1058{
1059 struct vmbus_requestor *rqstor = &channel->requestor;
1060
1061 spin_unlock_irqrestore(lock: &rqstor->req_lock, flags);
1062}
1063
1064u64 vmbus_next_request_id(struct vmbus_channel *channel, u64 rqst_addr);
1065u64 __vmbus_request_addr_match(struct vmbus_channel *channel, u64 trans_id,
1066 u64 rqst_addr);
1067u64 vmbus_request_addr_match(struct vmbus_channel *channel, u64 trans_id,
1068 u64 rqst_addr);
1069u64 vmbus_request_addr(struct vmbus_channel *channel, u64 trans_id);
1070
1071static inline bool is_hvsock_offer(const struct vmbus_channel_offer_channel *o)
1072{
1073 return !!(o->offer.chn_flags & VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER);
1074}
1075
1076static inline bool is_hvsock_channel(const struct vmbus_channel *c)
1077{
1078 return is_hvsock_offer(o: &c->offermsg);
1079}
1080
1081static inline bool is_sub_channel(const struct vmbus_channel *c)
1082{
1083 return c->offermsg.offer.sub_channel_index != 0;
1084}
1085
1086static inline void set_channel_read_mode(struct vmbus_channel *c,
1087 enum hv_callback_mode mode)
1088{
1089 c->callback_mode = mode;
1090}
1091
1092static inline void set_per_channel_state(struct vmbus_channel *c, void *s)
1093{
1094 c->per_channel_state = s;
1095}
1096
1097static inline void *get_per_channel_state(struct vmbus_channel *c)
1098{
1099 return c->per_channel_state;
1100}
1101
1102static inline void set_channel_pending_send_size(struct vmbus_channel *c,
1103 u32 size)
1104{
1105 unsigned long flags;
1106
1107 if (size) {
1108 spin_lock_irqsave(&c->outbound.ring_lock, flags);
1109 ++c->out_full_total;
1110
1111 if (!c->out_full_flag) {
1112 ++c->out_full_first;
1113 c->out_full_flag = true;
1114 }
1115 spin_unlock_irqrestore(lock: &c->outbound.ring_lock, flags);
1116 } else {
1117 c->out_full_flag = false;
1118 }
1119
1120 c->outbound.ring_buffer->pending_send_sz = size;
1121}
1122
1123void vmbus_onmessage(struct vmbus_channel_message_header *hdr);
1124
1125int vmbus_request_offers(void);
1126
1127/*
1128 * APIs for managing sub-channels.
1129 */
1130
1131void vmbus_set_sc_create_callback(struct vmbus_channel *primary_channel,
1132 void (*sc_cr_cb)(struct vmbus_channel *new_sc));
1133
1134void vmbus_set_chn_rescind_callback(struct vmbus_channel *channel,
1135 void (*chn_rescind_cb)(struct vmbus_channel *));
1136
1137/* The format must be the same as struct vmdata_gpa_direct */
1138struct vmbus_channel_packet_page_buffer {
1139 u16 type;
1140 u16 dataoffset8;
1141 u16 length8;
1142 u16 flags;
1143 u64 transactionid;
1144 u32 reserved;
1145 u32 rangecount;
1146 struct hv_page_buffer range[MAX_PAGE_BUFFER_COUNT];
1147} __packed;
1148
1149/* The format must be the same as struct vmdata_gpa_direct */
1150struct vmbus_channel_packet_multipage_buffer {
1151 u16 type;
1152 u16 dataoffset8;
1153 u16 length8;
1154 u16 flags;
1155 u64 transactionid;
1156 u32 reserved;
1157 u32 rangecount; /* Always 1 in this case */
1158 struct hv_multipage_buffer range;
1159} __packed;
1160
1161/* The format must be the same as struct vmdata_gpa_direct */
1162struct vmbus_packet_mpb_array {
1163 u16 type;
1164 u16 dataoffset8;
1165 u16 length8;
1166 u16 flags;
1167 u64 transactionid;
1168 u32 reserved;
1169 u32 rangecount; /* Always 1 in this case */
1170 struct hv_mpb_array range;
1171} __packed;
1172
1173int vmbus_alloc_ring(struct vmbus_channel *channel,
1174 u32 send_size, u32 recv_size);
1175void vmbus_free_ring(struct vmbus_channel *channel);
1176
1177int vmbus_connect_ring(struct vmbus_channel *channel,
