1/* SPDX-License-Identifier: GPL-2.0-or-later */
2/* memcontrol.h - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 */
10
11#ifndef _LINUX_MEMCONTROL_H
12#define _LINUX_MEMCONTROL_H
13#include <linux/cgroup.h>
14#include <linux/vm_event_item.h>
15#include <linux/hardirq.h>
16#include <linux/jump_label.h>
17#include <linux/page_counter.h>
18#include <linux/vmpressure.h>
19#include <linux/eventfd.h>
20#include <linux/mm.h>
21#include <linux/vmstat.h>
22#include <linux/writeback.h>
23#include <linux/page-flags.h>
24#include <linux/shrinker.h>
25
26struct mem_cgroup;
27struct obj_cgroup;
28struct page;
29struct mm_struct;
30struct kmem_cache;
31
32/* Cgroup-specific page state, on top of universal node page state */
33enum memcg_stat_item {
34 MEMCG_SWAP = NR_VM_NODE_STAT_ITEMS,
35 MEMCG_SOCK,
36 MEMCG_PERCPU_B,
37 MEMCG_VMALLOC,
38 MEMCG_KMEM,
39 MEMCG_ZSWAP_B,
40 MEMCG_ZSWAPPED,
41 MEMCG_NR_STAT,
42};
43
44enum memcg_memory_event {
45 MEMCG_LOW,
46 MEMCG_HIGH,
47 MEMCG_MAX,
48 MEMCG_OOM,
49 MEMCG_OOM_KILL,
50 MEMCG_OOM_GROUP_KILL,
51 MEMCG_SWAP_HIGH,
52 MEMCG_SWAP_MAX,
53 MEMCG_SWAP_FAIL,
54 MEMCG_NR_MEMORY_EVENTS,
55};
56
57struct mem_cgroup_reclaim_cookie {
58 pg_data_t *pgdat;
59 unsigned int generation;
60};
61
62#ifdef CONFIG_MEMCG
63
64#define MEM_CGROUP_ID_SHIFT 16
65
66struct mem_cgroup_id {
67 int id;
68 refcount_t ref;
69};
70
71/*
72 * Per memcg event counter is incremented at every pagein/pageout. With THP,
73 * it will be incremented by the number of pages. This counter is used
74 * to trigger some periodic events. This is straightforward and better
75 * than using jiffies etc. to handle periodic memcg event.
76 */
77enum mem_cgroup_events_target {
78 MEM_CGROUP_TARGET_THRESH,
79 MEM_CGROUP_TARGET_SOFTLIMIT,
80 MEM_CGROUP_NTARGETS,
81};
82
83struct memcg_vmstats_percpu;
84struct memcg_vmstats;
85
86struct mem_cgroup_reclaim_iter {
87 struct mem_cgroup *position;
88 /* scan generation, increased every round-trip */
89 unsigned int generation;
90};
91
92struct lruvec_stats_percpu {
93 /* Local (CPU and cgroup) state */
94 long state[NR_VM_NODE_STAT_ITEMS];
95
96 /* Delta calculation for lockless upward propagation */
97 long state_prev[NR_VM_NODE_STAT_ITEMS];
98};
99
100struct lruvec_stats {
101 /* Aggregated (CPU and subtree) state */
102 long state[NR_VM_NODE_STAT_ITEMS];
103
104 /* Non-hierarchical (CPU aggregated) state */
105 long state_local[NR_VM_NODE_STAT_ITEMS];
106
107 /* Pending child counts during tree propagation */
108 long state_pending[NR_VM_NODE_STAT_ITEMS];
109};
110
111/*
112 * per-node information in memory controller.
113 */
114struct mem_cgroup_per_node {
115 struct lruvec lruvec;
116
117 struct lruvec_stats_percpu __percpu *lruvec_stats_percpu;
118 struct lruvec_stats lruvec_stats;
119
120 unsigned long lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS];
121
122 struct mem_cgroup_reclaim_iter iter;
123
124 struct shrinker_info __rcu *shrinker_info;
125
126 struct rb_node tree_node; /* RB tree node */
127 unsigned long usage_in_excess;/* Set to the value by which */
128 /* the soft limit is exceeded*/
129 bool on_tree;
130 struct mem_cgroup *memcg; /* Back pointer, we cannot */
131 /* use container_of */
132};
133
134struct mem_cgroup_threshold {
135 struct eventfd_ctx *eventfd;
136 unsigned long threshold;
137};
138
139/* For threshold */
140struct mem_cgroup_threshold_ary {
141 /* An array index points to threshold just below or equal to usage. */
142 int current_threshold;
143 /* Size of entries[] */
144 unsigned int size;
145 /* Array of thresholds */
146 struct mem_cgroup_threshold entries[] __counted_by(size);
147};
148
149struct mem_cgroup_thresholds {
150 /* Primary thresholds array */
151 struct mem_cgroup_threshold_ary *primary;
152 /*
153 * Spare threshold array.
154 * This is needed to make mem_cgroup_unregister_event() "never fail".
155 * It must be able to store at least primary->size - 1 entries.
156 */
157 struct mem_cgroup_threshold_ary *spare;
158};
159
160/*
161 * Remember four most recent foreign writebacks with dirty pages in this
162 * cgroup. Inode sharing is expected to be uncommon and, even if we miss
163 * one in a given round, we're likely to catch it later if it keeps
164 * foreign-dirtying, so a fairly low count should be enough.
165 *
166 * See mem_cgroup_track_foreign_dirty_slowpath() for details.
167 */
168#define MEMCG_CGWB_FRN_CNT 4
169
170struct memcg_cgwb_frn {
171 u64 bdi_id; /* bdi->id of the foreign inode */
172 int memcg_id; /* memcg->css.id of foreign inode */
173 u64 at; /* jiffies_64 at the time of dirtying */
174 struct wb_completion done; /* tracks in-flight foreign writebacks */
175};
176
177/*
178 * Bucket for arbitrarily byte-sized objects charged to a memory
179 * cgroup. The bucket can be reparented in one piece when the cgroup
180 * is destroyed, without having to round up the individual references
181 * of all live memory objects in the wild.
182 */
183struct obj_cgroup {
184 struct percpu_ref refcnt;
185 struct mem_cgroup *memcg;
186 atomic_t nr_charged_bytes;
187 union {
188 struct list_head list; /* protected by objcg_lock */
189 struct rcu_head rcu;
190 };
191};
192
193/*
194 * The memory controller data structure. The memory controller controls both
195 * page cache and RSS per cgroup. We would eventually like to provide
196 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
197 * to help the administrator determine what knobs to tune.
198 */
199struct mem_cgroup {
200 struct cgroup_subsys_state css;
201
202 /* Private memcg ID. Used to ID objects that outlive the cgroup */
203 struct mem_cgroup_id id;
204
205 /* Accounted resources */
206 struct page_counter memory; /* Both v1 & v2 */
207
208 union {
209 struct page_counter swap; /* v2 only */
210 struct page_counter memsw; /* v1 only */
211 };
212
213 /* Legacy consumer-oriented counters */
214 struct page_counter kmem; /* v1 only */
215 struct page_counter tcpmem; /* v1 only */
216
217 /* Range enforcement for interrupt charges */
218 struct work_struct high_work;
219
220#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
221 unsigned long zswap_max;
222#endif
223
224 unsigned long soft_limit;
225
226 /* vmpressure notifications */
227 struct vmpressure vmpressure;
228
229 /*
230 * Should the OOM killer kill all belonging tasks, had it kill one?
