1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * Copyright 2017 - Free Electrons
4 *
5 * Authors:
6 * Boris Brezillon <boris.brezillon@free-electrons.com>
7 * Peter Pan <peterpandong@micron.com>
8 */
9
10#ifndef __LINUX_MTD_NAND_H
11#define __LINUX_MTD_NAND_H
12
13#include <linux/mtd/mtd.h>
14
15struct nand_device;
16
17/**
18 * struct nand_memory_organization - Memory organization structure
19 * @bits_per_cell: number of bits per NAND cell
20 * @pagesize: page size
21 * @oobsize: OOB area size
22 * @pages_per_eraseblock: number of pages per eraseblock
23 * @eraseblocks_per_lun: number of eraseblocks per LUN (Logical Unit Number)
24 * @max_bad_eraseblocks_per_lun: maximum number of eraseblocks per LUN
25 * @planes_per_lun: number of planes per LUN
26 * @luns_per_target: number of LUN per target (target is a synonym for die)
27 * @ntargets: total number of targets exposed by the NAND device
28 */
29struct nand_memory_organization {
30 unsigned int bits_per_cell;
31 unsigned int pagesize;
32 unsigned int oobsize;
33 unsigned int pages_per_eraseblock;
34 unsigned int eraseblocks_per_lun;
35 unsigned int max_bad_eraseblocks_per_lun;
36 unsigned int planes_per_lun;
37 unsigned int luns_per_target;
38 unsigned int ntargets;
39};
40
41#define NAND_MEMORG(bpc, ps, os, ppe, epl, mbb, ppl, lpt, nt) \
42 { \
43 .bits_per_cell = (bpc), \
44 .pagesize = (ps), \
45 .oobsize = (os), \
46 .pages_per_eraseblock = (ppe), \
47 .eraseblocks_per_lun = (epl), \
48 .max_bad_eraseblocks_per_lun = (mbb), \
49 .planes_per_lun = (ppl), \
50 .luns_per_target = (lpt), \
51 .ntargets = (nt), \
52 }
53
54/**
55 * struct nand_row_converter - Information needed to convert an absolute offset
56 * into a row address
57 * @lun_addr_shift: position of the LUN identifier in the row address
58 * @eraseblock_addr_shift: position of the eraseblock identifier in the row
59 * address
60 */
61struct nand_row_converter {
62 unsigned int lun_addr_shift;
63 unsigned int eraseblock_addr_shift;
64};
65
66/**
67 * struct nand_pos - NAND position object
68 * @target: the NAND target/die
69 * @lun: the LUN identifier
70 * @plane: the plane within the LUN
71 * @eraseblock: the eraseblock within the LUN
72 * @page: the page within the LUN
73 *
74 * These information are usually used by specific sub-layers to select the
75 * appropriate target/die and generate a row address to pass to the device.
76 */
77struct nand_pos {
78 unsigned int target;
79 unsigned int lun;
80 unsigned int plane;
81 unsigned int eraseblock;
82 unsigned int page;
83};
84
85/**
86 * enum nand_page_io_req_type - Direction of an I/O request
87 * @NAND_PAGE_READ: from the chip, to the controller
88 * @NAND_PAGE_WRITE: from the controller, to the chip
89 */
90enum nand_page_io_req_type {
91 NAND_PAGE_READ = 0,
92 NAND_PAGE_WRITE,
93};
94
95/**
96 * struct nand_page_io_req - NAND I/O request object
97 * @type: the type of page I/O: read or write
98 * @pos: the position this I/O request is targeting
99 * @dataoffs: the offset within the page
100 * @datalen: number of data bytes to read from/write to this page
101 * @databuf: buffer to store data in or get data from
102 * @ooboffs: the OOB offset within the page
103 * @ooblen: the number of OOB bytes to read from/write to this page
104 * @oobbuf: buffer to store OOB data in or get OOB data from
105 * @mode: one of the %MTD_OPS_XXX mode
106 *
107 * This object is used to pass per-page I/O requests to NAND sub-layers. This
108 * way all useful information are already formatted in a useful way and
109 * specific NAND layers can focus on translating these information into
110 * specific commands/operations.