1178 void (*onchannel_callback)(void *context),
1179 void *context);
1180int vmbus_disconnect_ring(struct vmbus_channel *channel);
1181
1182extern int vmbus_open(struct vmbus_channel *channel,
1183 u32 send_ringbuffersize,
1184 u32 recv_ringbuffersize,
1185 void *userdata,
1186 u32 userdatalen,
1187 void (*onchannel_callback)(void *context),
1188 void *context);
1189
1190extern void vmbus_close(struct vmbus_channel *channel);
1191
1192extern int vmbus_sendpacket_getid(struct vmbus_channel *channel,
1193 void *buffer,
1194 u32 bufferLen,
1195 u64 requestid,
1196 u64 *trans_id,
1197 enum vmbus_packet_type type,
1198 u32 flags);
1199extern int vmbus_sendpacket(struct vmbus_channel *channel,
1200 void *buffer,
1201 u32 bufferLen,
1202 u64 requestid,
1203 enum vmbus_packet_type type,
1204 u32 flags);
1205
1206extern int vmbus_sendpacket_pagebuffer(struct vmbus_channel *channel,
1207 struct hv_page_buffer pagebuffers[],
1208 u32 pagecount,
1209 void *buffer,
1210 u32 bufferlen,
1211 u64 requestid);
1212
1213extern int vmbus_sendpacket_mpb_desc(struct vmbus_channel *channel,
1214 struct vmbus_packet_mpb_array *mpb,
1215 u32 desc_size,
1216 void *buffer,
1217 u32 bufferlen,
1218 u64 requestid);
1219
1220extern int vmbus_establish_gpadl(struct vmbus_channel *channel,
1221 void *kbuffer,
1222 u32 size,
1223 struct vmbus_gpadl *gpadl);
1224
1225extern int vmbus_teardown_gpadl(struct vmbus_channel *channel,
1226 struct vmbus_gpadl *gpadl);
1227
1228void vmbus_reset_channel_cb(struct vmbus_channel *channel);
1229
1230extern int vmbus_recvpacket(struct vmbus_channel *channel,
1231 void *buffer,
1232 u32 bufferlen,
1233 u32 *buffer_actual_len,
1234 u64 *requestid);
1235
1236extern int vmbus_recvpacket_raw(struct vmbus_channel *channel,
1237 void *buffer,
1238 u32 bufferlen,
1239 u32 *buffer_actual_len,
1240 u64 *requestid);
1241
1242/* Base driver object */
1243struct hv_driver {
1244 const char *name;
1245
1246 /*
1247 * A hvsock offer, which has a VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER
1248 * channel flag, actually doesn't mean a synthetic device because the
1249 * offer's if_type/if_instance can change for every new hvsock
1250 * connection.
1251 *
1252 * However, to facilitate the notification of new-offer/rescind-offer
1253 * from vmbus driver to hvsock driver, we can handle hvsock offer as
1254 * a special vmbus device, and hence we need the below flag to
1255 * indicate if the driver is the hvsock driver or not: we need to
1256 * specially treat the hvosck offer & driver in vmbus_match().
1257 */
1258 bool hvsock;
1259
1260 /* the device type supported by this driver */
1261 guid_t dev_type;
1262 const struct hv_vmbus_device_id *id_table;
1263
1264 struct device_driver driver;
1265
1266 /* dynamic device GUID's */
1267 struct {
1268 spinlock_t lock;
1269 struct list_head list;
1270 } dynids;
1271
1272 int (*probe)(struct hv_device *, const struct hv_vmbus_device_id *);
1273 void (*remove)(struct hv_device *dev);
1274 void (*shutdown)(struct hv_device *);
1275
1276 int (*suspend)(struct hv_device *);
1277 int (*resume)(struct hv_device *);
1278
1279};
1280
1281/* Base device object */
1282struct hv_device {
1283 /* the device type id of this device */
1284 guid_t dev_type;
1285
1286 /* the device instance id of this device */
1287 guid_t dev_instance;
1288 u16 vendor_id;
1289 u16 device_id;
1290
1291 struct device device;
1292 /*
1293 * Driver name to force a match. Do not set directly, because core
1294 * frees it. Use driver_set_override() to set or clear it.
