1#ifndef __KVM_HOST_H
2#define __KVM_HOST_H
3
4/*
5 * This work is licensed under the terms of the GNU GPL, version 2. See
6 * the COPYING file in the top-level directory.
7 */
8
9#include <linux/types.h>
10#include <linux/hardirq.h>
11#include <linux/list.h>
12#include <linux/mutex.h>
13#include <linux/spinlock.h>
14#include <linux/signal.h>
15#include <linux/sched.h>
16#include <linux/bug.h>
17#include <linux/mm.h>
18#include <linux/mmu_notifier.h>
19#include <linux/preempt.h>
20#include <linux/msi.h>
21#include <linux/slab.h>
22#include <linux/vmalloc.h>
23#include <linux/rcupdate.h>
24#include <linux/ratelimit.h>
25#include <linux/err.h>
26#include <linux/irqflags.h>
27#include <linux/context_tracking.h>
28#include <linux/irqbypass.h>
29#include <linux/swait.h>
30#include <linux/refcount.h>
31#include <asm/signal.h>
32
33#include <linux/kvm.h>
34#include <linux/kvm_para.h>
35
36#include <linux/kvm_types.h>
37
38#include <asm/kvm_host.h>
39
40#ifndef KVM_MAX_VCPU_ID
41#define KVM_MAX_VCPU_ID KVM_MAX_VCPUS
42#endif
43
44/*
45 * The bit 16 ~ bit 31 of kvm_memory_region::flags are internally used
46 * in kvm, other bits are visible for userspace which are defined in
47 * include/linux/kvm_h.
48 */
49#define KVM_MEMSLOT_INVALID (1UL << 16)
50
51/*
52 * Bit 63 of the memslot generation number is an "update in-progress flag",
53 * e.g. is temporarily set for the duration of install_new_memslots().
54 * This flag effectively creates a unique generation number that is used to
55 * mark cached memslot data, e.g. MMIO accesses, as potentially being stale,
56 * i.e. may (or may not) have come from the previous memslots generation.
57 *
58 * This is necessary because the actual memslots update is not atomic with
59 * respect to the generation number update. Updating the generation number
60 * first would allow a vCPU to cache a spte from the old memslots using the
61 * new generation number, and updating the generation number after switching
62 * to the new memslots would allow cache hits using the old generation number
63 * to reference the defunct memslots.
64 *
65 * This mechanism is used to prevent getting hits in KVM's caches while a
66 * memslot update is in-progress, and to prevent cache hits *after* updating
67 * the actual generation number against accesses that were inserted into the
68 * cache *before* the memslots were updated.
69 */
70#define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS BIT_ULL(63)
71
72/* Two fragments for cross MMIO pages. */
73#define KVM_MAX_MMIO_FRAGMENTS 2
74
75#ifndef KVM_ADDRESS_SPACE_NUM
76#define KVM_ADDRESS_SPACE_NUM 1
77#endif
78
79/*
80 * For the normal pfn, the highest 12 bits should be zero,
81 * so we can mask bit 62 ~ bit 52 to indicate the error pfn,
82 * mask bit 63 to indicate the noslot pfn.
83 */
84#define KVM_PFN_ERR_MASK (0x7ffULL << 52)
85#define KVM_PFN_ERR_NOSLOT_MASK (0xfffULL << 52)
86#define KVM_PFN_NOSLOT (0x1ULL << 63)
87
88#define KVM_PFN_ERR_FAULT (KVM_PFN_ERR_MASK)
89#define KVM_PFN_ERR_HWPOISON (KVM_PFN_ERR_MASK + 1)
90#define KVM_PFN_ERR_RO_FAULT (KVM_PFN_ERR_MASK + 2)
91
92/*
93 * error pfns indicate that the gfn is in slot but faild to
94 * translate it to pfn on host.
95 */
96static inline bool is_error_pfn(kvm_pfn_t pfn)
97{
98 return !!(pfn & KVM_PFN_ERR_MASK);
99}
100
101/*
102 * error_noslot pfns indicate that the gfn can not be
103 * translated to pfn - it is not in slot or failed to
104 * translate it to pfn.
105 */
106static inline bool is_error_noslot_pfn(kvm_pfn_t pfn)
107{
108 return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK);
109}
110
111/* noslot pfn indicates that the gfn is not in slot. */
112static inline bool is_noslot_pfn(kvm_pfn_t pfn)
113{
114 return pfn == KVM_PFN_NOSLOT;
115}
116
117/*
118 * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390)
119 * provide own defines and kvm_is_error_hva
120 */
121#ifndef KVM_HVA_ERR_BAD
122
123#define KVM_HVA_ERR_BAD (PAGE_OFFSET)
124#define KVM_HVA_ERR_RO_BAD (PAGE_OFFSET + PAGE_SIZE)
125
126static inline bool kvm_is_error_hva(unsigned long addr)
127{
128 return addr >= PAGE_OFFSET;
129}
130
131#endif
132
133#define KVM_ERR_PTR_BAD_PAGE (ERR_PTR(-ENOENT))
134
135static inline bool is_error_page(struct page *page)
136{
137 return IS_ERR(page);
138}
139
140#define KVM_REQUEST_MASK GENMASK(7,0)
141#define KVM_REQUEST_NO_WAKEUP BIT(8)
142#define KVM_REQUEST_WAIT BIT(9)
143/*
144 * Architecture-independent vcpu->requests bit members
145 * Bits 4-7 are reserved for more arch-independent bits.
