1/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the AF_INET socket handler.
7 *
8 * Version: @(#)sock.h 1.0.4 05/13/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche <flla@stud.uni-sb.de>
14 *
15 * Fixes:
16 * Alan Cox : Volatiles in skbuff pointers. See
17 * skbuff comments. May be overdone,
18 * better to prove they can be removed
19 * than the reverse.
20 * Alan Cox : Added a zapped field for tcp to note
21 * a socket is reset and must stay shut up
22 * Alan Cox : New fields for options
23 * Pauline Middelink : identd support
24 * Alan Cox : Eliminate low level recv/recvfrom
25 * David S. Miller : New socket lookup architecture.
26 * Steve Whitehouse: Default routines for sock_ops
27 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made
28 * protinfo be just a void pointer, as the
29 * protocol specific parts were moved to
30 * respective headers and ipv4/v6, etc now
31 * use private slabcaches for its socks
32 * Pedro Hortas : New flags field for socket options
33 *
34 *
35 * This program is free software; you can redistribute it and/or
36 * modify it under the terms of the GNU General Public License
37 * as published by the Free Software Foundation; either version
38 * 2 of the License, or (at your option) any later version.
39 */
40#ifndef _SOCK_H
41#define _SOCK_H
42
43#include <linux/hardirq.h>
44#include <linux/kernel.h>
45#include <linux/list.h>
46#include <linux/list_nulls.h>
47#include <linux/timer.h>
48#include <linux/cache.h>
49#include <linux/bitops.h>
50#include <linux/lockdep.h>
51#include <linux/netdevice.h>
52#include <linux/skbuff.h> /* struct sk_buff */
53#include <linux/mm.h>
54#include <linux/security.h>
55#include <linux/slab.h>
56#include <linux/uaccess.h>
57#include <linux/page_counter.h>
58#include <linux/memcontrol.h>
59#include <linux/static_key.h>
60#include <linux/sched.h>
61#include <linux/wait.h>
62#include <linux/cgroup-defs.h>
63#include <linux/rbtree.h>
64#include <linux/filter.h>
65#include <linux/rculist_nulls.h>
66#include <linux/poll.h>
67
68#include <linux/atomic.h>
69#include <linux/refcount.h>
70#include <net/dst.h>
71#include <net/checksum.h>
72#include <net/tcp_states.h>
73#include <linux/net_tstamp.h>
74#include <net/smc.h>
75#include <net/l3mdev.h>
76
77/*
78 * This structure really needs to be cleaned up.
79 * Most of it is for TCP, and not used by any of
80 * the other protocols.
81 */
82
83/* Define this to get the SOCK_DBG debugging facility. */
84#define SOCK_DEBUGGING
85#ifdef SOCK_DEBUGGING
86#define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
87 printk(KERN_DEBUG msg); } while (0)
88#else
89/* Validate arguments and do nothing */
90static inline __printf(2, 3)
91void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
92{
93}
94#endif
95
96/* This is the per-socket lock. The spinlock provides a synchronization
97 * between user contexts and software interrupt processing, whereas the
98 * mini-semaphore synchronizes multiple users amongst themselves.
99 */
100typedef struct {
101 spinlock_t slock;
102 int owned;
103 wait_queue_head_t wq;
104 /*
105 * We express the mutex-alike socket_lock semantics
106 * to the lock validator by explicitly managing
107 * the slock as a lock variant (in addition to
108 * the slock itself):
109 */
110#ifdef CONFIG_DEBUG_LOCK_ALLOC
111 struct lockdep_map dep_map;
112#endif
113} socket_lock_t;
114
115struct sock;
116struct proto;
117struct net;
118
119typedef __u32 __bitwise __portpair;
120typedef __u64 __bitwise __addrpair;
121
122/**
123 * struct sock_common - minimal network layer representation of sockets
124 * @skc_daddr: Foreign IPv4 addr
125 * @skc_rcv_saddr: Bound local IPv4 addr
126 * @skc_hash: hash value used with various protocol lookup tables
127 * @skc_u16hashes: two u16 hash values used by UDP lookup tables
128 * @skc_dport: placeholder for inet_dport/tw_dport
129 * @skc_num: placeholder for inet_num/tw_num
130 * @skc_family: network address family
131 * @skc_state: Connection state
132 * @skc_reuse: %SO_REUSEADDR setting
133 * @skc_reuseport: %SO_REUSEPORT setting
134 * @skc_bound_dev_if: bound device index if != 0
135 * @skc_bind_node: bind hash linkage for various protocol lookup tables
136 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
137 * @skc_prot: protocol handlers inside a network family
138 * @skc_net: reference to the network namespace of this socket
139 * @skc_node: main hash linkage for various protocol lookup tables
140 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
141 * @skc_tx_queue_mapping: tx queue number for this connection
142 * @skc_rx_queue_mapping: rx queue number for this connection
143 * @skc_flags: place holder for sk_flags
144 * %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
145 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
146 * @skc_incoming_cpu: record/match cpu processing incoming packets
147 * @skc_refcnt: reference count
148 *
149 * This is the minimal network layer representation of sockets, the header
150 * for struct sock and struct inet_timewait_sock.
151 */
152struct sock_common {
153 /* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
154 * address on 64bit arches : cf INET_MATCH()
155 */
156 union {
157 __addrpair skc_addrpair;
158 struct {
159 __be32 skc_daddr;
160 __be32 skc_rcv_saddr;
161 };
162 };
163 union {
164 unsigned int skc_hash;
165 __u16 skc_u16hashes[2];
166 };
167 /* skc_dport && skc_num must be grouped as well */
168 union {
169 __portpair skc_portpair;
170 struct {
171 __be16 skc_dport;
172 __u16 skc_num;
173 };
174 };
175
176 unsigned short skc_family;
177 volatile unsigned char skc_state;
178 unsigned char skc_reuse:4;
179 unsigned char skc_reuseport:1;
180 unsigned char skc_ipv6only:1;
181 unsigned char skc_net_refcnt:1;
182 int skc_bound_dev_if;
183 union {
184 struct hlist_node skc_bind_node;
185 struct hlist_node skc_portaddr_node;
186 };
187 struct proto *skc_prot;
188 possible_net_t skc_net;
189
190#if IS_ENABLED(CONFIG_IPV6)
191 struct in6_addr skc_v6_daddr;
192 struct in6_addr skc_v6_rcv_saddr;
193#endif
194
195 atomic64_t skc_cookie;
196
197 /* following fields are padding to force
198 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
199 * assuming IPV6 is enabled. We use this padding differently
200 * for different kind of 'sockets'
201 */
202 union {
203 unsigned long skc_flags;
204 struct sock *skc_listener; /* request_sock */
205 struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
206 };
207 /*
208 * fields between dontcopy_begin/dontcopy_end
209 * are not copied in sock_copy()
210 */
211 /* private: */
212 int skc_dontcopy_begin[0];
213 /* public: */
214 union {
215 struct hlist_node skc_node;
216 struct hlist_nulls_node skc_nulls_node;
217 };
218 unsigned short skc_tx_queue_mapping;
219#ifdef CONFIG_XPS
220 unsigned short skc_rx_queue_mapping;
221#endif
222 union {
223 int skc_incoming_cpu;
224 u32 skc_rcv_wnd;
225 u32 skc_tw_rcv_nxt; /* struct tcp_timewait_sock */
226 };
227
228 refcount_t skc_refcnt;
229 /* private: */
230 int skc_dontcopy_end[0];
231 union {
232 u32 skc_rxhash;
233 u32 skc_window_clamp;
234 u32 skc_tw_snd_nxt; /* struct tcp_timewait_sock */
235 };
236 /* public: */
237};
238
239/**
240 * struct sock - network layer representation of sockets
241 * @__sk_common: shared layout with inet_timewait_sock
242 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
243 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
244 * @sk_lock: synchronizer
245 * @sk_kern_sock: True if sock is using kernel lock classes
246 * @sk_rcvbuf: size of receive buffer in bytes
247 * @sk_wq: sock wait queue and async head
248 * @sk_rx_dst: receive input route used by early demux
249 * @sk_dst_cache: destination cache
250 * @sk_dst_pending_confirm: need to confirm neighbour
251 * @sk_policy: flow policy
252 * @sk_receive_queue: incoming packets
253 * @sk_wmem_alloc: transmit queue bytes committed
254 * @sk_tsq_flags: TCP Small Queues flags
255 * @sk_write_queue: Packet sending queue
256 * @sk_omem_alloc: "o" is "option" or "other"
257 * @sk_wmem_queued: persistent queue size
258 * @sk_forward_alloc: space allocated forward
259 * @sk_napi_id: id of the last napi context to receive data for sk
260 * @sk_ll_usec: usecs to busypoll when there is no data
261 * @sk_allocation: allocation mode
262 * @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
263 * @sk_pacing_status: Pacing status (requested, handled by sch_fq)
264 * @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
265 * @sk_sndbuf: size of send buffer in bytes
266 * @__sk_flags_offset: empty field used to determine location of bitfield
267 * @sk_padding: unused element for alignment
268 * @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
269 * @sk_no_check_rx: allow zero checksum in RX packets
270 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
271 * @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
272 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
273 * @sk_gso_max_size: Maximum GSO segment size to build
274 * @sk_gso_max_segs: Maximum number of GSO segments