1295 */
1296 const char *driver_override;
1297
1298 struct vmbus_channel *channel;
1299 struct kset *channels_kset;
1300 struct device_dma_parameters dma_parms;
1301 u64 dma_mask;
1302
1303 /* place holder to keep track of the dir for hv device in debugfs */
1304 struct dentry *debug_dir;
1305
1306};
1307
1308
1309#define device_to_hv_device(d) container_of_const(d, struct hv_device, device)
1310
1311static inline struct hv_driver *drv_to_hv_drv(struct device_driver *d)
1312{
1313 return container_of(d, struct hv_driver, driver);
1314}
1315
1316static inline void hv_set_drvdata(struct hv_device *dev, void *data)
1317{
1318 dev_set_drvdata(dev: &dev->device, data);
1319}
1320
1321static inline void *hv_get_drvdata(struct hv_device *dev)
1322{
1323 return dev_get_drvdata(dev: &dev->device);
1324}
1325
1326struct hv_ring_buffer_debug_info {
1327 u32 current_interrupt_mask;
1328 u32 current_read_index;
1329 u32 current_write_index;
1330 u32 bytes_avail_toread;
1331 u32 bytes_avail_towrite;
1332};
1333
1334
1335int hv_ringbuffer_get_debuginfo(struct hv_ring_buffer_info *ring_info,
1336 struct hv_ring_buffer_debug_info *debug_info);
1337
1338bool hv_ringbuffer_spinlock_busy(struct vmbus_channel *channel);
1339
1340/* Vmbus interface */
1341#define vmbus_driver_register(driver) \
1342 __vmbus_driver_register(driver, THIS_MODULE, KBUILD_MODNAME)
1343int __must_check __vmbus_driver_register(struct hv_driver *hv_driver,
1344 struct module *owner,
1345 const char *mod_name);
1346void vmbus_driver_unregister(struct hv_driver *hv_driver);
1347
1348void vmbus_hvsock_device_unregister(struct vmbus_channel *channel);
1349
1350int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
1351 resource_size_t min, resource_size_t max,
1352 resource_size_t size, resource_size_t align,
1353 bool fb_overlap_ok);
1354void vmbus_free_mmio(resource_size_t start, resource_size_t size);
1355
1356/*
1357 * GUID definitions of various offer types - services offered to the guest.
1358 */
1359
1360/*
1361 * Network GUID
1362 * {f8615163-df3e-46c5-913f-f2d2f965ed0e}
1363 */
1364#define HV_NIC_GUID \
1365 .guid = GUID_INIT(0xf8615163, 0xdf3e, 0x46c5, 0x91, 0x3f, \
1366 0xf2, 0xd2, 0xf9, 0x65, 0xed, 0x0e)
1367
1368/*
1369 * IDE GUID
1370 * {32412632-86cb-44a2-9b5c-50d1417354f5}
1371 */
1372#define HV_IDE_GUID \
1373 .guid = GUID_INIT(0x32412632, 0x86cb, 0x44a2, 0x9b, 0x5c, \
1374 0x50, 0xd1, 0x41, 0x73, 0x54, 0xf5)
1375
1376/*
1377 * SCSI GUID
1378 * {ba6163d9-04a1-4d29-b605-72e2ffb1dc7f}
1379 */
1380#define HV_SCSI_GUID \