146 */
147#define KVM_REQ_TLB_FLUSH (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
148#define KVM_REQ_MMU_RELOAD (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
149#define KVM_REQ_PENDING_TIMER 2
150#define KVM_REQ_UNHALT 3
151#define KVM_REQUEST_ARCH_BASE 8
152
153#define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \
154 BUILD_BUG_ON((unsigned)(nr) >= (FIELD_SIZEOF(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \
155 (unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \
156})
157#define KVM_ARCH_REQ(nr) KVM_ARCH_REQ_FLAGS(nr, 0)
158
159#define KVM_USERSPACE_IRQ_SOURCE_ID 0
160#define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID 1
161
162extern struct kmem_cache *kvm_vcpu_cache;
163
164extern spinlock_t kvm_lock;
165extern struct list_head vm_list;
166
167struct kvm_io_range {
168 gpa_t addr;
169 int len;
170 struct kvm_io_device *dev;
171};
172
173#define NR_IOBUS_DEVS 1000
174
175struct kvm_io_bus {
176 int dev_count;
177 int ioeventfd_count;
178 struct kvm_io_range range[];
179};
180
181enum kvm_bus {
182 KVM_MMIO_BUS,
183 KVM_PIO_BUS,
184 KVM_VIRTIO_CCW_NOTIFY_BUS,
185 KVM_FAST_MMIO_BUS,
186 KVM_NR_BUSES
187};
188
189int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
190 int len, const void *val);
191int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
192 gpa_t addr, int len, const void *val, long cookie);
193int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
194 int len, void *val);
195int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
196 int len, struct kvm_io_device *dev);
197void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
198 struct kvm_io_device *dev);
199struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
200 gpa_t addr);
201
202#ifdef CONFIG_KVM_ASYNC_PF
203struct kvm_async_pf {
204 struct work_struct work;
205 struct list_head link;
206 struct list_head queue;
207 struct kvm_vcpu *vcpu;
208 struct mm_struct *mm;
209 gva_t gva;
210 unsigned long addr;
211 struct kvm_arch_async_pf arch;
212 bool wakeup_all;
213};
214
215void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu);
216void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu);
217int kvm_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, unsigned long hva,
218 struct kvm_arch_async_pf *arch);
219int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu);
220#endif
221
222enum {
223 OUTSIDE_GUEST_MODE,
224 IN_GUEST_MODE,
225 EXITING_GUEST_MODE,
226 READING_SHADOW_PAGE_TABLES,
227};
228
229/*
230 * Sometimes a large or cross-page mmio needs to be broken up into separate
231 * exits for userspace servicing.
232 */
233struct kvm_mmio_fragment {
234 gpa_t gpa;
235 void *data;
236 unsigned len;
237};
238
239struct kvm_vcpu {
240 struct kvm *kvm;
241#ifdef CONFIG_PREEMPT_NOTIFIERS
242 struct preempt_notifier preempt_notifier;
243#endif
244 int cpu;
245 int vcpu_id;
246 int srcu_idx;
247 int mode;
248 u64 requests;
249 unsigned long guest_debug;
250
251 int pre_pcpu;
252 struct list_head blocked_vcpu_list;
253
254 struct mutex mutex;
255 struct kvm_run *run;
256
257 int guest_xcr0_loaded;
258 struct swait_queue_head wq;
259 struct pid __rcu *pid;
260 int sigset_active;
261 sigset_t sigset;
262 struct kvm_vcpu_stat stat;
263 unsigned int halt_poll_ns;
264 bool valid_wakeup;
265
266#ifdef CONFIG_HAS_IOMEM
267 int mmio_needed;
268 int mmio_read_completed;
269 int mmio_is_write;
270 int mmio_cur_fragment;
271 int mmio_nr_fragments;
272 struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS];
273#endif
274
275#ifdef CONFIG_KVM_ASYNC_PF
276 struct {
277 u32 queued;
278 struct list_head queue;
279 struct list_head done;
280 spinlock_t lock;
281 } async_pf;
282#endif
283
284#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
285 /*
286 * Cpu relax intercept or pause loop exit optimization
287 * in_spin_loop: set when a vcpu does a pause loop exit
288 * or cpu relax intercepted.
289 * dy_eligible: indicates whether vcpu is eligible for directed yield.
290 */
291 struct {
292 bool in_spin_loop;
293 bool dy_eligible;
294 } spin_loop;
295#endif
296 bool preempted;
297 struct kvm_vcpu_arch arch;
298 struct dentry *debugfs_dentry;
299};
300
301static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu)
302{
303 /*
304 * The memory barrier ensures a previous write to vcpu->requests cannot
305 * be reordered with the read of vcpu->mode. It pairs with the general
306 * memory barrier following the write of vcpu->mode in VCPU RUN.
