1// SPDX-License-Identifier: GPL-2.0
2/* Copyright (c) 2018 Facebook */
3
4#include <uapi/linux/btf.h>
5#include <uapi/linux/bpf.h>
6#include <uapi/linux/bpf_perf_event.h>
7#include <uapi/linux/types.h>
8#include <linux/seq_file.h>
9#include <linux/compiler.h>
10#include <linux/ctype.h>
11#include <linux/errno.h>
12#include <linux/slab.h>
13#include <linux/anon_inodes.h>
14#include <linux/file.h>
15#include <linux/uaccess.h>
16#include <linux/kernel.h>
17#include <linux/idr.h>
18#include <linux/sort.h>
19#include <linux/bpf_verifier.h>
20#include <linux/btf.h>
21#include <linux/btf_ids.h>
22#include <linux/bpf_lsm.h>
23#include <linux/skmsg.h>
24#include <linux/perf_event.h>
25#include <linux/bsearch.h>
26#include <linux/kobject.h>
27#include <linux/sysfs.h>
28
29#include <net/netfilter/nf_bpf_link.h>
30
31#include <net/sock.h>
32#include <net/xdp.h>
33#include "../tools/lib/bpf/relo_core.h"
34
35/* BTF (BPF Type Format) is the meta data format which describes
36 * the data types of BPF program/map. Hence, it basically focus
37 * on the C programming language which the modern BPF is primary
38 * using.
39 *
40 * ELF Section:
41 * ~~~~~~~~~~~
42 * The BTF data is stored under the ".BTF" ELF section
43 *
44 * struct btf_type:
45 * ~~~~~~~~~~~~~~~
46 * Each 'struct btf_type' object describes a C data type.
47 * Depending on the type it is describing, a 'struct btf_type'
48 * object may be followed by more data. F.e.
49 * To describe an array, 'struct btf_type' is followed by
50 * 'struct btf_array'.
51 *
52 * 'struct btf_type' and any extra data following it are
53 * 4 bytes aligned.
54 *
55 * Type section:
56 * ~~~~~~~~~~~~~
57 * The BTF type section contains a list of 'struct btf_type' objects.
58 * Each one describes a C type. Recall from the above section
59 * that a 'struct btf_type' object could be immediately followed by extra
60 * data in order to describe some particular C types.
61 *
62 * type_id:
63 * ~~~~~~~
64 * Each btf_type object is identified by a type_id. The type_id
65 * is implicitly implied by the location of the btf_type object in
66 * the BTF type section. The first one has type_id 1. The second
67 * one has type_id 2...etc. Hence, an earlier btf_type has
68 * a smaller type_id.
69 *
70 * A btf_type object may refer to another btf_type object by using
71 * type_id (i.e. the "type" in the "struct btf_type").
72 *
73 * NOTE that we cannot assume any reference-order.
74 * A btf_type object can refer to an earlier btf_type object
75 * but it can also refer to a later btf_type object.
76 *
77 * For example, to describe "const void *". A btf_type
78 * object describing "const" may refer to another btf_type
79 * object describing "void *". This type-reference is done
80 * by specifying type_id:
81 *
82 * [1] CONST (anon) type_id=2
83 * [2] PTR (anon) type_id=0
84 *
85 * The above is the btf_verifier debug log:
86 * - Each line started with "[?]" is a btf_type object
87 * - [?] is the type_id of the btf_type object.
88 * - CONST/PTR is the BTF_KIND_XXX
89 * - "(anon)" is the name of the type. It just
90 * happens that CONST and PTR has no name.
91 * - type_id=XXX is the 'u32 type' in btf_type
92 *
93 * NOTE: "void" has type_id 0
94 *
95 * String section:
96 * ~~~~~~~~~~~~~~
97 * The BTF string section contains the names used by the type section.
98 * Each string is referred by an "offset" from the beginning of the
99 * string section.
100 *
101 * Each string is '\0' terminated.
102 *
103 * The first character in the string section must be '\0'
104 * which is used to mean 'anonymous'. Some btf_type may not
105 * have a name.
106 */
107
108/* BTF verification:
109 *
110 * To verify BTF data, two passes are needed.
111 *
112 * Pass #1
113 * ~~~~~~~
114 * The first pass is to collect all btf_type objects to
115 * an array: "btf->types".
116 *
117 * Depending on the C type that a btf_type is describing,
118 * a btf_type may be followed by extra data. We don't know
119 * how many btf_type is there, and more importantly we don't
120 * know where each btf_type is located in the type section.
121 *
122 * Without knowing the location of each type_id, most verifications
123 * cannot be done. e.g. an earlier btf_type may refer to a later
124 * btf_type (recall the "const void *" above), so we cannot
125 * check this type-reference in the first pass.
126 *
127 * In the first pass, it still does some verifications (e.g.
128 * checking the name is a valid offset to the string section).
129 *
130 * Pass #2
131 * ~~~~~~~
132 * The main focus is to resolve a btf_type that is referring
133 * to another type.
134 *
135 * We have to ensure the referring type:
136 * 1) does exist in the BTF (i.e. in btf->types[])
137 * 2) does not cause a loop:
138 * struct A {
139 * struct B b;
140 * };
141 *
142 * struct B {
143 * struct A a;
144 * };
145 *
146 * btf_type_needs_resolve() decides if a btf_type needs
147 * to be resolved.
148 *
149 * The needs_resolve type implements the "resolve()" ops which
150 * essentially does a DFS and detects backedge.
151 *
152 * During resolve (or DFS), different C types have different
153 * "RESOLVED" conditions.
154 *
155 * When resolving a BTF_KIND_STRUCT, we need to resolve all its
156 * members because a member is always referring to another
157 * type. A struct's member can be treated as "RESOLVED" if
158 * it is referring to a BTF_KIND_PTR. Otherwise, the
159 * following valid C struct would be rejected:
160 *
161 * struct A {
162 * int m;
163 * struct A *a;
164 * };
165 *
166 * When resolving a BTF_KIND_PTR, it needs to keep resolving if
167 * it is referring to another BTF_KIND_PTR. Otherwise, we cannot
168 * detect a pointer loop, e.g.:
169 * BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR +
170 * ^ |
171 * +-----------------------------------------+
172 *
173 */
174
175#define BITS_PER_U128 (sizeof(u64) * BITS_PER_BYTE * 2)
176#define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1)
177#define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK)
178#define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3)
179#define BITS_ROUNDUP_BYTES(bits) \
180 (BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits))
181
182#define BTF_INFO_MASK 0x9f00ffff
183#define BTF_INT_MASK 0x0fffffff
184#define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE)
185#define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET)
186
187/* 16MB for 64k structs and each has 16 members and
188 * a few MB spaces for the string section.
189 * The hard limit is S32_MAX.
190 */
191#define BTF_MAX_SIZE (16 * 1024 * 1024)
192
193#define for_each_member_from(i, from, struct_type, member) \
194 for (i = from, member = btf_type_member(struct_type) + from; \
195 i < btf_type_vlen(struct_type); \
196 i++, member++)
197
198#define for_each_vsi_from(i, from, struct_type, member) \
199 for (i = from, member = btf_type_var_secinfo(struct_type) + from; \
200 i < btf_type_vlen(struct_type); \
201 i++, member++)
202
203DEFINE_IDR(btf_idr);
204DEFINE_SPINLOCK(btf_idr_lock);
205
206enum btf_kfunc_hook {
207 BTF_KFUNC_HOOK_COMMON,
208 BTF_KFUNC_HOOK_XDP,
209 BTF_KFUNC_HOOK_TC,
210 BTF_KFUNC_HOOK_STRUCT_OPS,
211 BTF_KFUNC_HOOK_TRACING,
212 BTF_KFUNC_HOOK_SYSCALL,
213 BTF_KFUNC_HOOK_FMODRET,
214 BTF_KFUNC_HOOK_CGROUP_SKB,
215 BTF_KFUNC_HOOK_SCHED_ACT,
216 BTF_KFUNC_HOOK_SK_SKB,
217 BTF_KFUNC_HOOK_SOCKET_FILTER,
218 BTF_KFUNC_HOOK_LWT,
219 BTF_KFUNC_HOOK_NETFILTER,
220 BTF_KFUNC_HOOK_MAX,
221};
222
223enum {
224 BTF_KFUNC_SET_MAX_CNT = 256,
225 BTF_DTOR_KFUNC_MAX_CNT = 256,
226 BTF_KFUNC_FILTER_MAX_CNT = 16,
227};
228
229struct btf_kfunc_hook_filter {
230 btf_kfunc_filter_t filters[BTF_KFUNC_FILTER_MAX_CNT];
231 u32 nr_filters;
232};
233
234struct btf_kfunc_set_tab {
235 struct btf_id_set8 *sets[BTF_KFUNC_HOOK_MAX];
236 struct btf_kfunc_hook_filter hook_filters[BTF_KFUNC_HOOK_MAX];
237};
238
239struct btf_id_dtor_kfunc_tab {
240 u32 cnt;
241 struct btf_id_dtor_kfunc dtors[];
242};
243
244struct btf {
245 void *data;
246 struct btf_type **types;
247 u32 *resolved_ids;
248 u32 *resolved_sizes;
249 const char *strings;
250 void *nohdr_data;
251 struct btf_header hdr;
252 u32 nr_types; /* includes VOID for base BTF */
253 u32 types_size;
254 u32 data_size;
255 refcount_t refcnt;
256 u32 id;
257 struct rcu_head rcu;
258 struct btf_kfunc_set_tab *kfunc_set_tab;
259 struct btf_id_dtor_kfunc_tab *dtor_kfunc_tab;
260 struct btf_struct_metas *struct_meta_tab;
261
262 /* split BTF support */
263 struct btf *base_btf;
264 u32 start_id; /* first type ID in this BTF (0 for base BTF) */
265 u32 start_str_off; /* first string offset (0 for base BTF) */
266 char name[MODULE_NAME_LEN];
267 bool kernel_btf;
268};
269
270enum verifier_phase {
271 CHECK_META,
272 CHECK_TYPE,
273};
274
275struct resolve_vertex {
276 const struct btf_type *t;
277 u32 type_id;
278 u16 next_member;
279};
280
281enum visit_state {
282 NOT_VISITED,
283 VISITED,
284 RESOLVED,
285};
286
287enum resolve_mode {
288 RESOLVE_TBD, /* To Be Determined */
289 RESOLVE_PTR, /* Resolving for Pointer */
290 RESOLVE_STRUCT_OR_ARRAY, /* Resolving for struct/union
291 * or array
292 */
293};
294
295#define MAX_RESOLVE_DEPTH 32
296
297struct btf_sec_info {
298 u32 off;
299 u32 len;
300};
301
302struct btf_verifier_env {
303 struct btf *btf;
304 u8 *visit_states;
305 struct resolve_vertex stack[MAX_RESOLVE_DEPTH];
306 struct bpf_verifier_log log;
307 u32 log_type_id;
308 u32 top_stack;
309 enum verifier_phase phase;
310 enum resolve_mode resolve_mode;
311};
312
313static const char * const btf_kind_str[NR_BTF_KINDS] = {
314 [BTF_KIND_UNKN] = "UNKNOWN",
315 [BTF_KIND_INT] = "INT",
316 [BTF_KIND_PTR] = "PTR",
317 [BTF_KIND_ARRAY] = "ARRAY",
318 [BTF_KIND_STRUCT] = "STRUCT",
319 [BTF_KIND_UNION] = "UNION",
320 [BTF_KIND_ENUM] = "ENUM",
321 [BTF_KIND_FWD] = "FWD",
322 [BTF_KIND_TYPEDEF] = "TYPEDEF",
323 [BTF_KIND_VOLATILE] = "VOLATILE",
324 [BTF_KIND_CONST] = "CONST",
325 [BTF_KIND_RESTRICT] = "RESTRICT",
326 [BTF_KIND_FUNC] = "FUNC",
327 [BTF_KIND_FUNC_PROTO] = "FUNC_PROTO",
328 [BTF_KIND_VAR] = "VAR",
329 [BTF_KIND_DATASEC] = "DATASEC",
330 [BTF_KIND_FLOAT] = "FLOAT",
331 [BTF_KIND_DECL_TAG] = "DECL_TAG",
332 [BTF_KIND_TYPE_TAG] = "TYPE_TAG",
333 [BTF_KIND_ENUM64] = "ENUM64",
334};
335
336const char *btf_type_str(const struct btf_type *t)
337{
338 return btf_kind_str[BTF_INFO_KIND(t->info)];
339}
340
341/* Chunk size we use in safe copy of data to be shown. */
342#define BTF_SHOW_OBJ_SAFE_SIZE 32
343
344/*
345 * This is the maximum size of a base type value (equivalent to a
346 * 128-bit int); if we are at the end of our safe buffer and have
347 * less than 16 bytes space we can't be assured of being able
348 * to copy the next type safely, so in such cases we will initiate
349 * a new copy.
350 */
351#define BTF_SHOW_OBJ_BASE_TYPE_SIZE 16
352
353/* Type name size */
354#define BTF_SHOW_NAME_SIZE 80
355
356/*
357 * The suffix of a type that indicates it cannot alias another type when
358 * comparing BTF IDs for kfunc invocations.
359 */
360#define NOCAST_ALIAS_SUFFIX "___init"
361
362/*
363 * Common data to all BTF show operations. Private show functions can add
364 * their own data to a structure containing a struct btf_show and consult it
365 * in the show callback. See btf_type_show() below.
366 *
367 * One challenge with showing nested data is we want to skip 0-valued
368 * data, but in order to figure out whether a nested object is all zeros
369 * we need to walk through it. As a result, we need to make two passes
370 * when handling structs, unions and arrays; the first path simply looks
371 * for nonzero data, while the second actually does the display. The first
372 * pass is signalled by show->state.depth_check being set, and if we
373 * encounter a non-zero value we set show->state.depth_to_show to
374 * the depth at which we encountered it. When we have completed the
375 * first pass, we will know if anything needs to be displayed if
376 * depth_to_show > depth. See btf_[struct,array]_show() for the
377 * implementation of this.
