1/* SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause */
2/*
3 * Copyright(c) 2016 - 2020 Intel Corporation.
4 */
5
6#ifndef DEF_RDMAVT_INCQP_H
7#define DEF_RDMAVT_INCQP_H
8
9#include <rdma/rdma_vt.h>
10#include <rdma/ib_pack.h>
11#include <rdma/ib_verbs.h>
12#include <rdma/rdmavt_cq.h>
13#include <rdma/rvt-abi.h>
14/*
15 * Atomic bit definitions for r_aflags.
16 */
17#define RVT_R_WRID_VALID 0
18#define RVT_R_REWIND_SGE 1
19
20/*
21 * Bit definitions for r_flags.
22 */
23#define RVT_R_REUSE_SGE 0x01
24#define RVT_R_RDMAR_SEQ 0x02
25#define RVT_R_RSP_NAK 0x04
26#define RVT_R_RSP_SEND 0x08
27#define RVT_R_COMM_EST 0x10
28
29/*
30 * If a packet's QP[23:16] bits match this value, then it is
31 * a PSM packet and the hardware will expect a KDETH header
32 * following the BTH.
33 */
34#define RVT_KDETH_QP_PREFIX 0x80
35#define RVT_KDETH_QP_SUFFIX 0xffff
36#define RVT_KDETH_QP_PREFIX_MASK 0x00ff0000
37#define RVT_KDETH_QP_PREFIX_SHIFT 16
38#define RVT_KDETH_QP_BASE (u32)(RVT_KDETH_QP_PREFIX << \
39 RVT_KDETH_QP_PREFIX_SHIFT)
40#define RVT_KDETH_QP_MAX (u32)(RVT_KDETH_QP_BASE + RVT_KDETH_QP_SUFFIX)
41
42/*
43 * If a packet's LNH == BTH and DEST QPN[23:16] in the BTH match this
44 * prefix value, then it is an AIP packet with a DETH containing the entropy
45 * value in byte 4 following the BTH.
46 */
47#define RVT_AIP_QP_PREFIX 0x81
48#define RVT_AIP_QP_SUFFIX 0xffff
49#define RVT_AIP_QP_PREFIX_MASK 0x00ff0000
50#define RVT_AIP_QP_PREFIX_SHIFT 16
51#define RVT_AIP_QP_BASE (u32)(RVT_AIP_QP_PREFIX << \
52 RVT_AIP_QP_PREFIX_SHIFT)
53#define RVT_AIP_QPN_MAX BIT(RVT_AIP_QP_PREFIX_SHIFT)
54#define RVT_AIP_QP_MAX (u32)(RVT_AIP_QP_BASE + RVT_AIP_QPN_MAX - 1)
55
56/*
57 * Bit definitions for s_flags.
58 *
59 * RVT_S_SIGNAL_REQ_WR - set if QP send WRs contain completion signaled
60 * RVT_S_BUSY - send tasklet is processing the QP
61 * RVT_S_TIMER - the RC retry timer is active
62 * RVT_S_ACK_PENDING - an ACK is waiting to be sent after RDMA read/atomics
63 * RVT_S_WAIT_FENCE - waiting for all prior RDMA read or atomic SWQEs
64 * before processing the next SWQE
65 * RVT_S_WAIT_RDMAR - waiting for a RDMA read or atomic SWQE to complete
66 * before processing the next SWQE
67 * RVT_S_WAIT_RNR - waiting for RNR timeout
68 * RVT_S_WAIT_SSN_CREDIT - waiting for RC credits to process next SWQE
69 * RVT_S_WAIT_DMA - waiting for send DMA queue to drain before generating
70 * next send completion entry not via send DMA
71 * RVT_S_WAIT_PIO - waiting for a send buffer to be available
72 * RVT_S_WAIT_TX - waiting for a struct verbs_txreq to be available
73 * RVT_S_WAIT_DMA_DESC - waiting for DMA descriptors to be available
74 * RVT_S_WAIT_KMEM - waiting for kernel memory to be available
75 * RVT_S_WAIT_PSN - waiting for a packet to exit the send DMA queue
76 * RVT_S_WAIT_ACK - waiting for an ACK packet before sending more requests
77 * RVT_S_SEND_ONE - send one packet, request ACK, then wait for ACK
78 * RVT_S_ECN - a BECN was queued to the send engine
79 * RVT_S_MAX_BIT_MASK - The max bit that can be used by rdmavt
80 */
81#define RVT_S_SIGNAL_REQ_WR 0x0001
82#define RVT_S_BUSY 0x0002
83#define RVT_S_TIMER 0x0004
84#define RVT_S_RESP_PENDING 0x0008
85#define RVT_S_ACK_PENDING 0x0010
86#define RVT_S_WAIT_FENCE 0x0020
87#define RVT_S_WAIT_RDMAR 0x0040
88#define RVT_S_WAIT_RNR 0x0080
89#define RVT_S_WAIT_SSN_CREDIT 0x0100
90#define RVT_S_WAIT_DMA 0x0200
91#define RVT_S_WAIT_PIO 0x0400
92#define RVT_S_WAIT_TX 0x0800
93#define RVT_S_WAIT_DMA_DESC 0x1000
94#define RVT_S_WAIT_KMEM 0x2000
95#define RVT_S_WAIT_PSN 0x4000
96#define RVT_S_WAIT_ACK 0x8000
97#define RVT_S_SEND_ONE 0x10000
98#define RVT_S_UNLIMITED_CREDIT 0x20000
99#define RVT_S_ECN 0x40000
100#define RVT_S_MAX_BIT_MASK 0x800000
101
102/*
103 * Drivers should use s_flags starting with bit 31 down to the bit next to
104 * RVT_S_MAX_BIT_MASK
105 */
106
107/*
108 * Wait flags that would prevent any packet type from being sent.