111 */
112struct nand_page_io_req {
113 enum nand_page_io_req_type type;
114 struct nand_pos pos;
115 unsigned int dataoffs;
116 unsigned int datalen;
117 union {
118 const void *out;
119 void *in;
120 } databuf;
121 unsigned int ooboffs;
122 unsigned int ooblen;
123 union {
124 const void *out;
125 void *in;
126 } oobbuf;
127 int mode;
128};
129
130const struct mtd_ooblayout_ops *nand_get_small_page_ooblayout(void);
131const struct mtd_ooblayout_ops *nand_get_large_page_ooblayout(void);
132const struct mtd_ooblayout_ops *nand_get_large_page_hamming_ooblayout(void);
133
134/**
135 * enum nand_ecc_engine_type - NAND ECC engine type
136 * @NAND_ECC_ENGINE_TYPE_INVALID: Invalid value
137 * @NAND_ECC_ENGINE_TYPE_NONE: No ECC correction
138 * @NAND_ECC_ENGINE_TYPE_SOFT: Software ECC correction
139 * @NAND_ECC_ENGINE_TYPE_ON_HOST: On host hardware ECC correction
140 * @NAND_ECC_ENGINE_TYPE_ON_DIE: On chip hardware ECC correction
141 */
142enum nand_ecc_engine_type {
143 NAND_ECC_ENGINE_TYPE_INVALID,
144 NAND_ECC_ENGINE_TYPE_NONE,
145 NAND_ECC_ENGINE_TYPE_SOFT,
146 NAND_ECC_ENGINE_TYPE_ON_HOST,
147 NAND_ECC_ENGINE_TYPE_ON_DIE,
148};
149
150/**
151 * enum nand_ecc_placement - NAND ECC bytes placement
152 * @NAND_ECC_PLACEMENT_UNKNOWN: The actual position of the ECC bytes is unknown
153 * @NAND_ECC_PLACEMENT_OOB: The ECC bytes are located in the OOB area
154 * @NAND_ECC_PLACEMENT_INTERLEAVED: Syndrome layout, there are ECC bytes
155 * interleaved with regular data in the main
156 * area
157 */
158enum nand_ecc_placement {
159 NAND_ECC_PLACEMENT_UNKNOWN,
160 NAND_ECC_PLACEMENT_OOB,
161 NAND_ECC_PLACEMENT_INTERLEAVED,
162};
163
164/**
165 * enum nand_ecc_algo - NAND ECC algorithm
166 * @NAND_ECC_ALGO_UNKNOWN: Unknown algorithm
167 * @NAND_ECC_ALGO_HAMMING: Hamming algorithm
168 * @NAND_ECC_ALGO_BCH: Bose-Chaudhuri-Hocquenghem algorithm
169 * @NAND_ECC_ALGO_RS: Reed-Solomon algorithm
170 */
171enum nand_ecc_algo {
172 NAND_ECC_ALGO_UNKNOWN,
173 NAND_ECC_ALGO_HAMMING,
174 NAND_ECC_ALGO_BCH,
175 NAND_ECC_ALGO_RS,
176};
177
178/**
179 * struct nand_ecc_props - NAND ECC properties
180 * @engine_type: ECC engine type
181 * @placement: OOB placement (if relevant)
182 * @algo: ECC algorithm (if relevant)
183 * @strength: ECC strength
184 * @step_size: Number of bytes per step
185 * @flags: Misc properties
186 */
187struct nand_ecc_props {
188 enum nand_ecc_engine_type engine_type;
189 enum nand_ecc_placement placement;
190 enum nand_ecc_algo algo;
191 unsigned int strength;
192 unsigned int step_size;
193 unsigned int flags;
194};
195
196#define NAND_ECCREQ(str, stp) { .strength = (str), .step_size = (stp) }
197
198/* NAND ECC misc flags */
199#define NAND_ECC_MAXIMIZE_STRENGTH BIT(0)
200
201/**
202 * struct nand_bbt - bad block table object
203 * @cache: in memory BBT cache
204 */
205struct nand_bbt {
206 unsigned long *cache;
207};
208
209/**
210 * struct nand_ops - NAND operations
211 * @erase: erase a specific block. No need to check if the block is bad before
212 * erasing, this has been taken care of by the generic NAND layer
213 * @markbad: mark a specific block bad. No need to check if the block is
214 * already marked bad, this has been taken care of by the generic
215 * NAND layer. This method should just write the BBM (Bad Block
216 * Marker) so that future call to struct_nand_ops->isbad() return
217 * true
218 * @isbad: check whether a block is bad or not. This method should just read
219 * the BBM and return whether the block is bad or not based on what it
220 * reads
221 *
222 * These are all low level operations that should be implemented by specialized
223 * NAND layers (SPI NAND, raw NAND, ...).
224 */
225struct nand_ops {
226 int (*erase)(struct nand_device *nand, const struct nand_pos *pos);
227 int (*markbad)(struct nand_device *nand, const struct nand_pos *pos);
228 bool (*isbad)(struct nand_device *nand, const struct nand_pos *pos);
229};
230
231/**
232 * struct nand_ecc_context - Context for the ECC engine
233 * @conf: basic ECC engine parameters
234 * @nsteps: number of ECC steps
235 * @total: total number of bytes used for storing ECC codes, this is used by
236 * generic OOB layouts
237 * @priv: ECC engine driver private data
238 */
239struct nand_ecc_context {
240 struct nand_ecc_props conf;
241 unsigned int nsteps;
242 unsigned int total;
243 void *priv;
244};
245
246/**
247 * struct nand_ecc_engine_ops - ECC engine operations
248 * @init_ctx: given a desired user configuration for the pointed NAND device,
249 * requests the ECC engine driver to setup a configuration with
250 * values it supports.
251 * @cleanup_ctx: clean the context initialized by @init_ctx.
252 * @prepare_io_req: is called before reading/writing a page to prepare the I/O
253 * request to be performed with ECC correction.