1381 .guid = GUID_INIT(0xba6163d9, 0x04a1, 0x4d29, 0xb6, 0x05, \
1382 0x72, 0xe2, 0xff, 0xb1, 0xdc, 0x7f)
1383
1384/*
1385 * Shutdown GUID
1386 * {0e0b6031-5213-4934-818b-38d90ced39db}
1387 */
1388#define HV_SHUTDOWN_GUID \
1389 .guid = GUID_INIT(0x0e0b6031, 0x5213, 0x4934, 0x81, 0x8b, \
1390 0x38, 0xd9, 0x0c, 0xed, 0x39, 0xdb)
1391
1392/*
1393 * Time Synch GUID
1394 * {9527E630-D0AE-497b-ADCE-E80AB0175CAF}
1395 */
1396#define HV_TS_GUID \
1397 .guid = GUID_INIT(0x9527e630, 0xd0ae, 0x497b, 0xad, 0xce, \
1398 0xe8, 0x0a, 0xb0, 0x17, 0x5c, 0xaf)
1399
1400/*
1401 * Heartbeat GUID
1402 * {57164f39-9115-4e78-ab55-382f3bd5422d}
1403 */
1404#define HV_HEART_BEAT_GUID \
1405 .guid = GUID_INIT(0x57164f39, 0x9115, 0x4e78, 0xab, 0x55, \
1406 0x38, 0x2f, 0x3b, 0xd5, 0x42, 0x2d)
1407
1408/*
1409 * KVP GUID
1410 * {a9a0f4e7-5a45-4d96-b827-8a841e8c03e6}
1411 */
1412#define HV_KVP_GUID \
1413 .guid = GUID_INIT(0xa9a0f4e7, 0x5a45, 0x4d96, 0xb8, 0x27, \
1414 0x8a, 0x84, 0x1e, 0x8c, 0x03, 0xe6)
1415
1416/*
1417 * Dynamic memory GUID
1418 * {525074dc-8985-46e2-8057-a307dc18a502}
1419 */
1420#define HV_DM_GUID \
1421 .guid = GUID_INIT(0x525074dc, 0x8985, 0x46e2, 0x80, 0x57, \
1422 0xa3, 0x07, 0xdc, 0x18, 0xa5, 0x02)
1423
1424/*
1425 * Mouse GUID
1426 * {cfa8b69e-5b4a-4cc0-b98b-8ba1a1f3f95a}
1427 */
1428#define HV_MOUSE_GUID \
1429 .guid = GUID_INIT(0xcfa8b69e, 0x5b4a, 0x4cc0, 0xb9, 0x8b, \
1430 0x8b, 0xa1, 0xa1, 0xf3, 0xf9, 0x5a)
1431
1432/*
1433 * Keyboard GUID
1434 * {f912ad6d-2b17-48ea-bd65-f927a61c7684}
1435 */
1436#define HV_KBD_GUID \
1437 .guid = GUID_INIT(0xf912ad6d, 0x2b17, 0x48ea, 0xbd, 0x65, \
1438 0xf9, 0x27, 0xa6, 0x1c, 0x76, 0x84)
1439
1440/*
1441 * VSS (Backup/Restore) GUID
1442 */
1443#define HV_VSS_GUID \
1444 .guid = GUID_INIT(0x35fa2e29, 0xea23, 0x4236, 0x96, 0xae, \
1445 0x3a, 0x6e, 0xba, 0xcb, 0xa4, 0x40)
1446/*
1447 * Synthetic Video GUID
1448 * {DA0A7802-E377-4aac-8E77-0558EB1073F8}
1449 */
1450#define HV_SYNTHVID_GUID \
1451 .guid = GUID_INIT(0xda0a7802, 0xe377, 0x4aac, 0x8e, 0x77, \
1452 0x05, 0x58, 0xeb, 0x10, 0x73, 0xf8)
1453
1454/*
1455 * Synthetic FC GUID
1456 * {2f9bcc4a-0069-4af3-b76b-6fd0be528cda}
1457 */
1458#define HV_SYNTHFC_GUID \
1459 .guid = GUID_INIT(0x2f9bcc4a, 0x0069, 0x4af3, 0xb7, 0x6b, \
1460 0x6f, 0xd0, 0xbe, 0x52, 0x8c, 0xda)
1461
1462/*
1463 * Guest File Copy Service
1464 * {34D14BE3-DEE4-41c8-9AE7-6B174977C192}
1465 */
1466
1467#define HV_FCOPY_GUID \
1468 .guid = GUID_INIT(0x34d14be3, 0xdee4, 0x41c8, 0x9a, 0xe7, \
1469 0x6b, 0x17, 0x49, 0x77, 0xc1, 0x92)
1470
1471/*
1472 * NetworkDirect. This is the guest RDMA service.