275 * @sk_pacing_shift: scaling factor for TCP Small Queues
276 * @sk_lingertime: %SO_LINGER l_linger setting
277 * @sk_backlog: always used with the per-socket spinlock held
278 * @sk_callback_lock: used with the callbacks in the end of this struct
279 * @sk_error_queue: rarely used
280 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
281 * IPV6_ADDRFORM for instance)
282 * @sk_err: last error
283 * @sk_err_soft: errors that don't cause failure but are the cause of a
284 * persistent failure not just 'timed out'
285 * @sk_drops: raw/udp drops counter
286 * @sk_ack_backlog: current listen backlog
287 * @sk_max_ack_backlog: listen backlog set in listen()
288 * @sk_uid: user id of owner
289 * @sk_priority: %SO_PRIORITY setting
290 * @sk_type: socket type (%SOCK_STREAM, etc)
291 * @sk_protocol: which protocol this socket belongs in this network family
292 * @sk_peer_pid: &struct pid for this socket's peer
293 * @sk_peer_cred: %SO_PEERCRED setting
294 * @sk_rcvlowat: %SO_RCVLOWAT setting
295 * @sk_rcvtimeo: %SO_RCVTIMEO setting
296 * @sk_sndtimeo: %SO_SNDTIMEO setting
297 * @sk_txhash: computed flow hash for use on transmit
298 * @sk_filter: socket filtering instructions
299 * @sk_timer: sock cleanup timer
300 * @sk_stamp: time stamp of last packet received
301 * @sk_stamp_seq: lock for accessing sk_stamp on 32 bit architectures only
302 * @sk_tsflags: SO_TIMESTAMPING socket options
303 * @sk_tskey: counter to disambiguate concurrent tstamp requests
304 * @sk_zckey: counter to order MSG_ZEROCOPY notifications
305 * @sk_socket: Identd and reporting IO signals
306 * @sk_user_data: RPC layer private data
307 * @sk_frag: cached page frag
308 * @sk_peek_off: current peek_offset value
309 * @sk_send_head: front of stuff to transmit
310 * @sk_security: used by security modules
311 * @sk_mark: generic packet mark
312 * @sk_cgrp_data: cgroup data for this cgroup
313 * @sk_memcg: this socket's memory cgroup association
314 * @sk_write_pending: a write to stream socket waits to start
315 * @sk_state_change: callback to indicate change in the state of the sock
316 * @sk_data_ready: callback to indicate there is data to be processed
317 * @sk_write_space: callback to indicate there is bf sending space available
318 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
319 * @sk_backlog_rcv: callback to process the backlog
320 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
321 * @sk_reuseport_cb: reuseport group container
322 * @sk_rcu: used during RCU grace period
323 * @sk_clockid: clockid used by time-based scheduling (SO_TXTIME)
324 * @sk_txtime_deadline_mode: set deadline mode for SO_TXTIME
325 * @sk_txtime_unused: unused txtime flags
326 */
327struct sock {
328 /*
329 * Now struct inet_timewait_sock also uses sock_common, so please just
330 * don't add nothing before this first member (__sk_common) --acme
331 */
332 struct sock_common __sk_common;
333#define sk_node __sk_common.skc_node
334#define sk_nulls_node __sk_common.skc_nulls_node
335#define sk_refcnt __sk_common.skc_refcnt
336#define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping
337#ifdef CONFIG_XPS
338#define sk_rx_queue_mapping __sk_common.skc_rx_queue_mapping
339#endif
340
341#define sk_dontcopy_begin __sk_common.skc_dontcopy_begin
342#define sk_dontcopy_end __sk_common.skc_dontcopy_end
343#define sk_hash __sk_common.skc_hash
344#define sk_portpair __sk_common.skc_portpair
345#define sk_num __sk_common.skc_num
346#define sk_dport __sk_common.skc_dport
347#define sk_addrpair __sk_common.skc_addrpair
348#define sk_daddr __sk_common.skc_daddr
349#define sk_rcv_saddr __sk_common.skc_rcv_saddr
350#define sk_family __sk_common.skc_family
351#define sk_state __sk_common.skc_state
352#define sk_reuse __sk_common.skc_reuse
353#define sk_reuseport __sk_common.skc_reuseport
354#define sk_ipv6only __sk_common.skc_ipv6only
355#define sk_net_refcnt __sk_common.skc_net_refcnt
356#define sk_bound_dev_if __sk_common.skc_bound_dev_if
357#define sk_bind_node __sk_common.skc_bind_node
358#define sk_prot __sk_common.skc_prot
359#define sk_net __sk_common.skc_net
360#define sk_v6_daddr __sk_common.skc_v6_daddr
361#define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr
362#define sk_cookie __sk_common.skc_cookie
363#define sk_incoming_cpu __sk_common.skc_incoming_cpu
364#define sk_flags __sk_common.skc_flags
365#define sk_rxhash __sk_common.skc_rxhash
366
367 socket_lock_t sk_lock;
368 atomic_t sk_drops;
369 int sk_rcvlowat;
370 struct sk_buff_head sk_error_queue;
371 struct sk_buff_head sk_receive_queue;
372 /*
373 * The backlog queue is special, it is always used with
374 * the per-socket spinlock held and requires low latency
375 * access. Therefore we special case it's implementation.
376 * Note : rmem_alloc is in this structure to fill a hole
377 * on 64bit arches, not because its logically part of
378 * backlog.
379 */
380 struct {
381 atomic_t rmem_alloc;
382 int len;
383 struct sk_buff *head;
384 struct sk_buff *tail;
385 } sk_backlog;
386#define sk_rmem_alloc sk_backlog.rmem_alloc
387
388 int sk_forward_alloc;
389#ifdef CONFIG_NET_RX_BUSY_POLL
390 unsigned int sk_ll_usec;
391 /* ===== mostly read cache line ===== */
392 unsigned int sk_napi_id;
393#endif
394 int sk_rcvbuf;
395
396 struct sk_filter __rcu *sk_filter;
397 union {
398 struct socket_wq __rcu *sk_wq;
399 struct socket_wq *sk_wq_raw;
400 };
401#ifdef CONFIG_XFRM
402 struct xfrm_policy __rcu *sk_policy[2];
403#endif
404 struct dst_entry *sk_rx_dst;
405 struct dst_entry __rcu *sk_dst_cache;
406 atomic_t sk_omem_alloc;
407 int sk_sndbuf;
408
409 /* ===== cache line for TX ===== */
410 int sk_wmem_queued;
411 refcount_t sk_wmem_alloc;
412 unsigned long sk_tsq_flags;
413 union {
414 struct sk_buff *sk_send_head;
415 struct rb_root tcp_rtx_queue;
416 };
417 struct sk_buff_head sk_write_queue;
418 __s32 sk_peek_off;
419 int sk_write_pending;
420 __u32 sk_dst_pending_confirm;
421 u32 sk_pacing_status; /* see enum sk_pacing */
422 long sk_sndtimeo;
423 struct timer_list sk_timer;
424 __u32 sk_priority;
425 __u32 sk_mark;
426 unsigned long sk_pacing_rate; /* bytes per second */
427 unsigned long sk_max_pacing_rate;
428 struct page_frag sk_frag;
429 netdev_features_t sk_route_caps;
430 netdev_features_t sk_route_nocaps;
431 netdev_features_t sk_route_forced_caps;
432 int sk_gso_type;
433 unsigned int sk_gso_max_size;
434 gfp_t sk_allocation;
435 __u32 sk_txhash;
436
437 /*
438 * Because of non atomicity rules, all
439 * changes are protected by socket lock.
440 */
441 unsigned int __sk_flags_offset[0];
442#ifdef __BIG_ENDIAN_BITFIELD
443#define SK_FL_PROTO_SHIFT 16
444#define SK_FL_PROTO_MASK 0x00ff0000
445
446#define SK_FL_TYPE_SHIFT 0
447#define SK_FL_TYPE_MASK 0x0000ffff
448#else
449#define SK_FL_PROTO_SHIFT 8
450#define SK_FL_PROTO_MASK 0x0000ff00
451
452#define SK_FL_TYPE_SHIFT 16
453#define SK_FL_TYPE_MASK 0xffff0000
454#endif
455
456 unsigned int sk_padding : 1,
457 sk_kern_sock : 1,
458 sk_no_check_tx : 1,
459 sk_no_check_rx : 1,
460 sk_userlocks : 4,
461 sk_protocol : 8,
462 sk_type : 16;
463#define SK_PROTOCOL_MAX U8_MAX
464 u16 sk_gso_max_segs;
465 u8 sk_pacing_shift;
466 unsigned long sk_lingertime;
467 struct proto *sk_prot_creator;
468 rwlock_t sk_callback_lock;
469 int sk_err,
470 sk_err_soft;
471 u32 sk_ack_backlog;
472 u32 sk_max_ack_backlog;
473 kuid_t sk_uid;
474 struct pid *sk_peer_pid;
475 const struct cred *sk_peer_cred;
476 long sk_rcvtimeo;
477 ktime_t sk_stamp;
478#if BITS_PER_LONG==32
479 seqlock_t sk_stamp_seq;
480#endif
481 u16 sk_tsflags;
482 u8 sk_shutdown;
483 u32 sk_tskey;
484 atomic_t sk_zckey;
485
486 u8 sk_clockid;
487 u8 sk_txtime_deadline_mode : 1,
488 sk_txtime_report_errors : 1,
489 sk_txtime_unused : 6;
490
491 struct socket *sk_socket;
492 void *sk_user_data;
493#ifdef CONFIG_SECURITY
494 void *sk_security;
495#endif
496 struct sock_cgroup_data sk_cgrp_data;
497 struct mem_cgroup *sk_memcg;
498 void (*sk_state_change)(struct sock *sk);
499 void (*sk_data_ready)(struct sock *sk);
500 void (*sk_write_space)(struct sock *sk);
501 void (*sk_error_report)(struct sock *sk);
502 int (*sk_backlog_rcv)(struct sock *sk,
503 struct sk_buff *skb);
504#ifdef CONFIG_SOCK_VALIDATE_XMIT
505 struct sk_buff* (*sk_validate_xmit_skb)(struct sock *sk,
506 struct net_device *dev,
507 struct sk_buff *skb);
508#endif
509 void (*sk_destruct)(struct sock *sk);
510 struct sock_reuseport __rcu *sk_reuseport_cb;
511 struct rcu_head sk_rcu;
512};
513
514enum sk_pacing {
515 SK_PACING_NONE = 0,
516 SK_PACING_NEEDED = 1,
517 SK_PACING_FQ = 2,
518};
519
520#define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
521
522#define rcu_dereference_sk_user_data(sk) rcu_dereference(__sk_user_data((sk)))
523#define rcu_assign_sk_user_data(sk, ptr) rcu_assign_pointer(__sk_user_data((sk)), ptr)
524
525/*
526 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
527 * or not whether his port will be reused by someone else. SK_FORCE_REUSE
528 * on a socket means that the socket will reuse everybody else's port
529 * without looking at the other's sk_reuse value.