254 * @finish_io_req: is called after reading/writing a page to terminate the I/O
255 * request and ensure proper ECC correction.
256 */
257struct nand_ecc_engine_ops {
258 int (*init_ctx)(struct nand_device *nand);
259 void (*cleanup_ctx)(struct nand_device *nand);
260 int (*prepare_io_req)(struct nand_device *nand,
261 struct nand_page_io_req *req);
262 int (*finish_io_req)(struct nand_device *nand,
263 struct nand_page_io_req *req);
264};
265
266/**
267 * enum nand_ecc_engine_integration - How the NAND ECC engine is integrated
268 * @NAND_ECC_ENGINE_INTEGRATION_INVALID: Invalid value
269 * @NAND_ECC_ENGINE_INTEGRATION_PIPELINED: Pipelined engine, performs on-the-fly
270 * correction, does not need to copy
271 * data around
272 * @NAND_ECC_ENGINE_INTEGRATION_EXTERNAL: External engine, needs to bring the
273 * data into its own area before use
274 */
275enum nand_ecc_engine_integration {
276 NAND_ECC_ENGINE_INTEGRATION_INVALID,
277 NAND_ECC_ENGINE_INTEGRATION_PIPELINED,
278 NAND_ECC_ENGINE_INTEGRATION_EXTERNAL,
279};
280
281/**
282 * struct nand_ecc_engine - ECC engine abstraction for NAND devices
283 * @dev: Host device
284 * @node: Private field for registration time
285 * @ops: ECC engine operations
286 * @integration: How the engine is integrated with the host
287 * (only relevant on %NAND_ECC_ENGINE_TYPE_ON_HOST engines)
288 * @priv: Private data
289 */
290struct nand_ecc_engine {
291 struct device *dev;
292 struct list_head node;
293 struct nand_ecc_engine_ops *ops;
294 enum nand_ecc_engine_integration integration;
295 void *priv;
296};
297
298void of_get_nand_ecc_user_config(struct nand_device *nand);
299int nand_ecc_init_ctx(struct nand_device *nand);
300void nand_ecc_cleanup_ctx(struct nand_device *nand);
301int nand_ecc_prepare_io_req(struct nand_device *nand,
302 struct nand_page_io_req *req);
303int nand_ecc_finish_io_req(struct nand_device *nand,
304 struct nand_page_io_req *req);
305bool nand_ecc_is_strong_enough(struct nand_device *nand);
306
307#if IS_REACHABLE(CONFIG_MTD_NAND_CORE)
308int nand_ecc_register_on_host_hw_engine(struct nand_ecc_engine *engine);
309int nand_ecc_unregister_on_host_hw_engine(struct nand_ecc_engine *engine);
310#else
311static inline int
312nand_ecc_register_on_host_hw_engine(struct nand_ecc_engine *engine)
313{
314 return -ENOTSUPP;
315}
316static inline int
317nand_ecc_unregister_on_host_hw_engine(struct nand_ecc_engine *engine)
318{
319 return -ENOTSUPP;
320}
321#endif
322
323struct nand_ecc_engine *nand_ecc_get_sw_engine(struct nand_device *nand);
324struct nand_ecc_engine *nand_ecc_get_on_die_hw_engine(struct nand_device *nand);
325struct nand_ecc_engine *nand_ecc_get_on_host_hw_engine(struct nand_device *nand);
326void nand_ecc_put_on_host_hw_engine(struct nand_device *nand);
327struct device *nand_ecc_get_engine_dev(struct device *host);
328
329#if IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_HAMMING)
330struct nand_ecc_engine *nand_ecc_sw_hamming_get_engine(void);
331#else
332static inline struct nand_ecc_engine *nand_ecc_sw_hamming_get_engine(void)
333{
334 return NULL;
335}
336#endif /* CONFIG_MTD_NAND_ECC_SW_HAMMING */
337
338#if IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_BCH)
339struct nand_ecc_engine *nand_ecc_sw_bch_get_engine(void);
340#else
341static inline struct nand_ecc_engine *nand_ecc_sw_bch_get_engine(void)
342{
343 return NULL;
344}
345#endif /* CONFIG_MTD_NAND_ECC_SW_BCH */
346
347/**
348 * struct nand_ecc_req_tweak_ctx - Help for automatically tweaking requests
349 * @orig_req: Pointer to the original IO request
350 * @nand: Related NAND device, to have access to its memory organization
351 * @page_buffer_size: Real size of the page buffer to use (can be set by the
352 * user before the tweaking mechanism initialization)
353 * @oob_buffer_size: Real size of the OOB buffer to use (can be set by the
354 * user before the tweaking mechanism initialization)
355 * @spare_databuf: Data bounce buffer
356 * @spare_oobbuf: OOB bounce buffer
357 * @bounce_data: Flag indicating a data bounce buffer is used
358 * @bounce_oob: Flag indicating an OOB bounce buffer is used
359 */
360struct nand_ecc_req_tweak_ctx {
361 struct nand_page_io_req orig_req;
362 struct nand_device *nand;
363 unsigned int page_buffer_size;
364 unsigned int oob_buffer_size;
365 void *spare_databuf;
366 void *spare_oobbuf;
367 bool bounce_data;
368 bool bounce_oob;
369};
370
371int nand_ecc_init_req_tweaking(struct nand_ecc_req_tweak_ctx *ctx,
