1/* SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB */
2/*
3 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
4 * Copyright (c) 2004 Infinicon Corporation. All rights reserved.
5 * Copyright (c) 2004, 2020 Intel Corporation. All rights reserved.
6 * Copyright (c) 2004 Topspin Corporation. All rights reserved.
7 * Copyright (c) 2004 Voltaire Corporation. All rights reserved.
8 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
9 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved.
10 */
11
12#ifndef IB_VERBS_H
13#define IB_VERBS_H
14
15#include <linux/ethtool.h>
16#include <linux/types.h>
17#include <linux/device.h>
18#include <linux/dma-mapping.h>
19#include <linux/kref.h>
20#include <linux/list.h>
21#include <linux/rwsem.h>
22#include <linux/workqueue.h>
23#include <linux/irq_poll.h>
24#include <uapi/linux/if_ether.h>
25#include <net/ipv6.h>
26#include <net/ip.h>
27#include <linux/string.h>
28#include <linux/slab.h>
29#include <linux/netdevice.h>
30#include <linux/refcount.h>
31#include <linux/if_link.h>
32#include <linux/atomic.h>
33#include <linux/mmu_notifier.h>
34#include <linux/uaccess.h>
35#include <linux/cgroup_rdma.h>
36#include <linux/irqflags.h>
37#include <linux/preempt.h>
38#include <linux/dim.h>
39#include <uapi/rdma/ib_user_verbs.h>
40#include <rdma/rdma_counter.h>
41#include <rdma/restrack.h>
42#include <rdma/signature.h>
43#include <uapi/rdma/rdma_user_ioctl.h>
44#include <uapi/rdma/ib_user_ioctl_verbs.h>
45
46#define IB_FW_VERSION_NAME_MAX ETHTOOL_FWVERS_LEN
47
48struct ib_umem_odp;
49struct ib_uqp_object;
50struct ib_usrq_object;
51struct ib_uwq_object;
52struct rdma_cm_id;
53struct ib_port;
54struct hw_stats_device_data;
55
56extern struct workqueue_struct *ib_wq;
57extern struct workqueue_struct *ib_comp_wq;
58extern struct workqueue_struct *ib_comp_unbound_wq;
59
60struct ib_ucq_object;
61
62__printf(3, 4) __cold
63void ibdev_printk(const char *level, const struct ib_device *ibdev,
64 const char *format, ...);
65__printf(2, 3) __cold
66void ibdev_emerg(const struct ib_device *ibdev, const char *format, ...);
67__printf(2, 3) __cold
68void ibdev_alert(const struct ib_device *ibdev, const char *format, ...);
69__printf(2, 3) __cold
70void ibdev_crit(const struct ib_device *ibdev, const char *format, ...);
71__printf(2, 3) __cold
72void ibdev_err(const struct ib_device *ibdev, const char *format, ...);
73__printf(2, 3) __cold
74void ibdev_warn(const struct ib_device *ibdev, const char *format, ...);
75__printf(2, 3) __cold
76void ibdev_notice(const struct ib_device *ibdev, const char *format, ...);
77__printf(2, 3) __cold
78void ibdev_info(const struct ib_device *ibdev, const char *format, ...);
79
80#if defined(CONFIG_DYNAMIC_DEBUG) || \
81 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
82#define ibdev_dbg(__dev, format, args...) \
83 dynamic_ibdev_dbg(__dev, format, ##args)
84#else
85__printf(2, 3) __cold
86static inline
87void ibdev_dbg(const struct ib_device *ibdev, const char *format, ...) {}
88#endif
89
90#define ibdev_level_ratelimited(ibdev_level, ibdev, fmt, ...) \
91do { \
92 static DEFINE_RATELIMIT_STATE(_rs, \
93 DEFAULT_RATELIMIT_INTERVAL, \
94 DEFAULT_RATELIMIT_BURST); \
95 if (__ratelimit(&_rs)) \
96 ibdev_level(ibdev, fmt, ##__VA_ARGS__); \
97} while (0)
98
99#define ibdev_emerg_ratelimited(ibdev, fmt, ...) \
100 ibdev_level_ratelimited(ibdev_emerg, ibdev, fmt, ##__VA_ARGS__)
101#define ibdev_alert_ratelimited(ibdev, fmt, ...) \
102 ibdev_level_ratelimited(ibdev_alert, ibdev, fmt, ##__VA_ARGS__)
103#define ibdev_crit_ratelimited(ibdev, fmt, ...) \
104 ibdev_level_ratelimited(ibdev_crit, ibdev, fmt, ##__VA_ARGS__)
105#define ibdev_err_ratelimited(ibdev, fmt, ...) \
106 ibdev_level_ratelimited(ibdev_err, ibdev, fmt, ##__VA_ARGS__)
107#define ibdev_warn_ratelimited(ibdev, fmt, ...) \
108 ibdev_level_ratelimited(ibdev_warn, ibdev, fmt, ##__VA_ARGS__)
109#define ibdev_notice_ratelimited(ibdev, fmt, ...) \
110 ibdev_level_ratelimited(ibdev_notice, ibdev, fmt, ##__VA_ARGS__)
111#define ibdev_info_ratelimited(ibdev, fmt, ...) \
112 ibdev_level_ratelimited(ibdev_info, ibdev, fmt, ##__VA_ARGS__)
113
114#if defined(CONFIG_DYNAMIC_DEBUG) || \
115 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
116/* descriptor check is first to prevent flooding with "callbacks suppressed" */
117#define ibdev_dbg_ratelimited(ibdev, fmt, ...) \
118do { \
119 static DEFINE_RATELIMIT_STATE(_rs, \
120 DEFAULT_RATELIMIT_INTERVAL, \
121 DEFAULT_RATELIMIT_BURST); \
122 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, fmt); \
123 if (DYNAMIC_DEBUG_BRANCH(descriptor) && __ratelimit(&_rs)) \
124 __dynamic_ibdev_dbg(&descriptor, ibdev, fmt, \
125 ##__VA_ARGS__); \
126} while (0)
127#else
128__printf(2, 3) __cold
129static inline
130void ibdev_dbg_ratelimited(const struct ib_device *ibdev, const char *format, ...) {}
131#endif
132
133union ib_gid {
134 u8 raw[16];
135 struct {
136 __be64 subnet_prefix;
137 __be64 interface_id;
138 } global;
139};
140
141extern union ib_gid zgid;
142
143enum ib_gid_type {
144 IB_GID_TYPE_IB = IB_UVERBS_GID_TYPE_IB,
145 IB_GID_TYPE_ROCE = IB_UVERBS_GID_TYPE_ROCE_V1,
146 IB_GID_TYPE_ROCE_UDP_ENCAP = IB_UVERBS_GID_TYPE_ROCE_V2,
147 IB_GID_TYPE_SIZE
148};
149
150#define ROCE_V2_UDP_DPORT 4791
151struct ib_gid_attr {
152 struct net_device __rcu *ndev;
153 struct ib_device *device;
154 union ib_gid gid;
155 enum ib_gid_type gid_type;
156 u16 index;
157 u32 port_num;
158};
159
160enum {
161 /* set the local administered indication */
162 IB_SA_WELL_KNOWN_GUID = BIT_ULL(57) | 2,
163};
164
165enum rdma_transport_type {
166 RDMA_TRANSPORT_IB,
167 RDMA_TRANSPORT_IWARP,
168 RDMA_TRANSPORT_USNIC,
169 RDMA_TRANSPORT_USNIC_UDP,
170 RDMA_TRANSPORT_UNSPECIFIED,
171};
172
173enum rdma_protocol_type {
174 RDMA_PROTOCOL_IB,
175 RDMA_PROTOCOL_IBOE,
176 RDMA_PROTOCOL_IWARP,
177 RDMA_PROTOCOL_USNIC_UDP
178};
179
180__attribute_const__ enum rdma_transport_type
181rdma_node_get_transport(unsigned int node_type);
182
183enum rdma_network_type {
184 RDMA_NETWORK_IB,
185 RDMA_NETWORK_ROCE_V1,
186 RDMA_NETWORK_IPV4,
187 RDMA_NETWORK_IPV6
188};
189
190static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type)
191{
192 if (network_type == RDMA_NETWORK_IPV4 ||
193 network_type == RDMA_NETWORK_IPV6)
194 return IB_GID_TYPE_ROCE_UDP_ENCAP;
195 else if (network_type == RDMA_NETWORK_ROCE_V1)
196 return IB_GID_TYPE_ROCE;
197 else
198 return IB_GID_TYPE_IB;
199}
200
201static inline enum rdma_network_type
202rdma_gid_attr_network_type(const struct ib_gid_attr *attr)
203{
204 if (attr->gid_type == IB_GID_TYPE_IB)
205 return RDMA_NETWORK_IB;
206
207 if (attr->gid_type == IB_GID_TYPE_ROCE)
208 return RDMA_NETWORK_ROCE_V1;
209
210 if (ipv6_addr_v4mapped(a: (struct in6_addr *)&attr->gid))
211 return RDMA_NETWORK_IPV4;
212 else
213 return RDMA_NETWORK_IPV6;
214}
215
216enum rdma_link_layer {
217 IB_LINK_LAYER_UNSPECIFIED,
218 IB_LINK_LAYER_INFINIBAND,
219 IB_LINK_LAYER_ETHERNET,
220};
221
222enum ib_device_cap_flags {
223 IB_DEVICE_RESIZE_MAX_WR = IB_UVERBS_DEVICE_RESIZE_MAX_WR,
224 IB_DEVICE_BAD_PKEY_CNTR = IB_UVERBS_DEVICE_BAD_PKEY_CNTR,
225 IB_DEVICE_BAD_QKEY_CNTR = IB_UVERBS_DEVICE_BAD_QKEY_CNTR,
226 IB_DEVICE_RAW_MULTI = IB_UVERBS_DEVICE_RAW_MULTI,
227 IB_DEVICE_AUTO_PATH_MIG = IB_UVERBS_DEVICE_AUTO_PATH_MIG,
228 IB_DEVICE_CHANGE_PHY_PORT = IB_UVERBS_DEVICE_CHANGE_PHY_PORT,
229 IB_DEVICE_UD_AV_PORT_ENFORCE = IB_UVERBS_DEVICE_UD_AV_PORT_ENFORCE,
230 IB_DEVICE_CURR_QP_STATE_MOD = IB_UVERBS_DEVICE_CURR_QP_STATE_MOD,
231 IB_DEVICE_SHUTDOWN_PORT = IB_UVERBS_DEVICE_SHUTDOWN_PORT,
232 /* IB_DEVICE_INIT_TYPE = IB_UVERBS_DEVICE_INIT_TYPE, (not in use) */
233 IB_DEVICE_PORT_ACTIVE_EVENT = IB_UVERBS_DEVICE_PORT_ACTIVE_EVENT,
234 IB_DEVICE_SYS_IMAGE_GUID = IB_UVERBS_DEVICE_SYS_IMAGE_GUID,
235 IB_DEVICE_RC_RNR_NAK_GEN = IB_UVERBS_DEVICE_RC_RNR_NAK_GEN,
236 IB_DEVICE_SRQ_RESIZE = IB_UVERBS_DEVICE_SRQ_RESIZE,
237 IB_DEVICE_N_NOTIFY_CQ = IB_UVERBS_DEVICE_N_NOTIFY_CQ,
238
239 /* Reserved, old SEND_W_INV = 1 << 16,*/
240 IB_DEVICE_MEM_WINDOW = IB_UVERBS_DEVICE_MEM_WINDOW,
241 /*
242 * Devices should set IB_DEVICE_UD_IP_SUM if they support
243 * insertion of UDP and TCP checksum on outgoing UD IPoIB
244 * messages and can verify the validity of checksum for
245 * incoming messages. Setting this flag implies that the
246 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
247 */
248 IB_DEVICE_UD_IP_CSUM = IB_UVERBS_DEVICE_UD_IP_CSUM,
249 IB_DEVICE_XRC = IB_UVERBS_DEVICE_XRC,
250
251 /*
252 * This device supports the IB "base memory management extension",
253 * which includes support for fast registrations (IB_WR_REG_MR,
254 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs). This flag should
255 * also be set by any iWarp device which must support FRs to comply
256 * to the iWarp verbs spec. iWarp devices also support the
257 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the
258 * stag.
259 */
260 IB_DEVICE_MEM_MGT_EXTENSIONS = IB_UVERBS_DEVICE_MEM_MGT_EXTENSIONS,
261 IB_DEVICE_MEM_WINDOW_TYPE_2A = IB_UVERBS_DEVICE_MEM_WINDOW_TYPE_2A,
262 IB_DEVICE_MEM_WINDOW_TYPE_2B = IB_UVERBS_DEVICE_MEM_WINDOW_TYPE_2B,
263 IB_DEVICE_RC_IP_CSUM = IB_UVERBS_DEVICE_RC_IP_CSUM,
264 /* Deprecated. Please use IB_RAW_PACKET_CAP_IP_CSUM. */
265 IB_DEVICE_RAW_IP_CSUM = IB_UVERBS_DEVICE_RAW_IP_CSUM,
266 IB_DEVICE_MANAGED_FLOW_STEERING =
267 IB_UVERBS_DEVICE_MANAGED_FLOW_STEERING,
268 /* Deprecated. Please use IB_RAW_PACKET_CAP_SCATTER_FCS. */
269 IB_DEVICE_RAW_SCATTER_FCS = IB_UVERBS_DEVICE_RAW_SCATTER_FCS,
270 /* The device supports padding incoming writes to cacheline. */
271 IB_DEVICE_PCI_WRITE_END_PADDING =
272 IB_UVERBS_DEVICE_PCI_WRITE_END_PADDING,
273 /* Placement type attributes */
274 IB_DEVICE_FLUSH_GLOBAL = IB_UVERBS_DEVICE_FLUSH_GLOBAL,
275 IB_DEVICE_FLUSH_PERSISTENT = IB_UVERBS_DEVICE_FLUSH_PERSISTENT,
276 IB_DEVICE_ATOMIC_WRITE = IB_UVERBS_DEVICE_ATOMIC_WRITE,
277};
278
279enum ib_kernel_cap_flags {
280 /*
281 * This device supports a per-device lkey or stag that can be
282 * used without performing a memory registration for the local
283 * memory. Note that ULPs should never check this flag, but
284 * instead of use the local_dma_lkey flag in the ib_pd structure,
285 * which will always contain a usable lkey.
286 */
287 IBK_LOCAL_DMA_LKEY = 1 << 0,
288 /* IB_QP_CREATE_INTEGRITY_EN is supported to implement T10-PI */
289 IBK_INTEGRITY_HANDOVER = 1 << 1,
290 /* IB_ACCESS_ON_DEMAND is supported during reg_user_mr() */
291 IBK_ON_DEMAND_PAGING = 1 << 2,
292 /* IB_MR_TYPE_SG_GAPS is supported */
293 IBK_SG_GAPS_REG = 1 << 3,
294 /* Driver supports RDMA_NLDEV_CMD_DELLINK */
295 IBK_ALLOW_USER_UNREG = 1 << 4,
296
297 /* ipoib will use IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK */
298 IBK_BLOCK_MULTICAST_LOOPBACK = 1 << 5,
299 /* iopib will use IB_QP_CREATE_IPOIB_UD_LSO for its QPs */
300 IBK_UD_TSO = 1 << 6,
301 /* iopib will use the device ops:
302 * get_vf_config
303 * get_vf_guid
304 * get_vf_stats
305 * set_vf_guid
306 * set_vf_link_state
307 */
308 IBK_VIRTUAL_FUNCTION = 1 << 7,
309 /* ipoib will use IB_QP_CREATE_NETDEV_USE for its QPs */
310 IBK_RDMA_NETDEV_OPA = 1 << 8,
311};
312
313enum ib_atomic_cap {
314 IB_ATOMIC_NONE,
315 IB_ATOMIC_HCA,
316 IB_ATOMIC_GLOB
317};
318
319enum ib_odp_general_cap_bits {
320 IB_ODP_SUPPORT = 1 << 0,
321 IB_ODP_SUPPORT_IMPLICIT = 1 << 1,
322};
323
324enum ib_odp_transport_cap_bits {
325 IB_ODP_SUPPORT_SEND = 1 << 0,
326 IB_ODP_SUPPORT_RECV = 1 << 1,
327 IB_ODP_SUPPORT_WRITE = 1 << 2,
328 IB_ODP_SUPPORT_READ = 1 << 3,
329 IB_ODP_SUPPORT_ATOMIC = 1 << 4,
330 IB_ODP_SUPPORT_SRQ_RECV = 1 << 5,
331};
332
333struct ib_odp_caps {
334 uint64_t general_caps;
335 struct {
336 uint32_t rc_odp_caps;
337 uint32_t uc_odp_caps;
338 uint32_t ud_odp_caps;
339 uint32_t xrc_odp_caps;
340 } per_transport_caps;
341};
342
343struct ib_rss_caps {
344 /* Corresponding bit will be set if qp type from
345 * 'enum ib_qp_type' is supported, e.g.
346 * supported_qpts |= 1 << IB_QPT_UD
347 */
348 u32 supported_qpts;
349 u32 max_rwq_indirection_tables;
350 u32 max_rwq_indirection_table_size;
351};
352
353enum ib_tm_cap_flags {
354 /* Support tag matching with rendezvous offload for RC transport */
355 IB_TM_CAP_RNDV_RC = 1 << 0,
356};
357
358struct ib_tm_caps {
359 /* Max size of RNDV header */
360 u32 max_rndv_hdr_size;
361 /* Max number of entries in tag matching list */
362 u32 max_num_tags;
363 /* From enum ib_tm_cap_flags */
364 u32 flags;
365 /* Max number of outstanding list operations */
366 u32 max_ops;
367 /* Max number of SGE in tag matching entry */
368 u32 max_sge;
369};
370
371struct ib_cq_init_attr {
372 unsigned int cqe;
373 u32 comp_vector;
374 u32 flags;
375};
376
377enum ib_cq_attr_mask {
378 IB_CQ_MODERATE = 1 << 0,
379};
380
381struct ib_cq_caps {
382 u16 max_cq_moderation_count;
383 u16 max_cq_moderation_period;
384};
385
386struct ib_dm_mr_attr {
387 u64 length;
388 u64 offset;
389 u32 access_flags;
390};
391
392struct ib_dm_alloc_attr {
393 u64 length;
394 u32 alignment;
395 u32 flags;
396};
397
398struct ib_device_attr {
399 u64 fw_ver;
400 __be64 sys_image_guid;
401 u64 max_mr_size;
402 u64 page_size_cap;
403 u32 vendor_id;
404 u32 vendor_part_id;
405 u32 hw_ver;
406 int max_qp;
407 int max_qp_wr;
408 u64 device_cap_flags;
409 u64 kernel_cap_flags;
410 int max_send_sge;
411 int max_recv_sge;
412 int max_sge_rd;
413 int max_cq;
414 int max_cqe;
415 int max_mr;
416 int max_pd;
417 int max_qp_rd_atom;
418 int max_ee_rd_atom;
419 int max_res_rd_atom;
420 int max_qp_init_rd_atom;
421 int max_ee_init_rd_atom;
422 enum ib_atomic_cap atomic_cap;
423 enum ib_atomic_cap masked_atomic_cap;
424 int max_ee;
425 int max_rdd;
426 int max_mw;
427 int max_raw_ipv6_qp;
428 int max_raw_ethy_qp;
429 int max_mcast_grp;
430 int max_mcast_qp_attach;
431 int max_total_mcast_qp_attach;
432 int max_ah;
433 int max_srq;
434 int max_srq_wr;
435 int max_srq_sge;
436 unsigned int max_fast_reg_page_list_len;
437 unsigned int max_pi_fast_reg_page_list_len;
438 u16 max_pkeys;
439 u8 local_ca_ack_delay;
440 int sig_prot_cap;
441 int sig_guard_cap;
442 struct ib_odp_caps odp_caps;
443 uint64_t timestamp_mask;
444 uint64_t hca_core_clock; /* in KHZ */
445 struct ib_rss_caps rss_caps;
446 u32 max_wq_type_rq;
447 u32 raw_packet_caps; /* Use ib_raw_packet_caps enum */
448 struct ib_tm_caps tm_caps;
449 struct ib_cq_caps cq_caps;
450 u64 max_dm_size;
451 /* Max entries for sgl for optimized performance per READ */
452 u32 max_sgl_rd;
453};
454
455enum ib_mtu {
456 IB_MTU_256 = 1,
457 IB_MTU_512 = 2,
458 IB_MTU_1024 = 3,
459 IB_MTU_2048 = 4,
460 IB_MTU_4096 = 5
461};
462
463enum opa_mtu {
464 OPA_MTU_8192 = 6,
465 OPA_MTU_10240 = 7
466};
467
468static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
469{
470 switch (mtu) {
471 case IB_MTU_256: return 256;
472 case IB_MTU_512: return 512;
473 case IB_MTU_1024: return 1024;
474 case IB_MTU_2048: return 2048;
475 case IB_MTU_4096: return 4096;
476 default: return -1;
477 }
478}
479
480static inline enum ib_mtu ib_mtu_int_to_enum(int mtu)
481{
482 if (mtu >= 4096)
483 return IB_MTU_4096;
484 else if (mtu >= 2048)
485 return IB_MTU_2048;
486 else if (mtu >= 1024)
487 return IB_MTU_1024;
488 else if (mtu >= 512)
489 return IB_MTU_512;
490 else
491 return IB_MTU_256;
492}
493
494static inline int opa_mtu_enum_to_int(enum opa_mtu mtu)
495{
496 switch (mtu) {
497 case OPA_MTU_8192:
498 return 8192;
499 case OPA_MTU_10240:
500 return 10240;
501 default:
502 return(ib_mtu_enum_to_int(mtu: (enum ib_mtu)mtu));
503 }
504}
505
506static inline enum opa_mtu opa_mtu_int_to_enum(int mtu)
507{
508 if (mtu >= 10240)
509 return OPA_MTU_10240;
510 else if (mtu >= 8192)
511 return OPA_MTU_8192;
512 else
513 return ((enum opa_mtu)ib_mtu_int_to_enum(mtu));
514}
515
516enum ib_port_state {
517 IB_PORT_NOP = 0,
518 IB_PORT_DOWN = 1,
519 IB_PORT_INIT = 2,
520 IB_PORT_ARMED = 3,
521 IB_PORT_ACTIVE = 4,
522 IB_PORT_ACTIVE_DEFER = 5
523};
524
525enum ib_port_phys_state {
526 IB_PORT_PHYS_STATE_SLEEP = 1,
527 IB_PORT_PHYS_STATE_POLLING = 2,
528 IB_PORT_PHYS_STATE_DISABLED = 3,
529 IB_PORT_PHYS_STATE_PORT_CONFIGURATION_TRAINING = 4,
530 IB_PORT_PHYS_STATE_LINK_UP = 5,
531 IB_PORT_PHYS_STATE_LINK_ERROR_RECOVERY = 6,
532 IB_PORT_PHYS_STATE_PHY_TEST = 7,
533};
534
535enum ib_port_width {
536 IB_WIDTH_1X = 1,
537 IB_WIDTH_2X = 16,
538 IB_WIDTH_4X = 2,
539 IB_WIDTH_8X = 4,
540 IB_WIDTH_12X = 8
541};
542
543static inline int ib_width_enum_to_int(enum ib_port_width width)
544{
545 switch (width) {
546 case IB_WIDTH_1X: return 1;
547 case IB_WIDTH_2X: return 2;
548 case IB_WIDTH_4X: return 4;
549 case IB_WIDTH_8X: return 8;
550 case IB_WIDTH_12X: return 12;
551 default: return -1;
552 }
553}
554
555enum ib_port_speed {
556 IB_SPEED_SDR = 1,
557 IB_SPEED_DDR = 2,
558 IB_SPEED_QDR = 4,
559 IB_SPEED_FDR10 = 8,
560 IB_SPEED_FDR = 16,
561 IB_SPEED_EDR = 32,
562 IB_SPEED_HDR = 64,
563 IB_SPEED_NDR = 128,
564 IB_SPEED_XDR = 256,
565};
566
567enum ib_stat_flag {
568 IB_STAT_FLAG_OPTIONAL = 1 << 0,
569};
570
571/**
572 * struct rdma_stat_desc
573 * @name - The name of the counter
574 * @flags - Flags of the counter; For example, IB_STAT_FLAG_OPTIONAL
575 * @priv - Driver private information; Core code should not use
576 */
577struct rdma_stat_desc {
578 const char *name;
579 unsigned int flags;
580 const void *priv;
581};
582
583/**
584 * struct rdma_hw_stats
585 * @lock - Mutex to protect parallel write access to lifespan and values
586 * of counters, which are 64bits and not guaranteed to be written
587 * atomicaly on 32bits systems.
