1/*
2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved.
4 * Copyright (c) 2004 Intel Corporation. All rights reserved.
5 * Copyright (c) 2004 Topspin Corporation. All rights reserved.
6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved.
7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved.
9 *
10 * This software is available to you under a choice of one of two
11 * licenses. You may choose to be licensed under the terms of the GNU
12 * General Public License (GPL) Version 2, available from the file
13 * COPYING in the main directory of this source tree, or the
14 * OpenIB.org BSD license below:
15 *
16 * Redistribution and use in source and binary forms, with or
17 * without modification, are permitted provided that the following
18 * conditions are met:
19 *
20 * - Redistributions of source code must retain the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer.
23 *
24 * - Redistributions in binary form must reproduce the above
25 * copyright notice, this list of conditions and the following
26 * disclaimer in the documentation and/or other materials
27 * provided with the distribution.
28 *
29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36 * SOFTWARE.
37 */
38
39#if !defined(IB_VERBS_H)
40#define IB_VERBS_H
41
42#include <linux/types.h>
43#include <linux/device.h>
44#include <linux/dma-mapping.h>
45#include <linux/kref.h>
46#include <linux/list.h>
47#include <linux/rwsem.h>
48#include <linux/workqueue.h>
49#include <linux/irq_poll.h>
50#include <uapi/linux/if_ether.h>
51#include <net/ipv6.h>
52#include <net/ip.h>
53#include <linux/string.h>
54#include <linux/slab.h>
55#include <linux/netdevice.h>
56#include <linux/refcount.h>
57#include <linux/if_link.h>
58#include <linux/atomic.h>
59#include <linux/mmu_notifier.h>
60#include <linux/uaccess.h>
61#include <linux/cgroup_rdma.h>
62#include <uapi/rdma/ib_user_verbs.h>
63#include <rdma/restrack.h>
64#include <uapi/rdma/rdma_user_ioctl.h>
65#include <uapi/rdma/ib_user_ioctl_verbs.h>
66
67#define IB_FW_VERSION_NAME_MAX ETHTOOL_FWVERS_LEN
68
69struct ib_umem_odp;
70
71extern struct workqueue_struct *ib_wq;
72extern struct workqueue_struct *ib_comp_wq;
73extern struct workqueue_struct *ib_comp_unbound_wq;
74
75union ib_gid {
76 u8 raw[16];
77 struct {
78 __be64 subnet_prefix;
79 __be64 interface_id;
80 } global;
81};
82
83extern union ib_gid zgid;
84
85enum ib_gid_type {
86 /* If link layer is Ethernet, this is RoCE V1 */
87 IB_GID_TYPE_IB = 0,
88 IB_GID_TYPE_ROCE = 0,
89 IB_GID_TYPE_ROCE_UDP_ENCAP = 1,
90 IB_GID_TYPE_SIZE
91};
92
93#define ROCE_V2_UDP_DPORT 4791
94struct ib_gid_attr {
95 struct net_device *ndev;
96 struct ib_device *device;
97 union ib_gid gid;
98 enum ib_gid_type gid_type;
99 u16 index;
100 u8 port_num;
101};
102
103enum rdma_node_type {
104 /* IB values map to NodeInfo:NodeType. */
105 RDMA_NODE_IB_CA = 1,
106 RDMA_NODE_IB_SWITCH,
107 RDMA_NODE_IB_ROUTER,
108 RDMA_NODE_RNIC,
109 RDMA_NODE_USNIC,
110 RDMA_NODE_USNIC_UDP,
111};
112
113enum {
114 /* set the local administered indication */
115 IB_SA_WELL_KNOWN_GUID = BIT_ULL(57) | 2,
116};
117
118enum rdma_transport_type {
119 RDMA_TRANSPORT_IB,
120 RDMA_TRANSPORT_IWARP,
121 RDMA_TRANSPORT_USNIC,
122 RDMA_TRANSPORT_USNIC_UDP
123};
124
125enum rdma_protocol_type {
126 RDMA_PROTOCOL_IB,
127 RDMA_PROTOCOL_IBOE,
128 RDMA_PROTOCOL_IWARP,
129 RDMA_PROTOCOL_USNIC_UDP
130};
131
132__attribute_const__ enum rdma_transport_type
133rdma_node_get_transport(enum rdma_node_type node_type);
134
135enum rdma_network_type {
136 RDMA_NETWORK_IB,
137 RDMA_NETWORK_ROCE_V1 = RDMA_NETWORK_IB,
138 RDMA_NETWORK_IPV4,
139 RDMA_NETWORK_IPV6
140};
141
142static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type)
143{
144 if (network_type == RDMA_NETWORK_IPV4 ||
145 network_type == RDMA_NETWORK_IPV6)
146 return IB_GID_TYPE_ROCE_UDP_ENCAP;
147
148 /* IB_GID_TYPE_IB same as RDMA_NETWORK_ROCE_V1 */
149 return IB_GID_TYPE_IB;
150}
151
152static inline enum rdma_network_type
153rdma_gid_attr_network_type(const struct ib_gid_attr *attr)
154{
155 if (attr->gid_type == IB_GID_TYPE_IB)
156 return RDMA_NETWORK_IB;
157
158 if (ipv6_addr_v4mapped((struct in6_addr *)&attr->gid))
159 return RDMA_NETWORK_IPV4;
160 else
161 return RDMA_NETWORK_IPV6;
162}
163
164enum rdma_link_layer {
165 IB_LINK_LAYER_UNSPECIFIED,
166 IB_LINK_LAYER_INFINIBAND,
167 IB_LINK_LAYER_ETHERNET,
168};
169
170enum ib_device_cap_flags {
171 IB_DEVICE_RESIZE_MAX_WR = (1 << 0),
172 IB_DEVICE_BAD_PKEY_CNTR = (1 << 1),
173 IB_DEVICE_BAD_QKEY_CNTR = (1 << 2),
174 IB_DEVICE_RAW_MULTI = (1 << 3),
175 IB_DEVICE_AUTO_PATH_MIG = (1 << 4),
176 IB_DEVICE_CHANGE_PHY_PORT = (1 << 5),
177 IB_DEVICE_UD_AV_PORT_ENFORCE = (1 << 6),
178 IB_DEVICE_CURR_QP_STATE_MOD = (1 << 7),
179 IB_DEVICE_SHUTDOWN_PORT = (1 << 8),
180 /* Not in use, former INIT_TYPE = (1 << 9),*/
181 IB_DEVICE_PORT_ACTIVE_EVENT = (1 << 10),
182 IB_DEVICE_SYS_IMAGE_GUID = (1 << 11),
183 IB_DEVICE_RC_RNR_NAK_GEN = (1 << 12),
184 IB_DEVICE_SRQ_RESIZE = (1 << 13),
185 IB_DEVICE_N_NOTIFY_CQ = (1 << 14),
186
187 /*
188 * This device supports a per-device lkey or stag that can be
189 * used without performing a memory registration for the local
190 * memory. Note that ULPs should never check this flag, but
191 * instead of use the local_dma_lkey flag in the ib_pd structure,
192 * which will always contain a usable lkey.
193 */
194 IB_DEVICE_LOCAL_DMA_LKEY = (1 << 15),
195 /* Reserved, old SEND_W_INV = (1 << 16),*/
196 IB_DEVICE_MEM_WINDOW = (1 << 17),
197 /*
198 * Devices should set IB_DEVICE_UD_IP_SUM if they support
199 * insertion of UDP and TCP checksum on outgoing UD IPoIB
200 * messages and can verify the validity of checksum for
201 * incoming messages. Setting this flag implies that the
202 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
203 */
204 IB_DEVICE_UD_IP_CSUM = (1 << 18),
205 IB_DEVICE_UD_TSO = (1 << 19),
206 IB_DEVICE_XRC = (1 << 20),
207
208 /*
209 * This device supports the IB "base memory management extension",
210 * which includes support for fast registrations (IB_WR_REG_MR,
211 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs). This flag should
212 * also be set by any iWarp device which must support FRs to comply
213 * to the iWarp verbs spec. iWarp devices also support the
214 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the
215 * stag.
216 */
217 IB_DEVICE_MEM_MGT_EXTENSIONS = (1 << 21),
218 IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1 << 22),
219 IB_DEVICE_MEM_WINDOW_TYPE_2A = (1 << 23),
220 IB_DEVICE_MEM_WINDOW_TYPE_2B = (1 << 24),
221 IB_DEVICE_RC_IP_CSUM = (1 << 25),
222 /* Deprecated. Please use IB_RAW_PACKET_CAP_IP_CSUM. */
223 IB_DEVICE_RAW_IP_CSUM = (1 << 26),
224 /*
225 * Devices should set IB_DEVICE_CROSS_CHANNEL if they
226 * support execution of WQEs that involve synchronization
227 * of I/O operations with single completion queue managed
228 * by hardware.
229 */
230 IB_DEVICE_CROSS_CHANNEL = (1 << 27),
231 IB_DEVICE_MANAGED_FLOW_STEERING = (1 << 29),
232 IB_DEVICE_SIGNATURE_HANDOVER = (1 << 30),
233 IB_DEVICE_ON_DEMAND_PAGING = (1ULL << 31),
234 IB_DEVICE_SG_GAPS_REG = (1ULL << 32),
235 IB_DEVICE_VIRTUAL_FUNCTION = (1ULL << 33),
236 /* Deprecated. Please use IB_RAW_PACKET_CAP_SCATTER_FCS. */
237 IB_DEVICE_RAW_SCATTER_FCS = (1ULL << 34),
238 IB_DEVICE_RDMA_NETDEV_OPA_VNIC = (1ULL << 35),
239 /* The device supports padding incoming writes to cacheline. */
240 IB_DEVICE_PCI_WRITE_END_PADDING = (1ULL << 36),
241 IB_DEVICE_ALLOW_USER_UNREG = (1ULL << 37),
242};
243
244enum ib_signature_prot_cap {
245 IB_PROT_T10DIF_TYPE_1 = 1,
246 IB_PROT_T10DIF_TYPE_2 = 1 << 1,
247 IB_PROT_T10DIF_TYPE_3 = 1 << 2,
248};
249
250enum ib_signature_guard_cap {
251 IB_GUARD_T10DIF_CRC = 1,
252 IB_GUARD_T10DIF_CSUM = 1 << 1,
253};
254
255enum ib_atomic_cap {
256 IB_ATOMIC_NONE,
257 IB_ATOMIC_HCA,
258 IB_ATOMIC_GLOB
259};
260
261enum ib_odp_general_cap_bits {
262 IB_ODP_SUPPORT = 1 << 0,
263 IB_ODP_SUPPORT_IMPLICIT = 1 << 1,
264};
265
266enum ib_odp_transport_cap_bits {
267 IB_ODP_SUPPORT_SEND = 1 << 0,
268 IB_ODP_SUPPORT_RECV = 1 << 1,
269 IB_ODP_SUPPORT_WRITE = 1 << 2,
270 IB_ODP_SUPPORT_READ = 1 << 3,
271 IB_ODP_SUPPORT_ATOMIC = 1 << 4,
272 IB_ODP_SUPPORT_SRQ_RECV = 1 << 5,
273};
274
275struct ib_odp_caps {
276 uint64_t general_caps;
277 struct {
278 uint32_t rc_odp_caps;
279 uint32_t uc_odp_caps;
280 uint32_t ud_odp_caps;
281 uint32_t xrc_odp_caps;
282 } per_transport_caps;
283};
284
285struct ib_rss_caps {
286 /* Corresponding bit will be set if qp type from
287 * 'enum ib_qp_type' is supported, e.g.
288 * supported_qpts |= 1 << IB_QPT_UD
289 */
290 u32 supported_qpts;
291 u32 max_rwq_indirection_tables;
292 u32 max_rwq_indirection_table_size;
293};
294
295enum ib_tm_cap_flags {
296 /* Support tag matching on RC transport */
297 IB_TM_CAP_RC = 1 << 0,
298};
299
300struct ib_tm_caps {
301 /* Max size of RNDV header */
302 u32 max_rndv_hdr_size;
303 /* Max number of entries in tag matching list */
304 u32 max_num_tags;
305 /* From enum ib_tm_cap_flags */
306 u32 flags;
307 /* Max number of outstanding list operations */
308 u32 max_ops;
309 /* Max number of SGE in tag matching entry */
310 u32 max_sge;
311};
312
313struct ib_cq_init_attr {
314 unsigned int cqe;
315 int comp_vector;
316 u32 flags;
317};
318
319enum ib_cq_attr_mask {
320 IB_CQ_MODERATE = 1 << 0,
321};
322
323struct ib_cq_caps {
324 u16 max_cq_moderation_count;
325 u16 max_cq_moderation_period;
326};
327
328struct ib_dm_mr_attr {
329 u64 length;
330 u64 offset;
331 u32 access_flags;
332};
333
334struct ib_dm_alloc_attr {
335 u64 length;
336 u32 alignment;
337 u32 flags;
338};
339
340struct ib_device_attr {
341 u64 fw_ver;
342 __be64 sys_image_guid;
343 u64 max_mr_size;
344 u64 page_size_cap;
345 u32 vendor_id;
346 u32 vendor_part_id;
347 u32 hw_ver;
348 int max_qp;
349 int max_qp_wr;
350 u64 device_cap_flags;
351 int max_send_sge;
352 int max_recv_sge;
353 int max_sge_rd;
354 int max_cq;
355 int max_cqe;
356 int max_mr;
357 int max_pd;
358 int max_qp_rd_atom;
359 int max_ee_rd_atom;
360 int max_res_rd_atom;
361 int max_qp_init_rd_atom;
362 int max_ee_init_rd_atom;
363 enum ib_atomic_cap atomic_cap;
364 enum ib_atomic_cap masked_atomic_cap;
365 int max_ee;
366 int max_rdd;
367 int max_mw;
368 int max_raw_ipv6_qp;
369 int max_raw_ethy_qp;
370 int max_mcast_grp;
371 int max_mcast_qp_attach;
372 int max_total_mcast_qp_attach;
373 int max_ah;
374 int max_fmr;
375 int max_map_per_fmr;
376 int max_srq;
377 int max_srq_wr;
378 int max_srq_sge;
379 unsigned int max_fast_reg_page_list_len;
380 u16 max_pkeys;
381 u8 local_ca_ack_delay;
382 int sig_prot_cap;
383 int sig_guard_cap;
384 struct ib_odp_caps odp_caps;
385 uint64_t timestamp_mask;
386 uint64_t hca_core_clock; /* in KHZ */
387 struct ib_rss_caps rss_caps;
388 u32 max_wq_type_rq;
389 u32 raw_packet_caps; /* Use ib_raw_packet_caps enum */
390 struct ib_tm_caps tm_caps;
391 struct ib_cq_caps cq_caps;
392 u64 max_dm_size;
393};
394
395enum ib_mtu {
396 IB_MTU_256 = 1,
397 IB_MTU_512 = 2,
398 IB_MTU_1024 = 3,
399 IB_MTU_2048 = 4,
400 IB_MTU_4096 = 5
401};
402
403static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
404{
405 switch (mtu) {
406 case IB_MTU_256: return 256;
407 case IB_MTU_512: return 512;
408 case IB_MTU_1024: return 1024;
409 case IB_MTU_2048: return 2048;
410 case IB_MTU_4096: return 4096;
411 default: return -1;
412 }
413}
414
415static inline enum ib_mtu ib_mtu_int_to_enum(int mtu)
416{
417 if (mtu >= 4096)
418 return IB_MTU_4096;
419 else if (mtu >= 2048)
420 return IB_MTU_2048;
421 else if (mtu >= 1024)
422 return IB_MTU_1024;
423 else if (mtu >= 512)
424 return IB_MTU_512;
425 else
426 return IB_MTU_256;
427}
428
429enum ib_port_state {
430 IB_PORT_NOP = 0,
431 IB_PORT_DOWN = 1,
432 IB_PORT_INIT = 2,
433 IB_PORT_ARMED = 3,
434 IB_PORT_ACTIVE = 4,
435 IB_PORT_ACTIVE_DEFER = 5
436};
437
438enum ib_port_width {
439 IB_WIDTH_1X = 1,
440 IB_WIDTH_2X = 16,
441 IB_WIDTH_4X = 2,
442 IB_WIDTH_8X = 4,
443 IB_WIDTH_12X = 8
444};
445
446static inline int ib_width_enum_to_int(enum ib_port_width width)
447{
448 switch (width) {
449 case IB_WIDTH_1X: return 1;
450 case IB_WIDTH_2X: return 2;
451 case IB_WIDTH_4X: return 4;
452 case IB_WIDTH_8X: return 8;
453 case IB_WIDTH_12X: return 12;
454 default: return -1;
455 }
456}
457
458enum ib_port_speed {
459 IB_SPEED_SDR = 1,
460 IB_SPEED_DDR = 2,
461 IB_SPEED_QDR = 4,
462 IB_SPEED_FDR10 = 8,
463 IB_SPEED_FDR = 16,
464 IB_SPEED_EDR = 32,
465 IB_SPEED_HDR = 64
466};
467
468/**
469 * struct rdma_hw_stats
470 * @lock - Mutex to protect parallel write access to lifespan and values
471 * of counters, which are 64bits and not guaranteeed to be written
472 * atomicaly on 32bits systems.
473 * @timestamp - Used by the core code to track when the last update was
474 * @lifespan - Used by the core code to determine how old the counters
475 * should be before being updated again. Stored in jiffies, defaults
476 * to 10 milliseconds, drivers can override the default be specifying
477 * their own value during their allocation routine.
478 * @name - Array of pointers to static names used for the counters in
479 * directory.
480 * @num_counters - How many hardware counters there are. If name is
481 * shorter than this number, a kernel oops will result. Driver authors
482 * are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters)
483 * in their code to prevent this.
484 * @value - Array of u64 counters that are accessed by the sysfs code and
485 * filled in by the drivers get_stats routine
486 */
487struct rdma_hw_stats {
488 struct mutex lock; /* Protect lifespan and values[] */
489 unsigned long timestamp;
490 unsigned long lifespan;
491 const char * const *names;
492 int num_counters;
493 u64 value[];
494};
495
496#define RDMA_HW_STATS_DEFAULT_LIFESPAN 10
497/**
498 * rdma_alloc_hw_stats_struct - Helper function to allocate dynamic struct
499 * for drivers.
500 * @names - Array of static const char *
501 * @num_counters - How many elements in array
502 * @lifespan - How many milliseconds between updates
503 */
504static inline struct rdma_hw_stats *rdma_alloc_hw_stats_struct(
505 const char * const *names, int num_counters,
506 unsigned long lifespan)
507{
508 struct rdma_hw_stats *stats;
509
510 stats = kzalloc(sizeof(*stats) + num_counters * sizeof(u64),
511 GFP_KERNEL);
512 if (!stats)
513 return NULL;
514 stats->names = names;
515 stats->num_counters = num_counters;
516 stats->lifespan = msecs_to_jiffies(lifespan);
517
518 return stats;
519}
520
521
522/* Define bits for the various functionality this port needs to be supported by
523 * the core.