530 */
531
532#define SK_NO_REUSE 0
533#define SK_CAN_REUSE 1
534#define SK_FORCE_REUSE 2
535
536int sk_set_peek_off(struct sock *sk, int val);
537
538static inline int sk_peek_offset(struct sock *sk, int flags)
539{
540 if (unlikely(flags & MSG_PEEK)) {
541 return READ_ONCE(sk->sk_peek_off);
542 }
543
544 return 0;
545}
546
547static inline void sk_peek_offset_bwd(struct sock *sk, int val)
548{
549 s32 off = READ_ONCE(sk->sk_peek_off);
550
551 if (unlikely(off >= 0)) {
552 off = max_t(s32, off - val, 0);
553 WRITE_ONCE(sk->sk_peek_off, off);
554 }
555}
556
557static inline void sk_peek_offset_fwd(struct sock *sk, int val)
558{
559 sk_peek_offset_bwd(sk, -val);
560}
561
562/*
563 * Hashed lists helper routines
564 */
565static inline struct sock *sk_entry(const struct hlist_node *node)
566{
567 return hlist_entry(node, struct sock, sk_node);
568}
569
570static inline struct sock *__sk_head(const struct hlist_head *head)
571{
572 return hlist_entry(head->first, struct sock, sk_node);
573}
574
575static inline struct sock *sk_head(const struct hlist_head *head)
576{
577 return hlist_empty(head) ? NULL : __sk_head(head);
578}
579
580static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
581{
582 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
583}
584
585static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
586{
587 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
588}
589
590static inline struct sock *sk_next(const struct sock *sk)
591{
592 return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node);
593}
594
595static inline struct sock *sk_nulls_next(const struct sock *sk)
596{
597 return (!is_a_nulls(sk->sk_nulls_node.next)) ?
598 hlist_nulls_entry(sk->sk_nulls_node.next,
599 struct sock, sk_nulls_node) :
600 NULL;
601}
602
603static inline bool sk_unhashed(const struct sock *sk)
604{
605 return hlist_unhashed(&sk->sk_node);
606}
607
608static inline bool sk_hashed(const struct sock *sk)
609{
610 return !sk_unhashed(sk);
611}
612
613static inline void sk_node_init(struct hlist_node *node)
614{
615 node->pprev = NULL;
616}
617
618static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
619{
620 node->pprev = NULL;
621}
622
623static inline void __sk_del_node(struct sock *sk)
624{
625 __hlist_del(&sk->sk_node);
626}
627
628/* NB: equivalent to hlist_del_init_rcu */
629static inline bool __sk_del_node_init(struct sock *sk)
630{
631 if (sk_hashed(sk)) {
632 __sk_del_node(sk);
633 sk_node_init(&sk->sk_node);
634 return true;
635 }
636 return false;
637}
638
639/* Grab socket reference count. This operation is valid only
640 when sk is ALREADY grabbed f.e. it is found in hash table
641 or a list and the lookup is made under lock preventing hash table
642 modifications.
643 */
644
645static __always_inline void sock_hold(struct sock *sk)
646{
647 refcount_inc(&sk->sk_refcnt);
648}
649
650/* Ungrab socket in the context, which assumes that socket refcnt
651 cannot hit zero, f.e. it is true in context of any socketcall.
652 */
653static __always_inline void __sock_put(struct sock *sk)
654{
655 refcount_dec(&sk->sk_refcnt);
656}
657
658static inline bool sk_del_node_init(struct sock *sk)
659{
660 bool rc = __sk_del_node_init(sk);
661
662 if (rc) {
663 /* paranoid for a while -acme */
664 WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
665 __sock_put(sk);
666 }
667 return rc;
668}
669#define sk_del_node_init_rcu(sk) sk_del_node_init(sk)
670
671static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
672{
673 if (sk_hashed(sk)) {
674 hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
675 return true;
676 }
677 return false;
678}
679
680static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
681{
682 bool rc = __sk_nulls_del_node_init_rcu(sk);
683
684 if (rc) {
685 /* paranoid for a while -acme */
686 WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
687 __sock_put(sk);
688 }
689 return rc;
690}
691
692static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
693{
694 hlist_add_head(&sk->sk_node, list);
695}
696
697static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
698{
699 sock_hold(sk);
700 __sk_add_node(sk, list);
701}
702
703static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
704{
705 sock_hold(sk);
706 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
707 sk->sk_family == AF_INET6)
708 hlist_add_tail_rcu(&sk->sk_node, list);
709 else
710 hlist_add_head_rcu(&sk->sk_node, list);
711}
712
713static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
714{
715 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
716}
717
718static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
719{
720 sock_hold(sk);
721 __sk_nulls_add_node_rcu(sk, list);
722}
723
724static inline void __sk_del_bind_node(struct sock *sk)
725{
726 __hlist_del(&sk->sk_bind_node);
727}
728
729static inline void sk_add_bind_node(struct sock *sk,
730 struct hlist_head *list)
731{
732 hlist_add_head(&sk->sk_bind_node, list);
733}
734
735#define sk_for_each(__sk, list) \
736 hlist_for_each_entry(__sk, list, sk_node)
737#define sk_for_each_rcu(__sk, list) \
738 hlist_for_each_entry_rcu(__sk, list, sk_node)
739#define sk_nulls_for_each(__sk, node, list) \
740 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
741#define sk_nulls_for_each_rcu(__sk, node, list) \
742 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
743#define sk_for_each_from(__sk) \
744 hlist_for_each_entry_from(__sk, sk_node)
745#define sk_nulls_for_each_from(__sk, node) \
746 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
747 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
748#define sk_for_each_safe(__sk, tmp, list) \
749 hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
750#define sk_for_each_bound(__sk, list) \
751 hlist_for_each_entry(__sk, list, sk_bind_node)
752
753/**
754 * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
755 * @tpos: the type * to use as a loop cursor.
756 * @pos: the &struct hlist_node to use as a loop cursor.
757 * @head: the head for your list.
758 * @offset: offset of hlist_node within the struct.
759 *
760 */
761#define sk_for_each_entry_offset_rcu(tpos, pos, head, offset) \
762 for (pos = rcu_dereference(hlist_first_rcu(head)); \
763 pos != NULL && \
764 ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;}); \
765 pos = rcu_dereference(hlist_next_rcu(pos)))
766
767static inline struct user_namespace *sk_user_ns(struct sock *sk)
768{
769 /* Careful only use this in a context where these parameters
770 * can not change and must all be valid, such as recvmsg from
771 * userspace.
772 */
773 return sk->sk_socket->file->f_cred->user_ns;
774}
775
776/* Sock flags */
777enum sock_flags {
778 SOCK_DEAD,
779 SOCK_DONE,
780 SOCK_URGINLINE,
781 SOCK_KEEPOPEN,
782 SOCK_LINGER,
783 SOCK_DESTROY,
784 SOCK_BROADCAST,
785 SOCK_TIMESTAMP,
786 SOCK_ZAPPED,
787 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
788 SOCK_DBG, /* %SO_DEBUG setting */
789 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
790 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
791 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
792 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
793 SOCK_MEMALLOC, /* VM depends on this socket for swapping */
794 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */
795 SOCK_FASYNC, /* fasync() active */
796 SOCK_RXQ_OVFL,
797 SOCK_ZEROCOPY, /* buffers from userspace */
798 SOCK_WIFI_STATUS, /* push wifi status to userspace */
799 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
800 * Will use last 4 bytes of packet sent from
801 * user-space instead.
802 */
803 SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
804 SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
805 SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
806 SOCK_TXTIME,
807 SOCK_XDP, /* XDP is attached */
808 SOCK_TSTAMP_NEW, /* Indicates 64 bit timestamps always */
809};
810
811#define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
812
813static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
814{
815 nsk->sk_flags = osk->sk_flags;
816}
817
818static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
819{
820 __set_bit(flag, &sk->sk_flags);
821}
822
823static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
824{
825 __clear_bit(flag, &sk->sk_flags);
826}
827
828static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
829{
830 return test_bit(flag, &sk->sk_flags);
831}
832
833#ifdef CONFIG_NET
834DECLARE_STATIC_KEY_FALSE(memalloc_socks_key);
835static inline int sk_memalloc_socks(void)
836{
837 return static_branch_unlikely(&memalloc_socks_key);
838}
839#else
840
841static inline int sk_memalloc_socks(void)
842{
843 return 0;
844}
845
846#endif
847
848static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
849{
850 return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
851}
852
853static inline void sk_acceptq_removed(struct sock *sk)
854{
855 sk->sk_ack_backlog--;
856}
857
858static inline void sk_acceptq_added(struct sock *sk)
859{
860 sk->sk_ack_backlog++;
861}
862
863static inline bool sk_acceptq_is_full(const struct sock *sk)
864{
865 return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
866}
867
868/*
869 * Compute minimal free write space needed to queue new packets.
870 */
871static inline int sk_stream_min_wspace(const struct sock *sk)
872{
873 return sk->sk_wmem_queued >> 1;
874}
875
876static inline int sk_stream_wspace(const struct sock *sk)
877{
878 return sk->sk_sndbuf - sk->sk_wmem_queued;
879}
880
881void sk_stream_write_space(struct sock *sk);
882
883/* OOB backlog add */
884static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
885{
886 /* dont let skb dst not refcounted, we are going to leave rcu lock */
887 skb_dst_force(skb);
888
889 if (!sk->sk_backlog.tail)
890 sk->sk_backlog.head = skb;
891 else
892 sk->sk_backlog.tail->next = skb;
893
894 sk->sk_backlog.tail = skb;
895 skb->next = NULL;
896}
897
898/*
899 * Take into account size of receive queue and backlog queue
900 * Do not take into account this skb truesize,
901 * to allow even a single big packet to come.
902 */
903static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
904{
905 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
906
907 return qsize > limit;
908}
909
910/* The per-socket spinlock must be held here. */
911static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
912 unsigned int limit)
913{
914 if (sk_rcvqueues_full(sk, limit))
915 return -ENOBUFS;
916
917 /*
918 * If the skb was allocated from pfmemalloc reserves, only
919 * allow SOCK_MEMALLOC sockets to use it as this socket is
920 * helping free memory
921 */
922 if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
923 return -ENOMEM;
924
925 __sk_add_backlog(sk, skb);
926 sk->sk_backlog.len += skb->truesize;
927 return 0;
928}
929
930int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
931
932static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
933{
934 if (sk_memalloc_socks() && skb_pfmemalloc(skb))
935 return __sk_backlog_rcv(sk, skb);
936
937 return sk->sk_backlog_rcv(sk, skb);
938}
939
940static inline void sk_incoming_cpu_update(struct sock *sk)
941{
942 int cpu = raw_smp_processor_id();
943
944 if (unlikely(sk->sk_incoming_cpu != cpu))
945 sk->sk_incoming_cpu = cpu;
946}
947
948static inline void sock_rps_record_flow_hash(__u32 hash)
949{
950#ifdef CONFIG_RPS
951 struct rps_sock_flow_table *sock_flow_table;
952
953 rcu_read_lock();
954 sock_flow_table = rcu_dereference(rps_sock_flow_table);
955 rps_record_sock_flow(sock_flow_table, hash);
956 rcu_read_unlock();
957#endif
958}
959
960static inline void sock_rps_record_flow(const struct sock *sk)
961{
962#ifdef CONFIG_RPS
963 if (static_key_false(&rfs_needed)) {
964 /* Reading sk->sk_rxhash might incur an expensive cache line
965 * miss.