372 struct nand_device *nand);
373void nand_ecc_cleanup_req_tweaking(struct nand_ecc_req_tweak_ctx *ctx);
374void nand_ecc_tweak_req(struct nand_ecc_req_tweak_ctx *ctx,
375 struct nand_page_io_req *req);
376void nand_ecc_restore_req(struct nand_ecc_req_tweak_ctx *ctx,
377 struct nand_page_io_req *req);
378
379/**
380 * struct nand_ecc - Information relative to the ECC
381 * @defaults: Default values, depend on the underlying subsystem
382 * @requirements: ECC requirements from the NAND chip perspective
383 * @user_conf: User desires in terms of ECC parameters
384 * @ctx: ECC context for the ECC engine, derived from the device @requirements
385 * the @user_conf and the @defaults
386 * @ondie_engine: On-die ECC engine reference, if any
387 * @engine: ECC engine actually bound
388 */
389struct nand_ecc {
390 struct nand_ecc_props defaults;
391 struct nand_ecc_props requirements;
392 struct nand_ecc_props user_conf;
393 struct nand_ecc_context ctx;
394 struct nand_ecc_engine *ondie_engine;
395 struct nand_ecc_engine *engine;
396};
397
398/**
399 * struct nand_device - NAND device
400 * @mtd: MTD instance attached to the NAND device
401 * @memorg: memory layout
402 * @ecc: NAND ECC object attached to the NAND device
403 * @rowconv: position to row address converter
404 * @bbt: bad block table info
405 * @ops: NAND operations attached to the NAND device
406 *
407 * Generic NAND object. Specialized NAND layers (raw NAND, SPI NAND, OneNAND)
408 * should declare their own NAND object embedding a nand_device struct (that's
409 * how inheritance is done).
410 * struct_nand_device->memorg and struct_nand_device->ecc.requirements should
411 * be filled at device detection time to reflect the NAND device
412 * capabilities/requirements. Once this is done nanddev_init() can be called.
413 * It will take care of converting NAND information into MTD ones, which means
414 * the specialized NAND layers should never manually tweak
415 * struct_nand_device->mtd except for the ->_read/write() hooks.
416 */
417struct nand_device {
418 struct mtd_info mtd;
419 struct nand_memory_organization memorg;
420 struct nand_ecc ecc;
421 struct nand_row_converter rowconv;
422 struct nand_bbt bbt;
423 const struct nand_ops *ops;
424};
425
426/**
427 * struct nand_io_iter - NAND I/O iterator
428 * @req: current I/O request
429 * @oobbytes_per_page: maximum number of OOB bytes per page
430 * @dataleft: remaining number of data bytes to read/write
431 * @oobleft: remaining number of OOB bytes to read/write
432 *
433 * Can be used by specialized NAND layers to iterate over all pages covered
434 * by an MTD I/O request, which should greatly simplifies the boiler-plate
435 * code needed to read/write data from/to a NAND device.
436 */
437struct nand_io_iter {
438 struct nand_page_io_req req;
439 unsigned int oobbytes_per_page;
440 unsigned int dataleft;
441 unsigned int oobleft;
442};
443
444/**
445 * mtd_to_nanddev() - Get the NAND device attached to the MTD instance
446 * @mtd: MTD instance
447 *
448 * Return: the NAND device embedding @mtd.
449 */
450static inline struct nand_device *mtd_to_nanddev(struct mtd_info *mtd)
451{
452 return container_of(mtd, struct nand_device, mtd);
453}
454
455/**
456 * nanddev_to_mtd() - Get the MTD device attached to a NAND device
457 * @nand: NAND device
458 *
459 * Return: the MTD device embedded in @nand.
460 */
461static inline struct mtd_info *nanddev_to_mtd(struct nand_device *nand)
462{
463 return &nand->mtd;
464}
465
466/*
467 * nanddev_bits_per_cell() - Get the number of bits per cell
468 * @nand: NAND device
469 *
470 * Return: the number of bits per cell.
471 */
472static inline unsigned int nanddev_bits_per_cell(const struct nand_device *nand)
473{
474 return nand->memorg.bits_per_cell;
475}
476
477/**
478 * nanddev_page_size() - Get NAND page size
479 * @nand: NAND device
480 *
481 * Return: the page size.
482 */
483static inline size_t nanddev_page_size(const struct nand_device *nand)
484{
485 return nand->memorg.pagesize;
486}
487
488/**
489 * nanddev_per_page_oobsize() - Get NAND OOB size
490 * @nand: NAND device
491 *
492 * Return: the OOB size.
493 */
494static inline unsigned int
495nanddev_per_page_oobsize(const struct nand_device *nand)
496{
497 return nand->memorg.oobsize;
498}
499
500/**
501 * nanddev_pages_per_eraseblock() - Get the number of pages per eraseblock
502 * @nand: NAND device
503 *
504 * Return: the number of pages per eraseblock.