524 */
525/* Management 0x00000FFF */
526#define RDMA_CORE_CAP_IB_MAD 0x00000001
527#define RDMA_CORE_CAP_IB_SMI 0x00000002
528#define RDMA_CORE_CAP_IB_CM 0x00000004
529#define RDMA_CORE_CAP_IW_CM 0x00000008
530#define RDMA_CORE_CAP_IB_SA 0x00000010
531#define RDMA_CORE_CAP_OPA_MAD 0x00000020
532
533/* Address format 0x000FF000 */
534#define RDMA_CORE_CAP_AF_IB 0x00001000
535#define RDMA_CORE_CAP_ETH_AH 0x00002000
536#define RDMA_CORE_CAP_OPA_AH 0x00004000
537#define RDMA_CORE_CAP_IB_GRH_REQUIRED 0x00008000
538
539/* Protocol 0xFFF00000 */
540#define RDMA_CORE_CAP_PROT_IB 0x00100000
541#define RDMA_CORE_CAP_PROT_ROCE 0x00200000
542#define RDMA_CORE_CAP_PROT_IWARP 0x00400000
543#define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000
544#define RDMA_CORE_CAP_PROT_RAW_PACKET 0x01000000
545#define RDMA_CORE_CAP_PROT_USNIC 0x02000000
546
547#define RDMA_CORE_PORT_IB_GRH_REQUIRED (RDMA_CORE_CAP_IB_GRH_REQUIRED \
548 | RDMA_CORE_CAP_PROT_ROCE \
549 | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP)
550
551#define RDMA_CORE_PORT_IBA_IB (RDMA_CORE_CAP_PROT_IB \
552 | RDMA_CORE_CAP_IB_MAD \
553 | RDMA_CORE_CAP_IB_SMI \
554 | RDMA_CORE_CAP_IB_CM \
555 | RDMA_CORE_CAP_IB_SA \
556 | RDMA_CORE_CAP_AF_IB)
557#define RDMA_CORE_PORT_IBA_ROCE (RDMA_CORE_CAP_PROT_ROCE \
558 | RDMA_CORE_CAP_IB_MAD \
559 | RDMA_CORE_CAP_IB_CM \
560 | RDMA_CORE_CAP_AF_IB \
561 | RDMA_CORE_CAP_ETH_AH)
562#define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP \
563 (RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \
564 | RDMA_CORE_CAP_IB_MAD \
565 | RDMA_CORE_CAP_IB_CM \
566 | RDMA_CORE_CAP_AF_IB \
567 | RDMA_CORE_CAP_ETH_AH)
568#define RDMA_CORE_PORT_IWARP (RDMA_CORE_CAP_PROT_IWARP \
569 | RDMA_CORE_CAP_IW_CM)
570#define RDMA_CORE_PORT_INTEL_OPA (RDMA_CORE_PORT_IBA_IB \
571 | RDMA_CORE_CAP_OPA_MAD)
572
573#define RDMA_CORE_PORT_RAW_PACKET (RDMA_CORE_CAP_PROT_RAW_PACKET)
574
575#define RDMA_CORE_PORT_USNIC (RDMA_CORE_CAP_PROT_USNIC)
576
577struct ib_port_attr {
578 u64 subnet_prefix;
579 enum ib_port_state state;
580 enum ib_mtu max_mtu;
581 enum ib_mtu active_mtu;
582 int gid_tbl_len;
583 unsigned int ip_gids:1;
584 /* This is the value from PortInfo CapabilityMask, defined by IBA */
585 u32 port_cap_flags;
586 u32 max_msg_sz;
587 u32 bad_pkey_cntr;
588 u32 qkey_viol_cntr;
589 u16 pkey_tbl_len;
590 u32 sm_lid;
591 u32 lid;
592 u8 lmc;
593 u8 max_vl_num;
594 u8 sm_sl;
595 u8 subnet_timeout;
596 u8 init_type_reply;
597 u8 active_width;
598 u8 active_speed;
599 u8 phys_state;
600 u16 port_cap_flags2;
601};
602
603enum ib_device_modify_flags {
604 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0,
605 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1
606};
607
608#define IB_DEVICE_NODE_DESC_MAX 64
609
610struct ib_device_modify {
611 u64 sys_image_guid;
612 char node_desc[IB_DEVICE_NODE_DESC_MAX];
613};
614
615enum ib_port_modify_flags {
616 IB_PORT_SHUTDOWN = 1,
617 IB_PORT_INIT_TYPE = (1<<2),
618 IB_PORT_RESET_QKEY_CNTR = (1<<3),
619 IB_PORT_OPA_MASK_CHG = (1<<4)
620};
621
622struct ib_port_modify {
623 u32 set_port_cap_mask;
624 u32 clr_port_cap_mask;
625 u8 init_type;
626};
627
628enum ib_event_type {
629 IB_EVENT_CQ_ERR,
630 IB_EVENT_QP_FATAL,
631 IB_EVENT_QP_REQ_ERR,
632 IB_EVENT_QP_ACCESS_ERR,
633 IB_EVENT_COMM_EST,
634 IB_EVENT_SQ_DRAINED,
635 IB_EVENT_PATH_MIG,
636 IB_EVENT_PATH_MIG_ERR,
637 IB_EVENT_DEVICE_FATAL,
638 IB_EVENT_PORT_ACTIVE,
639 IB_EVENT_PORT_ERR,
640 IB_EVENT_LID_CHANGE,
641 IB_EVENT_PKEY_CHANGE,
642 IB_EVENT_SM_CHANGE,
643 IB_EVENT_SRQ_ERR,
644 IB_EVENT_SRQ_LIMIT_REACHED,
645 IB_EVENT_QP_LAST_WQE_REACHED,
646 IB_EVENT_CLIENT_REREGISTER,
647 IB_EVENT_GID_CHANGE,
648 IB_EVENT_WQ_FATAL,
649};
650
651const char *__attribute_const__ ib_event_msg(enum ib_event_type event);
652
653struct ib_event {
654 struct ib_device *device;
655 union {
656 struct ib_cq *cq;
657 struct ib_qp *qp;
658 struct ib_srq *srq;
659 struct ib_wq *wq;
660 u8 port_num;
661 } element;
662 enum ib_event_type event;
663};
664
665struct ib_event_handler {
666 struct ib_device *device;
667 void (*handler)(struct ib_event_handler *, struct ib_event *);
668 struct list_head list;
669};
670
671#define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \
672 do { \
673 (_ptr)->device = _device; \
674 (_ptr)->handler = _handler; \
675 INIT_LIST_HEAD(&(_ptr)->list); \
676 } while (0)
677
678struct ib_global_route {
679 const struct ib_gid_attr *sgid_attr;
680 union ib_gid dgid;
681 u32 flow_label;
682 u8 sgid_index;
683 u8 hop_limit;
684 u8 traffic_class;
685};
686
687struct ib_grh {
688 __be32 version_tclass_flow;
689 __be16 paylen;
690 u8 next_hdr;
691 u8 hop_limit;
692 union ib_gid sgid;
693 union ib_gid dgid;
694};
695
696union rdma_network_hdr {
697 struct ib_grh ibgrh;
698 struct {
699 /* The IB spec states that if it's IPv4, the header
700 * is located in the last 20 bytes of the header.
701 */
702 u8 reserved[20];
703 struct iphdr roce4grh;
704 };
705};
706
707#define IB_QPN_MASK 0xFFFFFF
708
709enum {
710 IB_MULTICAST_QPN = 0xffffff
711};
712
713#define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF)
714#define IB_MULTICAST_LID_BASE cpu_to_be16(0xC000)
715
716enum ib_ah_flags {
717 IB_AH_GRH = 1
718};
719
720enum ib_rate {
721 IB_RATE_PORT_CURRENT = 0,
722 IB_RATE_2_5_GBPS = 2,
723 IB_RATE_5_GBPS = 5,
724 IB_RATE_10_GBPS = 3,
725 IB_RATE_20_GBPS = 6,
726 IB_RATE_30_GBPS = 4,
727 IB_RATE_40_GBPS = 7,
728 IB_RATE_60_GBPS = 8,
729 IB_RATE_80_GBPS = 9,
730 IB_RATE_120_GBPS = 10,
731 IB_RATE_14_GBPS = 11,
732 IB_RATE_56_GBPS = 12,
733 IB_RATE_112_GBPS = 13,
734 IB_RATE_168_GBPS = 14,
735 IB_RATE_25_GBPS = 15,
736 IB_RATE_100_GBPS = 16,
737 IB_RATE_200_GBPS = 17,
738 IB_RATE_300_GBPS = 18,
739 IB_RATE_28_GBPS = 19,
740 IB_RATE_50_GBPS = 20,
741 IB_RATE_400_GBPS = 21,
742 IB_RATE_600_GBPS = 22,
743};
744
745/**
746 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
747 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be
748 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
749 * @rate: rate to convert.
750 */
751__attribute_const__ int ib_rate_to_mult(enum ib_rate rate);
752
753/**
754 * ib_rate_to_mbps - Convert the IB rate enum to Mbps.
755 * For example, IB_RATE_2_5_GBPS will be converted to 2500.
756 * @rate: rate to convert.
757 */
758__attribute_const__ int ib_rate_to_mbps(enum ib_rate rate);
759
760
761/**
762 * enum ib_mr_type - memory region type
763 * @IB_MR_TYPE_MEM_REG: memory region that is used for
764 * normal registration
765 * @IB_MR_TYPE_SIGNATURE: memory region that is used for
766 * signature operations (data-integrity
767 * capable regions)
768 * @IB_MR_TYPE_SG_GAPS: memory region that is capable to
769 * register any arbitrary sg lists (without
770 * the normal mr constraints - see
771 * ib_map_mr_sg)
772 */
773enum ib_mr_type {
774 IB_MR_TYPE_MEM_REG,
775 IB_MR_TYPE_SIGNATURE,
776 IB_MR_TYPE_SG_GAPS,
777};
778
779/**
780 * Signature types
781 * IB_SIG_TYPE_NONE: Unprotected.
782 * IB_SIG_TYPE_T10_DIF: Type T10-DIF
783 */
784enum ib_signature_type {
785 IB_SIG_TYPE_NONE,
786 IB_SIG_TYPE_T10_DIF,
787};
788
789/**
790 * Signature T10-DIF block-guard types
791 * IB_T10DIF_CRC: Corresponds to T10-PI mandated CRC checksum rules.
792 * IB_T10DIF_CSUM: Corresponds to IP checksum rules.
793 */
794enum ib_t10_dif_bg_type {
795 IB_T10DIF_CRC,
796 IB_T10DIF_CSUM
797};
798
799/**
800 * struct ib_t10_dif_domain - Parameters specific for T10-DIF
801 * domain.
802 * @bg_type: T10-DIF block guard type (CRC|CSUM)
803 * @pi_interval: protection information interval.
804 * @bg: seed of guard computation.
805 * @app_tag: application tag of guard block
806 * @ref_tag: initial guard block reference tag.
807 * @ref_remap: Indicate wethear the reftag increments each block
808 * @app_escape: Indicate to skip block check if apptag=0xffff
809 * @ref_escape: Indicate to skip block check if reftag=0xffffffff
810 * @apptag_check_mask: check bitmask of application tag.
811 */
812struct ib_t10_dif_domain {
813 enum ib_t10_dif_bg_type bg_type;
814 u16 pi_interval;
815 u16 bg;
816 u16 app_tag;
817 u32 ref_tag;
818 bool ref_remap;
819 bool app_escape;
820 bool ref_escape;
821 u16 apptag_check_mask;
822};
823
824/**
825 * struct ib_sig_domain - Parameters for signature domain
826 * @sig_type: specific signauture type
827 * @sig: union of all signature domain attributes that may
828 * be used to set domain layout.
829 */
830struct ib_sig_domain {
831 enum ib_signature_type sig_type;
832 union {
833 struct ib_t10_dif_domain dif;
834 } sig;
835};
836
837/**
838 * struct ib_sig_attrs - Parameters for signature handover operation
839 * @check_mask: bitmask for signature byte check (8 bytes)
840 * @mem: memory domain layout desciptor.
841 * @wire: wire domain layout desciptor.
842 */
843struct ib_sig_attrs {
844 u8 check_mask;
845 struct ib_sig_domain mem;
846 struct ib_sig_domain wire;
847};
848
849enum ib_sig_err_type {
850 IB_SIG_BAD_GUARD,
851 IB_SIG_BAD_REFTAG,
852 IB_SIG_BAD_APPTAG,
853};
854
855/**
856 * Signature check masks (8 bytes in total) according to the T10-PI standard:
857 * -------- -------- ------------
858 * | GUARD | APPTAG | REFTAG |
859 * | 2B | 2B | 4B |
860 * -------- -------- ------------
861 */
862enum {
863 IB_SIG_CHECK_GUARD = 0xc0,
864 IB_SIG_CHECK_APPTAG = 0x30,
865 IB_SIG_CHECK_REFTAG = 0x0f,
866};
867
868/**
869 * struct ib_sig_err - signature error descriptor
870 */
871struct ib_sig_err {
872 enum ib_sig_err_type err_type;
873 u32 expected;
874 u32 actual;
875 u64 sig_err_offset;
876 u32 key;
877};
878
879enum ib_mr_status_check {
880 IB_MR_CHECK_SIG_STATUS = 1,
881};
882
883/**
884 * struct ib_mr_status - Memory region status container
885 *
886 * @fail_status: Bitmask of MR checks status. For each
887 * failed check a corresponding status bit is set.
888 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS
889 * failure.
890 */
891struct ib_mr_status {
892 u32 fail_status;
893 struct ib_sig_err sig_err;
894};
895
896/**
897 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
898 * enum.
899 * @mult: multiple to convert.
900 */
901__attribute_const__ enum ib_rate mult_to_ib_rate(int mult);
902
903enum rdma_ah_attr_type {
904 RDMA_AH_ATTR_TYPE_UNDEFINED,
905 RDMA_AH_ATTR_TYPE_IB,
906 RDMA_AH_ATTR_TYPE_ROCE,
907 RDMA_AH_ATTR_TYPE_OPA,
908};
909
910struct ib_ah_attr {
911 u16 dlid;
912 u8 src_path_bits;
913};
914
915struct roce_ah_attr {
916 u8 dmac[ETH_ALEN];
917};
918
919struct opa_ah_attr {
920 u32 dlid;
921 u8 src_path_bits;
922 bool make_grd;
923};
924
925struct rdma_ah_attr {
926 struct ib_global_route grh;
927 u8 sl;
928 u8 static_rate;
929 u8 port_num;
930 u8 ah_flags;
931 enum rdma_ah_attr_type type;
932 union {
933 struct ib_ah_attr ib;
934 struct roce_ah_attr roce;
935 struct opa_ah_attr opa;
936 };
937};
938
939enum ib_wc_status {
940 IB_WC_SUCCESS,
941 IB_WC_LOC_LEN_ERR,
942 IB_WC_LOC_QP_OP_ERR,
943 IB_WC_LOC_EEC_OP_ERR,
944 IB_WC_LOC_PROT_ERR,
945 IB_WC_WR_FLUSH_ERR,
946 IB_WC_MW_BIND_ERR,
947 IB_WC_BAD_RESP_ERR,
948 IB_WC_LOC_ACCESS_ERR,
949 IB_WC_REM_INV_REQ_ERR,
950 IB_WC_REM_ACCESS_ERR,
951 IB_WC_REM_OP_ERR,
952 IB_WC_RETRY_EXC_ERR,
953 IB_WC_RNR_RETRY_EXC_ERR,
954 IB_WC_LOC_RDD_VIOL_ERR,
955 IB_WC_REM_INV_RD_REQ_ERR,
956 IB_WC_REM_ABORT_ERR,
957 IB_WC_INV_EECN_ERR,
958 IB_WC_INV_EEC_STATE_ERR,
959 IB_WC_FATAL_ERR,
960 IB_WC_RESP_TIMEOUT_ERR,
961 IB_WC_GENERAL_ERR
962};
963
964const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status);
965
966enum ib_wc_opcode {
967 IB_WC_SEND,
968 IB_WC_RDMA_WRITE,
969 IB_WC_RDMA_READ,
970 IB_WC_COMP_SWAP,
971 IB_WC_FETCH_ADD,
972 IB_WC_LSO,
973 IB_WC_LOCAL_INV,
974 IB_WC_REG_MR,
975 IB_WC_MASKED_COMP_SWAP,
976 IB_WC_MASKED_FETCH_ADD,
977/*
978 * Set value of IB_WC_RECV so consumers can test if a completion is a
979 * receive by testing (opcode & IB_WC_RECV).
980 */
981 IB_WC_RECV = 1 << 7,
982 IB_WC_RECV_RDMA_WITH_IMM
983};
984
985enum ib_wc_flags {
986 IB_WC_GRH = 1,
987 IB_WC_WITH_IMM = (1<<1),
988 IB_WC_WITH_INVALIDATE = (1<<2),
989 IB_WC_IP_CSUM_OK = (1<<3),
990 IB_WC_WITH_SMAC = (1<<4),
991 IB_WC_WITH_VLAN = (1<<5),
992 IB_WC_WITH_NETWORK_HDR_TYPE = (1<<6),
993};
994
995struct ib_wc {
996 union {
997 u64 wr_id;
998 struct ib_cqe *wr_cqe;
999 };
1000 enum ib_wc_status status;
1001 enum ib_wc_opcode opcode;
1002 u32 vendor_err;
1003 u32 byte_len;
1004 struct ib_qp *qp;
1005 union {
1006 __be32 imm_data;
1007 u32 invalidate_rkey;
1008 } ex;
1009 u32 src_qp;
1010 u32 slid;
1011 int wc_flags;
1012 u16 pkey_index;
1013 u8 sl;
1014 u8 dlid_path_bits;
1015 u8 port_num; /* valid only for DR SMPs on switches */
1016 u8 smac[ETH_ALEN];
1017 u16 vlan_id;
1018 u8 network_hdr_type;
1019};
1020
1021enum ib_cq_notify_flags {
1022 IB_CQ_SOLICITED = 1 << 0,
1023 IB_CQ_NEXT_COMP = 1 << 1,
1024 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
1025 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2,
1026};
1027
1028enum ib_srq_type {
1029 IB_SRQT_BASIC,
1030 IB_SRQT_XRC,
1031 IB_SRQT_TM,
1032};
1033
1034static inline bool ib_srq_has_cq(enum ib_srq_type srq_type)
1035{
1036 return srq_type == IB_SRQT_XRC ||
1037 srq_type == IB_SRQT_TM;
1038}
1039
1040enum ib_srq_attr_mask {
1041 IB_SRQ_MAX_WR = 1 << 0,
1042 IB_SRQ_LIMIT = 1 << 1,
1043};
1044
1045struct ib_srq_attr {
1046 u32 max_wr;
1047 u32 max_sge;
1048 u32 srq_limit;
1049};
1050
1051struct ib_srq_init_attr {
1052 void (*event_handler)(struct ib_event *, void *);
1053 void *srq_context;
1054 struct ib_srq_attr attr;
1055 enum ib_srq_type srq_type;
1056
1057 struct {
1058 struct ib_cq *cq;
1059 union {
1060 struct {
1061 struct ib_xrcd *xrcd;
1062 } xrc;
1063
1064 struct {
1065 u32 max_num_tags;
1066 } tag_matching;
1067 };
1068 } ext;
1069};
1070
1071struct ib_qp_cap {
1072 u32 max_send_wr;
1073 u32 max_recv_wr;
1074 u32 max_send_sge;
1075 u32 max_recv_sge;
1076 u32 max_inline_data;
1077
1078 /*
1079 * Maximum number of rdma_rw_ctx structures in flight at a time.
1080 * ib_create_qp() will calculate the right amount of neededed WRs
1081 * and MRs based on this.
1082 */
1083 u32 max_rdma_ctxs;
1084};
1085
1086enum ib_sig_type {
1087 IB_SIGNAL_ALL_WR,
1088 IB_SIGNAL_REQ_WR
1089};
1090
1091enum ib_qp_type {
1092 /*
1093 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
1094 * here (and in that order) since the MAD layer uses them as
1095 * indices into a 2-entry table.
1096 */
1097 IB_QPT_SMI,
1098 IB_QPT_GSI,
1099
1100 IB_QPT_RC,
1101 IB_QPT_UC,
1102 IB_QPT_UD,
1103 IB_QPT_RAW_IPV6,
1104 IB_QPT_RAW_ETHERTYPE,
1105 IB_QPT_RAW_PACKET = 8,
1106 IB_QPT_XRC_INI = 9,
1107 IB_QPT_XRC_TGT,
1108 IB_QPT_MAX,
1109 IB_QPT_DRIVER = 0xFF,
1110 /* Reserve a range for qp types internal to the low level driver.
1111 * These qp types will not be visible at the IB core layer, so the
1112 * IB_QPT_MAX usages should not be affected in the core layer
1113 */
1114 IB_QPT_RESERVED1 = 0x1000,
1115 IB_QPT_RESERVED2,
1116 IB_QPT_RESERVED3,
1117 IB_QPT_RESERVED4,
1118 IB_QPT_RESERVED5,
1119 IB_QPT_RESERVED6,
1120 IB_QPT_RESERVED7,
1121 IB_QPT_RESERVED8,
1122 IB_QPT_RESERVED9,
1123 IB_QPT_RESERVED10,
1124};
1125
1126enum ib_qp_create_flags {
1127 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0,
1128 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK = 1 << 1,
1129 IB_QP_CREATE_CROSS_CHANNEL = 1 << 2,
1130 IB_QP_CREATE_MANAGED_SEND = 1 << 3,
1131 IB_QP_CREATE_MANAGED_RECV = 1 << 4,
1132 IB_QP_CREATE_NETIF_QP = 1 << 5,
1133 IB_QP_CREATE_SIGNATURE_EN = 1 << 6,
1134 /* FREE = 1 << 7, */
1135 IB_QP_CREATE_SCATTER_FCS = 1 << 8,
1136 IB_QP_CREATE_CVLAN_STRIPPING = 1 << 9,
1137 IB_QP_CREATE_SOURCE_QPN = 1 << 10,
1138 IB_QP_CREATE_PCI_WRITE_END_PADDING = 1 << 11,
1139 /* reserve bits 26-31 for low level drivers' internal use */
1140 IB_QP_CREATE_RESERVED_START = 1 << 26,
1141 IB_QP_CREATE_RESERVED_END = 1 << 31,
1142};
1143
1144/*
1145 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler
1146 * callback to destroy the passed in QP.