966 *
967 * TCP_ESTABLISHED does cover almost all states where RFS
968 * might be useful, and is cheaper [1] than testing :
969 * IPv4: inet_sk(sk)->inet_daddr
970 * IPv6: ipv6_addr_any(&sk->sk_v6_daddr)
971 * OR an additional socket flag
972 * [1] : sk_state and sk_prot are in the same cache line.
973 */
974 if (sk->sk_state == TCP_ESTABLISHED)
975 sock_rps_record_flow_hash(sk->sk_rxhash);
976 }
977#endif
978}
979
980static inline void sock_rps_save_rxhash(struct sock *sk,
981 const struct sk_buff *skb)
982{
983#ifdef CONFIG_RPS
984 if (unlikely(sk->sk_rxhash != skb->hash))
985 sk->sk_rxhash = skb->hash;
986#endif
987}
988
989static inline void sock_rps_reset_rxhash(struct sock *sk)
990{
991#ifdef CONFIG_RPS
992 sk->sk_rxhash = 0;
993#endif
994}
995
996#define sk_wait_event(__sk, __timeo, __condition, __wait) \
997 ({ int __rc; \
998 release_sock(__sk); \
999 __rc = __condition; \
1000 if (!__rc) { \
1001 *(__timeo) = wait_woken(__wait, \
1002 TASK_INTERRUPTIBLE, \
1003 *(__timeo)); \
1004 } \
1005 sched_annotate_sleep(); \
1006 lock_sock(__sk); \
1007 __rc = __condition; \
1008 __rc; \
1009 })
1010
1011int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
1012int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
1013void sk_stream_wait_close(struct sock *sk, long timeo_p);
1014int sk_stream_error(struct sock *sk, int flags, int err);
1015void sk_stream_kill_queues(struct sock *sk);
1016void sk_set_memalloc(struct sock *sk);
1017void sk_clear_memalloc(struct sock *sk);
1018
1019void __sk_flush_backlog(struct sock *sk);
1020
1021static inline bool sk_flush_backlog(struct sock *sk)
1022{
1023 if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
1024 __sk_flush_backlog(sk);
1025 return true;
1026 }
1027 return false;
1028}
1029
1030int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
1031
1032struct request_sock_ops;
1033struct timewait_sock_ops;
1034struct inet_hashinfo;
1035struct raw_hashinfo;
1036struct smc_hashinfo;
1037struct module;
1038
1039/*
1040 * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes
1041 * un-modified. Special care is taken when initializing object to zero.
1042 */
1043static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1044{
1045 if (offsetof(struct sock, sk_node.next) != 0)
1046 memset(sk, 0, offsetof(struct sock, sk_node.next));
1047 memset(&sk->sk_node.pprev, 0,
1048 size - offsetof(struct sock, sk_node.pprev));
1049}
1050
1051/* Networking protocol blocks we attach to sockets.
1052 * socket layer -> transport layer interface
1053 */
1054struct proto {
1055 void (*close)(struct sock *sk,
1056 long timeout);
1057 int (*pre_connect)(struct sock *sk,
1058 struct sockaddr *uaddr,
1059 int addr_len);
1060 int (*connect)(struct sock *sk,
1061 struct sockaddr *uaddr,
1062 int addr_len);
1063 int (*disconnect)(struct sock *sk, int flags);
1064
1065 struct sock * (*accept)(struct sock *sk, int flags, int *err,
1066 bool kern);
1067
1068 int (*ioctl)(struct sock *sk, int cmd,
1069 unsigned long arg);
1070 int (*init)(struct sock *sk);
1071 void (*destroy)(struct sock *sk);
1072 void (*shutdown)(struct sock *sk, int how);
1073 int (*setsockopt)(struct sock *sk, int level,
1074 int optname, char __user *optval,
1075 unsigned int optlen);
1076 int (*getsockopt)(struct sock *sk, int level,
1077 int optname, char __user *optval,
1078 int __user *option);
1079 void (*keepalive)(struct sock *sk, int valbool);
1080#ifdef CONFIG_COMPAT
1081 int (*compat_setsockopt)(struct sock *sk,
1082 int level,
1083 int optname, char __user *optval,
1084 unsigned int optlen);
1085 int (*compat_getsockopt)(struct sock *sk,
1086 int level,
1087 int optname, char __user *optval,
1088 int __user *option);
1089 int (*compat_ioctl)(struct sock *sk,
1090 unsigned int cmd, unsigned long arg);
1091#endif
1092 int (*sendmsg)(struct sock *sk, struct msghdr *msg,
1093 size_t len);
1094 int (*recvmsg)(struct sock *sk, struct msghdr *msg,
1095 size_t len, int noblock, int flags,
1096 int *addr_len);
1097 int (*sendpage)(struct sock *sk, struct page *page,
1098 int offset, size_t size, int flags);
1099 int (*bind)(struct sock *sk,
1100 struct sockaddr *uaddr, int addr_len);
1101
1102 int (*backlog_rcv) (struct sock *sk,
1103 struct sk_buff *skb);
1104
1105 void (*release_cb)(struct sock *sk);
1106
1107 /* Keeping track of sk's, looking them up, and port selection methods. */
1108 int (*hash)(struct sock *sk);
1109 void (*unhash)(struct sock *sk);
1110 void (*rehash)(struct sock *sk);
1111 int (*get_port)(struct sock *sk, unsigned short snum);
1112
1113 /* Keeping track of sockets in use */
1114#ifdef CONFIG_PROC_FS
1115 unsigned int inuse_idx;
1116#endif
1117
1118 bool (*stream_memory_free)(const struct sock *sk, int wake);
1119 bool (*stream_memory_read)(const struct sock *sk);
1120 /* Memory pressure */
1121 void (*enter_memory_pressure)(struct sock *sk);
1122 void (*leave_memory_pressure)(struct sock *sk);
1123 atomic_long_t *memory_allocated; /* Current allocated memory. */
1124 struct percpu_counter *sockets_allocated; /* Current number of sockets. */
1125 /*
1126 * Pressure flag: try to collapse.
1127 * Technical note: it is used by multiple contexts non atomically.
1128 * All the __sk_mem_schedule() is of this nature: accounting
1129 * is strict, actions are advisory and have some latency.
1130 */
1131 unsigned long *memory_pressure;
1132 long *sysctl_mem;
1133
1134 int *sysctl_wmem;
1135 int *sysctl_rmem;
1136 u32 sysctl_wmem_offset;
1137 u32 sysctl_rmem_offset;
1138
1139 int max_header;
1140 bool no_autobind;
1141
1142 struct kmem_cache *slab;
1143 unsigned int obj_size;
1144 slab_flags_t slab_flags;
1145 unsigned int useroffset; /* Usercopy region offset */
1146 unsigned int usersize; /* Usercopy region size */
1147
1148 struct percpu_counter *orphan_count;
1149
1150 struct request_sock_ops *rsk_prot;
1151 struct timewait_sock_ops *twsk_prot;
1152
1153 union {
1154 struct inet_hashinfo *hashinfo;
1155 struct udp_table *udp_table;
1156 struct raw_hashinfo *raw_hash;
1157 struct smc_hashinfo *smc_hash;
1158 } h;
1159
1160 struct module *owner;
1161
1162 char name[32];
1163
1164 struct list_head node;
1165#ifdef SOCK_REFCNT_DEBUG
1166 atomic_t socks;
1167#endif
1168 int (*diag_destroy)(struct sock *sk, int err);
1169} __randomize_layout;
1170
1171int proto_register(struct proto *prot, int alloc_slab);
1172void proto_unregister(struct proto *prot);
1173int sock_load_diag_module(int family, int protocol);
1174
1175#ifdef SOCK_REFCNT_DEBUG
1176static inline void sk_refcnt_debug_inc(struct sock *sk)
1177{
1178 atomic_inc(&sk->sk_prot->socks);
1179}
1180
1181static inline void sk_refcnt_debug_dec(struct sock *sk)
1182{
1183 atomic_dec(&sk->sk_prot->socks);
1184 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1185 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1186}
1187
1188static inline void sk_refcnt_debug_release(const struct sock *sk)
1189{
1190 if (refcount_read(&sk->sk_refcnt) != 1)
1191 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1192 sk->sk_prot->name, sk, refcount_read(&sk->sk_refcnt));
1193}
1194#else /* SOCK_REFCNT_DEBUG */
1195#define sk_refcnt_debug_inc(sk) do { } while (0)
1196#define sk_refcnt_debug_dec(sk) do { } while (0)
1197#define sk_refcnt_debug_release(sk) do { } while (0)
1198#endif /* SOCK_REFCNT_DEBUG */
1199
1200static inline bool __sk_stream_memory_free(const struct sock *sk, int wake)
1201{
1202 if (sk->sk_wmem_queued >= sk->sk_sndbuf)
1203 return false;
1204
1205 return sk->sk_prot->stream_memory_free ?