231 */
232 bool oom_group;
233
234 /* protected by memcg_oom_lock */
235 bool oom_lock;
236 int under_oom;
237
238 int swappiness;
239 /* OOM-Killer disable */
240 int oom_kill_disable;
241
242 /* memory.events and memory.events.local */
243 struct cgroup_file events_file;
244 struct cgroup_file events_local_file;
245
246 /* handle for "memory.swap.events" */
247 struct cgroup_file swap_events_file;
248
249 /* protect arrays of thresholds */
250 struct mutex thresholds_lock;
251
252 /* thresholds for memory usage. RCU-protected */
253 struct mem_cgroup_thresholds thresholds;
254
255 /* thresholds for mem+swap usage. RCU-protected */
256 struct mem_cgroup_thresholds memsw_thresholds;
257
258 /* For oom notifier event fd */
259 struct list_head oom_notify;
260
261 /*
262 * Should we move charges of a task when a task is moved into this
263 * mem_cgroup ? And what type of charges should we move ?
264 */
265 unsigned long move_charge_at_immigrate;
266 /* taken only while moving_account > 0 */
267 spinlock_t move_lock;
268 unsigned long move_lock_flags;
269
270 CACHELINE_PADDING(_pad1_);
271
272 /* memory.stat */
273 struct memcg_vmstats *vmstats;
274
275 /* memory.events */
276 atomic_long_t memory_events[MEMCG_NR_MEMORY_EVENTS];
277 atomic_long_t memory_events_local[MEMCG_NR_MEMORY_EVENTS];
278
279 /*
280 * Hint of reclaim pressure for socket memroy management. Note
281 * that this indicator should NOT be used in legacy cgroup mode
282 * where socket memory is accounted/charged separately.
283 */
284 unsigned long socket_pressure;
285
286 /* Legacy tcp memory accounting */
287 bool tcpmem_active;
288 int tcpmem_pressure;
289
290#ifdef CONFIG_MEMCG_KMEM
291 int kmemcg_id;
292 /*
293 * memcg->objcg is wiped out as a part of the objcg repaprenting
294 * process. memcg->orig_objcg preserves a pointer (and a reference)
295 * to the original objcg until the end of live of memcg.
296 */
297 struct obj_cgroup __rcu *objcg;
298 struct obj_cgroup *orig_objcg;
299 /* list of inherited objcgs, protected by objcg_lock */
300 struct list_head objcg_list;
301#endif
302
303 CACHELINE_PADDING(_pad2_);
304
305 /*
306 * set > 0 if pages under this cgroup are moving to other cgroup.
307 */
308 atomic_t moving_account;
309 struct task_struct *move_lock_task;
310
311 struct memcg_vmstats_percpu __percpu *vmstats_percpu;
312
313#ifdef CONFIG_CGROUP_WRITEBACK
314 struct list_head cgwb_list;
315 struct wb_domain cgwb_domain;
316 struct memcg_cgwb_frn cgwb_frn[MEMCG_CGWB_FRN_CNT];
317#endif
318
319 /* List of events which userspace want to receive */
320 struct list_head event_list;
321 spinlock_t event_list_lock;
322
323#ifdef CONFIG_TRANSPARENT_HUGEPAGE
324 struct deferred_split deferred_split_queue;
325#endif
326
327#ifdef CONFIG_LRU_GEN
328 /* per-memcg mm_struct list */
329 struct lru_gen_mm_list mm_list;
330#endif
331
332 struct mem_cgroup_per_node *nodeinfo[];
333};
334
335/*
336 * size of first charge trial.
337 * TODO: maybe necessary to use big numbers in big irons or dynamic based of the
338 * workload.
339 */
340#define MEMCG_CHARGE_BATCH 64U
341
342extern struct mem_cgroup *root_mem_cgroup;
343
344enum page_memcg_data_flags {
345 /* page->memcg_data is a pointer to an objcgs vector */
346 MEMCG_DATA_OBJCGS = (1UL << 0),
347 /* page has been accounted as a non-slab kernel page */
348 MEMCG_DATA_KMEM = (1UL << 1),
349 /* the next bit after the last actual flag */
350 __NR_MEMCG_DATA_FLAGS = (1UL << 2),
351};
352
353#define MEMCG_DATA_FLAGS_MASK (__NR_MEMCG_DATA_FLAGS - 1)
354
355static inline bool folio_memcg_kmem(struct folio *folio);
356
357/*
358 * After the initialization objcg->memcg is always pointing at
359 * a valid memcg, but can be atomically swapped to the parent memcg.
360 *
361 * The caller must ensure that the returned memcg won't be released:
362 * e.g. acquire the rcu_read_lock or css_set_lock.
363 */
364static inline struct mem_cgroup *obj_cgroup_memcg(struct obj_cgroup *objcg)
365{
366 return READ_ONCE(objcg->memcg);
367}
368
369/*
370 * __folio_memcg - Get the memory cgroup associated with a non-kmem folio
371 * @folio: Pointer to the folio.
372 *
373 * Returns a pointer to the memory cgroup associated with the folio,
374 * or NULL. This function assumes that the folio is known to have a
375 * proper memory cgroup pointer. It's not safe to call this function
376 * against some type of folios, e.g. slab folios or ex-slab folios or
377 * kmem folios.
378 */
379static inline struct mem_cgroup *__folio_memcg(struct folio *folio)
380{
381 unsigned long memcg_data = folio->memcg_data;
382
383 VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
384 VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJCGS, folio);
385 VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_KMEM, folio);
386
387 return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
388}
389
390/*
391 * __folio_objcg - get the object cgroup associated with a kmem folio.
392 * @folio: Pointer to the folio.
393 *
394 * Returns a pointer to the object cgroup associated with the folio,
395 * or NULL. This function assumes that the folio is known to have a
396 * proper object cgroup pointer. It's not safe to call this function
397 * against some type of folios, e.g. slab folios or ex-slab folios or
398 * LRU folios.
399 */
400static inline struct obj_cgroup *__folio_objcg(struct folio *folio)
401{
402 unsigned long memcg_data = folio->memcg_data;
403
404 VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
405 VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJCGS, folio);
406 VM_BUG_ON_FOLIO(!(memcg_data & MEMCG_DATA_KMEM), folio);
407
408 return (struct obj_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
409}
410
411/*
412 * folio_memcg - Get the memory cgroup associated with a folio.
413 * @folio: Pointer to the folio.
414 *
415 * Returns a pointer to the memory cgroup associated with the folio,
416 * or NULL. This function assumes that the folio is known to have a
417 * proper memory cgroup pointer. It's not safe to call this function
418 * against some type of folios, e.g. slab folios or ex-slab folios.
419 *
420 * For a non-kmem folio any of the following ensures folio and memcg binding
421 * stability:
422 *
423 * - the folio lock
424 * - LRU isolation
425 * - folio_memcg_lock()
426 * - exclusive reference
427 * - mem_cgroup_trylock_pages()
428 *
429 * For a kmem folio a caller should hold an rcu read lock to protect memcg
430 * associated with a kmem folio from being released.