1147 */
1148
1149struct ib_qp_init_attr {
1150 /* Consumer's event_handler callback must not block */
1151 void (*event_handler)(struct ib_event *, void *);
1152
1153 void *qp_context;
1154 struct ib_cq *send_cq;
1155 struct ib_cq *recv_cq;
1156 struct ib_srq *srq;
1157 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
1158 struct ib_qp_cap cap;
1159 enum ib_sig_type sq_sig_type;
1160 enum ib_qp_type qp_type;
1161 u32 create_flags;
1162
1163 /*
1164 * Only needed for special QP types, or when using the RW API.
1165 */
1166 u8 port_num;
1167 struct ib_rwq_ind_table *rwq_ind_tbl;
1168 u32 source_qpn;
1169};
1170
1171struct ib_qp_open_attr {
1172 void (*event_handler)(struct ib_event *, void *);
1173 void *qp_context;
1174 u32 qp_num;
1175 enum ib_qp_type qp_type;
1176};
1177
1178enum ib_rnr_timeout {
1179 IB_RNR_TIMER_655_36 = 0,
1180 IB_RNR_TIMER_000_01 = 1,
1181 IB_RNR_TIMER_000_02 = 2,
1182 IB_RNR_TIMER_000_03 = 3,
1183 IB_RNR_TIMER_000_04 = 4,
1184 IB_RNR_TIMER_000_06 = 5,
1185 IB_RNR_TIMER_000_08 = 6,
1186 IB_RNR_TIMER_000_12 = 7,
1187 IB_RNR_TIMER_000_16 = 8,
1188 IB_RNR_TIMER_000_24 = 9,
1189 IB_RNR_TIMER_000_32 = 10,
1190 IB_RNR_TIMER_000_48 = 11,
1191 IB_RNR_TIMER_000_64 = 12,
1192 IB_RNR_TIMER_000_96 = 13,
1193 IB_RNR_TIMER_001_28 = 14,
1194 IB_RNR_TIMER_001_92 = 15,
1195 IB_RNR_TIMER_002_56 = 16,
1196 IB_RNR_TIMER_003_84 = 17,
1197 IB_RNR_TIMER_005_12 = 18,
1198 IB_RNR_TIMER_007_68 = 19,
1199 IB_RNR_TIMER_010_24 = 20,
1200 IB_RNR_TIMER_015_36 = 21,
1201 IB_RNR_TIMER_020_48 = 22,
1202 IB_RNR_TIMER_030_72 = 23,
1203 IB_RNR_TIMER_040_96 = 24,
1204 IB_RNR_TIMER_061_44 = 25,
1205 IB_RNR_TIMER_081_92 = 26,
1206 IB_RNR_TIMER_122_88 = 27,
1207 IB_RNR_TIMER_163_84 = 28,
1208 IB_RNR_TIMER_245_76 = 29,
1209 IB_RNR_TIMER_327_68 = 30,
1210 IB_RNR_TIMER_491_52 = 31
1211};
1212
1213enum ib_qp_attr_mask {
1214 IB_QP_STATE = 1,
1215 IB_QP_CUR_STATE = (1<<1),
1216 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2),
1217 IB_QP_ACCESS_FLAGS = (1<<3),
1218 IB_QP_PKEY_INDEX = (1<<4),
1219 IB_QP_PORT = (1<<5),
1220 IB_QP_QKEY = (1<<6),
1221 IB_QP_AV = (1<<7),
1222 IB_QP_PATH_MTU = (1<<8),
1223 IB_QP_TIMEOUT = (1<<9),
1224 IB_QP_RETRY_CNT = (1<<10),
1225 IB_QP_RNR_RETRY = (1<<11),
1226 IB_QP_RQ_PSN = (1<<12),
1227 IB_QP_MAX_QP_RD_ATOMIC = (1<<13),
1228 IB_QP_ALT_PATH = (1<<14),
1229 IB_QP_MIN_RNR_TIMER = (1<<15),
1230 IB_QP_SQ_PSN = (1<<16),
1231 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17),
1232 IB_QP_PATH_MIG_STATE = (1<<18),
1233 IB_QP_CAP = (1<<19),
1234 IB_QP_DEST_QPN = (1<<20),
1235 IB_QP_RESERVED1 = (1<<21),
1236 IB_QP_RESERVED2 = (1<<22),
1237 IB_QP_RESERVED3 = (1<<23),
1238 IB_QP_RESERVED4 = (1<<24),
1239 IB_QP_RATE_LIMIT = (1<<25),
1240};
1241
1242enum ib_qp_state {
1243 IB_QPS_RESET,
1244 IB_QPS_INIT,
1245 IB_QPS_RTR,
1246 IB_QPS_RTS,
1247 IB_QPS_SQD,
1248 IB_QPS_SQE,
1249 IB_QPS_ERR
1250};
1251
1252enum ib_mig_state {
1253 IB_MIG_MIGRATED,
1254 IB_MIG_REARM,
1255 IB_MIG_ARMED
1256};
1257
1258enum ib_mw_type {
1259 IB_MW_TYPE_1 = 1,
1260 IB_MW_TYPE_2 = 2
1261};
1262
1263struct ib_qp_attr {
1264 enum ib_qp_state qp_state;
1265 enum ib_qp_state cur_qp_state;
1266 enum ib_mtu path_mtu;
1267 enum ib_mig_state path_mig_state;
1268 u32 qkey;
1269 u32 rq_psn;
1270 u32 sq_psn;
1271 u32 dest_qp_num;
1272 int qp_access_flags;
1273 struct ib_qp_cap cap;
1274 struct rdma_ah_attr ah_attr;
1275 struct rdma_ah_attr alt_ah_attr;
1276 u16 pkey_index;
1277 u16 alt_pkey_index;
1278 u8 en_sqd_async_notify;
1279 u8 sq_draining;
1280 u8 max_rd_atomic;
1281 u8 max_dest_rd_atomic;
1282 u8 min_rnr_timer;
1283 u8 port_num;
1284 u8 timeout;
1285 u8 retry_cnt;
1286 u8 rnr_retry;
1287 u8 alt_port_num;
1288 u8 alt_timeout;
1289 u32 rate_limit;
1290};
1291
1292enum ib_wr_opcode {
1293 /* These are shared with userspace */
1294 IB_WR_RDMA_WRITE = IB_UVERBS_WR_RDMA_WRITE,
1295 IB_WR_RDMA_WRITE_WITH_IMM = IB_UVERBS_WR_RDMA_WRITE_WITH_IMM,
1296 IB_WR_SEND = IB_UVERBS_WR_SEND,
1297 IB_WR_SEND_WITH_IMM = IB_UVERBS_WR_SEND_WITH_IMM,
1298 IB_WR_RDMA_READ = IB_UVERBS_WR_RDMA_READ,
1299 IB_WR_ATOMIC_CMP_AND_SWP = IB_UVERBS_WR_ATOMIC_CMP_AND_SWP,
1300 IB_WR_ATOMIC_FETCH_AND_ADD = IB_UVERBS_WR_ATOMIC_FETCH_AND_ADD,
1301 IB_WR_LSO = IB_UVERBS_WR_TSO,
1302 IB_WR_SEND_WITH_INV = IB_UVERBS_WR_SEND_WITH_INV,
1303 IB_WR_RDMA_READ_WITH_INV = IB_UVERBS_WR_RDMA_READ_WITH_INV,
1304 IB_WR_LOCAL_INV = IB_UVERBS_WR_LOCAL_INV,
1305 IB_WR_MASKED_ATOMIC_CMP_AND_SWP =
1306 IB_UVERBS_WR_MASKED_ATOMIC_CMP_AND_SWP,
1307 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD =
1308 IB_UVERBS_WR_MASKED_ATOMIC_FETCH_AND_ADD,
1309
1310 /* These are kernel only and can not be issued by userspace */
1311 IB_WR_REG_MR = 0x20,
1312 IB_WR_REG_SIG_MR,
1313
1314 /* reserve values for low level drivers' internal use.
1315 * These values will not be used at all in the ib core layer.
1316 */
1317 IB_WR_RESERVED1 = 0xf0,
1318 IB_WR_RESERVED2,
1319 IB_WR_RESERVED3,
1320 IB_WR_RESERVED4,
1321 IB_WR_RESERVED5,
1322 IB_WR_RESERVED6,
1323 IB_WR_RESERVED7,
1324 IB_WR_RESERVED8,
1325 IB_WR_RESERVED9,
1326 IB_WR_RESERVED10,
1327};
1328
1329enum ib_send_flags {
1330 IB_SEND_FENCE = 1,
1331 IB_SEND_SIGNALED = (1<<1),
1332 IB_SEND_SOLICITED = (1<<2),
1333 IB_SEND_INLINE = (1<<3),
1334 IB_SEND_IP_CSUM = (1<<4),
1335
1336 /* reserve bits 26-31 for low level drivers' internal use */
1337 IB_SEND_RESERVED_START = (1 << 26),
1338 IB_SEND_RESERVED_END = (1 << 31),
1339};
1340
1341struct ib_sge {
1342 u64 addr;
1343 u32 length;
1344 u32 lkey;
1345};
1346
1347struct ib_cqe {
1348 void (*done)(struct ib_cq *cq, struct ib_wc *wc);
1349};
1350
1351struct ib_send_wr {
1352 struct ib_send_wr *next;
1353 union {
1354 u64 wr_id;
1355 struct ib_cqe *wr_cqe;
1356 };
1357 struct ib_sge *sg_list;
1358 int num_sge;
1359 enum ib_wr_opcode opcode;
1360 int send_flags;
1361 union {
1362 __be32 imm_data;
1363 u32 invalidate_rkey;
1364 } ex;
1365};
1366
1367struct ib_rdma_wr {
1368 struct ib_send_wr wr;
1369 u64 remote_addr;
1370 u32 rkey;
1371};
1372
1373static inline const struct ib_rdma_wr *rdma_wr(const struct ib_send_wr *wr)
1374{
1375 return container_of(wr, struct ib_rdma_wr, wr);
1376}
1377
1378struct ib_atomic_wr {
1379 struct ib_send_wr wr;
1380 u64 remote_addr;
1381 u64 compare_add;
1382 u64 swap;
1383 u64 compare_add_mask;
1384 u64 swap_mask;
1385 u32 rkey;
1386};
1387
1388static inline const struct ib_atomic_wr *atomic_wr(const struct ib_send_wr *wr)
1389{
1390 return container_of(wr, struct ib_atomic_wr, wr);
1391}
1392
1393struct ib_ud_wr {
1394 struct ib_send_wr wr;
1395 struct ib_ah *ah;
1396 void *header;
1397 int hlen;
1398 int mss;
1399 u32 remote_qpn;
1400 u32 remote_qkey;
1401 u16 pkey_index; /* valid for GSI only */
1402 u8 port_num; /* valid for DR SMPs on switch only */
1403};
1404
1405static inline const struct ib_ud_wr *ud_wr(const struct ib_send_wr *wr)
1406{
1407 return container_of(wr, struct ib_ud_wr, wr);
1408}
1409
1410struct ib_reg_wr {
1411 struct ib_send_wr wr;
1412 struct ib_mr *mr;
1413 u32 key;
1414 int access;
1415};
1416
1417static inline const struct ib_reg_wr *reg_wr(const struct ib_send_wr *wr)
1418{
1419 return container_of(wr, struct ib_reg_wr, wr);
1420}
1421
1422struct ib_sig_handover_wr {
1423 struct ib_send_wr wr;
1424 struct ib_sig_attrs *sig_attrs;
1425 struct ib_mr *sig_mr;
1426 int access_flags;
1427 struct ib_sge *prot;
1428};
1429
1430static inline const struct ib_sig_handover_wr *
1431sig_handover_wr(const struct ib_send_wr *wr)
1432{
1433 return container_of(wr, struct ib_sig_handover_wr, wr);
1434}
1435
1436struct ib_recv_wr {
1437 struct ib_recv_wr *next;
1438 union {
1439 u64 wr_id;
1440 struct ib_cqe *wr_cqe;
1441 };
1442 struct ib_sge *sg_list;
1443 int num_sge;
1444};
1445
1446enum ib_access_flags {
1447 IB_ACCESS_LOCAL_WRITE = IB_UVERBS_ACCESS_LOCAL_WRITE,
1448 IB_ACCESS_REMOTE_WRITE = IB_UVERBS_ACCESS_REMOTE_WRITE,
1449 IB_ACCESS_REMOTE_READ = IB_UVERBS_ACCESS_REMOTE_READ,
1450 IB_ACCESS_REMOTE_ATOMIC = IB_UVERBS_ACCESS_REMOTE_ATOMIC,
1451 IB_ACCESS_MW_BIND = IB_UVERBS_ACCESS_MW_BIND,
1452 IB_ZERO_BASED = IB_UVERBS_ACCESS_ZERO_BASED,
1453 IB_ACCESS_ON_DEMAND = IB_UVERBS_ACCESS_ON_DEMAND,
1454 IB_ACCESS_HUGETLB = IB_UVERBS_ACCESS_HUGETLB,
1455
1456 IB_ACCESS_SUPPORTED = ((IB_ACCESS_HUGETLB << 1) - 1)
1457};
1458
1459/*
1460 * XXX: these are apparently used for ->rereg_user_mr, no idea why they
1461 * are hidden here instead of a uapi header!
1462 */
1463enum ib_mr_rereg_flags {
1464 IB_MR_REREG_TRANS = 1,
1465 IB_MR_REREG_PD = (1<<1),
1466 IB_MR_REREG_ACCESS = (1<<2),
1467 IB_MR_REREG_SUPPORTED = ((IB_MR_REREG_ACCESS << 1) - 1)
1468};
1469
1470struct ib_fmr_attr {
1471 int max_pages;
1472 int max_maps;
1473 u8 page_shift;
1474};
1475
1476struct ib_umem;
1477
1478enum rdma_remove_reason {
1479 /*
1480 * Userspace requested uobject deletion or initial try
1481 * to remove uobject via cleanup. Call could fail
1482 */
1483 RDMA_REMOVE_DESTROY,
1484 /* Context deletion. This call should delete the actual object itself */
1485 RDMA_REMOVE_CLOSE,
1486 /* Driver is being hot-unplugged. This call should delete the actual object itself */
1487 RDMA_REMOVE_DRIVER_REMOVE,
1488 /* uobj is being cleaned-up before being committed */
1489 RDMA_REMOVE_ABORT,
1490};
1491
1492struct ib_rdmacg_object {
1493#ifdef CONFIG_CGROUP_RDMA
1494 struct rdma_cgroup *cg; /* owner rdma cgroup */
1495#endif
1496};
1497
1498struct ib_ucontext {
1499 struct ib_device *device;
1500 struct ib_uverbs_file *ufile;
1501 /*
1502 * 'closing' can be read by the driver only during a destroy callback,
1503 * it is set when we are closing the file descriptor and indicates
1504 * that mm_sem may be locked.
1505 */
1506 bool closing;
1507
1508 bool cleanup_retryable;
1509
1510 void (*invalidate_range)(struct ib_umem_odp *umem_odp,
1511 unsigned long start, unsigned long end);
1512 struct mutex per_mm_list_lock;
1513 struct list_head per_mm_list;
1514
1515 struct ib_rdmacg_object cg_obj;
1516 /*
1517 * Implementation details of the RDMA core, don't use in drivers:
1518 */
1519 struct rdma_restrack_entry res;
1520};
1521
1522struct ib_uobject {
1523 u64 user_handle; /* handle given to us by userspace */
1524 /* ufile & ucontext owning this object */
1525 struct ib_uverbs_file *ufile;
1526 /* FIXME, save memory: ufile->context == context */
1527 struct ib_ucontext *context; /* associated user context */
1528 void *object; /* containing object */
1529 struct list_head list; /* link to context's list */
1530 struct ib_rdmacg_object cg_obj; /* rdmacg object */
1531 int id; /* index into kernel idr */
1532 struct kref ref;
1533 atomic_t usecnt; /* protects exclusive access */
1534 struct rcu_head rcu; /* kfree_rcu() overhead */
1535
1536 const struct uverbs_api_object *uapi_object;
1537};
1538
1539struct ib_udata {
1540 const void __user *inbuf;
1541 void __user *outbuf;
1542 size_t inlen;
1543 size_t outlen;
1544};
1545
1546struct ib_pd {
1547 u32 local_dma_lkey;
1548 u32 flags;
1549 struct ib_device *device;
1550 struct ib_uobject *uobject;
1551 atomic_t usecnt; /* count all resources */
1552
1553 u32 unsafe_global_rkey;
1554
1555 /*
1556 * Implementation details of the RDMA core, don't use in drivers:
1557 */
1558 struct ib_mr *__internal_mr;
1559 struct rdma_restrack_entry res;
1560};
1561
1562struct ib_xrcd {
1563 struct ib_device *device;
1564 atomic_t usecnt; /* count all exposed resources */
1565 struct inode *inode;
1566
1567 struct mutex tgt_qp_mutex;
1568 struct list_head tgt_qp_list;
1569};
1570
1571struct ib_ah {
1572 struct ib_device *device;
1573 struct ib_pd *pd;
1574 struct ib_uobject *uobject;
1575 const struct ib_gid_attr *sgid_attr;
1576 enum rdma_ah_attr_type type;
1577};
1578
1579typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
1580
1581enum ib_poll_context {
1582 IB_POLL_DIRECT, /* caller context, no hw completions */
1583 IB_POLL_SOFTIRQ, /* poll from softirq context */
1584 IB_POLL_WORKQUEUE, /* poll from workqueue */
1585 IB_POLL_UNBOUND_WORKQUEUE, /* poll from unbound workqueue */
1586};
1587
1588struct ib_cq {
1589 struct ib_device *device;
1590 struct ib_uobject *uobject;
1591 ib_comp_handler comp_handler;
1592 void (*event_handler)(struct ib_event *, void *);
1593 void *cq_context;
1594 int cqe;
1595 atomic_t usecnt; /* count number of work queues */
1596 enum ib_poll_context poll_ctx;
1597 struct ib_wc *wc;
1598 union {
1599 struct irq_poll iop;
1600 struct work_struct work;
1601 };
1602 struct workqueue_struct *comp_wq;
1603 /*
1604 * Implementation details of the RDMA core, don't use in drivers:
1605 */
1606 struct rdma_restrack_entry res;
1607};
1608
1609struct ib_srq {
1610 struct ib_device *device;
1611 struct ib_pd *pd;
1612 struct ib_uobject *uobject;
1613 void (*event_handler)(struct ib_event *, void *);
1614 void *srq_context;
1615 enum ib_srq_type srq_type;
1616 atomic_t usecnt;
1617
1618 struct {
1619 struct ib_cq *cq;
1620 union {
1621 struct {
1622 struct ib_xrcd *xrcd;
1623 u32 srq_num;
1624 } xrc;
1625 };
1626 } ext;
1627};
1628
1629enum ib_raw_packet_caps {
1630 /* Strip cvlan from incoming packet and report it in the matching work
1631 * completion is supported.
1632 */
1633 IB_RAW_PACKET_CAP_CVLAN_STRIPPING = (1 << 0),
1634 /* Scatter FCS field of an incoming packet to host memory is supported.
1635 */
1636 IB_RAW_PACKET_CAP_SCATTER_FCS = (1 << 1),
1637 /* Checksum offloads are supported (for both send and receive). */
1638 IB_RAW_PACKET_CAP_IP_CSUM = (1 << 2),
1639 /* When a packet is received for an RQ with no receive WQEs, the
1640 * packet processing is delayed.