1206 sk->sk_prot->stream_memory_free(sk, wake) : true;
1207}
1208
1209static inline bool sk_stream_memory_free(const struct sock *sk)
1210{
1211 return __sk_stream_memory_free(sk, 0);
1212}
1213
1214static inline bool __sk_stream_is_writeable(const struct sock *sk, int wake)
1215{
1216 return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1217 __sk_stream_memory_free(sk, wake);
1218}
1219
1220static inline bool sk_stream_is_writeable(const struct sock *sk)
1221{
1222 return __sk_stream_is_writeable(sk, 0);
1223}
1224
1225static inline int sk_under_cgroup_hierarchy(struct sock *sk,
1226 struct cgroup *ancestor)
1227{
1228#ifdef CONFIG_SOCK_CGROUP_DATA
1229 return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data),
1230 ancestor);
1231#else
1232 return -ENOTSUPP;
1233#endif
1234}
1235
1236static inline bool sk_has_memory_pressure(const struct sock *sk)
1237{
1238 return sk->sk_prot->memory_pressure != NULL;
1239}
1240
1241static inline bool sk_under_memory_pressure(const struct sock *sk)
1242{
1243 if (!sk->sk_prot->memory_pressure)
1244 return false;
1245
1246 if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
1247 mem_cgroup_under_socket_pressure(sk->sk_memcg))
1248 return true;
1249
1250 return !!*sk->sk_prot->memory_pressure;
1251}
1252
1253static inline long
1254sk_memory_allocated(const struct sock *sk)
1255{
1256 return atomic_long_read(sk->sk_prot->memory_allocated);
1257}
1258
1259static inline long
1260sk_memory_allocated_add(struct sock *sk, int amt)
1261{
1262 return atomic_long_add_return(amt, sk->sk_prot->memory_allocated);
1263}
1264
1265static inline void
1266sk_memory_allocated_sub(struct sock *sk, int amt)
1267{
1268 atomic_long_sub(amt, sk->sk_prot->memory_allocated);
1269}
1270
1271static inline void sk_sockets_allocated_dec(struct sock *sk)
1272{
1273 percpu_counter_dec(sk->sk_prot->sockets_allocated);
1274}
1275
1276static inline void sk_sockets_allocated_inc(struct sock *sk)
1277{
1278 percpu_counter_inc(sk->sk_prot->sockets_allocated);
1279}
1280
1281static inline u64
1282sk_sockets_allocated_read_positive(struct sock *sk)
1283{
1284 return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1285}
1286
1287static inline int
1288proto_sockets_allocated_sum_positive(struct proto *prot)
1289{
1290 return percpu_counter_sum_positive(prot->sockets_allocated);
1291}
1292
1293static inline long
1294proto_memory_allocated(struct proto *prot)
1295{
1296 return atomic_long_read(prot->memory_allocated);
1297}
1298
1299static inline bool
1300proto_memory_pressure(struct proto *prot)
1301{
1302 if (!prot->memory_pressure)
1303 return false;
1304 return !!*prot->memory_pressure;
1305}
1306
1307
1308#ifdef CONFIG_PROC_FS
1309/* Called with local bh disabled */
1310void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1311int sock_prot_inuse_get(struct net *net, struct proto *proto);
1312int sock_inuse_get(struct net *net);
1313#else
1314static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1315 int inc)
1316{
1317}
1318#endif
1319
1320
1321/* With per-bucket locks this operation is not-atomic, so that
1322 * this version is not worse.
1323 */
1324static inline int __sk_prot_rehash(struct sock *sk)
1325{
1326 sk->sk_prot->unhash(sk);
1327 return sk->sk_prot->hash(sk);
1328}
1329
1330/* About 10 seconds */
1331#define SOCK_DESTROY_TIME (10*HZ)
1332
1333/* Sockets 0-1023 can't be bound to unless you are superuser */
1334#define PROT_SOCK 1024
1335
1336#define SHUTDOWN_MASK 3
1337#define RCV_SHUTDOWN 1
1338#define SEND_SHUTDOWN 2
1339
1340#define SOCK_SNDBUF_LOCK 1
1341#define SOCK_RCVBUF_LOCK 2
1342#define SOCK_BINDADDR_LOCK 4
1343#define SOCK_BINDPORT_LOCK 8
1344
1345struct socket_alloc {
1346 struct socket socket;
1347 struct inode vfs_inode;
1348};
1349
1350static inline struct socket *SOCKET_I(struct inode *inode)
1351{
1352 return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1353}
1354
1355static inline struct inode *SOCK_INODE(struct socket *socket)
1356{
1357 return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1358}
1359
1360/*
1361 * Functions for memory accounting
1362 */
1363int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind);
1364int __sk_mem_schedule(struct sock *sk, int size, int kind);
1365void __sk_mem_reduce_allocated(struct sock *sk, int amount);
1366void __sk_mem_reclaim(struct sock *sk, int amount);
1367
1368/* We used to have PAGE_SIZE here, but systems with 64KB pages
1369 * do not necessarily have 16x time more memory than 4KB ones.
1370 */
1371#define SK_MEM_QUANTUM 4096
1372#define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1373#define SK_MEM_SEND 0
1374#define SK_MEM_RECV 1
1375
1376/* sysctl_mem values are in pages, we convert them in SK_MEM_QUANTUM units */
1377static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1378{
1379 long val = sk->sk_prot->sysctl_mem[index];
1380
1381#if PAGE_SIZE > SK_MEM_QUANTUM
1382 val <<= PAGE_SHIFT - SK_MEM_QUANTUM_SHIFT;
1383#elif PAGE_SIZE < SK_MEM_QUANTUM
1384 val >>= SK_MEM_QUANTUM_SHIFT - PAGE_SHIFT;
1385#endif
1386 return val;
1387}
1388
1389static inline int sk_mem_pages(int amt)
1390{
1391 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1392}
1393
1394static inline bool sk_has_account(struct sock *sk)
1395{
1396 /* return true if protocol supports memory accounting */
1397 return !!sk->sk_prot->memory_allocated;
1398}
1399
1400static inline bool sk_wmem_schedule(struct sock *sk, int size)
1401{
1402 if (!sk_has_account(sk))
1403 return true;
1404 return size <= sk->sk_forward_alloc ||
1405 __sk_mem_schedule(sk, size, SK_MEM_SEND);
1406}
1407
1408static inline bool
1409sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1410{
1411 if (!sk_has_account(sk))
1412 return true;
1413 return size<= sk->sk_forward_alloc ||
1414 __sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1415 skb_pfmemalloc(skb);
1416}
1417
1418static inline void sk_mem_reclaim(struct sock *sk)
1419{
1420 if (!sk_has_account(sk))
1421 return;
1422 if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1423 __sk_mem_reclaim(sk, sk->sk_forward_alloc);
1424}
1425
1426static inline void sk_mem_reclaim_partial(struct sock *sk)
1427{
1428 if (!sk_has_account(sk))
1429 return;
1430 if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1431 __sk_mem_reclaim(sk, sk->sk_forward_alloc - 1);
1432}
1433
1434static inline void sk_mem_charge(struct sock *sk, int size)
1435{
1436 if (!sk_has_account(sk))
1437 return;
1438 sk->sk_forward_alloc -= size;
1439}
1440
1441static inline void sk_mem_uncharge(struct sock *sk, int size)
1442{
1443 if (!sk_has_account(sk))
1444 return;
1445 sk->sk_forward_alloc += size;
1446
1447 /* Avoid a possible overflow.
1448 * TCP send queues can make this happen, if sk_mem_reclaim()
1449 * is not called and more than 2 GBytes are released at once.
1450 *
1451 * If we reach 2 MBytes, reclaim 1 MBytes right now, there is
1452 * no need to hold that much forward allocation anyway.
1453 */
1454 if (unlikely(sk->sk_forward_alloc >= 1 << 21))
1455 __sk_mem_reclaim(sk, 1 << 20);
1456}
1457
1458static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1459{
1460 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1461 sk->sk_wmem_queued -= skb->truesize;
1462 sk_mem_uncharge(sk, skb->truesize);
1463 __kfree_skb(skb);
1464}
1465
1466static inline void sock_release_ownership(struct sock *sk)
1467{
1468 if (sk->sk_lock.owned) {
1469 sk->sk_lock.owned = 0;
1470
1471 /* The sk_lock has mutex_unlock() semantics: */
1472 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
1473 }
1474}
1475
1476/*
1477 * Macro so as to not evaluate some arguments when
1478 * lockdep is not enabled.
1479 *
1480 * Mark both the sk_lock and the sk_lock.slock as a
1481 * per-address-family lock class.
1482 */
1483#define sock_lock_init_class_and_name(sk, sname, skey, name, key) \
1484do { \
1485 sk->sk_lock.owned = 0; \
1486 init_waitqueue_head(&sk->sk_lock.wq); \
1487 spin_lock_init(&(sk)->sk_lock.slock); \
1488 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \
1489 sizeof((sk)->sk_lock)); \
1490 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \
1491 (skey), (sname)); \
1492 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \
1493} while (0)
1494
1495#ifdef CONFIG_LOCKDEP
1496static inline bool lockdep_sock_is_held(const struct sock *sk)
1497{
1498 return lockdep_is_held(&sk->sk_lock) ||
1499 lockdep_is_held(&sk->sk_lock.slock);
1500}
1501#endif
1502
1503void lock_sock_nested(struct sock *sk, int subclass);
1504
1505static inline void lock_sock(struct sock *sk)
1506{
1507 lock_sock_nested(sk, 0);
1508}
1509
1510void __release_sock(struct sock *sk);
1511void release_sock(struct sock *sk);
1512
1513/* BH context may only use the following locking interface. */
1514#define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock))
1515#define bh_lock_sock_nested(__sk) \
1516 spin_lock_nested(&((__sk)->sk_lock.slock), \
1517 SINGLE_DEPTH_NESTING)
1518#define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock))
1519
1520bool lock_sock_fast(struct sock *sk);
1521/**
1522 * unlock_sock_fast - complement of lock_sock_fast
1523 * @sk: socket
1524 * @slow: slow mode
1525 *
1526 * fast unlock socket for user context.
1527 * If slow mode is on, we call regular release_sock()
1528 */
1529static inline void unlock_sock_fast(struct sock *sk, bool slow)
1530{
1531 if (slow)
1532 release_sock(sk);
1533 else
1534 spin_unlock_bh(&sk->sk_lock.slock);
1535}
1536
1537/* Used by processes to "lock" a socket state, so that
1538 * interrupts and bottom half handlers won't change it
1539 * from under us. It essentially blocks any incoming
1540 * packets, so that we won't get any new data or any
1541 * packets that change the state of the socket.
1542 *
1543 * While locked, BH processing will add new packets to
1544 * the backlog queue. This queue is processed by the
1545 * owner of the socket lock right before it is released.
1546 *
1547 * Since ~2.3.5 it is also exclusive sleep lock serializing
1548 * accesses from user process context.
