1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * Copyright (c) 2016-2017 Micron Technology, Inc.
4 *
5 * Authors:
6 * Peter Pan <peterpandong@micron.com>
7 */
8#ifndef __LINUX_MTD_SPINAND_H
9#define __LINUX_MTD_SPINAND_H
10
11#include <linux/mutex.h>
12#include <linux/bitops.h>
13#include <linux/device.h>
14#include <linux/mtd/mtd.h>
15#include <linux/mtd/nand.h>
16#include <linux/spi/spi.h>
17#include <linux/spi/spi-mem.h>
18
19/**
20 * Standard SPI NAND flash operations
21 */
22
23#define SPINAND_RESET_OP \
24 SPI_MEM_OP(SPI_MEM_OP_CMD(0xff, 1), \
25 SPI_MEM_OP_NO_ADDR, \
26 SPI_MEM_OP_NO_DUMMY, \
27 SPI_MEM_OP_NO_DATA)
28
29#define SPINAND_WR_EN_DIS_OP(enable) \
30 SPI_MEM_OP(SPI_MEM_OP_CMD((enable) ? 0x06 : 0x04, 1), \
31 SPI_MEM_OP_NO_ADDR, \
32 SPI_MEM_OP_NO_DUMMY, \
33 SPI_MEM_OP_NO_DATA)
34
35#define SPINAND_READID_OP(naddr, ndummy, buf, len) \
36 SPI_MEM_OP(SPI_MEM_OP_CMD(0x9f, 1), \
37 SPI_MEM_OP_ADDR(naddr, 0, 1), \
38 SPI_MEM_OP_DUMMY(ndummy, 1), \
39 SPI_MEM_OP_DATA_IN(len, buf, 1))
40
41#define SPINAND_SET_FEATURE_OP(reg, valptr) \
42 SPI_MEM_OP(SPI_MEM_OP_CMD(0x1f, 1), \
43 SPI_MEM_OP_ADDR(1, reg, 1), \
44 SPI_MEM_OP_NO_DUMMY, \
45 SPI_MEM_OP_DATA_OUT(1, valptr, 1))
46
47#define SPINAND_GET_FEATURE_OP(reg, valptr) \
48 SPI_MEM_OP(SPI_MEM_OP_CMD(0x0f, 1), \
49 SPI_MEM_OP_ADDR(1, reg, 1), \
50 SPI_MEM_OP_NO_DUMMY, \
51 SPI_MEM_OP_DATA_IN(1, valptr, 1))
52
53#define SPINAND_BLK_ERASE_OP(addr) \
54 SPI_MEM_OP(SPI_MEM_OP_CMD(0xd8, 1), \
55 SPI_MEM_OP_ADDR(3, addr, 1), \
56 SPI_MEM_OP_NO_DUMMY, \
57 SPI_MEM_OP_NO_DATA)
58
59#define SPINAND_PAGE_READ_OP(addr) \
60 SPI_MEM_OP(SPI_MEM_OP_CMD(0x13, 1), \
61 SPI_MEM_OP_ADDR(3, addr, 1), \
62 SPI_MEM_OP_NO_DUMMY, \
63 SPI_MEM_OP_NO_DATA)
64
65#define SPINAND_PAGE_READ_FROM_CACHE_OP(fast, addr, ndummy, buf, len) \
66 SPI_MEM_OP(SPI_MEM_OP_CMD(fast ? 0x0b : 0x03, 1), \
67 SPI_MEM_OP_ADDR(2, addr, 1), \
68 SPI_MEM_OP_DUMMY(ndummy, 1), \
69 SPI_MEM_OP_DATA_IN(len, buf, 1))
70
71#define SPINAND_PAGE_READ_FROM_CACHE_OP_3A(fast, addr, ndummy, buf, len) \
72 SPI_MEM_OP(SPI_MEM_OP_CMD(fast ? 0x0b : 0x03, 1), \
73 SPI_MEM_OP_ADDR(3, addr, 1), \
74 SPI_MEM_OP_DUMMY(ndummy, 1), \
75 SPI_MEM_OP_DATA_IN(len, buf, 1))
76
77#define SPINAND_PAGE_READ_FROM_CACHE_X2_OP(addr, ndummy, buf, len) \
78 SPI_MEM_OP(SPI_MEM_OP_CMD(0x3b, 1), \
79 SPI_MEM_OP_ADDR(2, addr, 1), \
80 SPI_MEM_OP_DUMMY(ndummy, 1), \