1641 */
1642 IB_RAW_PACKET_CAP_DELAY_DROP = (1 << 3),
1643};
1644
1645enum ib_wq_type {
1646 IB_WQT_RQ
1647};
1648
1649enum ib_wq_state {
1650 IB_WQS_RESET,
1651 IB_WQS_RDY,
1652 IB_WQS_ERR
1653};
1654
1655struct ib_wq {
1656 struct ib_device *device;
1657 struct ib_uobject *uobject;
1658 void *wq_context;
1659 void (*event_handler)(struct ib_event *, void *);
1660 struct ib_pd *pd;
1661 struct ib_cq *cq;
1662 u32 wq_num;
1663 enum ib_wq_state state;
1664 enum ib_wq_type wq_type;
1665 atomic_t usecnt;
1666};
1667
1668enum ib_wq_flags {
1669 IB_WQ_FLAGS_CVLAN_STRIPPING = 1 << 0,
1670 IB_WQ_FLAGS_SCATTER_FCS = 1 << 1,
1671 IB_WQ_FLAGS_DELAY_DROP = 1 << 2,
1672 IB_WQ_FLAGS_PCI_WRITE_END_PADDING = 1 << 3,
1673};
1674
1675struct ib_wq_init_attr {
1676 void *wq_context;
1677 enum ib_wq_type wq_type;
1678 u32 max_wr;
1679 u32 max_sge;
1680 struct ib_cq *cq;
1681 void (*event_handler)(struct ib_event *, void *);
1682 u32 create_flags; /* Use enum ib_wq_flags */
1683};
1684
1685enum ib_wq_attr_mask {
1686 IB_WQ_STATE = 1 << 0,
1687 IB_WQ_CUR_STATE = 1 << 1,
1688 IB_WQ_FLAGS = 1 << 2,
1689};
1690
1691struct ib_wq_attr {
1692 enum ib_wq_state wq_state;
1693 enum ib_wq_state curr_wq_state;
1694 u32 flags; /* Use enum ib_wq_flags */
1695 u32 flags_mask; /* Use enum ib_wq_flags */
1696};
1697
1698struct ib_rwq_ind_table {
1699 struct ib_device *device;
1700 struct ib_uobject *uobject;
1701 atomic_t usecnt;
1702 u32 ind_tbl_num;
1703 u32 log_ind_tbl_size;
1704 struct ib_wq **ind_tbl;
1705};
1706
1707struct ib_rwq_ind_table_init_attr {
1708 u32 log_ind_tbl_size;
1709 /* Each entry is a pointer to Receive Work Queue */
1710 struct ib_wq **ind_tbl;
1711};
1712
1713enum port_pkey_state {
1714 IB_PORT_PKEY_NOT_VALID = 0,
1715 IB_PORT_PKEY_VALID = 1,
1716 IB_PORT_PKEY_LISTED = 2,
1717};
1718
1719struct ib_qp_security;
1720
1721struct ib_port_pkey {
1722 enum port_pkey_state state;
1723 u16 pkey_index;
1724 u8 port_num;
1725 struct list_head qp_list;
1726 struct list_head to_error_list;
1727 struct ib_qp_security *sec;
1728};
1729
1730struct ib_ports_pkeys {
1731 struct ib_port_pkey main;
1732 struct ib_port_pkey alt;
1733};
1734
1735struct ib_qp_security {
1736 struct ib_qp *qp;
1737 struct ib_device *dev;
1738 /* Hold this mutex when changing port and pkey settings. */
1739 struct mutex mutex;
1740 struct ib_ports_pkeys *ports_pkeys;
1741 /* A list of all open shared QP handles. Required to enforce security
1742 * properly for all users of a shared QP.
1743 */
1744 struct list_head shared_qp_list;
1745 void *security;
1746 bool destroying;
1747 atomic_t error_list_count;
1748 struct completion error_complete;
1749 int error_comps_pending;
1750};
1751
1752/*
1753 * @max_write_sge: Maximum SGE elements per RDMA WRITE request.
1754 * @max_read_sge: Maximum SGE elements per RDMA READ request.
1755 */
1756struct ib_qp {
1757 struct ib_device *device;
1758 struct ib_pd *pd;
1759 struct ib_cq *send_cq;
1760 struct ib_cq *recv_cq;
1761 spinlock_t mr_lock;
1762 int mrs_used;
1763 struct list_head rdma_mrs;
1764 struct list_head sig_mrs;
1765 struct ib_srq *srq;
1766 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
1767 struct list_head xrcd_list;
1768
1769 /* count times opened, mcast attaches, flow attaches */
1770 atomic_t usecnt;
1771 struct list_head open_list;
1772 struct ib_qp *real_qp;
1773 struct ib_uobject *uobject;
1774 void (*event_handler)(struct ib_event *, void *);
1775 void *qp_context;
1776 /* sgid_attrs associated with the AV's */
1777 const struct ib_gid_attr *av_sgid_attr;
1778 const struct ib_gid_attr *alt_path_sgid_attr;
1779 u32 qp_num;
1780 u32 max_write_sge;
1781 u32 max_read_sge;
1782 enum ib_qp_type qp_type;
1783 struct ib_rwq_ind_table *rwq_ind_tbl;
1784 struct ib_qp_security *qp_sec;
1785 u8 port;
1786
1787 /*
1788 * Implementation details of the RDMA core, don't use in drivers:
1789 */
1790 struct rdma_restrack_entry res;
1791};
1792
1793struct ib_dm {
1794 struct ib_device *device;
1795 u32 length;
1796 u32 flags;
1797 struct ib_uobject *uobject;
1798 atomic_t usecnt;
1799};
1800
1801struct ib_mr {
1802 struct ib_device *device;
1803 struct ib_pd *pd;
1804 u32 lkey;
1805 u32 rkey;
1806 u64 iova;
1807 u64 length;
1808 unsigned int page_size;
1809 bool need_inval;
1810 union {
1811 struct ib_uobject *uobject; /* user */
1812 struct list_head qp_entry; /* FR */
1813 };
1814
1815 struct ib_dm *dm;
1816
1817 /*
1818 * Implementation details of the RDMA core, don't use in drivers:
1819 */
1820 struct rdma_restrack_entry res;
1821};
1822
1823struct ib_mw {
1824 struct ib_device *device;
1825 struct ib_pd *pd;
1826 struct ib_uobject *uobject;
1827 u32 rkey;
1828 enum ib_mw_type type;
1829};
1830
1831struct ib_fmr {
1832 struct ib_device *device;
1833 struct ib_pd *pd;
1834 struct list_head list;
1835 u32 lkey;
1836 u32 rkey;
1837};
1838
1839/* Supported steering options */
1840enum ib_flow_attr_type {
1841 /* steering according to rule specifications */
1842 IB_FLOW_ATTR_NORMAL = 0x0,
1843 /* default unicast and multicast rule -
1844 * receive all Eth traffic which isn't steered to any QP
1845 */
1846 IB_FLOW_ATTR_ALL_DEFAULT = 0x1,
1847 /* default multicast rule -
1848 * receive all Eth multicast traffic which isn't steered to any QP
1849 */
1850 IB_FLOW_ATTR_MC_DEFAULT = 0x2,
1851 /* sniffer rule - receive all port traffic */
1852 IB_FLOW_ATTR_SNIFFER = 0x3
1853};
1854
1855/* Supported steering header types */
1856enum ib_flow_spec_type {
1857 /* L2 headers*/
1858 IB_FLOW_SPEC_ETH = 0x20,
1859 IB_FLOW_SPEC_IB = 0x22,
1860 /* L3 header*/
1861 IB_FLOW_SPEC_IPV4 = 0x30,
1862 IB_FLOW_SPEC_IPV6 = 0x31,
1863 IB_FLOW_SPEC_ESP = 0x34,
1864 /* L4 headers*/
1865 IB_FLOW_SPEC_TCP = 0x40,
1866 IB_FLOW_SPEC_UDP = 0x41,
1867 IB_FLOW_SPEC_VXLAN_TUNNEL = 0x50,
1868 IB_FLOW_SPEC_GRE = 0x51,
1869 IB_FLOW_SPEC_MPLS = 0x60,
1870 IB_FLOW_SPEC_INNER = 0x100,
1871 /* Actions */
1872 IB_FLOW_SPEC_ACTION_TAG = 0x1000,
1873 IB_FLOW_SPEC_ACTION_DROP = 0x1001,
1874 IB_FLOW_SPEC_ACTION_HANDLE = 0x1002,
1875 IB_FLOW_SPEC_ACTION_COUNT = 0x1003,
1876};
1877#define IB_FLOW_SPEC_LAYER_MASK 0xF0
1878#define IB_FLOW_SPEC_SUPPORT_LAYERS 10
1879
1880/* Flow steering rule priority is set according to it's domain.
1881 * Lower domain value means higher priority.
1882 */
1883enum ib_flow_domain {
1884 IB_FLOW_DOMAIN_USER,
1885 IB_FLOW_DOMAIN_ETHTOOL,
1886 IB_FLOW_DOMAIN_RFS,
1887 IB_FLOW_DOMAIN_NIC,
1888 IB_FLOW_DOMAIN_NUM /* Must be last */
1889};
1890
1891enum ib_flow_flags {
1892 IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */
1893 IB_FLOW_ATTR_FLAGS_EGRESS = 1UL << 2, /* Egress flow */
1894 IB_FLOW_ATTR_FLAGS_RESERVED = 1UL << 3 /* Must be last */
1895};
1896
1897struct ib_flow_eth_filter {
1898 u8 dst_mac[6];
1899 u8 src_mac[6];
1900 __be16 ether_type;
1901 __be16 vlan_tag;
1902 /* Must be last */
1903 u8 real_sz[0];
1904};
1905
1906struct ib_flow_spec_eth {
1907 u32 type;
1908 u16 size;
1909 struct ib_flow_eth_filter val;
1910 struct ib_flow_eth_filter mask;
1911};
1912
1913struct ib_flow_ib_filter {
1914 __be16 dlid;
1915 __u8 sl;
1916 /* Must be last */
1917 u8 real_sz[0];
1918};
1919
1920struct ib_flow_spec_ib {
1921 u32 type;
1922 u16 size;
1923 struct ib_flow_ib_filter val;
1924 struct ib_flow_ib_filter mask;
1925};
1926
1927/* IPv4 header flags */
1928enum ib_ipv4_flags {
1929 IB_IPV4_DONT_FRAG = 0x2, /* Don't enable packet fragmentation */
1930 IB_IPV4_MORE_FRAG = 0X4 /* For All fragmented packets except the
1931 last have this flag set */
1932};
1933
1934struct ib_flow_ipv4_filter {
1935 __be32 src_ip;
1936 __be32 dst_ip;
1937 u8 proto;
1938 u8 tos;
1939 u8 ttl;
1940 u8 flags;
1941 /* Must be last */
1942 u8 real_sz[0];
1943};
1944
1945struct ib_flow_spec_ipv4 {
1946 u32 type;
1947 u16 size;
1948 struct ib_flow_ipv4_filter val;
1949 struct ib_flow_ipv4_filter mask;
1950};
1951
1952struct ib_flow_ipv6_filter {
1953 u8 src_ip[16];
1954 u8 dst_ip[16];
1955 __be32 flow_label;
1956 u8 next_hdr;
1957 u8 traffic_class;
1958 u8 hop_limit;
1959 /* Must be last */
1960 u8 real_sz[0];
1961};
1962
1963struct ib_flow_spec_ipv6 {
1964 u32 type;
1965 u16 size;
1966 struct ib_flow_ipv6_filter val;
1967 struct ib_flow_ipv6_filter mask;
1968};
1969
1970struct ib_flow_tcp_udp_filter {
1971 __be16 dst_port;
1972 __be16 src_port;
1973 /* Must be last */
1974 u8 real_sz[0];
1975};
1976
1977struct ib_flow_spec_tcp_udp {
1978 u32 type;
1979 u16 size;
1980 struct ib_flow_tcp_udp_filter val;
1981 struct ib_flow_tcp_udp_filter mask;
1982};
1983
1984struct ib_flow_tunnel_filter {
1985 __be32 tunnel_id;
1986 u8 real_sz[0];
1987};
1988
1989/* ib_flow_spec_tunnel describes the Vxlan tunnel
1990 * the tunnel_id from val has the vni value
1991 */
1992struct ib_flow_spec_tunnel {
1993 u32 type;
1994 u16 size;
1995 struct ib_flow_tunnel_filter val;
1996 struct ib_flow_tunnel_filter mask;
1997};
1998
1999struct ib_flow_esp_filter {
2000 __be32 spi;
2001 __be32 seq;
2002 /* Must be last */
2003 u8 real_sz[0];
2004};
2005
2006struct ib_flow_spec_esp {
2007 u32 type;
2008 u16 size;
2009 struct ib_flow_esp_filter val;
2010 struct ib_flow_esp_filter mask;
2011};
2012
2013struct ib_flow_gre_filter {
2014 __be16 c_ks_res0_ver;
2015 __be16 protocol;
2016 __be32 key;
2017 /* Must be last */
2018 u8 real_sz[0];
2019};
2020
2021struct ib_flow_spec_gre {
2022 u32 type;
2023 u16 size;
2024 struct ib_flow_gre_filter val;
2025 struct ib_flow_gre_filter mask;
2026};
2027
2028struct ib_flow_mpls_filter {
2029 __be32 tag;
2030 /* Must be last */
2031 u8 real_sz[0];
2032};
2033
2034struct ib_flow_spec_mpls {
2035 u32 type;
2036 u16 size;
2037 struct ib_flow_mpls_filter val;
2038 struct ib_flow_mpls_filter mask;
2039};
2040
2041struct ib_flow_spec_action_tag {
2042 enum ib_flow_spec_type type;
2043 u16 size;
2044 u32 tag_id;
2045};
2046
2047struct ib_flow_spec_action_drop {
2048 enum ib_flow_spec_type type;
2049 u16 size;
2050};
2051
2052struct ib_flow_spec_action_handle {
2053 enum ib_flow_spec_type type;
2054 u16 size;
2055 struct ib_flow_action *act;
2056};
2057
2058enum ib_counters_description {
2059 IB_COUNTER_PACKETS,
2060 IB_COUNTER_BYTES,
2061};
2062
2063struct ib_flow_spec_action_count {
2064 enum ib_flow_spec_type type;
2065 u16 size;
2066 struct ib_counters *counters;
2067};
2068
2069union ib_flow_spec {
2070 struct {
2071 u32 type;
2072 u16 size;
2073 };
2074 struct ib_flow_spec_eth eth;
2075 struct ib_flow_spec_ib ib;
2076 struct ib_flow_spec_ipv4 ipv4;
2077 struct ib_flow_spec_tcp_udp tcp_udp;
2078 struct ib_flow_spec_ipv6 ipv6;
2079 struct ib_flow_spec_tunnel tunnel;
2080 struct ib_flow_spec_esp esp;
2081 struct ib_flow_spec_gre gre;
2082 struct ib_flow_spec_mpls mpls;
2083 struct ib_flow_spec_action_tag flow_tag;
2084 struct ib_flow_spec_action_drop drop;
2085 struct ib_flow_spec_action_handle action;
2086 struct ib_flow_spec_action_count flow_count;
2087};
2088
2089struct ib_flow_attr {
2090 enum ib_flow_attr_type type;
2091 u16 size;
2092 u16 priority;
2093 u32 flags;
2094 u8 num_of_specs;
2095 u8 port;
2096 union ib_flow_spec flows[];
2097};
2098
2099struct ib_flow {
2100 struct ib_qp *qp;
2101 struct ib_device *device;
2102 struct ib_uobject *uobject;
2103};
2104
2105enum ib_flow_action_type {
2106 IB_FLOW_ACTION_UNSPECIFIED,
2107 IB_FLOW_ACTION_ESP = 1,
2108};
2109
2110struct ib_flow_action_attrs_esp_keymats {
2111 enum ib_uverbs_flow_action_esp_keymat protocol;
2112 union {
2113 struct ib_uverbs_flow_action_esp_keymat_aes_gcm aes_gcm;
2114 } keymat;
2115};
2116
2117struct ib_flow_action_attrs_esp_replays {
2118 enum ib_uverbs_flow_action_esp_replay protocol;
2119 union {
2120 struct ib_uverbs_flow_action_esp_replay_bmp bmp;
2121 } replay;
2122};
2123
2124enum ib_flow_action_attrs_esp_flags {
2125 /* All user-space flags at the top: Use enum ib_uverbs_flow_action_esp_flags
2126 * This is done in order to share the same flags between user-space and
2127 * kernel and spare an unnecessary translation.
2128 */
2129
2130 /* Kernel flags */
2131 IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED = 1ULL << 32,
2132 IB_FLOW_ACTION_ESP_FLAGS_MOD_ESP_ATTRS = 1ULL << 33,
2133};
2134
2135struct ib_flow_spec_list {
2136 struct ib_flow_spec_list *next;
2137 union ib_flow_spec spec;
2138};
2139
2140struct ib_flow_action_attrs_esp {
2141 struct ib_flow_action_attrs_esp_keymats *keymat;
2142 struct ib_flow_action_attrs_esp_replays *replay;
2143 struct ib_flow_spec_list *encap;
2144 /* Used only if IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED is enabled.
2145 * Value of 0 is a valid value.
2146 */
2147 u32 esn;
2148 u32 spi;
2149 u32 seq;
2150 u32 tfc_pad;
2151 /* Use enum ib_flow_action_attrs_esp_flags */
2152 u64 flags;
2153 u64 hard_limit_pkts;
2154};
2155
2156struct ib_flow_action {
2157 struct ib_device *device;
2158 struct ib_uobject *uobject;
2159 enum ib_flow_action_type type;
2160 atomic_t usecnt;
2161};
2162
2163struct ib_mad_hdr;
2164struct ib_grh;
2165
2166enum ib_process_mad_flags {
2167 IB_MAD_IGNORE_MKEY = 1,
2168 IB_MAD_IGNORE_BKEY = 2,
2169 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
2170};
2171
2172enum ib_mad_result {
2173 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */
2174 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */
2175 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */
2176 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */
2177};
2178
2179struct ib_port_cache {
2180 u64 subnet_prefix;
2181 struct ib_pkey_cache *pkey;
2182 struct ib_gid_table *gid;
2183 u8 lmc;
2184 enum ib_port_state port_state;
2185};
2186
2187struct ib_cache {
2188 rwlock_t lock;
2189 struct ib_event_handler event_handler;
2190};
2191
2192struct iw_cm_verbs;
2193
2194struct ib_port_immutable {
2195 int pkey_tbl_len;
2196 int gid_tbl_len;
2197 u32 core_cap_flags;
2198 u32 max_mad_size;
2199};
2200
2201struct ib_port_data {
2202 struct ib_device *ib_dev;
2203
2204 struct ib_port_immutable immutable;
2205
2206 spinlock_t pkey_list_lock;
2207 struct list_head pkey_list;
2208
2209 struct ib_port_cache cache;
2210
2211 spinlock_t netdev_lock;
2212 struct net_device __rcu *netdev;
2213 struct hlist_node ndev_hash_link;
2214};
2215
2216/* rdma netdev type - specifies protocol type */
2217enum rdma_netdev_t {
2218 RDMA_NETDEV_OPA_VNIC,
2219 RDMA_NETDEV_IPOIB,
2220};
2221
2222/**
2223 * struct rdma_netdev - rdma netdev
2224 * For cases where netstack interfacing is required.
2225 */
2226struct rdma_netdev {
2227 void *clnt_priv;
2228 struct ib_device *hca;
2229 u8 port_num;
2230
2231 /*
2232 * cleanup function must be specified.
2233 * FIXME: This is only used for OPA_VNIC and that usage should be
2234 * removed too.