307 */
308 smp_mb__before_atomic();
309 return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE);
310}
311
312/*
313 * Some of the bitops functions do not support too long bitmaps.
314 * This number must be determined not to exceed such limits.
315 */
316#define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1)
317
318struct kvm_memory_slot {
319 gfn_t base_gfn;
320 unsigned long npages;
321 unsigned long *dirty_bitmap;
322 struct kvm_arch_memory_slot arch;
323 unsigned long userspace_addr;
324 u32 flags;
325 short id;
326};
327
328static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot)
329{
330 return ALIGN(memslot->npages, BITS_PER_LONG) / 8;
331}
332
333static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot)
334{
335 unsigned long len = kvm_dirty_bitmap_bytes(memslot);
336
337 return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap);
338}
339
340struct kvm_s390_adapter_int {
341 u64 ind_addr;
342 u64 summary_addr;
343 u64 ind_offset;
344 u32 summary_offset;
345 u32 adapter_id;
346};
347
348struct kvm_hv_sint {
349 u32 vcpu;
350 u32 sint;
351};
352
353struct kvm_kernel_irq_routing_entry {
354 u32 gsi;
355 u32 type;
356 int (*set)(struct kvm_kernel_irq_routing_entry *e,
357 struct kvm *kvm, int irq_source_id, int level,
358 bool line_status);
359 union {
360 struct {
361 unsigned irqchip;
362 unsigned pin;
363 } irqchip;
364 struct {
365 u32 address_lo;
366 u32 address_hi;
367 u32 data;
368 u32 flags;
369 u32 devid;
370 } msi;
371 struct kvm_s390_adapter_int adapter;
372 struct kvm_hv_sint hv_sint;
373 };
374 struct hlist_node link;
375};
376
377#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
378struct kvm_irq_routing_table {
379 int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS];
380 u32 nr_rt_entries;
381 /*
382 * Array indexed by gsi. Each entry contains list of irq chips
383 * the gsi is connected to.
384 */
385 struct hlist_head map[0];
386};
387#endif
388
389#ifndef KVM_PRIVATE_MEM_SLOTS
390#define KVM_PRIVATE_MEM_SLOTS 0
391#endif
392
393#ifndef KVM_MEM_SLOTS_NUM
394#define KVM_MEM_SLOTS_NUM (KVM_USER_MEM_SLOTS + KVM_PRIVATE_MEM_SLOTS)
395#endif
396
397#ifndef __KVM_VCPU_MULTIPLE_ADDRESS_SPACE
398static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu)
399{
400 return 0;
401}
402#endif
403
404/*
405 * Note:
406 * memslots are not sorted by id anymore, please use id_to_memslot()
407 * to get the memslot by its id.
408 */
409struct kvm_memslots {
410 u64 generation;
411 struct kvm_memory_slot memslots[KVM_MEM_SLOTS_NUM];
412 /* The mapping table from slot id to the index in memslots[]. */
413 short id_to_index[KVM_MEM_SLOTS_NUM];
414 atomic_t lru_slot;
415 int used_slots;
416};
417
418struct kvm {
419 spinlock_t mmu_lock;
420 struct mutex slots_lock;
421 struct mm_struct *mm; /* userspace tied to this vm */
422 struct kvm_memslots __rcu *memslots[KVM_ADDRESS_SPACE_NUM];
423 struct kvm_vcpu *vcpus[KVM_MAX_VCPUS];
424
425 /*
426 * created_vcpus is protected by kvm->lock, and is incremented
427 * at the beginning of KVM_CREATE_VCPU. online_vcpus is only
428 * incremented after storing the kvm_vcpu pointer in vcpus,
429 * and is accessed atomically.
430 */
431 atomic_t online_vcpus;
432 int created_vcpus;
433 int last_boosted_vcpu;
434 struct list_head vm_list;
435 struct mutex lock;
436 struct kvm_io_bus __rcu *buses[KVM_NR_BUSES];
437#ifdef CONFIG_HAVE_KVM_EVENTFD
438 struct {
439 spinlock_t lock;
440 struct list_head items;
441 struct list_head resampler_list;
442 struct mutex resampler_lock;
443 } irqfds;
444 struct list_head ioeventfds;
445#endif
446 struct kvm_vm_stat stat;
447 struct kvm_arch arch;
448 refcount_t users_count;
449#ifdef CONFIG_KVM_MMIO
450 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
451 spinlock_t ring_lock;
452 struct list_head coalesced_zones;
453#endif
454
455 struct mutex irq_lock;
456#ifdef CONFIG_HAVE_KVM_IRQCHIP
457 /*
458 * Update side is protected by irq_lock.