431 */
432static inline struct mem_cgroup *folio_memcg(struct folio *folio)
433{
434 if (folio_memcg_kmem(folio))
435 return obj_cgroup_memcg(objcg: __folio_objcg(folio));
436 return __folio_memcg(folio);
437}
438
439static inline struct mem_cgroup *page_memcg(struct page *page)
440{
441 return folio_memcg(page_folio(page));
442}
443
444/**
445 * folio_memcg_rcu - Locklessly get the memory cgroup associated with a folio.
446 * @folio: Pointer to the folio.
447 *
448 * This function assumes that the folio is known to have a
449 * proper memory cgroup pointer. It's not safe to call this function
450 * against some type of folios, e.g. slab folios or ex-slab folios.
451 *
452 * Return: A pointer to the memory cgroup associated with the folio,
453 * or NULL.
454 */
455static inline struct mem_cgroup *folio_memcg_rcu(struct folio *folio)
456{
457 unsigned long memcg_data = READ_ONCE(folio->memcg_data);
458
459 VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
460 WARN_ON_ONCE(!rcu_read_lock_held());
461
462 if (memcg_data & MEMCG_DATA_KMEM) {
463 struct obj_cgroup *objcg;
464
465 objcg = (void *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
466 return obj_cgroup_memcg(objcg);
467 }
468
469 return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
470}
471
472/*
473 * folio_memcg_check - Get the memory cgroup associated with a folio.
474 * @folio: Pointer to the folio.
475 *
476 * Returns a pointer to the memory cgroup associated with the folio,
477 * or NULL. This function unlike folio_memcg() can take any folio
478 * as an argument. It has to be used in cases when it's not known if a folio
479 * has an associated memory cgroup pointer or an object cgroups vector or
480 * an object cgroup.
481 *
482 * For a non-kmem folio any of the following ensures folio and memcg binding
483 * stability:
484 *
485 * - the folio lock
486 * - LRU isolation
487 * - lock_folio_memcg()
488 * - exclusive reference
489 * - mem_cgroup_trylock_pages()
490 *
491 * For a kmem folio a caller should hold an rcu read lock to protect memcg
492 * associated with a kmem folio from being released.
493 */
494static inline struct mem_cgroup *folio_memcg_check(struct folio *folio)
495{
496 /*
497 * Because folio->memcg_data might be changed asynchronously
498 * for slabs, READ_ONCE() should be used here.
499 */
500 unsigned long memcg_data = READ_ONCE(folio->memcg_data);
501
502 if (memcg_data & MEMCG_DATA_OBJCGS)
503 return NULL;
504
505 if (memcg_data & MEMCG_DATA_KMEM) {
506 struct obj_cgroup *objcg;
507
508 objcg = (void *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
509 return obj_cgroup_memcg(objcg);
510 }
511
512 return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
513}
514
515static inline struct mem_cgroup *page_memcg_check(struct page *page)
516{
517 if (PageTail(page))
518 return NULL;
519 return folio_memcg_check(folio: (struct folio *)page);
520}
521
522static inline struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg)
523{
524 struct mem_cgroup *memcg;
525
526 rcu_read_lock();
527retry:
528 memcg = obj_cgroup_memcg(objcg);
529 if (unlikely(!css_tryget(&memcg->css)))
530 goto retry;
531 rcu_read_unlock();
532
533 return memcg;
534}
535
536#ifdef CONFIG_MEMCG_KMEM
537/*
538 * folio_memcg_kmem - Check if the folio has the memcg_kmem flag set.
539 * @folio: Pointer to the folio.
540 *
541 * Checks if the folio has MemcgKmem flag set. The caller must ensure
542 * that the folio has an associated memory cgroup. It's not safe to call
543 * this function against some types of folios, e.g. slab folios.
544 */
545static inline bool folio_memcg_kmem(struct folio *folio)
546{
547 VM_BUG_ON_PGFLAGS(PageTail(&folio->page), &folio->page);
548 VM_BUG_ON_FOLIO(folio->memcg_data & MEMCG_DATA_OBJCGS, folio);
549 return folio->memcg_data & MEMCG_DATA_KMEM;
550}
551
552
553#else
554static inline bool folio_memcg_kmem(struct folio *folio)
555{
556 return false;
557}
558
559#endif
560
561static inline bool PageMemcgKmem(struct page *page)
562{
563 return folio_memcg_kmem(page_folio(page));
564}
565
566static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
567{
568 return (memcg == root_mem_cgroup);
569}
570
571static inline bool mem_cgroup_disabled(void)
572{
573 return !cgroup_subsys_enabled(memory_cgrp_subsys);
574}
575
576static inline void mem_cgroup_protection(struct mem_cgroup *root,
577 struct mem_cgroup *memcg,
578 unsigned long *min,
579 unsigned long *low)
580{
581 *min = *low = 0;
582
583 if (mem_cgroup_disabled())
584 return;
585
586 /*
587 * There is no reclaim protection applied to a targeted reclaim.
588 * We are special casing this specific case here because
589 * mem_cgroup_calculate_protection is not robust enough to keep
590 * the protection invariant for calculated effective values for
591 * parallel reclaimers with different reclaim target. This is
592 * especially a problem for tail memcgs (as they have pages on LRU)
593 * which would want to have effective values 0 for targeted reclaim
594 * but a different value for external reclaim.
595 *
596 * Example
597 * Let's have global and A's reclaim in parallel:
598 * |
599 * A (low=2G, usage = 3G, max = 3G, children_low_usage = 1.5G)
600 * |\
601 * | C (low = 1G, usage = 2.5G)
602 * B (low = 1G, usage = 0.5G)
603 *
604 * For the global reclaim
605 * A.elow = A.low
606 * B.elow = min(B.usage, B.low) because children_low_usage <= A.elow
607 * C.elow = min(C.usage, C.low)
608 *
609 * With the effective values resetting we have A reclaim
610 * A.elow = 0
611 * B.elow = B.low
612 * C.elow = C.low
613 *
614 * If the global reclaim races with A's reclaim then
615 * B.elow = C.elow = 0 because children_low_usage > A.elow)
616 * is possible and reclaiming B would be violating the protection.
617 *
618 */
619 if (root == memcg)
620 return;
621
622 *min = READ_ONCE(memcg->memory.emin);
623 *low = READ_ONCE(memcg->memory.elow);
624}
625
626void mem_cgroup_calculate_protection(struct mem_cgroup *root,
627 struct mem_cgroup *memcg);
628
629static inline bool mem_cgroup_unprotected(struct mem_cgroup *target,
630 struct mem_cgroup *memcg)
631{
632 /*
633 * The root memcg doesn't account charges, and doesn't support
634 * protection. The target memcg's protection is ignored, see
635 * mem_cgroup_calculate_protection() and mem_cgroup_protection()
636 */
637 return mem_cgroup_disabled() || mem_cgroup_is_root(memcg) ||
638 memcg == target;
639}
640
641static inline bool mem_cgroup_below_low(struct mem_cgroup *target,
642 struct mem_cgroup *memcg)
643{
644 if (mem_cgroup_unprotected(target, memcg))
645 return false;
646
647 return READ_ONCE(memcg->memory.elow) >=
648 page_counter_read(counter: &memcg->memory);
649}
650
651static inline bool mem_cgroup_below_min(struct mem_cgroup *target,
652 struct mem_cgroup *memcg)
653{
654 if (mem_cgroup_unprotected(target, memcg))
655 return false;
656
657 return READ_ONCE(memcg->memory.emin) >=
658 page_counter_read(counter: &memcg->memory);
659}
660
661void mem_cgroup_commit_charge(struct folio *folio, struct mem_cgroup *memcg);
662
663int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp);
664
665/**
666 * mem_cgroup_charge - Charge a newly allocated folio to a cgroup.