2235 */
2236 void (*free_rdma_netdev)(struct net_device *netdev);
2237
2238 /* control functions */
2239 void (*set_id)(struct net_device *netdev, int id);
2240 /* send packet */
2241 int (*send)(struct net_device *dev, struct sk_buff *skb,
2242 struct ib_ah *address, u32 dqpn);
2243 /* multicast */
2244 int (*attach_mcast)(struct net_device *dev, struct ib_device *hca,
2245 union ib_gid *gid, u16 mlid,
2246 int set_qkey, u32 qkey);
2247 int (*detach_mcast)(struct net_device *dev, struct ib_device *hca,
2248 union ib_gid *gid, u16 mlid);
2249};
2250
2251struct rdma_netdev_alloc_params {
2252 size_t sizeof_priv;
2253 unsigned int txqs;
2254 unsigned int rxqs;
2255 void *param;
2256
2257 int (*initialize_rdma_netdev)(struct ib_device *device, u8 port_num,
2258 struct net_device *netdev, void *param);
2259};
2260
2261struct ib_counters {
2262 struct ib_device *device;
2263 struct ib_uobject *uobject;
2264 /* num of objects attached */
2265 atomic_t usecnt;
2266};
2267
2268struct ib_counters_read_attr {
2269 u64 *counters_buff;
2270 u32 ncounters;
2271 u32 flags; /* use enum ib_read_counters_flags */
2272};
2273
2274struct uverbs_attr_bundle;
2275
2276#define INIT_RDMA_OBJ_SIZE(ib_struct, drv_struct, member) \
2277 .size_##ib_struct = \
2278 (sizeof(struct drv_struct) + \
2279 BUILD_BUG_ON_ZERO(offsetof(struct drv_struct, member)) + \
2280 BUILD_BUG_ON_ZERO( \
2281 !__same_type(((struct drv_struct *)NULL)->member, \
2282 struct ib_struct)))
2283
2284#define rdma_zalloc_drv_obj(ib_dev, ib_type) \
2285 ((struct ib_type *)kzalloc(ib_dev->ops.size_##ib_type, GFP_KERNEL))
2286
2287#define DECLARE_RDMA_OBJ_SIZE(ib_struct) size_t size_##ib_struct
2288
2289/**
2290 * struct ib_device_ops - InfiniBand device operations
2291 * This structure defines all the InfiniBand device operations, providers will
2292 * need to define the supported operations, otherwise they will be set to null.
2293 */
2294struct ib_device_ops {
2295 int (*post_send)(struct ib_qp *qp, const struct ib_send_wr *send_wr,
2296 const struct ib_send_wr **bad_send_wr);
2297 int (*post_recv)(struct ib_qp *qp, const struct ib_recv_wr *recv_wr,
2298 const struct ib_recv_wr **bad_recv_wr);
2299 void (*drain_rq)(struct ib_qp *qp);
2300 void (*drain_sq)(struct ib_qp *qp);
2301 int (*poll_cq)(struct ib_cq *cq, int num_entries, struct ib_wc *wc);
2302 int (*peek_cq)(struct ib_cq *cq, int wc_cnt);
2303 int (*req_notify_cq)(struct ib_cq *cq, enum ib_cq_notify_flags flags);
2304 int (*req_ncomp_notif)(struct ib_cq *cq, int wc_cnt);
2305 int (*post_srq_recv)(struct ib_srq *srq,
2306 const struct ib_recv_wr *recv_wr,
2307 const struct ib_recv_wr **bad_recv_wr);
2308 int (*process_mad)(struct ib_device *device, int process_mad_flags,
2309 u8 port_num, const struct ib_wc *in_wc,
2310 const struct ib_grh *in_grh,
2311 const struct ib_mad_hdr *in_mad, size_t in_mad_size,
2312 struct ib_mad_hdr *out_mad, size_t *out_mad_size,
2313 u16 *out_mad_pkey_index);
2314 int (*query_device)(struct ib_device *device,
2315 struct ib_device_attr *device_attr,
2316 struct ib_udata *udata);
2317 int (*modify_device)(struct ib_device *device, int device_modify_mask,
2318 struct ib_device_modify *device_modify);
2319 void (*get_dev_fw_str)(struct ib_device *device, char *str);
2320 const struct cpumask *(*get_vector_affinity)(struct ib_device *ibdev,
2321 int comp_vector);
2322 int (*query_port)(struct ib_device *device, u8 port_num,
2323 struct ib_port_attr *port_attr);
2324 int (*modify_port)(struct ib_device *device, u8 port_num,
2325 int port_modify_mask,
2326 struct ib_port_modify *port_modify);
2327 /**
2328 * The following mandatory functions are used only at device
2329 * registration. Keep functions such as these at the end of this
2330 * structure to avoid cache line misses when accessing struct ib_device
2331 * in fast paths.
2332 */
2333 int (*get_port_immutable)(struct ib_device *device, u8 port_num,
2334 struct ib_port_immutable *immutable);
2335 enum rdma_link_layer (*get_link_layer)(struct ib_device *device,
2336 u8 port_num);
2337 /**
2338 * When calling get_netdev, the HW vendor's driver should return the
2339 * net device of device @device at port @port_num or NULL if such
2340 * a net device doesn't exist. The vendor driver should call dev_hold
2341 * on this net device. The HW vendor's device driver must guarantee
2342 * that this function returns NULL before the net device has finished
2343 * NETDEV_UNREGISTER state.
2344 */
2345 struct net_device *(*get_netdev)(struct ib_device *device, u8 port_num);
2346 /**
2347 * rdma netdev operation
2348 *
2349 * Driver implementing alloc_rdma_netdev or rdma_netdev_get_params
2350 * must return -EOPNOTSUPP if it doesn't support the specified type.
2351 */
2352 struct net_device *(*alloc_rdma_netdev)(
2353 struct ib_device *device, u8 port_num, enum rdma_netdev_t type,
2354 const char *name, unsigned char name_assign_type,
2355 void (*setup)(struct net_device *));
2356
2357 int (*rdma_netdev_get_params)(struct ib_device *device, u8 port_num,
2358 enum rdma_netdev_t type,
2359 struct rdma_netdev_alloc_params *params);
2360 /**
2361 * query_gid should be return GID value for @device, when @port_num
2362 * link layer is either IB or iWarp. It is no-op if @port_num port
2363 * is RoCE link layer.
2364 */
2365 int (*query_gid)(struct ib_device *device, u8 port_num, int index,
2366 union ib_gid *gid);
2367 /**
2368 * When calling add_gid, the HW vendor's driver should add the gid
2369 * of device of port at gid index available at @attr. Meta-info of
2370 * that gid (for example, the network device related to this gid) is
2371 * available at @attr. @context allows the HW vendor driver to store
2372 * extra information together with a GID entry. The HW vendor driver may
2373 * allocate memory to contain this information and store it in @context
2374 * when a new GID entry is written to. Params are consistent until the
2375 * next call of add_gid or delete_gid. The function should return 0 on
2376 * success or error otherwise. The function could be called
2377 * concurrently for different ports. This function is only called when
2378 * roce_gid_table is used.
2379 */
2380 int (*add_gid)(const struct ib_gid_attr *attr, void **context);
2381 /**
2382 * When calling del_gid, the HW vendor's driver should delete the
2383 * gid of device @device at gid index gid_index of port port_num
2384 * available in @attr.
2385 * Upon the deletion of a GID entry, the HW vendor must free any
2386 * allocated memory. The caller will clear @context afterwards.
2387 * This function is only called when roce_gid_table is used.
2388 */
2389 int (*del_gid)(const struct ib_gid_attr *attr, void **context);
2390 int (*query_pkey)(struct ib_device *device, u8 port_num, u16 index,
2391 u16 *pkey);
2392 int (*alloc_ucontext)(struct ib_ucontext *context,
2393 struct ib_udata *udata);
2394 void (*dealloc_ucontext)(struct ib_ucontext *context);
2395 int (*mmap)(struct ib_ucontext *context, struct vm_area_struct *vma);
2396 void (*disassociate_ucontext)(struct ib_ucontext *ibcontext);
2397 int (*alloc_pd)(struct ib_pd *pd, struct ib_ucontext *context,
2398 struct ib_udata *udata);
2399 void (*dealloc_pd)(struct ib_pd *pd);
2400 struct ib_ah *(*create_ah)(struct ib_pd *pd,
2401 struct rdma_ah_attr *ah_attr, u32 flags,
2402 struct ib_udata *udata);
2403 int (*modify_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
2404 int (*query_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
2405 int (*destroy_ah)(struct ib_ah *ah, u32 flags);
2406 struct ib_srq *(*create_srq)(struct ib_pd *pd,
2407 struct ib_srq_init_attr *srq_init_attr,
2408 struct ib_udata *udata);
2409 int (*modify_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr,
2410 enum ib_srq_attr_mask srq_attr_mask,
2411 struct ib_udata *udata);
2412 int (*query_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr);
2413 int (*destroy_srq)(struct ib_srq *srq);
2414 struct ib_qp *(*create_qp)(struct ib_pd *pd,
2415 struct ib_qp_init_attr *qp_init_attr,
2416 struct ib_udata *udata);
2417 int (*modify_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr,
2418 int qp_attr_mask, struct ib_udata *udata);
2419 int (*query_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr,
2420 int qp_attr_mask, struct ib_qp_init_attr *qp_init_attr);
2421 int (*destroy_qp)(struct ib_qp *qp);
2422 struct ib_cq *(*create_cq)(struct ib_device *device,
2423 const struct ib_cq_init_attr *attr,
2424 struct ib_ucontext *context,
2425 struct ib_udata *udata);
2426 int (*modify_cq)(struct ib_cq *cq, u16 cq_count, u16 cq_period);
2427 int (*destroy_cq)(struct ib_cq *cq);
2428 int (*resize_cq)(struct ib_cq *cq, int cqe, struct ib_udata *udata);
2429 struct ib_mr *(*get_dma_mr)(struct ib_pd *pd, int mr_access_flags);
2430 struct ib_mr *(*reg_user_mr)(struct ib_pd *pd, u64 start, u64 length,
2431 u64 virt_addr, int mr_access_flags,
2432 struct ib_udata *udata);
2433 int (*rereg_user_mr)(struct ib_mr *mr, int flags, u64 start, u64 length,
2434 u64 virt_addr, int mr_access_flags,
2435 struct ib_pd *pd, struct ib_udata *udata);
2436 int (*dereg_mr)(struct ib_mr *mr);
2437 struct ib_mr *(*alloc_mr)(struct ib_pd *pd, enum ib_mr_type mr_type,
2438 u32 max_num_sg);
2439 int (*advise_mr)(struct ib_pd *pd,
2440 enum ib_uverbs_advise_mr_advice advice, u32 flags,
2441 struct ib_sge *sg_list, u32 num_sge,
2442 struct uverbs_attr_bundle *attrs);
2443 int (*map_mr_sg)(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
2444 unsigned int *sg_offset);
2445 int (*check_mr_status)(struct ib_mr *mr, u32 check_mask,
2446 struct ib_mr_status *mr_status);
2447 struct ib_mw *(*alloc_mw)(struct ib_pd *pd, enum ib_mw_type type,
2448 struct ib_udata *udata);
2449 int (*dealloc_mw)(struct ib_mw *mw);
2450 struct ib_fmr *(*alloc_fmr)(struct ib_pd *pd, int mr_access_flags,
2451 struct ib_fmr_attr *fmr_attr);
2452 int (*map_phys_fmr)(struct ib_fmr *fmr, u64 *page_list, int list_len,
2453 u64 iova);
2454 int (*unmap_fmr)(struct list_head *fmr_list);
2455 int (*dealloc_fmr)(struct ib_fmr *fmr);
2456 int (*attach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2457 int (*detach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2458 struct ib_xrcd *(*alloc_xrcd)(struct ib_device *device,
2459 struct ib_ucontext *ucontext,
2460 struct ib_udata *udata);
2461 int (*dealloc_xrcd)(struct ib_xrcd *xrcd);
2462 struct ib_flow *(*create_flow)(struct ib_qp *qp,
2463 struct ib_flow_attr *flow_attr,
2464 int domain, struct ib_udata *udata);
2465 int (*destroy_flow)(struct ib_flow *flow_id);
2466 struct ib_flow_action *(*create_flow_action_esp)(
2467 struct ib_device *device,
2468 const struct ib_flow_action_attrs_esp *attr,
2469 struct uverbs_attr_bundle *attrs);
2470 int (*destroy_flow_action)(struct ib_flow_action *action);
2471 int (*modify_flow_action_esp)(
2472 struct ib_flow_action *action,
2473 const struct ib_flow_action_attrs_esp *attr,
2474 struct uverbs_attr_bundle *attrs);
2475 int (*set_vf_link_state)(struct ib_device *device, int vf, u8 port,
2476 int state);
2477 int (*get_vf_config)(struct ib_device *device, int vf, u8 port,
2478 struct ifla_vf_info *ivf);
2479 int (*get_vf_stats)(struct ib_device *device, int vf, u8 port,
2480 struct ifla_vf_stats *stats);
2481 int (*set_vf_guid)(struct ib_device *device, int vf, u8 port, u64 guid,
2482 int type);
2483 struct ib_wq *(*create_wq)(struct ib_pd *pd,
2484 struct ib_wq_init_attr *init_attr,
2485 struct ib_udata *udata);
2486 int (*destroy_wq)(struct ib_wq *wq);
2487 int (*modify_wq)(struct ib_wq *wq, struct ib_wq_attr *attr,
2488 u32 wq_attr_mask, struct ib_udata *udata);
2489 struct ib_rwq_ind_table *(*create_rwq_ind_table)(
2490 struct ib_device *device,
2491 struct ib_rwq_ind_table_init_attr *init_attr,
2492 struct ib_udata *udata);
2493 int (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table);
2494 struct ib_dm *(*alloc_dm)(struct ib_device *device,
2495 struct ib_ucontext *context,
2496 struct ib_dm_alloc_attr *attr,
2497 struct uverbs_attr_bundle *attrs);
2498 int (*dealloc_dm)(struct ib_dm *dm);
2499 struct ib_mr *(*reg_dm_mr)(struct ib_pd *pd, struct ib_dm *dm,
2500 struct ib_dm_mr_attr *attr,
2501 struct uverbs_attr_bundle *attrs);
2502 struct ib_counters *(*create_counters)(
2503 struct ib_device *device, struct uverbs_attr_bundle *attrs);
2504 int (*destroy_counters)(struct ib_counters *counters);
2505 int (*read_counters)(struct ib_counters *counters,
2506 struct ib_counters_read_attr *counters_read_attr,
2507 struct uverbs_attr_bundle *attrs);
2508 /**
2509 * alloc_hw_stats - Allocate a struct rdma_hw_stats and fill in the
2510 * driver initialized data. The struct is kfree()'ed by the sysfs
2511 * core when the device is removed. A lifespan of -1 in the return
2512 * struct tells the core to set a default lifespan.
2513 */
2514 struct rdma_hw_stats *(*alloc_hw_stats)(struct ib_device *device,
2515 u8 port_num);
2516 /**
2517 * get_hw_stats - Fill in the counter value(s) in the stats struct.
2518 * @index - The index in the value array we wish to have updated, or
2519 * num_counters if we want all stats updated
2520 * Return codes -
2521 * < 0 - Error, no counters updated
2522 * index - Updated the single counter pointed to by index
2523 * num_counters - Updated all counters (will reset the timestamp
2524 * and prevent further calls for lifespan milliseconds)
2525 * Drivers are allowed to update all counters in leiu of just the
2526 * one given in index at their option
2527 */
2528 int (*get_hw_stats)(struct ib_device *device,
2529 struct rdma_hw_stats *stats, u8 port, int index);
2530 /*
2531 * This function is called once for each port when a ib device is
2532 * registered.
2533 */
2534 int (*init_port)(struct ib_device *device, u8 port_num,
2535 struct kobject *port_sysfs);
2536 /**
2537 * Allows rdma drivers to add their own restrack attributes.
2538 */
2539 int (*fill_res_entry)(struct sk_buff *msg,
2540 struct rdma_restrack_entry *entry);
2541
2542 /* Device lifecycle callbacks */
2543 /*
2544 * Called after the device becomes registered, before clients are
2545 * attached
2546 */
2547 int (*enable_driver)(struct ib_device *dev);
2548 /*
2549 * This is called as part of ib_dealloc_device().
2550 */
2551 void (*dealloc_driver)(struct ib_device *dev);
2552
2553 DECLARE_RDMA_OBJ_SIZE(ib_pd);
2554 DECLARE_RDMA_OBJ_SIZE(ib_ucontext);
2555};
2556
2557struct rdma_restrack_root;
2558
2559struct ib_device {
2560 /* Do not access @dma_device directly from ULP nor from HW drivers. */
2561 struct device *dma_device;
2562 struct ib_device_ops ops;
2563 char name[IB_DEVICE_NAME_MAX];
2564 struct rcu_head rcu_head;
2565
2566 struct list_head event_handler_list;
2567 spinlock_t event_handler_lock;
2568
2569 struct rw_semaphore client_data_rwsem;
2570 struct xarray client_data;
2571 struct mutex unregistration_lock;
2572
2573 struct ib_cache cache;
2574 /**
2575 * port_data is indexed by port number
2576 */
2577 struct ib_port_data *port_data;
2578
2579 int num_comp_vectors;
2580
2581 struct iw_cm_verbs *iwcm;
2582
2583 struct module *owner;
2584 struct device dev;
2585 /* First group for device attributes,
2586 * Second group for driver provided attributes (optional).
2587 * It is NULL terminated array.
2588 */
2589 const struct attribute_group *groups[3];
2590
2591 struct kobject *ports_kobj;
2592 struct list_head port_list;
2593
2594 int uverbs_abi_ver;
2595 u64 uverbs_cmd_mask;
2596 u64 uverbs_ex_cmd_mask;
2597
2598 char node_desc[IB_DEVICE_NODE_DESC_MAX];
2599 __be64 node_guid;
2600 u32 local_dma_lkey;
2601 u16 is_switch:1;
2602 /* Indicates kernel verbs support, should not be used in drivers */
2603 u16 kverbs_provider:1;
2604 u8 node_type;
2605 u8 phys_port_cnt;
2606 struct ib_device_attr attrs;
2607 struct attribute_group *hw_stats_ag;
2608 struct rdma_hw_stats *hw_stats;
2609
2610#ifdef CONFIG_CGROUP_RDMA
2611 struct rdmacg_device cg_device;
2612#endif
2613
2614 u32 index;
2615 struct rdma_restrack_root *res;
2616
2617 const struct uapi_definition *driver_def;
2618 enum rdma_driver_id driver_id;
2619
2620 /*
2621 * Positive refcount indicates that the device is currently
2622 * registered and cannot be unregistered.
2623 */
2624 refcount_t refcount;
2625 struct completion unreg_completion;
2626 struct work_struct unregistration_work;
2627
2628 const struct rdma_link_ops *link_ops;
2629};
2630
2631struct ib_client {
2632 const char *name;
2633 void (*add) (struct ib_device *);
2634 void (*remove)(struct ib_device *, void *client_data);
2635
2636 /* Returns the net_dev belonging to this ib_client and matching the
2637 * given parameters.
2638 * @dev: An RDMA device that the net_dev use for communication.
2639 * @port: A physical port number on the RDMA device.
2640 * @pkey: P_Key that the net_dev uses if applicable.
2641 * @gid: A GID that the net_dev uses to communicate.
2642 * @addr: An IP address the net_dev is configured with.
2643 * @client_data: The device's client data set by ib_set_client_data().
2644 *
2645 * An ib_client that implements a net_dev on top of RDMA devices
2646 * (such as IP over IB) should implement this callback, allowing the
2647 * rdma_cm module to find the right net_dev for a given request.
2648 *
2649 * The caller is responsible for calling dev_put on the returned
2650 * netdev. */
2651 struct net_device *(*get_net_dev_by_params)(
2652 struct ib_device *dev,
2653 u8 port,
2654 u16 pkey,
2655 const union ib_gid *gid,
2656 const struct sockaddr *addr,
2657 void *client_data);
2658 struct list_head list;
2659 u32 client_id;
2660
2661 /* kverbs are not required by the client */
2662 u8 no_kverbs_req:1;
2663};
2664
2665struct ib_device *_ib_alloc_device(size_t size);
2666#define ib_alloc_device(drv_struct, member) \
2667 container_of(_ib_alloc_device(sizeof(struct drv_struct) + \
2668 BUILD_BUG_ON_ZERO(offsetof( \
2669 struct drv_struct, member))), \
2670 struct drv_struct, member)
2671
2672void ib_dealloc_device(struct ib_device *device);
2673
2674void ib_get_device_fw_str(struct ib_device *device, char *str);
2675
2676int ib_register_device(struct ib_device *device, const char *name);
2677void ib_unregister_device(struct ib_device *device);
2678void ib_unregister_driver(enum rdma_driver_id driver_id);
2679void ib_unregister_device_and_put(struct ib_device *device);
2680void ib_unregister_device_queued(struct ib_device *ib_dev);
2681
2682int ib_register_client (struct ib_client *client);
2683void ib_unregister_client(struct ib_client *client);
2684
2685/**
2686 * ib_get_client_data - Get IB client context
2687 * @device:Device to get context for
2688 * @client:Client to get context for
2689 *
2690 * ib_get_client_data() returns the client context data set with
2691 * ib_set_client_data(). This can only be called while the client is
2692 * registered to the device, once the ib_client remove() callback returns this
2693 * cannot be called.