1473 * {8c2eaf3d-32a7-4b09-ab99-bd1f1c86b501}
1474 */
1475#define HV_ND_GUID \
1476 .guid = GUID_INIT(0x8c2eaf3d, 0x32a7, 0x4b09, 0xab, 0x99, \
1477 0xbd, 0x1f, 0x1c, 0x86, 0xb5, 0x01)
1478
1479/*
1480 * PCI Express Pass Through
1481 * {44C4F61D-4444-4400-9D52-802E27EDE19F}
1482 */
1483
1484#define HV_PCIE_GUID \
1485 .guid = GUID_INIT(0x44c4f61d, 0x4444, 0x4400, 0x9d, 0x52, \
1486 0x80, 0x2e, 0x27, 0xed, 0xe1, 0x9f)
1487
1488/*
1489 * Linux doesn't support these 4 devices: the first two are for
1490 * Automatic Virtual Machine Activation, the third is for
1491 * Remote Desktop Virtualization, and the fourth is Initial
1492 * Machine Configuration (IMC) used only by Windows guests.
1493 * {f8e65716-3cb3-4a06-9a60-1889c5cccab5}
1494 * {3375baf4-9e15-4b30-b765-67acb10d607b}
1495 * {276aacf4-ac15-426c-98dd-7521ad3f01fe}
1496 * {c376c1c3-d276-48d2-90a9-c04748072c60}
1497 */
1498
1499#define HV_AVMA1_GUID \
1500 .guid = GUID_INIT(0xf8e65716, 0x3cb3, 0x4a06, 0x9a, 0x60, \
1501 0x18, 0x89, 0xc5, 0xcc, 0xca, 0xb5)
1502
1503#define HV_AVMA2_GUID \
1504 .guid = GUID_INIT(0x3375baf4, 0x9e15, 0x4b30, 0xb7, 0x65, \
1505 0x67, 0xac, 0xb1, 0x0d, 0x60, 0x7b)
1506
1507#define HV_RDV_GUID \
1508 .guid = GUID_INIT(0x276aacf4, 0xac15, 0x426c, 0x98, 0xdd, \
1509 0x75, 0x21, 0xad, 0x3f, 0x01, 0xfe)
1510
1511#define HV_IMC_GUID \
1512 .guid = GUID_INIT(0xc376c1c3, 0xd276, 0x48d2, 0x90, 0xa9, \
1513 0xc0, 0x47, 0x48, 0x07, 0x2c, 0x60)
1514
1515/*
1516 * Common header for Hyper-V ICs
1517 */
1518
1519#define ICMSGTYPE_NEGOTIATE 0
1520#define ICMSGTYPE_HEARTBEAT 1
1521#define ICMSGTYPE_KVPEXCHANGE 2
1522#define ICMSGTYPE_SHUTDOWN 3
1523#define ICMSGTYPE_TIMESYNC 4
1524#define ICMSGTYPE_VSS 5
1525#define ICMSGTYPE_FCOPY 7
1526
1527#define ICMSGHDRFLAG_TRANSACTION 1
1528#define ICMSGHDRFLAG_REQUEST 2
1529#define ICMSGHDRFLAG_RESPONSE 4
1530
1531
1532/*
1533 * While we want to handle util services as regular devices,
1534 * there is only one instance of each of these services; so
1535 * we statically allocate the service specific state.
1536 */
1537
1538struct hv_util_service {
1539 u8 *recv_buffer;
1540 void *channel;
1541 void (*util_cb)(void *);
1542 int (*util_init)(struct hv_util_service *);
1543 void (*util_deinit)(void);
1544 int (*util_pre_suspend)(void);
1545 int (*util_pre_resume)(void);
1546};
1547
1548struct vmbuspipe_hdr {
1549 u32 flags;
1550 u32 msgsize;
1551} __packed;
1552
1553struct ic_version {
1554 u16 major;
1555 u16 minor;
1556} __packed;
1557
1558struct icmsg_hdr {
1559 struct ic_version icverframe;
1560 u16 icmsgtype;
1561 struct ic_version icvermsg;
1562 u16 icmsgsize;
1563 u32 status;
1564 u8 ictransaction_id;
1565 u8 icflags;
1566 u8 reserved[2];
1567} __packed;
1568
1569#define IC_VERSION_NEGOTIATION_MAX_VER_COUNT 100
1570#define ICMSG_HDR (sizeof(struct vmbuspipe_hdr) + sizeof(struct icmsg_hdr))
1571#define ICMSG_NEGOTIATE_PKT_SIZE(icframe_vercnt, icmsg_vercnt) \
1572 (ICMSG_HDR + sizeof(struct icmsg_negotiate) + \
1573 (((icframe_vercnt) + (icmsg_vercnt)) * sizeof(struct ic_version)))
1574
1575struct icmsg_negotiate {