109 */
110#define RVT_S_ANY_WAIT_IO \
111 (RVT_S_WAIT_PIO | RVT_S_WAIT_TX | \
112 RVT_S_WAIT_DMA_DESC | RVT_S_WAIT_KMEM)
113
114/*
115 * Wait flags that would prevent send work requests from making progress.
116 */
117#define RVT_S_ANY_WAIT_SEND (RVT_S_WAIT_FENCE | RVT_S_WAIT_RDMAR | \
118 RVT_S_WAIT_RNR | RVT_S_WAIT_SSN_CREDIT | RVT_S_WAIT_DMA | \
119 RVT_S_WAIT_PSN | RVT_S_WAIT_ACK)
120
121#define RVT_S_ANY_WAIT (RVT_S_ANY_WAIT_IO | RVT_S_ANY_WAIT_SEND)
122
123/* Number of bits to pay attention to in the opcode for checking qp type */
124#define RVT_OPCODE_QP_MASK 0xE0
125
126/* Flags for checking QP state (see ib_rvt_state_ops[]) */
127#define RVT_POST_SEND_OK 0x01
128#define RVT_POST_RECV_OK 0x02
129#define RVT_PROCESS_RECV_OK 0x04
130#define RVT_PROCESS_SEND_OK 0x08
131#define RVT_PROCESS_NEXT_SEND_OK 0x10
132#define RVT_FLUSH_SEND 0x20
133#define RVT_FLUSH_RECV 0x40
134#define RVT_PROCESS_OR_FLUSH_SEND \
135 (RVT_PROCESS_SEND_OK | RVT_FLUSH_SEND)
136#define RVT_SEND_OR_FLUSH_OR_RECV_OK \
137 (RVT_PROCESS_SEND_OK | RVT_FLUSH_SEND | RVT_PROCESS_RECV_OK)
138
139/*
140 * Internal send flags
141 */
142#define RVT_SEND_RESERVE_USED IB_SEND_RESERVED_START
143#define RVT_SEND_COMPLETION_ONLY (IB_SEND_RESERVED_START << 1)
144
145/**
146 * rvt_ud_wr - IB UD work plus AH cache
147 * @wr: valid IB work request
148 * @attr: pointer to an allocated AH attribute
149 *
150 * Special case the UD WR so we can keep track of the AH attributes.
151 *
152 * NOTE: This data structure is stricly ordered wr then attr. I.e the attr
153 * MUST come after wr. The ib_ud_wr is sized and copied in rvt_post_one_wr.
154 * The copy assumes that wr is first.
155 */
156struct rvt_ud_wr {
157 struct ib_ud_wr wr;
158 struct rdma_ah_attr *attr;
159};
160
161/*
162 * Send work request queue entry.
163 * The size of the sg_list is determined when the QP is created and stored
164 * in qp->s_max_sge.
165 */
166struct rvt_swqe {
167 union {
168 struct ib_send_wr wr; /* don't use wr.sg_list */
169 struct rvt_ud_wr ud_wr;
170 struct ib_reg_wr reg_wr;
171 struct ib_rdma_wr rdma_wr;
172 struct ib_atomic_wr atomic_wr;
173 };
174 u32 psn; /* first packet sequence number */
175 u32 lpsn; /* last packet sequence number */
176 u32 ssn; /* send sequence number */
177 u32 length; /* total length of data in sg_list */
178 void *priv; /* driver dependent field */
179 struct rvt_sge sg_list[];
180};
181
182/**
183 * struct rvt_krwq - kernel struct receive work request
184 * @p_lock: lock to protect producer of the kernel buffer
185 * @head: index of next entry to fill
186 * @c_lock:lock to protect consumer of the kernel buffer
187 * @tail: index of next entry to pull
188 * @count: count is aproximate of total receive enteries posted
189 * @rvt_rwqe: struct of receive work request queue entry
190 *
191 * This structure is used to contain the head pointer,
192 * tail pointer and receive work queue entries for kernel
193 * mode user.