2694 */
2695static inline void *ib_get_client_data(struct ib_device *device,
2696 struct ib_client *client)
2697{
2698 return xa_load(&device->client_data, client->client_id);
2699}
2700void ib_set_client_data(struct ib_device *device, struct ib_client *client,
2701 void *data);
2702void ib_set_device_ops(struct ib_device *device,
2703 const struct ib_device_ops *ops);
2704
2705#if IS_ENABLED(CONFIG_INFINIBAND_USER_ACCESS)
2706int rdma_user_mmap_io(struct ib_ucontext *ucontext, struct vm_area_struct *vma,
2707 unsigned long pfn, unsigned long size, pgprot_t prot);
2708int rdma_user_mmap_page(struct ib_ucontext *ucontext,
2709 struct vm_area_struct *vma, struct page *page,
2710 unsigned long size);
2711#else
2712static inline int rdma_user_mmap_io(struct ib_ucontext *ucontext,
2713 struct vm_area_struct *vma,
2714 unsigned long pfn, unsigned long size,
2715 pgprot_t prot)
2716{
2717 return -EINVAL;
2718}
2719static inline int rdma_user_mmap_page(struct ib_ucontext *ucontext,
2720 struct vm_area_struct *vma, struct page *page,
2721 unsigned long size)
2722{
2723 return -EINVAL;
2724}
2725#endif
2726
2727static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
2728{
2729 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
2730}
2731
2732static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
2733{
2734 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
2735}
2736
2737static inline bool ib_is_buffer_cleared(const void __user *p,
2738 size_t len)
2739{
2740 bool ret;
2741 u8 *buf;
2742
2743 if (len > USHRT_MAX)
2744 return false;
2745
2746 buf = memdup_user(p, len);
2747 if (IS_ERR(buf))
2748 return false;
2749
2750 ret = !memchr_inv(buf, 0, len);
2751 kfree(buf);
2752 return ret;
2753}
2754
2755static inline bool ib_is_udata_cleared(struct ib_udata *udata,
2756 size_t offset,
2757 size_t len)
2758{
2759 return ib_is_buffer_cleared(udata->inbuf + offset, len);
2760}
2761
2762/**
2763 * ib_is_destroy_retryable - Check whether the uobject destruction
2764 * is retryable.
2765 * @ret: The initial destruction return code
2766 * @why: remove reason
2767 * @uobj: The uobject that is destroyed
2768 *
2769 * This function is a helper function that IB layer and low-level drivers
2770 * can use to consider whether the destruction of the given uobject is
2771 * retry-able.
2772 * It checks the original return code, if it wasn't success the destruction
2773 * is retryable according to the ucontext state (i.e. cleanup_retryable) and
2774 * the remove reason. (i.e. why).
2775 * Must be called with the object locked for destroy.
2776 */
2777static inline bool ib_is_destroy_retryable(int ret, enum rdma_remove_reason why,
2778 struct ib_uobject *uobj)
2779{
2780 return ret && (why == RDMA_REMOVE_DESTROY ||
2781 uobj->context->cleanup_retryable);
2782}
2783
2784/**
2785 * ib_destroy_usecnt - Called during destruction to check the usecnt
2786 * @usecnt: The usecnt atomic
2787 * @why: remove reason
2788 * @uobj: The uobject that is destroyed
2789 *
2790 * Non-zero usecnts will block destruction unless destruction was triggered by
2791 * a ucontext cleanup.
2792 */
2793static inline int ib_destroy_usecnt(atomic_t *usecnt,
2794 enum rdma_remove_reason why,
2795 struct ib_uobject *uobj)
2796{
2797 if (atomic_read(usecnt) && ib_is_destroy_retryable(-EBUSY, why, uobj))
2798 return -EBUSY;
2799 return 0;
2800}
2801
2802/**
2803 * ib_modify_qp_is_ok - Check that the supplied attribute mask
2804 * contains all required attributes and no attributes not allowed for
2805 * the given QP state transition.
2806 * @cur_state: Current QP state
2807 * @next_state: Next QP state
2808 * @type: QP type
2809 * @mask: Mask of supplied QP attributes
2810 *
2811 * This function is a helper function that a low-level driver's
2812 * modify_qp method can use to validate the consumer's input. It
2813 * checks that cur_state and next_state are valid QP states, that a
2814 * transition from cur_state to next_state is allowed by the IB spec,
2815 * and that the attribute mask supplied is allowed for the transition.
2816 */
2817bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
2818 enum ib_qp_type type, enum ib_qp_attr_mask mask);
2819
2820void ib_register_event_handler(struct ib_event_handler *event_handler);
2821void ib_unregister_event_handler(struct ib_event_handler *event_handler);
2822void ib_dispatch_event(struct ib_event *event);
2823
2824int ib_query_port(struct ib_device *device,
2825 u8 port_num, struct ib_port_attr *port_attr);
2826
2827enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
2828 u8 port_num);
2829
2830/**
2831 * rdma_cap_ib_switch - Check if the device is IB switch
2832 * @device: Device to check
2833 *
2834 * Device driver is responsible for setting is_switch bit on
2835 * in ib_device structure at init time.
2836 *
2837 * Return: true if the device is IB switch.
2838 */
2839static inline bool rdma_cap_ib_switch(const struct ib_device *device)
2840{
2841 return device->is_switch;
2842}
2843
2844/**
2845 * rdma_start_port - Return the first valid port number for the device
2846 * specified
2847 *
2848 * @device: Device to be checked
2849 *
2850 * Return start port number
2851 */
2852static inline u8 rdma_start_port(const struct ib_device *device)
2853{
2854 return rdma_cap_ib_switch(device) ? 0 : 1;
2855}
2856
2857/**
2858 * rdma_for_each_port - Iterate over all valid port numbers of the IB device
2859 * @device - The struct ib_device * to iterate over
2860 * @iter - The unsigned int to store the port number
2861 */
2862#define rdma_for_each_port(device, iter) \
2863 for (iter = rdma_start_port(device + BUILD_BUG_ON_ZERO(!__same_type( \
2864 unsigned int, iter))); \
2865 iter <= rdma_end_port(device); (iter)++)
2866
2867/**
2868 * rdma_end_port - Return the last valid port number for the device
2869 * specified
2870 *
2871 * @device: Device to be checked
2872 *
2873 * Return last port number
2874 */
2875static inline u8 rdma_end_port(const struct ib_device *device)
2876{
2877 return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt;
2878}
2879
2880static inline int rdma_is_port_valid(const struct ib_device *device,
2881 unsigned int port)
2882{
2883 return (port >= rdma_start_port(device) &&
2884 port <= rdma_end_port(device));
2885}
2886
2887static inline bool rdma_is_grh_required(const struct ib_device *device,
2888 u8 port_num)
2889{
2890 return device->port_data[port_num].immutable.core_cap_flags &
2891 RDMA_CORE_PORT_IB_GRH_REQUIRED;
2892}
2893
2894static inline bool rdma_protocol_ib(const struct ib_device *device, u8 port_num)
2895{
2896 return device->port_data[port_num].immutable.core_cap_flags &
2897 RDMA_CORE_CAP_PROT_IB;
2898}
2899
2900static inline bool rdma_protocol_roce(const struct ib_device *device, u8 port_num)
2901{
2902 return device->port_data[port_num].immutable.core_cap_flags &
2903 (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP);
2904}
2905
2906static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device, u8 port_num)
2907{
2908 return device->port_data[port_num].immutable.core_cap_flags &
2909 RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP;
2910}
2911
2912static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device, u8 port_num)
2913{
2914 return device->port_data[port_num].immutable.core_cap_flags &
2915 RDMA_CORE_CAP_PROT_ROCE;
2916}
2917
2918static inline bool rdma_protocol_iwarp(const struct ib_device *device, u8 port_num)
2919{
2920 return device->port_data[port_num].immutable.core_cap_flags &
2921 RDMA_CORE_CAP_PROT_IWARP;
2922}
2923
2924static inline bool rdma_ib_or_roce(const struct ib_device *device, u8 port_num)
2925{
2926 return rdma_protocol_ib(device, port_num) ||
2927 rdma_protocol_roce(device, port_num);
2928}
2929
2930static inline bool rdma_protocol_raw_packet(const struct ib_device *device, u8 port_num)
2931{
2932 return device->port_data[port_num].immutable.core_cap_flags &
2933 RDMA_CORE_CAP_PROT_RAW_PACKET;
2934}
2935
2936static inline bool rdma_protocol_usnic(const struct ib_device *device, u8 port_num)
2937{
2938 return device->port_data[port_num].immutable.core_cap_flags &
2939 RDMA_CORE_CAP_PROT_USNIC;
2940}
2941
2942/**
2943 * rdma_cap_ib_mad - Check if the port of a device supports Infiniband
2944 * Management Datagrams.
2945 * @device: Device to check
2946 * @port_num: Port number to check
2947 *
2948 * Management Datagrams (MAD) are a required part of the InfiniBand
2949 * specification and are supported on all InfiniBand devices. A slightly
2950 * extended version are also supported on OPA interfaces.
2951 *
2952 * Return: true if the port supports sending/receiving of MAD packets.
2953 */
2954static inline bool rdma_cap_ib_mad(const struct ib_device *device, u8 port_num)
2955{
2956 return device->port_data[port_num].immutable.core_cap_flags &
2957 RDMA_CORE_CAP_IB_MAD;
2958}
2959
2960/**
2961 * rdma_cap_opa_mad - Check if the port of device provides support for OPA
2962 * Management Datagrams.
2963 * @device: Device to check
2964 * @port_num: Port number to check
2965 *
2966 * Intel OmniPath devices extend and/or replace the InfiniBand Management
2967 * datagrams with their own versions. These OPA MADs share many but not all of
2968 * the characteristics of InfiniBand MADs.
2969 *
2970 * OPA MADs differ in the following ways:
2971 *
2972 * 1) MADs are variable size up to 2K
2973 * IBTA defined MADs remain fixed at 256 bytes
2974 * 2) OPA SMPs must carry valid PKeys
2975 * 3) OPA SMP packets are a different format
2976 *
2977 * Return: true if the port supports OPA MAD packet formats.
2978 */
2979static inline bool rdma_cap_opa_mad(struct ib_device *device, u8 port_num)
2980{
2981 return (device->port_data[port_num].immutable.core_cap_flags &
2982 RDMA_CORE_CAP_OPA_MAD) == RDMA_CORE_CAP_OPA_MAD;
2983}
2984
2985/**
2986 * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband
2987 * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI).
2988 * @device: Device to check
2989 * @port_num: Port number to check
2990 *
2991 * Each InfiniBand node is required to provide a Subnet Management Agent
2992 * that the subnet manager can access. Prior to the fabric being fully
2993 * configured by the subnet manager, the SMA is accessed via a well known
2994 * interface called the Subnet Management Interface (SMI). This interface
2995 * uses directed route packets to communicate with the SM to get around the
2996 * chicken and egg problem of the SM needing to know what's on the fabric
2997 * in order to configure the fabric, and needing to configure the fabric in
2998 * order to send packets to the devices on the fabric. These directed
2999 * route packets do not need the fabric fully configured in order to reach
3000 * their destination. The SMI is the only method allowed to send
3001 * directed route packets on an InfiniBand fabric.
3002 *
3003 * Return: true if the port provides an SMI.
3004 */
3005static inline bool rdma_cap_ib_smi(const struct ib_device *device, u8 port_num)
3006{
3007 return device->port_data[port_num].immutable.core_cap_flags &
3008 RDMA_CORE_CAP_IB_SMI;
3009}
3010
3011/**
3012 * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband
3013 * Communication Manager.
3014 * @device: Device to check
3015 * @port_num: Port number to check
3016 *
3017 * The InfiniBand Communication Manager is one of many pre-defined General
3018 * Service Agents (GSA) that are accessed via the General Service
3019 * Interface (GSI). It's role is to facilitate establishment of connections
3020 * between nodes as well as other management related tasks for established
3021 * connections.
3022 *
3023 * Return: true if the port supports an IB CM (this does not guarantee that
3024 * a CM is actually running however).
3025 */
3026static inline bool rdma_cap_ib_cm(const struct ib_device *device, u8 port_num)
3027{
3028 return device->port_data[port_num].immutable.core_cap_flags &
3029 RDMA_CORE_CAP_IB_CM;
3030}
3031
3032/**
3033 * rdma_cap_iw_cm - Check if the port of device has the capability IWARP
3034 * Communication Manager.
3035 * @device: Device to check
3036 * @port_num: Port number to check
3037 *
3038 * Similar to above, but specific to iWARP connections which have a different
3039 * managment protocol than InfiniBand.
3040 *
3041 * Return: true if the port supports an iWARP CM (this does not guarantee that
3042 * a CM is actually running however).
3043 */
3044static inline bool rdma_cap_iw_cm(const struct ib_device *device, u8 port_num)
3045{
3046 return device->port_data[port_num].immutable.core_cap_flags &
3047 RDMA_CORE_CAP_IW_CM;
3048}
3049
3050/**
3051 * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband
3052 * Subnet Administration.
3053 * @device: Device to check
3054 * @port_num: Port number to check
3055 *
3056 * An InfiniBand Subnet Administration (SA) service is a pre-defined General
3057 * Service Agent (GSA) provided by the Subnet Manager (SM). On InfiniBand
3058 * fabrics, devices should resolve routes to other hosts by contacting the
3059 * SA to query the proper route.
3060 *
3061 * Return: true if the port should act as a client to the fabric Subnet
3062 * Administration interface. This does not imply that the SA service is
3063 * running locally.
3064 */
3065static inline bool rdma_cap_ib_sa(const struct ib_device *device, u8 port_num)
3066{
3067 return device->port_data[port_num].immutable.core_cap_flags &
3068 RDMA_CORE_CAP_IB_SA;
3069}
3070
3071/**
3072 * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband
3073 * Multicast.
3074 * @device: Device to check
3075 * @port_num: Port number to check
3076 *
3077 * InfiniBand multicast registration is more complex than normal IPv4 or
3078 * IPv6 multicast registration. Each Host Channel Adapter must register
3079 * with the Subnet Manager when it wishes to join a multicast group. It
3080 * should do so only once regardless of how many queue pairs it subscribes
3081 * to this group. And it should leave the group only after all queue pairs
3082 * attached to the group have been detached.
3083 *
3084 * Return: true if the port must undertake the additional adminstrative
3085 * overhead of registering/unregistering with the SM and tracking of the
3086 * total number of queue pairs attached to the multicast group.
3087 */
3088static inline bool rdma_cap_ib_mcast(const struct ib_device *device, u8 port_num)
3089{
3090 return rdma_cap_ib_sa(device, port_num);
3091}
3092
3093/**
3094 * rdma_cap_af_ib - Check if the port of device has the capability
3095 * Native Infiniband Address.
3096 * @device: Device to check
3097 * @port_num: Port number to check
3098 *
3099 * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default
3100 * GID. RoCE uses a different mechanism, but still generates a GID via
3101 * a prescribed mechanism and port specific data.
3102 *
3103 * Return: true if the port uses a GID address to identify devices on the
3104 * network.
3105 */
3106static inline bool rdma_cap_af_ib(const struct ib_device *device, u8 port_num)
3107{
3108 return device->port_data[port_num].immutable.core_cap_flags &
3109 RDMA_CORE_CAP_AF_IB;
3110}
3111
3112/**
3113 * rdma_cap_eth_ah - Check if the port of device has the capability
3114 * Ethernet Address Handle.
3115 * @device: Device to check
3116 * @port_num: Port number to check
3117 *
3118 * RoCE is InfiniBand over Ethernet, and it uses a well defined technique
3119 * to fabricate GIDs over Ethernet/IP specific addresses native to the
3120 * port. Normally, packet headers are generated by the sending host
3121 * adapter, but when sending connectionless datagrams, we must manually
3122 * inject the proper headers for the fabric we are communicating over.
3123 *
3124 * Return: true if we are running as a RoCE port and must force the
3125 * addition of a Global Route Header built from our Ethernet Address
3126 * Handle into our header list for connectionless packets.
3127 */
3128static inline bool rdma_cap_eth_ah(const struct ib_device *device, u8 port_num)
3129{
3130 return device->port_data[port_num].immutable.core_cap_flags &
3131 RDMA_CORE_CAP_ETH_AH;
3132}
3133
3134/**
3135 * rdma_cap_opa_ah - Check if the port of device supports
3136 * OPA Address handles
3137 * @device: Device to check
3138 * @port_num: Port number to check
3139 *
3140 * Return: true if we are running on an OPA device which supports
3141 * the extended OPA addressing.
3142 */
3143static inline bool rdma_cap_opa_ah(struct ib_device *device, u8 port_num)
3144{
3145 return (device->port_data[port_num].immutable.core_cap_flags &
3146 RDMA_CORE_CAP_OPA_AH) == RDMA_CORE_CAP_OPA_AH;
3147}
3148
3149/**
3150 * rdma_max_mad_size - Return the max MAD size required by this RDMA Port.
3151 *
3152 * @device: Device
3153 * @port_num: Port number
3154 *
3155 * This MAD size includes the MAD headers and MAD payload. No other headers
3156 * are included.
3157 *
3158 * Return the max MAD size required by the Port. Will return 0 if the port
3159 * does not support MADs
3160 */
3161static inline size_t rdma_max_mad_size(const struct ib_device *device, u8 port_num)
3162{
3163 return device->port_data[port_num].immutable.max_mad_size;
3164}
3165
3166/**
3167 * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table
3168 * @device: Device to check
3169 * @port_num: Port number to check
3170 *
3171 * RoCE GID table mechanism manages the various GIDs for a device.
3172 *
3173 * NOTE: if allocating the port's GID table has failed, this call will still
3174 * return true, but any RoCE GID table API will fail.
3175 *
3176 * Return: true if the port uses RoCE GID table mechanism in order to manage
3177 * its GIDs.
3178 */
3179static inline bool rdma_cap_roce_gid_table(const struct ib_device *device,
3180 u8 port_num)
3181{
3182 return rdma_protocol_roce(device, port_num) &&
3183 device->ops.add_gid && device->ops.del_gid;
3184}
3185
3186/*
3187 * Check if the device supports READ W/ INVALIDATE.
3188 */
3189static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num)
3190{
3191 /*
3192 * iWarp drivers must support READ W/ INVALIDATE. No other protocol
3193 * has support for it yet.
3194 */
3195 return rdma_protocol_iwarp(dev, port_num);
3196}
3197
3198int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
3199 int state);
3200int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
3201 struct ifla_vf_info *info);
3202int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
3203 struct ifla_vf_stats *stats);
3204int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
3205 int type);
3206
3207int ib_query_pkey(struct ib_device *device,
3208 u8 port_num, u16 index, u16 *pkey);
3209
3210int ib_modify_device(struct ib_device *device,
3211 int device_modify_mask,
3212 struct ib_device_modify *device_modify);
3213
3214int ib_modify_port(struct ib_device *device,
3215 u8 port_num, int port_modify_mask,
3216 struct ib_port_modify *port_modify);
3217
3218int ib_find_gid(struct ib_device *device, union ib_gid *gid,
3219 u8 *port_num, u16 *index);
3220
3221int ib_find_pkey(struct ib_device *device,
3222 u8 port_num, u16 pkey, u16 *index);
3223
3224enum ib_pd_flags {
3225 /*
3226 * Create a memory registration for all memory in the system and place
3227 * the rkey for it into pd->unsafe_global_rkey. This can be used by
3228 * ULPs to avoid the overhead of dynamic MRs.
3229 *
3230 * This flag is generally considered unsafe and must only be used in
3231 * extremly trusted environments. Every use of it will log a warning
3232 * in the kernel log.
3233 */
3234 IB_PD_UNSAFE_GLOBAL_RKEY = 0x01,
3235};
3236
3237struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
3238 const char *caller);
3239#define ib_alloc_pd(device, flags) \
3240 __ib_alloc_pd((device), (flags), KBUILD_MODNAME)
3241void ib_dealloc_pd(struct ib_pd *pd);
3242
3243enum rdma_create_ah_flags {
3244 /* In a sleepable context */
3245 RDMA_CREATE_AH_SLEEPABLE = BIT(0),
3246};
3247
3248/**
3249 * rdma_create_ah - Creates an address handle for the given address vector.