1576 u16 icframe_vercnt;
1577 u16 icmsg_vercnt;
1578 u32 reserved;
1579 struct ic_version icversion_data[]; /* any size array */
1580} __packed;
1581
1582struct shutdown_msg_data {
1583 u32 reason_code;
1584 u32 timeout_seconds;
1585 u32 flags;
1586 u8 display_message[2048];
1587} __packed;
1588
1589struct heartbeat_msg_data {
1590 u64 seq_num;
1591 u32 reserved[8];
1592} __packed;
1593
1594/* Time Sync IC defs */
1595#define ICTIMESYNCFLAG_PROBE 0
1596#define ICTIMESYNCFLAG_SYNC 1
1597#define ICTIMESYNCFLAG_SAMPLE 2
1598
1599#ifdef __x86_64__
1600#define WLTIMEDELTA 116444736000000000L /* in 100ns unit */
1601#else
1602#define WLTIMEDELTA 116444736000000000LL
1603#endif
1604
1605struct ictimesync_data {
1606 u64 parenttime;
1607 u64 childtime;
1608 u64 roundtriptime;
1609 u8 flags;
1610} __packed;
1611
1612struct ictimesync_ref_data {
1613 u64 parenttime;
1614 u64 vmreferencetime;
1615 u8 flags;
1616 char leapflags;
1617 char stratum;
1618 u8 reserved[3];
1619} __packed;
1620
1621struct hyperv_service_callback {
1622 u8 msg_type;
1623 char *log_msg;
1624 guid_t data;
1625 struct vmbus_channel *channel;
1626 void (*callback)(void *context);
1627};
1628
1629struct hv_dma_range {
1630 dma_addr_t dma;
1631 u32 mapping_size;
1632};
1633
1634#define MAX_SRV_VER 0x7ffffff
1635extern bool vmbus_prep_negotiate_resp(struct icmsg_hdr *icmsghdrp, u8 *buf, u32 buflen,
1636 const int *fw_version, int fw_vercnt,
1637 const int *srv_version, int srv_vercnt,
1638 int *nego_fw_version, int *nego_srv_version);
1639
1640void hv_process_channel_removal(struct vmbus_channel *channel);
1641
1642void vmbus_setevent(struct vmbus_channel *channel);
1643/*
1644 * Negotiated version with the Host.
1645 */
1646
1647extern __u32 vmbus_proto_version;
1648
1649int vmbus_send_tl_connect_request(const guid_t *shv_guest_servie_id,
1650 const guid_t *shv_host_servie_id);
1651int vmbus_send_modifychannel(struct vmbus_channel *channel, u32 target_vp);
1652void vmbus_set_event(struct vmbus_channel *channel);
1653
1654/* Get the start of the ring buffer. */
1655static inline void *
1656hv_get_ring_buffer(const struct hv_ring_buffer_info *ring_info)
1657{
1658 return ring_info->ring_buffer->buffer;
1659}
1660
1661/*
1662 * Mask off host interrupt callback notifications
1663 */
1664static inline void hv_begin_read(struct hv_ring_buffer_info *rbi)
1665{
1666 rbi->ring_buffer->interrupt_mask = 1;
1667
1668 /* make sure mask update is not reordered */
1669 virt_mb();
1670}
1671
1672/*
1673 * Re-enable host callback and return number of outstanding bytes
1674 */
1675static inline u32 hv_end_read(struct hv_ring_buffer_info *rbi)
1676{
1677
1678 rbi->ring_buffer->interrupt_mask = 0;
1679
1680 /* make sure mask update is not reordered */
1681 virt_mb();
1682
1683 /*
1684 * Now check to see if the ring buffer is still empty.
1685 * If it is not, we raced and we need to process new
1686 * incoming messages.
1687 */
1688 return hv_get_bytes_to_read(rbi);
1689}
1690
1691/*
1692 * An API to support in-place processing of incoming VMBUS packets.