194 */
195struct rvt_krwq {
196 spinlock_t p_lock; /* protect producer */
197 u32 head; /* new work requests posted to the head */
198
199 /* protect consumer */
200 spinlock_t c_lock ____cacheline_aligned_in_smp;
201 u32 tail; /* receives pull requests from here. */
202 u32 count; /* approx count of receive entries posted */
203 struct rvt_rwqe *curr_wq;
204 struct rvt_rwqe wq[];
205};
206
207/*
208 * rvt_get_swqe_ah - Return the pointer to the struct rvt_ah
209 * @swqe: valid Send WQE
210 *
211 */
212static inline struct rvt_ah *rvt_get_swqe_ah(struct rvt_swqe *swqe)
213{
214 return ibah_to_rvtah(ibah: swqe->ud_wr.wr.ah);
215}
216
217/**
218 * rvt_get_swqe_ah_attr - Return the cached ah attribute information
219 * @swqe: valid Send WQE
220 *
221 */
222static inline struct rdma_ah_attr *rvt_get_swqe_ah_attr(struct rvt_swqe *swqe)
223{
224 return swqe->ud_wr.attr;
225}
226
227/**
228 * rvt_get_swqe_remote_qpn - Access the remote QPN value
229 * @swqe: valid Send WQE
230 *
231 */
232static inline u32 rvt_get_swqe_remote_qpn(struct rvt_swqe *swqe)
233{
234 return swqe->ud_wr.wr.remote_qpn;
235}
236
237/**
238 * rvt_get_swqe_remote_qkey - Acces the remote qkey value
239 * @swqe: valid Send WQE
240 *
241 */
242static inline u32 rvt_get_swqe_remote_qkey(struct rvt_swqe *swqe)
243{
244 return swqe->ud_wr.wr.remote_qkey;
245}
246
247/**
248 * rvt_get_swqe_pkey_index - Access the pkey index
249 * @swqe: valid Send WQE
250 *
251 */
252static inline u16 rvt_get_swqe_pkey_index(struct rvt_swqe *swqe)
253{
254 return swqe->ud_wr.wr.pkey_index;
255}
256
257struct rvt_rq {
258 struct rvt_rwq *wq;
259 struct rvt_krwq *kwq;
260 u32 size; /* size of RWQE array */
261 u8 max_sge;
262 /* protect changes in this struct */
263 spinlock_t lock ____cacheline_aligned_in_smp;
264};
265
266/**
267 * rvt_get_rq_count - count numbers of request work queue entries
268 * in circular buffer
269 * @rq: data structure for request queue entry
270 * @head: head indices of the circular buffer
271 * @tail: tail indices of the circular buffer
272 *
273 * Return - total number of entries in the Receive Queue
274 */
275
276static inline u32 rvt_get_rq_count(struct rvt_rq *rq, u32 head, u32 tail)
277{
278 u32 count = head - tail;
279
280 if ((s32)count < 0)
281 count += rq->size;
282 return count;
283}
284
285/*
286 * This structure holds the information that the send tasklet needs
287 * to send a RDMA read response or atomic operation.
288 */
289struct rvt_ack_entry {
290 struct rvt_sge rdma_sge;
291 u64 atomic_data;
292 u32 psn;
293 u32 lpsn;
294 u8 opcode;
295 u8 sent;
296 void *priv;
297};
298
299#define RC_QP_SCALING_INTERVAL 5
300
301#define RVT_OPERATION_PRIV 0x00000001
302#define RVT_OPERATION_ATOMIC 0x00000002
303#define RVT_OPERATION_ATOMIC_SGE 0x00000004
304#define RVT_OPERATION_LOCAL 0x00000008
305#define RVT_OPERATION_USE_RESERVE 0x00000010
306#define RVT_OPERATION_IGN_RNR_CNT 0x00000020
307
308#define RVT_OPERATION_MAX (IB_WR_RESERVED10 + 1)
309
310/**
311 * rvt_operation_params - op table entry
312 * @length - the length to copy into the swqe entry
313 * @qpt_support - a bit mask indicating QP type support
314 * @flags - RVT_OPERATION flags (see above)
315 *
316 * This supports table driven post send so that
317 * the driver can have differing an potentially
318 * different sets of operations.
319 *
320 **/
321
322struct rvt_operation_params {
323 size_t length;
324 u32 qpt_support;
325 u32 flags;
326};
327
328/*
329 * Common variables are protected by both r_rq.lock and s_lock in that order
330 * which only happens in modify_qp() or changing the QP 'state'.