588 * @timestamp - Used by the core code to track when the last update was
589 * @lifespan - Used by the core code to determine how old the counters
590 * should be before being updated again. Stored in jiffies, defaults
591 * to 10 milliseconds, drivers can override the default be specifying
592 * their own value during their allocation routine.
593 * @descs - Array of pointers to static descriptors used for the counters
594 * in directory.
595 * @is_disabled - A bitmap to indicate each counter is currently disabled
596 * or not.
597 * @num_counters - How many hardware counters there are. If name is
598 * shorter than this number, a kernel oops will result. Driver authors
599 * are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters)
600 * in their code to prevent this.
601 * @value - Array of u64 counters that are accessed by the sysfs code and
602 * filled in by the drivers get_stats routine
603 */
604struct rdma_hw_stats {
605 struct mutex lock; /* Protect lifespan and values[] */
606 unsigned long timestamp;
607 unsigned long lifespan;
608 const struct rdma_stat_desc *descs;
609 unsigned long *is_disabled;
610 int num_counters;
611 u64 value[] __counted_by(num_counters);
612};
613
614#define RDMA_HW_STATS_DEFAULT_LIFESPAN 10
615
616struct rdma_hw_stats *rdma_alloc_hw_stats_struct(
617 const struct rdma_stat_desc *descs, int num_counters,
618 unsigned long lifespan);
619
620void rdma_free_hw_stats_struct(struct rdma_hw_stats *stats);
621
622/* Define bits for the various functionality this port needs to be supported by
623 * the core.
624 */
625/* Management 0x00000FFF */
626#define RDMA_CORE_CAP_IB_MAD 0x00000001
627#define RDMA_CORE_CAP_IB_SMI 0x00000002
628#define RDMA_CORE_CAP_IB_CM 0x00000004
629#define RDMA_CORE_CAP_IW_CM 0x00000008
630#define RDMA_CORE_CAP_IB_SA 0x00000010
631#define RDMA_CORE_CAP_OPA_MAD 0x00000020
632
633/* Address format 0x000FF000 */
634#define RDMA_CORE_CAP_AF_IB 0x00001000
635#define RDMA_CORE_CAP_ETH_AH 0x00002000
636#define RDMA_CORE_CAP_OPA_AH 0x00004000
637#define RDMA_CORE_CAP_IB_GRH_REQUIRED 0x00008000
638
639/* Protocol 0xFFF00000 */
640#define RDMA_CORE_CAP_PROT_IB 0x00100000
641#define RDMA_CORE_CAP_PROT_ROCE 0x00200000
642#define RDMA_CORE_CAP_PROT_IWARP 0x00400000
643#define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000
644#define RDMA_CORE_CAP_PROT_RAW_PACKET 0x01000000
645#define RDMA_CORE_CAP_PROT_USNIC 0x02000000
646
647#define RDMA_CORE_PORT_IB_GRH_REQUIRED (RDMA_CORE_CAP_IB_GRH_REQUIRED \
648 | RDMA_CORE_CAP_PROT_ROCE \
649 | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP)
650
651#define RDMA_CORE_PORT_IBA_IB (RDMA_CORE_CAP_PROT_IB \
652 | RDMA_CORE_CAP_IB_MAD \
653 | RDMA_CORE_CAP_IB_SMI \
654 | RDMA_CORE_CAP_IB_CM \
655 | RDMA_CORE_CAP_IB_SA \
656 | RDMA_CORE_CAP_AF_IB)
657#define RDMA_CORE_PORT_IBA_ROCE (RDMA_CORE_CAP_PROT_ROCE \
658 | RDMA_CORE_CAP_IB_MAD \
659 | RDMA_CORE_CAP_IB_CM \
660 | RDMA_CORE_CAP_AF_IB \
661 | RDMA_CORE_CAP_ETH_AH)
662#define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP \
663 (RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \
664 | RDMA_CORE_CAP_IB_MAD \
665 | RDMA_CORE_CAP_IB_CM \
666 | RDMA_CORE_CAP_AF_IB \
667 | RDMA_CORE_CAP_ETH_AH)
668#define RDMA_CORE_PORT_IWARP (RDMA_CORE_CAP_PROT_IWARP \
669 | RDMA_CORE_CAP_IW_CM)
670#define RDMA_CORE_PORT_INTEL_OPA (RDMA_CORE_PORT_IBA_IB \
671 | RDMA_CORE_CAP_OPA_MAD)
672
673#define RDMA_CORE_PORT_RAW_PACKET (RDMA_CORE_CAP_PROT_RAW_PACKET)
674
675#define RDMA_CORE_PORT_USNIC (RDMA_CORE_CAP_PROT_USNIC)
676
677struct ib_port_attr {
678 u64 subnet_prefix;
679 enum ib_port_state state;
680 enum ib_mtu max_mtu;
681 enum ib_mtu active_mtu;
682 u32 phys_mtu;
683 int gid_tbl_len;
684 unsigned int ip_gids:1;
685 /* This is the value from PortInfo CapabilityMask, defined by IBA */
686 u32 port_cap_flags;
687 u32 max_msg_sz;
688 u32 bad_pkey_cntr;
689 u32 qkey_viol_cntr;
690 u16 pkey_tbl_len;
691 u32 sm_lid;
692 u32 lid;
693 u8 lmc;
694 u8 max_vl_num;
695 u8 sm_sl;
696 u8 subnet_timeout;
697 u8 init_type_reply;
698 u8 active_width;
699 u16 active_speed;
700 u8 phys_state;
701 u16 port_cap_flags2;
702};
703
704enum ib_device_modify_flags {
705 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0,
706 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1
707};
708
709#define IB_DEVICE_NODE_DESC_MAX 64
710
711struct ib_device_modify {
712 u64 sys_image_guid;
713 char node_desc[IB_DEVICE_NODE_DESC_MAX];
714};
715
716enum ib_port_modify_flags {
717 IB_PORT_SHUTDOWN = 1,
718 IB_PORT_INIT_TYPE = (1<<2),
719 IB_PORT_RESET_QKEY_CNTR = (1<<3),
720 IB_PORT_OPA_MASK_CHG = (1<<4)
721};
722
723struct ib_port_modify {
724 u32 set_port_cap_mask;
725 u32 clr_port_cap_mask;
726 u8 init_type;
727};
728
729enum ib_event_type {
730 IB_EVENT_CQ_ERR,
731 IB_EVENT_QP_FATAL,
732 IB_EVENT_QP_REQ_ERR,
733 IB_EVENT_QP_ACCESS_ERR,
734 IB_EVENT_COMM_EST,
735 IB_EVENT_SQ_DRAINED,
736 IB_EVENT_PATH_MIG,
737 IB_EVENT_PATH_MIG_ERR,
738 IB_EVENT_DEVICE_FATAL,
739 IB_EVENT_PORT_ACTIVE,
740 IB_EVENT_PORT_ERR,
741 IB_EVENT_LID_CHANGE,
742 IB_EVENT_PKEY_CHANGE,
743 IB_EVENT_SM_CHANGE,
744 IB_EVENT_SRQ_ERR,
745 IB_EVENT_SRQ_LIMIT_REACHED,
746 IB_EVENT_QP_LAST_WQE_REACHED,
747 IB_EVENT_CLIENT_REREGISTER,
748 IB_EVENT_GID_CHANGE,
749 IB_EVENT_WQ_FATAL,
750};
751
752const char *__attribute_const__ ib_event_msg(enum ib_event_type event);
753
754struct ib_event {
755 struct ib_device *device;
756 union {
757 struct ib_cq *cq;
758 struct ib_qp *qp;
759 struct ib_srq *srq;
760 struct ib_wq *wq;
761 u32 port_num;
762 } element;
763 enum ib_event_type event;
764};
765
766struct ib_event_handler {
767 struct ib_device *device;
768 void (*handler)(struct ib_event_handler *, struct ib_event *);
769 struct list_head list;
770};
771
772#define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \
773 do { \
774 (_ptr)->device = _device; \
775 (_ptr)->handler = _handler; \
776 INIT_LIST_HEAD(&(_ptr)->list); \
777 } while (0)
778
779struct ib_global_route {
780 const struct ib_gid_attr *sgid_attr;
781 union ib_gid dgid;
782 u32 flow_label;
783 u8 sgid_index;
784 u8 hop_limit;
785 u8 traffic_class;
786};
787
788struct ib_grh {
789 __be32 version_tclass_flow;
790 __be16 paylen;
791 u8 next_hdr;
792 u8 hop_limit;
793 union ib_gid sgid;
794 union ib_gid dgid;
795};
796
797union rdma_network_hdr {
798 struct ib_grh ibgrh;
799 struct {
800 /* The IB spec states that if it's IPv4, the header
801 * is located in the last 20 bytes of the header.
802 */
803 u8 reserved[20];
804 struct iphdr roce4grh;
805 };
806};
807
808#define IB_QPN_MASK 0xFFFFFF
809
810enum {
811 IB_MULTICAST_QPN = 0xffffff
812};
813
814#define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF)
815#define IB_MULTICAST_LID_BASE cpu_to_be16(0xC000)
816
817enum ib_ah_flags {
818 IB_AH_GRH = 1
819};
820
821enum ib_rate {
822 IB_RATE_PORT_CURRENT = 0,
823 IB_RATE_2_5_GBPS = 2,
824 IB_RATE_5_GBPS = 5,
825 IB_RATE_10_GBPS = 3,
826 IB_RATE_20_GBPS = 6,
827 IB_RATE_30_GBPS = 4,
828 IB_RATE_40_GBPS = 7,
829 IB_RATE_60_GBPS = 8,
830 IB_RATE_80_GBPS = 9,
831 IB_RATE_120_GBPS = 10,
832 IB_RATE_14_GBPS = 11,
833 IB_RATE_56_GBPS = 12,
834 IB_RATE_112_GBPS = 13,
835 IB_RATE_168_GBPS = 14,
836 IB_RATE_25_GBPS = 15,
837 IB_RATE_100_GBPS = 16,
838 IB_RATE_200_GBPS = 17,
839 IB_RATE_300_GBPS = 18,
840 IB_RATE_28_GBPS = 19,
841 IB_RATE_50_GBPS = 20,
842 IB_RATE_400_GBPS = 21,
843 IB_RATE_600_GBPS = 22,
844 IB_RATE_800_GBPS = 23,
845};
846
847/**
848 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
849 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be
850 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
851 * @rate: rate to convert.
852 */
853__attribute_const__ int ib_rate_to_mult(enum ib_rate rate);
854
855/**
856 * ib_rate_to_mbps - Convert the IB rate enum to Mbps.
857 * For example, IB_RATE_2_5_GBPS will be converted to 2500.
858 * @rate: rate to convert.
859 */
860__attribute_const__ int ib_rate_to_mbps(enum ib_rate rate);
861
862
863/**
864 * enum ib_mr_type - memory region type
865 * @IB_MR_TYPE_MEM_REG: memory region that is used for
866 * normal registration
867 * @IB_MR_TYPE_SG_GAPS: memory region that is capable to
868 * register any arbitrary sg lists (without
869 * the normal mr constraints - see
870 * ib_map_mr_sg)
871 * @IB_MR_TYPE_DM: memory region that is used for device
872 * memory registration
873 * @IB_MR_TYPE_USER: memory region that is used for the user-space
874 * application
875 * @IB_MR_TYPE_DMA: memory region that is used for DMA operations
876 * without address translations (VA=PA)
877 * @IB_MR_TYPE_INTEGRITY: memory region that is used for
878 * data integrity operations
879 */
880enum ib_mr_type {
881 IB_MR_TYPE_MEM_REG,
882 IB_MR_TYPE_SG_GAPS,
883 IB_MR_TYPE_DM,
884 IB_MR_TYPE_USER,
885 IB_MR_TYPE_DMA,
886 IB_MR_TYPE_INTEGRITY,
887};
888
889enum ib_mr_status_check {
890 IB_MR_CHECK_SIG_STATUS = 1,
891};
892
893/**
894 * struct ib_mr_status - Memory region status container
895 *
896 * @fail_status: Bitmask of MR checks status. For each
897 * failed check a corresponding status bit is set.
898 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS
899 * failure.
900 */
901struct ib_mr_status {
902 u32 fail_status;
903 struct ib_sig_err sig_err;
904};
905
906/**
907 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
908 * enum.
909 * @mult: multiple to convert.
910 */
911__attribute_const__ enum ib_rate mult_to_ib_rate(int mult);
912
913struct rdma_ah_init_attr {
914 struct rdma_ah_attr *ah_attr;
915 u32 flags;
916 struct net_device *xmit_slave;
917};
918
919enum rdma_ah_attr_type {
920 RDMA_AH_ATTR_TYPE_UNDEFINED,
921 RDMA_AH_ATTR_TYPE_IB,
922 RDMA_AH_ATTR_TYPE_ROCE,
923 RDMA_AH_ATTR_TYPE_OPA,
924};
925
926struct ib_ah_attr {
927 u16 dlid;
928 u8 src_path_bits;
929};
930
931struct roce_ah_attr {
932 u8 dmac[ETH_ALEN];
933};
934
935struct opa_ah_attr {
936 u32 dlid;
937 u8 src_path_bits;
938 bool make_grd;
939};
940
941struct rdma_ah_attr {
942 struct ib_global_route grh;
943 u8 sl;
944 u8 static_rate;
945 u32 port_num;
946 u8 ah_flags;
947 enum rdma_ah_attr_type type;
948 union {
949 struct ib_ah_attr ib;
950 struct roce_ah_attr roce;
951 struct opa_ah_attr opa;
952 };
953};
954
955enum ib_wc_status {
956 IB_WC_SUCCESS,
957 IB_WC_LOC_LEN_ERR,
958 IB_WC_LOC_QP_OP_ERR,
959 IB_WC_LOC_EEC_OP_ERR,
960 IB_WC_LOC_PROT_ERR,
961 IB_WC_WR_FLUSH_ERR,
962 IB_WC_MW_BIND_ERR,
963 IB_WC_BAD_RESP_ERR,
964 IB_WC_LOC_ACCESS_ERR,
965 IB_WC_REM_INV_REQ_ERR,
966 IB_WC_REM_ACCESS_ERR,
967 IB_WC_REM_OP_ERR,
968 IB_WC_RETRY_EXC_ERR,
969 IB_WC_RNR_RETRY_EXC_ERR,
970 IB_WC_LOC_RDD_VIOL_ERR,
971 IB_WC_REM_INV_RD_REQ_ERR,
972 IB_WC_REM_ABORT_ERR,
973 IB_WC_INV_EECN_ERR,
974 IB_WC_INV_EEC_STATE_ERR,
975 IB_WC_FATAL_ERR,
976 IB_WC_RESP_TIMEOUT_ERR,
977 IB_WC_GENERAL_ERR
978};
979
980const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status);
981
982enum ib_wc_opcode {
983 IB_WC_SEND = IB_UVERBS_WC_SEND,
984 IB_WC_RDMA_WRITE = IB_UVERBS_WC_RDMA_WRITE,
985 IB_WC_RDMA_READ = IB_UVERBS_WC_RDMA_READ,
986 IB_WC_COMP_SWAP = IB_UVERBS_WC_COMP_SWAP,
987 IB_WC_FETCH_ADD = IB_UVERBS_WC_FETCH_ADD,
988 IB_WC_BIND_MW = IB_UVERBS_WC_BIND_MW,
989 IB_WC_LOCAL_INV = IB_UVERBS_WC_LOCAL_INV,
990 IB_WC_LSO = IB_UVERBS_WC_TSO,
991 IB_WC_ATOMIC_WRITE = IB_UVERBS_WC_ATOMIC_WRITE,
992 IB_WC_REG_MR,
993 IB_WC_MASKED_COMP_SWAP,
994 IB_WC_MASKED_FETCH_ADD,
995 IB_WC_FLUSH = IB_UVERBS_WC_FLUSH,
996/*
997 * Set value of IB_WC_RECV so consumers can test if a completion is a
998 * receive by testing (opcode & IB_WC_RECV).
999 */
1000 IB_WC_RECV = 1 << 7,
1001 IB_WC_RECV_RDMA_WITH_IMM
1002};
1003
1004enum ib_wc_flags {
1005 IB_WC_GRH = 1,
1006 IB_WC_WITH_IMM = (1<<1),
1007 IB_WC_WITH_INVALIDATE = (1<<2),
1008 IB_WC_IP_CSUM_OK = (1<<3),
1009 IB_WC_WITH_SMAC = (1<<4),
1010 IB_WC_WITH_VLAN = (1<<5),
1011 IB_WC_WITH_NETWORK_HDR_TYPE = (1<<6),
1012};
1013
1014struct ib_wc {
1015 union {
1016 u64 wr_id;
1017 struct ib_cqe *wr_cqe;
1018 };
1019 enum ib_wc_status status;
1020 enum ib_wc_opcode opcode;
1021 u32 vendor_err;
1022 u32 byte_len;
1023 struct ib_qp *qp;
1024 union {
1025 __be32 imm_data;
1026 u32 invalidate_rkey;
1027 } ex;
1028 u32 src_qp;
1029 u32 slid;
1030 int wc_flags;
1031 u16 pkey_index;
1032 u8 sl;
1033 u8 dlid_path_bits;
1034 u32 port_num; /* valid only for DR SMPs on switches */
1035 u8 smac[ETH_ALEN];
1036 u16 vlan_id;
1037 u8 network_hdr_type;
1038};
1039
1040enum ib_cq_notify_flags {
1041 IB_CQ_SOLICITED = 1 << 0,
1042 IB_CQ_NEXT_COMP = 1 << 1,
1043 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
1044 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2,
1045};
1046
1047enum ib_srq_type {
1048 IB_SRQT_BASIC = IB_UVERBS_SRQT_BASIC,
1049 IB_SRQT_XRC = IB_UVERBS_SRQT_XRC,
1050 IB_SRQT_TM = IB_UVERBS_SRQT_TM,
1051};
1052
1053static inline bool ib_srq_has_cq(enum ib_srq_type srq_type)
1054{
1055 return srq_type == IB_SRQT_XRC ||
1056 srq_type == IB_SRQT_TM;
1057}
1058
1059enum ib_srq_attr_mask {
1060 IB_SRQ_MAX_WR = 1 << 0,
1061 IB_SRQ_LIMIT = 1 << 1,
1062};
1063
1064struct ib_srq_attr {
1065 u32 max_wr;
1066 u32 max_sge;
1067 u32 srq_limit;
1068};
1069
1070struct ib_srq_init_attr {
1071 void (*event_handler)(struct ib_event *, void *);
1072 void *srq_context;
1073 struct ib_srq_attr attr;
1074 enum ib_srq_type srq_type;
1075
1076 struct {
1077 struct ib_cq *cq;
1078 union {
1079 struct {
1080 struct ib_xrcd *xrcd;
1081 } xrc;
1082
1083 struct {
1084 u32 max_num_tags;
1085 } tag_matching;
1086 };
1087 } ext;
1088};
1089
1090struct ib_qp_cap {
1091 u32 max_send_wr;
1092 u32 max_recv_wr;
1093 u32 max_send_sge;
1094 u32 max_recv_sge;
1095 u32 max_inline_data;
1096
1097 /*
1098 * Maximum number of rdma_rw_ctx structures in flight at a time.
1099 * ib_create_qp() will calculate the right amount of needed WRs
1100 * and MRs based on this.
1101 */
1102 u32 max_rdma_ctxs;
1103};
1104
1105enum ib_sig_type {
1106 IB_SIGNAL_ALL_WR,
1107 IB_SIGNAL_REQ_WR
1108};
1109
1110enum ib_qp_type {
1111 /*
1112 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
1113 * here (and in that order) since the MAD layer uses them as
1114 * indices into a 2-entry table.
1115 */
1116 IB_QPT_SMI,
1117 IB_QPT_GSI,
1118
1119 IB_QPT_RC = IB_UVERBS_QPT_RC,
1120 IB_QPT_UC = IB_UVERBS_QPT_UC,
1121 IB_QPT_UD = IB_UVERBS_QPT_UD,
1122 IB_QPT_RAW_IPV6,
1123 IB_QPT_RAW_ETHERTYPE,
1124 IB_QPT_RAW_PACKET = IB_UVERBS_QPT_RAW_PACKET,
1125 IB_QPT_XRC_INI = IB_UVERBS_QPT_XRC_INI,
1126 IB_QPT_XRC_TGT = IB_UVERBS_QPT_XRC_TGT,
1127 IB_QPT_MAX,
1128 IB_QPT_DRIVER = IB_UVERBS_QPT_DRIVER,
1129 /* Reserve a range for qp types internal to the low level driver.
1130 * These qp types will not be visible at the IB core layer, so the
1131 * IB_QPT_MAX usages should not be affected in the core layer
1132 */
1133 IB_QPT_RESERVED1 = 0x1000,
1134 IB_QPT_RESERVED2,
1135 IB_QPT_RESERVED3,
1136 IB_QPT_RESERVED4,
1137 IB_QPT_RESERVED5,
1138 IB_QPT_RESERVED6,
1139 IB_QPT_RESERVED7,
1140 IB_QPT_RESERVED8,
1141 IB_QPT_RESERVED9,
1142 IB_QPT_RESERVED10,
1143};
1144
1145enum ib_qp_create_flags {
1146 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0,
1147 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK =
1148 IB_UVERBS_QP_CREATE_BLOCK_MULTICAST_LOOPBACK,
1149 IB_QP_CREATE_CROSS_CHANNEL = 1 << 2,
1150 IB_QP_CREATE_MANAGED_SEND = 1 << 3,
1151 IB_QP_CREATE_MANAGED_RECV = 1 << 4,
1152 IB_QP_CREATE_NETIF_QP = 1 << 5,
1153 IB_QP_CREATE_INTEGRITY_EN = 1 << 6,
1154 IB_QP_CREATE_NETDEV_USE = 1 << 7,
1155 IB_QP_CREATE_SCATTER_FCS =
1156 IB_UVERBS_QP_CREATE_SCATTER_FCS,
1157 IB_QP_CREATE_CVLAN_STRIPPING =
1158 IB_UVERBS_QP_CREATE_CVLAN_STRIPPING,
1159 IB_QP_CREATE_SOURCE_QPN = 1 << 10,
1160 IB_QP_CREATE_PCI_WRITE_END_PADDING =
1161 IB_UVERBS_QP_CREATE_PCI_WRITE_END_PADDING,
1162 /* reserve bits 26-31 for low level drivers' internal use */
1163 IB_QP_CREATE_RESERVED_START = 1 << 26,
1164 IB_QP_CREATE_RESERVED_END = 1 << 31,
1165};
1166
1167/*
1168 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler
1169 * callback to destroy the passed in QP.
1170 */
1171
1172struct ib_qp_init_attr {
1173 /* This callback occurs in workqueue context */
1174 void (*event_handler)(struct ib_event *, void *);
1175
1176 void *qp_context;
1177 struct ib_cq *send_cq;
1178 struct ib_cq *recv_cq;
1179 struct ib_srq *srq;
1180 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
1181 struct ib_qp_cap cap;
1182 enum ib_sig_type sq_sig_type;
1183 enum ib_qp_type qp_type;
1184 u32 create_flags;
1185
1186 /*
1187 * Only needed for special QP types, or when using the RW API.