378 *
379 * Another problem is we want to ensure the data for display is safe to
380 * access. To support this, the anonymous "struct {} obj" tracks the data
381 * object and our safe copy of it. We copy portions of the data needed
382 * to the object "copy" buffer, but because its size is limited to
383 * BTF_SHOW_OBJ_COPY_LEN bytes, multiple copies may be required as we
384 * traverse larger objects for display.
385 *
386 * The various data type show functions all start with a call to
387 * btf_show_start_type() which returns a pointer to the safe copy
388 * of the data needed (or if BTF_SHOW_UNSAFE is specified, to the
389 * raw data itself). btf_show_obj_safe() is responsible for
390 * using copy_from_kernel_nofault() to update the safe data if necessary
391 * as we traverse the object's data. skbuff-like semantics are
392 * used:
393 *
394 * - obj.head points to the start of the toplevel object for display
395 * - obj.size is the size of the toplevel object
396 * - obj.data points to the current point in the original data at
397 * which our safe data starts. obj.data will advance as we copy
398 * portions of the data.
399 *
400 * In most cases a single copy will suffice, but larger data structures
401 * such as "struct task_struct" will require many copies. The logic in
402 * btf_show_obj_safe() handles the logic that determines if a new
403 * copy_from_kernel_nofault() is needed.
404 */
405struct btf_show {
406 u64 flags;
407 void *target; /* target of show operation (seq file, buffer) */
408 void (*showfn)(struct btf_show *show, const char *fmt, va_list args);
409 const struct btf *btf;
410 /* below are used during iteration */
411 struct {
412 u8 depth;
413 u8 depth_to_show;
414 u8 depth_check;
415 u8 array_member:1,
416 array_terminated:1;
417 u16 array_encoding;
418 u32 type_id;
419 int status; /* non-zero for error */
420 const struct btf_type *type;
421 const struct btf_member *member;
422 char name[BTF_SHOW_NAME_SIZE]; /* space for member name/type */
423 } state;
424 struct {
425 u32 size;
426 void *head;
427 void *data;
428 u8 safe[BTF_SHOW_OBJ_SAFE_SIZE];
429 } obj;
430};
431
432struct btf_kind_operations {
433 s32 (*check_meta)(struct btf_verifier_env *env,
434 const struct btf_type *t,
435 u32 meta_left);
436 int (*resolve)(struct btf_verifier_env *env,
437 const struct resolve_vertex *v);
438 int (*check_member)(struct btf_verifier_env *env,
439 const struct btf_type *struct_type,
440 const struct btf_member *member,
441 const struct btf_type *member_type);
442 int (*check_kflag_member)(struct btf_verifier_env *env,
443 const struct btf_type *struct_type,
444 const struct btf_member *member,
445 const struct btf_type *member_type);
446 void (*log_details)(struct btf_verifier_env *env,
447 const struct btf_type *t);
448 void (*show)(const struct btf *btf, const struct btf_type *t,
449 u32 type_id, void *data, u8 bits_offsets,
450 struct btf_show *show);
451};
452
453static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS];
454static struct btf_type btf_void;
455
456static int btf_resolve(struct btf_verifier_env *env,
457 const struct btf_type *t, u32 type_id);
458
459static int btf_func_check(struct btf_verifier_env *env,
460 const struct btf_type *t);
461
462static bool btf_type_is_modifier(const struct btf_type *t)
463{
464 /* Some of them is not strictly a C modifier
465 * but they are grouped into the same bucket
466 * for BTF concern:
467 * A type (t) that refers to another
468 * type through t->type AND its size cannot
469 * be determined without following the t->type.
470 *
471 * ptr does not fall into this bucket
472 * because its size is always sizeof(void *).
473 */
474 switch (BTF_INFO_KIND(t->info)) {
475 case BTF_KIND_TYPEDEF:
476 case BTF_KIND_VOLATILE:
477 case BTF_KIND_CONST:
478 case BTF_KIND_RESTRICT:
479 case BTF_KIND_TYPE_TAG:
480 return true;
481 }
482
483 return false;
484}
485
486bool btf_type_is_void(const struct btf_type *t)
487{
488 return t == &btf_void;
489}
490
491static bool btf_type_is_fwd(const struct btf_type *t)
492{
493 return BTF_INFO_KIND(t->info) == BTF_KIND_FWD;
494}
495
496static bool btf_type_is_datasec(const struct btf_type *t)
497{
498 return BTF_INFO_KIND(t->info) == BTF_KIND_DATASEC;
499}
500
501static bool btf_type_is_decl_tag(const struct btf_type *t)
502{
503 return BTF_INFO_KIND(t->info) == BTF_KIND_DECL_TAG;
504}
505
506static bool btf_type_nosize(const struct btf_type *t)
507{
508 return btf_type_is_void(t) || btf_type_is_fwd(t) ||
509 btf_type_is_func(t) || btf_type_is_func_proto(t) ||
510 btf_type_is_decl_tag(t);
511}
512
513static bool btf_type_nosize_or_null(const struct btf_type *t)
514{
515 return !t || btf_type_nosize(t);
516}
517
518static bool btf_type_is_decl_tag_target(const struct btf_type *t)
519{
520 return btf_type_is_func(t) || btf_type_is_struct(t) ||
521 btf_type_is_var(t) || btf_type_is_typedef(t);
522}
523
524u32 btf_nr_types(const struct btf *btf)
525{
526 u32 total = 0;
527
528 while (btf) {
529 total += btf->nr_types;
530 btf = btf->base_btf;
531 }
532
533 return total;
534}
535
536s32 btf_find_by_name_kind(const struct btf *btf, const char *name, u8 kind)
537{
538 const struct btf_type *t;
539 const char *tname;
540 u32 i, total;
541
542 total = btf_nr_types(btf);
543 for (i = 1; i < total; i++) {
544 t = btf_type_by_id(btf, type_id: i);
545 if (BTF_INFO_KIND(t->info) != kind)
546 continue;
547
548 tname = btf_name_by_offset(btf, offset: t->name_off);
549 if (!strcmp(tname, name))
550 return i;
551 }
552
553 return -ENOENT;
554}
555
556s32 bpf_find_btf_id(const char *name, u32 kind, struct btf **btf_p)
557{
558 struct btf *btf;
559 s32 ret;
560 int id;
561
562 btf = bpf_get_btf_vmlinux();
563 if (IS_ERR(ptr: btf))
564 return PTR_ERR(ptr: btf);
565 if (!btf)
566 return -EINVAL;
567
568 ret = btf_find_by_name_kind(btf, name, kind);
569 /* ret is never zero, since btf_find_by_name_kind returns
570 * positive btf_id or negative error.
571 */
572 if (ret > 0) {
573 btf_get(btf);
574 *btf_p = btf;
575 return ret;
576 }
577
578 /* If name is not found in vmlinux's BTF then search in module's BTFs */
579 spin_lock_bh(lock: &btf_idr_lock);
580 idr_for_each_entry(&btf_idr, btf, id) {
581 if (!btf_is_module(btf))
582 continue;
583 /* linear search could be slow hence unlock/lock
584 * the IDR to avoiding holding it for too long
585 */
586 btf_get(btf);
587 spin_unlock_bh(lock: &btf_idr_lock);
588 ret = btf_find_by_name_kind(btf, name, kind);
589 if (ret > 0) {
590 *btf_p = btf;
591 return ret;
592 }
593 btf_put(btf);
594 spin_lock_bh(lock: &btf_idr_lock);
595 }
596 spin_unlock_bh(lock: &btf_idr_lock);
597 return ret;
598}
599
600const struct btf_type *btf_type_skip_modifiers(const struct btf *btf,
601 u32 id, u32 *res_id)
602{
603 const struct btf_type *t = btf_type_by_id(btf, type_id: id);
604
605 while (btf_type_is_modifier(t)) {
606 id = t->type;
607 t = btf_type_by_id(btf, type_id: t->type);
608 }
609
610 if (res_id)
611 *res_id = id;
612
613 return t;
614}
615
616const struct btf_type *btf_type_resolve_ptr(const struct btf *btf,
617 u32 id, u32 *res_id)
618{
619 const struct btf_type *t;
620
621 t = btf_type_skip_modifiers(btf, id, NULL);
622 if (!btf_type_is_ptr(t))
623 return NULL;
624
625 return btf_type_skip_modifiers(btf, id: t->type, res_id);
626}
627
628const struct btf_type *btf_type_resolve_func_ptr(const struct btf *btf,
629 u32 id, u32 *res_id)
630{
631 const struct btf_type *ptype;
632
633 ptype = btf_type_resolve_ptr(btf, id, res_id);
634 if (ptype && btf_type_is_func_proto(t: ptype))
635 return ptype;
636
637 return NULL;
638}
639
640/* Types that act only as a source, not sink or intermediate
641 * type when resolving.
642 */
643static bool btf_type_is_resolve_source_only(const struct btf_type *t)
644{
645 return btf_type_is_var(t) ||
646 btf_type_is_decl_tag(t) ||
647 btf_type_is_datasec(t);
648}
649
650/* What types need to be resolved?
651 *
652 * btf_type_is_modifier() is an obvious one.
653 *
654 * btf_type_is_struct() because its member refers to
655 * another type (through member->type).
656 *
657 * btf_type_is_var() because the variable refers to
658 * another type. btf_type_is_datasec() holds multiple
659 * btf_type_is_var() types that need resolving.
660 *
661 * btf_type_is_array() because its element (array->type)
662 * refers to another type. Array can be thought of a
663 * special case of struct while array just has the same
664 * member-type repeated by array->nelems of times.
665 */
666static bool btf_type_needs_resolve(const struct btf_type *t)
667{
668 return btf_type_is_modifier(t) ||
669 btf_type_is_ptr(t) ||
670 btf_type_is_struct(t) ||
671 btf_type_is_array(t) ||
672 btf_type_is_var(t) ||
673 btf_type_is_func(t) ||
674 btf_type_is_decl_tag(t) ||
675 btf_type_is_datasec(t);
676}
677
678/* t->size can be used */
679static bool btf_type_has_size(const struct btf_type *t)
680{
681 switch (BTF_INFO_KIND(t->info)) {
682 case BTF_KIND_INT:
683 case BTF_KIND_STRUCT:
684 case BTF_KIND_UNION:
685 case BTF_KIND_ENUM:
686 case BTF_KIND_DATASEC:
687 case BTF_KIND_FLOAT:
688 case BTF_KIND_ENUM64:
689 return true;
690 }
691
692 return false;
693}
694
695static const char *btf_int_encoding_str(u8 encoding)
696{
697 if (encoding == 0)
698 return "(none)";
699 else if (encoding == BTF_INT_SIGNED)
700 return "SIGNED";
701 else if (encoding == BTF_INT_CHAR)
702 return "CHAR";
703 else if (encoding == BTF_INT_BOOL)
704 return "BOOL";
705 else
706 return "UNKN";
707}
708
709static u32 btf_type_int(const struct btf_type *t)
710{
711 return *(u32 *)(t + 1);
712}
713
714static const struct btf_array *btf_type_array(const struct btf_type *t)
715{
716 return (const struct btf_array *)(t + 1);
717}
718
719static const struct btf_enum *btf_type_enum(const struct btf_type *t)
720{
721 return (const struct btf_enum *)(t + 1);
722}
723
724static const struct btf_var *btf_type_var(const struct btf_type *t)
725{
726 return (const struct btf_var *)(t + 1);
727}
728
729static const struct btf_decl_tag *btf_type_decl_tag(const struct btf_type *t)
730{
731 return (const struct btf_decl_tag *)(t + 1);
732}
733
734static const struct btf_enum64 *btf_type_enum64(const struct btf_type *t)
735{
736 return (const struct btf_enum64 *)(t + 1);
737}
738
739static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t)
740{
741 return kind_ops[BTF_INFO_KIND(t->info)];
742}
743
744static bool btf_name_offset_valid(const struct btf *btf, u32 offset)
745{
746 if (!BTF_STR_OFFSET_VALID(offset))
747 return false;
748
749 while (offset < btf->start_str_off)
750 btf = btf->base_btf;
751
752 offset -= btf->start_str_off;
753 return offset < btf->hdr.str_len;
754}
755
756static bool __btf_name_char_ok(char c, bool first)
757{
758 if ((first ? !isalpha(c) :
759 !isalnum(c)) &&
760 c != '_' &&
761 c != '.')
762 return false;
763 return true;
764}
765
766static const char *btf_str_by_offset(const struct btf *btf, u32 offset)
767{
768 while (offset < btf->start_str_off)
769 btf = btf->base_btf;
770
771 offset -= btf->start_str_off;
772 if (offset < btf->hdr.str_len)
773 return &btf->strings[offset];
774
775 return NULL;
776}
777
778static bool __btf_name_valid(const struct btf *btf, u32 offset)
779{
780 /* offset must be valid */
781 const char *src = btf_str_by_offset(btf, offset);
782 const char *src_limit;
783
784 if (!__btf_name_char_ok(c: *src, first: true))
785 return false;
786
787 /* set a limit on identifier length */
788 src_limit = src + KSYM_NAME_LEN;
789 src++;
790 while (*src && src < src_limit) {
791 if (!__btf_name_char_ok(c: *src, first: false))
792 return false;
793 src++;
794 }
795
796 return !*src;
797}
798
799static bool btf_name_valid_identifier(const struct btf *btf, u32 offset)
800{
801 return __btf_name_valid(btf, offset);
802}
803
804static bool btf_name_valid_section(const struct btf *btf, u32 offset)
805{
806 return __btf_name_valid(btf, offset);
807}
808
809static const char *__btf_name_by_offset(const struct btf *btf, u32 offset)
810{
811 const char *name;
812
813 if (!offset)
814 return "(anon)";
815
816 name = btf_str_by_offset(btf, offset);
817 return name ?: "(invalid-name-offset)";
818}
819
820const char *btf_name_by_offset(const struct btf *btf, u32 offset)
821{
822 return btf_str_by_offset(btf, offset);
823}
824
825const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id)
826{
827 while (type_id < btf->start_id)
828 btf = btf->base_btf;
829
830 type_id -= btf->start_id;
831 if (type_id >= btf->nr_types)
832 return NULL;
833 return btf->types[type_id];
834}
835EXPORT_SYMBOL_GPL(btf_type_by_id);
836
837/*
838 * Regular int is not a bit field and it must be either
839 * u8/u16/u32/u64 or __int128.