81 SPI_MEM_OP_DATA_IN(len, buf, 2))
82
83#define SPINAND_PAGE_READ_FROM_CACHE_X2_OP_3A(addr, ndummy, buf, len) \
84 SPI_MEM_OP(SPI_MEM_OP_CMD(0x3b, 1), \
85 SPI_MEM_OP_ADDR(3, addr, 1), \
86 SPI_MEM_OP_DUMMY(ndummy, 1), \
87 SPI_MEM_OP_DATA_IN(len, buf, 2))
88
89#define SPINAND_PAGE_READ_FROM_CACHE_X4_OP(addr, ndummy, buf, len) \
90 SPI_MEM_OP(SPI_MEM_OP_CMD(0x6b, 1), \
91 SPI_MEM_OP_ADDR(2, addr, 1), \
92 SPI_MEM_OP_DUMMY(ndummy, 1), \
93 SPI_MEM_OP_DATA_IN(len, buf, 4))
94
95#define SPINAND_PAGE_READ_FROM_CACHE_X4_OP_3A(addr, ndummy, buf, len) \
96 SPI_MEM_OP(SPI_MEM_OP_CMD(0x6b, 1), \
97 SPI_MEM_OP_ADDR(3, addr, 1), \
98 SPI_MEM_OP_DUMMY(ndummy, 1), \
99 SPI_MEM_OP_DATA_IN(len, buf, 4))
100
101#define SPINAND_PAGE_READ_FROM_CACHE_DUALIO_OP(addr, ndummy, buf, len) \
102 SPI_MEM_OP(SPI_MEM_OP_CMD(0xbb, 1), \
103 SPI_MEM_OP_ADDR(2, addr, 2), \
104 SPI_MEM_OP_DUMMY(ndummy, 2), \
105 SPI_MEM_OP_DATA_IN(len, buf, 2))
106
107#define SPINAND_PAGE_READ_FROM_CACHE_DUALIO_OP_3A(addr, ndummy, buf, len) \
108 SPI_MEM_OP(SPI_MEM_OP_CMD(0xbb, 1), \
109 SPI_MEM_OP_ADDR(3, addr, 2), \
110 SPI_MEM_OP_DUMMY(ndummy, 2), \
111 SPI_MEM_OP_DATA_IN(len, buf, 2))
112
113#define SPINAND_PAGE_READ_FROM_CACHE_QUADIO_OP(addr, ndummy, buf, len) \
114 SPI_MEM_OP(SPI_MEM_OP_CMD(0xeb, 1), \
115 SPI_MEM_OP_ADDR(2, addr, 4), \
116 SPI_MEM_OP_DUMMY(ndummy, 4), \
117 SPI_MEM_OP_DATA_IN(len, buf, 4))
118
119#define SPINAND_PAGE_READ_FROM_CACHE_QUADIO_OP_3A(addr, ndummy, buf, len) \
120 SPI_MEM_OP(SPI_MEM_OP_CMD(0xeb, 1), \
121 SPI_MEM_OP_ADDR(3, addr, 4), \
122 SPI_MEM_OP_DUMMY(ndummy, 4), \
123 SPI_MEM_OP_DATA_IN(len, buf, 4))
124
125#define SPINAND_PROG_EXEC_OP(addr) \
126 SPI_MEM_OP(SPI_MEM_OP_CMD(0x10, 1), \
127 SPI_MEM_OP_ADDR(3, addr, 1), \
128 SPI_MEM_OP_NO_DUMMY, \
129 SPI_MEM_OP_NO_DATA)
130
131#define SPINAND_PROG_LOAD(reset, addr, buf, len) \
132 SPI_MEM_OP(SPI_MEM_OP_CMD(reset ? 0x02 : 0x84, 1), \
133 SPI_MEM_OP_ADDR(2, addr, 1), \
134 SPI_MEM_OP_NO_DUMMY, \
135 SPI_MEM_OP_DATA_OUT(len, buf, 1))
136
137#define SPINAND_PROG_LOAD_X4(reset, addr, buf, len) \
138 SPI_MEM_OP(SPI_MEM_OP_CMD(reset ? 0x32 : 0x34, 1), \
139 SPI_MEM_OP_ADDR(2, addr, 1), \
140 SPI_MEM_OP_NO_DUMMY, \
141 SPI_MEM_OP_DATA_OUT(len, buf, 4))
142
143/**
144 * Standard SPI NAND flash commands
145 */
146#define SPINAND_CMD_PROG_LOAD_X4 0x32
147#define SPINAND_CMD_PROG_LOAD_RDM_DATA_X4 0x34