459 */
460 struct kvm_irq_routing_table __rcu *irq_routing;
461#endif
462#ifdef CONFIG_HAVE_KVM_IRQFD
463 struct hlist_head irq_ack_notifier_list;
464#endif
465
466#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
467 struct mmu_notifier mmu_notifier;
468 unsigned long mmu_notifier_seq;
469 long mmu_notifier_count;
470#endif
471 long tlbs_dirty;
472 struct list_head devices;
473 bool manual_dirty_log_protect;
474 struct dentry *debugfs_dentry;
475 struct kvm_stat_data **debugfs_stat_data;
476 struct srcu_struct srcu;
477 struct srcu_struct irq_srcu;
478 pid_t userspace_pid;
479};
480
481#define kvm_err(fmt, ...) \
482 pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
483#define kvm_info(fmt, ...) \
484 pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
485#define kvm_debug(fmt, ...) \
486 pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
487#define kvm_debug_ratelimited(fmt, ...) \
488 pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \
489 ## __VA_ARGS__)
490#define kvm_pr_unimpl(fmt, ...) \
491 pr_err_ratelimited("kvm [%i]: " fmt, \
492 task_tgid_nr(current), ## __VA_ARGS__)
493
494/* The guest did something we don't support. */
495#define vcpu_unimpl(vcpu, fmt, ...) \
496 kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt, \
497 (vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__)
498
499#define vcpu_debug(vcpu, fmt, ...) \
500 kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
501#define vcpu_debug_ratelimited(vcpu, fmt, ...) \
502 kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id, \
503 ## __VA_ARGS__)
504#define vcpu_err(vcpu, fmt, ...) \
505 kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
506
507static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx)
508{
509 return srcu_dereference_check(kvm->buses[idx], &kvm->srcu,
510 lockdep_is_held(&kvm->slots_lock) ||
511 !refcount_read(&kvm->users_count));
512}
513
514static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i)
515{
516 /* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu, in case
517 * the caller has read kvm->online_vcpus before (as is the case
518 * for kvm_for_each_vcpu, for example).
519 */
520 smp_rmb();
521 return kvm->vcpus[i];
522}
523
524#define kvm_for_each_vcpu(idx, vcpup, kvm) \
525 for (idx = 0; \
526 idx < atomic_read(&kvm->online_vcpus) && \
527 (vcpup = kvm_get_vcpu(kvm, idx)) != NULL; \
528 idx++)
529
530static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id)
531{
532 struct kvm_vcpu *vcpu = NULL;
533 int i;
534
535 if (id < 0)
536 return NULL;
537 if (id < KVM_MAX_VCPUS)
538 vcpu = kvm_get_vcpu(kvm, id);
539 if (vcpu && vcpu->vcpu_id == id)
540 return vcpu;
541 kvm_for_each_vcpu(i, vcpu, kvm)
542 if (vcpu->vcpu_id == id)
543 return vcpu;
544 return NULL;
545}
546
547static inline int kvm_vcpu_get_idx(struct kvm_vcpu *vcpu)
548{
549 struct kvm_vcpu *tmp;
550 int idx;
551
552 kvm_for_each_vcpu(idx, tmp, vcpu->kvm)
553 if (tmp == vcpu)
554 return idx;
555 BUG();
556}
557
558#define kvm_for_each_memslot(memslot, slots) \
559 for (memslot = &slots->memslots[0]; \
560 memslot < slots->memslots + KVM_MEM_SLOTS_NUM && memslot->npages;\
561 memslot++)
562
563int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id);
564void kvm_vcpu_uninit(struct kvm_vcpu *vcpu);
565
566void vcpu_load(struct kvm_vcpu *vcpu);
567void vcpu_put(struct kvm_vcpu *vcpu);
568
569#ifdef __KVM_HAVE_IOAPIC
570void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm);
571void kvm_arch_post_irq_routing_update(struct kvm *kvm);
572#else
573static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm)
574{
575}
576static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm)
577{
578}
579#endif
580
581#ifdef CONFIG_HAVE_KVM_IRQFD
582int kvm_irqfd_init(void);
583void kvm_irqfd_exit(void);
584#else
585static inline int kvm_irqfd_init(void)
586{
587 return 0;
588}
589
590static inline void kvm_irqfd_exit(void)
591{
592}
593#endif
594int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
595 struct module *module);
596void kvm_exit(void);
597
598void kvm_get_kvm(struct kvm *kvm);
599void kvm_put_kvm(struct kvm *kvm);
600
601static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id)
602{
603 return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu,
604 lockdep_is_held(&kvm->slots_lock) ||
605 !refcount_read(&kvm->users_count));
606}
607
608static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm)
609{
610 return __kvm_memslots(kvm, 0);
611}
612
613static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu)
614{
615 int as_id = kvm_arch_vcpu_memslots_id(vcpu);
616
617 return __kvm_memslots(vcpu->kvm, as_id);
618}
619
620static inline struct kvm_memory_slot *
621id_to_memslot(struct kvm_memslots *slots, int id)
622{
623 int index = slots->id_to_index[id];
624 struct kvm_memory_slot *slot;
625
626 slot = &slots->memslots[index];
627
628 WARN_ON(slot->id != id);
629 return slot;
630}
631
632/*
633 * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations:
634 * - create a new memory slot
635 * - delete an existing memory slot
636 * - modify an existing memory slot
637 * -- move it in the guest physical memory space
638 * -- just change its flags
639 *
640 * Since flags can be changed by some of these operations, the following
641 * differentiation is the best we can do for __kvm_set_memory_region():
642 */
643enum kvm_mr_change {
644 KVM_MR_CREATE,
645 KVM_MR_DELETE,
646 KVM_MR_MOVE,
647 KVM_MR_FLAGS_ONLY,
648};
649
650int kvm_set_memory_region(struct kvm *kvm,
651 const struct kvm_userspace_memory_region *mem);
652int __kvm_set_memory_region(struct kvm *kvm,
653 const struct kvm_userspace_memory_region *mem);
654void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
655 struct kvm_memory_slot *dont);
656int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
657 unsigned long npages);
658void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen);
659int kvm_arch_prepare_memory_region(struct kvm *kvm,
660 struct kvm_memory_slot *memslot,
661 const struct kvm_userspace_memory_region *mem,
662 enum kvm_mr_change change);
663void kvm_arch_commit_memory_region(struct kvm *kvm,
664 const struct kvm_userspace_memory_region *mem,
665 const struct kvm_memory_slot *old,
666 const struct kvm_memory_slot *new,
667 enum kvm_mr_change change);
668bool kvm_largepages_enabled(void);
669void kvm_disable_largepages(void);
670/* flush all memory translations */
671void kvm_arch_flush_shadow_all(struct kvm *kvm);
672/* flush memory translations pointing to 'slot' */
673void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
674 struct kvm_memory_slot *slot);
675
676int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
677 struct page **pages, int nr_pages);
678
679struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn);
680unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn);
681unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable);
682unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
683unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn,
684 bool *writable);
685void kvm_release_page_clean(struct page *page);
686void kvm_release_page_dirty(struct page *page);