331 */
332struct rvt_qp {
333 struct ib_qp ibqp;
334 void *priv; /* Driver private data */
335 /* read mostly fields above and below */
336 struct rdma_ah_attr remote_ah_attr;
337 struct rdma_ah_attr alt_ah_attr;
338 struct rvt_qp __rcu *next; /* link list for QPN hash table */
339 struct rvt_swqe *s_wq; /* send work queue */
340 struct rvt_mmap_info *ip;
341
342 unsigned long timeout_jiffies; /* computed from timeout */
343
344 int srate_mbps; /* s_srate (below) converted to Mbit/s */
345 pid_t pid; /* pid for user mode QPs */
346 u32 remote_qpn;
347 u32 qkey; /* QKEY for this QP (for UD or RD) */
348 u32 s_size; /* send work queue size */
349
350 u16 pmtu; /* decoded from path_mtu */
351 u8 log_pmtu; /* shift for pmtu */
352 u8 state; /* QP state */
353 u8 allowed_ops; /* high order bits of allowed opcodes */
354 u8 qp_access_flags;
355 u8 alt_timeout; /* Alternate path timeout for this QP */
356 u8 timeout; /* Timeout for this QP */
357 u8 s_srate;
358 u8 s_mig_state;
359 u8 port_num;
360 u8 s_pkey_index; /* PKEY index to use */
361 u8 s_alt_pkey_index; /* Alternate path PKEY index to use */
362 u8 r_max_rd_atomic; /* max number of RDMA read/atomic to receive */
363 u8 s_max_rd_atomic; /* max number of RDMA read/atomic to send */
364 u8 s_retry_cnt; /* number of times to retry */
365 u8 s_rnr_retry_cnt;
366 u8 r_min_rnr_timer; /* retry timeout value for RNR NAKs */
367 u8 s_max_sge; /* size of s_wq->sg_list */
368 u8 s_draining;
369
370 /* start of read/write fields */
371 atomic_t refcount ____cacheline_aligned_in_smp;
372 wait_queue_head_t wait;
373
374 struct rvt_ack_entry *s_ack_queue;
375 struct rvt_sge_state s_rdma_read_sge;
376
377 spinlock_t r_lock ____cacheline_aligned_in_smp; /* used for APM */
378 u32 r_psn; /* expected rcv packet sequence number */
379 unsigned long r_aflags;
380 u64 r_wr_id; /* ID for current receive WQE */
381 u32 r_ack_psn; /* PSN for next ACK or atomic ACK */
382 u32 r_len; /* total length of r_sge */
383 u32 r_rcv_len; /* receive data len processed */
384 u32 r_msn; /* message sequence number */
385
386 u8 r_state; /* opcode of last packet received */
387 u8 r_flags;
388 u8 r_head_ack_queue; /* index into s_ack_queue[] */
389 u8 r_adefered; /* defered ack count */
390
391 struct list_head rspwait; /* link for waiting to respond */
392
393 struct rvt_sge_state r_sge; /* current receive data */
394 struct rvt_rq r_rq; /* receive work queue */
395
396 /* post send line */
397 spinlock_t s_hlock ____cacheline_aligned_in_smp;
398 u32 s_head; /* new entries added here */
399 u32 s_next_psn; /* PSN for next request */
400 u32 s_avail; /* number of entries avail */
401 u32 s_ssn; /* SSN of tail entry */
402 atomic_t s_reserved_used; /* reserved entries in use */
403
404 spinlock_t s_lock ____cacheline_aligned_in_smp;
405 u32 s_flags;
406 struct rvt_sge_state *s_cur_sge;
407 struct rvt_swqe *s_wqe;
408 struct rvt_sge_state s_sge; /* current send request data */
409 struct rvt_mregion *s_rdma_mr;
410 u32 s_len; /* total length of s_sge */
411 u32 s_rdma_read_len; /* total length of s_rdma_read_sge */
412 u32 s_last_psn; /* last response PSN processed */
413 u32 s_sending_psn; /* lowest PSN that is being sent */
414 u32 s_sending_hpsn; /* highest PSN that is being sent */
415 u32 s_psn; /* current packet sequence number */
416 u32 s_ack_rdma_psn; /* PSN for sending RDMA read responses */
417 u32 s_ack_psn; /* PSN for acking sends and RDMA writes */
418 u32 s_tail; /* next entry to process */
419 u32 s_cur; /* current work queue entry */
420 u32 s_acked; /* last un-ACK'ed entry */
421 u32 s_last; /* last completed entry */
422 u32 s_lsn; /* limit sequence number (credit) */
423 u32 s_ahgpsn; /* set to the psn in the copy of the header */
424 u16 s_cur_size; /* size of send packet in bytes */
425 u16 s_rdma_ack_cnt;
426 u8 s_hdrwords; /* size of s_hdr in 32 bit words */
427 s8 s_ahgidx;
428 u8 s_state; /* opcode of last packet sent */
429 u8 s_ack_state; /* opcode of packet to ACK */
430 u8 s_nak_state; /* non-zero if NAK is pending */
431 u8 r_nak_state; /* non-zero if NAK is pending */
432 u8 s_retry; /* requester retry counter */
433 u8 s_rnr_retry; /* requester RNR retry counter */
434 u8 s_num_rd_atomic; /* number of RDMA read/atomic pending */
435 u8 s_tail_ack_queue; /* index into s_ack_queue[] */
436 u8 s_acked_ack_queue; /* index into s_ack_queue[] */
437
438 struct rvt_sge_state s_ack_rdma_sge;
439 struct timer_list s_timer;
440 struct hrtimer s_rnr_timer;
441
442 atomic_t local_ops_pending; /* number of fast_reg/local_inv reqs */
443
444 /*
445 * This sge list MUST be last. Do not add anything below here.