667 * @folio: Folio to charge.
668 * @mm: mm context of the allocating task.
669 * @gfp: Reclaim mode.
670 *
671 * Try to charge @folio to the memcg that @mm belongs to, reclaiming
672 * pages according to @gfp if necessary. If @mm is NULL, try to
673 * charge to the active memcg.
674 *
675 * Do not use this for folios allocated for swapin.
676 *
677 * Return: 0 on success. Otherwise, an error code is returned.
678 */
679static inline int mem_cgroup_charge(struct folio *folio, struct mm_struct *mm,
680 gfp_t gfp)
681{
682 if (mem_cgroup_disabled())
683 return 0;
684 return __mem_cgroup_charge(folio, mm, gfp);
685}
686
687int mem_cgroup_hugetlb_try_charge(struct mem_cgroup *memcg, gfp_t gfp,
688 long nr_pages);
689
690int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm,
691 gfp_t gfp, swp_entry_t entry);
692void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry);
693
694void __mem_cgroup_uncharge(struct folio *folio);
695
696/**
697 * mem_cgroup_uncharge - Uncharge a folio.
698 * @folio: Folio to uncharge.
699 *
700 * Uncharge a folio previously charged with mem_cgroup_charge().
701 */
702static inline void mem_cgroup_uncharge(struct folio *folio)
703{
704 if (mem_cgroup_disabled())
705 return;
706 __mem_cgroup_uncharge(folio);
707}
708
709void __mem_cgroup_uncharge_list(struct list_head *page_list);
710static inline void mem_cgroup_uncharge_list(struct list_head *page_list)
711{
712 if (mem_cgroup_disabled())
713 return;
714 __mem_cgroup_uncharge_list(page_list);
715}
716
717void mem_cgroup_cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages);
718
719void mem_cgroup_replace_folio(struct folio *old, struct folio *new);
720
721void mem_cgroup_migrate(struct folio *old, struct folio *new);
722
723/**
724 * mem_cgroup_lruvec - get the lru list vector for a memcg & node
725 * @memcg: memcg of the wanted lruvec
726 * @pgdat: pglist_data
727 *
728 * Returns the lru list vector holding pages for a given @memcg &
729 * @pgdat combination. This can be the node lruvec, if the memory
730 * controller is disabled.
731 */
732static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
733 struct pglist_data *pgdat)
734{
735 struct mem_cgroup_per_node *mz;
736 struct lruvec *lruvec;
737
738 if (mem_cgroup_disabled()) {
739 lruvec = &pgdat->__lruvec;
740 goto out;
741 }
742
743 if (!memcg)
744 memcg = root_mem_cgroup;
745
746 mz = memcg->nodeinfo[pgdat->node_id];
747 lruvec = &mz->lruvec;
748out:
749 /*
750 * Since a node can be onlined after the mem_cgroup was created,
751 * we have to be prepared to initialize lruvec->pgdat here;
752 * and if offlined then reonlined, we need to reinitialize it.
753 */
754 if (unlikely(lruvec->pgdat != pgdat))
755 lruvec->pgdat = pgdat;
756 return lruvec;
757}
758
759/**
760 * folio_lruvec - return lruvec for isolating/putting an LRU folio
761 * @folio: Pointer to the folio.
762 *
763 * This function relies on folio->mem_cgroup being stable.
764 */
765static inline struct lruvec *folio_lruvec(struct folio *folio)
766{
767 struct mem_cgroup *memcg = folio_memcg(folio);
768
769 VM_WARN_ON_ONCE_FOLIO(!memcg && !mem_cgroup_disabled(), folio);
770 return mem_cgroup_lruvec(memcg, pgdat: folio_pgdat(folio));
771}
772
773struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
774
775struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm);
776
777struct mem_cgroup *get_mem_cgroup_from_current(void);
778
779struct lruvec *folio_lruvec_lock(struct folio *folio);
780struct lruvec *folio_lruvec_lock_irq(struct folio *folio);
781struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
782 unsigned long *flags);
783
784#ifdef CONFIG_DEBUG_VM
785void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio);
786#else
787static inline
788void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
789{
790}
791#endif
792
793static inline
794struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){
795 return css ? container_of(css, struct mem_cgroup, css) : NULL;
796}
797
798static inline bool obj_cgroup_tryget(struct obj_cgroup *objcg)
799{
800 return percpu_ref_tryget(ref: &objcg->refcnt);
801}
802
803static inline void obj_cgroup_get(struct obj_cgroup *objcg)
804{
805 percpu_ref_get(ref: &objcg->refcnt);
806}
807
808static inline void obj_cgroup_get_many(struct obj_cgroup *objcg,
809 unsigned long nr)
810{
811 percpu_ref_get_many(ref: &objcg->refcnt, nr);
812}
813
814static inline void obj_cgroup_put(struct obj_cgroup *objcg)
815{
816 percpu_ref_put(ref: &objcg->refcnt);
817}
818
819static inline bool mem_cgroup_tryget(struct mem_cgroup *memcg)
820{
821 return !memcg || css_tryget(css: &memcg->css);
822}
823
824static inline void mem_cgroup_put(struct mem_cgroup *memcg)
825{
826 if (memcg)
827 css_put(css: &memcg->css);
828}
829
830#define mem_cgroup_from_counter(counter, member) \
831 container_of(counter, struct mem_cgroup, member)
832
833struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
834 struct mem_cgroup *,
835 struct mem_cgroup_reclaim_cookie *);
836void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
837void mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
838 int (*)(struct task_struct *, void *), void *arg);
839
840static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
841{
842 if (mem_cgroup_disabled())
843 return 0;
844
845 return memcg->id.id;
846}
847struct mem_cgroup *mem_cgroup_from_id(unsigned short id);
848
849#ifdef CONFIG_SHRINKER_DEBUG
850static inline unsigned long mem_cgroup_ino(struct mem_cgroup *memcg)
851{
852 return memcg ? cgroup_ino(cgrp: memcg->css.cgroup) : 0;
853}
854
855struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino);
856#endif
857
858static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
859{
860 return mem_cgroup_from_css(css: seq_css(seq: m));
861}
862
863static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
864{
865 struct mem_cgroup_per_node *mz;
866
867 if (mem_cgroup_disabled())
868 return NULL;
869
870 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
871 return mz->memcg;
872}
873
874/**
875 * parent_mem_cgroup - find the accounting parent of a memcg
876 * @memcg: memcg whose parent to find
877 *
878 * Returns the parent memcg, or NULL if this is the root.