1549 */
1550
1551static inline void sock_owned_by_me(const struct sock *sk)
1552{
1553#ifdef CONFIG_LOCKDEP
1554 WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
1555#endif
1556}
1557
1558static inline bool sock_owned_by_user(const struct sock *sk)
1559{
1560 sock_owned_by_me(sk);
1561 return sk->sk_lock.owned;
1562}
1563
1564static inline bool sock_owned_by_user_nocheck(const struct sock *sk)
1565{
1566 return sk->sk_lock.owned;
1567}
1568
1569/* no reclassification while locks are held */
1570static inline bool sock_allow_reclassification(const struct sock *csk)
1571{
1572 struct sock *sk = (struct sock *)csk;
1573
1574 return !sk->sk_lock.owned && !spin_is_locked(&sk->sk_lock.slock);
1575}
1576
1577struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1578 struct proto *prot, int kern);
1579void sk_free(struct sock *sk);
1580void sk_destruct(struct sock *sk);
1581struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1582void sk_free_unlock_clone(struct sock *sk);
1583
1584struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1585 gfp_t priority);
1586void __sock_wfree(struct sk_buff *skb);
1587void sock_wfree(struct sk_buff *skb);
1588struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
1589 gfp_t priority);
1590void skb_orphan_partial(struct sk_buff *skb);
1591void sock_rfree(struct sk_buff *skb);
1592void sock_efree(struct sk_buff *skb);
1593#ifdef CONFIG_INET
1594void sock_edemux(struct sk_buff *skb);
1595#else
1596#define sock_edemux sock_efree
1597#endif
1598
1599int sock_setsockopt(struct socket *sock, int level, int op,
1600 char __user *optval, unsigned int optlen);
1601
1602int sock_getsockopt(struct socket *sock, int level, int op,
1603 char __user *optval, int __user *optlen);
1604struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1605 int noblock, int *errcode);
1606struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1607 unsigned long data_len, int noblock,
1608 int *errcode, int max_page_order);
1609void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1610void sock_kfree_s(struct sock *sk, void *mem, int size);
1611void sock_kzfree_s(struct sock *sk, void *mem, int size);
1612void sk_send_sigurg(struct sock *sk);
1613
1614struct sockcm_cookie {
1615 u64 transmit_time;
1616 u32 mark;
1617 u16 tsflags;
1618};
1619
1620static inline void sockcm_init(struct sockcm_cookie *sockc,
1621 const struct sock *sk)
1622{
1623 *sockc = (struct sockcm_cookie) { .tsflags = sk->sk_tsflags };
1624}
1625
1626int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
1627 struct sockcm_cookie *sockc);
1628int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1629 struct sockcm_cookie *sockc);
1630
1631/*
1632 * Functions to fill in entries in struct proto_ops when a protocol
1633 * does not implement a particular function.
1634 */
1635int sock_no_bind(struct socket *, struct sockaddr *, int);
1636int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1637int sock_no_socketpair(struct socket *, struct socket *);
1638int sock_no_accept(struct socket *, struct socket *, int, bool);
1639int sock_no_getname(struct socket *, struct sockaddr *, int);
1640int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1641int sock_no_listen(struct socket *, int);
1642int sock_no_shutdown(struct socket *, int);
1643int sock_no_getsockopt(struct socket *, int , int, char __user *, int __user *);
1644int sock_no_setsockopt(struct socket *, int, int, char __user *, unsigned int);
1645int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1646int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len);
1647int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1648int sock_no_mmap(struct file *file, struct socket *sock,
1649 struct vm_area_struct *vma);
1650ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1651 size_t size, int flags);
1652ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
1653 int offset, size_t size, int flags);
1654
1655/*
1656 * Functions to fill in entries in struct proto_ops when a protocol
1657 * uses the inet style.
1658 */
1659int sock_common_getsockopt(struct socket *sock, int level, int optname,
1660 char __user *optval, int __user *optlen);
1661int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1662 int flags);
1663int sock_common_setsockopt(struct socket *sock, int level, int optname,
1664 char __user *optval, unsigned int optlen);
1665int compat_sock_common_getsockopt(struct socket *sock, int level,
1666 int optname, char __user *optval, int __user *optlen);
1667int compat_sock_common_setsockopt(struct socket *sock, int level,
1668 int optname, char __user *optval, unsigned int optlen);
1669
1670void sk_common_release(struct sock *sk);
1671
1672/*
1673 * Default socket callbacks and setup code
1674 */
1675
1676/* Initialise core socket variables */
1677void sock_init_data(struct socket *sock, struct sock *sk);
1678
1679/*
1680 * Socket reference counting postulates.
1681 *
1682 * * Each user of socket SHOULD hold a reference count.
1683 * * Each access point to socket (an hash table bucket, reference from a list,
1684 * running timer, skb in flight MUST hold a reference count.
1685 * * When reference count hits 0, it means it will never increase back.
1686 * * When reference count hits 0, it means that no references from
1687 * outside exist to this socket and current process on current CPU
1688 * is last user and may/should destroy this socket.
1689 * * sk_free is called from any context: process, BH, IRQ. When
1690 * it is called, socket has no references from outside -> sk_free
1691 * may release descendant resources allocated by the socket, but
1692 * to the time when it is called, socket is NOT referenced by any
1693 * hash tables, lists etc.
1694 * * Packets, delivered from outside (from network or from another process)
1695 * and enqueued on receive/error queues SHOULD NOT grab reference count,
1696 * when they sit in queue. Otherwise, packets will leak to hole, when
1697 * socket is looked up by one cpu and unhasing is made by another CPU.
1698 * It is true for udp/raw, netlink (leak to receive and error queues), tcp
1699 * (leak to backlog). Packet socket does all the processing inside
1700 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1701 * use separate SMP lock, so that they are prone too.
1702 */
1703
1704/* Ungrab socket and destroy it, if it was the last reference. */
1705static inline void sock_put(struct sock *sk)
1706{
1707 if (refcount_dec_and_test(&sk->sk_refcnt))
1708 sk_free(sk);
1709}
1710/* Generic version of sock_put(), dealing with all sockets
1711 * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1712 */
1713void sock_gen_put(struct sock *sk);
1714
1715int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
1716 unsigned int trim_cap, bool refcounted);
1717static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1718 const int nested)
1719{
1720 return __sk_receive_skb(sk, skb, nested, 1, true);
1721}
1722
1723static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1724{
1725 /* sk_tx_queue_mapping accept only upto a 16-bit value */
1726 if (WARN_ON_ONCE((unsigned short)tx_queue >= USHRT_MAX))
1727 return;
1728 sk->sk_tx_queue_mapping = tx_queue;
1729}
1730
1731#define NO_QUEUE_MAPPING USHRT_MAX
1732
1733static inline void sk_tx_queue_clear(struct sock *sk)
1734{
1735 sk->sk_tx_queue_mapping = NO_QUEUE_MAPPING;
1736}
1737
1738static inline int sk_tx_queue_get(const struct sock *sk)
1739{
1740 if (sk && sk->sk_tx_queue_mapping != NO_QUEUE_MAPPING)
1741 return sk->sk_tx_queue_mapping;
1742
1743 return -1;
1744}
1745
1746static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb)
1747{
1748#ifdef CONFIG_XPS
1749 if (skb_rx_queue_recorded(skb)) {
1750 u16 rx_queue = skb_get_rx_queue(skb);
1751
1752 if (WARN_ON_ONCE(rx_queue == NO_QUEUE_MAPPING))
1753 return;
1754
1755 sk->sk_rx_queue_mapping = rx_queue;
1756 }
1757#endif
1758}
1759
1760static inline void sk_rx_queue_clear(struct sock *sk)
1761{
1762#ifdef CONFIG_XPS
1763 sk->sk_rx_queue_mapping = NO_QUEUE_MAPPING;
1764#endif
1765}
1766
1767#ifdef CONFIG_XPS
1768static inline int sk_rx_queue_get(const struct sock *sk)
1769{
1770 if (sk && sk->sk_rx_queue_mapping != NO_QUEUE_MAPPING)
1771 return sk->sk_rx_queue_mapping;
1772
1773 return -1;
1774}
1775#endif
1776
1777static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1778{
1779 sk_tx_queue_clear(sk);
1780 sk->sk_socket = sock;
1781}
1782
1783static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1784{
1785 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1786 return &rcu_dereference_raw(sk->sk_wq)->wait;
1787}
1788/* Detach socket from process context.
1789 * Announce socket dead, detach it from wait queue and inode.
1790 * Note that parent inode held reference count on this struct sock,
1791 * we do not release it in this function, because protocol
1792 * probably wants some additional cleanups or even continuing
1793 * to work with this socket (TCP).