1188 */
1189 u32 port_num;
1190 struct ib_rwq_ind_table *rwq_ind_tbl;
1191 u32 source_qpn;
1192};
1193
1194struct ib_qp_open_attr {
1195 void (*event_handler)(struct ib_event *, void *);
1196 void *qp_context;
1197 u32 qp_num;
1198 enum ib_qp_type qp_type;
1199};
1200
1201enum ib_rnr_timeout {
1202 IB_RNR_TIMER_655_36 = 0,
1203 IB_RNR_TIMER_000_01 = 1,
1204 IB_RNR_TIMER_000_02 = 2,
1205 IB_RNR_TIMER_000_03 = 3,
1206 IB_RNR_TIMER_000_04 = 4,
1207 IB_RNR_TIMER_000_06 = 5,
1208 IB_RNR_TIMER_000_08 = 6,
1209 IB_RNR_TIMER_000_12 = 7,
1210 IB_RNR_TIMER_000_16 = 8,
1211 IB_RNR_TIMER_000_24 = 9,
1212 IB_RNR_TIMER_000_32 = 10,
1213 IB_RNR_TIMER_000_48 = 11,
1214 IB_RNR_TIMER_000_64 = 12,
1215 IB_RNR_TIMER_000_96 = 13,
1216 IB_RNR_TIMER_001_28 = 14,
1217 IB_RNR_TIMER_001_92 = 15,
1218 IB_RNR_TIMER_002_56 = 16,
1219 IB_RNR_TIMER_003_84 = 17,
1220 IB_RNR_TIMER_005_12 = 18,
1221 IB_RNR_TIMER_007_68 = 19,
1222 IB_RNR_TIMER_010_24 = 20,
1223 IB_RNR_TIMER_015_36 = 21,
1224 IB_RNR_TIMER_020_48 = 22,
1225 IB_RNR_TIMER_030_72 = 23,
1226 IB_RNR_TIMER_040_96 = 24,
1227 IB_RNR_TIMER_061_44 = 25,
1228 IB_RNR_TIMER_081_92 = 26,
1229 IB_RNR_TIMER_122_88 = 27,
1230 IB_RNR_TIMER_163_84 = 28,
1231 IB_RNR_TIMER_245_76 = 29,
1232 IB_RNR_TIMER_327_68 = 30,
1233 IB_RNR_TIMER_491_52 = 31
1234};
1235
1236enum ib_qp_attr_mask {
1237 IB_QP_STATE = 1,
1238 IB_QP_CUR_STATE = (1<<1),
1239 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2),
1240 IB_QP_ACCESS_FLAGS = (1<<3),
1241 IB_QP_PKEY_INDEX = (1<<4),
1242 IB_QP_PORT = (1<<5),
1243 IB_QP_QKEY = (1<<6),
1244 IB_QP_AV = (1<<7),
1245 IB_QP_PATH_MTU = (1<<8),
1246 IB_QP_TIMEOUT = (1<<9),
1247 IB_QP_RETRY_CNT = (1<<10),
1248 IB_QP_RNR_RETRY = (1<<11),
1249 IB_QP_RQ_PSN = (1<<12),
1250 IB_QP_MAX_QP_RD_ATOMIC = (1<<13),
1251 IB_QP_ALT_PATH = (1<<14),
1252 IB_QP_MIN_RNR_TIMER = (1<<15),
1253 IB_QP_SQ_PSN = (1<<16),
1254 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17),
1255 IB_QP_PATH_MIG_STATE = (1<<18),
1256 IB_QP_CAP = (1<<19),
1257 IB_QP_DEST_QPN = (1<<20),
1258 IB_QP_RESERVED1 = (1<<21),
1259 IB_QP_RESERVED2 = (1<<22),
1260 IB_QP_RESERVED3 = (1<<23),
1261 IB_QP_RESERVED4 = (1<<24),
1262 IB_QP_RATE_LIMIT = (1<<25),
1263
1264 IB_QP_ATTR_STANDARD_BITS = GENMASK(20, 0),
1265};
1266
1267enum ib_qp_state {
1268 IB_QPS_RESET,
1269 IB_QPS_INIT,
1270 IB_QPS_RTR,
1271 IB_QPS_RTS,
1272 IB_QPS_SQD,
1273 IB_QPS_SQE,
1274 IB_QPS_ERR
1275};
1276
1277enum ib_mig_state {
1278 IB_MIG_MIGRATED,
1279 IB_MIG_REARM,
1280 IB_MIG_ARMED
1281};
1282
1283enum ib_mw_type {
1284 IB_MW_TYPE_1 = 1,
1285 IB_MW_TYPE_2 = 2
1286};
1287
1288struct ib_qp_attr {
1289 enum ib_qp_state qp_state;
1290 enum ib_qp_state cur_qp_state;
1291 enum ib_mtu path_mtu;
1292 enum ib_mig_state path_mig_state;
1293 u32 qkey;
1294 u32 rq_psn;
1295 u32 sq_psn;
1296 u32 dest_qp_num;
1297 int qp_access_flags;
1298 struct ib_qp_cap cap;
1299 struct rdma_ah_attr ah_attr;
1300 struct rdma_ah_attr alt_ah_attr;
1301 u16 pkey_index;
1302 u16 alt_pkey_index;
1303 u8 en_sqd_async_notify;
1304 u8 sq_draining;
1305 u8 max_rd_atomic;
1306 u8 max_dest_rd_atomic;
1307 u8 min_rnr_timer;
1308 u32 port_num;
1309 u8 timeout;
1310 u8 retry_cnt;
1311 u8 rnr_retry;
1312 u32 alt_port_num;
1313 u8 alt_timeout;
1314 u32 rate_limit;
1315 struct net_device *xmit_slave;
1316};
1317
1318enum ib_wr_opcode {
1319 /* These are shared with userspace */
1320 IB_WR_RDMA_WRITE = IB_UVERBS_WR_RDMA_WRITE,
1321 IB_WR_RDMA_WRITE_WITH_IMM = IB_UVERBS_WR_RDMA_WRITE_WITH_IMM,
1322 IB_WR_SEND = IB_UVERBS_WR_SEND,
1323 IB_WR_SEND_WITH_IMM = IB_UVERBS_WR_SEND_WITH_IMM,
1324 IB_WR_RDMA_READ = IB_UVERBS_WR_RDMA_READ,
1325 IB_WR_ATOMIC_CMP_AND_SWP = IB_UVERBS_WR_ATOMIC_CMP_AND_SWP,
1326 IB_WR_ATOMIC_FETCH_AND_ADD = IB_UVERBS_WR_ATOMIC_FETCH_AND_ADD,
1327 IB_WR_BIND_MW = IB_UVERBS_WR_BIND_MW,
1328 IB_WR_LSO = IB_UVERBS_WR_TSO,
1329 IB_WR_SEND_WITH_INV = IB_UVERBS_WR_SEND_WITH_INV,
1330 IB_WR_RDMA_READ_WITH_INV = IB_UVERBS_WR_RDMA_READ_WITH_INV,
1331 IB_WR_LOCAL_INV = IB_UVERBS_WR_LOCAL_INV,
1332 IB_WR_MASKED_ATOMIC_CMP_AND_SWP =
1333 IB_UVERBS_WR_MASKED_ATOMIC_CMP_AND_SWP,
1334 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD =
1335 IB_UVERBS_WR_MASKED_ATOMIC_FETCH_AND_ADD,
1336 IB_WR_FLUSH = IB_UVERBS_WR_FLUSH,
1337 IB_WR_ATOMIC_WRITE = IB_UVERBS_WR_ATOMIC_WRITE,
1338
1339 /* These are kernel only and can not be issued by userspace */
1340 IB_WR_REG_MR = 0x20,
1341 IB_WR_REG_MR_INTEGRITY,
1342
1343 /* reserve values for low level drivers' internal use.
1344 * These values will not be used at all in the ib core layer.
1345 */
1346 IB_WR_RESERVED1 = 0xf0,
1347 IB_WR_RESERVED2,
1348 IB_WR_RESERVED3,
1349 IB_WR_RESERVED4,
1350 IB_WR_RESERVED5,
1351 IB_WR_RESERVED6,
1352 IB_WR_RESERVED7,
1353 IB_WR_RESERVED8,
1354 IB_WR_RESERVED9,
1355 IB_WR_RESERVED10,
1356};
1357
1358enum ib_send_flags {
1359 IB_SEND_FENCE = 1,
1360 IB_SEND_SIGNALED = (1<<1),
1361 IB_SEND_SOLICITED = (1<<2),
1362 IB_SEND_INLINE = (1<<3),
1363 IB_SEND_IP_CSUM = (1<<4),
1364
1365 /* reserve bits 26-31 for low level drivers' internal use */
1366 IB_SEND_RESERVED_START = (1 << 26),
1367 IB_SEND_RESERVED_END = (1 << 31),
1368};
1369
1370struct ib_sge {
1371 u64 addr;
1372 u32 length;
1373 u32 lkey;
1374};
1375
1376struct ib_cqe {
1377 void (*done)(struct ib_cq *cq, struct ib_wc *wc);
1378};
1379
1380struct ib_send_wr {
1381 struct ib_send_wr *next;
1382 union {
1383 u64 wr_id;
1384 struct ib_cqe *wr_cqe;
1385 };
1386 struct ib_sge *sg_list;
1387 int num_sge;
1388 enum ib_wr_opcode opcode;
1389 int send_flags;
1390 union {
1391 __be32 imm_data;
1392 u32 invalidate_rkey;
1393 } ex;
1394};
1395
1396struct ib_rdma_wr {
1397 struct ib_send_wr wr;
1398 u64 remote_addr;
1399 u32 rkey;
1400};
1401
1402static inline const struct ib_rdma_wr *rdma_wr(const struct ib_send_wr *wr)
1403{
1404 return container_of(wr, struct ib_rdma_wr, wr);
1405}
1406
1407struct ib_atomic_wr {
1408 struct ib_send_wr wr;
1409 u64 remote_addr;
1410 u64 compare_add;
1411 u64 swap;
1412 u64 compare_add_mask;
1413 u64 swap_mask;
1414 u32 rkey;
1415};
1416
1417static inline const struct ib_atomic_wr *atomic_wr(const struct ib_send_wr *wr)
1418{
1419 return container_of(wr, struct ib_atomic_wr, wr);
1420}
1421
1422struct ib_ud_wr {
1423 struct ib_send_wr wr;
1424 struct ib_ah *ah;
1425 void *header;
1426 int hlen;
1427 int mss;
1428 u32 remote_qpn;
1429 u32 remote_qkey;
1430 u16 pkey_index; /* valid for GSI only */
1431 u32 port_num; /* valid for DR SMPs on switch only */
1432};
1433
1434static inline const struct ib_ud_wr *ud_wr(const struct ib_send_wr *wr)
1435{
1436 return container_of(wr, struct ib_ud_wr, wr);
1437}
1438
1439struct ib_reg_wr {
1440 struct ib_send_wr wr;
1441 struct ib_mr *mr;
1442 u32 key;
1443 int access;
1444};
1445
1446static inline const struct ib_reg_wr *reg_wr(const struct ib_send_wr *wr)
1447{
1448 return container_of(wr, struct ib_reg_wr, wr);
1449}
1450
1451struct ib_recv_wr {
1452 struct ib_recv_wr *next;
1453 union {
1454 u64 wr_id;
1455 struct ib_cqe *wr_cqe;
1456 };
1457 struct ib_sge *sg_list;
1458 int num_sge;
1459};
1460
1461enum ib_access_flags {
1462 IB_ACCESS_LOCAL_WRITE = IB_UVERBS_ACCESS_LOCAL_WRITE,
1463 IB_ACCESS_REMOTE_WRITE = IB_UVERBS_ACCESS_REMOTE_WRITE,
1464 IB_ACCESS_REMOTE_READ = IB_UVERBS_ACCESS_REMOTE_READ,
1465 IB_ACCESS_REMOTE_ATOMIC = IB_UVERBS_ACCESS_REMOTE_ATOMIC,
1466 IB_ACCESS_MW_BIND = IB_UVERBS_ACCESS_MW_BIND,
1467 IB_ZERO_BASED = IB_UVERBS_ACCESS_ZERO_BASED,
1468 IB_ACCESS_ON_DEMAND = IB_UVERBS_ACCESS_ON_DEMAND,
1469 IB_ACCESS_HUGETLB = IB_UVERBS_ACCESS_HUGETLB,
1470 IB_ACCESS_RELAXED_ORDERING = IB_UVERBS_ACCESS_RELAXED_ORDERING,
1471 IB_ACCESS_FLUSH_GLOBAL = IB_UVERBS_ACCESS_FLUSH_GLOBAL,
1472 IB_ACCESS_FLUSH_PERSISTENT = IB_UVERBS_ACCESS_FLUSH_PERSISTENT,
1473
1474 IB_ACCESS_OPTIONAL = IB_UVERBS_ACCESS_OPTIONAL_RANGE,
1475 IB_ACCESS_SUPPORTED =
1476 ((IB_ACCESS_FLUSH_PERSISTENT << 1) - 1) | IB_ACCESS_OPTIONAL,
1477};
1478
1479/*
1480 * XXX: these are apparently used for ->rereg_user_mr, no idea why they
1481 * are hidden here instead of a uapi header!
1482 */
1483enum ib_mr_rereg_flags {
1484 IB_MR_REREG_TRANS = 1,
1485 IB_MR_REREG_PD = (1<<1),
1486 IB_MR_REREG_ACCESS = (1<<2),
1487 IB_MR_REREG_SUPPORTED = ((IB_MR_REREG_ACCESS << 1) - 1)
1488};
1489
1490struct ib_umem;
1491
1492enum rdma_remove_reason {
1493 /*
1494 * Userspace requested uobject deletion or initial try
1495 * to remove uobject via cleanup. Call could fail
1496 */
1497 RDMA_REMOVE_DESTROY,
1498 /* Context deletion. This call should delete the actual object itself */
1499 RDMA_REMOVE_CLOSE,
1500 /* Driver is being hot-unplugged. This call should delete the actual object itself */
1501 RDMA_REMOVE_DRIVER_REMOVE,
1502 /* uobj is being cleaned-up before being committed */
1503 RDMA_REMOVE_ABORT,
1504 /* The driver failed to destroy the uobject and is being disconnected */
1505 RDMA_REMOVE_DRIVER_FAILURE,
1506};
1507
1508struct ib_rdmacg_object {
1509#ifdef CONFIG_CGROUP_RDMA
1510 struct rdma_cgroup *cg; /* owner rdma cgroup */
1511#endif
1512};
1513
1514struct ib_ucontext {
1515 struct ib_device *device;
1516 struct ib_uverbs_file *ufile;
1517
1518 struct ib_rdmacg_object cg_obj;
1519 /*
1520 * Implementation details of the RDMA core, don't use in drivers:
1521 */
1522 struct rdma_restrack_entry res;
1523 struct xarray mmap_xa;
1524};
1525
1526struct ib_uobject {
1527 u64 user_handle; /* handle given to us by userspace */
1528 /* ufile & ucontext owning this object */
1529 struct ib_uverbs_file *ufile;
1530 /* FIXME, save memory: ufile->context == context */
1531 struct ib_ucontext *context; /* associated user context */
1532 void *object; /* containing object */
1533 struct list_head list; /* link to context's list */
1534 struct ib_rdmacg_object cg_obj; /* rdmacg object */
1535 int id; /* index into kernel idr */
1536 struct kref ref;
1537 atomic_t usecnt; /* protects exclusive access */
1538 struct rcu_head rcu; /* kfree_rcu() overhead */
1539
1540 const struct uverbs_api_object *uapi_object;
1541};
1542
1543struct ib_udata {
1544 const void __user *inbuf;
1545 void __user *outbuf;
1546 size_t inlen;
1547 size_t outlen;
1548};
1549
1550struct ib_pd {
1551 u32 local_dma_lkey;
1552 u32 flags;
1553 struct ib_device *device;
1554 struct ib_uobject *uobject;
1555 atomic_t usecnt; /* count all resources */
1556
1557 u32 unsafe_global_rkey;
1558
1559 /*
1560 * Implementation details of the RDMA core, don't use in drivers:
1561 */
1562 struct ib_mr *__internal_mr;
1563 struct rdma_restrack_entry res;
1564};
1565
1566struct ib_xrcd {
1567 struct ib_device *device;
1568 atomic_t usecnt; /* count all exposed resources */
1569 struct inode *inode;
1570 struct rw_semaphore tgt_qps_rwsem;
1571 struct xarray tgt_qps;
1572};
1573
1574struct ib_ah {
1575 struct ib_device *device;
1576 struct ib_pd *pd;
1577 struct ib_uobject *uobject;
1578 const struct ib_gid_attr *sgid_attr;
1579 enum rdma_ah_attr_type type;
1580};
1581
1582typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
1583
1584enum ib_poll_context {
1585 IB_POLL_SOFTIRQ, /* poll from softirq context */
1586 IB_POLL_WORKQUEUE, /* poll from workqueue */
1587 IB_POLL_UNBOUND_WORKQUEUE, /* poll from unbound workqueue */
1588 IB_POLL_LAST_POOL_TYPE = IB_POLL_UNBOUND_WORKQUEUE,
1589
1590 IB_POLL_DIRECT, /* caller context, no hw completions */
1591};
1592
1593struct ib_cq {
1594 struct ib_device *device;
1595 struct ib_ucq_object *uobject;
1596 ib_comp_handler comp_handler;
1597 void (*event_handler)(struct ib_event *, void *);
1598 void *cq_context;
1599 int cqe;
1600 unsigned int cqe_used;
1601 atomic_t usecnt; /* count number of work queues */
1602 enum ib_poll_context poll_ctx;
1603 struct ib_wc *wc;
1604 struct list_head pool_entry;
1605 union {
1606 struct irq_poll iop;
1607 struct work_struct work;
1608 };
1609 struct workqueue_struct *comp_wq;
1610 struct dim *dim;
1611
1612 /* updated only by trace points */
1613 ktime_t timestamp;
1614 u8 interrupt:1;
1615 u8 shared:1;
1616 unsigned int comp_vector;
1617
1618 /*
1619 * Implementation details of the RDMA core, don't use in drivers:
1620 */
1621 struct rdma_restrack_entry res;
1622};
1623
1624struct ib_srq {
1625 struct ib_device *device;
1626 struct ib_pd *pd;
1627 struct ib_usrq_object *uobject;
1628 void (*event_handler)(struct ib_event *, void *);
1629 void *srq_context;
1630 enum ib_srq_type srq_type;
1631 atomic_t usecnt;
1632
1633 struct {
1634 struct ib_cq *cq;
1635 union {
1636 struct {
1637 struct ib_xrcd *xrcd;
1638 u32 srq_num;
1639 } xrc;
1640 };
1641 } ext;
1642
1643 /*
1644 * Implementation details of the RDMA core, don't use in drivers:
1645 */
1646 struct rdma_restrack_entry res;
1647};
1648
1649enum ib_raw_packet_caps {
1650 /*
1651 * Strip cvlan from incoming packet and report it in the matching work
1652 * completion is supported.
1653 */
1654 IB_RAW_PACKET_CAP_CVLAN_STRIPPING =
1655 IB_UVERBS_RAW_PACKET_CAP_CVLAN_STRIPPING,
1656 /*
1657 * Scatter FCS field of an incoming packet to host memory is supported.
1658 */
1659 IB_RAW_PACKET_CAP_SCATTER_FCS = IB_UVERBS_RAW_PACKET_CAP_SCATTER_FCS,
1660 /* Checksum offloads are supported (for both send and receive). */
1661 IB_RAW_PACKET_CAP_IP_CSUM = IB_UVERBS_RAW_PACKET_CAP_IP_CSUM,
1662 /*
1663 * When a packet is received for an RQ with no receive WQEs, the
1664 * packet processing is delayed.
1665 */
1666 IB_RAW_PACKET_CAP_DELAY_DROP = IB_UVERBS_RAW_PACKET_CAP_DELAY_DROP,
1667};
1668
1669enum ib_wq_type {
1670 IB_WQT_RQ = IB_UVERBS_WQT_RQ,
1671};
1672
1673enum ib_wq_state {
1674 IB_WQS_RESET,
1675 IB_WQS_RDY,
1676 IB_WQS_ERR
1677};
1678
1679struct ib_wq {
1680 struct ib_device *device;
1681 struct ib_uwq_object *uobject;
1682 void *wq_context;
1683 void (*event_handler)(struct ib_event *, void *);
1684 struct ib_pd *pd;
1685 struct ib_cq *cq;
1686 u32 wq_num;
1687 enum ib_wq_state state;
1688 enum ib_wq_type wq_type;
1689 atomic_t usecnt;
1690};
1691
1692enum ib_wq_flags {
1693 IB_WQ_FLAGS_CVLAN_STRIPPING = IB_UVERBS_WQ_FLAGS_CVLAN_STRIPPING,
1694 IB_WQ_FLAGS_SCATTER_FCS = IB_UVERBS_WQ_FLAGS_SCATTER_FCS,
1695 IB_WQ_FLAGS_DELAY_DROP = IB_UVERBS_WQ_FLAGS_DELAY_DROP,
1696 IB_WQ_FLAGS_PCI_WRITE_END_PADDING =
1697 IB_UVERBS_WQ_FLAGS_PCI_WRITE_END_PADDING,
1698};
1699
1700struct ib_wq_init_attr {
1701 void *wq_context;
1702 enum ib_wq_type wq_type;
1703 u32 max_wr;
1704 u32 max_sge;
1705 struct ib_cq *cq;
1706 void (*event_handler)(struct ib_event *, void *);
1707 u32 create_flags; /* Use enum ib_wq_flags */
1708};
1709
1710enum ib_wq_attr_mask {
1711 IB_WQ_STATE = 1 << 0,
1712 IB_WQ_CUR_STATE = 1 << 1,
1713 IB_WQ_FLAGS = 1 << 2,
1714};
1715
1716struct ib_wq_attr {
1717 enum ib_wq_state wq_state;
1718 enum ib_wq_state curr_wq_state;
1719 u32 flags; /* Use enum ib_wq_flags */
1720 u32 flags_mask; /* Use enum ib_wq_flags */
1721};
1722
1723struct ib_rwq_ind_table {
1724 struct ib_device *device;
1725 struct ib_uobject *uobject;
1726 atomic_t usecnt;
1727 u32 ind_tbl_num;
1728 u32 log_ind_tbl_size;
1729 struct ib_wq **ind_tbl;
1730};
1731
1732struct ib_rwq_ind_table_init_attr {
1733 u32 log_ind_tbl_size;
1734 /* Each entry is a pointer to Receive Work Queue */
1735 struct ib_wq **ind_tbl;
1736};
1737
1738enum port_pkey_state {
1739 IB_PORT_PKEY_NOT_VALID = 0,
1740 IB_PORT_PKEY_VALID = 1,
1741 IB_PORT_PKEY_LISTED = 2,
1742};
1743
1744struct ib_qp_security;
1745
1746struct ib_port_pkey {
1747 enum port_pkey_state state;
1748 u16 pkey_index;
1749 u32 port_num;
1750 struct list_head qp_list;
1751 struct list_head to_error_list;
1752 struct ib_qp_security *sec;
1753};
1754
1755struct ib_ports_pkeys {
1756 struct ib_port_pkey main;
1757 struct ib_port_pkey alt;
1758};
1759
1760struct ib_qp_security {
1761 struct ib_qp *qp;
1762 struct ib_device *dev;
1763 /* Hold this mutex when changing port and pkey settings. */
1764 struct mutex mutex;
1765 struct ib_ports_pkeys *ports_pkeys;
1766 /* A list of all open shared QP handles. Required to enforce security
1767 * properly for all users of a shared QP.