879 */
880static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
881{
882 return mem_cgroup_from_css(css: memcg->css.parent);
883}
884
885static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg,
886 struct mem_cgroup *root)
887{
888 if (root == memcg)
889 return true;
890 return cgroup_is_descendant(cgrp: memcg->css.cgroup, ancestor: root->css.cgroup);
891}
892
893static inline bool mm_match_cgroup(struct mm_struct *mm,
894 struct mem_cgroup *memcg)
895{
896 struct mem_cgroup *task_memcg;
897 bool match = false;
898
899 rcu_read_lock();
900 task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
901 if (task_memcg)
902 match = mem_cgroup_is_descendant(memcg: task_memcg, root: memcg);
903 rcu_read_unlock();
904 return match;
905}
906
907struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio);
908ino_t page_cgroup_ino(struct page *page);
909
910static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
911{
912 if (mem_cgroup_disabled())
913 return true;
914 return !!(memcg->css.flags & CSS_ONLINE);
915}
916
917void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
918 int zid, int nr_pages);
919
920static inline
921unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
922 enum lru_list lru, int zone_idx)
923{
924 struct mem_cgroup_per_node *mz;
925
926 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
927 return READ_ONCE(mz->lru_zone_size[zone_idx][lru]);
928}
929
930void mem_cgroup_handle_over_high(gfp_t gfp_mask);
931
932unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg);
933
934unsigned long mem_cgroup_size(struct mem_cgroup *memcg);
935
936void mem_cgroup_print_oom_context(struct mem_cgroup *memcg,
937 struct task_struct *p);
938
939void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg);
940
941static inline void mem_cgroup_enter_user_fault(void)
942{
943 WARN_ON(current->in_user_fault);
944 current->in_user_fault = 1;
945}
946
947static inline void mem_cgroup_exit_user_fault(void)
948{
949 WARN_ON(!current->in_user_fault);
950 current->in_user_fault = 0;
951}
952
953static inline bool task_in_memcg_oom(struct task_struct *p)
954{
955 return p->memcg_in_oom;
956}
957
958bool mem_cgroup_oom_synchronize(bool wait);
959struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
960 struct mem_cgroup *oom_domain);
961void mem_cgroup_print_oom_group(struct mem_cgroup *memcg);
962
963void folio_memcg_lock(struct folio *folio);
964void folio_memcg_unlock(struct folio *folio);
965
966void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val);
967
968/* try to stablize folio_memcg() for all the pages in a memcg */
969static inline bool mem_cgroup_trylock_pages(struct mem_cgroup *memcg)
970{
971 rcu_read_lock();
972
973 if (mem_cgroup_disabled() || !atomic_read(v: &memcg->moving_account))
974 return true;
975
976 rcu_read_unlock();
977 return false;
978}
979
980static inline void mem_cgroup_unlock_pages(void)
981{
982 rcu_read_unlock();
983}
984
985/* idx can be of type enum memcg_stat_item or node_stat_item */
986static inline void mod_memcg_state(struct mem_cgroup *memcg,
987 int idx, int val)
988{
989 unsigned long flags;
990
991 local_irq_save(flags);
992 __mod_memcg_state(memcg, idx, val);
993 local_irq_restore(flags);
994}
995
996static inline void mod_memcg_page_state(struct page *page,
997 int idx, int val)
998{
999 struct mem_cgroup *memcg;
1000
1001 if (mem_cgroup_disabled())
1002 return;
1003
1004 rcu_read_lock();
1005 memcg = page_memcg(page);
1006 if (memcg)
1007 mod_memcg_state(memcg, idx, val);
1008 rcu_read_unlock();
1009}
1010
1011unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx);
1012
1013static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
1014 enum node_stat_item idx)
1015{
1016 struct mem_cgroup_per_node *pn;
1017 long x;
1018
1019 if (mem_cgroup_disabled())
1020 return node_page_state(pgdat: lruvec_pgdat(lruvec), item: idx);
1021
1022 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1023 x = READ_ONCE(pn->lruvec_stats.state[idx]);
1024#ifdef CONFIG_SMP
1025 if (x < 0)
1026 x = 0;
1027#endif
1028 return x;
1029}
1030
1031static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
1032 enum node_stat_item idx)
1033{
1034 struct mem_cgroup_per_node *pn;
1035 long x = 0;
1036
1037 if (mem_cgroup_disabled())
1038 return node_page_state(pgdat: lruvec_pgdat(lruvec), item: idx);
1039
1040 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1041 x = READ_ONCE(pn->lruvec_stats.state_local[idx]);
1042#ifdef CONFIG_SMP
1043 if (x < 0)
1044 x = 0;
1045#endif
1046 return x;
1047}
1048
1049void mem_cgroup_flush_stats(void);
1050void mem_cgroup_flush_stats_ratelimited(void);
1051
1052void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
1053 int val);
1054void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val);
1055
1056static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1057 int val)
1058{
1059 unsigned long flags;
1060
1061 local_irq_save(flags);
1062 __mod_lruvec_kmem_state(p, idx, val);
1063 local_irq_restore(flags);
1064}
1065
1066static inline void mod_memcg_lruvec_state(struct lruvec *lruvec,
1067 enum node_stat_item idx, int val)
1068{
1069 unsigned long flags;
1070
1071 local_irq_save(flags);
1072 __mod_memcg_lruvec_state(lruvec, idx, val);
1073 local_irq_restore(flags);
1074}
1075
1076void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
1077 unsigned long count);
1078
1079static inline void count_memcg_events(struct mem_cgroup *memcg,
1080 enum vm_event_item idx,
1081 unsigned long count)
1082{
1083 unsigned long flags;
1084
1085 local_irq_save(flags);
1086 __count_memcg_events(memcg, idx, count);
1087 local_irq_restore(flags);
1088}
1089
1090static inline void count_memcg_folio_events(struct folio *folio,
1091 enum vm_event_item idx, unsigned long nr)
1092{
1093 struct mem_cgroup *memcg = folio_memcg(folio);
1094
1095 if (memcg)
1096 count_memcg_events(memcg, idx, count: nr);
1097}
1098
1099static inline void count_memcg_event_mm(struct mm_struct *mm,
1100 enum vm_event_item idx)
1101{
1102 struct mem_cgroup *memcg;
1103
1104 if (mem_cgroup_disabled())
1105 return;
1106
1107 rcu_read_lock();
1108 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1109 if (likely(memcg))
1110 count_memcg_events(memcg, idx, count: 1);
1111 rcu_read_unlock();
1112}
1113
1114static inline void memcg_memory_event(struct mem_cgroup *memcg,
1115 enum memcg_memory_event event)
1116{
1117 bool swap_event = event == MEMCG_SWAP_HIGH || event == MEMCG_SWAP_MAX ||
1118 event == MEMCG_SWAP_FAIL;
1119
1120 atomic_long_inc(v: &memcg->memory_events_local[event]);
1121 if (!swap_event)
1122 cgroup_file_notify(cfile: &memcg->events_local_file);
1123
1124 do {
1125 atomic_long_inc(v: &memcg->memory_events[event]);
1126 if (swap_event)
1127 cgroup_file_notify(cfile: &memcg->swap_events_file);
1128 else
1129 cgroup_file_notify(cfile: &memcg->events_file);