505 */
506static inline unsigned int
507nanddev_pages_per_eraseblock(const struct nand_device *nand)
508{
509 return nand->memorg.pages_per_eraseblock;
510}
511
512/**
513 * nanddev_pages_per_target() - Get the number of pages per target
514 * @nand: NAND device
515 *
516 * Return: the number of pages per target.
517 */
518static inline unsigned int
519nanddev_pages_per_target(const struct nand_device *nand)
520{
521 return nand->memorg.pages_per_eraseblock *
522 nand->memorg.eraseblocks_per_lun *
523 nand->memorg.luns_per_target;
524}
525
526/**
527 * nanddev_per_page_oobsize() - Get NAND erase block size
528 * @nand: NAND device
529 *
530 * Return: the eraseblock size.
531 */
532static inline size_t nanddev_eraseblock_size(const struct nand_device *nand)
533{
534 return nand->memorg.pagesize * nand->memorg.pages_per_eraseblock;
535}
536
537/**
538 * nanddev_eraseblocks_per_lun() - Get the number of eraseblocks per LUN
539 * @nand: NAND device
540 *
541 * Return: the number of eraseblocks per LUN.
542 */
543static inline unsigned int
544nanddev_eraseblocks_per_lun(const struct nand_device *nand)
545{
546 return nand->memorg.eraseblocks_per_lun;
547}
548
549/**
550 * nanddev_eraseblocks_per_target() - Get the number of eraseblocks per target
551 * @nand: NAND device
552 *
553 * Return: the number of eraseblocks per target.
554 */
555static inline unsigned int
556nanddev_eraseblocks_per_target(const struct nand_device *nand)
557{
558 return nand->memorg.eraseblocks_per_lun * nand->memorg.luns_per_target;
559}
560
561/**
562 * nanddev_target_size() - Get the total size provided by a single target/die
563 * @nand: NAND device
564 *
565 * Return: the total size exposed by a single target/die in bytes.
566 */
567static inline u64 nanddev_target_size(const struct nand_device *nand)
568{
569 return (u64)nand->memorg.luns_per_target *
570 nand->memorg.eraseblocks_per_lun *
571 nand->memorg.pages_per_eraseblock *
572 nand->memorg.pagesize;
573}
574
575/**
576 * nanddev_ntarget() - Get the total of targets
577 * @nand: NAND device
578 *
579 * Return: the number of targets/dies exposed by @nand.
580 */
581static inline unsigned int nanddev_ntargets(const struct nand_device *nand)
582{
583 return nand->memorg.ntargets;
584}
585
586/**
587 * nanddev_neraseblocks() - Get the total number of eraseblocks
588 * @nand: NAND device
589 *
590 * Return: the total number of eraseblocks exposed by @nand.
591 */
592static inline unsigned int nanddev_neraseblocks(const struct nand_device *nand)
593{
594 return nand->memorg.ntargets * nand->memorg.luns_per_target *
595 nand->memorg.eraseblocks_per_lun;
596}
597
598/**
599 * nanddev_size() - Get NAND size
600 * @nand: NAND device
601 *
602 * Return: the total size (in bytes) exposed by @nand.
603 */
604static inline u64 nanddev_size(const struct nand_device *nand)
605{
606 return nanddev_target_size(nand) * nanddev_ntargets(nand);
607}
608
609/**
610 * nanddev_get_memorg() - Extract memory organization info from a NAND device
611 * @nand: NAND device
612 *
613 * This can be used by the upper layer to fill the memorg info before calling
614 * nanddev_init().
615 *
616 * Return: the memorg object embedded in the NAND device.
617 */
618static inline struct nand_memory_organization *
619nanddev_get_memorg(struct nand_device *nand)
620{
621 return &nand->memorg;
622}
623
624/**
625 * nanddev_get_ecc_conf() - Extract the ECC configuration from a NAND device
626 * @nand: NAND device
627 */
628static inline const struct nand_ecc_props *
629nanddev_get_ecc_conf(struct nand_device *nand)
630{
631 return &nand->ecc.ctx.conf;
632}
633
634/**
635 * nanddev_get_ecc_nsteps() - Extract the number of ECC steps
636 * @nand: NAND device
637 */
638static inline unsigned int
639nanddev_get_ecc_nsteps(struct nand_device *nand)
640{
641 return nand->ecc.ctx.nsteps;
642}
643
644/**
645 * nanddev_get_ecc_bytes_per_step() - Extract the number of ECC bytes per step
646 * @nand: NAND device
647 */
648static inline unsigned int
649nanddev_get_ecc_bytes_per_step(struct nand_device *nand)
650{
651 return nand->ecc.ctx.total / nand->ecc.ctx.nsteps;
652}
653
654/**
655 * nanddev_get_ecc_requirements() - Extract the ECC requirements from a NAND
656 * device
657 * @nand: NAND device
658 */
659static inline const struct nand_ecc_props *
660nanddev_get_ecc_requirements(struct nand_device *nand)
661{
662 return &nand->ecc.requirements;
663}
664
665/**
666 * nanddev_set_ecc_requirements() - Assign the ECC requirements of a NAND
667 * device
668 * @nand: NAND device
669 * @reqs: Requirements
670 */
671static inline void
672nanddev_set_ecc_requirements(struct nand_device *nand,
673 const struct nand_ecc_props *reqs)
674{
675 nand->ecc.requirements = *reqs;
676}
677
678int nanddev_init(struct nand_device *nand, const struct nand_ops *ops,
679 struct module *owner);
680void nanddev_cleanup(struct nand_device *nand);
681
682/**
683 * nanddev_register() - Register a NAND device
684 * @nand: NAND device
685 *
686 * Register a NAND device.
