1 | /* SPDX-License-Identifier: GPL-2.0 */ |
2 | #ifndef _LINUX_SWAIT_H |
3 | #define _LINUX_SWAIT_H |
4 | |
5 | #include <linux/list.h> |
6 | #include <linux/stddef.h> |
7 | #include <linux/spinlock.h> |
8 | #include <linux/wait.h> |
9 | #include <asm/current.h> |
10 | |
11 | /* |
12 | * BROKEN wait-queues. |
13 | * |
14 | * These "simple" wait-queues are broken garbage, and should never be |
15 | * used. The comments below claim that they are "similar" to regular |
16 | * wait-queues, but the semantics are actually completely different, and |
17 | * every single user we have ever had has been buggy (or pointless). |
18 | * |
19 | * A "swake_up_one()" only wakes up _one_ waiter, which is not at all what |
20 | * "wake_up()" does, and has led to problems. In other cases, it has |
21 | * been fine, because there's only ever one waiter (kvm), but in that |
22 | * case gthe whole "simple" wait-queue is just pointless to begin with, |
23 | * since there is no "queue". Use "wake_up_process()" with a direct |
24 | * pointer instead. |
25 | * |
26 | * While these are very similar to regular wait queues (wait.h) the most |
27 | * important difference is that the simple waitqueue allows for deterministic |
28 | * behaviour -- IOW it has strictly bounded IRQ and lock hold times. |
29 | * |
30 | * Mainly, this is accomplished by two things. Firstly not allowing swake_up_all |
31 | * from IRQ disabled, and dropping the lock upon every wakeup, giving a higher |
32 | * priority task a chance to run. |
33 | * |
34 | * Secondly, we had to drop a fair number of features of the other waitqueue |
35 | * code; notably: |
36 | * |
37 | * - mixing INTERRUPTIBLE and UNINTERRUPTIBLE sleeps on the same waitqueue; |
38 | * all wakeups are TASK_NORMAL in order to avoid O(n) lookups for the right |
39 | * sleeper state. |
40 | * |
41 | * - the !exclusive mode; because that leads to O(n) wakeups, everything is |
42 | * exclusive. |
43 | * |
44 | * - custom wake callback functions; because you cannot give any guarantees |
45 | * about random code. This also allows swait to be used in RT, such that |
46 | * raw spinlock can be used for the swait queue head. |
47 | * |
48 | * As a side effect of these; the data structures are slimmer albeit more ad-hoc. |
49 | * For all the above, note that simple wait queues should _only_ be used under |
50 | * very specific realtime constraints -- it is best to stick with the regular |
51 | * wait queues in most cases. |
52 | */ |
53 | |
54 | struct task_struct; |
55 | |
56 | struct swait_queue_head { |
57 | raw_spinlock_t lock; |
58 | struct list_head task_list; |
59 | }; |
60 | |
61 | struct swait_queue { |
62 | struct task_struct *task; |
63 | struct list_head task_list; |
64 | }; |
65 | |
66 | #define __SWAITQUEUE_INITIALIZER(name) { \ |
67 | .task = current, \ |
68 | .task_list = LIST_HEAD_INIT((name).task_list), \ |
69 | } |
70 | |
71 | #define DECLARE_SWAITQUEUE(name) \ |
72 | struct swait_queue name = __SWAITQUEUE_INITIALIZER(name) |
73 | |
74 | #define __SWAIT_QUEUE_HEAD_INITIALIZER(name) { \ |
75 | .lock = __RAW_SPIN_LOCK_UNLOCKED(name.lock), \ |
76 | .task_list = LIST_HEAD_INIT((name).task_list), \ |
77 | } |
78 | |
79 | #define DECLARE_SWAIT_QUEUE_HEAD(name) \ |
80 | struct swait_queue_head name = __SWAIT_QUEUE_HEAD_INITIALIZER(name) |
81 | |
82 | extern void __init_swait_queue_head(struct swait_queue_head *q, const char *name, |
83 | struct lock_class_key *key); |
84 | |
85 | #define init_swait_queue_head(q) \ |
86 | do { \ |
87 | static struct lock_class_key __key; \ |
88 | __init_swait_queue_head((q), #q, &__key); \ |
89 | } while (0) |
90 | |
91 | #ifdef CONFIG_LOCKDEP |
92 | # define __SWAIT_QUEUE_HEAD_INIT_ONSTACK(name) \ |
93 | ({ init_swait_queue_head(&name); name; }) |
94 | # define DECLARE_SWAIT_QUEUE_HEAD_ONSTACK(name) \ |
95 | struct swait_queue_head name = __SWAIT_QUEUE_HEAD_INIT_ONSTACK(name) |