840 */
841static bool btf_type_int_is_regular(const struct btf_type *t)
842{
843 u8 nr_bits, nr_bytes;
844 u32 int_data;
845
846 int_data = btf_type_int(t);
847 nr_bits = BTF_INT_BITS(int_data);
848 nr_bytes = BITS_ROUNDUP_BYTES(nr_bits);
849 if (BITS_PER_BYTE_MASKED(nr_bits) ||
850 BTF_INT_OFFSET(int_data) ||
851 (nr_bytes != sizeof(u8) && nr_bytes != sizeof(u16) &&
852 nr_bytes != sizeof(u32) && nr_bytes != sizeof(u64) &&
853 nr_bytes != (2 * sizeof(u64)))) {
854 return false;
855 }
856
857 return true;
858}
859
860/*
861 * Check that given struct member is a regular int with expected
862 * offset and size.
863 */
864bool btf_member_is_reg_int(const struct btf *btf, const struct btf_type *s,
865 const struct btf_member *m,
866 u32 expected_offset, u32 expected_size)
867{
868 const struct btf_type *t;
869 u32 id, int_data;
870 u8 nr_bits;
871
872 id = m->type;
873 t = btf_type_id_size(btf, type_id: &id, NULL);
874 if (!t || !btf_type_is_int(t))
875 return false;
876
877 int_data = btf_type_int(t);
878 nr_bits = BTF_INT_BITS(int_data);
879 if (btf_type_kflag(t: s)) {
880 u32 bitfield_size = BTF_MEMBER_BITFIELD_SIZE(m->offset);
881 u32 bit_offset = BTF_MEMBER_BIT_OFFSET(m->offset);
882
883 /* if kflag set, int should be a regular int and
884 * bit offset should be at byte boundary.
885 */
886 return !bitfield_size &&
887 BITS_ROUNDUP_BYTES(bit_offset) == expected_offset &&
888 BITS_ROUNDUP_BYTES(nr_bits) == expected_size;
889 }
890
891 if (BTF_INT_OFFSET(int_data) ||
892 BITS_PER_BYTE_MASKED(m->offset) ||
893 BITS_ROUNDUP_BYTES(m->offset) != expected_offset ||
894 BITS_PER_BYTE_MASKED(nr_bits) ||
895 BITS_ROUNDUP_BYTES(nr_bits) != expected_size)
896 return false;
897
898 return true;
899}
900
901/* Similar to btf_type_skip_modifiers() but does not skip typedefs. */
902static const struct btf_type *btf_type_skip_qualifiers(const struct btf *btf,
903 u32 id)
904{
905 const struct btf_type *t = btf_type_by_id(btf, id);
906
907 while (btf_type_is_modifier(t) &&
908 BTF_INFO_KIND(t->info) != BTF_KIND_TYPEDEF) {
909 t = btf_type_by_id(btf, t->type);
910 }
911
912 return t;
913}
914
915#define BTF_SHOW_MAX_ITER 10
916
917#define BTF_KIND_BIT(kind) (1ULL << kind)
918
919/*
920 * Populate show->state.name with type name information.
921 * Format of type name is
922 *
923 * [.member_name = ] (type_name)
924 */
925static const char *btf_show_name(struct btf_show *show)
926{
927 /* BTF_MAX_ITER array suffixes "[]" */
928 const char *array_suffixes = "[][][][][][][][][][]";
929 const char *array_suffix = &array_suffixes[strlen(array_suffixes)];
930 /* BTF_MAX_ITER pointer suffixes "*" */
931 const char *ptr_suffixes = "**********";
932 const char *ptr_suffix = &ptr_suffixes[strlen(ptr_suffixes)];
933 const char *name = NULL, *prefix = "", *parens = "";
934 const struct btf_member *m = show->state.member;
935 const struct btf_type *t;
936 const struct btf_array *array;
937 u32 id = show->state.type_id;
938 const char *member = NULL;
939 bool show_member = false;
940 u64 kinds = 0;
941 int i;
942
943 show->state.name[0] = '\0';
944
945 /*
946 * Don't show type name if we're showing an array member;
947 * in that case we show the array type so don't need to repeat
948 * ourselves for each member.
949 */
950 if (show->state.array_member)
951 return "";
952
953 /* Retrieve member name, if any. */
954 if (m) {
955 member = btf_name_by_offset(btf: show->btf, offset: m->name_off);
956 show_member = strlen(member) > 0;
957 id = m->type;
958 }
959
960 /*
961 * Start with type_id, as we have resolved the struct btf_type *
962 * via btf_modifier_show() past the parent typedef to the child
963 * struct, int etc it is defined as. In such cases, the type_id
964 * still represents the starting type while the struct btf_type *
965 * in our show->state points at the resolved type of the typedef.
966 */
967 t = btf_type_by_id(show->btf, id);
968 if (!t)
969 return "";
970
971 /*
972 * The goal here is to build up the right number of pointer and
973 * array suffixes while ensuring the type name for a typedef
974 * is represented. Along the way we accumulate a list of
975 * BTF kinds we have encountered, since these will inform later
976 * display; for example, pointer types will not require an
977 * opening "{" for struct, we will just display the pointer value.
978 *
979 * We also want to accumulate the right number of pointer or array
980 * indices in the format string while iterating until we get to
981 * the typedef/pointee/array member target type.
982 *
983 * We start by pointing at the end of pointer and array suffix
984 * strings; as we accumulate pointers and arrays we move the pointer
985 * or array string backwards so it will show the expected number of
986 * '*' or '[]' for the type. BTF_SHOW_MAX_ITER of nesting of pointers
987 * and/or arrays and typedefs are supported as a precaution.
988 *
989 * We also want to get typedef name while proceeding to resolve
990 * type it points to so that we can add parentheses if it is a
991 * "typedef struct" etc.
992 */
993 for (i = 0; i < BTF_SHOW_MAX_ITER; i++) {
994
995 switch (BTF_INFO_KIND(t->info)) {
996 case BTF_KIND_TYPEDEF:
997 if (!name)
998 name = btf_name_by_offset(btf: show->btf,
999 offset: t->name_off);
1000 kinds |= BTF_KIND_BIT(BTF_KIND_TYPEDEF);
1001 id = t->type;
1002 break;
1003 case BTF_KIND_ARRAY:
1004 kinds |= BTF_KIND_BIT(BTF_KIND_ARRAY);
1005 parens = "[";
1006 if (!t)
1007 return "";
1008 array = btf_type_array(t);
1009 if (array_suffix > array_suffixes)
1010 array_suffix -= 2;
1011 id = array->type;
1012 break;
1013 case BTF_KIND_PTR:
1014 kinds |= BTF_KIND_BIT(BTF_KIND_PTR);
1015 if (ptr_suffix > ptr_suffixes)
1016 ptr_suffix -= 1;
1017 id = t->type;
1018 break;
1019 default:
1020 id = 0;
1021 break;
1022 }
1023 if (!id)
1024 break;
1025 t = btf_type_skip_qualifiers(btf: show->btf, id);
1026 }
1027 /* We may not be able to represent this type; bail to be safe */
1028 if (i == BTF_SHOW_MAX_ITER)
1029 return "";
1030
1031 if (!name)
1032 name = btf_name_by_offset(btf: show->btf, offset: t->name_off);
1033
1034 switch (BTF_INFO_KIND(t->info)) {
1035 case BTF_KIND_STRUCT:
1036 case BTF_KIND_UNION:
1037 prefix = BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT ?
1038 "struct" : "union";
1039 /* if it's an array of struct/union, parens is already set */
1040 if (!(kinds & (BTF_KIND_BIT(BTF_KIND_ARRAY))))
1041 parens = "{";
1042 break;
1043 case BTF_KIND_ENUM:
1044 case BTF_KIND_ENUM64:
1045 prefix = "enum";
1046 break;
1047 default:
1048 break;
1049 }
1050
1051 /* pointer does not require parens */
1052 if (kinds & BTF_KIND_BIT(BTF_KIND_PTR))
1053 parens = "";
1054 /* typedef does not require struct/union/enum prefix */
1055 if (kinds & BTF_KIND_BIT(BTF_KIND_TYPEDEF))
1056 prefix = "";
1057
1058 if (!name)
1059 name = "";
1060
1061 /* Even if we don't want type name info, we want parentheses etc */
1062 if (show->flags & BTF_SHOW_NONAME)
1063 snprintf(buf: show->state.name, size: sizeof(show->state.name), fmt: "%s",
1064 parens);
1065 else
1066 snprintf(buf: show->state.name, size: sizeof(show->state.name),
1067 fmt: "%s%s%s(%s%s%s%s%s%s)%s",
1068 /* first 3 strings comprise ".member = " */
1069 show_member ? "." : "",
1070 show_member ? member : "",
1071 show_member ? " = " : "",
1072 /* ...next is our prefix (struct, enum, etc) */
1073 prefix,
1074 strlen(prefix) > 0 && strlen(name) > 0 ? " " : "",
1075 /* ...this is the type name itself */
1076 name,
1077 /* ...suffixed by the appropriate '*', '[]' suffixes */
1078 strlen(ptr_suffix) > 0 ? " " : "", ptr_suffix,
1079 array_suffix, parens);
1080
1081 return show->state.name;
1082}
1083
1084static const char *__btf_show_indent(struct btf_show *show)
1085{
1086 const char *indents = " ";
1087 const char *indent = &indents[strlen(indents)];
1088
1089 if ((indent - show->state.depth) >= indents)
1090 return indent - show->state.depth;
1091 return indents;
1092}
1093
1094static const char *btf_show_indent(struct btf_show *show)
1095{
1096 return show->flags & BTF_SHOW_COMPACT ? "" : __btf_show_indent(show);
1097}
1098
1099static const char *btf_show_newline(struct btf_show *show)
1100{
1101 return show->flags & BTF_SHOW_COMPACT ? "" : "\n";
1102}
1103
1104static const char *btf_show_delim(struct btf_show *show)
1105{
1106 if (show->state.depth == 0)
1107 return "";
1108
1109 if ((show->flags & BTF_SHOW_COMPACT) && show->state.type &&
1110 BTF_INFO_KIND(show->state.type->info) == BTF_KIND_UNION)
1111 return "|";
1112
1113 return ",";
1114}
1115
1116__printf(2, 3) static void btf_show(struct btf_show *show, const char *fmt, ...)
1117{
1118 va_list args;
1119
1120 if (!show->state.depth_check) {
1121 va_start(args, fmt);
1122 show->showfn(show, fmt, args);
1123 va_end(args);
1124 }
1125}
1126
1127/* Macros are used here as btf_show_type_value[s]() prepends and appends
1128 * format specifiers to the format specifier passed in; these do the work of
1129 * adding indentation, delimiters etc while the caller simply has to specify
1130 * the type value(s) in the format specifier + value(s).
1131 */
1132#define btf_show_type_value(show, fmt, value) \
1133 do { \
1134 if ((value) != (__typeof__(value))0 || \
1135 (show->flags & BTF_SHOW_ZERO) || \
1136 show->state.depth == 0) { \
1137 btf_show(show, "%s%s" fmt "%s%s", \
1138 btf_show_indent(show), \
1139 btf_show_name(show), \
1140 value, btf_show_delim(show), \
1141 btf_show_newline(show)); \
1142 if (show->state.depth > show->state.depth_to_show) \
1143 show->state.depth_to_show = show->state.depth; \
1144 } \
1145 } while (0)
1146
1147#define btf_show_type_values(show, fmt, ...) \
1148 do { \
1149 btf_show(show, "%s%s" fmt "%s%s", btf_show_indent(show), \
1150 btf_show_name(show), \
1151 __VA_ARGS__, btf_show_delim(show), \
1152 btf_show_newline(show)); \
1153 if (show->state.depth > show->state.depth_to_show) \
1154 show->state.depth_to_show = show->state.depth; \
1155 } while (0)
1156
1157/* How much is left to copy to safe buffer after @data? */
1158static int btf_show_obj_size_left(struct btf_show *show, void *data)
1159{
1160 return show->obj.head + show->obj.size - data;
1161}
1162
1163/* Is object pointed to by @data of @size already copied to our safe buffer? */
1164static bool btf_show_obj_is_safe(struct btf_show *show, void *data, int size)
1165{
1166 return data >= show->obj.data &&
1167 (data + size) < (show->obj.data + BTF_SHOW_OBJ_SAFE_SIZE);
1168}
1169
1170/*
1171 * If object pointed to by @data of @size falls within our safe buffer, return
1172 * the equivalent pointer to the same safe data. Assumes
1173 * copy_from_kernel_nofault() has already happened and our safe buffer is
1174 * populated.
1175 */
1176static void *__btf_show_obj_safe(struct btf_show *show, void *data, int size)
1177{
1178 if (btf_show_obj_is_safe(show, data, size))
1179 return show->obj.safe + (data - show->obj.data);
1180 return NULL;
1181}
1182
1183/*
1184 * Return a safe-to-access version of data pointed to by @data.
1185 * We do this by copying the relevant amount of information
1186 * to the struct btf_show obj.safe buffer using copy_from_kernel_nofault().
1187 *
1188 * If BTF_SHOW_UNSAFE is specified, just return data as-is; no
1189 * safe copy is needed.
1190 *
1191 * Otherwise we need to determine if we have the required amount
1192 * of data (determined by the @data pointer and the size of the
1193 * largest base type we can encounter (represented by
1194 * BTF_SHOW_OBJ_BASE_TYPE_SIZE). Having that much data ensures
1195 * that we will be able to print some of the current object,
1196 * and if more is needed a copy will be triggered.
1197 * Some objects such as structs will not fit into the buffer;
1198 * in such cases additional copies when we iterate over their
1199 * members may be needed.
1200 *
1201 * btf_show_obj_safe() is used to return a safe buffer for
1202 * btf_show_start_type(); this ensures that as we recurse into
1203 * nested types we always have safe data for the given type.
1204 * This approach is somewhat wasteful; it's possible for example
1205 * that when iterating over a large union we'll end up copying the
1206 * same data repeatedly, but the goal is safety not performance.
1207 * We use stack data as opposed to per-CPU buffers because the
1208 * iteration over a type can take some time, and preemption handling
1209 * would greatly complicate use of the safe buffer.