446 */
447 struct rvt_sge *r_sg_list /* verified SGEs */
448 ____cacheline_aligned_in_smp;
449};
450
451struct rvt_srq {
452 struct ib_srq ibsrq;
453 struct rvt_rq rq;
454 struct rvt_mmap_info *ip;
455 /* send signal when number of RWQEs < limit */
456 u32 limit;
457};
458
459static inline struct rvt_srq *ibsrq_to_rvtsrq(struct ib_srq *ibsrq)
460{
461 return container_of(ibsrq, struct rvt_srq, ibsrq);
462}
463
464static inline struct rvt_qp *ibqp_to_rvtqp(struct ib_qp *ibqp)
465{
466 return container_of(ibqp, struct rvt_qp, ibqp);
467}
468
469#define RVT_QPN_MAX BIT(24)
470#define RVT_QPNMAP_ENTRIES (RVT_QPN_MAX / PAGE_SIZE / BITS_PER_BYTE)
471#define RVT_BITS_PER_PAGE (PAGE_SIZE * BITS_PER_BYTE)
472#define RVT_BITS_PER_PAGE_MASK (RVT_BITS_PER_PAGE - 1)
473#define RVT_QPN_MASK IB_QPN_MASK
474
475/*
476 * QPN-map pages start out as NULL, they get allocated upon
477 * first use and are never deallocated. This way,
478 * large bitmaps are not allocated unless large numbers of QPs are used.
479 */
480struct rvt_qpn_map {
481 void *page;
482};
483
484struct rvt_qpn_table {
485 spinlock_t lock; /* protect changes to the qp table */
486 unsigned flags; /* flags for QP0/1 allocated for each port */
487 u32 last; /* last QP number allocated */
488 u32 nmaps; /* size of the map table */
489 u16 limit;
490 u8 incr;
491 /* bit map of free QP numbers other than 0/1 */
492 struct rvt_qpn_map map[RVT_QPNMAP_ENTRIES];
493};
494
495struct rvt_qp_ibdev {
496 u32 qp_table_size;
497 u32 qp_table_bits;
498 struct rvt_qp __rcu **qp_table;
499 spinlock_t qpt_lock; /* qptable lock */
500 struct rvt_qpn_table qpn_table;
501};
502
503/*
504 * There is one struct rvt_mcast for each multicast GID.
505 * All attached QPs are then stored as a list of
506 * struct rvt_mcast_qp.
507 */
508struct rvt_mcast_qp {
509 struct list_head list;
510 struct rvt_qp *qp;
511};
512
513struct rvt_mcast_addr {
514 union ib_gid mgid;
515 u16 lid;
516};
517
518struct rvt_mcast {
519 struct rb_node rb_node;
520 struct rvt_mcast_addr mcast_addr;
521 struct list_head qp_list;
522 wait_queue_head_t wait;
523 atomic_t refcount;
524 int n_attached;
525};
526
527/*
528 * Since struct rvt_swqe is not a fixed size, we can't simply index into
529 * struct rvt_qp.s_wq. This function does the array index computation.
530 */
531static inline struct rvt_swqe *rvt_get_swqe_ptr(struct rvt_qp *qp,
532 unsigned n)
533{
534 return (struct rvt_swqe *)((char *)qp->s_wq +
535 (sizeof(struct rvt_swqe) +
536 qp->s_max_sge *
537 sizeof(struct rvt_sge)) * n);
538}
539
540/*
541 * Since struct rvt_rwqe is not a fixed size, we can't simply index into
542 * struct rvt_rwq.wq. This function does the array index computation.
543 */
544static inline struct rvt_rwqe *rvt_get_rwqe_ptr(struct rvt_rq *rq, unsigned n)
545{
546 return (struct rvt_rwqe *)
547 ((char *)rq->kwq->curr_wq +
548 (sizeof(struct rvt_rwqe) +
549 rq->max_sge * sizeof(struct ib_sge)) * n);
550}
551
552/**
553 * rvt_is_user_qp - return if this is user mode QP
554 * @qp - the target QP
555 */
556static inline bool rvt_is_user_qp(struct rvt_qp *qp)
557{
558 return !!qp->pid;
559}
560
561/**
562 * rvt_get_qp - get a QP reference
563 * @qp - the QP to hold
564 */
565static inline void rvt_get_qp(struct rvt_qp *qp)
566{
567 atomic_inc(v: &qp->refcount);
568}
569
570/**
571 * rvt_put_qp - release a QP reference
572 * @qp - the QP to release
573 */
574static inline void rvt_put_qp(struct rvt_qp *qp)
575{
576 if (qp && atomic_dec_and_test(v: &qp->refcount))
577 wake_up(&qp->wait);
578}
579
580/**
581 * rvt_put_swqe - drop mr refs held by swqe
582 * @wqe - the send wqe
583 *
584 * This drops any mr references held by the swqe
585 */
586static inline void rvt_put_swqe(struct rvt_swqe *wqe)
587{
588 int i;
589
590 for (i = 0; i < wqe->wr.num_sge; i++) {
591 struct rvt_sge *sge = &wqe->sg_list[i];
592
593 rvt_put_mr(mr: sge->mr);
594 }
595}
596
597/**
598 * rvt_qp_wqe_reserve - reserve operation
599 * @qp - the rvt qp
600 * @wqe - the send wqe
601 *
602 * This routine used in post send to record
603 * a wqe relative reserved operation use.