96 | #else |
97 | # define DECLARE_SWAIT_QUEUE_HEAD_ONSTACK(name) \ |
98 | DECLARE_SWAIT_QUEUE_HEAD(name) |
99 | #endif |
100 | |
101 | /** |
102 | * swait_active -- locklessly test for waiters on the queue |
103 | * @wq: the waitqueue to test for waiters |
104 | * |
105 | * returns true if the wait list is not empty |
106 | * |
107 | * NOTE: this function is lockless and requires care, incorrect usage _will_ |
108 | * lead to sporadic and non-obvious failure. |
109 | * |
110 | * NOTE2: this function has the same above implications as regular waitqueues. |
111 | * |
112 | * Use either while holding swait_queue_head::lock or when used for wakeups |
113 | * with an extra smp_mb() like: |
114 | * |
115 | * CPU0 - waker CPU1 - waiter |
116 | * |
117 | * for (;;) { |
118 | * @cond = true; prepare_to_swait_exclusive(&wq_head, &wait, state); |
119 | * smp_mb(); // smp_mb() from set_current_state() |
120 | * if (swait_active(wq_head)) if (@cond) |
121 | * wake_up(wq_head); break; |
122 | * schedule(); |
123 | * } |
124 | * finish_swait(&wq_head, &wait); |
125 | * |
126 | * Because without the explicit smp_mb() it's possible for the |
127 | * swait_active() load to get hoisted over the @cond store such that we'll |
128 | * observe an empty wait list while the waiter might not observe @cond. |
129 | * This, in turn, can trigger missing wakeups. |
130 | * |
131 | * Also note that this 'optimization' trades a spin_lock() for an smp_mb(), |
132 | * which (when the lock is uncontended) are of roughly equal cost. |
133 | */ |
134 | static inline int swait_active(struct swait_queue_head *wq) |
135 | { |
136 | return !list_empty(&wq->task_list); |
137 | } |
138 | |
139 | /** |
140 | * swq_has_sleeper - check if there are any waiting processes |
141 | * @wq: the waitqueue to test for waiters |
142 | * |
143 | * Returns true if @wq has waiting processes |
144 | * |
145 | * Please refer to the comment for swait_active. |
146 | */ |
147 | static inline bool swq_has_sleeper(struct swait_queue_head *wq) |
148 | { |
149 | /* |
150 | * We need to be sure we are in sync with the list_add() |
151 | * modifications to the wait queue (task_list). |
152 | * |
153 | * This memory barrier should be paired with one on the |
154 | * waiting side. |
155 | */ |
156 | smp_mb(); |
157 | return swait_active(wq); |
158 | } |
159 | |
160 | extern void swake_up_one(struct swait_queue_head *q); |
161 | extern void swake_up_all(struct swait_queue_head *q); |
162 | extern void swake_up_locked(struct swait_queue_head *q); |
163 | |
164 | extern void prepare_to_swait_exclusive(struct swait_queue_head *q, struct swait_queue *wait, int state); |
165 | extern long prepare_to_swait_event(struct swait_queue_head *q, struct swait_queue *wait, int state); |
166 | |
167 | extern void __finish_swait(struct swait_queue_head *q, struct swait_queue *wait); |
168 | extern void finish_swait(struct swait_queue_head *q, struct swait_queue *wait); |
169 | |
170 | /* as per ___wait_event() but for swait, therefore "exclusive == 1" */ |
171 | #define ___swait_event(wq, condition, state, ret, cmd) \ |
172 | ({ \ |
173 | __label__ __out; \ |
174 | struct swait_queue __wait; \ |
175 | long __ret = ret; \ |
176 | \ |
177 | INIT_LIST_HEAD(&__wait.task_list); \ |
178 | for (;;) { \ |
179 | long __int = prepare_to_swait_event(&wq, &__wait, state);\ |
180 | \ |
181 | if (condition) \ |
182 | break; \ |
183 | \ |
184 | if (___wait_is_interruptible(state) && __int) { \ |
185 | __ret = __int; \ |
186 | goto __out; \ |
187 | } \ |
188 | \ |
189 | cmd; \ |
190 | } \ |
191 | finish_swait(&wq, &__wait); \ |
192 | __out: __ret; \ |
193 | }) |
194 | |
195 | #define __swait_event(wq, condition) \ |
196 | (void)___swait_event(wq, condition, TASK_UNINTERRUPTIBLE, 0, \ |
197 | schedule()) |
198 | |
199 | #define swait_event_exclusive(wq, condition) \ |
200 | do { \ |