1210 */
1211static void *btf_show_obj_safe(struct btf_show *show,
1212 const struct btf_type *t,
1213 void *data)
1214{
1215 const struct btf_type *rt;
1216 int size_left, size;
1217 void *safe = NULL;
1218
1219 if (show->flags & BTF_SHOW_UNSAFE)
1220 return data;
1221
1222 rt = btf_resolve_size(btf: show->btf, type: t, type_size: &size);
1223 if (IS_ERR(ptr: rt)) {
1224 show->state.status = PTR_ERR(ptr: rt);
1225 return NULL;
1226 }
1227
1228 /*
1229 * Is this toplevel object? If so, set total object size and
1230 * initialize pointers. Otherwise check if we still fall within
1231 * our safe object data.
1232 */
1233 if (show->state.depth == 0) {
1234 show->obj.size = size;
1235 show->obj.head = data;
1236 } else {
1237 /*
1238 * If the size of the current object is > our remaining
1239 * safe buffer we _may_ need to do a new copy. However
1240 * consider the case of a nested struct; it's size pushes
1241 * us over the safe buffer limit, but showing any individual
1242 * struct members does not. In such cases, we don't need
1243 * to initiate a fresh copy yet; however we definitely need
1244 * at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes left
1245 * in our buffer, regardless of the current object size.
1246 * The logic here is that as we resolve types we will
1247 * hit a base type at some point, and we need to be sure
1248 * the next chunk of data is safely available to display
1249 * that type info safely. We cannot rely on the size of
1250 * the current object here because it may be much larger
1251 * than our current buffer (e.g. task_struct is 8k).
1252 * All we want to do here is ensure that we can print the
1253 * next basic type, which we can if either
1254 * - the current type size is within the safe buffer; or
1255 * - at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes are left in
1256 * the safe buffer.
1257 */
1258 safe = __btf_show_obj_safe(show, data,
1259 min(size,
1260 BTF_SHOW_OBJ_BASE_TYPE_SIZE));
1261 }
1262
1263 /*
1264 * We need a new copy to our safe object, either because we haven't
1265 * yet copied and are initializing safe data, or because the data
1266 * we want falls outside the boundaries of the safe object.
1267 */
1268 if (!safe) {
1269 size_left = btf_show_obj_size_left(show, data);
1270 if (size_left > BTF_SHOW_OBJ_SAFE_SIZE)
1271 size_left = BTF_SHOW_OBJ_SAFE_SIZE;
1272 show->state.status = copy_from_kernel_nofault(dst: show->obj.safe,
1273 src: data, size: size_left);
1274 if (!show->state.status) {
1275 show->obj.data = data;
1276 safe = show->obj.safe;
1277 }
1278 }
1279
1280 return safe;
1281}
1282
1283/*
1284 * Set the type we are starting to show and return a safe data pointer
1285 * to be used for showing the associated data.
1286 */
1287static void *btf_show_start_type(struct btf_show *show,
1288 const struct btf_type *t,
1289 u32 type_id, void *data)
1290{
1291 show->state.type = t;
1292 show->state.type_id = type_id;
1293 show->state.name[0] = '\0';
1294
1295 return btf_show_obj_safe(show, t, data);
1296}
1297
1298static void btf_show_end_type(struct btf_show *show)
1299{
1300 show->state.type = NULL;
1301 show->state.type_id = 0;
1302 show->state.name[0] = '\0';
1303}
1304
1305static void *btf_show_start_aggr_type(struct btf_show *show,
1306 const struct btf_type *t,
1307 u32 type_id, void *data)
1308{
1309 void *safe_data = btf_show_start_type(show, t, type_id, data);
1310
1311 if (!safe_data)
1312 return safe_data;
1313
1314 btf_show(show, fmt: "%s%s%s", btf_show_indent(show),
1315 btf_show_name(show),
1316 btf_show_newline(show));
1317 show->state.depth++;
1318 return safe_data;
1319}
1320
1321static void btf_show_end_aggr_type(struct btf_show *show,
1322 const char *suffix)
1323{
1324 show->state.depth--;
1325 btf_show(show, fmt: "%s%s%s%s", btf_show_indent(show), suffix,
1326 btf_show_delim(show), btf_show_newline(show));
1327 btf_show_end_type(show);
1328}
1329
1330static void btf_show_start_member(struct btf_show *show,
1331 const struct btf_member *m)
1332{
1333 show->state.member = m;
1334}
1335
1336static void btf_show_start_array_member(struct btf_show *show)
1337{
1338 show->state.array_member = 1;
1339 btf_show_start_member(show, NULL);
1340}
1341
1342static void btf_show_end_member(struct btf_show *show)
1343{
1344 show->state.member = NULL;
1345}
1346
1347static void btf_show_end_array_member(struct btf_show *show)
1348{
1349 show->state.array_member = 0;
1350 btf_show_end_member(show);
1351}
1352
1353static void *btf_show_start_array_type(struct btf_show *show,
1354 const struct btf_type *t,
1355 u32 type_id,
1356 u16 array_encoding,
1357 void *data)
1358{
1359 show->state.array_encoding = array_encoding;
1360 show->state.array_terminated = 0;
1361 return btf_show_start_aggr_type(show, t, type_id, data);
1362}
1363
1364static void btf_show_end_array_type(struct btf_show *show)
1365{
1366 show->state.array_encoding = 0;
1367 show->state.array_terminated = 0;
1368 btf_show_end_aggr_type(show, suffix: "]");
1369}
1370
1371static void *btf_show_start_struct_type(struct btf_show *show,
1372 const struct btf_type *t,
1373 u32 type_id,
1374 void *data)
1375{
1376 return btf_show_start_aggr_type(show, t, type_id, data);
1377}
1378
1379static void btf_show_end_struct_type(struct btf_show *show)
1380{
1381 btf_show_end_aggr_type(show, suffix: "}");
1382}
1383
1384__printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log,
1385 const char *fmt, ...)
1386{
1387 va_list args;
1388
1389 va_start(args, fmt);
1390 bpf_verifier_vlog(log, fmt, args);
1391 va_end(args);
1392}
1393
1394__printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env,
1395 const char *fmt, ...)
1396{
1397 struct bpf_verifier_log *log = &env->log;
1398 va_list args;
1399
1400 if (!bpf_verifier_log_needed(log))
1401 return;
1402
1403 va_start(args, fmt);
1404 bpf_verifier_vlog(log, fmt, args);
1405 va_end(args);
1406}
1407
1408__printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env,
1409 const struct btf_type *t,
1410 bool log_details,
1411 const char *fmt, ...)
1412{
1413 struct bpf_verifier_log *log = &env->log;
1414 struct btf *btf = env->btf;
1415 va_list args;
1416
1417 if (!bpf_verifier_log_needed(log))
1418 return;
1419
1420 if (log->level == BPF_LOG_KERNEL) {
1421 /* btf verifier prints all types it is processing via
1422 * btf_verifier_log_type(..., fmt = NULL).
1423 * Skip those prints for in-kernel BTF verification.
1424 */
1425 if (!fmt)
1426 return;
1427
1428 /* Skip logging when loading module BTF with mismatches permitted */
1429 if (env->btf->base_btf && IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH))
1430 return;
1431 }
1432
1433 __btf_verifier_log(log, fmt: "[%u] %s %s%s",
1434 env->log_type_id,
1435 btf_type_str(t),
1436 __btf_name_by_offset(btf, offset: t->name_off),
1437 log_details ? " " : "");
1438
1439 if (log_details)
1440 btf_type_ops(t)->log_details(env, t);
1441
1442 if (fmt && *fmt) {
1443 __btf_verifier_log(log, fmt: " ");
1444 va_start(args, fmt);
1445 bpf_verifier_vlog(log, fmt, args);
1446 va_end(args);
1447 }
1448
1449 __btf_verifier_log(log, fmt: "\n");
1450}
1451
1452#define btf_verifier_log_type(env, t, ...) \
1453 __btf_verifier_log_type((env), (t), true, __VA_ARGS__)
1454#define btf_verifier_log_basic(env, t, ...) \
1455 __btf_verifier_log_type((env), (t), false, __VA_ARGS__)
1456
1457__printf(4, 5)
1458static void btf_verifier_log_member(struct btf_verifier_env *env,
1459 const struct btf_type *struct_type,
1460 const struct btf_member *member,
1461 const char *fmt, ...)
1462{
1463 struct bpf_verifier_log *log = &env->log;
1464 struct btf *btf = env->btf;
1465 va_list args;
1466
1467 if (!bpf_verifier_log_needed(log))
1468 return;
1469
1470 if (log->level == BPF_LOG_KERNEL) {
1471 if (!fmt)
1472 return;
1473
1474 /* Skip logging when loading module BTF with mismatches permitted */
1475 if (env->btf->base_btf && IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH))
1476 return;
1477 }
1478
1479 /* The CHECK_META phase already did a btf dump.
1480 *
1481 * If member is logged again, it must hit an error in
1482 * parsing this member. It is useful to print out which
1483 * struct this member belongs to.
1484 */
1485 if (env->phase != CHECK_META)
1486 btf_verifier_log_type(env, struct_type, NULL);
1487
1488 if (btf_type_kflag(t: struct_type))
1489 __btf_verifier_log(log,
1490 fmt: "\t%s type_id=%u bitfield_size=%u bits_offset=%u",
1491 __btf_name_by_offset(btf, offset: member->name_off),
1492 member->type,
1493 BTF_MEMBER_BITFIELD_SIZE(member->offset),
1494 BTF_MEMBER_BIT_OFFSET(member->offset));
1495 else
1496 __btf_verifier_log(log, fmt: "\t%s type_id=%u bits_offset=%u",
1497 __btf_name_by_offset(btf, offset: member->name_off),
1498 member->type, member->offset);
1499
1500 if (fmt && *fmt) {
1501 __btf_verifier_log(log, fmt: " ");
1502 va_start(args, fmt);
1503 bpf_verifier_vlog(log, fmt, args);
1504 va_end(args);
1505 }
1506
1507 __btf_verifier_log(log, fmt: "\n");
1508}
1509
1510__printf(4, 5)
1511static void btf_verifier_log_vsi(struct btf_verifier_env *env,
1512 const struct btf_type *datasec_type,
1513 const struct btf_var_secinfo *vsi,
1514 const char *fmt, ...)
1515{
1516 struct bpf_verifier_log *log = &env->log;
1517 va_list args;
1518
1519 if (!bpf_verifier_log_needed(log))
1520 return;
1521 if (log->level == BPF_LOG_KERNEL && !fmt)
1522 return;
1523 if (env->phase != CHECK_META)
1524 btf_verifier_log_type(env, datasec_type, NULL);
1525
1526 __btf_verifier_log(log, fmt: "\t type_id=%u offset=%u size=%u",
1527 vsi->type, vsi->offset, vsi->size);
1528 if (fmt && *fmt) {
1529 __btf_verifier_log(log, fmt: " ");
1530 va_start(args, fmt);
1531 bpf_verifier_vlog(log, fmt, args);
1532 va_end(args);
1533 }
1534
1535 __btf_verifier_log(log, fmt: "\n");
1536}
1537
1538static void btf_verifier_log_hdr(struct btf_verifier_env *env,
1539 u32 btf_data_size)
1540{
1541 struct bpf_verifier_log *log = &env->log;
1542 const struct btf *btf = env->btf;
1543 const struct btf_header *hdr;
1544
1545 if (!bpf_verifier_log_needed(log))
1546 return;
1547
1548 if (log->level == BPF_LOG_KERNEL)
1549 return;
1550 hdr = &btf->hdr;
1551 __btf_verifier_log(log, fmt: "magic: 0x%x\n", hdr->magic);
1552 __btf_verifier_log(log, fmt: "version: %u\n", hdr->version);
1553 __btf_verifier_log(log, fmt: "flags: 0x%x\n", hdr->flags);
1554 __btf_verifier_log(log, fmt: "hdr_len: %u\n", hdr->hdr_len);
1555 __btf_verifier_log(log, fmt: "type_off: %u\n", hdr->type_off);
1556 __btf_verifier_log(log, fmt: "type_len: %u\n", hdr->type_len);
1557 __btf_verifier_log(log, fmt: "str_off: %u\n", hdr->str_off);
1558 __btf_verifier_log(log, fmt: "str_len: %u\n", hdr->str_len);
1559 __btf_verifier_log(log, fmt: "btf_total_size: %u\n", btf_data_size);
1560}
1561
1562static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t)
1563{
1564 struct btf *btf = env->btf;
1565
1566 if (btf->types_size == btf->nr_types) {
1567 /* Expand 'types' array */
1568
1569 struct btf_type **new_types;
1570 u32 expand_by, new_size;
1571
1572 if (btf->start_id + btf->types_size == BTF_MAX_TYPE) {
1573 btf_verifier_log(env, fmt: "Exceeded max num of types");
1574 return -E2BIG;
1575 }
1576
1577 expand_by = max_t(u32, btf->types_size >> 2, 16);
1578 new_size = min_t(u32, BTF_MAX_TYPE,
1579 btf->types_size + expand_by);
1580
1581 new_types = kvcalloc(n: new_size, size: sizeof(*new_types),
1582 GFP_KERNEL | __GFP_NOWARN);
1583 if (!new_types)
1584 return -ENOMEM;
1585
1586 if (btf->nr_types == 0) {
1587 if (!btf->base_btf) {
1588 /* lazily init VOID type */
1589 new_types[0] = &btf_void;
1590 btf->nr_types++;
1591 }
1592 } else {
1593 memcpy(new_types, btf->types,
1594 sizeof(*btf->types) * btf->nr_types);
1595 }
1596
1597 kvfree(addr: btf->types);
1598 btf->types = new_types;
1599 btf->types_size = new_size;
1600 }
1601
1602 btf->types[btf->nr_types++] = t;
1603
1604 return 0;
1605}
1606
1607static int btf_alloc_id(struct btf *btf)
1608{
1609 int id;
1610
1611 idr_preload(GFP_KERNEL);
1612 spin_lock_bh(lock: &btf_idr_lock);
1613 id = idr_alloc_cyclic(&btf_idr, ptr: btf, start: 1, INT_MAX, GFP_ATOMIC);
1614 if (id > 0)
1615 btf->id = id;
1616 spin_unlock_bh(lock: &btf_idr_lock);
1617 idr_preload_end();
1618
1619 if (WARN_ON_ONCE(!id))
1620 return -ENOSPC;
1621
1622 return id > 0 ? 0 : id;
1623}
1624
1625static void btf_free_id(struct btf *btf)
1626{
1627 unsigned long flags;
1628
1629 /*
1630 * In map-in-map, calling map_delete_elem() on outer
1631 * map will call bpf_map_put on the inner map.