1693 */
1694
1695/* Get data payload associated with descriptor */
1696static inline void *hv_pkt_data(const struct vmpacket_descriptor *desc)
1697{
1698 return (void *)((unsigned long)desc + (desc->offset8 << 3));
1699}
1700
1701/* Get data size associated with descriptor */
1702static inline u32 hv_pkt_datalen(const struct vmpacket_descriptor *desc)
1703{
1704 return (desc->len8 << 3) - (desc->offset8 << 3);
1705}
1706
1707/* Get packet length associated with descriptor */
1708static inline u32 hv_pkt_len(const struct vmpacket_descriptor *desc)
1709{
1710 return desc->len8 << 3;
1711}
1712
1713struct vmpacket_descriptor *
1714hv_pkt_iter_first(struct vmbus_channel *channel);
1715
1716struct vmpacket_descriptor *
1717__hv_pkt_iter_next(struct vmbus_channel *channel,
1718 const struct vmpacket_descriptor *pkt);
1719
1720void hv_pkt_iter_close(struct vmbus_channel *channel);
1721
1722static inline struct vmpacket_descriptor *
1723hv_pkt_iter_next(struct vmbus_channel *channel,
1724 const struct vmpacket_descriptor *pkt)
1725{
1726 struct vmpacket_descriptor *nxt;
1727
1728 nxt = __hv_pkt_iter_next(channel, pkt);
1729 if (!nxt)
1730 hv_pkt_iter_close(channel);
1731
1732 return nxt;
1733}
1734
1735#define foreach_vmbus_pkt(pkt, channel) \
1736 for (pkt = hv_pkt_iter_first(channel); pkt; \
1737 pkt = hv_pkt_iter_next(channel, pkt))
1738
1739/*
1740 * Interface for passing data between SR-IOV PF and VF drivers. The VF driver
1741 * sends requests to read and write blocks. Each block must be 128 bytes or
1742 * smaller. Optionally, the VF driver can register a callback function which
1743 * will be invoked when the host says that one or more of the first 64 block
1744 * IDs is "invalid" which means that the VF driver should reread them.
1745 */
1746#define HV_CONFIG_BLOCK_SIZE_MAX 128
1747
1748int hyperv_read_cfg_blk(struct pci_dev *dev, void *buf, unsigned int buf_len,
1749 unsigned int block_id, unsigned int *bytes_returned);
1750int hyperv_write_cfg_blk(struct pci_dev *dev, void *buf, unsigned int len,
1751 unsigned int block_id);
1752int hyperv_reg_block_invalidate(struct pci_dev *dev, void *context,
1753 void (*block_invalidate)(void *context,
1754 u64 block_mask));
1755
1756struct hyperv_pci_block_ops {
1757 int (*read_block)(struct pci_dev *dev, void *buf, unsigned int buf_len,
1758 unsigned int block_id, unsigned int *bytes_returned);
1759 int (*write_block)(struct pci_dev *dev, void *buf, unsigned int len,
1760 unsigned int block_id);
1761 int (*reg_blk_invalidate)(struct pci_dev *dev, void *context,
1762 void (*block_invalidate)(void *context,
1763 u64 block_mask));
1764};
1765
1766extern struct hyperv_pci_block_ops hvpci_block_ops;
1767
1768static inline unsigned long virt_to_hvpfn(void *addr)
1769{
1770 phys_addr_t paddr;
1771
1772 if (is_vmalloc_addr(x: addr))
1773 paddr = page_to_phys(vmalloc_to_page(addr)) +
1774 offset_in_page(addr);
1775 else
1776 paddr = __pa(addr);
1777
1778 return paddr >> HV_HYP_PAGE_SHIFT;
1779}
1780
1781#define NR_HV_HYP_PAGES_IN_PAGE (PAGE_SIZE / HV_HYP_PAGE_SIZE)
1782#define offset_in_hvpage(ptr) ((unsigned long)(ptr) & ~HV_HYP_PAGE_MASK)
1783#define HVPFN_UP(x) (((x) + HV_HYP_PAGE_SIZE-1) >> HV_HYP_PAGE_SHIFT)
1784#define HVPFN_DOWN(x) ((x) >> HV_HYP_PAGE_SHIFT)
1785#define page_to_hvpfn(page) (page_to_pfn(page) * NR_HV_HYP_PAGES_IN_PAGE)
1786
1787#endif /* _HYPERV_H */
1788

source code of linux/include/linux/hyperv.h