148
149/* feature register */
150#define REG_BLOCK_LOCK 0xa0
151#define BL_ALL_UNLOCKED 0x00
152
153/* configuration register */
154#define REG_CFG 0xb0
155#define CFG_OTP_ENABLE BIT(6)
156#define CFG_ECC_ENABLE BIT(4)
157#define CFG_QUAD_ENABLE BIT(0)
158
159/* status register */
160#define REG_STATUS 0xc0
161#define STATUS_BUSY BIT(0)
162#define STATUS_ERASE_FAILED BIT(2)
163#define STATUS_PROG_FAILED BIT(3)
164#define STATUS_ECC_MASK GENMASK(5, 4)
165#define STATUS_ECC_NO_BITFLIPS (0 << 4)
166#define STATUS_ECC_HAS_BITFLIPS (1 << 4)
167#define STATUS_ECC_UNCOR_ERROR (2 << 4)
168
169struct spinand_op;
170struct spinand_device;
171
172#define SPINAND_MAX_ID_LEN 4
173/*
174 * For erase, write and read operation, we got the following timings :
175 * tBERS (erase) 1ms to 4ms
176 * tPROG 300us to 400us
177 * tREAD 25us to 100us
178 * In order to minimize latency, the min value is divided by 4 for the
179 * initial delay, and dividing by 20 for the poll delay.
180 * For reset, 5us/10us/500us if the device is respectively
181 * reading/programming/erasing when the RESET occurs. Since we always
182 * issue a RESET when the device is IDLE, 5us is selected for both initial
183 * and poll delay.
184 */
185#define SPINAND_READ_INITIAL_DELAY_US 6
186#define SPINAND_READ_POLL_DELAY_US 5
187#define SPINAND_RESET_INITIAL_DELAY_US 5
188#define SPINAND_RESET_POLL_DELAY_US 5
189#define SPINAND_WRITE_INITIAL_DELAY_US 75
190#define SPINAND_WRITE_POLL_DELAY_US 15
191#define SPINAND_ERASE_INITIAL_DELAY_US 250
192#define SPINAND_ERASE_POLL_DELAY_US 50
193
194#define SPINAND_WAITRDY_TIMEOUT_MS 400
195
196/**
197 * struct spinand_id - SPI NAND id structure
198 * @data: buffer containing the id bytes. Currently 4 bytes large, but can
199 * be extended if required
200 * @len: ID length
201 */
202struct spinand_id {
203 u8 data[SPINAND_MAX_ID_LEN];
204 int len;
205};
206
207enum spinand_readid_method {
208 SPINAND_READID_METHOD_OPCODE,
209 SPINAND_READID_METHOD_OPCODE_ADDR,
210 SPINAND_READID_METHOD_OPCODE_DUMMY,
211};
212
213/**
214 * struct spinand_devid - SPI NAND device id structure
215 * @id: device id of current chip
216 * @len: number of bytes in device id
217 * @method: method to read chip id
218 * There are 3 possible variants:
219 * SPINAND_READID_METHOD_OPCODE: chip id is returned immediately
220 * after read_id opcode.