1632 * It will then eventually call btf_free_id()
1633 * on the inner map. Some of the map_delete_elem()
1634 * implementation may have irq disabled, so
1635 * we need to use the _irqsave() version instead
1636 * of the _bh() version.
1637 */
1638 spin_lock_irqsave(&btf_idr_lock, flags);
1639 idr_remove(&btf_idr, id: btf->id);
1640 spin_unlock_irqrestore(lock: &btf_idr_lock, flags);
1641}
1642
1643static void btf_free_kfunc_set_tab(struct btf *btf)
1644{
1645 struct btf_kfunc_set_tab *tab = btf->kfunc_set_tab;
1646 int hook;
1647
1648 if (!tab)
1649 return;
1650 /* For module BTF, we directly assign the sets being registered, so
1651 * there is nothing to free except kfunc_set_tab.
1652 */
1653 if (btf_is_module(btf))
1654 goto free_tab;
1655 for (hook = 0; hook < ARRAY_SIZE(tab->sets); hook++)
1656 kfree(objp: tab->sets[hook]);
1657free_tab:
1658 kfree(objp: tab);
1659 btf->kfunc_set_tab = NULL;
1660}
1661
1662static void btf_free_dtor_kfunc_tab(struct btf *btf)
1663{
1664 struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab;
1665
1666 if (!tab)
1667 return;
1668 kfree(objp: tab);
1669 btf->dtor_kfunc_tab = NULL;
1670}
1671
1672static void btf_struct_metas_free(struct btf_struct_metas *tab)
1673{
1674 int i;
1675
1676 if (!tab)
1677 return;
1678 for (i = 0; i < tab->cnt; i++)
1679 btf_record_free(rec: tab->types[i].record);
1680 kfree(objp: tab);
1681}
1682
1683static void btf_free_struct_meta_tab(struct btf *btf)
1684{
1685 struct btf_struct_metas *tab = btf->struct_meta_tab;
1686
1687 btf_struct_metas_free(tab);
1688 btf->struct_meta_tab = NULL;
1689}
1690
1691static void btf_free(struct btf *btf)
1692{
1693 btf_free_struct_meta_tab(btf);
1694 btf_free_dtor_kfunc_tab(btf);
1695 btf_free_kfunc_set_tab(btf);
1696 kvfree(addr: btf->types);
1697 kvfree(addr: btf->resolved_sizes);
1698 kvfree(addr: btf->resolved_ids);
1699 kvfree(addr: btf->data);
1700 kfree(objp: btf);
1701}
1702
1703static void btf_free_rcu(struct rcu_head *rcu)
1704{
1705 struct btf *btf = container_of(rcu, struct btf, rcu);
1706
1707 btf_free(btf);
1708}
1709
1710void btf_get(struct btf *btf)
1711{
1712 refcount_inc(r: &btf->refcnt);
1713}
1714
1715void btf_put(struct btf *btf)
1716{
1717 if (btf && refcount_dec_and_test(r: &btf->refcnt)) {
1718 btf_free_id(btf);
1719 call_rcu(head: &btf->rcu, func: btf_free_rcu);
1720 }
1721}
1722
1723static int env_resolve_init(struct btf_verifier_env *env)
1724{
1725 struct btf *btf = env->btf;
1726 u32 nr_types = btf->nr_types;
1727 u32 *resolved_sizes = NULL;
1728 u32 *resolved_ids = NULL;
1729 u8 *visit_states = NULL;
1730
1731 resolved_sizes = kvcalloc(n: nr_types, size: sizeof(*resolved_sizes),
1732 GFP_KERNEL | __GFP_NOWARN);
1733 if (!resolved_sizes)
1734 goto nomem;
1735
1736 resolved_ids = kvcalloc(n: nr_types, size: sizeof(*resolved_ids),
1737 GFP_KERNEL | __GFP_NOWARN);
1738 if (!resolved_ids)
1739 goto nomem;
1740
1741 visit_states = kvcalloc(n: nr_types, size: sizeof(*visit_states),
1742 GFP_KERNEL | __GFP_NOWARN);
1743 if (!visit_states)
1744 goto nomem;
1745
1746 btf->resolved_sizes = resolved_sizes;
1747 btf->resolved_ids = resolved_ids;
1748 env->visit_states = visit_states;
1749
1750 return 0;
1751
1752nomem:
1753 kvfree(addr: resolved_sizes);
1754 kvfree(addr: resolved_ids);
1755 kvfree(addr: visit_states);
1756 return -ENOMEM;
1757}
1758
1759static void btf_verifier_env_free(struct btf_verifier_env *env)
1760{
1761 kvfree(addr: env->visit_states);
1762 kfree(objp: env);
1763}
1764
1765static bool env_type_is_resolve_sink(const struct btf_verifier_env *env,
1766 const struct btf_type *next_type)
1767{
1768 switch (env->resolve_mode) {
1769 case RESOLVE_TBD:
1770 /* int, enum or void is a sink */
1771 return !btf_type_needs_resolve(t: next_type);
1772 case RESOLVE_PTR:
1773 /* int, enum, void, struct, array, func or func_proto is a sink
1774 * for ptr
1775 */
1776 return !btf_type_is_modifier(t: next_type) &&
1777 !btf_type_is_ptr(t: next_type);
1778 case RESOLVE_STRUCT_OR_ARRAY:
1779 /* int, enum, void, ptr, func or func_proto is a sink
1780 * for struct and array
1781 */
1782 return !btf_type_is_modifier(t: next_type) &&
1783 !btf_type_is_array(t: next_type) &&
1784 !btf_type_is_struct(t: next_type);
1785 default:
1786 BUG();
1787 }
1788}
1789
1790static bool env_type_is_resolved(const struct btf_verifier_env *env,
1791 u32 type_id)
1792{
1793 /* base BTF types should be resolved by now */
1794 if (type_id < env->btf->start_id)
1795 return true;
1796
1797 return env->visit_states[type_id - env->btf->start_id] == RESOLVED;
1798}
1799
1800static int env_stack_push(struct btf_verifier_env *env,
1801 const struct btf_type *t, u32 type_id)
1802{
1803 const struct btf *btf = env->btf;
1804 struct resolve_vertex *v;
1805
1806 if (env->top_stack == MAX_RESOLVE_DEPTH)
1807 return -E2BIG;
1808
1809 if (type_id < btf->start_id
1810 || env->visit_states[type_id - btf->start_id] != NOT_VISITED)
1811 return -EEXIST;
1812
1813 env->visit_states[type_id - btf->start_id] = VISITED;
1814
1815 v = &env->stack[env->top_stack++];
1816 v->t = t;
1817 v->type_id = type_id;
1818 v->next_member = 0;
1819
1820 if (env->resolve_mode == RESOLVE_TBD) {
1821 if (btf_type_is_ptr(t))
1822 env->resolve_mode = RESOLVE_PTR;
1823 else if (btf_type_is_struct(t) || btf_type_is_array(t))
1824 env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY;
1825 }
1826
1827 return 0;
1828}
1829
1830static void env_stack_set_next_member(struct btf_verifier_env *env,
1831 u16 next_member)
1832{
1833 env->stack[env->top_stack - 1].next_member = next_member;
1834}
1835
1836static void env_stack_pop_resolved(struct btf_verifier_env *env,
1837 u32 resolved_type_id,
1838 u32 resolved_size)
1839{
1840 u32 type_id = env->stack[--(env->top_stack)].type_id;
1841 struct btf *btf = env->btf;
1842
1843 type_id -= btf->start_id; /* adjust to local type id */
1844 btf->resolved_sizes[type_id] = resolved_size;
1845 btf->resolved_ids[type_id] = resolved_type_id;
1846 env->visit_states[type_id] = RESOLVED;
1847}
1848
1849static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env)
1850{
1851 return env->top_stack ? &env->stack[env->top_stack - 1] : NULL;
1852}
1853
1854/* Resolve the size of a passed-in "type"
1855 *
1856 * type: is an array (e.g. u32 array[x][y])
1857 * return type: type "u32[x][y]", i.e. BTF_KIND_ARRAY,
1858 * *type_size: (x * y * sizeof(u32)). Hence, *type_size always
1859 * corresponds to the return type.
1860 * *elem_type: u32
1861 * *elem_id: id of u32
1862 * *total_nelems: (x * y). Hence, individual elem size is
1863 * (*type_size / *total_nelems)
1864 * *type_id: id of type if it's changed within the function, 0 if not
1865 *
1866 * type: is not an array (e.g. const struct X)
1867 * return type: type "struct X"
1868 * *type_size: sizeof(struct X)
1869 * *elem_type: same as return type ("struct X")
1870 * *elem_id: 0
1871 * *total_nelems: 1
1872 * *type_id: id of type if it's changed within the function, 0 if not
1873 */
1874static const struct btf_type *
1875__btf_resolve_size(const struct btf *btf, const struct btf_type *type,
1876 u32 *type_size, const struct btf_type **elem_type,
1877 u32 *elem_id, u32 *total_nelems, u32 *type_id)
1878{
1879 const struct btf_type *array_type = NULL;
1880 const struct btf_array *array = NULL;
1881 u32 i, size, nelems = 1, id = 0;
1882
1883 for (i = 0; i < MAX_RESOLVE_DEPTH; i++) {
1884 switch (BTF_INFO_KIND(type->info)) {
1885 /* type->size can be used */
1886 case BTF_KIND_INT:
1887 case BTF_KIND_STRUCT:
1888 case BTF_KIND_UNION:
1889 case BTF_KIND_ENUM:
1890 case BTF_KIND_FLOAT:
1891 case BTF_KIND_ENUM64:
1892 size = type->size;
1893 goto resolved;
1894
1895 case BTF_KIND_PTR:
1896 size = sizeof(void *);
1897 goto resolved;
1898
1899 /* Modifiers */
1900 case BTF_KIND_TYPEDEF:
1901 case BTF_KIND_VOLATILE:
1902 case BTF_KIND_CONST:
1903 case BTF_KIND_RESTRICT:
1904 case BTF_KIND_TYPE_TAG:
1905 id = type->type;
1906 type = btf_type_by_id(btf, type->type);
1907 break;
1908
1909 case BTF_KIND_ARRAY:
1910 if (!array_type)
1911 array_type = type;
1912 array = btf_type_array(t: type);
1913 if (nelems && array->nelems > U32_MAX / nelems)
1914 return ERR_PTR(error: -EINVAL);
1915 nelems *= array->nelems;
1916 type = btf_type_by_id(btf, array->type);
1917 break;
1918
1919 /* type without size */
1920 default:
1921 return ERR_PTR(error: -EINVAL);
1922 }
1923 }
1924
1925 return ERR_PTR(error: -EINVAL);
1926
1927resolved:
1928 if (nelems && size > U32_MAX / nelems)
1929 return ERR_PTR(error: -EINVAL);
1930
1931 *type_size = nelems * size;
1932 if (total_nelems)
1933 *total_nelems = nelems;
1934 if (elem_type)
1935 *elem_type = type;
1936 if (elem_id)
1937 *elem_id = array ? array->type : 0;
1938 if (type_id && id)
1939 *type_id = id;
1940
1941 return array_type ? : type;
1942}
1943
1944const struct btf_type *
1945btf_resolve_size(const struct btf *btf, const struct btf_type *type,
1946 u32 *type_size)
1947{
1948 return __btf_resolve_size(btf, type, type_size, NULL, NULL, NULL, NULL);
1949}
1950
1951static u32 btf_resolved_type_id(const struct btf *btf, u32 type_id)
1952{
1953 while (type_id < btf->start_id)
1954 btf = btf->base_btf;
1955
1956 return btf->resolved_ids[type_id - btf->start_id];
1957}
1958
1959/* The input param "type_id" must point to a needs_resolve type */
1960static const struct btf_type *btf_type_id_resolve(const struct btf *btf,
1961 u32 *type_id)
1962{
1963 *type_id = btf_resolved_type_id(btf, type_id: *type_id);
1964 return btf_type_by_id(btf, *type_id);
1965}
1966
1967static u32 btf_resolved_type_size(const struct btf *btf, u32 type_id)
1968{
1969 while (type_id < btf->start_id)
1970 btf = btf->base_btf;
1971
1972 return btf->resolved_sizes[type_id - btf->start_id];
1973}
1974
1975const struct btf_type *btf_type_id_size(const struct btf *btf,
1976 u32 *type_id, u32 *ret_size)
1977{
1978 const struct btf_type *size_type;
1979 u32 size_type_id = *type_id;
1980 u32 size = 0;
1981
1982 size_type = btf_type_by_id(btf, size_type_id);
1983 if (btf_type_nosize_or_null(t: size_type))
1984 return NULL;
1985
1986 if (btf_type_has_size(t: size_type)) {
1987 size = size_type->size;
1988 } else if (btf_type_is_array(t: size_type)) {
1989 size = btf_resolved_type_size(btf, type_id: size_type_id);
1990 } else if (btf_type_is_ptr(t: size_type)) {
1991 size = sizeof(void *);
1992 } else {
1993 if (WARN_ON_ONCE(!btf_type_is_modifier(size_type) &&
1994 !btf_type_is_var(size_type)))
1995 return NULL;
1996
1997 size_type_id = btf_resolved_type_id(btf, type_id: size_type_id);
1998 size_type = btf_type_by_id(btf, size_type_id);
1999 if (btf_type_nosize_or_null(t: size_type))
2000 return NULL;
2001 else if (btf_type_has_size(t: size_type))
2002 size = size_type->size;
2003 else if (btf_type_is_array(t: size_type))
2004 size = btf_resolved_type_size(btf, type_id: size_type_id);
2005 else if (btf_type_is_ptr(t: size_type))
2006 size = sizeof(void *);
2007 else
2008 return NULL;
2009 }
2010
2011 *type_id = size_type_id;
2012 if (ret_size)
2013 *ret_size = size;
2014
2015 return size_type;
2016}
2017
2018static int btf_df_check_member(struct btf_verifier_env *env,
2019 const struct btf_type *struct_type,
2020 const struct btf_member *member,
2021 const struct btf_type *member_type)
2022{
2023 btf_verifier_log_basic(env, struct_type,
2024 "Unsupported check_member");
2025 return -EINVAL;
2026}
2027
2028static int btf_df_check_kflag_member(struct btf_verifier_env *env,
2029 const struct btf_type *struct_type,
2030 const struct btf_member *member,
2031 const struct btf_type *member_type)
2032{
2033 btf_verifier_log_basic(env, struct_type,
2034 "Unsupported check_kflag_member");
2035 return -EINVAL;
2036}
2037
2038/* Used for ptr, array struct/union and float type members.