1768 */
1769 struct list_head shared_qp_list;
1770 void *security;
1771 bool destroying;
1772 atomic_t error_list_count;
1773 struct completion error_complete;
1774 int error_comps_pending;
1775};
1776
1777/*
1778 * @max_write_sge: Maximum SGE elements per RDMA WRITE request.
1779 * @max_read_sge: Maximum SGE elements per RDMA READ request.
1780 */
1781struct ib_qp {
1782 struct ib_device *device;
1783 struct ib_pd *pd;
1784 struct ib_cq *send_cq;
1785 struct ib_cq *recv_cq;
1786 spinlock_t mr_lock;
1787 int mrs_used;
1788 struct list_head rdma_mrs;
1789 struct list_head sig_mrs;
1790 struct ib_srq *srq;
1791 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
1792 struct list_head xrcd_list;
1793
1794 /* count times opened, mcast attaches, flow attaches */
1795 atomic_t usecnt;
1796 struct list_head open_list;
1797 struct ib_qp *real_qp;
1798 struct ib_uqp_object *uobject;
1799 void (*event_handler)(struct ib_event *, void *);
1800 void *qp_context;
1801 /* sgid_attrs associated with the AV's */
1802 const struct ib_gid_attr *av_sgid_attr;
1803 const struct ib_gid_attr *alt_path_sgid_attr;
1804 u32 qp_num;
1805 u32 max_write_sge;
1806 u32 max_read_sge;
1807 enum ib_qp_type qp_type;
1808 struct ib_rwq_ind_table *rwq_ind_tbl;
1809 struct ib_qp_security *qp_sec;
1810 u32 port;
1811
1812 bool integrity_en;
1813 /*
1814 * Implementation details of the RDMA core, don't use in drivers:
1815 */
1816 struct rdma_restrack_entry res;
1817
1818 /* The counter the qp is bind to */
1819 struct rdma_counter *counter;
1820};
1821
1822struct ib_dm {
1823 struct ib_device *device;
1824 u32 length;
1825 u32 flags;
1826 struct ib_uobject *uobject;
1827 atomic_t usecnt;
1828};
1829
1830struct ib_mr {
1831 struct ib_device *device;
1832 struct ib_pd *pd;
1833 u32 lkey;
1834 u32 rkey;
1835 u64 iova;
1836 u64 length;
1837 unsigned int page_size;
1838 enum ib_mr_type type;
1839 bool need_inval;
1840 union {
1841 struct ib_uobject *uobject; /* user */
1842 struct list_head qp_entry; /* FR */
1843 };
1844
1845 struct ib_dm *dm;
1846 struct ib_sig_attrs *sig_attrs; /* only for IB_MR_TYPE_INTEGRITY MRs */
1847 /*
1848 * Implementation details of the RDMA core, don't use in drivers:
1849 */
1850 struct rdma_restrack_entry res;
1851};
1852
1853struct ib_mw {
1854 struct ib_device *device;
1855 struct ib_pd *pd;
1856 struct ib_uobject *uobject;
1857 u32 rkey;
1858 enum ib_mw_type type;
1859};
1860
1861/* Supported steering options */
1862enum ib_flow_attr_type {
1863 /* steering according to rule specifications */
1864 IB_FLOW_ATTR_NORMAL = 0x0,
1865 /* default unicast and multicast rule -
1866 * receive all Eth traffic which isn't steered to any QP
1867 */
1868 IB_FLOW_ATTR_ALL_DEFAULT = 0x1,
1869 /* default multicast rule -
1870 * receive all Eth multicast traffic which isn't steered to any QP
1871 */
1872 IB_FLOW_ATTR_MC_DEFAULT = 0x2,
1873 /* sniffer rule - receive all port traffic */
1874 IB_FLOW_ATTR_SNIFFER = 0x3
1875};
1876
1877/* Supported steering header types */
1878enum ib_flow_spec_type {
1879 /* L2 headers*/
1880 IB_FLOW_SPEC_ETH = 0x20,
1881 IB_FLOW_SPEC_IB = 0x22,
1882 /* L3 header*/
1883 IB_FLOW_SPEC_IPV4 = 0x30,
1884 IB_FLOW_SPEC_IPV6 = 0x31,
1885 IB_FLOW_SPEC_ESP = 0x34,
1886 /* L4 headers*/
1887 IB_FLOW_SPEC_TCP = 0x40,
1888 IB_FLOW_SPEC_UDP = 0x41,
1889 IB_FLOW_SPEC_VXLAN_TUNNEL = 0x50,
1890 IB_FLOW_SPEC_GRE = 0x51,
1891 IB_FLOW_SPEC_MPLS = 0x60,
1892 IB_FLOW_SPEC_INNER = 0x100,
1893 /* Actions */
1894 IB_FLOW_SPEC_ACTION_TAG = 0x1000,
1895 IB_FLOW_SPEC_ACTION_DROP = 0x1001,
1896 IB_FLOW_SPEC_ACTION_HANDLE = 0x1002,
1897 IB_FLOW_SPEC_ACTION_COUNT = 0x1003,
1898};
1899#define IB_FLOW_SPEC_LAYER_MASK 0xF0
1900#define IB_FLOW_SPEC_SUPPORT_LAYERS 10
1901
1902enum ib_flow_flags {
1903 IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */
1904 IB_FLOW_ATTR_FLAGS_EGRESS = 1UL << 2, /* Egress flow */
1905 IB_FLOW_ATTR_FLAGS_RESERVED = 1UL << 3 /* Must be last */
1906};
1907
1908struct ib_flow_eth_filter {
1909 u8 dst_mac[6];
1910 u8 src_mac[6];
1911 __be16 ether_type;
1912 __be16 vlan_tag;
1913 /* Must be last */
1914 u8 real_sz[];
1915};
1916
1917struct ib_flow_spec_eth {
1918 u32 type;
1919 u16 size;
1920 struct ib_flow_eth_filter val;
1921 struct ib_flow_eth_filter mask;
1922};
1923
1924struct ib_flow_ib_filter {
1925 __be16 dlid;
1926 __u8 sl;
1927 /* Must be last */
1928 u8 real_sz[];
1929};
1930
1931struct ib_flow_spec_ib {
1932 u32 type;
1933 u16 size;
1934 struct ib_flow_ib_filter val;
1935 struct ib_flow_ib_filter mask;
1936};
1937
1938/* IPv4 header flags */
1939enum ib_ipv4_flags {
1940 IB_IPV4_DONT_FRAG = 0x2, /* Don't enable packet fragmentation */
1941 IB_IPV4_MORE_FRAG = 0X4 /* For All fragmented packets except the
1942 last have this flag set */
1943};
1944
1945struct ib_flow_ipv4_filter {
1946 __be32 src_ip;
1947 __be32 dst_ip;
1948 u8 proto;
1949 u8 tos;
1950 u8 ttl;
1951 u8 flags;
1952 /* Must be last */
1953 u8 real_sz[];
1954};
1955
1956struct ib_flow_spec_ipv4 {
1957 u32 type;
1958 u16 size;
1959 struct ib_flow_ipv4_filter val;
1960 struct ib_flow_ipv4_filter mask;
1961};
1962
1963struct ib_flow_ipv6_filter {
1964 u8 src_ip[16];
1965 u8 dst_ip[16];
1966 __be32 flow_label;
1967 u8 next_hdr;
1968 u8 traffic_class;
1969 u8 hop_limit;
1970 /* Must be last */
1971 u8 real_sz[];
1972};
1973
1974struct ib_flow_spec_ipv6 {
1975 u32 type;
1976 u16 size;
1977 struct ib_flow_ipv6_filter val;
1978 struct ib_flow_ipv6_filter mask;
1979};
1980
1981struct ib_flow_tcp_udp_filter {
1982 __be16 dst_port;
1983 __be16 src_port;
1984 /* Must be last */
1985 u8 real_sz[];
1986};
1987
1988struct ib_flow_spec_tcp_udp {
1989 u32 type;
1990 u16 size;
1991 struct ib_flow_tcp_udp_filter val;
1992 struct ib_flow_tcp_udp_filter mask;
1993};
1994
1995struct ib_flow_tunnel_filter {
1996 __be32 tunnel_id;
1997 u8 real_sz[];
1998};
1999
2000/* ib_flow_spec_tunnel describes the Vxlan tunnel
2001 * the tunnel_id from val has the vni value
2002 */
2003struct ib_flow_spec_tunnel {
2004 u32 type;
2005 u16 size;
2006 struct ib_flow_tunnel_filter val;
2007 struct ib_flow_tunnel_filter mask;
2008};
2009
2010struct ib_flow_esp_filter {
2011 __be32 spi;
2012 __be32 seq;
2013 /* Must be last */
2014 u8 real_sz[];
2015};
2016
2017struct ib_flow_spec_esp {
2018 u32 type;
2019 u16 size;
2020 struct ib_flow_esp_filter val;
2021 struct ib_flow_esp_filter mask;
2022};
2023
2024struct ib_flow_gre_filter {
2025 __be16 c_ks_res0_ver;
2026 __be16 protocol;
2027 __be32 key;
2028 /* Must be last */
2029 u8 real_sz[];
2030};
2031
2032struct ib_flow_spec_gre {
2033 u32 type;
2034 u16 size;
2035 struct ib_flow_gre_filter val;
2036 struct ib_flow_gre_filter mask;
2037};
2038
2039struct ib_flow_mpls_filter {
2040 __be32 tag;
2041 /* Must be last */
2042 u8 real_sz[];
2043};
2044
2045struct ib_flow_spec_mpls {
2046 u32 type;
2047 u16 size;
2048 struct ib_flow_mpls_filter val;
2049 struct ib_flow_mpls_filter mask;
2050};
2051
2052struct ib_flow_spec_action_tag {
2053 enum ib_flow_spec_type type;
2054 u16 size;
2055 u32 tag_id;
2056};
2057
2058struct ib_flow_spec_action_drop {
2059 enum ib_flow_spec_type type;
2060 u16 size;
2061};
2062
2063struct ib_flow_spec_action_handle {
2064 enum ib_flow_spec_type type;
2065 u16 size;
2066 struct ib_flow_action *act;
2067};
2068
2069enum ib_counters_description {
2070 IB_COUNTER_PACKETS,
2071 IB_COUNTER_BYTES,
2072};
2073
2074struct ib_flow_spec_action_count {
2075 enum ib_flow_spec_type type;
2076 u16 size;
2077 struct ib_counters *counters;
2078};
2079
2080union ib_flow_spec {
2081 struct {
2082 u32 type;
2083 u16 size;
2084 };
2085 struct ib_flow_spec_eth eth;
2086 struct ib_flow_spec_ib ib;
2087 struct ib_flow_spec_ipv4 ipv4;
2088 struct ib_flow_spec_tcp_udp tcp_udp;
2089 struct ib_flow_spec_ipv6 ipv6;
2090 struct ib_flow_spec_tunnel tunnel;
2091 struct ib_flow_spec_esp esp;
2092 struct ib_flow_spec_gre gre;
2093 struct ib_flow_spec_mpls mpls;
2094 struct ib_flow_spec_action_tag flow_tag;
2095 struct ib_flow_spec_action_drop drop;
2096 struct ib_flow_spec_action_handle action;
2097 struct ib_flow_spec_action_count flow_count;
2098};
2099
2100struct ib_flow_attr {
2101 enum ib_flow_attr_type type;
2102 u16 size;
2103 u16 priority;
2104 u32 flags;
2105 u8 num_of_specs;
2106 u32 port;
2107 union ib_flow_spec flows[];
2108};
2109
2110struct ib_flow {
2111 struct ib_qp *qp;
2112 struct ib_device *device;
2113 struct ib_uobject *uobject;
2114};
2115
2116enum ib_flow_action_type {
2117 IB_FLOW_ACTION_UNSPECIFIED,
2118 IB_FLOW_ACTION_ESP = 1,
2119};
2120
2121struct ib_flow_action_attrs_esp_keymats {
2122 enum ib_uverbs_flow_action_esp_keymat protocol;
2123 union {
2124 struct ib_uverbs_flow_action_esp_keymat_aes_gcm aes_gcm;
2125 } keymat;
2126};
2127
2128struct ib_flow_action_attrs_esp_replays {
2129 enum ib_uverbs_flow_action_esp_replay protocol;
2130 union {
2131 struct ib_uverbs_flow_action_esp_replay_bmp bmp;
2132 } replay;
2133};
2134
2135enum ib_flow_action_attrs_esp_flags {
2136 /* All user-space flags at the top: Use enum ib_uverbs_flow_action_esp_flags
2137 * This is done in order to share the same flags between user-space and
2138 * kernel and spare an unnecessary translation.
2139 */
2140
2141 /* Kernel flags */
2142 IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED = 1ULL << 32,
2143 IB_FLOW_ACTION_ESP_FLAGS_MOD_ESP_ATTRS = 1ULL << 33,
2144};
2145
2146struct ib_flow_spec_list {
2147 struct ib_flow_spec_list *next;
2148 union ib_flow_spec spec;
2149};
2150
2151struct ib_flow_action_attrs_esp {
2152 struct ib_flow_action_attrs_esp_keymats *keymat;
2153 struct ib_flow_action_attrs_esp_replays *replay;
2154 struct ib_flow_spec_list *encap;
2155 /* Used only if IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED is enabled.
2156 * Value of 0 is a valid value.
2157 */
2158 u32 esn;
2159 u32 spi;
2160 u32 seq;
2161 u32 tfc_pad;
2162 /* Use enum ib_flow_action_attrs_esp_flags */
2163 u64 flags;
2164 u64 hard_limit_pkts;
2165};
2166
2167struct ib_flow_action {
2168 struct ib_device *device;
2169 struct ib_uobject *uobject;
2170 enum ib_flow_action_type type;
2171 atomic_t usecnt;
2172};
2173
2174struct ib_mad;
2175
2176enum ib_process_mad_flags {
2177 IB_MAD_IGNORE_MKEY = 1,
2178 IB_MAD_IGNORE_BKEY = 2,
2179 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
2180};
2181
2182enum ib_mad_result {
2183 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */
2184 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */
2185 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */
2186 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */
2187};
2188
2189struct ib_port_cache {
2190 u64 subnet_prefix;
2191 struct ib_pkey_cache *pkey;
2192 struct ib_gid_table *gid;
2193 u8 lmc;
2194 enum ib_port_state port_state;
2195};
2196
2197struct ib_port_immutable {
2198 int pkey_tbl_len;
2199 int gid_tbl_len;
2200 u32 core_cap_flags;
2201 u32 max_mad_size;
2202};
2203
2204struct ib_port_data {
2205 struct ib_device *ib_dev;
2206
2207 struct ib_port_immutable immutable;
2208
2209 spinlock_t pkey_list_lock;
2210
2211 spinlock_t netdev_lock;
2212
2213 struct list_head pkey_list;
2214
2215 struct ib_port_cache cache;
2216
2217 struct net_device __rcu *netdev;
2218 netdevice_tracker netdev_tracker;
2219 struct hlist_node ndev_hash_link;
2220 struct rdma_port_counter port_counter;
2221 struct ib_port *sysfs;
2222};
2223
2224/* rdma netdev type - specifies protocol type */
2225enum rdma_netdev_t {
2226 RDMA_NETDEV_OPA_VNIC,
2227 RDMA_NETDEV_IPOIB,
2228};
2229
2230/**
2231 * struct rdma_netdev - rdma netdev
2232 * For cases where netstack interfacing is required.
2233 */
2234struct rdma_netdev {
2235 void *clnt_priv;
2236 struct ib_device *hca;
2237 u32 port_num;
2238 int mtu;
2239
2240 /*
2241 * cleanup function must be specified.
2242 * FIXME: This is only used for OPA_VNIC and that usage should be
2243 * removed too.
2244 */
2245 void (*free_rdma_netdev)(struct net_device *netdev);
2246
2247 /* control functions */
2248 void (*set_id)(struct net_device *netdev, int id);
2249 /* send packet */
2250 int (*send)(struct net_device *dev, struct sk_buff *skb,
2251 struct ib_ah *address, u32 dqpn);
2252 /* multicast */
2253 int (*attach_mcast)(struct net_device *dev, struct ib_device *hca,
2254 union ib_gid *gid, u16 mlid,
2255 int set_qkey, u32 qkey);
2256 int (*detach_mcast)(struct net_device *dev, struct ib_device *hca,
2257 union ib_gid *gid, u16 mlid);
2258 /* timeout */
2259 void (*tx_timeout)(struct net_device *dev, unsigned int txqueue);
2260};
2261
2262struct rdma_netdev_alloc_params {
2263 size_t sizeof_priv;
2264 unsigned int txqs;
2265 unsigned int rxqs;
2266 void *param;
2267
2268 int (*initialize_rdma_netdev)(struct ib_device *device, u32 port_num,
2269 struct net_device *netdev, void *param);
2270};
2271
2272struct ib_odp_counters {
2273 atomic64_t faults;
2274 atomic64_t invalidations;
2275 atomic64_t prefetch;
2276};
2277
2278struct ib_counters {
2279 struct ib_device *device;
2280 struct ib_uobject *uobject;
2281 /* num of objects attached */
2282 atomic_t usecnt;
2283};
2284
2285struct ib_counters_read_attr {
2286 u64 *counters_buff;
2287 u32 ncounters;
2288 u32 flags; /* use enum ib_read_counters_flags */
2289};
2290
2291struct uverbs_attr_bundle;
2292struct iw_cm_id;
2293struct iw_cm_conn_param;
2294
2295#define INIT_RDMA_OBJ_SIZE(ib_struct, drv_struct, member) \
2296 .size_##ib_struct = \
2297 (sizeof(struct drv_struct) + \
2298 BUILD_BUG_ON_ZERO(offsetof(struct drv_struct, member)) + \
2299 BUILD_BUG_ON_ZERO( \
2300 !__same_type(((struct drv_struct *)NULL)->member, \
2301 struct ib_struct)))
2302
2303#define rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, gfp) \
2304 ((struct ib_type *)rdma_zalloc_obj(ib_dev, ib_dev->ops.size_##ib_type, \
2305 gfp, false))
2306
2307#define rdma_zalloc_drv_obj_numa(ib_dev, ib_type) \
2308 ((struct ib_type *)rdma_zalloc_obj(ib_dev, ib_dev->ops.size_##ib_type, \
2309 GFP_KERNEL, true))
2310
2311#define rdma_zalloc_drv_obj(ib_dev, ib_type) \
2312 rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, GFP_KERNEL)
2313
2314#define DECLARE_RDMA_OBJ_SIZE(ib_struct) size_t size_##ib_struct
2315
2316struct rdma_user_mmap_entry {
2317 struct kref ref;
2318 struct ib_ucontext *ucontext;
2319 unsigned long start_pgoff;
2320 size_t npages;
2321 bool driver_removed;
2322};
2323
2324/* Return the offset (in bytes) the user should pass to libc's mmap() */
2325static inline u64
2326rdma_user_mmap_get_offset(const struct rdma_user_mmap_entry *entry)
2327{
2328 return (u64)entry->start_pgoff << PAGE_SHIFT;
2329}
2330
2331/**
2332 * struct ib_device_ops - InfiniBand device operations
2333 * This structure defines all the InfiniBand device operations, providers will
2334 * need to define the supported operations, otherwise they will be set to null.
2335 */
2336struct ib_device_ops {
2337 struct module *owner;
2338 enum rdma_driver_id driver_id;
2339 u32 uverbs_abi_ver;
2340 unsigned int uverbs_no_driver_id_binding:1;
2341
2342 /*
2343 * NOTE: New drivers should not make use of device_group; instead new
2344 * device parameter should be exposed via netlink command. This
2345 * mechanism exists only for existing drivers.
2346 */
2347 const struct attribute_group *device_group;
2348 const struct attribute_group **port_groups;
2349
2350 int (*post_send)(struct ib_qp *qp, const struct ib_send_wr *send_wr,
2351 const struct ib_send_wr **bad_send_wr);
2352 int (*post_recv)(struct ib_qp *qp, const struct ib_recv_wr *recv_wr,
2353 const struct ib_recv_wr **bad_recv_wr);
2354 void (*drain_rq)(struct ib_qp *qp);
2355 void (*drain_sq)(struct ib_qp *qp);
2356 int (*poll_cq)(struct ib_cq *cq, int num_entries, struct ib_wc *wc);
2357 int (*peek_cq)(struct ib_cq *cq, int wc_cnt);
2358 int (*req_notify_cq)(struct ib_cq *cq, enum ib_cq_notify_flags flags);
2359 int (*post_srq_recv)(struct ib_srq *srq,
2360 const struct ib_recv_wr *recv_wr,
2361 const struct ib_recv_wr **bad_recv_wr);
2362 int (*process_mad)(struct ib_device *device, int process_mad_flags,
2363 u32 port_num, const struct ib_wc *in_wc,
2364 const struct ib_grh *in_grh,
2365 const struct ib_mad *in_mad, struct ib_mad *out_mad,
2366 size_t *out_mad_size, u16 *out_mad_pkey_index);
2367 int (*query_device)(struct ib_device *device,
2368 struct ib_device_attr *device_attr,
2369 struct ib_udata *udata);
2370 int (*modify_device)(struct ib_device *device, int device_modify_mask,
2371 struct ib_device_modify *device_modify);
2372 void (*get_dev_fw_str)(struct ib_device *device, char *str);
2373 const struct cpumask *(*get_vector_affinity)(struct ib_device *ibdev,
2374 int comp_vector);
2375 int (*query_port)(struct ib_device *device, u32 port_num,
2376 struct ib_port_attr *port_attr);
2377 int (*modify_port)(struct ib_device *device, u32 port_num,
2378 int port_modify_mask,
2379 struct ib_port_modify *port_modify);
2380 /**
2381 * The following mandatory functions are used only at device
2382 * registration. Keep functions such as these at the end of this
2383 * structure to avoid cache line misses when accessing struct ib_device
2384 * in fast paths.
2385 */
2386 int (*get_port_immutable)(struct ib_device *device, u32 port_num,
2387 struct ib_port_immutable *immutable);
2388 enum rdma_link_layer (*get_link_layer)(struct ib_device *device,
2389 u32 port_num);
2390 /**
2391 * When calling get_netdev, the HW vendor's driver should return the
2392 * net device of device @device at port @port_num or NULL if such
2393 * a net device doesn't exist. The vendor driver should call dev_hold
2394 * on this net device. The HW vendor's device driver must guarantee
2395 * that this function returns NULL before the net device has finished
2396 * NETDEV_UNREGISTER state.
2397 */
2398 struct net_device *(*get_netdev)(struct ib_device *device,
2399 u32 port_num);
2400 /**
2401 * rdma netdev operation
2402 *
2403 * Driver implementing alloc_rdma_netdev or rdma_netdev_get_params
2404 * must return -EOPNOTSUPP if it doesn't support the specified type.
2405 */
2406 struct net_device *(*alloc_rdma_netdev)(
2407 struct ib_device *device, u32 port_num, enum rdma_netdev_t type,
2408 const char *name, unsigned char name_assign_type,
2409 void (*setup)(struct net_device *));
2410
2411 int (*rdma_netdev_get_params)(struct ib_device *device, u32 port_num,
2412 enum rdma_netdev_t type,
2413 struct rdma_netdev_alloc_params *params);
2414 /**
2415 * query_gid should be return GID value for @device, when @port_num
2416 * link layer is either IB or iWarp. It is no-op if @port_num port
2417 * is RoCE link layer.