221 * SPINAND_READID_METHOD_OPCODE_ADDR: chip id is returned after
222 * read_id opcode + 1-byte address.
223 * SPINAND_READID_METHOD_OPCODE_DUMMY: chip id is returned after
224 * read_id opcode + 1 dummy byte.
225 */
226struct spinand_devid {
227 const u8 *id;
228 const u8 len;
229 const enum spinand_readid_method method;
230};
231
232/**
233 * struct manufacurer_ops - SPI NAND manufacturer specific operations
234 * @init: initialize a SPI NAND device
235 * @cleanup: cleanup a SPI NAND device
236 *
237 * Each SPI NAND manufacturer driver should implement this interface so that
238 * NAND chips coming from this vendor can be initialized properly.
239 */
240struct spinand_manufacturer_ops {
241 int (*init)(struct spinand_device *spinand);
242 void (*cleanup)(struct spinand_device *spinand);
243};
244
245/**
246 * struct spinand_manufacturer - SPI NAND manufacturer instance
247 * @id: manufacturer ID
248 * @name: manufacturer name
249 * @devid_len: number of bytes in device ID
250 * @chips: supported SPI NANDs under current manufacturer
251 * @nchips: number of SPI NANDs available in chips array
252 * @ops: manufacturer operations
253 */
254struct spinand_manufacturer {
255 u8 id;
256 char *name;
257 const struct spinand_info *chips;
258 const size_t nchips;
259 const struct spinand_manufacturer_ops *ops;
260};
261
262/* SPI NAND manufacturers */
263extern const struct spinand_manufacturer alliancememory_spinand_manufacturer;
264extern const struct spinand_manufacturer ato_spinand_manufacturer;
265extern const struct spinand_manufacturer esmt_c8_spinand_manufacturer;
266extern const struct spinand_manufacturer foresee_spinand_manufacturer;
267extern const struct spinand_manufacturer gigadevice_spinand_manufacturer;
268extern const struct spinand_manufacturer macronix_spinand_manufacturer;
269extern const struct spinand_manufacturer micron_spinand_manufacturer;
270extern const struct spinand_manufacturer paragon_spinand_manufacturer;
271extern const struct spinand_manufacturer toshiba_spinand_manufacturer;
272extern const struct spinand_manufacturer winbond_spinand_manufacturer;
273extern const struct spinand_manufacturer xtx_spinand_manufacturer;
274
275/**
276 * struct spinand_op_variants - SPI NAND operation variants
277 * @ops: the list of variants for a given operation
278 * @nops: the number of variants
279 *
280 * Some operations like read-from-cache/write-to-cache have several variants
281 * depending on the number of IO lines you use to transfer data or address
282 * cycles. This structure is a way to describe the different variants supported
283 * by a chip and let the core pick the best one based on the SPI mem controller
284 * capabilities.
285 */
286struct spinand_op_variants {
287 const struct spi_mem_op *ops;
288 unsigned int nops;
289};
290
291#define SPINAND_OP_VARIANTS(name, ...) \
292 const struct spinand_op_variants name = { \
293 .ops = (struct spi_mem_op[]) { __VA_ARGS__ }, \
294 .nops = sizeof((struct spi_mem_op[]){ __VA_ARGS__ }) / \
295 sizeof(struct spi_mem_op), \
296 }
297
298/**
299 * spinand_ecc_info - description of the on-die ECC implemented by a SPI NAND
300 * chip
301 * @get_status: get the ECC status. Should return a positive number encoding
302 * the number of corrected bitflips if correction was possible or
303 * -EBADMSG if there are uncorrectable errors. I can also return
304 * other negative error codes if the error is not caused by
305 * uncorrectable bitflips
306 * @ooblayout: the OOB layout used by the on-die ECC implementation
307 */
308struct spinand_ecc_info {
309 int (*get_status)(struct spinand_device *spinand, u8 status);
310 const struct mtd_ooblayout_ops *ooblayout;
311};
312
313#define SPINAND_HAS_QE_BIT BIT(0)
314#define SPINAND_HAS_CR_FEAT_BIT BIT(1)
315
316/**
317 * struct spinand_ondie_ecc_conf - private SPI-NAND on-die ECC engine structure
318 * @status: status of the last wait operation that will be used in case
319 * ->get_status() is not populated by the spinand device.