2039 * int, enum and modifier types have their specific callback functions.
2040 */
2041static int btf_generic_check_kflag_member(struct btf_verifier_env *env,
2042 const struct btf_type *struct_type,
2043 const struct btf_member *member,
2044 const struct btf_type *member_type)
2045{
2046 if (BTF_MEMBER_BITFIELD_SIZE(member->offset)) {
2047 btf_verifier_log_member(env, struct_type, member,
2048 fmt: "Invalid member bitfield_size");
2049 return -EINVAL;
2050 }
2051
2052 /* bitfield size is 0, so member->offset represents bit offset only.
2053 * It is safe to call non kflag check_member variants.
2054 */
2055 return btf_type_ops(t: member_type)->check_member(env, struct_type,
2056 member,
2057 member_type);
2058}
2059
2060static int btf_df_resolve(struct btf_verifier_env *env,
2061 const struct resolve_vertex *v)
2062{
2063 btf_verifier_log_basic(env, v->t, "Unsupported resolve");
2064 return -EINVAL;
2065}
2066
2067static void btf_df_show(const struct btf *btf, const struct btf_type *t,
2068 u32 type_id, void *data, u8 bits_offsets,
2069 struct btf_show *show)
2070{
2071 btf_show(show, fmt: "<unsupported kind:%u>", BTF_INFO_KIND(t->info));
2072}
2073
2074static int btf_int_check_member(struct btf_verifier_env *env,
2075 const struct btf_type *struct_type,
2076 const struct btf_member *member,
2077 const struct btf_type *member_type)
2078{
2079 u32 int_data = btf_type_int(t: member_type);
2080 u32 struct_bits_off = member->offset;
2081 u32 struct_size = struct_type->size;
2082 u32 nr_copy_bits;
2083 u32 bytes_offset;
2084
2085 if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) {
2086 btf_verifier_log_member(env, struct_type, member,
2087 fmt: "bits_offset exceeds U32_MAX");
2088 return -EINVAL;
2089 }
2090
2091 struct_bits_off += BTF_INT_OFFSET(int_data);
2092 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2093 nr_copy_bits = BTF_INT_BITS(int_data) +
2094 BITS_PER_BYTE_MASKED(struct_bits_off);
2095
2096 if (nr_copy_bits > BITS_PER_U128) {
2097 btf_verifier_log_member(env, struct_type, member,
2098 fmt: "nr_copy_bits exceeds 128");
2099 return -EINVAL;
2100 }
2101
2102 if (struct_size < bytes_offset ||
2103 struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
2104 btf_verifier_log_member(env, struct_type, member,
2105 fmt: "Member exceeds struct_size");
2106 return -EINVAL;
2107 }
2108
2109 return 0;
2110}
2111
2112static int btf_int_check_kflag_member(struct btf_verifier_env *env,
2113 const struct btf_type *struct_type,
2114 const struct btf_member *member,
2115 const struct btf_type *member_type)
2116{
2117 u32 struct_bits_off, nr_bits, nr_int_data_bits, bytes_offset;
2118 u32 int_data = btf_type_int(t: member_type);
2119 u32 struct_size = struct_type->size;
2120 u32 nr_copy_bits;
2121
2122 /* a regular int type is required for the kflag int member */
2123 if (!btf_type_int_is_regular(t: member_type)) {
2124 btf_verifier_log_member(env, struct_type, member,
2125 fmt: "Invalid member base type");
2126 return -EINVAL;
2127 }
2128
2129 /* check sanity of bitfield size */
2130 nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
2131 struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
2132 nr_int_data_bits = BTF_INT_BITS(int_data);
2133 if (!nr_bits) {
2134 /* Not a bitfield member, member offset must be at byte
2135 * boundary.
2136 */
2137 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2138 btf_verifier_log_member(env, struct_type, member,
2139 fmt: "Invalid member offset");
2140 return -EINVAL;
2141 }
2142
2143 nr_bits = nr_int_data_bits;
2144 } else if (nr_bits > nr_int_data_bits) {
2145 btf_verifier_log_member(env, struct_type, member,
2146 fmt: "Invalid member bitfield_size");
2147 return -EINVAL;
2148 }
2149
2150 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2151 nr_copy_bits = nr_bits + BITS_PER_BYTE_MASKED(struct_bits_off);
2152 if (nr_copy_bits > BITS_PER_U128) {
2153 btf_verifier_log_member(env, struct_type, member,
2154 fmt: "nr_copy_bits exceeds 128");
2155 return -EINVAL;
2156 }
2157
2158 if (struct_size < bytes_offset ||
2159 struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
2160 btf_verifier_log_member(env, struct_type, member,
2161 fmt: "Member exceeds struct_size");
2162 return -EINVAL;
2163 }
2164
2165 return 0;
2166}
2167
2168static s32 btf_int_check_meta(struct btf_verifier_env *env,
2169 const struct btf_type *t,
2170 u32 meta_left)
2171{
2172 u32 int_data, nr_bits, meta_needed = sizeof(int_data);
2173 u16 encoding;
2174
2175 if (meta_left < meta_needed) {
2176 btf_verifier_log_basic(env, t,
2177 "meta_left:%u meta_needed:%u",
2178 meta_left, meta_needed);
2179 return -EINVAL;
2180 }
2181
2182 if (btf_type_vlen(t)) {
2183 btf_verifier_log_type(env, t, "vlen != 0");
2184 return -EINVAL;
2185 }
2186
2187 if (btf_type_kflag(t)) {
2188 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2189 return -EINVAL;
2190 }
2191
2192 int_data = btf_type_int(t);
2193 if (int_data & ~BTF_INT_MASK) {
2194 btf_verifier_log_basic(env, t, "Invalid int_data:%x",
2195 int_data);
2196 return -EINVAL;
2197 }
2198
2199 nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data);
2200
2201 if (nr_bits > BITS_PER_U128) {
2202 btf_verifier_log_type(env, t, "nr_bits exceeds %zu",
2203 BITS_PER_U128);
2204 return -EINVAL;
2205 }
2206
2207 if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) {
2208 btf_verifier_log_type(env, t, "nr_bits exceeds type_size");
2209 return -EINVAL;
2210 }
2211
2212 /*
2213 * Only one of the encoding bits is allowed and it
2214 * should be sufficient for the pretty print purpose (i.e. decoding).
2215 * Multiple bits can be allowed later if it is found
2216 * to be insufficient.
2217 */
2218 encoding = BTF_INT_ENCODING(int_data);
2219 if (encoding &&
2220 encoding != BTF_INT_SIGNED &&
2221 encoding != BTF_INT_CHAR &&
2222 encoding != BTF_INT_BOOL) {
2223 btf_verifier_log_type(env, t, "Unsupported encoding");
2224 return -ENOTSUPP;
2225 }
2226
2227 btf_verifier_log_type(env, t, NULL);
2228
2229 return meta_needed;
2230}
2231
2232static void btf_int_log(struct btf_verifier_env *env,
2233 const struct btf_type *t)
2234{
2235 int int_data = btf_type_int(t);
2236
2237 btf_verifier_log(env,
2238 fmt: "size=%u bits_offset=%u nr_bits=%u encoding=%s",
2239 t->size, BTF_INT_OFFSET(int_data),
2240 BTF_INT_BITS(int_data),
2241 btf_int_encoding_str(BTF_INT_ENCODING(int_data)));
2242}
2243
2244static void btf_int128_print(struct btf_show *show, void *data)
2245{
2246 /* data points to a __int128 number.
2247 * Suppose
2248 * int128_num = *(__int128 *)data;
2249 * The below formulas shows what upper_num and lower_num represents:
2250 * upper_num = int128_num >> 64;
2251 * lower_num = int128_num & 0xffffffffFFFFFFFFULL;
2252 */
2253 u64 upper_num, lower_num;
2254
2255#ifdef __BIG_ENDIAN_BITFIELD
2256 upper_num = *(u64 *)data;
2257 lower_num = *(u64 *)(data + 8);
2258#else
2259 upper_num = *(u64 *)(data + 8);
2260 lower_num = *(u64 *)data;
2261#endif
2262 if (upper_num == 0)
2263 btf_show_type_value(show, "0x%llx", lower_num);
2264 else
2265 btf_show_type_values(show, "0x%llx%016llx", upper_num,
2266 lower_num);
2267}
2268
2269static void btf_int128_shift(u64 *print_num, u16 left_shift_bits,
2270 u16 right_shift_bits)
2271{
2272 u64 upper_num, lower_num;
2273
2274#ifdef __BIG_ENDIAN_BITFIELD
2275 upper_num = print_num[0];
2276 lower_num = print_num[1];
2277#else
2278 upper_num = print_num[1];
2279 lower_num = print_num[0];
2280#endif
2281
2282 /* shake out un-needed bits by shift/or operations */
2283 if (left_shift_bits >= 64) {
2284 upper_num = lower_num << (left_shift_bits - 64);
2285 lower_num = 0;
2286 } else {
2287 upper_num = (upper_num << left_shift_bits) |
2288 (lower_num >> (64 - left_shift_bits));
2289 lower_num = lower_num << left_shift_bits;
2290 }
2291
2292 if (right_shift_bits >= 64) {
2293 lower_num = upper_num >> (right_shift_bits - 64);
2294 upper_num = 0;
2295 } else {
2296 lower_num = (lower_num >> right_shift_bits) |
2297 (upper_num << (64 - right_shift_bits));
2298 upper_num = upper_num >> right_shift_bits;
2299 }
2300
2301#ifdef __BIG_ENDIAN_BITFIELD
2302 print_num[0] = upper_num;
2303 print_num[1] = lower_num;
2304#else
2305 print_num[0] = lower_num;
2306 print_num[1] = upper_num;
2307#endif
2308}
2309
2310static void btf_bitfield_show(void *data, u8 bits_offset,
2311 u8 nr_bits, struct btf_show *show)
2312{
2313 u16 left_shift_bits, right_shift_bits;
2314 u8 nr_copy_bytes;
2315 u8 nr_copy_bits;
2316 u64 print_num[2] = {};
2317
2318 nr_copy_bits = nr_bits + bits_offset;
2319 nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits);
2320
2321 memcpy(print_num, data, nr_copy_bytes);
2322
2323#ifdef __BIG_ENDIAN_BITFIELD
2324 left_shift_bits = bits_offset;
2325#else
2326 left_shift_bits = BITS_PER_U128 - nr_copy_bits;
2327#endif
2328 right_shift_bits = BITS_PER_U128 - nr_bits;
2329
2330 btf_int128_shift(print_num, left_shift_bits, right_shift_bits);
2331 btf_int128_print(show, data: print_num);
2332}
2333
2334
2335static void btf_int_bits_show(const struct btf *btf,
2336 const struct btf_type *t,
2337 void *data, u8 bits_offset,
2338 struct btf_show *show)
2339{
2340 u32 int_data = btf_type_int(t);
2341 u8 nr_bits = BTF_INT_BITS(int_data);
2342 u8 total_bits_offset;
2343
2344 /*
2345 * bits_offset is at most 7.
2346 * BTF_INT_OFFSET() cannot exceed 128 bits.