2418 */
2419 int (*query_gid)(struct ib_device *device, u32 port_num, int index,
2420 union ib_gid *gid);
2421 /**
2422 * When calling add_gid, the HW vendor's driver should add the gid
2423 * of device of port at gid index available at @attr. Meta-info of
2424 * that gid (for example, the network device related to this gid) is
2425 * available at @attr. @context allows the HW vendor driver to store
2426 * extra information together with a GID entry. The HW vendor driver may
2427 * allocate memory to contain this information and store it in @context
2428 * when a new GID entry is written to. Params are consistent until the
2429 * next call of add_gid or delete_gid. The function should return 0 on
2430 * success or error otherwise. The function could be called
2431 * concurrently for different ports. This function is only called when
2432 * roce_gid_table is used.
2433 */
2434 int (*add_gid)(const struct ib_gid_attr *attr, void **context);
2435 /**
2436 * When calling del_gid, the HW vendor's driver should delete the
2437 * gid of device @device at gid index gid_index of port port_num
2438 * available in @attr.
2439 * Upon the deletion of a GID entry, the HW vendor must free any
2440 * allocated memory. The caller will clear @context afterwards.
2441 * This function is only called when roce_gid_table is used.
2442 */
2443 int (*del_gid)(const struct ib_gid_attr *attr, void **context);
2444 int (*query_pkey)(struct ib_device *device, u32 port_num, u16 index,
2445 u16 *pkey);
2446 int (*alloc_ucontext)(struct ib_ucontext *context,
2447 struct ib_udata *udata);
2448 void (*dealloc_ucontext)(struct ib_ucontext *context);
2449 int (*mmap)(struct ib_ucontext *context, struct vm_area_struct *vma);
2450 /**
2451 * This will be called once refcount of an entry in mmap_xa reaches
2452 * zero. The type of the memory that was mapped may differ between
2453 * entries and is opaque to the rdma_user_mmap interface.
2454 * Therefore needs to be implemented by the driver in mmap_free.
2455 */
2456 void (*mmap_free)(struct rdma_user_mmap_entry *entry);
2457 void (*disassociate_ucontext)(struct ib_ucontext *ibcontext);
2458 int (*alloc_pd)(struct ib_pd *pd, struct ib_udata *udata);
2459 int (*dealloc_pd)(struct ib_pd *pd, struct ib_udata *udata);
2460 int (*create_ah)(struct ib_ah *ah, struct rdma_ah_init_attr *attr,
2461 struct ib_udata *udata);
2462 int (*create_user_ah)(struct ib_ah *ah, struct rdma_ah_init_attr *attr,
2463 struct ib_udata *udata);
2464 int (*modify_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
2465 int (*query_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
2466 int (*destroy_ah)(struct ib_ah *ah, u32 flags);
2467 int (*create_srq)(struct ib_srq *srq,
2468 struct ib_srq_init_attr *srq_init_attr,
2469 struct ib_udata *udata);
2470 int (*modify_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr,
2471 enum ib_srq_attr_mask srq_attr_mask,
2472 struct ib_udata *udata);
2473 int (*query_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr);
2474 int (*destroy_srq)(struct ib_srq *srq, struct ib_udata *udata);
2475 int (*create_qp)(struct ib_qp *qp, struct ib_qp_init_attr *qp_init_attr,
2476 struct ib_udata *udata);
2477 int (*modify_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr,
2478 int qp_attr_mask, struct ib_udata *udata);
2479 int (*query_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr,
2480 int qp_attr_mask, struct ib_qp_init_attr *qp_init_attr);
2481 int (*destroy_qp)(struct ib_qp *qp, struct ib_udata *udata);
2482 int (*create_cq)(struct ib_cq *cq, const struct ib_cq_init_attr *attr,
2483 struct ib_udata *udata);
2484 int (*modify_cq)(struct ib_cq *cq, u16 cq_count, u16 cq_period);
2485 int (*destroy_cq)(struct ib_cq *cq, struct ib_udata *udata);
2486 int (*resize_cq)(struct ib_cq *cq, int cqe, struct ib_udata *udata);
2487 struct ib_mr *(*get_dma_mr)(struct ib_pd *pd, int mr_access_flags);
2488 struct ib_mr *(*reg_user_mr)(struct ib_pd *pd, u64 start, u64 length,
2489 u64 virt_addr, int mr_access_flags,
2490 struct ib_udata *udata);
2491 struct ib_mr *(*reg_user_mr_dmabuf)(struct ib_pd *pd, u64 offset,
2492 u64 length, u64 virt_addr, int fd,
2493 int mr_access_flags,
2494 struct ib_udata *udata);
2495 struct ib_mr *(*rereg_user_mr)(struct ib_mr *mr, int flags, u64 start,
2496 u64 length, u64 virt_addr,
2497 int mr_access_flags, struct ib_pd *pd,
2498 struct ib_udata *udata);
2499 int (*dereg_mr)(struct ib_mr *mr, struct ib_udata *udata);
2500 struct ib_mr *(*alloc_mr)(struct ib_pd *pd, enum ib_mr_type mr_type,
2501 u32 max_num_sg);
2502 struct ib_mr *(*alloc_mr_integrity)(struct ib_pd *pd,
2503 u32 max_num_data_sg,
2504 u32 max_num_meta_sg);
2505 int (*advise_mr)(struct ib_pd *pd,
2506 enum ib_uverbs_advise_mr_advice advice, u32 flags,
2507 struct ib_sge *sg_list, u32 num_sge,
2508 struct uverbs_attr_bundle *attrs);
2509
2510 /*
2511 * Kernel users should universally support relaxed ordering (RO), as
2512 * they are designed to read data only after observing the CQE and use
2513 * the DMA API correctly.
2514 *
2515 * Some drivers implicitly enable RO if platform supports it.
2516 */
2517 int (*map_mr_sg)(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
2518 unsigned int *sg_offset);
2519 int (*check_mr_status)(struct ib_mr *mr, u32 check_mask,
2520 struct ib_mr_status *mr_status);
2521 int (*alloc_mw)(struct ib_mw *mw, struct ib_udata *udata);
2522 int (*dealloc_mw)(struct ib_mw *mw);
2523 int (*attach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2524 int (*detach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2525 int (*alloc_xrcd)(struct ib_xrcd *xrcd, struct ib_udata *udata);
2526 int (*dealloc_xrcd)(struct ib_xrcd *xrcd, struct ib_udata *udata);
2527 struct ib_flow *(*create_flow)(struct ib_qp *qp,
2528 struct ib_flow_attr *flow_attr,
2529 struct ib_udata *udata);
2530 int (*destroy_flow)(struct ib_flow *flow_id);
2531 int (*destroy_flow_action)(struct ib_flow_action *action);
2532 int (*set_vf_link_state)(struct ib_device *device, int vf, u32 port,
2533 int state);
2534 int (*get_vf_config)(struct ib_device *device, int vf, u32 port,
2535 struct ifla_vf_info *ivf);
2536 int (*get_vf_stats)(struct ib_device *device, int vf, u32 port,
2537 struct ifla_vf_stats *stats);
2538 int (*get_vf_guid)(struct ib_device *device, int vf, u32 port,
2539 struct ifla_vf_guid *node_guid,
2540 struct ifla_vf_guid *port_guid);
2541 int (*set_vf_guid)(struct ib_device *device, int vf, u32 port, u64 guid,
2542 int type);
2543 struct ib_wq *(*create_wq)(struct ib_pd *pd,
2544 struct ib_wq_init_attr *init_attr,
2545 struct ib_udata *udata);
2546 int (*destroy_wq)(struct ib_wq *wq, struct ib_udata *udata);
2547 int (*modify_wq)(struct ib_wq *wq, struct ib_wq_attr *attr,
2548 u32 wq_attr_mask, struct ib_udata *udata);
2549 int (*create_rwq_ind_table)(struct ib_rwq_ind_table *ib_rwq_ind_table,
2550 struct ib_rwq_ind_table_init_attr *init_attr,
2551 struct ib_udata *udata);
2552 int (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table);
2553 struct ib_dm *(*alloc_dm)(struct ib_device *device,
2554 struct ib_ucontext *context,
2555 struct ib_dm_alloc_attr *attr,
2556 struct uverbs_attr_bundle *attrs);
2557 int (*dealloc_dm)(struct ib_dm *dm, struct uverbs_attr_bundle *attrs);
2558 struct ib_mr *(*reg_dm_mr)(struct ib_pd *pd, struct ib_dm *dm,
2559 struct ib_dm_mr_attr *attr,
2560 struct uverbs_attr_bundle *attrs);
2561 int (*create_counters)(struct ib_counters *counters,
2562 struct uverbs_attr_bundle *attrs);
2563 int (*destroy_counters)(struct ib_counters *counters);
2564 int (*read_counters)(struct ib_counters *counters,
2565 struct ib_counters_read_attr *counters_read_attr,
2566 struct uverbs_attr_bundle *attrs);
2567 int (*map_mr_sg_pi)(struct ib_mr *mr, struct scatterlist *data_sg,
2568 int data_sg_nents, unsigned int *data_sg_offset,
2569 struct scatterlist *meta_sg, int meta_sg_nents,
2570 unsigned int *meta_sg_offset);
2571
2572 /**
2573 * alloc_hw_[device,port]_stats - Allocate a struct rdma_hw_stats and
2574 * fill in the driver initialized data. The struct is kfree()'ed by
2575 * the sysfs core when the device is removed. A lifespan of -1 in the
2576 * return struct tells the core to set a default lifespan.
2577 */
2578 struct rdma_hw_stats *(*alloc_hw_device_stats)(struct ib_device *device);
2579 struct rdma_hw_stats *(*alloc_hw_port_stats)(struct ib_device *device,
2580 u32 port_num);
2581 /**
2582 * get_hw_stats - Fill in the counter value(s) in the stats struct.
2583 * @index - The index in the value array we wish to have updated, or
2584 * num_counters if we want all stats updated
2585 * Return codes -
2586 * < 0 - Error, no counters updated
2587 * index - Updated the single counter pointed to by index
2588 * num_counters - Updated all counters (will reset the timestamp
2589 * and prevent further calls for lifespan milliseconds)
2590 * Drivers are allowed to update all counters in leiu of just the
2591 * one given in index at their option
2592 */
2593 int (*get_hw_stats)(struct ib_device *device,
2594 struct rdma_hw_stats *stats, u32 port, int index);
2595
2596 /**
2597 * modify_hw_stat - Modify the counter configuration
2598 * @enable: true/false when enable/disable a counter
2599 * Return codes - 0 on success or error code otherwise.
2600 */
2601 int (*modify_hw_stat)(struct ib_device *device, u32 port,
2602 unsigned int counter_index, bool enable);
2603 /**
2604 * Allows rdma drivers to add their own restrack attributes.
2605 */
2606 int (*fill_res_mr_entry)(struct sk_buff *msg, struct ib_mr *ibmr);
2607 int (*fill_res_mr_entry_raw)(struct sk_buff *msg, struct ib_mr *ibmr);
2608 int (*fill_res_cq_entry)(struct sk_buff *msg, struct ib_cq *ibcq);
2609 int (*fill_res_cq_entry_raw)(struct sk_buff *msg, struct ib_cq *ibcq);
2610 int (*fill_res_qp_entry)(struct sk_buff *msg, struct ib_qp *ibqp);
2611 int (*fill_res_qp_entry_raw)(struct sk_buff *msg, struct ib_qp *ibqp);
2612 int (*fill_res_cm_id_entry)(struct sk_buff *msg, struct rdma_cm_id *id);
2613 int (*fill_res_srq_entry)(struct sk_buff *msg, struct ib_srq *ib_srq);
2614 int (*fill_res_srq_entry_raw)(struct sk_buff *msg, struct ib_srq *ib_srq);
2615
2616 /* Device lifecycle callbacks */
2617 /*
2618 * Called after the device becomes registered, before clients are
2619 * attached
2620 */
2621 int (*enable_driver)(struct ib_device *dev);
2622 /*
2623 * This is called as part of ib_dealloc_device().
2624 */
2625 void (*dealloc_driver)(struct ib_device *dev);
2626
2627 /* iWarp CM callbacks */
2628 void (*iw_add_ref)(struct ib_qp *qp);
2629 void (*iw_rem_ref)(struct ib_qp *qp);
2630 struct ib_qp *(*iw_get_qp)(struct ib_device *device, int qpn);
2631 int (*iw_connect)(struct iw_cm_id *cm_id,
2632 struct iw_cm_conn_param *conn_param);
2633 int (*iw_accept)(struct iw_cm_id *cm_id,
2634 struct iw_cm_conn_param *conn_param);
2635 int (*iw_reject)(struct iw_cm_id *cm_id, const void *pdata,
2636 u8 pdata_len);
2637 int (*iw_create_listen)(struct iw_cm_id *cm_id, int backlog);
2638 int (*iw_destroy_listen)(struct iw_cm_id *cm_id);
2639 /**
2640 * counter_bind_qp - Bind a QP to a counter.
2641 * @counter - The counter to be bound. If counter->id is zero then
2642 * the driver needs to allocate a new counter and set counter->id
2643 */
2644 int (*counter_bind_qp)(struct rdma_counter *counter, struct ib_qp *qp);
2645 /**
2646 * counter_unbind_qp - Unbind the qp from the dynamically-allocated
2647 * counter and bind it onto the default one
2648 */
2649 int (*counter_unbind_qp)(struct ib_qp *qp);
2650 /**
2651 * counter_dealloc -De-allocate the hw counter
2652 */
2653 int (*counter_dealloc)(struct rdma_counter *counter);
2654 /**
2655 * counter_alloc_stats - Allocate a struct rdma_hw_stats and fill in
2656 * the driver initialized data.
2657 */
2658 struct rdma_hw_stats *(*counter_alloc_stats)(
2659 struct rdma_counter *counter);
2660 /**
2661 * counter_update_stats - Query the stats value of this counter
2662 */
2663 int (*counter_update_stats)(struct rdma_counter *counter);
2664
2665 /**
2666 * Allows rdma drivers to add their own restrack attributes
2667 * dumped via 'rdma stat' iproute2 command.
2668 */
2669 int (*fill_stat_mr_entry)(struct sk_buff *msg, struct ib_mr *ibmr);
2670
2671 /* query driver for its ucontext properties */
2672 int (*query_ucontext)(struct ib_ucontext *context,
2673 struct uverbs_attr_bundle *attrs);
2674
2675 /*
2676 * Provide NUMA node. This API exists for rdmavt/hfi1 only.
2677 * Everyone else relies on Linux memory management model.
2678 */
2679 int (*get_numa_node)(struct ib_device *dev);
2680
2681 DECLARE_RDMA_OBJ_SIZE(ib_ah);
2682 DECLARE_RDMA_OBJ_SIZE(ib_counters);
2683 DECLARE_RDMA_OBJ_SIZE(ib_cq);
2684 DECLARE_RDMA_OBJ_SIZE(ib_mw);
2685 DECLARE_RDMA_OBJ_SIZE(ib_pd);
2686 DECLARE_RDMA_OBJ_SIZE(ib_qp);
2687 DECLARE_RDMA_OBJ_SIZE(ib_rwq_ind_table);
2688 DECLARE_RDMA_OBJ_SIZE(ib_srq);
2689 DECLARE_RDMA_OBJ_SIZE(ib_ucontext);
2690 DECLARE_RDMA_OBJ_SIZE(ib_xrcd);
2691};
2692
2693struct ib_core_device {
2694 /* device must be the first element in structure until,
2695 * union of ib_core_device and device exists in ib_device.
2696 */
2697 struct device dev;
2698 possible_net_t rdma_net;
2699 struct kobject *ports_kobj;
2700 struct list_head port_list;
2701 struct ib_device *owner; /* reach back to owner ib_device */
2702};
2703
2704struct rdma_restrack_root;
2705struct ib_device {
2706 /* Do not access @dma_device directly from ULP nor from HW drivers. */
2707 struct device *dma_device;
2708 struct ib_device_ops ops;
2709 char name[IB_DEVICE_NAME_MAX];
2710 struct rcu_head rcu_head;
2711
2712 struct list_head event_handler_list;
2713 /* Protects event_handler_list */
2714 struct rw_semaphore event_handler_rwsem;
2715
2716 /* Protects QP's event_handler calls and open_qp list */
2717 spinlock_t qp_open_list_lock;
2718
2719 struct rw_semaphore client_data_rwsem;
2720 struct xarray client_data;
2721 struct mutex unregistration_lock;
2722
2723 /* Synchronize GID, Pkey cache entries, subnet prefix, LMC */
2724 rwlock_t cache_lock;
2725 /**
2726 * port_data is indexed by port number
2727 */
2728 struct ib_port_data *port_data;
2729
2730 int num_comp_vectors;
2731
2732 union {
2733 struct device dev;
2734 struct ib_core_device coredev;
2735 };
2736
2737 /* First group is for device attributes,
2738 * Second group is for driver provided attributes (optional).
2739 * Third group is for the hw_stats
2740 * It is a NULL terminated array.
2741 */
2742 const struct attribute_group *groups[4];
2743
2744 u64 uverbs_cmd_mask;
2745
2746 char node_desc[IB_DEVICE_NODE_DESC_MAX];
2747 __be64 node_guid;
2748 u32 local_dma_lkey;
2749 u16 is_switch:1;
2750 /* Indicates kernel verbs support, should not be used in drivers */
2751 u16 kverbs_provider:1;
2752 /* CQ adaptive moderation (RDMA DIM) */
2753 u16 use_cq_dim:1;
2754 u8 node_type;
2755 u32 phys_port_cnt;
2756 struct ib_device_attr attrs;
2757 struct hw_stats_device_data *hw_stats_data;
2758
2759#ifdef CONFIG_CGROUP_RDMA
2760 struct rdmacg_device cg_device;
2761#endif
2762
2763 u32 index;
2764
2765 spinlock_t cq_pools_lock;
2766 struct list_head cq_pools[IB_POLL_LAST_POOL_TYPE + 1];
2767
2768 struct rdma_restrack_root *res;
2769
2770 const struct uapi_definition *driver_def;
2771
2772 /*
2773 * Positive refcount indicates that the device is currently
2774 * registered and cannot be unregistered.
2775 */
2776 refcount_t refcount;
2777 struct completion unreg_completion;
2778 struct work_struct unregistration_work;
2779
2780 const struct rdma_link_ops *link_ops;
2781
2782 /* Protects compat_devs xarray modifications */
2783 struct mutex compat_devs_mutex;
2784 /* Maintains compat devices for each net namespace */
2785 struct xarray compat_devs;
2786
2787 /* Used by iWarp CM */
2788 char iw_ifname[IFNAMSIZ];
2789 u32 iw_driver_flags;
2790 u32 lag_flags;
2791};
2792
2793static inline void *rdma_zalloc_obj(struct ib_device *dev, size_t size,
2794 gfp_t gfp, bool is_numa_aware)
2795{
2796 if (is_numa_aware && dev->ops.get_numa_node)
2797 return kzalloc_node(size, flags: gfp, node: dev->ops.get_numa_node(dev));
2798
2799 return kzalloc(size, flags: gfp);
2800}
2801
2802struct ib_client_nl_info;
2803struct ib_client {
2804 const char *name;
2805 int (*add)(struct ib_device *ibdev);
2806 void (*remove)(struct ib_device *, void *client_data);
2807 void (*rename)(struct ib_device *dev, void *client_data);
2808 int (*get_nl_info)(struct ib_device *ibdev, void *client_data,
2809 struct ib_client_nl_info *res);
2810 int (*get_global_nl_info)(struct ib_client_nl_info *res);
2811
2812 /* Returns the net_dev belonging to this ib_client and matching the
2813 * given parameters.
2814 * @dev: An RDMA device that the net_dev use for communication.
2815 * @port: A physical port number on the RDMA device.
2816 * @pkey: P_Key that the net_dev uses if applicable.
2817 * @gid: A GID that the net_dev uses to communicate.
2818 * @addr: An IP address the net_dev is configured with.
2819 * @client_data: The device's client data set by ib_set_client_data().
2820 *
2821 * An ib_client that implements a net_dev on top of RDMA devices
2822 * (such as IP over IB) should implement this callback, allowing the
2823 * rdma_cm module to find the right net_dev for a given request.
2824 *
2825 * The caller is responsible for calling dev_put on the returned
2826 * netdev. */
2827 struct net_device *(*get_net_dev_by_params)(
2828 struct ib_device *dev,
2829 u32 port,
2830 u16 pkey,
2831 const union ib_gid *gid,
2832 const struct sockaddr *addr,
2833 void *client_data);
2834
2835 refcount_t uses;
2836 struct completion uses_zero;
2837 u32 client_id;
2838
2839 /* kverbs are not required by the client */
2840 u8 no_kverbs_req:1;
2841};
2842
2843/*
2844 * IB block DMA iterator
2845 *
2846 * Iterates the DMA-mapped SGL in contiguous memory blocks aligned
2847 * to a HW supported page size.
2848 */
2849struct ib_block_iter {
2850 /* internal states */
2851 struct scatterlist *__sg; /* sg holding the current aligned block */
2852 dma_addr_t __dma_addr; /* unaligned DMA address of this block */
2853 unsigned int __sg_nents; /* number of SG entries */
2854 unsigned int __sg_advance; /* number of bytes to advance in sg in next step */
2855 unsigned int __pg_bit; /* alignment of current block */
2856};
2857
2858struct ib_device *_ib_alloc_device(size_t size);
2859#define ib_alloc_device(drv_struct, member) \
2860 container_of(_ib_alloc_device(sizeof(struct drv_struct) + \
2861 BUILD_BUG_ON_ZERO(offsetof( \
2862 struct drv_struct, member))), \
2863 struct drv_struct, member)
2864
2865void ib_dealloc_device(struct ib_device *device);
2866
2867void ib_get_device_fw_str(struct ib_device *device, char *str);
2868
2869int ib_register_device(struct ib_device *device, const char *name,
2870 struct device *dma_device);
2871void ib_unregister_device(struct ib_device *device);
2872void ib_unregister_driver(enum rdma_driver_id driver_id);
2873void ib_unregister_device_and_put(struct ib_device *device);
2874void ib_unregister_device_queued(struct ib_device *ib_dev);
2875
2876int ib_register_client (struct ib_client *client);
2877void ib_unregister_client(struct ib_client *client);
2878
2879void __rdma_block_iter_start(struct ib_block_iter *biter,
2880 struct scatterlist *sglist,
2881 unsigned int nents,
2882 unsigned long pgsz);
2883bool __rdma_block_iter_next(struct ib_block_iter *biter);
2884
2885/**
2886 * rdma_block_iter_dma_address - get the aligned dma address of the current
2887 * block held by the block iterator.
2888 * @biter: block iterator holding the memory block
2889 */
2890static inline dma_addr_t
2891rdma_block_iter_dma_address(struct ib_block_iter *biter)
2892{
2893 return biter->__dma_addr & ~(BIT_ULL(biter->__pg_bit) - 1);
2894}
2895
2896/**
2897 * rdma_for_each_block - iterate over contiguous memory blocks of the sg list
2898 * @sglist: sglist to iterate over
2899 * @biter: block iterator holding the memory block
2900 * @nents: maximum number of sg entries to iterate over
2901 * @pgsz: best HW supported page size to use
2902 *
2903 * Callers may use rdma_block_iter_dma_address() to get each
2904 * blocks aligned DMA address.
2905 */
2906#define rdma_for_each_block(sglist, biter, nents, pgsz) \
2907 for (__rdma_block_iter_start(biter, sglist, nents, \
2908 pgsz); \
2909 __rdma_block_iter_next(biter);)
2910
2911/**
2912 * ib_get_client_data - Get IB client context
2913 * @device:Device to get context for
2914 * @client:Client to get context for
2915 *
2916 * ib_get_client_data() returns the client context data set with
2917 * ib_set_client_data(). This can only be called while the client is
2918 * registered to the device, once the ib_client remove() callback returns this
2919 * cannot be called.