687 * This function is just a wrapper around mtd_device_register()
688 * registering the MTD device embedded in @nand.
689 *
690 * Return: 0 in case of success, a negative error code otherwise.
691 */
692static inline int nanddev_register(struct nand_device *nand)
693{
694 return mtd_device_register(&nand->mtd, NULL, 0);
695}
696
697/**
698 * nanddev_unregister() - Unregister a NAND device
699 * @nand: NAND device
700 *
701 * Unregister a NAND device.
702 * This function is just a wrapper around mtd_device_unregister()
703 * unregistering the MTD device embedded in @nand.
704 *
705 * Return: 0 in case of success, a negative error code otherwise.
706 */
707static inline int nanddev_unregister(struct nand_device *nand)
708{
709 return mtd_device_unregister(master: &nand->mtd);
710}
711
712/**
713 * nanddev_set_of_node() - Attach a DT node to a NAND device
714 * @nand: NAND device
715 * @np: DT node
716 *
717 * Attach a DT node to a NAND device.
718 */
719static inline void nanddev_set_of_node(struct nand_device *nand,
720 struct device_node *np)
721{
722 mtd_set_of_node(mtd: &nand->mtd, np);
723}
724
725/**
726 * nanddev_get_of_node() - Retrieve the DT node attached to a NAND device
727 * @nand: NAND device
728 *
729 * Return: the DT node attached to @nand.
730 */
731static inline struct device_node *nanddev_get_of_node(struct nand_device *nand)
732{
733 return mtd_get_of_node(mtd: &nand->mtd);
734}
735
736/**
737 * nanddev_offs_to_pos() - Convert an absolute NAND offset into a NAND position
738 * @nand: NAND device
739 * @offs: absolute NAND offset (usually passed by the MTD layer)
740 * @pos: a NAND position object to fill in
741 *
742 * Converts @offs into a nand_pos representation.
743 *
744 * Return: the offset within the NAND page pointed by @pos.
745 */
746static inline unsigned int nanddev_offs_to_pos(struct nand_device *nand,
747 loff_t offs,
748 struct nand_pos *pos)
749{
750 unsigned int pageoffs;
751 u64 tmp = offs;
752
753 pageoffs = do_div(tmp, nand->memorg.pagesize);
754 pos->page = do_div(tmp, nand->memorg.pages_per_eraseblock);
755 pos->eraseblock = do_div(tmp, nand->memorg.eraseblocks_per_lun);
756 pos->plane = pos->eraseblock % nand->memorg.planes_per_lun;
757 pos->lun = do_div(tmp, nand->memorg.luns_per_target);
758 pos->target = tmp;
759
760 return pageoffs;
761}
762
763/**
764 * nanddev_pos_cmp() - Compare two NAND positions
765 * @a: First NAND position
766 * @b: Second NAND position
767 *
768 * Compares two NAND positions.
769 *
770 * Return: -1 if @a < @b, 0 if @a == @b and 1 if @a > @b.
771 */
772static inline int nanddev_pos_cmp(const struct nand_pos *a,
773 const struct nand_pos *b)
774{
775 if (a->target != b->target)
776 return a->target < b->target ? -1 : 1;
777
778 if (a->lun != b->lun)
779 return a->lun < b->lun ? -1 : 1;
780
781 if (a->eraseblock != b->eraseblock)
782 return a->eraseblock < b->eraseblock ? -1 : 1;
783
784 if (a->page != b->page)
785 return a->page < b->page ? -1 : 1;
786
787 return 0;
788}
789
790/**
791 * nanddev_pos_to_offs() - Convert a NAND position into an absolute offset
792 * @nand: NAND device
793 * @pos: the NAND position to convert
794 *
795 * Converts @pos NAND position into an absolute offset.
796 *
797 * Return: the absolute offset. Note that @pos points to the beginning of a
798 * page, if one wants to point to a specific offset within this page
799 * the returned offset has to be adjusted manually.