687void kvm_set_page_accessed(struct page *page);
688
689kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn);
690kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn);
691kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
692 bool *writable);
693kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
694kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn);
695kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
696 bool atomic, bool *async, bool write_fault,
697 bool *writable);
698
699void kvm_release_pfn_clean(kvm_pfn_t pfn);
700void kvm_release_pfn_dirty(kvm_pfn_t pfn);
701void kvm_set_pfn_dirty(kvm_pfn_t pfn);
702void kvm_set_pfn_accessed(kvm_pfn_t pfn);
703void kvm_get_pfn(kvm_pfn_t pfn);
704
705int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
706 int len);
707int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
708 unsigned long len);
709int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len);
710int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
711 void *data, unsigned long len);
712int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
713 int offset, int len);
714int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
715 unsigned long len);
716int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
717 void *data, unsigned long len);
718int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
719 void *data, unsigned int offset,
720 unsigned long len);
721int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
722 gpa_t gpa, unsigned long len);
723int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len);
724int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len);
725struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn);
726bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn);
727unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn);
728void mark_page_dirty(struct kvm *kvm, gfn_t gfn);
729
730struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu);
731struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn);
732kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn);
733kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn);
734struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn);
735unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn);
736unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable);
737int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset,
738 int len);
739int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
740 unsigned long len);
741int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
742 unsigned long len);
743int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data,
744 int offset, int len);
745int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
746 unsigned long len);
747void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn);
748
749void kvm_sigset_activate(struct kvm_vcpu *vcpu);
750void kvm_sigset_deactivate(struct kvm_vcpu *vcpu);
751
752void kvm_vcpu_block(struct kvm_vcpu *vcpu);
753void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu);
754void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu);
755bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu);
756void kvm_vcpu_kick(struct kvm_vcpu *vcpu);
757int kvm_vcpu_yield_to(struct kvm_vcpu *target);
758void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool usermode_vcpu_not_eligible);
759
760void kvm_flush_remote_tlbs(struct kvm *kvm);
761void kvm_reload_remote_mmus(struct kvm *kvm);
762
763bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
764 unsigned long *vcpu_bitmap, cpumask_var_t tmp);
765bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req);
766
767long kvm_arch_dev_ioctl(struct file *filp,
768 unsigned int ioctl, unsigned long arg);
769long kvm_arch_vcpu_ioctl(struct file *filp,
770 unsigned int ioctl, unsigned long arg);
771vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf);
772
773int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext);
774
775int kvm_get_dirty_log(struct kvm *kvm,
776 struct kvm_dirty_log *log, int *is_dirty);
777
778int kvm_get_dirty_log_protect(struct kvm *kvm,
779 struct kvm_dirty_log *log, bool *flush);
780int kvm_clear_dirty_log_protect(struct kvm *kvm,
781 struct kvm_clear_dirty_log *log, bool *flush);
782
783void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
784 struct kvm_memory_slot *slot,
785 gfn_t gfn_offset,
786 unsigned long mask);
787
788int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
789 struct kvm_dirty_log *log);
790int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
791 struct kvm_clear_dirty_log *log);
792
793int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
794 bool line_status);
795int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
796 struct kvm_enable_cap *cap);
797long kvm_arch_vm_ioctl(struct file *filp,
798 unsigned int ioctl, unsigned long arg);
799
800int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
801int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
802
803int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
804 struct kvm_translation *tr);
805
806int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
807int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
808int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
809 struct kvm_sregs *sregs);
810int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
811 struct kvm_sregs *sregs);
812int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
813 struct kvm_mp_state *mp_state);
814int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
815 struct kvm_mp_state *mp_state);
816int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
817 struct kvm_guest_debug *dbg);
818int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run);
819
820int kvm_arch_init(void *opaque);
821void kvm_arch_exit(void);
822
823int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu);
824void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu);
825
826void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu);
827
828void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu);
829void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu);
830void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu);
831struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id);
832int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu);
833void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu);
834void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu);
835
836bool kvm_arch_has_vcpu_debugfs(void);
837int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu);
838
839int kvm_arch_hardware_enable(void);
840void kvm_arch_hardware_disable(void);
841int kvm_arch_hardware_setup(void);
842void kvm_arch_hardware_unsetup(void);
843void kvm_arch_check_processor_compat(void *rtn);
844int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu);
845bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu);
846int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu);
847
848#ifndef __KVM_HAVE_ARCH_VM_ALLOC
849/*
850 * All architectures that want to use vzalloc currently also
851 * need their own kvm_arch_alloc_vm implementation.