320 */
321struct spinand_ondie_ecc_conf {
322 u8 status;
323};
324
325/**
326 * struct spinand_info - Structure used to describe SPI NAND chips
327 * @model: model name
328 * @devid: device ID
329 * @flags: OR-ing of the SPINAND_XXX flags
330 * @memorg: memory organization
331 * @eccreq: ECC requirements
332 * @eccinfo: on-die ECC info
333 * @op_variants: operations variants
334 * @op_variants.read_cache: variants of the read-cache operation
335 * @op_variants.write_cache: variants of the write-cache operation
336 * @op_variants.update_cache: variants of the update-cache operation
337 * @select_target: function used to select a target/die. Required only for
338 * multi-die chips
339 *
340 * Each SPI NAND manufacturer driver should have a spinand_info table
341 * describing all the chips supported by the driver.
342 */
343struct spinand_info {
344 const char *model;
345 struct spinand_devid devid;
346 u32 flags;
347 struct nand_memory_organization memorg;
348 struct nand_ecc_props eccreq;
349 struct spinand_ecc_info eccinfo;
350 struct {
351 const struct spinand_op_variants *read_cache;
352 const struct spinand_op_variants *write_cache;
353 const struct spinand_op_variants *update_cache;
354 } op_variants;
355 int (*select_target)(struct spinand_device *spinand,
356 unsigned int target);
357};
358
359#define SPINAND_ID(__method, ...) \
360 { \
361 .id = (const u8[]){ __VA_ARGS__ }, \
362 .len = sizeof((u8[]){ __VA_ARGS__ }), \
363 .method = __method, \
364 }
365
366#define SPINAND_INFO_OP_VARIANTS(__read, __write, __update) \
367 { \
368 .read_cache = __read, \
369 .write_cache = __write, \
370 .update_cache = __update, \
371 }
372
373#define SPINAND_ECCINFO(__ooblayout, __get_status) \
374 .eccinfo = { \
375 .ooblayout = __ooblayout, \
376 .get_status = __get_status, \
377 }
378
379#define SPINAND_SELECT_TARGET(__func) \
380 .select_target = __func,
381
382#define SPINAND_INFO(__model, __id, __memorg, __eccreq, __op_variants, \
383 __flags, ...) \
384 { \
385 .model = __model, \
386 .devid = __id, \
387 .memorg = __memorg, \
388 .eccreq = __eccreq, \
389 .op_variants = __op_variants, \
390 .flags = __flags, \
391 __VA_ARGS__ \
392 }
393
394struct spinand_dirmap {
395 struct spi_mem_dirmap_desc *wdesc;
396 struct spi_mem_dirmap_desc *rdesc;
397 struct spi_mem_dirmap_desc *wdesc_ecc;
398 struct spi_mem_dirmap_desc *rdesc_ecc;
399};
400
401/**
402 * struct spinand_device - SPI NAND device instance
403 * @base: NAND device instance
404 * @spimem: pointer to the SPI mem object
405 * @lock: lock used to serialize accesses to the NAND
406 * @id: NAND ID as returned by READ_ID
407 * @flags: NAND flags
408 * @op_templates: various SPI mem op templates
409 * @op_templates.read_cache: read cache op template
410 * @op_templates.write_cache: write cache op template
411 * @op_templates.update_cache: update cache op template
412 * @select_target: select a specific target/die. Usually called before sending
413 * a command addressing a page or an eraseblock embedded in
414 * this die. Only required if your chip exposes several dies
415 * @cur_target: currently selected target/die
416 * @eccinfo: on-die ECC information