2920 */
2921static inline void *ib_get_client_data(struct ib_device *device,
2922 struct ib_client *client)
2923{
2924 return xa_load(&device->client_data, index: client->client_id);
2925}
2926void ib_set_client_data(struct ib_device *device, struct ib_client *client,
2927 void *data);
2928void ib_set_device_ops(struct ib_device *device,
2929 const struct ib_device_ops *ops);
2930
2931int rdma_user_mmap_io(struct ib_ucontext *ucontext, struct vm_area_struct *vma,
2932 unsigned long pfn, unsigned long size, pgprot_t prot,
2933 struct rdma_user_mmap_entry *entry);
2934int rdma_user_mmap_entry_insert(struct ib_ucontext *ucontext,
2935 struct rdma_user_mmap_entry *entry,
2936 size_t length);
2937int rdma_user_mmap_entry_insert_range(struct ib_ucontext *ucontext,
2938 struct rdma_user_mmap_entry *entry,
2939 size_t length, u32 min_pgoff,
2940 u32 max_pgoff);
2941
2942static inline int
2943rdma_user_mmap_entry_insert_exact(struct ib_ucontext *ucontext,
2944 struct rdma_user_mmap_entry *entry,
2945 size_t length, u32 pgoff)
2946{
2947 return rdma_user_mmap_entry_insert_range(ucontext, entry, length, min_pgoff: pgoff,
2948 max_pgoff: pgoff);
2949}
2950
2951struct rdma_user_mmap_entry *
2952rdma_user_mmap_entry_get_pgoff(struct ib_ucontext *ucontext,
2953 unsigned long pgoff);
2954struct rdma_user_mmap_entry *
2955rdma_user_mmap_entry_get(struct ib_ucontext *ucontext,
2956 struct vm_area_struct *vma);
2957void rdma_user_mmap_entry_put(struct rdma_user_mmap_entry *entry);
2958
2959void rdma_user_mmap_entry_remove(struct rdma_user_mmap_entry *entry);
2960
2961static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
2962{
2963 return copy_from_user(to: dest, from: udata->inbuf, n: len) ? -EFAULT : 0;
2964}
2965
2966static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
2967{
2968 return copy_to_user(to: udata->outbuf, from: src, n: len) ? -EFAULT : 0;
2969}
2970
2971static inline bool ib_is_buffer_cleared(const void __user *p,
2972 size_t len)
2973{
2974 bool ret;
2975 u8 *buf;
2976
2977 if (len > USHRT_MAX)
2978 return false;
2979
2980 buf = memdup_user(p, len);
2981 if (IS_ERR(ptr: buf))
2982 return false;
2983
2984 ret = !memchr_inv(p: buf, c: 0, size: len);
2985 kfree(objp: buf);
2986 return ret;
2987}
2988
2989static inline bool ib_is_udata_cleared(struct ib_udata *udata,
2990 size_t offset,
2991 size_t len)
2992{
2993 return ib_is_buffer_cleared(p: udata->inbuf + offset, len);
2994}
2995
2996/**
2997 * ib_modify_qp_is_ok - Check that the supplied attribute mask
2998 * contains all required attributes and no attributes not allowed for
2999 * the given QP state transition.
3000 * @cur_state: Current QP state
3001 * @next_state: Next QP state
3002 * @type: QP type
3003 * @mask: Mask of supplied QP attributes
3004 *
3005 * This function is a helper function that a low-level driver's
3006 * modify_qp method can use to validate the consumer's input. It
3007 * checks that cur_state and next_state are valid QP states, that a
3008 * transition from cur_state to next_state is allowed by the IB spec,
3009 * and that the attribute mask supplied is allowed for the transition.
3010 */
3011bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
3012 enum ib_qp_type type, enum ib_qp_attr_mask mask);
3013
3014void ib_register_event_handler(struct ib_event_handler *event_handler);
3015void ib_unregister_event_handler(struct ib_event_handler *event_handler);
3016void ib_dispatch_event(const struct ib_event *event);
3017
3018int ib_query_port(struct ib_device *device,
3019 u32 port_num, struct ib_port_attr *port_attr);
3020
3021enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
3022 u32 port_num);
3023
3024/**
3025 * rdma_cap_ib_switch - Check if the device is IB switch
3026 * @device: Device to check
3027 *
3028 * Device driver is responsible for setting is_switch bit on
3029 * in ib_device structure at init time.
3030 *
3031 * Return: true if the device is IB switch.
3032 */
3033static inline bool rdma_cap_ib_switch(const struct ib_device *device)
3034{
3035 return device->is_switch;
3036}
3037
3038/**
3039 * rdma_start_port - Return the first valid port number for the device
3040 * specified
3041 *
3042 * @device: Device to be checked
3043 *
3044 * Return start port number
3045 */
3046static inline u32 rdma_start_port(const struct ib_device *device)
3047{
3048 return rdma_cap_ib_switch(device) ? 0 : 1;
3049}
3050
3051/**
3052 * rdma_for_each_port - Iterate over all valid port numbers of the IB device
3053 * @device - The struct ib_device * to iterate over
3054 * @iter - The unsigned int to store the port number
3055 */
3056#define rdma_for_each_port(device, iter) \
3057 for (iter = rdma_start_port(device + \
3058 BUILD_BUG_ON_ZERO(!__same_type(u32, \
3059 iter))); \
3060 iter <= rdma_end_port(device); iter++)
3061
3062/**
3063 * rdma_end_port - Return the last valid port number for the device
3064 * specified
3065 *
3066 * @device: Device to be checked
3067 *
3068 * Return last port number
3069 */
3070static inline u32 rdma_end_port(const struct ib_device *device)
3071{
3072 return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt;
3073}
3074
3075static inline int rdma_is_port_valid(const struct ib_device *device,
3076 unsigned int port)
3077{
3078 return (port >= rdma_start_port(device) &&
3079 port <= rdma_end_port(device));
3080}
3081
3082static inline bool rdma_is_grh_required(const struct ib_device *device,
3083 u32 port_num)
3084{
3085 return device->port_data[port_num].immutable.core_cap_flags &
3086 RDMA_CORE_PORT_IB_GRH_REQUIRED;
3087}
3088
3089static inline bool rdma_protocol_ib(const struct ib_device *device,
3090 u32 port_num)
3091{
3092 return device->port_data[port_num].immutable.core_cap_flags &
3093 RDMA_CORE_CAP_PROT_IB;
3094}
3095
3096static inline bool rdma_protocol_roce(const struct ib_device *device,
3097 u32 port_num)
3098{
3099 return device->port_data[port_num].immutable.core_cap_flags &
3100 (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP);
3101}
3102
3103static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device,
3104 u32 port_num)
3105{
3106 return device->port_data[port_num].immutable.core_cap_flags &
3107 RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP;
3108}
3109
3110static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device,
3111 u32 port_num)
3112{
3113 return device->port_data[port_num].immutable.core_cap_flags &
3114 RDMA_CORE_CAP_PROT_ROCE;
3115}
3116
3117static inline bool rdma_protocol_iwarp(const struct ib_device *device,
3118 u32 port_num)
3119{
3120 return device->port_data[port_num].immutable.core_cap_flags &
3121 RDMA_CORE_CAP_PROT_IWARP;
3122}
3123
3124static inline bool rdma_ib_or_roce(const struct ib_device *device,
3125 u32 port_num)
3126{
3127 return rdma_protocol_ib(device, port_num) ||
3128 rdma_protocol_roce(device, port_num);
3129}
3130
3131static inline bool rdma_protocol_raw_packet(const struct ib_device *device,
3132 u32 port_num)
3133{
3134 return device->port_data[port_num].immutable.core_cap_flags &
3135 RDMA_CORE_CAP_PROT_RAW_PACKET;
3136}
3137
3138static inline bool rdma_protocol_usnic(const struct ib_device *device,
3139 u32 port_num)
3140{
3141 return device->port_data[port_num].immutable.core_cap_flags &
3142 RDMA_CORE_CAP_PROT_USNIC;
3143}
3144
3145/**
3146 * rdma_cap_ib_mad - Check if the port of a device supports Infiniband
3147 * Management Datagrams.
3148 * @device: Device to check
3149 * @port_num: Port number to check
3150 *
3151 * Management Datagrams (MAD) are a required part of the InfiniBand
3152 * specification and are supported on all InfiniBand devices. A slightly
3153 * extended version are also supported on OPA interfaces.
3154 *
3155 * Return: true if the port supports sending/receiving of MAD packets.
3156 */
3157static inline bool rdma_cap_ib_mad(const struct ib_device *device, u32 port_num)
3158{
3159 return device->port_data[port_num].immutable.core_cap_flags &
3160 RDMA_CORE_CAP_IB_MAD;
3161}
3162
3163/**
3164 * rdma_cap_opa_mad - Check if the port of device provides support for OPA
3165 * Management Datagrams.
3166 * @device: Device to check
3167 * @port_num: Port number to check
3168 *
3169 * Intel OmniPath devices extend and/or replace the InfiniBand Management
3170 * datagrams with their own versions. These OPA MADs share many but not all of
3171 * the characteristics of InfiniBand MADs.
3172 *
3173 * OPA MADs differ in the following ways:
3174 *
3175 * 1) MADs are variable size up to 2K
3176 * IBTA defined MADs remain fixed at 256 bytes
3177 * 2) OPA SMPs must carry valid PKeys
3178 * 3) OPA SMP packets are a different format
3179 *
3180 * Return: true if the port supports OPA MAD packet formats.
3181 */
3182static inline bool rdma_cap_opa_mad(struct ib_device *device, u32 port_num)
3183{
3184 return device->port_data[port_num].immutable.core_cap_flags &
3185 RDMA_CORE_CAP_OPA_MAD;
3186}
3187
3188/**
3189 * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband
3190 * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI).
3191 * @device: Device to check
3192 * @port_num: Port number to check
3193 *
3194 * Each InfiniBand node is required to provide a Subnet Management Agent
3195 * that the subnet manager can access. Prior to the fabric being fully
3196 * configured by the subnet manager, the SMA is accessed via a well known
3197 * interface called the Subnet Management Interface (SMI). This interface
3198 * uses directed route packets to communicate with the SM to get around the
3199 * chicken and egg problem of the SM needing to know what's on the fabric
3200 * in order to configure the fabric, and needing to configure the fabric in
3201 * order to send packets to the devices on the fabric. These directed
3202 * route packets do not need the fabric fully configured in order to reach
3203 * their destination. The SMI is the only method allowed to send
3204 * directed route packets on an InfiniBand fabric.
3205 *
3206 * Return: true if the port provides an SMI.
3207 */
3208static inline bool rdma_cap_ib_smi(const struct ib_device *device, u32 port_num)
3209{
3210 return device->port_data[port_num].immutable.core_cap_flags &
3211 RDMA_CORE_CAP_IB_SMI;
3212}
3213
3214/**
3215 * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband
3216 * Communication Manager.
3217 * @device: Device to check
3218 * @port_num: Port number to check
3219 *
3220 * The InfiniBand Communication Manager is one of many pre-defined General
3221 * Service Agents (GSA) that are accessed via the General Service
3222 * Interface (GSI). It's role is to facilitate establishment of connections
3223 * between nodes as well as other management related tasks for established
3224 * connections.
3225 *
3226 * Return: true if the port supports an IB CM (this does not guarantee that
3227 * a CM is actually running however).
3228 */
3229static inline bool rdma_cap_ib_cm(const struct ib_device *device, u32 port_num)
3230{
3231 return device->port_data[port_num].immutable.core_cap_flags &
3232 RDMA_CORE_CAP_IB_CM;
3233}
3234
3235/**
3236 * rdma_cap_iw_cm - Check if the port of device has the capability IWARP
3237 * Communication Manager.
3238 * @device: Device to check
3239 * @port_num: Port number to check
3240 *
3241 * Similar to above, but specific to iWARP connections which have a different
3242 * managment protocol than InfiniBand.
3243 *
3244 * Return: true if the port supports an iWARP CM (this does not guarantee that
3245 * a CM is actually running however).
3246 */
3247static inline bool rdma_cap_iw_cm(const struct ib_device *device, u32 port_num)
3248{
3249 return device->port_data[port_num].immutable.core_cap_flags &
3250 RDMA_CORE_CAP_IW_CM;
3251}
3252
3253/**
3254 * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband
3255 * Subnet Administration.
3256 * @device: Device to check
3257 * @port_num: Port number to check
3258 *
3259 * An InfiniBand Subnet Administration (SA) service is a pre-defined General
3260 * Service Agent (GSA) provided by the Subnet Manager (SM). On InfiniBand
3261 * fabrics, devices should resolve routes to other hosts by contacting the
3262 * SA to query the proper route.
3263 *
3264 * Return: true if the port should act as a client to the fabric Subnet
3265 * Administration interface. This does not imply that the SA service is
3266 * running locally.
3267 */
3268static inline bool rdma_cap_ib_sa(const struct ib_device *device, u32 port_num)
3269{
3270 return device->port_data[port_num].immutable.core_cap_flags &
3271 RDMA_CORE_CAP_IB_SA;
3272}
3273
3274/**
3275 * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband
3276 * Multicast.
3277 * @device: Device to check
3278 * @port_num: Port number to check
3279 *
3280 * InfiniBand multicast registration is more complex than normal IPv4 or
3281 * IPv6 multicast registration. Each Host Channel Adapter must register
3282 * with the Subnet Manager when it wishes to join a multicast group. It
3283 * should do so only once regardless of how many queue pairs it subscribes
3284 * to this group. And it should leave the group only after all queue pairs
3285 * attached to the group have been detached.
3286 *
3287 * Return: true if the port must undertake the additional adminstrative
3288 * overhead of registering/unregistering with the SM and tracking of the
3289 * total number of queue pairs attached to the multicast group.
3290 */
3291static inline bool rdma_cap_ib_mcast(const struct ib_device *device,
3292 u32 port_num)
3293{
3294 return rdma_cap_ib_sa(device, port_num);
3295}
3296
3297/**
3298 * rdma_cap_af_ib - Check if the port of device has the capability
3299 * Native Infiniband Address.
3300 * @device: Device to check
3301 * @port_num: Port number to check
3302 *
3303 * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default
3304 * GID. RoCE uses a different mechanism, but still generates a GID via
3305 * a prescribed mechanism and port specific data.
3306 *
3307 * Return: true if the port uses a GID address to identify devices on the
3308 * network.
3309 */
3310static inline bool rdma_cap_af_ib(const struct ib_device *device, u32 port_num)
3311{
3312 return device->port_data[port_num].immutable.core_cap_flags &
3313 RDMA_CORE_CAP_AF_IB;
3314}
3315
3316/**
3317 * rdma_cap_eth_ah - Check if the port of device has the capability
3318 * Ethernet Address Handle.
3319 * @device: Device to check
3320 * @port_num: Port number to check
3321 *
3322 * RoCE is InfiniBand over Ethernet, and it uses a well defined technique
3323 * to fabricate GIDs over Ethernet/IP specific addresses native to the
3324 * port. Normally, packet headers are generated by the sending host
3325 * adapter, but when sending connectionless datagrams, we must manually
3326 * inject the proper headers for the fabric we are communicating over.
3327 *
3328 * Return: true if we are running as a RoCE port and must force the
3329 * addition of a Global Route Header built from our Ethernet Address
3330 * Handle into our header list for connectionless packets.
3331 */
3332static inline bool rdma_cap_eth_ah(const struct ib_device *device, u32 port_num)
3333{
3334 return device->port_data[port_num].immutable.core_cap_flags &
3335 RDMA_CORE_CAP_ETH_AH;
3336}
3337
3338/**
3339 * rdma_cap_opa_ah - Check if the port of device supports
3340 * OPA Address handles
3341 * @device: Device to check
3342 * @port_num: Port number to check
3343 *
3344 * Return: true if we are running on an OPA device which supports
3345 * the extended OPA addressing.
3346 */
3347static inline bool rdma_cap_opa_ah(struct ib_device *device, u32 port_num)
3348{
3349 return (device->port_data[port_num].immutable.core_cap_flags &
3350 RDMA_CORE_CAP_OPA_AH) == RDMA_CORE_CAP_OPA_AH;
3351}
3352
3353/**
3354 * rdma_max_mad_size - Return the max MAD size required by this RDMA Port.
3355 *
3356 * @device: Device
3357 * @port_num: Port number
3358 *
3359 * This MAD size includes the MAD headers and MAD payload. No other headers
3360 * are included.
3361 *
3362 * Return the max MAD size required by the Port. Will return 0 if the port
3363 * does not support MADs
3364 */
3365static inline size_t rdma_max_mad_size(const struct ib_device *device,
3366 u32 port_num)
3367{
3368 return device->port_data[port_num].immutable.max_mad_size;
3369}
3370
3371/**
3372 * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table
3373 * @device: Device to check
3374 * @port_num: Port number to check
3375 *
3376 * RoCE GID table mechanism manages the various GIDs for a device.
3377 *
3378 * NOTE: if allocating the port's GID table has failed, this call will still
3379 * return true, but any RoCE GID table API will fail.
3380 *
3381 * Return: true if the port uses RoCE GID table mechanism in order to manage
3382 * its GIDs.
3383 */
3384static inline bool rdma_cap_roce_gid_table(const struct ib_device *device,
3385 u32 port_num)
3386{
3387 return rdma_protocol_roce(device, port_num) &&
3388 device->ops.add_gid && device->ops.del_gid;
3389}
3390
3391/*
3392 * Check if the device supports READ W/ INVALIDATE.
3393 */
3394static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num)
3395{
3396 /*
3397 * iWarp drivers must support READ W/ INVALIDATE. No other protocol
3398 * has support for it yet.
3399 */
3400 return rdma_protocol_iwarp(device: dev, port_num);
3401}
3402
3403/**
3404 * rdma_core_cap_opa_port - Return whether the RDMA Port is OPA or not.
3405 * @device: Device
3406 * @port_num: 1 based Port number
3407 *
3408 * Return true if port is an Intel OPA port , false if not
3409 */
3410static inline bool rdma_core_cap_opa_port(struct ib_device *device,
3411 u32 port_num)
3412{
3413 return (device->port_data[port_num].immutable.core_cap_flags &
3414 RDMA_CORE_PORT_INTEL_OPA) == RDMA_CORE_PORT_INTEL_OPA;
3415}
3416
3417/**
3418 * rdma_mtu_enum_to_int - Return the mtu of the port as an integer value.
3419 * @device: Device
3420 * @port_num: Port number
3421 * @mtu: enum value of MTU
3422 *
3423 * Return the MTU size supported by the port as an integer value. Will return
3424 * -1 if enum value of mtu is not supported.
3425 */
3426static inline int rdma_mtu_enum_to_int(struct ib_device *device, u32 port,
3427 int mtu)
3428{
3429 if (rdma_core_cap_opa_port(device, port_num: port))
3430 return opa_mtu_enum_to_int(mtu: (enum opa_mtu)mtu);
3431 else
3432 return ib_mtu_enum_to_int(mtu: (enum ib_mtu)mtu);
3433}
3434
3435/**
3436 * rdma_mtu_from_attr - Return the mtu of the port from the port attribute.
3437 * @device: Device
3438 * @port_num: Port number
3439 * @attr: port attribute
3440 *
3441 * Return the MTU size supported by the port as an integer value.
3442 */
3443static inline int rdma_mtu_from_attr(struct ib_device *device, u32 port,
3444 struct ib_port_attr *attr)
3445{
3446 if (rdma_core_cap_opa_port(device, port_num: port))
3447 return attr->phys_mtu;
3448 else
3449 return ib_mtu_enum_to_int(mtu: attr->max_mtu);
3450}
3451
3452int ib_set_vf_link_state(struct ib_device *device, int vf, u32 port,
3453 int state);
3454int ib_get_vf_config(struct ib_device *device, int vf, u32 port,
3455 struct ifla_vf_info *info);
3456int ib_get_vf_stats(struct ib_device *device, int vf, u32 port,
3457 struct ifla_vf_stats *stats);
3458int ib_get_vf_guid(struct ib_device *device, int vf, u32 port,
3459 struct ifla_vf_guid *node_guid,
3460 struct ifla_vf_guid *port_guid);
3461int ib_set_vf_guid(struct ib_device *device, int vf, u32 port, u64 guid,
3462 int type);
3463
3464int ib_query_pkey(struct ib_device *device,
3465 u32 port_num, u16 index, u16 *pkey);
3466
3467int ib_modify_device(struct ib_device *device,
3468 int device_modify_mask,
3469 struct ib_device_modify *device_modify);
3470
3471int ib_modify_port(struct ib_device *device,
3472 u32 port_num, int port_modify_mask,
3473 struct ib_port_modify *port_modify);
3474
3475int ib_find_gid(struct ib_device *device, union ib_gid *gid,
3476 u32 *port_num, u16 *index);
3477
3478int ib_find_pkey(struct ib_device *device,
3479 u32 port_num, u16 pkey, u16 *index);
3480
3481enum ib_pd_flags {
3482 /*
3483 * Create a memory registration for all memory in the system and place
3484 * the rkey for it into pd->unsafe_global_rkey. This can be used by
3485 * ULPs to avoid the overhead of dynamic MRs.
3486 *
3487 * This flag is generally considered unsafe and must only be used in
3488 * extremly trusted environments. Every use of it will log a warning
3489 * in the kernel log.
3490 */
3491 IB_PD_UNSAFE_GLOBAL_RKEY = 0x01,
3492};
3493
3494struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
3495 const char *caller);
3496
3497/**
3498 * ib_alloc_pd - Allocates an unused protection domain.
3499 * @device: The device on which to allocate the protection domain.
3500 * @flags: protection domain flags
3501 *
3502 * A protection domain object provides an association between QPs, shared
3503 * receive queues, address handles, memory regions, and memory windows.
3504 *
3505 * Every PD has a local_dma_lkey which can be used as the lkey value for local
3506 * memory operations.
3507 */
3508#define ib_alloc_pd(device, flags) \
3509 __ib_alloc_pd((device), (flags), KBUILD_MODNAME)
3510
3511int ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata);
3512
3513/**
3514 * ib_dealloc_pd - Deallocate kernel PD
3515 * @pd: The protection domain
3516 *
3517 * NOTE: for user PD use ib_dealloc_pd_user with valid udata!
3518 */
3519static inline void ib_dealloc_pd(struct ib_pd *pd)
3520{
3521 int ret = ib_dealloc_pd_user(pd, NULL);
3522
3523 WARN_ONCE(ret, "Destroy of kernel PD shouldn't fail");
3524}
3525
3526enum rdma_create_ah_flags {
3527 /* In a sleepable context */
3528 RDMA_CREATE_AH_SLEEPABLE = BIT(0),
3529};
3530
3531/**
3532 * rdma_create_ah - Creates an address handle for the given address vector.
3533 * @pd: The protection domain associated with the address handle.
3534 * @ah_attr: The attributes of the address vector.
3535 * @flags: Create address handle flags (see enum rdma_create_ah_flags).
3536 *
3537 * The address handle is used to reference a local or global destination
3538 * in all UD QP post sends.
3539 */
3540struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr,
3541 u32 flags);
3542
3543/**
3544 * rdma_create_user_ah - Creates an address handle for the given address vector.
3545 * It resolves destination mac address for ah attribute of RoCE type.
3546 * @pd: The protection domain associated with the address handle.
3547 * @ah_attr: The attributes of the address vector.
3548 * @udata: pointer to user's input output buffer information need by
3549 * provider driver.
3550 *
3551 * It returns 0 on success and returns appropriate error code on error.
3552 * The address handle is used to reference a local or global destination
3553 * in all UD QP post sends.
3554 */
3555struct ib_ah *rdma_create_user_ah(struct ib_pd *pd,
3556 struct rdma_ah_attr *ah_attr,
3557 struct ib_udata *udata);
3558/**
3559 * ib_get_gids_from_rdma_hdr - Get sgid and dgid from GRH or IPv4 header
3560 * work completion.