852 */
853static inline struct kvm *kvm_arch_alloc_vm(void)
854{
855 return kzalloc(sizeof(struct kvm), GFP_KERNEL);
856}
857
858static inline void kvm_arch_free_vm(struct kvm *kvm)
859{
860 kfree(kvm);
861}
862#endif
863
864#ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLB
865static inline int kvm_arch_flush_remote_tlb(struct kvm *kvm)
866{
867 return -ENOTSUPP;
868}
869#endif
870
871#ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA
872void kvm_arch_register_noncoherent_dma(struct kvm *kvm);
873void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm);
874bool kvm_arch_has_noncoherent_dma(struct kvm *kvm);
875#else
876static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
877{
878}
879
880static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
881{
882}
883
884static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
885{
886 return false;
887}
888#endif
889#ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE
890void kvm_arch_start_assignment(struct kvm *kvm);
891void kvm_arch_end_assignment(struct kvm *kvm);
892bool kvm_arch_has_assigned_device(struct kvm *kvm);
893#else
894static inline void kvm_arch_start_assignment(struct kvm *kvm)
895{
896}
897
898static inline void kvm_arch_end_assignment(struct kvm *kvm)
899{
900}
901
902static inline bool kvm_arch_has_assigned_device(struct kvm *kvm)
903{
904 return false;
905}
906#endif
907
908static inline struct swait_queue_head *kvm_arch_vcpu_wq(struct kvm_vcpu *vcpu)
909{
910#ifdef __KVM_HAVE_ARCH_WQP
911 return vcpu->arch.wqp;
912#else
913 return &vcpu->wq;
914#endif
915}
916
917#ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED
918/*
919 * returns true if the virtual interrupt controller is initialized and
920 * ready to accept virtual IRQ. On some architectures the virtual interrupt
921 * controller is dynamically instantiated and this is not always true.
922 */
923bool kvm_arch_intc_initialized(struct kvm *kvm);
924#else
925static inline bool kvm_arch_intc_initialized(struct kvm *kvm)
926{
927 return true;
928}
929#endif
930
931int kvm_arch_init_vm(struct kvm *kvm, unsigned long type);
932void kvm_arch_destroy_vm(struct kvm *kvm);
933void kvm_arch_sync_events(struct kvm *kvm);
934
935int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu);
936void kvm_vcpu_kick(struct kvm_vcpu *vcpu);
937
938bool kvm_is_reserved_pfn(kvm_pfn_t pfn);
939
940struct kvm_irq_ack_notifier {
941 struct hlist_node link;
942 unsigned gsi;
943 void (*irq_acked)(struct kvm_irq_ack_notifier *kian);
944};
945
946int kvm_irq_map_gsi(struct kvm *kvm,
947 struct kvm_kernel_irq_routing_entry *entries, int gsi);
948int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin);
949
950int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level,
951 bool line_status);
952int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm,
953 int irq_source_id, int level, bool line_status);
954int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e,
955 struct kvm *kvm, int irq_source_id,
956 int level, bool line_status);
957bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin);
958void kvm_notify_acked_gsi(struct kvm *kvm, int gsi);
959void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin);
960void kvm_register_irq_ack_notifier(struct kvm *kvm,
961 struct kvm_irq_ack_notifier *kian);
962void kvm_unregister_irq_ack_notifier(struct kvm *kvm,
963 struct kvm_irq_ack_notifier *kian);
964int kvm_request_irq_source_id(struct kvm *kvm);
965void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id);
966
967/*
968 * search_memslots() and __gfn_to_memslot() are here because they are
969 * used in non-modular code in arch/powerpc/kvm/book3s_hv_rm_mmu.c.
970 * gfn_to_memslot() itself isn't here as an inline because that would
971 * bloat other code too much.