604 */
605static inline void rvt_qp_wqe_reserve(
606 struct rvt_qp *qp,
607 struct rvt_swqe *wqe)
608{
609 atomic_inc(v: &qp->s_reserved_used);
610}
611
612/**
613 * rvt_qp_wqe_unreserve - clean reserved operation
614 * @qp - the rvt qp
615 * @flags - send wqe flags
616 *
617 * This decrements the reserve use count.
618 *
619 * This call MUST precede the change to
620 * s_last to insure that post send sees a stable
621 * s_avail.
622 *
623 * An smp_mp__after_atomic() is used to insure
624 * the compiler does not juggle the order of the s_last
625 * ring index and the decrementing of s_reserved_used.
626 */
627static inline void rvt_qp_wqe_unreserve(struct rvt_qp *qp, int flags)
628{
629 if (unlikely(flags & RVT_SEND_RESERVE_USED)) {
630 atomic_dec(v: &qp->s_reserved_used);
631 /* insure no compiler re-order up to s_last change */
632 smp_mb__after_atomic();
633 }
634}
635
636extern const enum ib_wc_opcode ib_rvt_wc_opcode[];
637
638/*
639 * Compare the lower 24 bits of the msn values.
640 * Returns an integer <, ==, or > than zero.
641 */
642static inline int rvt_cmp_msn(u32 a, u32 b)
643{
644 return (((int)a) - ((int)b)) << 8;
645}
646
647__be32 rvt_compute_aeth(struct rvt_qp *qp);
648
649void rvt_get_credit(struct rvt_qp *qp, u32 aeth);
650
651u32 rvt_restart_sge(struct rvt_sge_state *ss, struct rvt_swqe *wqe, u32 len);
652
653/**
654 * rvt_div_round_up_mtu - round up divide
655 * @qp - the qp pair
656 * @len - the length
657 *
658 * Perform a shift based mtu round up divide
659 */
660static inline u32 rvt_div_round_up_mtu(struct rvt_qp *qp, u32 len)
661{
662 return (len + qp->pmtu - 1) >> qp->log_pmtu;
663}
664
665/**
666 * @qp - the qp pair
667 * @len - the length
668 *
669 * Perform a shift based mtu divide
670 */
671static inline u32 rvt_div_mtu(struct rvt_qp *qp, u32 len)
672{
673 return len >> qp->log_pmtu;
674}
675
676/**
677 * rvt_timeout_to_jiffies - Convert a ULP timeout input into jiffies
678 * @timeout - timeout input(0 - 31).
679 *
680 * Return a timeout value in jiffies.
681 */
682static inline unsigned long rvt_timeout_to_jiffies(u8 timeout)
683{
684 if (timeout > 31)
685 timeout = 31;
686
687 return usecs_to_jiffies(u: 1U << timeout) * 4096UL / 1000UL;
688}
689
690/**
691 * rvt_lookup_qpn - return the QP with the given QPN
692 * @ibp: the ibport
693 * @qpn: the QP number to look up
694 *
695 * The caller must hold the rcu_read_lock(), and keep the lock until
696 * the returned qp is no longer in use.
697 */
698static inline struct rvt_qp *rvt_lookup_qpn(struct rvt_dev_info *rdi,
699 struct rvt_ibport *rvp,
700 u32 qpn) __must_hold(RCU)
701{
702 struct rvt_qp *qp = NULL;
703
704 if (unlikely(qpn <= 1)) {
705 qp = rcu_dereference(rvp->qp[qpn]);
706 } else {
707 u32 n = hash_32(val: qpn, bits: rdi->qp_dev->qp_table_bits);
708
709 for (qp = rcu_dereference(rdi->qp_dev->qp_table[n]); qp;
710 qp = rcu_dereference(qp->next))
711 if (qp->ibqp.qp_num == qpn)
712 break;
713 }
714 return qp;
715}
716
717/**
718 * rvt_mod_retry_timer - mod a retry timer
719 * @qp - the QP
720 * @shift - timeout shift to wait for multiple packets
721 * Modify a potentially already running retry timer
722 */
723static inline void rvt_mod_retry_timer_ext(struct rvt_qp *qp, u8 shift)
724{
725 struct ib_qp *ibqp = &qp->ibqp;
726 struct rvt_dev_info *rdi = ib_to_rvt(ibdev: ibqp->device);
727
728 lockdep_assert_held(&qp->s_lock);
729 qp->s_flags |= RVT_S_TIMER;
730 /* 4.096 usec. * (1 << qp->timeout) */
731 mod_timer(timer: &qp->s_timer, expires: jiffies + rdi->busy_jiffies +
732 (qp->timeout_jiffies << shift));
733}
734
735static inline void rvt_mod_retry_timer(struct rvt_qp *qp)
736{
737 return rvt_mod_retry_timer_ext(qp, shift: 0);
738}
739
740/**
741 * rvt_put_qp_swqe - drop refs held by swqe
742 * @qp: the send qp
743 * @wqe: the send wqe
744 *
745 * This drops any references held by the swqe
746 */
747static inline void rvt_put_qp_swqe(struct rvt_qp *qp, struct rvt_swqe *wqe)
748{
749 rvt_put_swqe(wqe);
750 if (qp->allowed_ops == IB_OPCODE_UD)
751 rdma_destroy_ah_attr(ah_attr: wqe->ud_wr.attr);
752}
753
754/**
755 * rvt_qp_sqwe_incr - increment ring index
756 * @qp: the qp
757 * @val: the starting value
758 *
759 * Return: the new value wrapping as appropriate
760 */
761static inline u32
762rvt_qp_swqe_incr(struct rvt_qp *qp, u32 val)
763{
764 if (++val >= qp->s_size)
765 val = 0;
766 return val;
767}
768
769int rvt_error_qp(struct rvt_qp *qp, enum ib_wc_status err);
770
771/**
772 * rvt_recv_cq - add a new entry to completion queue
773 * by receive queue
774 * @qp: receive queue
775 * @wc: work completion entry to add
776 * @solicited: true if @entry is solicited
777 *
778 * This is wrapper function for rvt_enter_cq function call by
779 * receive queue. If rvt_cq_enter return false, it means cq is
780 * full and the qp is put into error state.