2347 */
2348 total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data);
2349 data += BITS_ROUNDDOWN_BYTES(total_bits_offset);
2350 bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset);
2351 btf_bitfield_show(data, bits_offset, nr_bits, show);
2352}
2353
2354static void btf_int_show(const struct btf *btf, const struct btf_type *t,
2355 u32 type_id, void *data, u8 bits_offset,
2356 struct btf_show *show)
2357{
2358 u32 int_data = btf_type_int(t);
2359 u8 encoding = BTF_INT_ENCODING(int_data);
2360 bool sign = encoding & BTF_INT_SIGNED;
2361 u8 nr_bits = BTF_INT_BITS(int_data);
2362 void *safe_data;
2363
2364 safe_data = btf_show_start_type(show, t, type_id, data);
2365 if (!safe_data)
2366 return;
2367
2368 if (bits_offset || BTF_INT_OFFSET(int_data) ||
2369 BITS_PER_BYTE_MASKED(nr_bits)) {
2370 btf_int_bits_show(btf, t, data: safe_data, bits_offset, show);
2371 goto out;
2372 }
2373
2374 switch (nr_bits) {
2375 case 128:
2376 btf_int128_print(show, data: safe_data);
2377 break;
2378 case 64:
2379 if (sign)
2380 btf_show_type_value(show, "%lld", *(s64 *)safe_data);
2381 else
2382 btf_show_type_value(show, "%llu", *(u64 *)safe_data);
2383 break;
2384 case 32:
2385 if (sign)
2386 btf_show_type_value(show, "%d", *(s32 *)safe_data);
2387 else
2388 btf_show_type_value(show, "%u", *(u32 *)safe_data);
2389 break;
2390 case 16:
2391 if (sign)
2392 btf_show_type_value(show, "%d", *(s16 *)safe_data);
2393 else
2394 btf_show_type_value(show, "%u", *(u16 *)safe_data);
2395 break;
2396 case 8:
2397 if (show->state.array_encoding == BTF_INT_CHAR) {
2398 /* check for null terminator */
2399 if (show->state.array_terminated)
2400 break;
2401 if (*(char *)data == '\0') {
2402 show->state.array_terminated = 1;
2403 break;
2404 }
2405 if (isprint(*(char *)data)) {
2406 btf_show_type_value(show, "'%c'",
2407 *(char *)safe_data);
2408 break;
2409 }
2410 }
2411 if (sign)
2412 btf_show_type_value(show, "%d", *(s8 *)safe_data);
2413 else
2414 btf_show_type_value(show, "%u", *(u8 *)safe_data);
2415 break;
2416 default:
2417 btf_int_bits_show(btf, t, data: safe_data, bits_offset, show);
2418 break;
2419 }
2420out:
2421 btf_show_end_type(show);
2422}
2423
2424static const struct btf_kind_operations int_ops = {
2425 .check_meta = btf_int_check_meta,
2426 .resolve = btf_df_resolve,
2427 .check_member = btf_int_check_member,
2428 .check_kflag_member = btf_int_check_kflag_member,
2429 .log_details = btf_int_log,
2430 .show = btf_int_show,
2431};
2432
2433static int btf_modifier_check_member(struct btf_verifier_env *env,
2434 const struct btf_type *struct_type,
2435 const struct btf_member *member,
2436 const struct btf_type *member_type)
2437{
2438 const struct btf_type *resolved_type;
2439 u32 resolved_type_id = member->type;
2440 struct btf_member resolved_member;
2441 struct btf *btf = env->btf;
2442
2443 resolved_type = btf_type_id_size(btf, type_id: &resolved_type_id, NULL);
2444 if (!resolved_type) {
2445 btf_verifier_log_member(env, struct_type, member,
2446 fmt: "Invalid member");
2447 return -EINVAL;
2448 }
2449
2450 resolved_member = *member;
2451 resolved_member.type = resolved_type_id;
2452
2453 return btf_type_ops(t: resolved_type)->check_member(env, struct_type,
2454 &resolved_member,
2455 resolved_type);
2456}
2457
2458static int btf_modifier_check_kflag_member(struct btf_verifier_env *env,
2459 const struct btf_type *struct_type,
2460 const struct btf_member *member,
2461 const struct btf_type *member_type)
2462{
2463 const struct btf_type *resolved_type;
2464 u32 resolved_type_id = member->type;
2465 struct btf_member resolved_member;
2466 struct btf *btf = env->btf;
2467
2468 resolved_type = btf_type_id_size(btf, type_id: &resolved_type_id, NULL);
2469 if (!resolved_type) {
2470 btf_verifier_log_member(env, struct_type, member,
2471 fmt: "Invalid member");
2472 return -EINVAL;
2473 }
2474
2475 resolved_member = *member;
2476 resolved_member.type = resolved_type_id;
2477
2478 return btf_type_ops(t: resolved_type)->check_kflag_member(env, struct_type,
2479 &resolved_member,
2480 resolved_type);
2481}
2482
2483static int btf_ptr_check_member(struct btf_verifier_env *env,
2484 const struct btf_type *struct_type,
2485 const struct btf_member *member,
2486 const struct btf_type *member_type)
2487{
2488 u32 struct_size, struct_bits_off, bytes_offset;
2489
2490 struct_size = struct_type->size;
2491 struct_bits_off = member->offset;
2492 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2493
2494 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2495 btf_verifier_log_member(env, struct_type, member,
2496 fmt: "Member is not byte aligned");
2497 return -EINVAL;
2498 }
2499
2500 if (struct_size - bytes_offset < sizeof(void *)) {
2501 btf_verifier_log_member(env, struct_type, member,
2502 fmt: "Member exceeds struct_size");
2503 return -EINVAL;
2504 }
2505
2506 return 0;
2507}
2508
2509static int btf_ref_type_check_meta(struct btf_verifier_env *env,
2510 const struct btf_type *t,
2511 u32 meta_left)
2512{
2513 const char *value;
2514
2515 if (btf_type_vlen(t)) {
2516 btf_verifier_log_type(env, t, "vlen != 0");
2517 return -EINVAL;
2518 }
2519
2520 if (btf_type_kflag(t)) {
2521 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2522 return -EINVAL;
2523 }
2524
2525 if (!BTF_TYPE_ID_VALID(t->type)) {
2526 btf_verifier_log_type(env, t, "Invalid type_id");
2527 return -EINVAL;
2528 }
2529
2530 /* typedef/type_tag type must have a valid name, and other ref types,
2531 * volatile, const, restrict, should have a null name.
2532 */
2533 if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPEDEF) {
2534 if (!t->name_off ||
2535 !btf_name_valid_identifier(btf: env->btf, offset: t->name_off)) {
2536 btf_verifier_log_type(env, t, "Invalid name");
2537 return -EINVAL;
2538 }
2539 } else if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPE_TAG) {
2540 value = btf_name_by_offset(btf: env->btf, offset: t->name_off);
2541 if (!value || !value[0]) {
2542 btf_verifier_log_type(env, t, "Invalid name");
2543 return -EINVAL;
2544 }
2545 } else {
2546 if (t->name_off) {
2547 btf_verifier_log_type(env, t, "Invalid name");
2548 return -EINVAL;
2549 }
2550 }
2551
2552 btf_verifier_log_type(env, t, NULL);
2553
2554 return 0;
2555}
2556
2557static int btf_modifier_resolve(struct btf_verifier_env *env,
2558 const struct resolve_vertex *v)
2559{
2560 const struct btf_type *t = v->t;
2561 const struct btf_type *next_type;
2562 u32 next_type_id = t->type;
2563 struct btf *btf = env->btf;
2564
2565 next_type = btf_type_by_id(btf, next_type_id);
2566 if (!next_type || btf_type_is_resolve_source_only(t: next_type)) {
2567 btf_verifier_log_type(env, v->t, "Invalid type_id");
2568 return -EINVAL;
2569 }
2570
2571 if (!env_type_is_resolve_sink(env, next_type) &&
2572 !env_type_is_resolved(env, type_id: next_type_id))
2573 return env_stack_push(env, t: next_type, type_id: next_type_id);
2574
2575 /* Figure out the resolved next_type_id with size.
2576 * They will be stored in the current modifier's
2577 * resolved_ids and resolved_sizes such that it can
2578 * save us a few type-following when we use it later (e.g. in
2579 * pretty print).
2580 */
2581 if (!btf_type_id_size(btf, type_id: &next_type_id, NULL)) {
2582 if (env_type_is_resolved(env, type_id: next_type_id))
2583 next_type = btf_type_id_resolve(btf, type_id: &next_type_id);
2584
2585 /* "typedef void new_void", "const void"...etc */
2586 if (!btf_type_is_void(t: next_type) &&
2587 !btf_type_is_fwd(t: next_type) &&
2588 !btf_type_is_func_proto(t: next_type)) {
2589 btf_verifier_log_type(env, v->t, "Invalid type_id");
2590 return -EINVAL;
2591 }
2592 }
2593
2594 env_stack_pop_resolved(env, resolved_type_id: next_type_id, resolved_size: 0);
2595
2596 return 0;
2597}
2598
2599static int btf_var_resolve(struct btf_verifier_env *env,
2600 const struct resolve_vertex *v)
2601{
2602 const struct btf_type *next_type;
2603 const struct btf_type *t = v->t;
2604 u32 next_type_id = t->type;
2605 struct btf *btf = env->btf;
2606
2607 next_type = btf_type_by_id(btf, next_type_id);
2608 if (!next_type || btf_type_is_resolve_source_only(t: next_type)) {
2609 btf_verifier_log_type(env, v->t, "Invalid type_id");
2610 return -EINVAL;
2611 }
2612
2613 if (!env_type_is_resolve_sink(env, next_type) &&
2614 !env_type_is_resolved(env, type_id: next_type_id))
2615 return env_stack_push(env, t: next_type, type_id: next_type_id);
2616
2617 if (btf_type_is_modifier(t: next_type)) {
2618 const struct btf_type *resolved_type;
2619 u32 resolved_type_id;
2620
2621 resolved_type_id = next_type_id;
2622 resolved_type = btf_type_id_resolve(btf, type_id: &resolved_type_id);
2623
2624 if (btf_type_is_ptr(t: resolved_type) &&
2625 !env_type_is_resolve_sink(env, next_type: resolved_type) &&
2626 !env_type_is_resolved(env, type_id: resolved_type_id))
2627 return env_stack_push(env, t: resolved_type,
2628 type_id: resolved_type_id);
2629 }
2630
2631 /* We must resolve to something concrete at this point, no
2632 * forward types or similar that would resolve to size of
2633 * zero is allowed.
2634 */
2635 if (!btf_type_id_size(btf, type_id: &next_type_id, NULL)) {
2636 btf_verifier_log_type(env, v->t, "Invalid type_id");
2637 return -EINVAL;
2638 }
2639
2640 env_stack_pop_resolved(env, resolved_type_id: next_type_id, resolved_size: 0);
2641
2642 return 0;
2643}
2644
2645static int btf_ptr_resolve(struct btf_verifier_env *env,
2646 const struct resolve_vertex *v)
2647{
2648 const struct btf_type *next_type;
2649 const struct btf_type *t = v->t;
2650 u32 next_type_id = t->type;
2651 struct btf *btf = env->btf;
2652
2653 next_type = btf_type_by_id(btf, next_type_id);
2654 if (!next_type || btf_type_is_resolve_source_only(t: next_type)) {
2655 btf_verifier_log_type(env, v->t, "Invalid type_id");
2656 return -EINVAL;
2657 }
2658
2659 if (!env_type_is_resolve_sink(env, next_type) &&
2660 !env_type_is_resolved(env, type_id: next_type_id))
2661 return env_stack_push(env, t: next_type, type_id: next_type_id);
2662
2663 /* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY,
2664 * the modifier may have stopped resolving when it was resolved
2665 * to a ptr (last-resolved-ptr).
2666 *
2667 * We now need to continue from the last-resolved-ptr to
2668 * ensure the last-resolved-ptr will not referring back to
2669 * the current ptr (t).
2670 */
2671 if (btf_type_is_modifier(t: next_type)) {
2672 const struct btf_type *resolved_type;
2673 u32 resolved_type_id;
2674
2675 resolved_type_id = next_type_id;
2676 resolved_type = btf_type_id_resolve(btf, type_id: &resolved_type_id);
2677
2678 if (btf_type_is_ptr(t: resolved_type) &&
2679 !env_type_is_resolve_sink(env, next_type: resolved_type) &&
2680 !env_type_is_resolved(env, type_id: resolved_type_id))
2681 return env_stack_push(env, t: resolved_type,
2682 type_id: resolved_type_id);
2683 }
2684
2685 if (!btf_type_id_size(btf, type_id: &next_type_id, NULL)) {
2686 if (env_type_is_resolved(env, type_id: next_type_id))
2687 next_type = btf_type_id_resolve(btf, type_id: &next_type_id);
2688
2689 if (!btf_type_is_void(t: next_type) &&
2690 !btf_type_is_fwd(t: next_type) &&
2691 !btf_type_is_func_proto(t: next_type)) {
2692 btf_verifier_log_type(env, v->t, "Invalid type_id");
2693 return -EINVAL;
2694 }
2695 }
2696
2697 env_stack_pop_resolved(env, resolved_type_id: next_type_id, resolved_size: 0);
2698
2699 return 0;
2700}
2701
2702static void btf_modifier_show(const struct btf *btf,
2703 const struct btf_type *t,
2704 u32 type_id, void *data,
2705 u8 bits_offset, struct btf_show *show)
2706{
2707 if (btf->resolved_ids)
2708 t = btf_type_id_resolve(btf, type_id: &type_id);
2709 else
2710 t = btf_type_skip_modifiers(btf, id: type_id, NULL);
2711
2712 btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
2713}
2714
2715static void btf_var_show(const struct btf *btf, const struct btf_type *t,
2716 u32 type_id, void *data, u8 bits_offset,
2717 struct btf_show *show)
2718{
2719 t = btf_type_id_resolve(btf, type_id: &type_id);
2720
2721 btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
2722}
2723
2724static void btf_ptr_show(const struct btf *btf, const struct btf_type *t,
2725 u32 type_id, void *data, u8 bits_offset,
2726 struct btf_show *show)
2727{
2728 void *safe_data;
2729
2730 safe_data = btf_show_start_type(show, t, type_id, data);
2731 if (!safe_data)
2732 return;
2733
2734 /* It is a hashed value unless BTF_SHOW_PTR_RAW is specified */
2735 if (show->flags & BTF_SHOW_PTR_RAW)
2736 btf_show_type_value(show, "0x%px", *(void **)safe_data);
2737 else
2738 btf_show_type_value(show, "0x%p", *(void **)safe_data);
2739 btf_show_end_type(show);
2740}
2741
2742static void btf_ref_type_log(struct btf_verifier_env *env,
2743 const struct btf_type *t)
2744{
2745 btf_verifier_log(env, fmt: "type_id=%u", t->type);
2746}
2747
2748static struct btf_kind_operations modifier_ops = {
2749 .check_meta = btf_ref_type_check_meta,
2750 .resolve = btf_modifier_resolve,
2751 .check_member = btf_modifier_check_member,
2752 .check_kflag_member = btf_modifier_check_kflag_member,
2753 .log_details = btf_ref_type_log,
2754 .show = btf_modifier_show,
2755};
2756
2757static struct btf_kind_operations ptr_ops = {
2758 .check_meta = btf_ref_type_check_meta,
2759 .resolve = btf_ptr_resolve,
2760 .check_member = btf_ptr_check_member,
2761 .check_kflag_member = btf_generic_check_kflag_member,
2762 .log_details = btf_ref_type_log,
2763 .show = btf_ptr_show,
2764};
2765
2766static s32 btf_fwd_check_meta(struct btf_verifier_env *env,
2767 const struct btf_type *t,
2768 u32 meta_left)
2769{
2770 if (btf_type_vlen(t)) {
2771 btf_verifier_log_type(env, t, "vlen != 0");
2772 return -EINVAL;
2773 }
2774
2775 if (t->type) {
2776 btf_verifier_log_type(env, t, "type != 0");
2777 return -EINVAL;
2778 }
2779
2780 /* fwd type must have a valid name */
2781 if (!t->name_off ||
2782 !btf_name_valid_identifier(btf: env->btf, offset: t->name_off)) {
2783 btf_verifier_log_type(env, t, "Invalid name");
2784 return -EINVAL;
2785 }
2786
2787 btf_verifier_log_type(env, t, NULL);
2788
2789 return 0;
2790}
2791
2792static void btf_fwd_type_log(struct btf_verifier_env *env,
2793 const struct btf_type *t)
2794{
2795 btf_verifier_log(env, fmt: "%s", btf_type_kflag(t) ? "union" : "struct");
2796}
2797
2798static struct btf_kind_operations fwd_ops = {
2799 .check_meta = btf_fwd_check_meta,
2800 .resolve = btf_df_resolve,
2801 .check_member = btf_df_check_member,
2802 .check_kflag_member = btf_df_check_kflag_member,
2803 .log_details = btf_fwd_type_log,
2804 .show = btf_df_show,
2805};
2806
2807static int btf_array_check_member(struct btf_verifier_env *env,
2808 const struct btf_type *struct_type,
2809 const struct btf_member *member,
2810 const struct btf_type *member_type)
2811{
2812 u32 struct_bits_off = member->offset;
2813 u32 struct_size, bytes_offset;
2814 u32 array_type_id, array_size;
2815 struct btf *btf = env->btf;
2816
2817 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2818 btf_verifier_log_member(env, struct_type, member,
2819 fmt: "Member is not byte aligned");
2820 return -EINVAL;
2821 }
2822
2823 array_type_id = member->type;
2824 btf_type_id_size(btf, type_id: &array_type_id, ret_size: &array_size);
2825 struct_size = struct_type->size;
2826 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2827 if (struct_size - bytes_offset < array_size) {
2828 btf_verifier_log_member(env, struct_type, member,
2829 fmt: "Member exceeds struct_size");
2830 return -EINVAL;
2831 }
2832
2833 return 0;
2834}
2835
2836static s32 btf_array_check_meta(struct btf_verifier_env *env,
2837 const struct btf_type *t,
2838 u32 meta_left)
2839{
2840 const struct btf_array *array = btf_type_array(t);
2841 u32 meta_needed = sizeof(*array);
2842
2843 if (meta_left < meta_needed) {
2844 btf_verifier_log_basic(env, t,
2845 "meta_left:%u meta_needed:%u",
2846 meta_left, meta_needed);
2847 return -EINVAL;
2848 }
2849
2850 /* array type should not have a name */
2851 if (t->name_off) {
2852 btf_verifier_log_type(env, t, "Invalid name");
2853 return -EINVAL;
2854 }
2855
2856 if (btf_type_vlen(t)) {
2857 btf_verifier_log_type(env, t, "vlen != 0");
2858 return -EINVAL;
2859 }
2860
2861 if (btf_type_kflag(t)) {
2862 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2863 return -EINVAL;
2864 }
2865
2866 if (t->size) {
2867 btf_verifier_log_type(env, t, "size != 0");
2868 return -EINVAL;
2869 }
2870
2871 /* Array elem type and index type cannot be in type void,
2872 * so !array->type and !array->index_type are not allowed.