972 */
973static inline struct kvm_memory_slot *
974search_memslots(struct kvm_memslots *slots, gfn_t gfn)
975{
976 int start = 0, end = slots->used_slots;
977 int slot = atomic_read(&slots->lru_slot);
978 struct kvm_memory_slot *memslots = slots->memslots;
979
980 if (gfn >= memslots[slot].base_gfn &&
981 gfn < memslots[slot].base_gfn + memslots[slot].npages)
982 return &memslots[slot];
983
984 while (start < end) {
985 slot = start + (end - start) / 2;
986
987 if (gfn >= memslots[slot].base_gfn)
988 end = slot;
989 else
990 start = slot + 1;
991 }
992
993 if (gfn >= memslots[start].base_gfn &&
994 gfn < memslots[start].base_gfn + memslots[start].npages) {
995 atomic_set(&slots->lru_slot, start);
996 return &memslots[start];
997 }
998
999 return NULL;
1000}
1001
1002static inline struct kvm_memory_slot *
1003__gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn)
1004{
1005 return search_memslots(slots, gfn);
1006}
1007
1008static inline unsigned long
1009__gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1010{
1011 return slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE;
1012}
1013
1014static inline int memslot_id(struct kvm *kvm, gfn_t gfn)
1015{
1016 return gfn_to_memslot(kvm, gfn)->id;
1017}
1018
1019static inline gfn_t
1020hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot)
1021{
1022 gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT;
1023
1024 return slot->base_gfn + gfn_offset;
1025}
1026
1027static inline gpa_t gfn_to_gpa(gfn_t gfn)
1028{
1029 return (gpa_t)gfn << PAGE_SHIFT;
1030}
1031
1032static inline gfn_t gpa_to_gfn(gpa_t gpa)
1033{
1034 return (gfn_t)(gpa >> PAGE_SHIFT);
1035}
1036
1037static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn)
1038{
1039 return (hpa_t)pfn << PAGE_SHIFT;
1040}
1041
1042static inline struct page *kvm_vcpu_gpa_to_page(struct kvm_vcpu *vcpu,
1043 gpa_t gpa)
1044{
1045 return kvm_vcpu_gfn_to_page(vcpu, gpa_to_gfn(gpa));
1046}
1047
1048static inline bool kvm_is_error_gpa(struct kvm *kvm, gpa_t gpa)
1049{
1050 unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa));
1051
1052 return kvm_is_error_hva(hva);
1053}
1054
1055enum kvm_stat_kind {
1056 KVM_STAT_VM,
1057 KVM_STAT_VCPU,
1058};
1059
1060struct kvm_stat_data {
1061 int offset;
1062 struct kvm *kvm;
1063};
1064
1065struct kvm_stats_debugfs_item {
1066 const char *name;
1067 int offset;
1068 enum kvm_stat_kind kind;
1069};
1070extern struct kvm_stats_debugfs_item debugfs_entries[];
1071extern struct dentry *kvm_debugfs_dir;
1072
1073#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1074static inline int mmu_notifier_retry(struct kvm *kvm, unsigned long mmu_seq)
1075{
1076 if (unlikely(kvm->mmu_notifier_count))
1077 return 1;
1078 /*
1079 * Ensure the read of mmu_notifier_count happens before the read
1080 * of mmu_notifier_seq. This interacts with the smp_wmb() in
1081 * mmu_notifier_invalidate_range_end to make sure that the caller
1082 * either sees the old (non-zero) value of mmu_notifier_count or
1083 * the new (incremented) value of mmu_notifier_seq.
1084 * PowerPC Book3s HV KVM calls this under a per-page lock
1085 * rather than under kvm->mmu_lock, for scalability, so
1086 * can't rely on kvm->mmu_lock to keep things ordered.
1087 */
1088 smp_rmb();
1089 if (kvm->mmu_notifier_seq != mmu_seq)
1090 return 1;
1091 return 0;
1092}
1093#endif
1094
1095#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
1096
1097#define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */
1098
1099bool kvm_arch_can_set_irq_routing(struct kvm *kvm);
1100int kvm_set_irq_routing(struct kvm *kvm,
1101 const struct kvm_irq_routing_entry *entries,
1102 unsigned nr,
1103 unsigned flags);
1104int kvm_set_routing_entry(struct kvm *kvm,
1105 struct kvm_kernel_irq_routing_entry *e,
1106 const struct kvm_irq_routing_entry *ue);
1107void kvm_free_irq_routing(struct kvm *kvm);
1108
1109#else
1110
1111static inline void kvm_free_irq_routing(struct kvm *kvm) {}
1112
1113#endif
1114
1115int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi);
1116
1117#ifdef CONFIG_HAVE_KVM_EVENTFD
1118
1119void kvm_eventfd_init(struct kvm *kvm);
1120int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args);
1121
1122#ifdef CONFIG_HAVE_KVM_IRQFD
1123int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args);
1124void kvm_irqfd_release(struct kvm *kvm);
1125void kvm_irq_routing_update(struct kvm *);
1126#else
1127static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
1128{
1129 return -EINVAL;
1130}
1131
1132static inline void kvm_irqfd_release(struct kvm *kvm) {}
1133#endif
1134
1135#else
1136
1137static inline void kvm_eventfd_init(struct kvm *kvm) {}
1138
1139static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
1140{
1141 return -EINVAL;
1142}
1143
1144static inline void kvm_irqfd_release(struct kvm *kvm) {}
1145
1146#ifdef CONFIG_HAVE_KVM_IRQCHIP
1147static inline void kvm_irq_routing_update(struct kvm *kvm)
1148{
1149}
1150#endif
1151
1152static inline int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args)
1153{
1154 return -ENOSYS;
1155}
1156
1157#endif /* CONFIG_HAVE_KVM_EVENTFD */
1158
1159void kvm_arch_irq_routing_update(struct kvm *kvm);
1160
1161static inline void kvm_make_request(int req, struct kvm_vcpu *vcpu)
1162{
1163 /*
1164 * Ensure the rest of the request is published to kvm_check_request's
1165 * caller. Paired with the smp_mb__after_atomic in kvm_check_request.