781 */
782static inline void rvt_recv_cq(struct rvt_qp *qp, struct ib_wc *wc,
783 bool solicited)
784{
785 struct rvt_cq *cq = ibcq_to_rvtcq(ibcq: qp->ibqp.recv_cq);
786
787 if (unlikely(!rvt_cq_enter(cq, wc, solicited)))
788 rvt_error_qp(qp, err: IB_WC_LOC_QP_OP_ERR);
789}
790
791/**
792 * rvt_send_cq - add a new entry to completion queue
793 * by send queue
794 * @qp: send queue
795 * @wc: work completion entry to add
796 * @solicited: true if @entry is solicited
797 *
798 * This is wrapper function for rvt_enter_cq function call by
799 * send queue. If rvt_cq_enter return false, it means cq is
800 * full and the qp is put into error state.
801 */
802static inline void rvt_send_cq(struct rvt_qp *qp, struct ib_wc *wc,
803 bool solicited)
804{
805 struct rvt_cq *cq = ibcq_to_rvtcq(ibcq: qp->ibqp.send_cq);
806
807 if (unlikely(!rvt_cq_enter(cq, wc, solicited)))
808 rvt_error_qp(qp, err: IB_WC_LOC_QP_OP_ERR);
809}
810
811/**
812 * rvt_qp_complete_swqe - insert send completion
813 * @qp - the qp
814 * @wqe - the send wqe
815 * @opcode - wc operation (driver dependent)
816 * @status - completion status
817 *
818 * Update the s_last information, and then insert a send
819 * completion into the completion
820 * queue if the qp indicates it should be done.
821 *
822 * See IBTA 10.7.3.1 for info on completion
823 * control.
824 *
825 * Return: new last
826 */
827static inline u32
828rvt_qp_complete_swqe(struct rvt_qp *qp,
829 struct rvt_swqe *wqe,
830 enum ib_wc_opcode opcode,
831 enum ib_wc_status status)
832{
833 bool need_completion;
834 u64 wr_id;
835 u32 byte_len, last;
836 int flags = wqe->wr.send_flags;
837
838 rvt_qp_wqe_unreserve(qp, flags);
839 rvt_put_qp_swqe(qp, wqe);
840
841 need_completion =
842 !(flags & RVT_SEND_RESERVE_USED) &&
843 (!(qp->s_flags & RVT_S_SIGNAL_REQ_WR) ||
844 (flags & IB_SEND_SIGNALED) ||
845 status != IB_WC_SUCCESS);
846 if (need_completion) {
847 wr_id = wqe->wr.wr_id;
848 byte_len = wqe->length;
849 /* above fields required before writing s_last */
850 }
851 last = rvt_qp_swqe_incr(qp, val: qp->s_last);
852 /* see rvt_qp_is_avail() */
853 smp_store_release(&qp->s_last, last);
854 if (need_completion) {
855 struct ib_wc w = {
856 .wr_id = wr_id,
857 .status = status,
858 .opcode = opcode,
859 .qp = &qp->ibqp,
860 .byte_len = byte_len,
861 };
862 rvt_send_cq(qp, wc: &w, solicited: status != IB_WC_SUCCESS);
863 }
864 return last;
865}
866
867extern const int ib_rvt_state_ops[];
868
869struct rvt_dev_info;
870int rvt_get_rwqe(struct rvt_qp *qp, bool wr_id_only);
871void rvt_comm_est(struct rvt_qp *qp);
872void rvt_rc_error(struct rvt_qp *qp, enum ib_wc_status err);
873unsigned long rvt_rnr_tbl_to_usec(u32 index);
874enum hrtimer_restart rvt_rc_rnr_retry(struct hrtimer *t);
875void rvt_add_rnr_timer(struct rvt_qp *qp, u32 aeth);
876void rvt_del_timers_sync(struct rvt_qp *qp);
877void rvt_stop_rc_timers(struct rvt_qp *qp);
878void rvt_add_retry_timer_ext(struct rvt_qp *qp, u8 shift);
879static inline void rvt_add_retry_timer(struct rvt_qp *qp)
880{
881 rvt_add_retry_timer_ext(qp, shift: 0);
882}
883
884void rvt_copy_sge(struct rvt_qp *qp, struct rvt_sge_state *ss,
885 void *data, u32 length,
886 bool release, bool copy_last);
887void rvt_send_complete(struct rvt_qp *qp, struct rvt_swqe *wqe,
888 enum ib_wc_status status);
889void rvt_ruc_loopback(struct rvt_qp *qp);
890
891/**
892 * struct rvt_qp_iter - the iterator for QPs
893 * @qp - the current QP
894 *
895 * This structure defines the current iterator
896 * state for sequenced access to all QPs relative
897 * to an rvt_dev_info.