1794 */
1795static inline void sock_orphan(struct sock *sk)
1796{
1797 write_lock_bh(&sk->sk_callback_lock);
1798 sock_set_flag(sk, SOCK_DEAD);
1799 sk_set_socket(sk, NULL);
1800 sk->sk_wq = NULL;
1801 write_unlock_bh(&sk->sk_callback_lock);
1802}
1803
1804static inline void sock_graft(struct sock *sk, struct socket *parent)
1805{
1806 WARN_ON(parent->sk);
1807 write_lock_bh(&sk->sk_callback_lock);
1808 rcu_assign_pointer(sk->sk_wq, parent->wq);
1809 parent->sk = sk;
1810 sk_set_socket(sk, parent);
1811 sk->sk_uid = SOCK_INODE(parent)->i_uid;
1812 security_sock_graft(sk, parent);
1813 write_unlock_bh(&sk->sk_callback_lock);
1814}
1815
1816kuid_t sock_i_uid(struct sock *sk);
1817unsigned long sock_i_ino(struct sock *sk);
1818
1819static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
1820{
1821 return sk ? sk->sk_uid : make_kuid(net->user_ns, 0);
1822}
1823
1824static inline u32 net_tx_rndhash(void)
1825{
1826 u32 v = prandom_u32();
1827
1828 return v ?: 1;
1829}
1830
1831static inline void sk_set_txhash(struct sock *sk)
1832{
1833 sk->sk_txhash = net_tx_rndhash();
1834}
1835
1836static inline void sk_rethink_txhash(struct sock *sk)
1837{
1838 if (sk->sk_txhash)
1839 sk_set_txhash(sk);
1840}
1841
1842static inline struct dst_entry *
1843__sk_dst_get(struct sock *sk)
1844{
1845 return rcu_dereference_check(sk->sk_dst_cache,
1846 lockdep_sock_is_held(sk));
1847}
1848
1849static inline struct dst_entry *
1850sk_dst_get(struct sock *sk)
1851{
1852 struct dst_entry *dst;
1853
1854 rcu_read_lock();
1855 dst = rcu_dereference(sk->sk_dst_cache);
1856 if (dst && !atomic_inc_not_zero(&dst->__refcnt))
1857 dst = NULL;
1858 rcu_read_unlock();
1859 return dst;
1860}
1861
1862static inline void dst_negative_advice(struct sock *sk)
1863{
1864 struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1865
1866 sk_rethink_txhash(sk);
1867
1868 if (dst && dst->ops->negative_advice) {
1869 ndst = dst->ops->negative_advice(dst);
1870
1871 if (ndst != dst) {
1872 rcu_assign_pointer(sk->sk_dst_cache, ndst);
1873 sk_tx_queue_clear(sk);
1874 sk->sk_dst_pending_confirm = 0;
1875 }
1876 }
1877}
1878
1879static inline void
1880__sk_dst_set(struct sock *sk, struct dst_entry *dst)
1881{
1882 struct dst_entry *old_dst;
1883
1884 sk_tx_queue_clear(sk);
1885 sk->sk_dst_pending_confirm = 0;
1886 old_dst = rcu_dereference_protected(sk->sk_dst_cache,
1887 lockdep_sock_is_held(sk));
1888 rcu_assign_pointer(sk->sk_dst_cache, dst);
1889 dst_release(old_dst);
1890}
1891
1892static inline void
1893sk_dst_set(struct sock *sk, struct dst_entry *dst)
1894{
1895 struct dst_entry *old_dst;
1896
1897 sk_tx_queue_clear(sk);
1898 sk->sk_dst_pending_confirm = 0;
1899 old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
1900 dst_release(old_dst);
1901}
1902
1903static inline void
1904__sk_dst_reset(struct sock *sk)
1905{
1906 __sk_dst_set(sk, NULL);
1907}
1908
1909static inline void
1910sk_dst_reset(struct sock *sk)
1911{
1912 sk_dst_set(sk, NULL);
1913}
1914
1915struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1916
1917struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1918
1919static inline void sk_dst_confirm(struct sock *sk)
1920{
1921 if (!sk->sk_dst_pending_confirm)
1922 sk->sk_dst_pending_confirm = 1;
1923}
1924
1925static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n)
1926{
1927 if (skb_get_dst_pending_confirm(skb)) {
1928 struct sock *sk = skb->sk;
1929 unsigned long now = jiffies;
1930
1931 /* avoid dirtying neighbour */
1932 if (n->confirmed != now)
1933 n->confirmed = now;
1934 if (sk && sk->sk_dst_pending_confirm)
1935 sk->sk_dst_pending_confirm = 0;
1936 }
1937}
1938
1939bool sk_mc_loop(struct sock *sk);
1940
1941static inline bool sk_can_gso(const struct sock *sk)
1942{
1943 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1944}
1945
1946void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1947
1948static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
1949{
1950 sk->sk_route_nocaps |= flags;
1951 sk->sk_route_caps &= ~flags;
1952}
1953
1954static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
1955 struct iov_iter *from, char *to,
1956 int copy, int offset)
1957{
1958 if (skb->ip_summed == CHECKSUM_NONE) {
1959 __wsum csum = 0;
1960 if (!csum_and_copy_from_iter_full(to, copy, &csum, from))
1961 return -EFAULT;
1962 skb->csum = csum_block_add(skb->csum, csum, offset);
1963 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1964 if (!copy_from_iter_full_nocache(to, copy, from))
1965 return -EFAULT;
1966 } else if (!copy_from_iter_full(to, copy, from))
1967 return -EFAULT;
1968
1969 return 0;
1970}
1971
1972static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
1973 struct iov_iter *from, int copy)
1974{
1975 int err, offset = skb->len;
1976
1977 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
1978 copy, offset);
1979 if (err)
1980 __skb_trim(skb, offset);
1981
1982 return err;
1983}
1984
1985static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
1986 struct sk_buff *skb,
1987 struct page *page,
1988 int off, int copy)
1989{
1990 int err;
1991
1992 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
1993 copy, skb->len);
1994 if (err)
1995 return err;
1996
1997 skb->len += copy;
1998 skb->data_len += copy;
1999 skb->truesize += copy;
2000 sk->sk_wmem_queued += copy;
2001 sk_mem_charge(sk, copy);
2002 return 0;
2003}
2004
2005/**
2006 * sk_wmem_alloc_get - returns write allocations
2007 * @sk: socket
2008 *
2009 * Returns sk_wmem_alloc minus initial offset of one
2010 */
2011static inline int sk_wmem_alloc_get(const struct sock *sk)
2012{
2013 return refcount_read(&sk->sk_wmem_alloc) - 1;
2014}
2015
2016/**
2017 * sk_rmem_alloc_get - returns read allocations
2018 * @sk: socket
2019 *
2020 * Returns sk_rmem_alloc
2021 */
2022static inline int sk_rmem_alloc_get(const struct sock *sk)
2023{
2024 return atomic_read(&sk->sk_rmem_alloc);
2025}
2026
2027/**
2028 * sk_has_allocations - check if allocations are outstanding
2029 * @sk: socket
2030 *
2031 * Returns true if socket has write or read allocations
2032 */
2033static inline bool sk_has_allocations(const struct sock *sk)
2034{
2035 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
2036}
2037
2038/**
2039 * skwq_has_sleeper - check if there are any waiting processes
2040 * @wq: struct socket_wq
2041 *
2042 * Returns true if socket_wq has waiting processes
2043 *
2044 * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
2045 * barrier call. They were added due to the race found within the tcp code.
2046 *
2047 * Consider following tcp code paths::
2048 *
2049 * CPU1 CPU2
2050 * sys_select receive packet
2051 * ... ...
2052 * __add_wait_queue update tp->rcv_nxt
2053 * ... ...
2054 * tp->rcv_nxt check sock_def_readable
2055 * ... {
2056 * schedule rcu_read_lock();
2057 * wq = rcu_dereference(sk->sk_wq);
2058 * if (wq && waitqueue_active(&wq->wait))
2059 * wake_up_interruptible(&wq->wait)
2060 * ...
2061 * }
2062 *
2063 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
2064 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1
2065 * could then endup calling schedule and sleep forever if there are no more
2066 * data on the socket.
2067 *
2068 */
2069static inline bool skwq_has_sleeper(struct socket_wq *wq)
2070{
2071 return wq && wq_has_sleeper(&wq->wait);
2072}
2073
2074/**
2075 * sock_poll_wait - place memory barrier behind the poll_wait call.
2076 * @filp: file
2077 * @sock: socket to wait on
2078 * @p: poll_table
2079 *
2080 * See the comments in the wq_has_sleeper function.
2081 *
2082 * Do not derive sock from filp->private_data here. An SMC socket establishes
2083 * an internal TCP socket that is used in the fallback case. All socket
2084 * operations on the SMC socket are then forwarded to the TCP socket. In case of
2085 * poll, the filp->private_data pointer references the SMC socket because the
2086 * TCP socket has no file assigned.
2087 */
2088static inline void sock_poll_wait(struct file *filp, struct socket *sock,
2089 poll_table *p)
2090{
2091 if (!poll_does_not_wait(p)) {
2092 poll_wait(filp, &sock->wq->wait, p);
2093 /* We need to be sure we are in sync with the
2094 * socket flags modification.
2095 *
2096 * This memory barrier is paired in the wq_has_sleeper.
2097 */
2098 smp_mb();
2099 }
2100}
2101
2102static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
2103{
2104 if (sk->sk_txhash) {
2105 skb->l4_hash = 1;
2106 skb->hash = sk->sk_txhash;
2107 }
2108}
2109
2110void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
2111
2112/*
2113 * Queue a received datagram if it will fit. Stream and sequenced
2114 * protocols can't normally use this as they need to fit buffers in
2115 * and play with them.
2116 *
2117 * Inlined as it's very short and called for pretty much every
2118 * packet ever received.
2119 */
2120static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2121{
2122 skb_orphan(skb);
2123 skb->sk = sk;
2124 skb->destructor = sock_rfree;
2125 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2126 sk_mem_charge(sk, skb->truesize);
2127}
2128
2129void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2130 unsigned long expires);
2131
2132void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2133
2134int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue,
2135 struct sk_buff *skb, unsigned int flags,
2136 void (*destructor)(struct sock *sk,
2137 struct sk_buff *skb));
2138int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2139int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2140
2141int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2142struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
2143
2144/*
2145 * Recover an error report and clear atomically
2146 */
2147
2148static inline int sock_error(struct sock *sk)
2149{
2150 int err;
2151 if (likely(!sk->sk_err))
2152 return 0;
2153 err = xchg(&sk->sk_err, 0);
2154 return -err;
2155}
2156
2157static inline unsigned long sock_wspace(struct sock *sk)
2158{
2159 int amt = 0;
2160
2161 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2162 amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc);
2163 if (amt < 0)
2164 amt = 0;
2165 }
2166 return amt;
2167}
2168
2169/* Note:
2170 * We use sk->sk_wq_raw, from contexts knowing this
2171 * pointer is not NULL and cannot disappear/change.
2172 */
2173static inline void sk_set_bit(int nr, struct sock *sk)
2174{
2175 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2176 !sock_flag(sk, SOCK_FASYNC))
2177 return;
2178
2179 set_bit(nr, &sk->sk_wq_raw->flags);
2180}
2181
2182static inline void sk_clear_bit(int nr, struct sock *sk)
2183{
2184 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2185 !sock_flag(sk, SOCK_FASYNC))
2186 return;
2187
2188 clear_bit(nr, &sk->sk_wq_raw->flags);
2189}
2190
2191static inline void sk_wake_async(const struct sock *sk, int how, int band)
2192{
2193 if (sock_flag(sk, SOCK_FASYNC)) {
2194 rcu_read_lock();
2195 sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2196 rcu_read_unlock();
2197 }
2198}
2199
2200/* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2201 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2202 * Note: for send buffers, TCP works better if we can build two skbs at
2203 * minimum.
2204 */
2205#define TCP_SKB_MIN_TRUESIZE (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2206
2207#define SOCK_MIN_SNDBUF (TCP_SKB_MIN_TRUESIZE * 2)
2208#define SOCK_MIN_RCVBUF TCP_SKB_MIN_TRUESIZE
2209
2210static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2211{
2212 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
2213 sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2214 sk->sk_sndbuf = max_t(u32, sk->sk_sndbuf, SOCK_MIN_SNDBUF);
2215 }
2216}
2217
2218struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
2219 bool force_schedule);
2220
2221/**
2222 * sk_page_frag - return an appropriate page_frag
2223 * @sk: socket
2224 *
2225 * If socket allocation mode allows current thread to sleep, it means its
2226 * safe to use the per task page_frag instead of the per socket one.