1166 */
1167 smp_wmb();
1168 set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
1169}
1170
1171static inline bool kvm_request_pending(struct kvm_vcpu *vcpu)
1172{
1173 return READ_ONCE(vcpu->requests);
1174}
1175
1176static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu)
1177{
1178 return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
1179}
1180
1181static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu)
1182{
1183 clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
1184}
1185
1186static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu)
1187{
1188 if (kvm_test_request(req, vcpu)) {
1189 kvm_clear_request(req, vcpu);
1190
1191 /*
1192 * Ensure the rest of the request is visible to kvm_check_request's
1193 * caller. Paired with the smp_wmb in kvm_make_request.
1194 */
1195 smp_mb__after_atomic();
1196 return true;
1197 } else {
1198 return false;
1199 }
1200}
1201
1202extern bool kvm_rebooting;
1203
1204extern unsigned int halt_poll_ns;
1205extern unsigned int halt_poll_ns_grow;
1206extern unsigned int halt_poll_ns_grow_start;
1207extern unsigned int halt_poll_ns_shrink;
1208
1209struct kvm_device {
1210 struct kvm_device_ops *ops;
1211 struct kvm *kvm;
1212 void *private;
1213 struct list_head vm_node;
1214};
1215
1216/* create, destroy, and name are mandatory */
1217struct kvm_device_ops {
1218 const char *name;
1219
1220 /*
1221 * create is called holding kvm->lock and any operations not suitable
1222 * to do while holding the lock should be deferred to init (see
1223 * below).
1224 */
1225 int (*create)(struct kvm_device *dev, u32 type);
1226
1227 /*
1228 * init is called after create if create is successful and is called
1229 * outside of holding kvm->lock.
1230 */
1231 void (*init)(struct kvm_device *dev);
1232
1233 /*
1234 * Destroy is responsible for freeing dev.
1235 *
1236 * Destroy may be called before or after destructors are called
1237 * on emulated I/O regions, depending on whether a reference is
1238 * held by a vcpu or other kvm component that gets destroyed
1239 * after the emulated I/O.
1240 */
1241 void (*destroy)(struct kvm_device *dev);
1242
1243 int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1244 int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1245 int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1246 long (*ioctl)(struct kvm_device *dev, unsigned int ioctl,
1247 unsigned long arg);
1248};
1249
1250void kvm_device_get(struct kvm_device *dev);
1251void kvm_device_put(struct kvm_device *dev);
1252struct kvm_device *kvm_device_from_filp(struct file *filp);
1253int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type);
1254void kvm_unregister_device_ops(u32 type);
1255
1256extern struct kvm_device_ops kvm_mpic_ops;
1257extern struct kvm_device_ops kvm_arm_vgic_v2_ops;
1258extern struct kvm_device_ops kvm_arm_vgic_v3_ops;
1259
1260#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
1261
1262static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
1263{
1264 vcpu->spin_loop.in_spin_loop = val;
1265}
1266static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
1267{
1268 vcpu->spin_loop.dy_eligible = val;
1269}
1270
1271#else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
1272
1273static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
1274{
1275}
1276
1277static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
1278{
1279}
1280#endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
1281
1282#ifdef CONFIG_HAVE_KVM_IRQ_BYPASS
1283bool kvm_arch_has_irq_bypass(void);
1284int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *,
1285 struct irq_bypass_producer *);
1286void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *,
1287 struct irq_bypass_producer *);
1288void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *);
1289void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *);
1290int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
1291 uint32_t guest_irq, bool set);
1292#endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */
1293
1294#ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS
1295/* If we wakeup during the poll time, was it a sucessful poll? */
1296static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
1297{
1298 return vcpu->valid_wakeup;
1299}
1300
1301#else
1302static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
1303{
1304 return true;
1305}
1306#endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */
1307
1308#ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL
1309long kvm_arch_vcpu_async_ioctl(struct file *filp,
1310 unsigned int ioctl, unsigned long arg);
1311#else
1312static inline long kvm_arch_vcpu_async_ioctl(struct file *filp,
1313 unsigned int ioctl,
1314 unsigned long arg)
1315{
1316 return -ENOIOCTLCMD;
1317}
1318#endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */
1319
1320int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
1321 unsigned long start, unsigned long end, bool blockable);
1322
1323#ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE
1324int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu);
1325#else
1326static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
1327{
1328 return 0;
1329}
1330#endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */
1331
1332#endif
1333