800 */
801static inline loff_t nanddev_pos_to_offs(struct nand_device *nand,
802 const struct nand_pos *pos)
803{
804 unsigned int npages;
805
806 npages = pos->page +
807 ((pos->eraseblock +
808 (pos->lun +
809 (pos->target * nand->memorg.luns_per_target)) *
810 nand->memorg.eraseblocks_per_lun) *
811 nand->memorg.pages_per_eraseblock);
812
813 return (loff_t)npages * nand->memorg.pagesize;
814}
815
816/**
817 * nanddev_pos_to_row() - Extract a row address from a NAND position
818 * @nand: NAND device
819 * @pos: the position to convert
820 *
821 * Converts a NAND position into a row address that can then be passed to the
822 * device.
823 *
824 * Return: the row address extracted from @pos.
825 */
826static inline unsigned int nanddev_pos_to_row(struct nand_device *nand,
827 const struct nand_pos *pos)
828{
829 return (pos->lun << nand->rowconv.lun_addr_shift) |
830 (pos->eraseblock << nand->rowconv.eraseblock_addr_shift) |
831 pos->page;
832}
833
834/**
835 * nanddev_pos_next_target() - Move a position to the next target/die
836 * @nand: NAND device
837 * @pos: the position to update
838 *
839 * Updates @pos to point to the start of the next target/die. Useful when you
840 * want to iterate over all targets/dies of a NAND device.
841 */
842static inline void nanddev_pos_next_target(struct nand_device *nand,
843 struct nand_pos *pos)
844{
845 pos->page = 0;
846 pos->plane = 0;
847 pos->eraseblock = 0;
848 pos->lun = 0;
849 pos->target++;
850}
851
852/**
853 * nanddev_pos_next_lun() - Move a position to the next LUN
854 * @nand: NAND device
855 * @pos: the position to update
856 *
857 * Updates @pos to point to the start of the next LUN. Useful when you want to
858 * iterate over all LUNs of a NAND device.
859 */
860static inline void nanddev_pos_next_lun(struct nand_device *nand,
861 struct nand_pos *pos)
862{
863 if (pos->lun >= nand->memorg.luns_per_target - 1)
864 return nanddev_pos_next_target(nand, pos);
865
866 pos->lun++;
867 pos->page = 0;
868 pos->plane = 0;
869 pos->eraseblock = 0;
870}
871
872/**
873 * nanddev_pos_next_eraseblock() - Move a position to the next eraseblock
874 * @nand: NAND device
875 * @pos: the position to update
876 *
877 * Updates @pos to point to the start of the next eraseblock. Useful when you
878 * want to iterate over all eraseblocks of a NAND device.
879 */
880static inline void nanddev_pos_next_eraseblock(struct nand_device *nand,
881 struct nand_pos *pos)
882{
883 if (pos->eraseblock >= nand->memorg.eraseblocks_per_lun - 1)
884 return nanddev_pos_next_lun(nand, pos);
885
886 pos->eraseblock++;
887 pos->page = 0;
888 pos->plane = pos->eraseblock % nand->memorg.planes_per_lun;
889}
890
891/**
892 * nanddev_pos_next_page() - Move a position to the next page
893 * @nand: NAND device
894 * @pos: the position to update
895 *
896 * Updates @pos to point to the start of the next page. Useful when you want to
897 * iterate over all pages of a NAND device.
898 */
899static inline void nanddev_pos_next_page(struct nand_device *nand,
900 struct nand_pos *pos)
901{
902 if (pos->page >= nand->memorg.pages_per_eraseblock - 1)
903 return nanddev_pos_next_eraseblock(nand, pos);
904
905 pos->page++;
906}
907
908/**
909 * nand_io_iter_init - Initialize a NAND I/O iterator
910 * @nand: NAND device
911 * @offs: absolute offset
912 * @req: MTD request
913 * @iter: NAND I/O iterator
914 *
915 * Initializes a NAND iterator based on the information passed by the MTD
916 * layer.
917 */
918static inline void nanddev_io_iter_init(struct nand_device *nand,
919 enum nand_page_io_req_type reqtype,
920 loff_t offs, struct mtd_oob_ops *req,
921 struct nand_io_iter *iter)
922{
923 struct mtd_info *mtd = nanddev_to_mtd(nand);
924
925 iter->req.type = reqtype;
926 iter->req.mode = req->mode;
927 iter->req.dataoffs = nanddev_offs_to_pos(nand, offs, pos: &iter->req.pos);
928 iter->req.ooboffs = req->ooboffs;
929 iter->oobbytes_per_page = mtd_oobavail(mtd, ops: req);
930 iter->dataleft = req->len;
931 iter->oobleft = req->ooblen;
932 iter->req.databuf.in = req->datbuf;
933 iter->req.datalen = min_t(unsigned int,
934 nand->memorg.pagesize - iter->req.dataoffs,
935 iter->dataleft);
936 iter->req.oobbuf.in = req->oobbuf;
937 iter->req.ooblen = min_t(unsigned int,
938 iter->oobbytes_per_page - iter->req.ooboffs,
939 iter->oobleft);
940}
941
942/**
943 * nand_io_iter_next_page - Move to the next page
944 * @nand: NAND device
945 * @iter: NAND I/O iterator
946 *
947 * Updates the @iter to point to the next page.