3250 * @pd: The protection domain associated with the address handle.
3251 * @ah_attr: The attributes of the address vector.
3252 * @flags: Create address handle flags (see enum rdma_create_ah_flags).
3253 *
3254 * The address handle is used to reference a local or global destination
3255 * in all UD QP post sends.
3256 */
3257struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr,
3258 u32 flags);
3259
3260/**
3261 * rdma_create_user_ah - Creates an address handle for the given address vector.
3262 * It resolves destination mac address for ah attribute of RoCE type.
3263 * @pd: The protection domain associated with the address handle.
3264 * @ah_attr: The attributes of the address vector.
3265 * @udata: pointer to user's input output buffer information need by
3266 * provider driver.
3267 *
3268 * It returns 0 on success and returns appropriate error code on error.
3269 * The address handle is used to reference a local or global destination
3270 * in all UD QP post sends.
3271 */
3272struct ib_ah *rdma_create_user_ah(struct ib_pd *pd,
3273 struct rdma_ah_attr *ah_attr,
3274 struct ib_udata *udata);
3275/**
3276 * ib_get_gids_from_rdma_hdr - Get sgid and dgid from GRH or IPv4 header
3277 * work completion.
3278 * @hdr: the L3 header to parse
3279 * @net_type: type of header to parse
3280 * @sgid: place to store source gid
3281 * @dgid: place to store destination gid
3282 */
3283int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
3284 enum rdma_network_type net_type,
3285 union ib_gid *sgid, union ib_gid *dgid);
3286
3287/**
3288 * ib_get_rdma_header_version - Get the header version
3289 * @hdr: the L3 header to parse
3290 */
3291int ib_get_rdma_header_version(const union rdma_network_hdr *hdr);
3292
3293/**
3294 * ib_init_ah_attr_from_wc - Initializes address handle attributes from a
3295 * work completion.
3296 * @device: Device on which the received message arrived.
3297 * @port_num: Port on which the received message arrived.
3298 * @wc: Work completion associated with the received message.
3299 * @grh: References the received global route header. This parameter is
3300 * ignored unless the work completion indicates that the GRH is valid.
3301 * @ah_attr: Returned attributes that can be used when creating an address
3302 * handle for replying to the message.
3303 * When ib_init_ah_attr_from_wc() returns success,
3304 * (a) for IB link layer it optionally contains a reference to SGID attribute
3305 * when GRH is present for IB link layer.
3306 * (b) for RoCE link layer it contains a reference to SGID attribute.
3307 * User must invoke rdma_cleanup_ah_attr_gid_attr() to release reference to SGID
3308 * attributes which are initialized using ib_init_ah_attr_from_wc().
3309 *
3310 */
3311int ib_init_ah_attr_from_wc(struct ib_device *device, u8 port_num,
3312 const struct ib_wc *wc, const struct ib_grh *grh,
3313 struct rdma_ah_attr *ah_attr);
3314
3315/**
3316 * ib_create_ah_from_wc - Creates an address handle associated with the
3317 * sender of the specified work completion.
3318 * @pd: The protection domain associated with the address handle.
3319 * @wc: Work completion information associated with a received message.
3320 * @grh: References the received global route header. This parameter is
3321 * ignored unless the work completion indicates that the GRH is valid.
3322 * @port_num: The outbound port number to associate with the address.
3323 *
3324 * The address handle is used to reference a local or global destination
3325 * in all UD QP post sends.
3326 */
3327struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
3328 const struct ib_grh *grh, u8 port_num);
3329
3330/**
3331 * rdma_modify_ah - Modifies the address vector associated with an address
3332 * handle.
3333 * @ah: The address handle to modify.
3334 * @ah_attr: The new address vector attributes to associate with the
3335 * address handle.
3336 */
3337int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
3338
3339/**
3340 * rdma_query_ah - Queries the address vector associated with an address
3341 * handle.
3342 * @ah: The address handle to query.
3343 * @ah_attr: The address vector attributes associated with the address
3344 * handle.
3345 */
3346int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
3347
3348enum rdma_destroy_ah_flags {
3349 /* In a sleepable context */
3350 RDMA_DESTROY_AH_SLEEPABLE = BIT(0),
3351};
3352
3353/**
3354 * rdma_destroy_ah - Destroys an address handle.
3355 * @ah: The address handle to destroy.
3356 * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags).
3357 */
3358int rdma_destroy_ah(struct ib_ah *ah, u32 flags);
3359
3360/**
3361 * ib_create_srq - Creates a SRQ associated with the specified protection
3362 * domain.
3363 * @pd: The protection domain associated with the SRQ.
3364 * @srq_init_attr: A list of initial attributes required to create the
3365 * SRQ. If SRQ creation succeeds, then the attributes are updated to
3366 * the actual capabilities of the created SRQ.
3367 *
3368 * srq_attr->max_wr and srq_attr->max_sge are read the determine the
3369 * requested size of the SRQ, and set to the actual values allocated
3370 * on return. If ib_create_srq() succeeds, then max_wr and max_sge
3371 * will always be at least as large as the requested values.
3372 */
3373struct ib_srq *ib_create_srq(struct ib_pd *pd,
3374 struct ib_srq_init_attr *srq_init_attr);
3375
3376/**
3377 * ib_modify_srq - Modifies the attributes for the specified SRQ.
3378 * @srq: The SRQ to modify.
3379 * @srq_attr: On input, specifies the SRQ attributes to modify. On output,
3380 * the current values of selected SRQ attributes are returned.
3381 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
3382 * are being modified.
3383 *
3384 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
3385 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
3386 * the number of receives queued drops below the limit.
3387 */
3388int ib_modify_srq(struct ib_srq *srq,
3389 struct ib_srq_attr *srq_attr,
3390 enum ib_srq_attr_mask srq_attr_mask);
3391
3392/**
3393 * ib_query_srq - Returns the attribute list and current values for the
3394 * specified SRQ.
3395 * @srq: The SRQ to query.
3396 * @srq_attr: The attributes of the specified SRQ.
3397 */
3398int ib_query_srq(struct ib_srq *srq,
3399 struct ib_srq_attr *srq_attr);
3400
3401/**
3402 * ib_destroy_srq - Destroys the specified SRQ.
3403 * @srq: The SRQ to destroy.
3404 */
3405int ib_destroy_srq(struct ib_srq *srq);
3406
3407/**
3408 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
3409 * @srq: The SRQ to post the work request on.
3410 * @recv_wr: A list of work requests to post on the receive queue.
3411 * @bad_recv_wr: On an immediate failure, this parameter will reference
3412 * the work request that failed to be posted on the QP.
3413 */
3414static inline int ib_post_srq_recv(struct ib_srq *srq,
3415 const struct ib_recv_wr *recv_wr,
3416 const struct ib_recv_wr **bad_recv_wr)
3417{
3418 const struct ib_recv_wr *dummy;
3419
3420 return srq->device->ops.post_srq_recv(srq, recv_wr,
3421 bad_recv_wr ? : &dummy);
3422}
3423
3424/**
3425 * ib_create_qp - Creates a QP associated with the specified protection
3426 * domain.
3427 * @pd: The protection domain associated with the QP.
3428 * @qp_init_attr: A list of initial attributes required to create the
3429 * QP. If QP creation succeeds, then the attributes are updated to
3430 * the actual capabilities of the created QP.
3431 */
3432struct ib_qp *ib_create_qp(struct ib_pd *pd,
3433 struct ib_qp_init_attr *qp_init_attr);
3434
3435/**
3436 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
3437 * @qp: The QP to modify.
3438 * @attr: On input, specifies the QP attributes to modify. On output,
3439 * the current values of selected QP attributes are returned.
3440 * @attr_mask: A bit-mask used to specify which attributes of the QP
3441 * are being modified.
3442 * @udata: pointer to user's input output buffer information
3443 * are being modified.
3444 * It returns 0 on success and returns appropriate error code on error.
3445 */
3446int ib_modify_qp_with_udata(struct ib_qp *qp,
3447 struct ib_qp_attr *attr,
3448 int attr_mask,
3449 struct ib_udata *udata);
3450
3451/**
3452 * ib_modify_qp - Modifies the attributes for the specified QP and then
3453 * transitions the QP to the given state.
3454 * @qp: The QP to modify.
3455 * @qp_attr: On input, specifies the QP attributes to modify. On output,
3456 * the current values of selected QP attributes are returned.
3457 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
3458 * are being modified.
3459 */
3460int ib_modify_qp(struct ib_qp *qp,
3461 struct ib_qp_attr *qp_attr,
3462 int qp_attr_mask);
3463
3464/**
3465 * ib_query_qp - Returns the attribute list and current values for the
3466 * specified QP.
3467 * @qp: The QP to query.
3468 * @qp_attr: The attributes of the specified QP.
3469 * @qp_attr_mask: A bit-mask used to select specific attributes to query.
3470 * @qp_init_attr: Additional attributes of the selected QP.
3471 *
3472 * The qp_attr_mask may be used to limit the query to gathering only the
3473 * selected attributes.
3474 */
3475int ib_query_qp(struct ib_qp *qp,
3476 struct ib_qp_attr *qp_attr,
3477 int qp_attr_mask,
3478 struct ib_qp_init_attr *qp_init_attr);
3479
3480/**
3481 * ib_destroy_qp - Destroys the specified QP.
3482 * @qp: The QP to destroy.
3483 */
3484int ib_destroy_qp(struct ib_qp *qp);
3485
3486/**
3487 * ib_open_qp - Obtain a reference to an existing sharable QP.
3488 * @xrcd - XRC domain
3489 * @qp_open_attr: Attributes identifying the QP to open.
3490 *
3491 * Returns a reference to a sharable QP.
3492 */
3493struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
3494 struct ib_qp_open_attr *qp_open_attr);
3495
3496/**
3497 * ib_close_qp - Release an external reference to a QP.
3498 * @qp: The QP handle to release
3499 *
3500 * The opened QP handle is released by the caller. The underlying
3501 * shared QP is not destroyed until all internal references are released.
3502 */
3503int ib_close_qp(struct ib_qp *qp);
3504
3505/**
3506 * ib_post_send - Posts a list of work requests to the send queue of
3507 * the specified QP.
3508 * @qp: The QP to post the work request on.
3509 * @send_wr: A list of work requests to post on the send queue.
3510 * @bad_send_wr: On an immediate failure, this parameter will reference
3511 * the work request that failed to be posted on the QP.
3512 *
3513 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
3514 * error is returned, the QP state shall not be affected,
3515 * ib_post_send() will return an immediate error after queueing any
3516 * earlier work requests in the list.
3517 */
3518static inline int ib_post_send(struct ib_qp *qp,
3519 const struct ib_send_wr *send_wr,
3520 const struct ib_send_wr **bad_send_wr)
3521{
3522 const struct ib_send_wr *dummy;
3523
3524 return qp->device->ops.post_send(qp, send_wr, bad_send_wr ? : &dummy);
3525}
3526
3527/**
3528 * ib_post_recv - Posts a list of work requests to the receive queue of
3529 * the specified QP.
3530 * @qp: The QP to post the work request on.
3531 * @recv_wr: A list of work requests to post on the receive queue.
3532 * @bad_recv_wr: On an immediate failure, this parameter will reference
3533 * the work request that failed to be posted on the QP.
3534 */
3535static inline int ib_post_recv(struct ib_qp *qp,
3536 const struct ib_recv_wr *recv_wr,
3537 const struct ib_recv_wr **bad_recv_wr)
3538{
3539 const struct ib_recv_wr *dummy;
3540
3541 return qp->device->ops.post_recv(qp, recv_wr, bad_recv_wr ? : &dummy);
3542}
3543
3544struct ib_cq *__ib_alloc_cq(struct ib_device *dev, void *private,
3545 int nr_cqe, int comp_vector,
3546 enum ib_poll_context poll_ctx, const char *caller);
3547#define ib_alloc_cq(device, priv, nr_cqe, comp_vect, poll_ctx) \
3548 __ib_alloc_cq((device), (priv), (nr_cqe), (comp_vect), (poll_ctx), KBUILD_MODNAME)
3549
3550void ib_free_cq(struct ib_cq *cq);
3551int ib_process_cq_direct(struct ib_cq *cq, int budget);
3552
3553/**
3554 * ib_create_cq - Creates a CQ on the specified device.
3555 * @device: The device on which to create the CQ.
3556 * @comp_handler: A user-specified callback that is invoked when a
3557 * completion event occurs on the CQ.
3558 * @event_handler: A user-specified callback that is invoked when an
3559 * asynchronous event not associated with a completion occurs on the CQ.
3560 * @cq_context: Context associated with the CQ returned to the user via
3561 * the associated completion and event handlers.
3562 * @cq_attr: The attributes the CQ should be created upon.
3563 *
3564 * Users can examine the cq structure to determine the actual CQ size.
3565 */
3566struct ib_cq *__ib_create_cq(struct ib_device *device,
3567 ib_comp_handler comp_handler,
3568 void (*event_handler)(struct ib_event *, void *),
3569 void *cq_context,
3570 const struct ib_cq_init_attr *cq_attr,
3571 const char *caller);
3572#define ib_create_cq(device, cmp_hndlr, evt_hndlr, cq_ctxt, cq_attr) \
3573 __ib_create_cq((device), (cmp_hndlr), (evt_hndlr), (cq_ctxt), (cq_attr), KBUILD_MODNAME)
3574
3575/**
3576 * ib_resize_cq - Modifies the capacity of the CQ.
3577 * @cq: The CQ to resize.
3578 * @cqe: The minimum size of the CQ.
3579 *
3580 * Users can examine the cq structure to determine the actual CQ size.
3581 */
3582int ib_resize_cq(struct ib_cq *cq, int cqe);
3583
3584/**
3585 * rdma_set_cq_moderation - Modifies moderation params of the CQ
3586 * @cq: The CQ to modify.
3587 * @cq_count: number of CQEs that will trigger an event
3588 * @cq_period: max period of time in usec before triggering an event
3589 *
3590 */
3591int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period);
3592
3593/**
3594 * ib_destroy_cq - Destroys the specified CQ.
3595 * @cq: The CQ to destroy.
3596 */
3597int ib_destroy_cq(struct ib_cq *cq);
3598
3599/**
3600 * ib_poll_cq - poll a CQ for completion(s)
3601 * @cq:the CQ being polled
3602 * @num_entries:maximum number of completions to return
3603 * @wc:array of at least @num_entries &struct ib_wc where completions
3604 * will be returned
3605 *
3606 * Poll a CQ for (possibly multiple) completions. If the return value
3607 * is < 0, an error occurred. If the return value is >= 0, it is the
3608 * number of completions returned. If the return value is
3609 * non-negative and < num_entries, then the CQ was emptied.
3610 */
3611static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
3612 struct ib_wc *wc)
3613{
3614 return cq->device->ops.poll_cq(cq, num_entries, wc);
3615}
3616
3617/**
3618 * ib_req_notify_cq - Request completion notification on a CQ.
3619 * @cq: The CQ to generate an event for.
3620 * @flags:
3621 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
3622 * to request an event on the next solicited event or next work
3623 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
3624 * may also be |ed in to request a hint about missed events, as
3625 * described below.
3626 *
3627 * Return Value:
3628 * < 0 means an error occurred while requesting notification
3629 * == 0 means notification was requested successfully, and if
3630 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
3631 * were missed and it is safe to wait for another event. In
3632 * this case is it guaranteed that any work completions added
3633 * to the CQ since the last CQ poll will trigger a completion
3634 * notification event.
3635 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
3636 * in. It means that the consumer must poll the CQ again to
3637 * make sure it is empty to avoid missing an event because of a
3638 * race between requesting notification and an entry being
3639 * added to the CQ. This return value means it is possible
3640 * (but not guaranteed) that a work completion has been added
3641 * to the CQ since the last poll without triggering a
3642 * completion notification event.
3643 */
3644static inline int ib_req_notify_cq(struct ib_cq *cq,
3645 enum ib_cq_notify_flags flags)
3646{
3647 return cq->device->ops.req_notify_cq(cq, flags);
3648}
3649
3650/**
3651 * ib_req_ncomp_notif - Request completion notification when there are
3652 * at least the specified number of unreaped completions on the CQ.
3653 * @cq: The CQ to generate an event for.
3654 * @wc_cnt: The number of unreaped completions that should be on the
3655 * CQ before an event is generated.
3656 */
3657static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt)
3658{
3659 return cq->device->ops.req_ncomp_notif ?
3660 cq->device->ops.req_ncomp_notif(cq, wc_cnt) :
3661 -ENOSYS;
3662}
3663
3664/**
3665 * ib_dma_mapping_error - check a DMA addr for error
3666 * @dev: The device for which the dma_addr was created
3667 * @dma_addr: The DMA address to check
3668 */
3669static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
3670{
3671 return dma_mapping_error(dev->dma_device, dma_addr);
3672}
3673
3674/**
3675 * ib_dma_map_single - Map a kernel virtual address to DMA address
3676 * @dev: The device for which the dma_addr is to be created
3677 * @cpu_addr: The kernel virtual address
3678 * @size: The size of the region in bytes
3679 * @direction: The direction of the DMA
3680 */
3681static inline u64 ib_dma_map_single(struct ib_device *dev,
3682 void *cpu_addr, size_t size,
3683 enum dma_data_direction direction)
3684{
3685 return dma_map_single(dev->dma_device, cpu_addr, size, direction);
3686}
3687
3688/**
3689 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
3690 * @dev: The device for which the DMA address was created
3691 * @addr: The DMA address
3692 * @size: The size of the region in bytes
3693 * @direction: The direction of the DMA
3694 */
3695static inline void ib_dma_unmap_single(struct ib_device *dev,
3696 u64 addr, size_t size,
3697 enum dma_data_direction direction)
3698{
3699 dma_unmap_single(dev->dma_device, addr, size, direction);
3700}
3701
3702/**
3703 * ib_dma_map_page - Map a physical page to DMA address
3704 * @dev: The device for which the dma_addr is to be created
3705 * @page: The page to be mapped
3706 * @offset: The offset within the page
3707 * @size: The size of the region in bytes
3708 * @direction: The direction of the DMA
3709 */
3710static inline u64 ib_dma_map_page(struct ib_device *dev,
3711 struct page *page,
3712 unsigned long offset,
3713 size_t size,
3714 enum dma_data_direction direction)
3715{
3716 return dma_map_page(dev->dma_device, page, offset, size, direction);
3717}
3718
3719/**
3720 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
3721 * @dev: The device for which the DMA address was created
3722 * @addr: The DMA address
3723 * @size: The size of the region in bytes
3724 * @direction: The direction of the DMA
3725 */
3726static inline void ib_dma_unmap_page(struct ib_device *dev,
3727 u64 addr, size_t size,
3728 enum dma_data_direction direction)
3729{
3730 dma_unmap_page(dev->dma_device, addr, size, direction);
3731}
3732
3733/**
3734 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
3735 * @dev: The device for which the DMA addresses are to be created
3736 * @sg: The array of scatter/gather entries
3737 * @nents: The number of scatter/gather entries
3738 * @direction: The direction of the DMA
3739 */
3740static inline int ib_dma_map_sg(struct ib_device *dev,
3741 struct scatterlist *sg, int nents,
3742 enum dma_data_direction direction)
3743{
3744 return dma_map_sg(dev->dma_device, sg, nents, direction);
3745}
3746
3747/**
3748 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
3749 * @dev: The device for which the DMA addresses were created
3750 * @sg: The array of scatter/gather entries
3751 * @nents: The number of scatter/gather entries
3752 * @direction: The direction of the DMA
3753 */
3754static inline void ib_dma_unmap_sg(struct ib_device *dev,
3755 struct scatterlist *sg, int nents,
3756 enum dma_data_direction direction)
3757{
3758 dma_unmap_sg(dev->dma_device, sg, nents, direction);
3759}
3760
3761static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
3762 struct scatterlist *sg, int nents,
3763 enum dma_data_direction direction,
3764 unsigned long dma_attrs)
3765{
3766 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction,
3767 dma_attrs);
3768}
3769
3770static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
3771 struct scatterlist *sg, int nents,
3772 enum dma_data_direction direction,
3773 unsigned long dma_attrs)
3774{
3775 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, dma_attrs);
3776}
3777
3778/**
3779 * ib_dma_max_seg_size - Return the size limit of a single DMA transfer
3780 * @dev: The device to query
3781 *
3782 * The returned value represents a size in bytes.