201 | if (condition) \ |
202 | break; \ |
203 | __swait_event(wq, condition); \ |
204 | } while (0) |
205 | |
206 | #define __swait_event_timeout(wq, condition, timeout) \ |
207 | ___swait_event(wq, ___wait_cond_timeout(condition), \ |
208 | TASK_UNINTERRUPTIBLE, timeout, \ |
209 | __ret = schedule_timeout(__ret)) |
210 | |
211 | #define swait_event_timeout_exclusive(wq, condition, timeout) \ |
212 | ({ \ |
213 | long __ret = timeout; \ |
214 | if (!___wait_cond_timeout(condition)) \ |
215 | __ret = __swait_event_timeout(wq, condition, timeout); \ |
216 | __ret; \ |
217 | }) |
218 | |
219 | #define __swait_event_interruptible(wq, condition) \ |
220 | ___swait_event(wq, condition, TASK_INTERRUPTIBLE, 0, \ |
221 | schedule()) |
222 | |
223 | #define swait_event_interruptible_exclusive(wq, condition) \ |
224 | ({ \ |
225 | int __ret = 0; \ |
226 | if (!(condition)) \ |
227 | __ret = __swait_event_interruptible(wq, condition); \ |
228 | __ret; \ |
229 | }) |
230 | |
231 | #define __swait_event_interruptible_timeout(wq, condition, timeout) \ |
232 | ___swait_event(wq, ___wait_cond_timeout(condition), \ |
233 | TASK_INTERRUPTIBLE, timeout, \ |
234 | __ret = schedule_timeout(__ret)) |
235 | |
236 | #define swait_event_interruptible_timeout_exclusive(wq, condition, timeout)\ |
237 | ({ \ |
238 | long __ret = timeout; \ |
239 | if (!___wait_cond_timeout(condition)) \ |
240 | __ret = __swait_event_interruptible_timeout(wq, \ |
241 | condition, timeout); \ |
242 | __ret; \ |
243 | }) |
244 | |
245 | #define __swait_event_idle(wq, condition) \ |
246 | (void)___swait_event(wq, condition, TASK_IDLE, 0, schedule()) |
247 | |
248 | /** |
249 | * swait_event_idle_exclusive - wait without system load contribution |
250 | * @wq: the waitqueue to wait on |
251 | * @condition: a C expression for the event to wait for |
252 | * |
253 | * The process is put to sleep (TASK_IDLE) until the @condition evaluates to |
254 | * true. The @condition is checked each time the waitqueue @wq is woken up. |
255 | * |
256 | * This function is mostly used when a kthread or workqueue waits for some |
257 | * condition and doesn't want to contribute to system load. Signals are |
258 | * ignored. |
259 | */ |
260 | #define swait_event_idle_exclusive(wq, condition) \ |
261 | do { \ |
262 | if (condition) \ |
263 | break; \ |
264 | __swait_event_idle(wq, condition); \ |
265 | } while (0) |
266 | |
267 | #define __swait_event_idle_timeout(wq, condition, timeout) \ |
268 | ___swait_event(wq, ___wait_cond_timeout(condition), \ |
269 | TASK_IDLE, timeout, \ |
270 | __ret = schedule_timeout(__ret)) |
271 | |
272 | /** |
273 | * swait_event_idle_timeout_exclusive - wait up to timeout without load contribution |
274 | * @wq: the waitqueue to wait on |
275 | * @condition: a C expression for the event to wait for |
276 | * @timeout: timeout at which we'll give up in jiffies |
277 | * |
278 | * The process is put to sleep (TASK_IDLE) until the @condition evaluates to |
279 | * true. The @condition is checked each time the waitqueue @wq is woken up. |
280 | * |
281 | * This function is mostly used when a kthread or workqueue waits for some |
282 | * condition and doesn't want to contribute to system load. Signals are |
283 | * ignored. |
284 | * |
285 | * Returns: |
286 | * 0 if the @condition evaluated to %false after the @timeout elapsed, |
287 | * 1 if the @condition evaluated to %true after the @timeout elapsed, |
288 | * or the remaining jiffies (at least 1) if the @condition evaluated |
289 | * to %true before the @timeout elapsed. |
290 | */ |
291 | #define swait_event_idle_timeout_exclusive(wq, condition, timeout) \ |
292 | ({ \ |
293 | long __ret = timeout; \ |
294 | if (!___wait_cond_timeout(condition)) \ |
295 | __ret = __swait_event_idle_timeout(wq, \ |
296 | condition, timeout); \ |
297 | __ret; \ |
298 | }) |
299 | |
300 | #endif /* _LINUX_SWAIT_H */ |
301 | |