948 */
949static inline void nanddev_io_iter_next_page(struct nand_device *nand,
950 struct nand_io_iter *iter)
951{
952 nanddev_pos_next_page(nand, pos: &iter->req.pos);
953 iter->dataleft -= iter->req.datalen;
954 iter->req.databuf.in += iter->req.datalen;
955 iter->oobleft -= iter->req.ooblen;
956 iter->req.oobbuf.in += iter->req.ooblen;
957 iter->req.dataoffs = 0;
958 iter->req.ooboffs = 0;
959 iter->req.datalen = min_t(unsigned int, nand->memorg.pagesize,
960 iter->dataleft);
961 iter->req.ooblen = min_t(unsigned int, iter->oobbytes_per_page,
962 iter->oobleft);
963}
964
965/**
966 * nand_io_iter_end - Should end iteration or not
967 * @nand: NAND device
968 * @iter: NAND I/O iterator
969 *
970 * Check whether @iter has reached the end of the NAND portion it was asked to
971 * iterate on or not.
972 *
973 * Return: true if @iter has reached the end of the iteration request, false
974 * otherwise.
975 */
976static inline bool nanddev_io_iter_end(struct nand_device *nand,
977 const struct nand_io_iter *iter)
978{
979 if (iter->dataleft || iter->oobleft)
980 return false;
981
982 return true;
983}
984
985/**
986 * nand_io_for_each_page - Iterate over all NAND pages contained in an MTD I/O
987 * request
988 * @nand: NAND device
989 * @start: start address to read/write from
990 * @req: MTD I/O request
991 * @iter: NAND I/O iterator
992 *
993 * Should be used for iterate over pages that are contained in an MTD request.
994 */
995#define nanddev_io_for_each_page(nand, type, start, req, iter) \
996 for (nanddev_io_iter_init(nand, type, start, req, iter); \
997 !nanddev_io_iter_end(nand, iter); \
998 nanddev_io_iter_next_page(nand, iter))
999
1000bool nanddev_isbad(struct nand_device *nand, const struct nand_pos *pos);
1001bool nanddev_isreserved(struct nand_device *nand, const struct nand_pos *pos);
1002int nanddev_markbad(struct nand_device *nand, const struct nand_pos *pos);
1003
1004/* ECC related functions */
1005int nanddev_ecc_engine_init(struct nand_device *nand);
1006void nanddev_ecc_engine_cleanup(struct nand_device *nand);
1007
1008static inline void *nand_to_ecc_ctx(struct nand_device *nand)
1009{
1010 return nand->ecc.ctx.priv;
1011}
1012
1013/* BBT related functions */
1014enum nand_bbt_block_status {
1015 NAND_BBT_BLOCK_STATUS_UNKNOWN,
1016 NAND_BBT_BLOCK_GOOD,
1017 NAND_BBT_BLOCK_WORN,
1018 NAND_BBT_BLOCK_RESERVED,
1019 NAND_BBT_BLOCK_FACTORY_BAD,
1020 NAND_BBT_BLOCK_NUM_STATUS,
1021};
1022
1023int nanddev_bbt_init(struct nand_device *nand);
1024void nanddev_bbt_cleanup(struct nand_device *nand);
1025int nanddev_bbt_update(struct nand_device *nand);
1026int nanddev_bbt_get_block_status(const struct nand_device *nand,
1027 unsigned int entry);
1028int nanddev_bbt_set_block_status(struct nand_device *nand, unsigned int entry,
1029 enum nand_bbt_block_status status);
1030int nanddev_bbt_markbad(struct nand_device *nand, unsigned int block);
1031
1032/**
1033 * nanddev_bbt_pos_to_entry() - Convert a NAND position into a BBT entry
1034 * @nand: NAND device
1035 * @pos: the NAND position we want to get BBT entry for
1036 *
1037 * Return the BBT entry used to store information about the eraseblock pointed
1038 * by @pos.
1039 *
1040 * Return: the BBT entry storing information about eraseblock pointed by @pos.
1041 */
1042static inline unsigned int nanddev_bbt_pos_to_entry(struct nand_device *nand,
1043 const struct nand_pos *pos)
1044{
1045 return pos->eraseblock +
1046 ((pos->lun + (pos->target * nand->memorg.luns_per_target)) *
1047 nand->memorg.eraseblocks_per_lun);
1048}
1049
1050/**
1051 * nanddev_bbt_is_initialized() - Check if the BBT has been initialized
1052 * @nand: NAND device
1053 *
1054 * Return: true if the BBT has been initialized, false otherwise.
1055 */
1056static inline bool nanddev_bbt_is_initialized(struct nand_device *nand)
1057{
1058 return !!nand->bbt.cache;
1059}
1060
1061/* MTD -> NAND helper functions. */
1062int nanddev_mtd_erase(struct mtd_info *mtd, struct erase_info *einfo);
1063int nanddev_mtd_max_bad_blocks(struct mtd_info *mtd, loff_t offs, size_t len);
1064
1065#endif /* __LINUX_MTD_NAND_H */
1066

source code of linux/include/linux/mtd/nand.h