2227 */
2228static inline struct page_frag *sk_page_frag(struct sock *sk)
2229{
2230 if (gfpflags_allow_blocking(sk->sk_allocation))
2231 return &current->task_frag;
2232
2233 return &sk->sk_frag;
2234}
2235
2236bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2237
2238/*
2239 * Default write policy as shown to user space via poll/select/SIGIO
2240 */
2241static inline bool sock_writeable(const struct sock *sk)
2242{
2243 return refcount_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
2244}
2245
2246static inline gfp_t gfp_any(void)
2247{
2248 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2249}
2250
2251static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2252{
2253 return noblock ? 0 : sk->sk_rcvtimeo;
2254}
2255
2256static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2257{
2258 return noblock ? 0 : sk->sk_sndtimeo;
2259}
2260
2261static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2262{
2263 return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
2264}
2265
2266/* Alas, with timeout socket operations are not restartable.
2267 * Compare this to poll().
2268 */
2269static inline int sock_intr_errno(long timeo)
2270{
2271 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2272}
2273
2274struct sock_skb_cb {
2275 u32 dropcount;
2276};
2277
2278/* Store sock_skb_cb at the end of skb->cb[] so protocol families
2279 * using skb->cb[] would keep using it directly and utilize its
2280 * alignement guarantee.
2281 */
2282#define SOCK_SKB_CB_OFFSET ((FIELD_SIZEOF(struct sk_buff, cb) - \
2283 sizeof(struct sock_skb_cb)))
2284
2285#define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2286 SOCK_SKB_CB_OFFSET))
2287
2288#define sock_skb_cb_check_size(size) \
2289 BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2290
2291static inline void
2292sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2293{
2294 SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ?
2295 atomic_read(&sk->sk_drops) : 0;
2296}
2297
2298static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
2299{
2300 int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2301
2302 atomic_add(segs, &sk->sk_drops);
2303}
2304
2305static inline ktime_t sock_read_timestamp(struct sock *sk)
2306{
2307#if BITS_PER_LONG==32
2308 unsigned int seq;
2309 ktime_t kt;
2310
2311 do {
2312 seq = read_seqbegin(&sk->sk_stamp_seq);
2313 kt = sk->sk_stamp;
2314 } while (read_seqretry(&sk->sk_stamp_seq, seq));
2315
2316 return kt;
2317#else
2318 return sk->sk_stamp;
2319#endif
2320}
2321
2322static inline void sock_write_timestamp(struct sock *sk, ktime_t kt)
2323{
2324#if BITS_PER_LONG==32
2325 write_seqlock(&sk->sk_stamp_seq);
2326 sk->sk_stamp = kt;
2327 write_sequnlock(&sk->sk_stamp_seq);
2328#else
2329 sk->sk_stamp = kt;
2330#endif
2331}
2332
2333void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2334 struct sk_buff *skb);
2335void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2336 struct sk_buff *skb);
2337
2338static inline void
2339sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2340{
2341 ktime_t kt = skb->tstamp;
2342 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2343
2344 /*
2345 * generate control messages if
2346 * - receive time stamping in software requested
2347 * - software time stamp available and wanted
2348 * - hardware time stamps available and wanted
2349 */
2350 if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2351 (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2352 (kt && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2353 (hwtstamps->hwtstamp &&
2354 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2355 __sock_recv_timestamp(msg, sk, skb);
2356 else
2357 sock_write_timestamp(sk, kt);
2358
2359 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2360 __sock_recv_wifi_status(msg, sk, skb);
2361}
2362
2363void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2364 struct sk_buff *skb);
2365
2366#define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC)
2367static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2368 struct sk_buff *skb)
2369{
2370#define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \
2371 (1UL << SOCK_RCVTSTAMP))
2372#define TSFLAGS_ANY (SOF_TIMESTAMPING_SOFTWARE | \
2373 SOF_TIMESTAMPING_RAW_HARDWARE)
2374
2375 if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY)
2376 __sock_recv_ts_and_drops(msg, sk, skb);
2377 else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP)))
2378 sock_write_timestamp(sk, skb->tstamp);
2379 else if (unlikely(sk->sk_stamp == SK_DEFAULT_STAMP))
2380 sock_write_timestamp(sk, 0);
2381}
2382
2383void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags);
2384
2385/**
2386 * _sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2387 * @sk: socket sending this packet
2388 * @tsflags: timestamping flags to use
2389 * @tx_flags: completed with instructions for time stamping
2390 * @tskey: filled in with next sk_tskey (not for TCP, which uses seqno)
2391 *
2392 * Note: callers should take care of initial ``*tx_flags`` value (usually 0)
2393 */
2394static inline void _sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2395 __u8 *tx_flags, __u32 *tskey)
2396{
2397 if (unlikely(tsflags)) {
2398 __sock_tx_timestamp(tsflags, tx_flags);
2399 if (tsflags & SOF_TIMESTAMPING_OPT_ID && tskey &&
2400 tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
2401 *tskey = sk->sk_tskey++;
2402 }
2403 if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2404 *tx_flags |= SKBTX_WIFI_STATUS;
2405}
2406
2407static inline void sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2408 __u8 *tx_flags)
2409{
2410 _sock_tx_timestamp(sk, tsflags, tx_flags, NULL);
2411}
2412
2413static inline void skb_setup_tx_timestamp(struct sk_buff *skb, __u16 tsflags)
2414{
2415 _sock_tx_timestamp(skb->sk, tsflags, &skb_shinfo(skb)->tx_flags,
2416 &skb_shinfo(skb)->tskey);
2417}
2418
2419/**
2420 * sk_eat_skb - Release a skb if it is no longer needed
2421 * @sk: socket to eat this skb from
2422 * @skb: socket buffer to eat
2423 *
2424 * This routine must be called with interrupts disabled or with the socket
2425 * locked so that the sk_buff queue operation is ok.
2426*/
2427static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2428{
2429 __skb_unlink(skb, &sk->sk_receive_queue);
2430 __kfree_skb(skb);
2431}
2432
2433static inline
2434struct net *sock_net(const struct sock *sk)
2435{
2436 return read_pnet(&sk->sk_net);
2437}
2438
2439static inline
2440void sock_net_set(struct sock *sk, struct net *net)
2441{
2442 write_pnet(&sk->sk_net, net);
2443}
2444
2445static inline struct sock *skb_steal_sock(struct sk_buff *skb)
2446{
2447 if (skb->sk) {
2448 struct sock *sk = skb->sk;
2449
2450 skb->destructor = NULL;
2451 skb->sk = NULL;
2452 return sk;
2453 }
2454 return NULL;
2455}
2456
2457/* This helper checks if a socket is a full socket,
2458 * ie _not_ a timewait or request socket.
2459 */
2460static inline bool sk_fullsock(const struct sock *sk)
2461{
2462 return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2463}
2464
2465/* Checks if this SKB belongs to an HW offloaded socket
2466 * and whether any SW fallbacks are required based on dev.
2467 */
2468static inline struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb,
2469 struct net_device *dev)
2470{
2471#ifdef CONFIG_SOCK_VALIDATE_XMIT
2472 struct sock *sk = skb->sk;
2473
2474 if (sk && sk_fullsock(sk) && sk->sk_validate_xmit_skb)
2475 skb = sk->sk_validate_xmit_skb(sk, dev, skb);
2476#endif
2477
2478 return skb;
2479}
2480
2481/* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2482 * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2483 */
2484static inline bool sk_listener(const struct sock *sk)
2485{
2486 return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2487}
2488
2489void sock_enable_timestamp(struct sock *sk, int flag);
2490int sock_get_timestamp(struct sock *, struct timeval __user *);
2491int sock_get_timestampns(struct sock *, struct timespec __user *);
2492int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2493 int type);
2494
2495bool sk_ns_capable(const struct sock *sk,
2496 struct user_namespace *user_ns, int cap);
2497bool sk_capable(const struct sock *sk, int cap);
2498bool sk_net_capable(const struct sock *sk, int cap);
2499
2500void sk_get_meminfo(const struct sock *sk, u32 *meminfo);
2501
2502/* Take into consideration the size of the struct sk_buff overhead in the
2503 * determination of these values, since that is non-constant across
2504 * platforms. This makes socket queueing behavior and performance
2505 * not depend upon such differences.
2506 */
2507#define _SK_MEM_PACKETS 256
2508#define _SK_MEM_OVERHEAD SKB_TRUESIZE(256)
2509#define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2510#define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2511
2512extern __u32 sysctl_wmem_max;
2513extern __u32 sysctl_rmem_max;
2514
2515extern int sysctl_tstamp_allow_data;
2516extern int sysctl_optmem_max;
2517
2518extern __u32 sysctl_wmem_default;
2519extern __u32 sysctl_rmem_default;
2520
2521static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto)
2522{
2523 /* Does this proto have per netns sysctl_wmem ? */
2524 if (proto->sysctl_wmem_offset)
2525 return *(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset);
2526
2527 return *proto->sysctl_wmem;
2528}
2529
2530static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto)
2531{
2532 /* Does this proto have per netns sysctl_rmem ? */
2533 if (proto->sysctl_rmem_offset)
2534 return *(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset);
2535
2536 return *proto->sysctl_rmem;
2537}
2538
2539/* Default TCP Small queue budget is ~1 ms of data (1sec >> 10)
2540 * Some wifi drivers need to tweak it to get more chunks.
2541 * They can use this helper from their ndo_start_xmit()
2542 */
2543static inline void sk_pacing_shift_update(struct sock *sk, int val)
2544{
2545 if (!sk || !sk_fullsock(sk) || sk->sk_pacing_shift == val)
2546 return;
2547 sk->sk_pacing_shift = val;
2548}
2549
2550/* if a socket is bound to a device, check that the given device
2551 * index is either the same or that the socket is bound to an L3
2552 * master device and the given device index is also enslaved to
2553 * that L3 master
2554 */
2555static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif)
2556{
2557 int mdif;
2558
2559 if (!sk->sk_bound_dev_if || sk->sk_bound_dev_if == dif)
2560 return true;
2561
2562 mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif);
2563 if (mdif && mdif == sk->sk_bound_dev_if)
2564 return true;
2565
2566 return false;
2567}
2568
2569#endif /* _SOCK_H */
2570