3561 * @hdr: the L3 header to parse
3562 * @net_type: type of header to parse
3563 * @sgid: place to store source gid
3564 * @dgid: place to store destination gid
3565 */
3566int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
3567 enum rdma_network_type net_type,
3568 union ib_gid *sgid, union ib_gid *dgid);
3569
3570/**
3571 * ib_get_rdma_header_version - Get the header version
3572 * @hdr: the L3 header to parse
3573 */
3574int ib_get_rdma_header_version(const union rdma_network_hdr *hdr);
3575
3576/**
3577 * ib_init_ah_attr_from_wc - Initializes address handle attributes from a
3578 * work completion.
3579 * @device: Device on which the received message arrived.
3580 * @port_num: Port on which the received message arrived.
3581 * @wc: Work completion associated with the received message.
3582 * @grh: References the received global route header. This parameter is
3583 * ignored unless the work completion indicates that the GRH is valid.
3584 * @ah_attr: Returned attributes that can be used when creating an address
3585 * handle for replying to the message.
3586 * When ib_init_ah_attr_from_wc() returns success,
3587 * (a) for IB link layer it optionally contains a reference to SGID attribute
3588 * when GRH is present for IB link layer.
3589 * (b) for RoCE link layer it contains a reference to SGID attribute.
3590 * User must invoke rdma_cleanup_ah_attr_gid_attr() to release reference to SGID
3591 * attributes which are initialized using ib_init_ah_attr_from_wc().
3592 *
3593 */
3594int ib_init_ah_attr_from_wc(struct ib_device *device, u32 port_num,
3595 const struct ib_wc *wc, const struct ib_grh *grh,
3596 struct rdma_ah_attr *ah_attr);
3597
3598/**
3599 * ib_create_ah_from_wc - Creates an address handle associated with the
3600 * sender of the specified work completion.
3601 * @pd: The protection domain associated with the address handle.
3602 * @wc: Work completion information associated with a received message.
3603 * @grh: References the received global route header. This parameter is
3604 * ignored unless the work completion indicates that the GRH is valid.
3605 * @port_num: The outbound port number to associate with the address.
3606 *
3607 * The address handle is used to reference a local or global destination
3608 * in all UD QP post sends.
3609 */
3610struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
3611 const struct ib_grh *grh, u32 port_num);
3612
3613/**
3614 * rdma_modify_ah - Modifies the address vector associated with an address
3615 * handle.
3616 * @ah: The address handle to modify.
3617 * @ah_attr: The new address vector attributes to associate with the
3618 * address handle.
3619 */
3620int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
3621
3622/**
3623 * rdma_query_ah - Queries the address vector associated with an address
3624 * handle.
3625 * @ah: The address handle to query.
3626 * @ah_attr: The address vector attributes associated with the address
3627 * handle.
3628 */
3629int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
3630
3631enum rdma_destroy_ah_flags {
3632 /* In a sleepable context */
3633 RDMA_DESTROY_AH_SLEEPABLE = BIT(0),
3634};
3635
3636/**
3637 * rdma_destroy_ah_user - Destroys an address handle.
3638 * @ah: The address handle to destroy.
3639 * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags).
3640 * @udata: Valid user data or NULL for kernel objects
3641 */
3642int rdma_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata);
3643
3644/**
3645 * rdma_destroy_ah - Destroys an kernel address handle.
3646 * @ah: The address handle to destroy.
3647 * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags).
3648 *
3649 * NOTE: for user ah use rdma_destroy_ah_user with valid udata!
3650 */
3651static inline void rdma_destroy_ah(struct ib_ah *ah, u32 flags)
3652{
3653 int ret = rdma_destroy_ah_user(ah, flags, NULL);
3654
3655 WARN_ONCE(ret, "Destroy of kernel AH shouldn't fail");
3656}
3657
3658struct ib_srq *ib_create_srq_user(struct ib_pd *pd,
3659 struct ib_srq_init_attr *srq_init_attr,
3660 struct ib_usrq_object *uobject,
3661 struct ib_udata *udata);
3662static inline struct ib_srq *
3663ib_create_srq(struct ib_pd *pd, struct ib_srq_init_attr *srq_init_attr)
3664{
3665 if (!pd->device->ops.create_srq)
3666 return ERR_PTR(error: -EOPNOTSUPP);
3667
3668 return ib_create_srq_user(pd, srq_init_attr, NULL, NULL);
3669}
3670
3671/**
3672 * ib_modify_srq - Modifies the attributes for the specified SRQ.
3673 * @srq: The SRQ to modify.
3674 * @srq_attr: On input, specifies the SRQ attributes to modify. On output,
3675 * the current values of selected SRQ attributes are returned.
3676 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
3677 * are being modified.
3678 *
3679 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
3680 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
3681 * the number of receives queued drops below the limit.
3682 */
3683int ib_modify_srq(struct ib_srq *srq,
3684 struct ib_srq_attr *srq_attr,
3685 enum ib_srq_attr_mask srq_attr_mask);
3686
3687/**
3688 * ib_query_srq - Returns the attribute list and current values for the
3689 * specified SRQ.
3690 * @srq: The SRQ to query.
3691 * @srq_attr: The attributes of the specified SRQ.
3692 */
3693int ib_query_srq(struct ib_srq *srq,
3694 struct ib_srq_attr *srq_attr);
3695
3696/**
3697 * ib_destroy_srq_user - Destroys the specified SRQ.
3698 * @srq: The SRQ to destroy.
3699 * @udata: Valid user data or NULL for kernel objects
3700 */
3701int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata);
3702
3703/**
3704 * ib_destroy_srq - Destroys the specified kernel SRQ.
3705 * @srq: The SRQ to destroy.
3706 *
3707 * NOTE: for user srq use ib_destroy_srq_user with valid udata!
3708 */
3709static inline void ib_destroy_srq(struct ib_srq *srq)
3710{
3711 int ret = ib_destroy_srq_user(srq, NULL);
3712
3713 WARN_ONCE(ret, "Destroy of kernel SRQ shouldn't fail");
3714}
3715
3716/**
3717 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
3718 * @srq: The SRQ to post the work request on.
3719 * @recv_wr: A list of work requests to post on the receive queue.
3720 * @bad_recv_wr: On an immediate failure, this parameter will reference
3721 * the work request that failed to be posted on the QP.
3722 */
3723static inline int ib_post_srq_recv(struct ib_srq *srq,
3724 const struct ib_recv_wr *recv_wr,
3725 const struct ib_recv_wr **bad_recv_wr)
3726{
3727 const struct ib_recv_wr *dummy;
3728
3729 return srq->device->ops.post_srq_recv(srq, recv_wr,
3730 bad_recv_wr ? : &dummy);
3731}
3732
3733struct ib_qp *ib_create_qp_kernel(struct ib_pd *pd,
3734 struct ib_qp_init_attr *qp_init_attr,
3735 const char *caller);
3736/**
3737 * ib_create_qp - Creates a kernel QP associated with the specific protection
3738 * domain.
3739 * @pd: The protection domain associated with the QP.
3740 * @init_attr: A list of initial attributes required to create the
3741 * QP. If QP creation succeeds, then the attributes are updated to
3742 * the actual capabilities of the created QP.
3743 */
3744static inline struct ib_qp *ib_create_qp(struct ib_pd *pd,
3745 struct ib_qp_init_attr *init_attr)
3746{
3747 return ib_create_qp_kernel(pd, qp_init_attr: init_attr, KBUILD_MODNAME);
3748}
3749
3750/**
3751 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
3752 * @qp: The QP to modify.
3753 * @attr: On input, specifies the QP attributes to modify. On output,
3754 * the current values of selected QP attributes are returned.
3755 * @attr_mask: A bit-mask used to specify which attributes of the QP
3756 * are being modified.
3757 * @udata: pointer to user's input output buffer information
3758 * are being modified.
3759 * It returns 0 on success and returns appropriate error code on error.
3760 */
3761int ib_modify_qp_with_udata(struct ib_qp *qp,
3762 struct ib_qp_attr *attr,
3763 int attr_mask,
3764 struct ib_udata *udata);
3765
3766/**
3767 * ib_modify_qp - Modifies the attributes for the specified QP and then
3768 * transitions the QP to the given state.
3769 * @qp: The QP to modify.
3770 * @qp_attr: On input, specifies the QP attributes to modify. On output,
3771 * the current values of selected QP attributes are returned.
3772 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
3773 * are being modified.
3774 */
3775int ib_modify_qp(struct ib_qp *qp,
3776 struct ib_qp_attr *qp_attr,
3777 int qp_attr_mask);
3778
3779/**
3780 * ib_query_qp - Returns the attribute list and current values for the
3781 * specified QP.
3782 * @qp: The QP to query.
3783 * @qp_attr: The attributes of the specified QP.
3784 * @qp_attr_mask: A bit-mask used to select specific attributes to query.
3785 * @qp_init_attr: Additional attributes of the selected QP.
3786 *
3787 * The qp_attr_mask may be used to limit the query to gathering only the
3788 * selected attributes.
3789 */
3790int ib_query_qp(struct ib_qp *qp,
3791 struct ib_qp_attr *qp_attr,
3792 int qp_attr_mask,
3793 struct ib_qp_init_attr *qp_init_attr);
3794
3795/**
3796 * ib_destroy_qp - Destroys the specified QP.
3797 * @qp: The QP to destroy.
3798 * @udata: Valid udata or NULL for kernel objects
3799 */
3800int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata);
3801
3802/**
3803 * ib_destroy_qp - Destroys the specified kernel QP.
3804 * @qp: The QP to destroy.
3805 *
3806 * NOTE: for user qp use ib_destroy_qp_user with valid udata!
3807 */
3808static inline int ib_destroy_qp(struct ib_qp *qp)
3809{
3810 return ib_destroy_qp_user(qp, NULL);
3811}
3812
3813/**
3814 * ib_open_qp - Obtain a reference to an existing sharable QP.
3815 * @xrcd - XRC domain
3816 * @qp_open_attr: Attributes identifying the QP to open.
3817 *
3818 * Returns a reference to a sharable QP.
3819 */
3820struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
3821 struct ib_qp_open_attr *qp_open_attr);
3822
3823/**
3824 * ib_close_qp - Release an external reference to a QP.
3825 * @qp: The QP handle to release
3826 *
3827 * The opened QP handle is released by the caller. The underlying
3828 * shared QP is not destroyed until all internal references are released.
3829 */
3830int ib_close_qp(struct ib_qp *qp);
3831
3832/**
3833 * ib_post_send - Posts a list of work requests to the send queue of
3834 * the specified QP.
3835 * @qp: The QP to post the work request on.
3836 * @send_wr: A list of work requests to post on the send queue.
3837 * @bad_send_wr: On an immediate failure, this parameter will reference
3838 * the work request that failed to be posted on the QP.
3839 *
3840 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
3841 * error is returned, the QP state shall not be affected,
3842 * ib_post_send() will return an immediate error after queueing any
3843 * earlier work requests in the list.
3844 */
3845static inline int ib_post_send(struct ib_qp *qp,
3846 const struct ib_send_wr *send_wr,
3847 const struct ib_send_wr **bad_send_wr)
3848{
3849 const struct ib_send_wr *dummy;
3850
3851 return qp->device->ops.post_send(qp, send_wr, bad_send_wr ? : &dummy);
3852}
3853
3854/**
3855 * ib_post_recv - Posts a list of work requests to the receive queue of
3856 * the specified QP.
3857 * @qp: The QP to post the work request on.
3858 * @recv_wr: A list of work requests to post on the receive queue.
3859 * @bad_recv_wr: On an immediate failure, this parameter will reference
3860 * the work request that failed to be posted on the QP.
3861 */
3862static inline int ib_post_recv(struct ib_qp *qp,
3863 const struct ib_recv_wr *recv_wr,
3864 const struct ib_recv_wr **bad_recv_wr)
3865{
3866 const struct ib_recv_wr *dummy;
3867
3868 return qp->device->ops.post_recv(qp, recv_wr, bad_recv_wr ? : &dummy);
3869}
3870
3871struct ib_cq *__ib_alloc_cq(struct ib_device *dev, void *private, int nr_cqe,
3872 int comp_vector, enum ib_poll_context poll_ctx,
3873 const char *caller);
3874static inline struct ib_cq *ib_alloc_cq(struct ib_device *dev, void *private,
3875 int nr_cqe, int comp_vector,
3876 enum ib_poll_context poll_ctx)
3877{
3878 return __ib_alloc_cq(dev, private, nr_cqe, comp_vector, poll_ctx,
3879 KBUILD_MODNAME);
3880}
3881
3882struct ib_cq *__ib_alloc_cq_any(struct ib_device *dev, void *private,
3883 int nr_cqe, enum ib_poll_context poll_ctx,
3884 const char *caller);
3885
3886/**
3887 * ib_alloc_cq_any: Allocate kernel CQ
3888 * @dev: The IB device
3889 * @private: Private data attached to the CQE
3890 * @nr_cqe: Number of CQEs in the CQ
3891 * @poll_ctx: Context used for polling the CQ
3892 */
3893static inline struct ib_cq *ib_alloc_cq_any(struct ib_device *dev,
3894 void *private, int nr_cqe,
3895 enum ib_poll_context poll_ctx)
3896{
3897 return __ib_alloc_cq_any(dev, private, nr_cqe, poll_ctx,
3898 KBUILD_MODNAME);
3899}
3900
3901void ib_free_cq(struct ib_cq *cq);
3902int ib_process_cq_direct(struct ib_cq *cq, int budget);
3903
3904/**
3905 * ib_create_cq - Creates a CQ on the specified device.
3906 * @device: The device on which to create the CQ.
3907 * @comp_handler: A user-specified callback that is invoked when a
3908 * completion event occurs on the CQ.
3909 * @event_handler: A user-specified callback that is invoked when an
3910 * asynchronous event not associated with a completion occurs on the CQ.
3911 * @cq_context: Context associated with the CQ returned to the user via
3912 * the associated completion and event handlers.
3913 * @cq_attr: The attributes the CQ should be created upon.
3914 *
3915 * Users can examine the cq structure to determine the actual CQ size.
3916 */
3917struct ib_cq *__ib_create_cq(struct ib_device *device,
3918 ib_comp_handler comp_handler,
3919 void (*event_handler)(struct ib_event *, void *),
3920 void *cq_context,
3921 const struct ib_cq_init_attr *cq_attr,
3922 const char *caller);
3923#define ib_create_cq(device, cmp_hndlr, evt_hndlr, cq_ctxt, cq_attr) \
3924 __ib_create_cq((device), (cmp_hndlr), (evt_hndlr), (cq_ctxt), (cq_attr), KBUILD_MODNAME)
3925
3926/**
3927 * ib_resize_cq - Modifies the capacity of the CQ.
3928 * @cq: The CQ to resize.
3929 * @cqe: The minimum size of the CQ.
3930 *
3931 * Users can examine the cq structure to determine the actual CQ size.
3932 */
3933int ib_resize_cq(struct ib_cq *cq, int cqe);
3934
3935/**
3936 * rdma_set_cq_moderation - Modifies moderation params of the CQ
3937 * @cq: The CQ to modify.
3938 * @cq_count: number of CQEs that will trigger an event
3939 * @cq_period: max period of time in usec before triggering an event
3940 *
3941 */
3942int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period);
3943
3944/**
3945 * ib_destroy_cq_user - Destroys the specified CQ.
3946 * @cq: The CQ to destroy.
3947 * @udata: Valid user data or NULL for kernel objects
3948 */
3949int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata);
3950
3951/**
3952 * ib_destroy_cq - Destroys the specified kernel CQ.
3953 * @cq: The CQ to destroy.
3954 *
3955 * NOTE: for user cq use ib_destroy_cq_user with valid udata!
3956 */
3957static inline void ib_destroy_cq(struct ib_cq *cq)
3958{
3959 int ret = ib_destroy_cq_user(cq, NULL);
3960
3961 WARN_ONCE(ret, "Destroy of kernel CQ shouldn't fail");
3962}
3963
3964/**
3965 * ib_poll_cq - poll a CQ for completion(s)
3966 * @cq:the CQ being polled
3967 * @num_entries:maximum number of completions to return
3968 * @wc:array of at least @num_entries &struct ib_wc where completions
3969 * will be returned
3970 *
3971 * Poll a CQ for (possibly multiple) completions. If the return value
3972 * is < 0, an error occurred. If the return value is >= 0, it is the
3973 * number of completions returned. If the return value is
3974 * non-negative and < num_entries, then the CQ was emptied.
3975 */
3976static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
3977 struct ib_wc *wc)
3978{
3979 return cq->device->ops.poll_cq(cq, num_entries, wc);
3980}
3981
3982/**
3983 * ib_req_notify_cq - Request completion notification on a CQ.
3984 * @cq: The CQ to generate an event for.
3985 * @flags:
3986 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
3987 * to request an event on the next solicited event or next work
3988 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
3989 * may also be |ed in to request a hint about missed events, as
3990 * described below.
3991 *
3992 * Return Value:
3993 * < 0 means an error occurred while requesting notification
3994 * == 0 means notification was requested successfully, and if
3995 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
3996 * were missed and it is safe to wait for another event. In
3997 * this case is it guaranteed that any work completions added
3998 * to the CQ since the last CQ poll will trigger a completion
3999 * notification event.
4000 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
4001 * in. It means that the consumer must poll the CQ again to
4002 * make sure it is empty to avoid missing an event because of a
4003 * race between requesting notification and an entry being
4004 * added to the CQ. This return value means it is possible
4005 * (but not guaranteed) that a work completion has been added
4006 * to the CQ since the last poll without triggering a
4007 * completion notification event.
4008 */
4009static inline int ib_req_notify_cq(struct ib_cq *cq,
4010 enum ib_cq_notify_flags flags)
4011{
4012 return cq->device->ops.req_notify_cq(cq, flags);
4013}
4014
4015struct ib_cq *ib_cq_pool_get(struct ib_device *dev, unsigned int nr_cqe,
4016 int comp_vector_hint,
4017 enum ib_poll_context poll_ctx);
4018
4019void ib_cq_pool_put(struct ib_cq *cq, unsigned int nr_cqe);
4020
4021/*
4022 * Drivers that don't need a DMA mapping at the RDMA layer, set dma_device to
4023 * NULL. This causes the ib_dma* helpers to just stash the kernel virtual
4024 * address into the dma address.
4025 */
4026static inline bool ib_uses_virt_dma(struct ib_device *dev)
4027{
4028 return IS_ENABLED(CONFIG_INFINIBAND_VIRT_DMA) && !dev->dma_device;
4029}
4030
4031/*
4032 * Check if a IB device's underlying DMA mapping supports P2PDMA transfers.
4033 */
4034static inline bool ib_dma_pci_p2p_dma_supported(struct ib_device *dev)
4035{
4036 if (ib_uses_virt_dma(dev))
4037 return false;
4038
4039 return dma_pci_p2pdma_supported(dev: dev->dma_device);
4040}
4041
4042/**
4043 * ib_virt_dma_to_ptr - Convert a dma_addr to a kernel pointer
4044 * @dma_addr: The DMA address
4045 *
4046 * Used by ib_uses_virt_dma() devices to get back to the kernel pointer after
4047 * going through the dma_addr marshalling.
4048 */
4049static inline void *ib_virt_dma_to_ptr(u64 dma_addr)
4050{
4051 /* virt_dma mode maps the kvs's directly into the dma addr */
4052 return (void *)(uintptr_t)dma_addr;
4053}
4054
4055/**
4056 * ib_virt_dma_to_page - Convert a dma_addr to a struct page
4057 * @dma_addr: The DMA address
4058 *
4059 * Used by ib_uses_virt_dma() device to get back to the struct page after going
4060 * through the dma_addr marshalling.
4061 */
4062static inline struct page *ib_virt_dma_to_page(u64 dma_addr)
4063{
4064 return virt_to_page(ib_virt_dma_to_ptr(dma_addr));
4065}
4066
4067/**
4068 * ib_dma_mapping_error - check a DMA addr for error
4069 * @dev: The device for which the dma_addr was created
4070 * @dma_addr: The DMA address to check
4071 */
4072static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
4073{
4074 if (ib_uses_virt_dma(dev))
4075 return 0;
4076 return dma_mapping_error(dev: dev->dma_device, dma_addr);
4077}
4078
4079/**
4080 * ib_dma_map_single - Map a kernel virtual address to DMA address
4081 * @dev: The device for which the dma_addr is to be created
4082 * @cpu_addr: The kernel virtual address
4083 * @size: The size of the region in bytes
4084 * @direction: The direction of the DMA
4085 */
4086static inline u64 ib_dma_map_single(struct ib_device *dev,
4087 void *cpu_addr, size_t size,
4088 enum dma_data_direction direction)
4089{
4090 if (ib_uses_virt_dma(dev))
4091 return (uintptr_t)cpu_addr;
4092 return dma_map_single(dev->dma_device, cpu_addr, size, direction);
4093}
4094
4095/**
4096 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
4097 * @dev: The device for which the DMA address was created
4098 * @addr: The DMA address
4099 * @size: The size of the region in bytes
4100 * @direction: The direction of the DMA
4101 */
4102static inline void ib_dma_unmap_single(struct ib_device *dev,
4103 u64 addr, size_t size,
4104 enum dma_data_direction direction)
4105{
4106 if (!ib_uses_virt_dma(dev))
4107 dma_unmap_single(dev->dma_device, addr, size, direction);
4108}
4109
4110/**
4111 * ib_dma_map_page - Map a physical page to DMA address
4112 * @dev: The device for which the dma_addr is to be created
4113 * @page: The page to be mapped
4114 * @offset: The offset within the page
4115 * @size: The size of the region in bytes
4116 * @direction: The direction of the DMA
4117 */
4118static inline u64 ib_dma_map_page(struct ib_device *dev,
4119 struct page *page,
4120 unsigned long offset,
4121 size_t size,
4122 enum dma_data_direction direction)
4123{
4124 if (ib_uses_virt_dma(dev))
4125 return (uintptr_t)(page_address(page) + offset);
4126 return dma_map_page(dev->dma_device, page, offset, size, direction);
4127}
4128
4129/**
4130 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
4131 * @dev: The device for which the DMA address was created
4132 * @addr: The DMA address
4133 * @size: The size of the region in bytes
4134 * @direction: The direction of the DMA
4135 */
4136static inline void ib_dma_unmap_page(struct ib_device *dev,
4137 u64 addr, size_t size,
4138 enum dma_data_direction direction)
4139{
4140 if (!ib_uses_virt_dma(dev))
4141 dma_unmap_page(dev->dma_device, addr, size, direction);
4142}
4143
4144int ib_dma_virt_map_sg(struct ib_device *dev, struct scatterlist *sg, int nents);
4145static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
4146 struct scatterlist *sg, int nents,
4147 enum dma_data_direction direction,
4148 unsigned long dma_attrs)
4149{
4150 if (ib_uses_virt_dma(dev))
4151 return ib_dma_virt_map_sg(dev, sg, nents);
4152 return dma_map_sg_attrs(dev: dev->dma_device, sg, nents, dir: direction,
4153 attrs: dma_attrs);
4154}
4155
4156static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
4157 struct scatterlist *sg, int nents,
4158 enum dma_data_direction direction,
4159 unsigned long dma_attrs)
4160{
4161 if (!ib_uses_virt_dma(dev))
4162 dma_unmap_sg_attrs(dev: dev->dma_device, sg, nents, dir: direction,
4163 attrs: dma_attrs);
4164}
4165
4166/**
4167 * ib_dma_map_sgtable_attrs - Map a scatter/gather table to DMA addresses
4168 * @dev: The device for which the DMA addresses are to be created
4169 * @sg: The sg_table object describing the buffer
4170 * @direction: The direction of the DMA
4171 * @attrs: Optional DMA attributes for the map operation
4172 */
4173static inline int ib_dma_map_sgtable_attrs(struct ib_device *dev,
4174 struct sg_table *sgt,
4175 enum dma_data_direction direction,
4176 unsigned long dma_attrs)
4177{
4178 int nents;
4179
4180 if (ib_uses_virt_dma(dev)) {
4181 nents = ib_dma_virt_map_sg(dev, sg: sgt->sgl, nents: sgt->orig_nents);
4182 if (!nents)
4183 return -EIO;
4184 sgt->nents = nents;
4185 return 0;
4186 }
4187 return dma_map_sgtable(dev: dev->dma_device, sgt, dir: direction, attrs: dma_attrs);
4188}
4189
4190static inline void ib_dma_unmap_sgtable_attrs(struct ib_device *dev,
4191 struct sg_table *sgt,
4192 enum dma_data_direction direction,
4193 unsigned long dma_attrs)
4194{
4195 if (!ib_uses_virt_dma(dev))
4196 dma_unmap_sgtable(dev: dev->dma_device, sgt, dir: direction, attrs: dma_attrs);
4197}
4198
4199/**
4200 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
4201 * @dev: The device for which the DMA addresses are to be created
4202 * @sg: The array of scatter/gather entries
4203 * @nents: The number of scatter/gather entries
4204 * @direction: The direction of the DMA
4205 */
4206static inline int ib_dma_map_sg(struct ib_device *dev,
4207 struct scatterlist *sg, int nents,
4208 enum dma_data_direction direction)
4209{
4210 return ib_dma_map_sg_attrs(dev, sg, nents, direction, dma_attrs: 0);
4211}
4212
4213/**
4214 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
4215 * @dev: The device for which the DMA addresses were created
4216 * @sg: The array of scatter/gather entries
4217 * @nents: The number of scatter/gather entries
4218 * @direction: The direction of the DMA
4219 */
4220static inline void ib_dma_unmap_sg(struct ib_device *dev,
4221 struct scatterlist *sg, int nents,
4222 enum dma_data_direction direction)
4223{
4224 ib_dma_unmap_sg_attrs(dev, sg, nents, direction, dma_attrs: 0);
4225}
4226
4227/**
4228 * ib_dma_max_seg_size - Return the size limit of a single DMA transfer
4229 * @dev: The device to query
4230 *
4231 * The returned value represents a size in bytes.