417 * @cfg_cache: config register cache. One entry per die
418 * @databuf: bounce buffer for data
419 * @oobbuf: bounce buffer for OOB data
420 * @scratchbuf: buffer used for everything but page accesses. This is needed
421 * because the spi-mem interface explicitly requests that buffers
422 * passed in spi_mem_op be DMA-able, so we can't based the bufs on
423 * the stack
424 * @manufacturer: SPI NAND manufacturer information
425 * @priv: manufacturer private data
426 */
427struct spinand_device {
428 struct nand_device base;
429 struct spi_mem *spimem;
430 struct mutex lock;
431 struct spinand_id id;
432 u32 flags;
433
434 struct {
435 const struct spi_mem_op *read_cache;
436 const struct spi_mem_op *write_cache;
437 const struct spi_mem_op *update_cache;
438 } op_templates;
439
440 struct spinand_dirmap *dirmaps;
441
442 int (*select_target)(struct spinand_device *spinand,
443 unsigned int target);
444 unsigned int cur_target;
445
446 struct spinand_ecc_info eccinfo;
447
448 u8 *cfg_cache;
449 u8 *databuf;
450 u8 *oobbuf;
451 u8 *scratchbuf;
452 const struct spinand_manufacturer *manufacturer;
453 void *priv;
454};
455
456/**
457 * mtd_to_spinand() - Get the SPI NAND device attached to an MTD instance
458 * @mtd: MTD instance
459 *
460 * Return: the SPI NAND device attached to @mtd.
461 */
462static inline struct spinand_device *mtd_to_spinand(struct mtd_info *mtd)
463{
464 return container_of(mtd_to_nanddev(mtd), struct spinand_device, base);
465}
466
467/**
468 * spinand_to_mtd() - Get the MTD device embedded in a SPI NAND device
469 * @spinand: SPI NAND device
470 *
471 * Return: the MTD device embedded in @spinand.
472 */
473static inline struct mtd_info *spinand_to_mtd(struct spinand_device *spinand)
474{
475 return nanddev_to_mtd(nand: &spinand->base);
476}
477
478/**
479 * nand_to_spinand() - Get the SPI NAND device embedding an NAND object
480 * @nand: NAND object
481 *
482 * Return: the SPI NAND device embedding @nand.
483 */
484static inline struct spinand_device *nand_to_spinand(struct nand_device *nand)
485{
486 return container_of(nand, struct spinand_device, base);
487}
488
489/**
490 * spinand_to_nand() - Get the NAND device embedded in a SPI NAND object
491 * @spinand: SPI NAND device
492 *
493 * Return: the NAND device embedded in @spinand.
494 */
495static inline struct nand_device *
496spinand_to_nand(struct spinand_device *spinand)
497{
498 return &spinand->base;
499}
500
501/**
502 * spinand_set_of_node - Attach a DT node to a SPI NAND device
503 * @spinand: SPI NAND device
504 * @np: DT node
505 *
506 * Attach a DT node to a SPI NAND device.
507 */
508static inline void spinand_set_of_node(struct spinand_device *spinand,
509 struct device_node *np)
510{
511 nanddev_set_of_node(nand: &spinand->base, np);
512}
513
514int spinand_match_and_init(struct spinand_device *spinand,
515 const struct spinand_info *table,
516 unsigned int table_size,
517 enum spinand_readid_method rdid_method);
518
519int spinand_upd_cfg(struct spinand_device *spinand, u8 mask, u8 val);
520int spinand_select_target(struct spinand_device *spinand, unsigned int target);
521
522#endif /* __LINUX_MTD_SPINAND_H */
523

source code of linux/include/linux/mtd/spinand.h