3783 */
3784static inline unsigned int ib_dma_max_seg_size(struct ib_device *dev)
3785{
3786 struct device_dma_parameters *p = dev->dma_device->dma_parms;
3787
3788 return p ? p->max_segment_size : UINT_MAX;
3789}
3790
3791/**
3792 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
3793 * @dev: The device for which the DMA address was created
3794 * @addr: The DMA address
3795 * @size: The size of the region in bytes
3796 * @dir: The direction of the DMA
3797 */
3798static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
3799 u64 addr,
3800 size_t size,
3801 enum dma_data_direction dir)
3802{
3803 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
3804}
3805
3806/**
3807 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
3808 * @dev: The device for which the DMA address was created
3809 * @addr: The DMA address
3810 * @size: The size of the region in bytes
3811 * @dir: The direction of the DMA
3812 */
3813static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
3814 u64 addr,
3815 size_t size,
3816 enum dma_data_direction dir)
3817{
3818 dma_sync_single_for_device(dev->dma_device, addr, size, dir);
3819}
3820
3821/**
3822 * ib_dma_alloc_coherent - Allocate memory and map it for DMA
3823 * @dev: The device for which the DMA address is requested
3824 * @size: The size of the region to allocate in bytes
3825 * @dma_handle: A pointer for returning the DMA address of the region
3826 * @flag: memory allocator flags
3827 */
3828static inline void *ib_dma_alloc_coherent(struct ib_device *dev,
3829 size_t size,
3830 dma_addr_t *dma_handle,
3831 gfp_t flag)
3832{
3833 return dma_alloc_coherent(dev->dma_device, size, dma_handle, flag);
3834}
3835
3836/**
3837 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent()
3838 * @dev: The device for which the DMA addresses were allocated
3839 * @size: The size of the region
3840 * @cpu_addr: the address returned by ib_dma_alloc_coherent()
3841 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent()
3842 */
3843static inline void ib_dma_free_coherent(struct ib_device *dev,
3844 size_t size, void *cpu_addr,
3845 dma_addr_t dma_handle)
3846{
3847 dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle);
3848}
3849
3850/**
3851 * ib_dereg_mr - Deregisters a memory region and removes it from the
3852 * HCA translation table.
3853 * @mr: The memory region to deregister.
3854 *
3855 * This function can fail, if the memory region has memory windows bound to it.
3856 */
3857int ib_dereg_mr(struct ib_mr *mr);
3858
3859struct ib_mr *ib_alloc_mr(struct ib_pd *pd,
3860 enum ib_mr_type mr_type,
3861 u32 max_num_sg);
3862
3863/**
3864 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
3865 * R_Key and L_Key.
3866 * @mr - struct ib_mr pointer to be updated.
3867 * @newkey - new key to be used.
3868 */
3869static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
3870{
3871 mr->lkey = (mr->lkey & 0xffffff00) | newkey;
3872 mr->rkey = (mr->rkey & 0xffffff00) | newkey;
3873}
3874
3875/**
3876 * ib_inc_rkey - increments the key portion of the given rkey. Can be used
3877 * for calculating a new rkey for type 2 memory windows.
3878 * @rkey - the rkey to increment.
3879 */
3880static inline u32 ib_inc_rkey(u32 rkey)
3881{
3882 const u32 mask = 0x000000ff;
3883 return ((rkey + 1) & mask) | (rkey & ~mask);
3884}
3885
3886/**
3887 * ib_alloc_fmr - Allocates a unmapped fast memory region.
3888 * @pd: The protection domain associated with the unmapped region.
3889 * @mr_access_flags: Specifies the memory access rights.
3890 * @fmr_attr: Attributes of the unmapped region.
3891 *
3892 * A fast memory region must be mapped before it can be used as part of
3893 * a work request.
3894 */
3895struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
3896 int mr_access_flags,
3897 struct ib_fmr_attr *fmr_attr);
3898
3899/**
3900 * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region.
3901 * @fmr: The fast memory region to associate with the pages.
3902 * @page_list: An array of physical pages to map to the fast memory region.
3903 * @list_len: The number of pages in page_list.
3904 * @iova: The I/O virtual address to use with the mapped region.
3905 */
3906static inline int ib_map_phys_fmr(struct ib_fmr *fmr,
3907 u64 *page_list, int list_len,
3908 u64 iova)
3909{
3910 return fmr->device->ops.map_phys_fmr(fmr, page_list, list_len, iova);
3911}
3912
3913/**
3914 * ib_unmap_fmr - Removes the mapping from a list of fast memory regions.
3915 * @fmr_list: A linked list of fast memory regions to unmap.
3916 */
3917int ib_unmap_fmr(struct list_head *fmr_list);
3918
3919/**
3920 * ib_dealloc_fmr - Deallocates a fast memory region.
3921 * @fmr: The fast memory region to deallocate.
3922 */
3923int ib_dealloc_fmr(struct ib_fmr *fmr);
3924
3925/**
3926 * ib_attach_mcast - Attaches the specified QP to a multicast group.
3927 * @qp: QP to attach to the multicast group. The QP must be type
3928 * IB_QPT_UD.
3929 * @gid: Multicast group GID.
3930 * @lid: Multicast group LID in host byte order.
3931 *
3932 * In order to send and receive multicast packets, subnet
3933 * administration must have created the multicast group and configured
3934 * the fabric appropriately. The port associated with the specified
3935 * QP must also be a member of the multicast group.
3936 */
3937int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
3938
3939/**
3940 * ib_detach_mcast - Detaches the specified QP from a multicast group.
3941 * @qp: QP to detach from the multicast group.
3942 * @gid: Multicast group GID.
3943 * @lid: Multicast group LID in host byte order.
3944 */
3945int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
3946
3947/**
3948 * ib_alloc_xrcd - Allocates an XRC domain.
3949 * @device: The device on which to allocate the XRC domain.
3950 * @caller: Module name for kernel consumers
3951 */
3952struct ib_xrcd *__ib_alloc_xrcd(struct ib_device *device, const char *caller);
3953#define ib_alloc_xrcd(device) \
3954 __ib_alloc_xrcd((device), KBUILD_MODNAME)
3955
3956/**
3957 * ib_dealloc_xrcd - Deallocates an XRC domain.
3958 * @xrcd: The XRC domain to deallocate.
3959 */
3960int ib_dealloc_xrcd(struct ib_xrcd *xrcd);
3961
3962static inline int ib_check_mr_access(int flags)
3963{
3964 /*
3965 * Local write permission is required if remote write or
3966 * remote atomic permission is also requested.
3967 */
3968 if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) &&
3969 !(flags & IB_ACCESS_LOCAL_WRITE))
3970 return -EINVAL;
3971
3972 return 0;
3973}
3974
3975static inline bool ib_access_writable(int access_flags)
3976{
3977 /*
3978 * We have writable memory backing the MR if any of the following
3979 * access flags are set. "Local write" and "remote write" obviously
3980 * require write access. "Remote atomic" can do things like fetch and
3981 * add, which will modify memory, and "MW bind" can change permissions
3982 * by binding a window.
3983 */
3984 return access_flags &
3985 (IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_WRITE |
3986 IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_MW_BIND);
3987}
3988
3989/**
3990 * ib_check_mr_status: lightweight check of MR status.
3991 * This routine may provide status checks on a selected
3992 * ib_mr. first use is for signature status check.
3993 *
3994 * @mr: A memory region.
3995 * @check_mask: Bitmask of which checks to perform from
3996 * ib_mr_status_check enumeration.
3997 * @mr_status: The container of relevant status checks.
3998 * failed checks will be indicated in the status bitmask
3999 * and the relevant info shall be in the error item.
4000 */
4001int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
4002 struct ib_mr_status *mr_status);
4003
4004/**
4005 * ib_device_try_get: Hold a registration lock
4006 * device: The device to lock
4007 *
4008 * A device under an active registration lock cannot become unregistered. It
4009 * is only possible to obtain a registration lock on a device that is fully
4010 * registered, otherwise this function returns false.
4011 *
4012 * The registration lock is only necessary for actions which require the
4013 * device to still be registered. Uses that only require the device pointer to
4014 * be valid should use get_device(&ibdev->dev) to hold the memory.
4015 *
4016 */
4017static inline bool ib_device_try_get(struct ib_device *dev)
4018{
4019 return refcount_inc_not_zero(&dev->refcount);
4020}
4021
4022void ib_device_put(struct ib_device *device);
4023struct ib_device *ib_device_get_by_netdev(struct net_device *ndev,
4024 enum rdma_driver_id driver_id);
4025struct ib_device *ib_device_get_by_name(const char *name,
4026 enum rdma_driver_id driver_id);
4027struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u8 port,
4028 u16 pkey, const union ib_gid *gid,
4029 const struct sockaddr *addr);
4030int ib_device_set_netdev(struct ib_device *ib_dev, struct net_device *ndev,
4031 unsigned int port);
4032struct net_device *ib_device_netdev(struct ib_device *dev, u8 port);
4033
4034struct ib_wq *ib_create_wq(struct ib_pd *pd,
4035 struct ib_wq_init_attr *init_attr);
4036int ib_destroy_wq(struct ib_wq *wq);
4037int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *attr,
4038 u32 wq_attr_mask);
4039struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device,
4040 struct ib_rwq_ind_table_init_attr*
4041 wq_ind_table_init_attr);
4042int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *wq_ind_table);
4043
4044int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
4045 unsigned int *sg_offset, unsigned int page_size);
4046
4047static inline int
4048ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
4049 unsigned int *sg_offset, unsigned int page_size)
4050{
4051 int n;
4052
4053 n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size);
4054 mr->iova = 0;
4055
4056 return n;
4057}
4058
4059int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
4060 unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64));
4061
4062void ib_drain_rq(struct ib_qp *qp);
4063void ib_drain_sq(struct ib_qp *qp);
4064void ib_drain_qp(struct ib_qp *qp);
4065
4066int ib_get_eth_speed(struct ib_device *dev, u8 port_num, u8 *speed, u8 *width);
4067
4068static inline u8 *rdma_ah_retrieve_dmac(struct rdma_ah_attr *attr)
4069{
4070 if (attr->type == RDMA_AH_ATTR_TYPE_ROCE)
4071 return attr->roce.dmac;
4072 return NULL;
4073}
4074
4075static inline void rdma_ah_set_dlid(struct rdma_ah_attr *attr, u32 dlid)
4076{
4077 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4078 attr->ib.dlid = (u16)dlid;
4079 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4080 attr->opa.dlid = dlid;
4081}
4082
4083static inline u32 rdma_ah_get_dlid(const struct rdma_ah_attr *attr)
4084{
4085 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4086 return attr->ib.dlid;
4087 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4088 return attr->opa.dlid;
4089 return 0;
4090}
4091
4092static inline void rdma_ah_set_sl(struct rdma_ah_attr *attr, u8 sl)
4093{
4094 attr->sl = sl;
4095}
4096
4097static inline u8 rdma_ah_get_sl(const struct rdma_ah_attr *attr)
4098{
4099 return attr->sl;
4100}
4101
4102static inline void rdma_ah_set_path_bits(struct rdma_ah_attr *attr,
4103 u8 src_path_bits)
4104{
4105 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4106 attr->ib.src_path_bits = src_path_bits;
4107 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4108 attr->opa.src_path_bits = src_path_bits;
4109}
4110
4111static inline u8 rdma_ah_get_path_bits(const struct rdma_ah_attr *attr)
4112{
4113 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4114 return attr->ib.src_path_bits;
4115 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4116 return attr->opa.src_path_bits;
4117 return 0;
4118}
4119
4120static inline void rdma_ah_set_make_grd(struct rdma_ah_attr *attr,
4121 bool make_grd)
4122{
4123 if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4124 attr->opa.make_grd = make_grd;
4125}
4126
4127static inline bool rdma_ah_get_make_grd(const struct rdma_ah_attr *attr)
4128{
4129 if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4130 return attr->opa.make_grd;
4131 return false;
4132}
4133
4134static inline void rdma_ah_set_port_num(struct rdma_ah_attr *attr, u8 port_num)
4135{
4136 attr->port_num = port_num;
4137}
4138
4139static inline u8 rdma_ah_get_port_num(const struct rdma_ah_attr *attr)
4140{
4141 return attr->port_num;
4142}
4143
4144static inline void rdma_ah_set_static_rate(struct rdma_ah_attr *attr,
4145 u8 static_rate)
4146{
4147 attr->static_rate = static_rate;
4148}
4149
4150static inline u8 rdma_ah_get_static_rate(const struct rdma_ah_attr *attr)
4151{
4152 return attr->static_rate;
4153}
4154
4155static inline void rdma_ah_set_ah_flags(struct rdma_ah_attr *attr,
4156 enum ib_ah_flags flag)
4157{
4158 attr->ah_flags = flag;
4159}
4160
4161static inline enum ib_ah_flags
4162 rdma_ah_get_ah_flags(const struct rdma_ah_attr *attr)
4163{
4164 return attr->ah_flags;
4165}
4166
4167static inline const struct ib_global_route
4168 *rdma_ah_read_grh(const struct rdma_ah_attr *attr)
4169{
4170 return &attr->grh;
4171}
4172
4173/*To retrieve and modify the grh */
4174static inline struct ib_global_route
4175 *rdma_ah_retrieve_grh(struct rdma_ah_attr *attr)
4176{
4177 return &attr->grh;
4178}
4179
4180static inline void rdma_ah_set_dgid_raw(struct rdma_ah_attr *attr, void *dgid)
4181{
4182 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4183
4184 memcpy(grh->dgid.raw, dgid, sizeof(grh->dgid));
4185}
4186
4187static inline void rdma_ah_set_subnet_prefix(struct rdma_ah_attr *attr,
4188 __be64 prefix)
4189{
4190 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4191
4192 grh->dgid.global.subnet_prefix = prefix;
4193}
4194
4195static inline void rdma_ah_set_interface_id(struct rdma_ah_attr *attr,
4196 __be64 if_id)
4197{
4198 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4199
4200 grh->dgid.global.interface_id = if_id;
4201}
4202
4203static inline void rdma_ah_set_grh(struct rdma_ah_attr *attr,
4204 union ib_gid *dgid, u32 flow_label,
4205 u8 sgid_index, u8 hop_limit,
4206 u8 traffic_class)
4207{
4208 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4209
4210 attr->ah_flags = IB_AH_GRH;
4211 if (dgid)
4212 grh->dgid = *dgid;
4213 grh->flow_label = flow_label;
4214 grh->sgid_index = sgid_index;
4215 grh->hop_limit = hop_limit;
4216 grh->traffic_class = traffic_class;
4217 grh->sgid_attr = NULL;
4218}
4219
4220void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr);
4221void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid,
4222 u32 flow_label, u8 hop_limit, u8 traffic_class,
4223 const struct ib_gid_attr *sgid_attr);
4224void rdma_copy_ah_attr(struct rdma_ah_attr *dest,
4225 const struct rdma_ah_attr *src);
4226void rdma_replace_ah_attr(struct rdma_ah_attr *old,
4227 const struct rdma_ah_attr *new);
4228void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src);
4229
4230/**
4231 * rdma_ah_find_type - Return address handle type.
4232 *
4233 * @dev: Device to be checked
4234 * @port_num: Port number
4235 */
4236static inline enum rdma_ah_attr_type rdma_ah_find_type(struct ib_device *dev,
4237 u8 port_num)
4238{
4239 if (rdma_protocol_roce(dev, port_num))
4240 return RDMA_AH_ATTR_TYPE_ROCE;
4241 if (rdma_protocol_ib(dev, port_num)) {
4242 if (rdma_cap_opa_ah(dev, port_num))
4243 return RDMA_AH_ATTR_TYPE_OPA;
4244 return RDMA_AH_ATTR_TYPE_IB;
4245 }
4246
4247 return RDMA_AH_ATTR_TYPE_UNDEFINED;
4248}
4249
4250/**
4251 * ib_lid_cpu16 - Return lid in 16bit CPU encoding.
4252 * In the current implementation the only way to get
4253 * get the 32bit lid is from other sources for OPA.
4254 * For IB, lids will always be 16bits so cast the
4255 * value accordingly.
4256 *
4257 * @lid: A 32bit LID
4258 */
4259static inline u16 ib_lid_cpu16(u32 lid)
4260{
4261 WARN_ON_ONCE(lid & 0xFFFF0000);
4262 return (u16)lid;
4263}
4264
4265/**
4266 * ib_lid_be16 - Return lid in 16bit BE encoding.
4267 *
4268 * @lid: A 32bit LID
4269 */
4270static inline __be16 ib_lid_be16(u32 lid)
4271{
4272 WARN_ON_ONCE(lid & 0xFFFF0000);
4273 return cpu_to_be16((u16)lid);
4274}
4275
4276/**
4277 * ib_get_vector_affinity - Get the affinity mappings of a given completion
4278 * vector
4279 * @device: the rdma device
4280 * @comp_vector: index of completion vector
4281 *
4282 * Returns NULL on failure, otherwise a corresponding cpu map of the
4283 * completion vector (returns all-cpus map if the device driver doesn't
4284 * implement get_vector_affinity).
4285 */
4286static inline const struct cpumask *
4287ib_get_vector_affinity(struct ib_device *device, int comp_vector)
4288{
4289 if (comp_vector < 0 || comp_vector >= device->num_comp_vectors ||
4290 !device->ops.get_vector_affinity)
4291 return NULL;
4292
4293 return device->ops.get_vector_affinity(device, comp_vector);
4294
4295}
4296
4297/**
4298 * rdma_roce_rescan_device - Rescan all of the network devices in the system
4299 * and add their gids, as needed, to the relevant RoCE devices.
4300 *
4301 * @device: the rdma device
4302 */
4303void rdma_roce_rescan_device(struct ib_device *ibdev);
4304
4305struct ib_ucontext *ib_uverbs_get_ucontext_file(struct ib_uverbs_file *ufile);
4306
4307int uverbs_destroy_def_handler(struct uverbs_attr_bundle *attrs);
4308
4309struct net_device *rdma_alloc_netdev(struct ib_device *device, u8 port_num,
4310 enum rdma_netdev_t type, const char *name,
4311 unsigned char name_assign_type,
4312 void (*setup)(struct net_device *));
4313
4314int rdma_init_netdev(struct ib_device *device, u8 port_num,
4315 enum rdma_netdev_t type, const char *name,
4316 unsigned char name_assign_type,
4317 void (*setup)(struct net_device *),
4318 struct net_device *netdev);
4319
4320/**
4321 * rdma_set_device_sysfs_group - Set device attributes group to have
4322 * driver specific sysfs entries at
4323 * for infiniband class.
4324 *
4325 * @device: device pointer for which attributes to be created
4326 * @group: Pointer to group which should be added when device
4327 * is registered with sysfs.
4328 * rdma_set_device_sysfs_group() allows existing drivers to expose one
4329 * group per device to have sysfs attributes.
4330 *
4331 * NOTE: New drivers should not make use of this API; instead new device
4332 * parameter should be exposed via netlink command. This API and mechanism
4333 * exist only for existing drivers.
4334 */
4335static inline void
4336rdma_set_device_sysfs_group(struct ib_device *dev,
4337 const struct attribute_group *group)
4338{
4339 dev->groups[1] = group;
4340}
4341
4342/**
4343 * rdma_device_to_ibdev - Get ib_device pointer from device pointer
4344 *
4345 * @device: device pointer for which ib_device pointer to retrieve
4346 *
4347 * rdma_device_to_ibdev() retrieves ib_device pointer from device.
4348 *
4349 */
4350static inline struct ib_device *rdma_device_to_ibdev(struct device *device)
4351{
4352 return container_of(device, struct ib_device, dev);
4353}
4354
4355/**
4356 * rdma_device_to_drv_device - Helper macro to reach back to driver's
4357 * ib_device holder structure from device pointer.
4358 *
4359 * NOTE: New drivers should not make use of this API; This API is only for
4360 * existing drivers who have exposed sysfs entries using
4361 * rdma_set_device_sysfs_group().
4362 */
4363#define rdma_device_to_drv_device(dev, drv_dev_struct, ibdev_member) \
4364 container_of(rdma_device_to_ibdev(dev), drv_dev_struct, ibdev_member)
4365#endif /* IB_VERBS_H */
4366