1 | /* SPDX-License-Identifier: GPL-2.0 */ |
2 | #ifndef _LINUX_TIME_H |
3 | #define _LINUX_TIME_H |
4 | |
5 | # include <linux/cache.h> |
6 | # include <linux/seqlock.h> |
7 | # include <linux/math64.h> |
8 | # include <linux/time64.h> |
9 | |
10 | extern struct timezone sys_tz; |
11 | |
12 | int get_timespec64(struct timespec64 *ts, |
13 | const struct __kernel_timespec __user *uts); |
14 | int put_timespec64(const struct timespec64 *ts, |
15 | struct __kernel_timespec __user *uts); |
16 | int get_itimerspec64(struct itimerspec64 *it, |
17 | const struct __kernel_itimerspec __user *uit); |
18 | int put_itimerspec64(const struct itimerspec64 *it, |
19 | struct __kernel_itimerspec __user *uit); |
20 | |
21 | extern time64_t mktime64(const unsigned int year, const unsigned int mon, |
22 | const unsigned int day, const unsigned int hour, |
23 | const unsigned int min, const unsigned int sec); |
24 | |
25 | /* Some architectures do not supply their own clocksource. |
26 | * This is mainly the case in architectures that get their |
27 | * inter-tick times by reading the counter on their interval |
28 | * timer. Since these timers wrap every tick, they're not really |
29 | * useful as clocksources. Wrapping them to act like one is possible |
30 | * but not very efficient. So we provide a callout these arches |
31 | * can implement for use with the jiffies clocksource to provide |
32 | * finer then tick granular time. |
33 | */ |
34 | #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET |
35 | extern u32 (*arch_gettimeoffset)(void); |
36 | #endif |
37 | |
38 | struct itimerval; |
39 | extern int do_setitimer(int which, struct itimerval *value, |
40 | struct itimerval *ovalue); |
41 | extern int do_getitimer(int which, struct itimerval *value); |
42 | |
43 | extern long do_utimes(int dfd, const char __user *filename, struct timespec64 *times, int flags); |
44 | |
45 | /* |
46 | * Similar to the struct tm in userspace <time.h>, but it needs to be here so |
47 | * that the kernel source is self contained. |
48 | */ |
49 | struct tm { |
50 | /* |
51 | * the number of seconds after the minute, normally in the range |
52 | * 0 to 59, but can be up to 60 to allow for leap seconds |
53 | */ |
54 | int tm_sec; |
55 | /* the number of minutes after the hour, in the range 0 to 59*/ |
56 | int tm_min; |
57 | /* the number of hours past midnight, in the range 0 to 23 */ |
58 | int tm_hour; |
59 | /* the day of the month, in the range 1 to 31 */ |
60 | int tm_mday; |
61 | /* the number of months since January, in the range 0 to 11 */ |
62 | int tm_mon; |
63 | /* the number of years since 1900 */ |
64 | long tm_year; |
65 | /* the number of days since Sunday, in the range 0 to 6 */ |
66 | int tm_wday; |
67 | /* the number of days since January 1, in the range 0 to 365 */ |
68 | int tm_yday; |
69 | }; |
70 | |
71 | void time64_to_tm(time64_t totalsecs, int offset, struct tm *result); |
72 | |
73 | # include <linux/time32.h> |
74 | |
75 | static inline bool itimerspec64_valid(const struct itimerspec64 *its) |
76 | { |
77 | if (!timespec64_valid(&(its->it_interval)) || |
78 | !timespec64_valid(&(its->it_value))) |
79 | return false; |
80 | |
81 | return true; |
82 | } |
83 | |
84 | /** |
85 | * time_after32 - compare two 32-bit relative times |
86 | * @a: the time which may be after @b |
87 | * @b: the time which may be before @a |
88 | * |
89 | * time_after32(a, b) returns true if the time @a is after time @b. |
90 | * time_before32(b, a) returns true if the time @b is before time @a. |
91 | * |
92 | * Similar to time_after(), compare two 32-bit timestamps for relative |
93 | * times. This is useful for comparing 32-bit seconds values that can't |
94 | * be converted to 64-bit values (e.g. due to disk format or wire protocol |
95 | * issues) when it is known that the times are less than 68 years apart. |
96 | */ |
97 | #define time_after32(a, b) ((s32)((u32)(b) - (u32)(a)) < 0) |
98 | #define time_before32(b, a) time_after32(a, b) |
99 | #endif |
100 | |