1130
1131 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1132 break;
1133 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1134 break;
1135 } while ((memcg = parent_mem_cgroup(memcg)) &&
1136 !mem_cgroup_is_root(memcg));
1137}
1138
1139static inline void memcg_memory_event_mm(struct mm_struct *mm,
1140 enum memcg_memory_event event)
1141{
1142 struct mem_cgroup *memcg;
1143
1144 if (mem_cgroup_disabled())
1145 return;
1146
1147 rcu_read_lock();
1148 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1149 if (likely(memcg))
1150 memcg_memory_event(memcg, event);
1151 rcu_read_unlock();
1152}
1153
1154void split_page_memcg(struct page *head, unsigned int nr);
1155
1156unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
1157 gfp_t gfp_mask,
1158 unsigned long *total_scanned);
1159
1160#else /* CONFIG_MEMCG */
1161
1162#define MEM_CGROUP_ID_SHIFT 0
1163
1164static inline struct mem_cgroup *folio_memcg(struct folio *folio)
1165{
1166 return NULL;
1167}
1168
1169static inline struct mem_cgroup *page_memcg(struct page *page)
1170{
1171 return NULL;
1172}
1173
1174static inline struct mem_cgroup *folio_memcg_rcu(struct folio *folio)
1175{
1176 WARN_ON_ONCE(!rcu_read_lock_held());
1177 return NULL;
1178}
1179
1180static inline struct mem_cgroup *folio_memcg_check(struct folio *folio)
1181{
1182 return NULL;
1183}
1184
1185static inline struct mem_cgroup *page_memcg_check(struct page *page)
1186{
1187 return NULL;
1188}
1189
1190static inline bool folio_memcg_kmem(struct folio *folio)
1191{
1192 return false;
1193}
1194
1195static inline bool PageMemcgKmem(struct page *page)
1196{
1197 return false;
1198}
1199
1200static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
1201{
1202 return true;
1203}
1204
1205static inline bool mem_cgroup_disabled(void)
1206{
1207 return true;
1208}
1209
1210static inline void memcg_memory_event(struct mem_cgroup *memcg,
1211 enum memcg_memory_event event)
1212{
1213}
1214
1215static inline void memcg_memory_event_mm(struct mm_struct *mm,
1216 enum memcg_memory_event event)
1217{
1218}
1219
1220static inline void mem_cgroup_protection(struct mem_cgroup *root,
1221 struct mem_cgroup *memcg,
1222 unsigned long *min,
1223 unsigned long *low)
1224{
1225 *min = *low = 0;
1226}
1227
1228static inline void mem_cgroup_calculate_protection(struct mem_cgroup *root,
1229 struct mem_cgroup *memcg)
1230{
1231}
1232
1233static inline bool mem_cgroup_unprotected(struct mem_cgroup *target,
1234 struct mem_cgroup *memcg)
1235{
1236 return true;
1237}
1238static inline bool mem_cgroup_below_low(struct mem_cgroup *target,
1239 struct mem_cgroup *memcg)
1240{
1241 return false;
1242}
1243
1244static inline bool mem_cgroup_below_min(struct mem_cgroup *target,
1245 struct mem_cgroup *memcg)
1246{
1247 return false;
1248}
1249
1250static inline void mem_cgroup_commit_charge(struct folio *folio,
1251 struct mem_cgroup *memcg)
1252{
1253}
1254
1255static inline int mem_cgroup_charge(struct folio *folio,
1256 struct mm_struct *mm, gfp_t gfp)
1257{
1258 return 0;
1259}
1260
1261static inline int mem_cgroup_hugetlb_try_charge(struct mem_cgroup *memcg,
1262 gfp_t gfp, long nr_pages)
1263{
1264 return 0;
1265}
1266
1267static inline int mem_cgroup_swapin_charge_folio(struct folio *folio,
1268 struct mm_struct *mm, gfp_t gfp, swp_entry_t entry)
1269{
1270 return 0;
1271}
1272
1273static inline void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
1274{
1275}
1276
1277static inline void mem_cgroup_uncharge(struct folio *folio)
1278{
1279}
1280
1281static inline void mem_cgroup_uncharge_list(struct list_head *page_list)
1282{
1283}
1284
1285static inline void mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
1286 unsigned int nr_pages)
1287{
1288}
1289
1290static inline void mem_cgroup_replace_folio(struct folio *old,
1291 struct folio *new)
1292{
1293}
1294
1295static inline void mem_cgroup_migrate(struct folio *old, struct folio *new)
1296{
1297}
1298
1299static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
1300 struct pglist_data *pgdat)
1301{
1302 return &pgdat->__lruvec;
1303}
1304
1305static inline struct lruvec *folio_lruvec(struct folio *folio)
1306{
1307 struct pglist_data *pgdat = folio_pgdat(folio);
1308 return &pgdat->__lruvec;
1309}
1310
1311static inline
1312void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1313{
1314}
1315
1316static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
1317{
1318 return NULL;
1319}
1320
1321static inline bool mm_match_cgroup(struct mm_struct *mm,
1322 struct mem_cgroup *memcg)
1323{
1324 return true;
1325}
1326
1327static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1328{
1329 return NULL;
1330}
1331
1332static inline struct mem_cgroup *get_mem_cgroup_from_current(void)
1333{
1334 return NULL;
1335}
1336
1337static inline
1338struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css)
1339{
1340 return NULL;
1341}
1342
1343static inline void obj_cgroup_put(struct obj_cgroup *objcg)
1344{
1345}
1346
1347static inline bool mem_cgroup_tryget(struct mem_cgroup *memcg)
1348{
1349 return true;
1350}
1351
1352static inline void mem_cgroup_put(struct mem_cgroup *memcg)
1353{
1354}
1355
1356static inline struct lruvec *folio_lruvec_lock(struct folio *folio)
1357{
1358 struct pglist_data *pgdat = folio_pgdat(folio);
1359
1360 spin_lock(&pgdat->__lruvec.lru_lock);
1361 return &pgdat->__lruvec;
1362}
1363
1364static inline struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1365{
1366 struct pglist_data *pgdat = folio_pgdat(folio);
1367
1368 spin_lock_irq(&pgdat->__lruvec.lru_lock);
1369 return &pgdat->__lruvec;
1370}
1371
1372static inline struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1373 unsigned long *flagsp)
1374{
1375 struct pglist_data *pgdat = folio_pgdat(folio);
1376
1377 spin_lock_irqsave(&pgdat->__lruvec.lru_lock, *flagsp);
1378 return &pgdat->__lruvec;
1379}
1380
1381static inline struct mem_cgroup *
1382mem_cgroup_iter(struct mem_cgroup *root,
1383 struct mem_cgroup *prev,
1384 struct mem_cgroup_reclaim_cookie *reclaim)
1385{
1386 return NULL;
1387}
1388
1389static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
1390 struct mem_cgroup *prev)
1391{
1392}
1393
1394static inline void mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1395 int (*fn)(struct task_struct *, void *), void *arg)
1396{
1397}
1398
1399static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
1400{
1401 return 0;
1402}
1403
1404static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
1405{
1406 WARN_ON_ONCE(id);
1407 /* XXX: This should always return root_mem_cgroup */
1408 return NULL;
1409}
1410
1411#ifdef CONFIG_SHRINKER_DEBUG
1412static inline unsigned long mem_cgroup_ino(struct mem_cgroup *memcg)
1413{
1414 return 0;
1415}
1416
1417static inline struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino)