4232 */
4233static inline unsigned int ib_dma_max_seg_size(struct ib_device *dev)
4234{
4235 if (ib_uses_virt_dma(dev))
4236 return UINT_MAX;
4237 return dma_get_max_seg_size(dev: dev->dma_device);
4238}
4239
4240/**
4241 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
4242 * @dev: The device for which the DMA address was created
4243 * @addr: The DMA address
4244 * @size: The size of the region in bytes
4245 * @dir: The direction of the DMA
4246 */
4247static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
4248 u64 addr,
4249 size_t size,
4250 enum dma_data_direction dir)
4251{
4252 if (!ib_uses_virt_dma(dev))
4253 dma_sync_single_for_cpu(dev: dev->dma_device, addr, size, dir);
4254}
4255
4256/**
4257 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
4258 * @dev: The device for which the DMA address was created
4259 * @addr: The DMA address
4260 * @size: The size of the region in bytes
4261 * @dir: The direction of the DMA
4262 */
4263static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
4264 u64 addr,
4265 size_t size,
4266 enum dma_data_direction dir)
4267{
4268 if (!ib_uses_virt_dma(dev))
4269 dma_sync_single_for_device(dev: dev->dma_device, addr, size, dir);
4270}
4271
4272/* ib_reg_user_mr - register a memory region for virtual addresses from kernel
4273 * space. This function should be called when 'current' is the owning MM.
4274 */
4275struct ib_mr *ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
4276 u64 virt_addr, int mr_access_flags);
4277
4278/* ib_advise_mr - give an advice about an address range in a memory region */
4279int ib_advise_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice,
4280 u32 flags, struct ib_sge *sg_list, u32 num_sge);
4281/**
4282 * ib_dereg_mr_user - Deregisters a memory region and removes it from the
4283 * HCA translation table.
4284 * @mr: The memory region to deregister.
4285 * @udata: Valid user data or NULL for kernel object
4286 *
4287 * This function can fail, if the memory region has memory windows bound to it.
4288 */
4289int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata);
4290
4291/**
4292 * ib_dereg_mr - Deregisters a kernel memory region and removes it from the
4293 * HCA translation table.
4294 * @mr: The memory region to deregister.
4295 *
4296 * This function can fail, if the memory region has memory windows bound to it.
4297 *
4298 * NOTE: for user mr use ib_dereg_mr_user with valid udata!
4299 */
4300static inline int ib_dereg_mr(struct ib_mr *mr)
4301{
4302 return ib_dereg_mr_user(mr, NULL);
4303}
4304
4305struct ib_mr *ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
4306 u32 max_num_sg);
4307
4308struct ib_mr *ib_alloc_mr_integrity(struct ib_pd *pd,
4309 u32 max_num_data_sg,
4310 u32 max_num_meta_sg);
4311
4312/**
4313 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
4314 * R_Key and L_Key.
4315 * @mr - struct ib_mr pointer to be updated.
4316 * @newkey - new key to be used.
4317 */
4318static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
4319{
4320 mr->lkey = (mr->lkey & 0xffffff00) | newkey;
4321 mr->rkey = (mr->rkey & 0xffffff00) | newkey;
4322}
4323
4324/**
4325 * ib_inc_rkey - increments the key portion of the given rkey. Can be used
4326 * for calculating a new rkey for type 2 memory windows.
4327 * @rkey - the rkey to increment.
4328 */
4329static inline u32 ib_inc_rkey(u32 rkey)
4330{
4331 const u32 mask = 0x000000ff;
4332 return ((rkey + 1) & mask) | (rkey & ~mask);
4333}
4334
4335/**
4336 * ib_attach_mcast - Attaches the specified QP to a multicast group.
4337 * @qp: QP to attach to the multicast group. The QP must be type
4338 * IB_QPT_UD.
4339 * @gid: Multicast group GID.
4340 * @lid: Multicast group LID in host byte order.
4341 *
4342 * In order to send and receive multicast packets, subnet
4343 * administration must have created the multicast group and configured
4344 * the fabric appropriately. The port associated with the specified
4345 * QP must also be a member of the multicast group.
4346 */
4347int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
4348
4349/**
4350 * ib_detach_mcast - Detaches the specified QP from a multicast group.
4351 * @qp: QP to detach from the multicast group.
4352 * @gid: Multicast group GID.
4353 * @lid: Multicast group LID in host byte order.
4354 */
4355int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
4356
4357struct ib_xrcd *ib_alloc_xrcd_user(struct ib_device *device,
4358 struct inode *inode, struct ib_udata *udata);
4359int ib_dealloc_xrcd_user(struct ib_xrcd *xrcd, struct ib_udata *udata);
4360
4361static inline int ib_check_mr_access(struct ib_device *ib_dev,
4362 unsigned int flags)
4363{
4364 u64 device_cap = ib_dev->attrs.device_cap_flags;
4365
4366 /*
4367 * Local write permission is required if remote write or
4368 * remote atomic permission is also requested.
4369 */
4370 if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) &&
4371 !(flags & IB_ACCESS_LOCAL_WRITE))
4372 return -EINVAL;
4373
4374 if (flags & ~IB_ACCESS_SUPPORTED)
4375 return -EINVAL;
4376
4377 if (flags & IB_ACCESS_ON_DEMAND &&
4378 !(ib_dev->attrs.kernel_cap_flags & IBK_ON_DEMAND_PAGING))
4379 return -EOPNOTSUPP;
4380
4381 if ((flags & IB_ACCESS_FLUSH_GLOBAL &&
4382 !(device_cap & IB_DEVICE_FLUSH_GLOBAL)) ||
4383 (flags & IB_ACCESS_FLUSH_PERSISTENT &&
4384 !(device_cap & IB_DEVICE_FLUSH_PERSISTENT)))
4385 return -EOPNOTSUPP;
4386
4387 return 0;
4388}
4389
4390static inline bool ib_access_writable(int access_flags)
4391{
4392 /*
4393 * We have writable memory backing the MR if any of the following
4394 * access flags are set. "Local write" and "remote write" obviously
4395 * require write access. "Remote atomic" can do things like fetch and
4396 * add, which will modify memory, and "MW bind" can change permissions
4397 * by binding a window.
4398 */
4399 return access_flags &
4400 (IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_WRITE |
4401 IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_MW_BIND);
4402}
4403
4404/**
4405 * ib_check_mr_status: lightweight check of MR status.
4406 * This routine may provide status checks on a selected
4407 * ib_mr. first use is for signature status check.
4408 *
4409 * @mr: A memory region.
4410 * @check_mask: Bitmask of which checks to perform from
4411 * ib_mr_status_check enumeration.
4412 * @mr_status: The container of relevant status checks.
4413 * failed checks will be indicated in the status bitmask
4414 * and the relevant info shall be in the error item.
4415 */
4416int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
4417 struct ib_mr_status *mr_status);
4418
4419/**
4420 * ib_device_try_get: Hold a registration lock
4421 * device: The device to lock
4422 *
4423 * A device under an active registration lock cannot become unregistered. It
4424 * is only possible to obtain a registration lock on a device that is fully
4425 * registered, otherwise this function returns false.
4426 *
4427 * The registration lock is only necessary for actions which require the
4428 * device to still be registered. Uses that only require the device pointer to
4429 * be valid should use get_device(&ibdev->dev) to hold the memory.
4430 *
4431 */
4432static inline bool ib_device_try_get(struct ib_device *dev)
4433{
4434 return refcount_inc_not_zero(r: &dev->refcount);
4435}
4436
4437void ib_device_put(struct ib_device *device);
4438struct ib_device *ib_device_get_by_netdev(struct net_device *ndev,
4439 enum rdma_driver_id driver_id);
4440struct ib_device *ib_device_get_by_name(const char *name,
4441 enum rdma_driver_id driver_id);
4442struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u32 port,
4443 u16 pkey, const union ib_gid *gid,
4444 const struct sockaddr *addr);
4445int ib_device_set_netdev(struct ib_device *ib_dev, struct net_device *ndev,
4446 unsigned int port);
4447struct ib_wq *ib_create_wq(struct ib_pd *pd,
4448 struct ib_wq_init_attr *init_attr);
4449int ib_destroy_wq_user(struct ib_wq *wq, struct ib_udata *udata);
4450
4451int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
4452 unsigned int *sg_offset, unsigned int page_size);
4453int ib_map_mr_sg_pi(struct ib_mr *mr, struct scatterlist *data_sg,
4454 int data_sg_nents, unsigned int *data_sg_offset,
4455 struct scatterlist *meta_sg, int meta_sg_nents,
4456 unsigned int *meta_sg_offset, unsigned int page_size);
4457
4458static inline int
4459ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
4460 unsigned int *sg_offset, unsigned int page_size)
4461{
4462 int n;
4463
4464 n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size);
4465 mr->iova = 0;
4466
4467 return n;
4468}
4469
4470int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
4471 unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64));
4472
4473void ib_drain_rq(struct ib_qp *qp);
4474void ib_drain_sq(struct ib_qp *qp);
4475void ib_drain_qp(struct ib_qp *qp);
4476
4477int ib_get_eth_speed(struct ib_device *dev, u32 port_num, u16 *speed,
4478 u8 *width);
4479
4480static inline u8 *rdma_ah_retrieve_dmac(struct rdma_ah_attr *attr)
4481{
4482 if (attr->type == RDMA_AH_ATTR_TYPE_ROCE)
4483 return attr->roce.dmac;
4484 return NULL;
4485}
4486
4487static inline void rdma_ah_set_dlid(struct rdma_ah_attr *attr, u32 dlid)
4488{
4489 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4490 attr->ib.dlid = (u16)dlid;
4491 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4492 attr->opa.dlid = dlid;
4493}
4494
4495static inline u32 rdma_ah_get_dlid(const struct rdma_ah_attr *attr)
4496{
4497 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4498 return attr->ib.dlid;
4499 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4500 return attr->opa.dlid;
4501 return 0;
4502}
4503
4504static inline void rdma_ah_set_sl(struct rdma_ah_attr *attr, u8 sl)
4505{
4506 attr->sl = sl;
4507}
4508
4509static inline u8 rdma_ah_get_sl(const struct rdma_ah_attr *attr)
4510{
4511 return attr->sl;
4512}
4513
4514static inline void rdma_ah_set_path_bits(struct rdma_ah_attr *attr,
4515 u8 src_path_bits)
4516{
4517 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4518 attr->ib.src_path_bits = src_path_bits;
4519 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4520 attr->opa.src_path_bits = src_path_bits;
4521}
4522
4523static inline u8 rdma_ah_get_path_bits(const struct rdma_ah_attr *attr)
4524{
4525 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4526 return attr->ib.src_path_bits;
4527 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4528 return attr->opa.src_path_bits;
4529 return 0;
4530}
4531
4532static inline void rdma_ah_set_make_grd(struct rdma_ah_attr *attr,
4533 bool make_grd)
4534{
4535 if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4536 attr->opa.make_grd = make_grd;
4537}
4538
4539static inline bool rdma_ah_get_make_grd(const struct rdma_ah_attr *attr)
4540{
4541 if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4542 return attr->opa.make_grd;
4543 return false;
4544}
4545
4546static inline void rdma_ah_set_port_num(struct rdma_ah_attr *attr, u32 port_num)
4547{
4548 attr->port_num = port_num;
4549}
4550
4551static inline u32 rdma_ah_get_port_num(const struct rdma_ah_attr *attr)
4552{
4553 return attr->port_num;
4554}
4555
4556static inline void rdma_ah_set_static_rate(struct rdma_ah_attr *attr,
4557 u8 static_rate)
4558{
4559 attr->static_rate = static_rate;
4560}
4561
4562static inline u8 rdma_ah_get_static_rate(const struct rdma_ah_attr *attr)
4563{
4564 return attr->static_rate;
4565}
4566
4567static inline void rdma_ah_set_ah_flags(struct rdma_ah_attr *attr,
4568 enum ib_ah_flags flag)
4569{
4570 attr->ah_flags = flag;
4571}
4572
4573static inline enum ib_ah_flags
4574 rdma_ah_get_ah_flags(const struct rdma_ah_attr *attr)
4575{
4576 return attr->ah_flags;
4577}
4578
4579static inline const struct ib_global_route
4580 *rdma_ah_read_grh(const struct rdma_ah_attr *attr)
4581{
4582 return &attr->grh;
4583}
4584
4585/*To retrieve and modify the grh */
4586static inline struct ib_global_route
4587 *rdma_ah_retrieve_grh(struct rdma_ah_attr *attr)
4588{
4589 return &attr->grh;
4590}
4591
4592static inline void rdma_ah_set_dgid_raw(struct rdma_ah_attr *attr, void *dgid)
4593{
4594 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4595
4596 memcpy(grh->dgid.raw, dgid, sizeof(grh->dgid));
4597}
4598
4599static inline void rdma_ah_set_subnet_prefix(struct rdma_ah_attr *attr,
4600 __be64 prefix)
4601{
4602 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4603
4604 grh->dgid.global.subnet_prefix = prefix;
4605}
4606
4607static inline void rdma_ah_set_interface_id(struct rdma_ah_attr *attr,
4608 __be64 if_id)
4609{
4610 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4611
4612 grh->dgid.global.interface_id = if_id;
4613}
4614
4615static inline void rdma_ah_set_grh(struct rdma_ah_attr *attr,
4616 union ib_gid *dgid, u32 flow_label,
4617 u8 sgid_index, u8 hop_limit,
4618 u8 traffic_class)
4619{
4620 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4621
4622 attr->ah_flags = IB_AH_GRH;
4623 if (dgid)
4624 grh->dgid = *dgid;
4625 grh->flow_label = flow_label;
4626 grh->sgid_index = sgid_index;
4627 grh->hop_limit = hop_limit;
4628 grh->traffic_class = traffic_class;
4629 grh->sgid_attr = NULL;
4630}
4631
4632void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr);
4633void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid,
4634 u32 flow_label, u8 hop_limit, u8 traffic_class,
4635 const struct ib_gid_attr *sgid_attr);
4636void rdma_copy_ah_attr(struct rdma_ah_attr *dest,
4637 const struct rdma_ah_attr *src);
4638void rdma_replace_ah_attr(struct rdma_ah_attr *old,
4639 const struct rdma_ah_attr *new);
4640void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src);
4641
4642/**
4643 * rdma_ah_find_type - Return address handle type.
4644 *
4645 * @dev: Device to be checked
4646 * @port_num: Port number
4647 */
4648static inline enum rdma_ah_attr_type rdma_ah_find_type(struct ib_device *dev,
4649 u32 port_num)
4650{
4651 if (rdma_protocol_roce(device: dev, port_num))
4652 return RDMA_AH_ATTR_TYPE_ROCE;
4653 if (rdma_protocol_ib(device: dev, port_num)) {
4654 if (rdma_cap_opa_ah(device: dev, port_num))
4655 return RDMA_AH_ATTR_TYPE_OPA;
4656 return RDMA_AH_ATTR_TYPE_IB;
4657 }
4658
4659 return RDMA_AH_ATTR_TYPE_UNDEFINED;
4660}
4661
4662/**
4663 * ib_lid_cpu16 - Return lid in 16bit CPU encoding.
4664 * In the current implementation the only way to
4665 * get the 32bit lid is from other sources for OPA.
4666 * For IB, lids will always be 16bits so cast the
4667 * value accordingly.
4668 *
4669 * @lid: A 32bit LID
4670 */
4671static inline u16 ib_lid_cpu16(u32 lid)
4672{
4673 WARN_ON_ONCE(lid & 0xFFFF0000);
4674 return (u16)lid;
4675}
4676
4677/**
4678 * ib_lid_be16 - Return lid in 16bit BE encoding.
4679 *
4680 * @lid: A 32bit LID
4681 */
4682static inline __be16 ib_lid_be16(u32 lid)
4683{
4684 WARN_ON_ONCE(lid & 0xFFFF0000);
4685 return cpu_to_be16((u16)lid);
4686}
4687
4688/**
4689 * ib_get_vector_affinity - Get the affinity mappings of a given completion
4690 * vector
4691 * @device: the rdma device
4692 * @comp_vector: index of completion vector
4693 *
4694 * Returns NULL on failure, otherwise a corresponding cpu map of the
4695 * completion vector (returns all-cpus map if the device driver doesn't
4696 * implement get_vector_affinity).
4697 */
4698static inline const struct cpumask *
4699ib_get_vector_affinity(struct ib_device *device, int comp_vector)
4700{
4701 if (comp_vector < 0 || comp_vector >= device->num_comp_vectors ||
4702 !device->ops.get_vector_affinity)
4703 return NULL;
4704
4705 return device->ops.get_vector_affinity(device, comp_vector);
4706
4707}
4708
4709/**
4710 * rdma_roce_rescan_device - Rescan all of the network devices in the system
4711 * and add their gids, as needed, to the relevant RoCE devices.
4712 *
4713 * @device: the rdma device
4714 */
4715void rdma_roce_rescan_device(struct ib_device *ibdev);
4716
4717struct ib_ucontext *ib_uverbs_get_ucontext_file(struct ib_uverbs_file *ufile);
4718
4719int uverbs_destroy_def_handler(struct uverbs_attr_bundle *attrs);
4720
4721struct net_device *rdma_alloc_netdev(struct ib_device *device, u32 port_num,
4722 enum rdma_netdev_t type, const char *name,
4723 unsigned char name_assign_type,
4724 void (*setup)(struct net_device *));
4725
4726int rdma_init_netdev(struct ib_device *device, u32 port_num,
4727 enum rdma_netdev_t type, const char *name,
4728 unsigned char name_assign_type,
4729 void (*setup)(struct net_device *),
4730 struct net_device *netdev);
4731
4732/**
4733 * rdma_device_to_ibdev - Get ib_device pointer from device pointer
4734 *
4735 * @device: device pointer for which ib_device pointer to retrieve
4736 *
4737 * rdma_device_to_ibdev() retrieves ib_device pointer from device.
4738 *
4739 */
4740static inline struct ib_device *rdma_device_to_ibdev(struct device *device)
4741{
4742 struct ib_core_device *coredev =
4743 container_of(device, struct ib_core_device, dev);
4744
4745 return coredev->owner;
4746}
4747
4748/**
4749 * ibdev_to_node - return the NUMA node for a given ib_device
4750 * @dev: device to get the NUMA node for.
4751 */
4752static inline int ibdev_to_node(struct ib_device *ibdev)
4753{
4754 struct device *parent = ibdev->dev.parent;
4755
4756 if (!parent)
4757 return NUMA_NO_NODE;
4758 return dev_to_node(dev: parent);
4759}
4760
4761/**
4762 * rdma_device_to_drv_device - Helper macro to reach back to driver's
4763 * ib_device holder structure from device pointer.
4764 *
4765 * NOTE: New drivers should not make use of this API; This API is only for
4766 * existing drivers who have exposed sysfs entries using
4767 * ops->device_group.
4768 */
4769#define rdma_device_to_drv_device(dev, drv_dev_struct, ibdev_member) \
4770 container_of(rdma_device_to_ibdev(dev), drv_dev_struct, ibdev_member)
4771
4772bool rdma_dev_access_netns(const struct ib_device *device,
4773 const struct net *net);
4774
4775#define IB_ROCE_UDP_ENCAP_VALID_PORT_MIN (0xC000)
4776#define IB_ROCE_UDP_ENCAP_VALID_PORT_MAX (0xFFFF)
4777#define IB_GRH_FLOWLABEL_MASK (0x000FFFFF)
4778
4779/**
4780 * rdma_flow_label_to_udp_sport - generate a RoCE v2 UDP src port value based
4781 * on the flow_label
4782 *
4783 * This function will convert the 20 bit flow_label input to a valid RoCE v2
4784 * UDP src port 14 bit value. All RoCE V2 drivers should use this same
4785 * convention.
4786 */
4787static inline u16 rdma_flow_label_to_udp_sport(u32 fl)
4788{
4789 u32 fl_low = fl & 0x03fff, fl_high = fl & 0xFC000;
4790
4791 fl_low ^= fl_high >> 14;
4792 return (u16)(fl_low | IB_ROCE_UDP_ENCAP_VALID_PORT_MIN);
4793}
4794
4795/**
4796 * rdma_calc_flow_label - generate a RDMA symmetric flow label value based on
4797 * local and remote qpn values
4798 *
4799 * This function folded the multiplication results of two qpns, 24 bit each,
4800 * fields, and converts it to a 20 bit results.
4801 *
4802 * This function will create symmetric flow_label value based on the local
4803 * and remote qpn values. this will allow both the requester and responder
4804 * to calculate the same flow_label for a given connection.
4805 *
4806 * This helper function should be used by driver in case the upper layer
4807 * provide a zero flow_label value. This is to improve entropy of RDMA
4808 * traffic in the network.
4809 */
4810static inline u32 rdma_calc_flow_label(u32 lqpn, u32 rqpn)
4811{
4812 u64 v = (u64)lqpn * rqpn;
4813
4814 v ^= v >> 20;
4815 v ^= v >> 40;
4816
4817 return (u32)(v & IB_GRH_FLOWLABEL_MASK);
4818}
4819
4820/**
4821 * rdma_get_udp_sport - Calculate and set UDP source port based on the flow
4822 * label. If flow label is not defined in GRH then
4823 * calculate it based on lqpn/rqpn.
4824 *
4825 * @fl: flow label from GRH
4826 * @lqpn: local qp number
4827 * @rqpn: remote qp number
4828 */
4829static inline u16 rdma_get_udp_sport(u32 fl, u32 lqpn, u32 rqpn)
4830{
4831 if (!fl)
4832 fl = rdma_calc_flow_label(lqpn, rqpn);
4833
4834 return rdma_flow_label_to_udp_sport(fl);
4835}
4836
4837const struct ib_port_immutable*
4838ib_port_immutable_read(struct ib_device *dev, unsigned int port);
4839#endif /* IB_VERBS_H */
4840

source code of linux/include/rdma/ib_verbs.h