898 */
899struct rvt_qp_iter {
900 struct rvt_qp *qp;
901 /* private: backpointer */
902 struct rvt_dev_info *rdi;
903 /* private: callback routine */
904 void (*cb)(struct rvt_qp *qp, u64 v);
905 /* private: for arg to callback routine */
906 u64 v;
907 /* private: number of SMI,GSI QPs for device */
908 int specials;
909 /* private: current iterator index */
910 int n;
911};
912
913/**
914 * ib_cq_tail - Return tail index of cq buffer
915 * @send_cq - The cq for send
916 *
917 * This is called in qp_iter_print to get tail
918 * of cq buffer.
919 */
920static inline u32 ib_cq_tail(struct ib_cq *send_cq)
921{
922 struct rvt_cq *cq = ibcq_to_rvtcq(ibcq: send_cq);
923
924 return ibcq_to_rvtcq(ibcq: send_cq)->ip ?
925 RDMA_READ_UAPI_ATOMIC(cq->queue->tail) :
926 ibcq_to_rvtcq(ibcq: send_cq)->kqueue->tail;
927}
928
929/**
930 * ib_cq_head - Return head index of cq buffer
931 * @send_cq - The cq for send
932 *
933 * This is called in qp_iter_print to get head
934 * of cq buffer.
935 */
936static inline u32 ib_cq_head(struct ib_cq *send_cq)
937{
938 struct rvt_cq *cq = ibcq_to_rvtcq(ibcq: send_cq);
939
940 return ibcq_to_rvtcq(ibcq: send_cq)->ip ?
941 RDMA_READ_UAPI_ATOMIC(cq->queue->head) :
942 ibcq_to_rvtcq(ibcq: send_cq)->kqueue->head;
943}
944
945/**
946 * rvt_free_rq - free memory allocated for rvt_rq struct
947 * @rvt_rq: request queue data structure
948 *
949 * This function should only be called if the rvt_mmap_info()
950 * has not succeeded.
951 */
952static inline void rvt_free_rq(struct rvt_rq *rq)
953{
954 kvfree(addr: rq->kwq);
955 rq->kwq = NULL;
956 vfree(addr: rq->wq);
957 rq->wq = NULL;
958}
959
960/**
961 * rvt_to_iport - Get the ibport pointer
962 * @qp: the qp pointer
963 *
964 * This function returns the ibport pointer from the qp pointer.
965 */
966static inline struct rvt_ibport *rvt_to_iport(struct rvt_qp *qp)
967{
968 struct rvt_dev_info *rdi = ib_to_rvt(ibdev: qp->ibqp.device);
969
970 return rdi->ports[qp->port_num - 1];
971}
972
973/**
974 * rvt_rc_credit_avail - Check if there are enough RC credits for the request
975 * @qp: the qp
976 * @wqe: the request
977 *
978 * This function returns false when there are not enough credits for the given
979 * request and true otherwise.
980 */
981static inline bool rvt_rc_credit_avail(struct rvt_qp *qp, struct rvt_swqe *wqe)
982{
983 lockdep_assert_held(&qp->s_lock);
984 if (!(qp->s_flags & RVT_S_UNLIMITED_CREDIT) &&
985 rvt_cmp_msn(a: wqe->ssn, b: qp->s_lsn + 1) > 0) {
986 struct rvt_ibport *rvp = rvt_to_iport(qp);
987
988 qp->s_flags |= RVT_S_WAIT_SSN_CREDIT;
989 rvp->n_rc_crwaits++;
990 return false;
991 }
992 return true;
993}
994
995struct rvt_qp_iter *rvt_qp_iter_init(struct rvt_dev_info *rdi,
996 u64 v,
997 void (*cb)(struct rvt_qp *qp, u64 v));
998int rvt_qp_iter_next(struct rvt_qp_iter *iter);
999void rvt_qp_iter(struct rvt_dev_info *rdi,
1000 u64 v,
1001 void (*cb)(struct rvt_qp *qp, u64 v));
1002void rvt_qp_mr_clean(struct rvt_qp *qp, u32 lkey);
1003#endif /* DEF_RDMAVT_INCQP_H */
1004

source code of linux/include/rdma/rdmavt_qp.h