1418{
1419 return NULL;
1420}
1421#endif
1422
1423static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
1424{
1425 return NULL;
1426}
1427
1428static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
1429{
1430 return NULL;
1431}
1432
1433static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
1434{
1435 return true;
1436}
1437
1438static inline
1439unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
1440 enum lru_list lru, int zone_idx)
1441{
1442 return 0;
1443}
1444
1445static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1446{
1447 return 0;
1448}
1449
1450static inline unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1451{
1452 return 0;
1453}
1454
1455static inline void
1456mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1457{
1458}
1459
1460static inline void
1461mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1462{
1463}
1464
1465static inline void folio_memcg_lock(struct folio *folio)
1466{
1467}
1468
1469static inline void folio_memcg_unlock(struct folio *folio)
1470{
1471}
1472
1473static inline bool mem_cgroup_trylock_pages(struct mem_cgroup *memcg)
1474{
1475 /* to match folio_memcg_rcu() */
1476 rcu_read_lock();
1477 return true;
1478}
1479
1480static inline void mem_cgroup_unlock_pages(void)
1481{
1482 rcu_read_unlock();
1483}
1484
1485static inline void mem_cgroup_handle_over_high(gfp_t gfp_mask)
1486{
1487}
1488
1489static inline void mem_cgroup_enter_user_fault(void)
1490{
1491}
1492
1493static inline void mem_cgroup_exit_user_fault(void)
1494{
1495}
1496
1497static inline bool task_in_memcg_oom(struct task_struct *p)
1498{
1499 return false;
1500}
1501
1502static inline bool mem_cgroup_oom_synchronize(bool wait)
1503{
1504 return false;
1505}
1506
1507static inline struct mem_cgroup *mem_cgroup_get_oom_group(
1508 struct task_struct *victim, struct mem_cgroup *oom_domain)
1509{
1510 return NULL;
1511}
1512
1513static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1514{
1515}
1516
1517static inline void __mod_memcg_state(struct mem_cgroup *memcg,
1518 int idx,
1519 int nr)
1520{
1521}
1522
1523static inline void mod_memcg_state(struct mem_cgroup *memcg,
1524 int idx,
1525 int nr)
1526{
1527}
1528
1529static inline void mod_memcg_page_state(struct page *page,
1530 int idx, int val)
1531{
1532}
1533
1534static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
1535{
1536 return 0;
1537}
1538
1539static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
1540 enum node_stat_item idx)
1541{
1542 return node_page_state(lruvec_pgdat(lruvec), idx);
1543}
1544
1545static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
1546 enum node_stat_item idx)
1547{
1548 return node_page_state(lruvec_pgdat(lruvec), idx);
1549}
1550
1551static inline void mem_cgroup_flush_stats(void)
1552{
1553}
1554
1555static inline void mem_cgroup_flush_stats_ratelimited(void)
1556{
1557}
1558
1559static inline void __mod_memcg_lruvec_state(struct lruvec *lruvec,
1560 enum node_stat_item idx, int val)
1561{
1562}
1563
1564static inline void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1565 int val)
1566{
1567 struct page *page = virt_to_head_page(p);
1568
1569 __mod_node_page_state(page_pgdat(page), idx, val);
1570}
1571
1572static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1573 int val)
1574{
1575 struct page *page = virt_to_head_page(p);
1576
1577 mod_node_page_state(page_pgdat(page), idx, val);
1578}
1579
1580static inline void count_memcg_events(struct mem_cgroup *memcg,
1581 enum vm_event_item idx,
1582 unsigned long count)
1583{
1584}
1585
1586static inline void __count_memcg_events(struct mem_cgroup *memcg,
1587 enum vm_event_item idx,
1588 unsigned long count)
1589{
1590}
1591
1592static inline void count_memcg_folio_events(struct folio *folio,
1593 enum vm_event_item idx, unsigned long nr)
1594{
1595}
1596
1597static inline
1598void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx)
1599{
1600}
1601
1602static inline void split_page_memcg(struct page *head, unsigned int nr)
1603{
1604}
1605
1606static inline
1607unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
1608 gfp_t gfp_mask,
1609 unsigned long *total_scanned)
1610{
1611 return 0;
1612}
1613#endif /* CONFIG_MEMCG */
1614
1615static inline void __inc_lruvec_kmem_state(void *p, enum node_stat_item idx)
1616{
1617 __mod_lruvec_kmem_state(p, idx, val: 1);
1618}
1619
1620static inline void __dec_lruvec_kmem_state(void *p, enum node_stat_item idx)
1621{
1622 __mod_lruvec_kmem_state(p, idx, val: -1);
1623}
1624
1625static inline struct lruvec *parent_lruvec(struct lruvec *lruvec)
1626{
1627 struct mem_cgroup *memcg;
1628
1629 memcg = lruvec_memcg(lruvec);
1630 if (!memcg)
1631 return NULL;
1632 memcg = parent_mem_cgroup(memcg);
1633 if (!memcg)
1634 return NULL;
1635 return mem_cgroup_lruvec(memcg, pgdat: lruvec_pgdat(lruvec));
1636}
1637
1638static inline void unlock_page_lruvec(struct lruvec *lruvec)
1639{
1640 spin_unlock(lock: &lruvec->lru_lock);
1641}
1642
1643static inline void unlock_page_lruvec_irq(struct lruvec *lruvec)
1644{
1645 spin_unlock_irq(lock: &lruvec->lru_lock);
1646}
1647
1648static inline void unlock_page_lruvec_irqrestore(struct lruvec *lruvec,
1649 unsigned long flags)
1650{
1651 spin_unlock_irqrestore(lock: &lruvec->lru_lock, flags);
1652}
1653
1654/* Test requires a stable page->memcg binding, see page_memcg() */
1655static inline bool folio_matches_lruvec(struct folio *folio,
1656 struct lruvec *lruvec)
1657{
1658 return lruvec_pgdat(lruvec) == folio_pgdat(folio) &&
1659 lruvec_memcg(lruvec) == folio_memcg(folio);
1660}
1661
1662/* Don't lock again iff page's lruvec locked */
1663static inline struct lruvec *folio_lruvec_relock_irq(struct folio *folio,
1664 struct lruvec *locked_lruvec)
1665{
1666 if (locked_lruvec) {
1667 if (folio_matches_lruvec(folio, lruvec: locked_lruvec))
1668 return locked_lruvec;
1669
1670 unlock_page_lruvec_irq(lruvec: locked_lruvec);
1671 }
1672
1673 return folio_lruvec_lock_irq(folio);
1674}
1675
1676/* Don't lock again iff page's lruvec locked */
1677static inline struct lruvec *folio_lruvec_relock_irqsave(struct folio *folio,
1678 struct lruvec *locked_lruvec, unsigned long *flags)
1679{
1680 if (locked_lruvec) {
1681 if (folio_matches_lruvec(folio, lruvec: locked_lruvec))
1682 return locked_lruvec;
1683
1684 unlock_page_lruvec_irqrestore(lruvec: locked_lruvec, flags: *flags);
1685 }
1686
1687 return folio_lruvec_lock_irqsave(folio, flags);
1688}
1689
1690#ifdef CONFIG_CGROUP_WRITEBACK
1691
1692struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb);
1693void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
1694 unsigned long *pheadroom, unsigned long *pdirty,
1695 unsigned long *pwriteback);
1696
1697void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
1698 struct bdi_writeback *wb);
1699
1700static inline void mem_cgroup_track_foreign_dirty(struct folio *folio,
1701 struct bdi_writeback *wb)
1702{
1703 struct mem_cgroup *memcg;
1704
1705 if (mem_cgroup_disabled())
1706 return;
1707
1708 memcg = folio_memcg(folio);
1709 if (unlikely(memcg && &memcg->css != wb->memcg_css))
1710 mem_cgroup_track_foreign_dirty_slowpath(folio, wb);
1711}
1712
1713void mem_cgroup_flush_foreign(struct bdi_writeback *wb);
1714
1715#else /* CONFIG_CGROUP_WRITEBACK */
1716
1717static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
1718{
1719 return NULL;
1720}
1721
1722static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb,
1723 unsigned long *pfilepages,
1724 unsigned long *pheadroom,
1725 unsigned long *pdirty,
1726 unsigned long *pwriteback)
1727{
1728}
1729
1730static inline void mem_cgroup_track_foreign_dirty(struct folio *folio,
1731 struct bdi_writeback *wb)
1732{
1733}
1734
1735static inline void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
1736{
1737}
1738
1739#endif /* CONFIG_CGROUP_WRITEBACK */
1740
1741struct sock;
1742bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
1743 gfp_t gfp_mask);
1744void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1745#ifdef CONFIG_MEMCG
1746extern struct static_key_false memcg_sockets_enabled_key;
1747#define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key)
1748void mem_cgroup_sk_alloc(struct sock *sk);
1749void mem_cgroup_sk_free(struct sock *sk);
1750static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1751{
1752 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1753 return !!memcg->tcpmem_pressure;
1754 do {
1755 if (time_before(jiffies, READ_ONCE(memcg->socket_pressure)))
1756 return true;
1757 } while ((memcg = parent_mem_cgroup(memcg)));
1758 return false;
1759}
1760
1761int alloc_shrinker_info(struct mem_cgroup *memcg);
1762void free_shrinker_info(struct mem_cgroup *memcg);
1763void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id);
1764void reparent_shrinker_deferred(struct mem_cgroup *memcg);
1765#else
1766#define mem_cgroup_sockets_enabled 0
1767static inline void mem_cgroup_sk_alloc(struct sock *sk) { };
1768static inline void mem_cgroup_sk_free(struct sock *sk) { };
1769static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1770{
1771 return false;
1772}
1773
1774static inline void set_shrinker_bit(struct mem_cgroup *memcg,
1775 int nid, int shrinker_id)
1776{
1777}
1778#endif
1779
1780#ifdef CONFIG_MEMCG_KMEM
1781bool mem_cgroup_kmem_disabled(void);
1782int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order);
1783void __memcg_kmem_uncharge_page(struct page *page, int order);
1784
1785/*
1786 * The returned objcg pointer is safe to use without additional
1787 * protection within a scope. The scope is defined either by
1788 * the current task (similar to the "current" global variable)
1789 * or by set_active_memcg() pair.
1790 * Please, use obj_cgroup_get() to get a reference if the pointer
1791 * needs to be used outside of the local scope.
1792 */
1793struct obj_cgroup *current_obj_cgroup(void);
1794struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio);
1795
1796static inline struct obj_cgroup *get_obj_cgroup_from_current(void)
1797{
1798 struct obj_cgroup *objcg = current_obj_cgroup();
1799
1800 if (objcg)
1801 obj_cgroup_get(objcg);
1802
1803 return objcg;
1804}
1805
1806int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size);
1807void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size);
1808
1809extern struct static_key_false memcg_bpf_enabled_key;
1810static inline bool memcg_bpf_enabled(void)
1811{
1812 return static_branch_likely(&memcg_bpf_enabled_key);
1813}
1814
1815extern struct static_key_false memcg_kmem_online_key;
1816
1817static inline bool memcg_kmem_online(void)
1818{
1819 return static_branch_likely(&memcg_kmem_online_key);
1820}
1821
1822static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1823 int order)
1824{
1825 if (memcg_kmem_online())
1826 return __memcg_kmem_charge_page(page, gfp, order);
1827 return 0;
1828}
1829
1830static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1831{
1832 if (memcg_kmem_online())
1833 __memcg_kmem_uncharge_page(page, order);
1834}
1835
1836/*
1837 * A helper for accessing memcg's kmem_id, used for getting
1838 * corresponding LRU lists.
1839 */
1840static inline int memcg_kmem_id(struct mem_cgroup *memcg)
1841{
1842 return memcg ? memcg->kmemcg_id : -1;
1843}
1844
1845struct mem_cgroup *mem_cgroup_from_obj(void *p);
1846struct mem_cgroup *mem_cgroup_from_slab_obj(void *p);
1847
1848static inline void count_objcg_event(struct obj_cgroup *objcg,
1849 enum vm_event_item idx)
1850{
1851 struct mem_cgroup *memcg;
1852
1853 if (!memcg_kmem_online())
1854 return;
1855
1856 rcu_read_lock();
1857 memcg = obj_cgroup_memcg(objcg);
1858 count_memcg_events(memcg, idx, count: 1);
1859 rcu_read_unlock();
1860}
1861
1862#else
1863static inline bool mem_cgroup_kmem_disabled(void)
1864{
1865 return true;
1866}
1867
1868static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1869 int order)
1870{
1871 return 0;
1872}
1873
1874static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1875{
1876}
1877
1878static inline int __memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1879 int order)
1880{
1881 return 0;
1882}
1883
1884static inline void __memcg_kmem_uncharge_page(struct page *page, int order)
1885{
1886}
1887
1888static inline struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio)
1889{
1890 return NULL;
1891}
1892
1893static inline bool memcg_bpf_enabled(void)
1894{
1895 return false;
1896}
1897
1898static inline bool memcg_kmem_online(void)
1899{
1900 return false;
1901}
1902
1903static inline int memcg_kmem_id(struct mem_cgroup *memcg)
1904{
1905 return -1;
1906}
1907
1908static inline struct mem_cgroup *mem_cgroup_from_obj(void *p)
1909{
1910 return NULL;
1911}
1912
1913static inline struct mem_cgroup *mem_cgroup_from_slab_obj(void *p)
1914{
1915 return NULL;
1916}
1917
1918static inline void count_objcg_event(struct obj_cgroup *objcg,
1919 enum vm_event_item idx)
1920{
1921}
1922
1923#endif /* CONFIG_MEMCG_KMEM */
1924
1925#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
1926bool obj_cgroup_may_zswap(struct obj_cgroup *objcg);
1927void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size);
1928void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size);
1929#else
1930static inline bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
1931{
1932 return true;
1933}
1934static inline void obj_cgroup_charge_zswap(struct obj_cgroup *objcg,
1935 size_t size)
1936{
1937}
1938static inline void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg,
1939 size_t size)
1940{
1941}
1942#endif
1943
1944#endif /* _LINUX_MEMCONTROL_H */
1945

source code of linux/include/linux/memcontrol.h