2873 */
2874 if (!array->type || !BTF_TYPE_ID_VALID(array->type)) {
2875 btf_verifier_log_type(env, t, "Invalid elem");
2876 return -EINVAL;
2877 }
2878
2879 if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) {
2880 btf_verifier_log_type(env, t, "Invalid index");
2881 return -EINVAL;
2882 }
2883
2884 btf_verifier_log_type(env, t, NULL);
2885
2886 return meta_needed;
2887}
2888
2889static int btf_array_resolve(struct btf_verifier_env *env,
2890 const struct resolve_vertex *v)
2891{
2892 const struct btf_array *array = btf_type_array(t: v->t);
2893 const struct btf_type *elem_type, *index_type;
2894 u32 elem_type_id, index_type_id;
2895 struct btf *btf = env->btf;
2896 u32 elem_size;
2897
2898 /* Check array->index_type */
2899 index_type_id = array->index_type;
2900 index_type = btf_type_by_id(btf, index_type_id);
2901 if (btf_type_nosize_or_null(t: index_type) ||
2902 btf_type_is_resolve_source_only(t: index_type)) {
2903 btf_verifier_log_type(env, v->t, "Invalid index");
2904 return -EINVAL;
2905 }
2906
2907 if (!env_type_is_resolve_sink(env, next_type: index_type) &&
2908 !env_type_is_resolved(env, type_id: index_type_id))
2909 return env_stack_push(env, t: index_type, type_id: index_type_id);
2910
2911 index_type = btf_type_id_size(btf, type_id: &index_type_id, NULL);
2912 if (!index_type || !btf_type_is_int(t: index_type) ||
2913 !btf_type_int_is_regular(t: index_type)) {
2914 btf_verifier_log_type(env, v->t, "Invalid index");
2915 return -EINVAL;
2916 }
2917
2918 /* Check array->type */
2919 elem_type_id = array->type;
2920 elem_type = btf_type_by_id(btf, elem_type_id);
2921 if (btf_type_nosize_or_null(t: elem_type) ||
2922 btf_type_is_resolve_source_only(t: elem_type)) {
2923 btf_verifier_log_type(env, v->t,
2924 "Invalid elem");
2925 return -EINVAL;
2926 }
2927
2928 if (!env_type_is_resolve_sink(env, next_type: elem_type) &&
2929 !env_type_is_resolved(env, type_id: elem_type_id))
2930 return env_stack_push(env, t: elem_type, type_id: elem_type_id);
2931
2932 elem_type = btf_type_id_size(btf, type_id: &elem_type_id, ret_size: &elem_size);
2933 if (!elem_type) {
2934 btf_verifier_log_type(env, v->t, "Invalid elem");
2935 return -EINVAL;
2936 }
2937
2938 if (btf_type_is_int(t: elem_type) && !btf_type_int_is_regular(t: elem_type)) {
2939 btf_verifier_log_type(env, v->t, "Invalid array of int");
2940 return -EINVAL;
2941 }
2942
2943 if (array->nelems && elem_size > U32_MAX / array->nelems) {
2944 btf_verifier_log_type(env, v->t,
2945 "Array size overflows U32_MAX");
2946 return -EINVAL;
2947 }
2948
2949 env_stack_pop_resolved(env, resolved_type_id: elem_type_id, resolved_size: elem_size * array->nelems);
2950
2951 return 0;
2952}
2953
2954static void btf_array_log(struct btf_verifier_env *env,
2955 const struct btf_type *t)
2956{
2957 const struct btf_array *array = btf_type_array(t);
2958
2959 btf_verifier_log(env, fmt: "type_id=%u index_type_id=%u nr_elems=%u",
2960 array->type, array->index_type, array->nelems);
2961}
2962
2963static void __btf_array_show(const struct btf *btf, const struct btf_type *t,
2964 u32 type_id, void *data, u8 bits_offset,
2965 struct btf_show *show)
2966{
2967 const struct btf_array *array = btf_type_array(t);
2968 const struct btf_kind_operations *elem_ops;
2969 const struct btf_type *elem_type;
2970 u32 i, elem_size = 0, elem_type_id;
2971 u16 encoding = 0;
2972
2973 elem_type_id = array->type;
2974 elem_type = btf_type_skip_modifiers(btf, id: elem_type_id, NULL);
2975 if (elem_type && btf_type_has_size(t: elem_type))
2976 elem_size = elem_type->size;
2977
2978 if (elem_type && btf_type_is_int(t: elem_type)) {
2979 u32 int_type = btf_type_int(t: elem_type);
2980
2981 encoding = BTF_INT_ENCODING(int_type);
2982
2983 /*
2984 * BTF_INT_CHAR encoding never seems to be set for
2985 * char arrays, so if size is 1 and element is
2986 * printable as a char, we'll do that.
2987 */
2988 if (elem_size == 1)
2989 encoding = BTF_INT_CHAR;
2990 }
2991
2992 if (!btf_show_start_array_type(show, t, type_id, array_encoding: encoding, data))
2993 return;
2994
2995 if (!elem_type)
2996 goto out;
2997 elem_ops = btf_type_ops(t: elem_type);
2998
2999 for (i = 0; i < array->nelems; i++) {
3000
3001 btf_show_start_array_member(show);
3002
3003 elem_ops->show(btf, elem_type, elem_type_id, data,
3004 bits_offset, show);
3005 data += elem_size;
3006
3007 btf_show_end_array_member(show);
3008
3009 if (show->state.array_terminated)
3010 break;
3011 }
3012out:
3013 btf_show_end_array_type(show);
3014}
3015
3016static void btf_array_show(const struct btf *btf, const struct btf_type *t,
3017 u32 type_id, void *data, u8 bits_offset,
3018 struct btf_show *show)
3019{
3020 const struct btf_member *m = show->state.member;
3021
3022 /*
3023 * First check if any members would be shown (are non-zero).
3024 * See comments above "struct btf_show" definition for more
3025 * details on how this works at a high-level.
3026 */
3027 if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
3028 if (!show->state.depth_check) {
3029 show->state.depth_check = show->state.depth + 1;
3030 show->state.depth_to_show = 0;
3031 }
3032 __btf_array_show(btf, t, type_id, data, bits_offset, show);
3033 show->state.member = m;
3034
3035 if (show->state.depth_check != show->state.depth + 1)
3036 return;
3037 show->state.depth_check = 0;
3038
3039 if (show->state.depth_to_show <= show->state.depth)
3040 return;
3041 /*
3042 * Reaching here indicates we have recursed and found
3043 * non-zero array member(s).
3044 */
3045 }
3046 __btf_array_show(btf, t, type_id, data, bits_offset, show);
3047}
3048
3049static struct btf_kind_operations array_ops = {
3050 .check_meta = btf_array_check_meta,
3051 .resolve = btf_array_resolve,
3052 .check_member = btf_array_check_member,
3053 .check_kflag_member = btf_generic_check_kflag_member,
3054 .log_details = btf_array_log,
3055 .show = btf_array_show,
3056};
3057
3058static int btf_struct_check_member(struct btf_verifier_env *env,
3059 const struct btf_type *struct_type,
3060 const struct btf_member *member,
3061 const struct btf_type *member_type)
3062{
3063 u32 struct_bits_off = member->offset;
3064 u32 struct_size, bytes_offset;
3065
3066 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
3067 btf_verifier_log_member(env, struct_type, member,
3068 fmt: "Member is not byte aligned");
3069 return -EINVAL;
3070 }
3071
3072 struct_size = struct_type->size;
3073 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
3074 if (struct_size - bytes_offset < member_type->size) {
3075 btf_verifier_log_member(env, struct_type, member,
3076 fmt: "Member exceeds struct_size");
3077 return -EINVAL;
3078 }
3079
3080 return 0;
3081}
3082
3083static s32 btf_struct_check_meta(struct btf_verifier_env *env,
3084 const struct btf_type *t,
3085 u32 meta_left)
3086{
3087 bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION;
3088 const struct btf_member *member;
3089 u32 meta_needed, last_offset;
3090 struct btf *btf = env->btf;
3091 u32 struct_size = t->size;
3092 u32 offset;
3093 u16 i;
3094
3095 meta_needed = btf_type_vlen(t) * sizeof(*member);
3096 if (meta_left < meta_needed) {
3097 btf_verifier_log_basic(env, t,
3098 "meta_left:%u meta_needed:%u",
3099 meta_left, meta_needed);
3100 return -EINVAL;
3101 }
3102
3103 /* struct type either no name or a valid one */
3104 if (t->name_off &&
3105 !btf_name_valid_identifier(btf: env->btf, offset: t->name_off)) {
3106 btf_verifier_log_type(env, t, "Invalid name");
3107 return -EINVAL;
3108 }
3109
3110 btf_verifier_log_type(env, t, NULL);
3111
3112 last_offset = 0;
3113 for_each_member(i, t, member) {
3114 if (!btf_name_offset_valid(btf, offset: member->name_off)) {
3115 btf_verifier_log_member(env, struct_type: t, member,
3116 fmt: "Invalid member name_offset:%u",
3117 member->name_off);
3118 return -EINVAL;
3119 }
3120
3121 /* struct member either no name or a valid one */
3122 if (member->name_off &&
3123 !btf_name_valid_identifier(btf, offset: member->name_off)) {
3124 btf_verifier_log_member(env, struct_type: t, member, fmt: "Invalid name");
3125 return -EINVAL;
3126 }
3127 /* A member cannot be in type void */
3128 if (!member->type || !BTF_TYPE_ID_VALID(member->type)) {
3129 btf_verifier_log_member(env, struct_type: t, member,
3130 fmt: "Invalid type_id");
3131 return -EINVAL;
3132 }
3133
3134 offset = __btf_member_bit_offset(struct_type: t, member);
3135 if (is_union && offset) {
3136 btf_verifier_log_member(env, struct_type: t, member,
3137 fmt: "Invalid member bits_offset");
3138 return -EINVAL;
3139 }
3140
3141 /*
3142 * ">" instead of ">=" because the last member could be
3143 * "char a[0];"
3144 */
3145 if (last_offset > offset) {
3146 btf_verifier_log_member(env, struct_type: t, member,
3147 fmt: "Invalid member bits_offset");
3148 return -EINVAL;
3149 }
3150
3151 if (BITS_ROUNDUP_BYTES(offset) > struct_size) {
3152 btf_verifier_log_member(env, struct_type: t, member,
3153 fmt: "Member bits_offset exceeds its struct size");
3154 return -EINVAL;
3155 }
3156
3157 btf_verifier_log_member(env, struct_type: t, member, NULL);
3158 last_offset = offset;
3159 }
3160
3161 return meta_needed;
3162}
3163
3164static int btf_struct_resolve(struct btf_verifier_env *env,
3165 const struct resolve_vertex *v)
3166{
3167 const struct btf_member *member;
3168 int err;
3169 u16 i;
3170
3171 /* Before continue resolving the next_member,
3172 * ensure the last member is indeed resolved to a
3173 * type with size info.
3174 */
3175 if (v->next_member) {
3176 const struct btf_type *last_member_type;
3177 const struct btf_member *last_member;
3178 u32 last_member_type_id;
3179
3180 last_member = btf_type_member(t: v->t) + v->next_member - 1;
3181 last_member_type_id = last_member->type;
3182 if (WARN_ON_ONCE(!env_type_is_resolved(env,
3183 last_member_type_id)))
3184 return -EINVAL;
3185
3186 last_member_type = btf_type_by_id(env->btf,
3187 last_member_type_id);
3188 if (btf_type_kflag(t: v->t))
3189 err = btf_type_ops(t: last_member_type)->check_kflag_member(env, v->t,
3190 last_member,
3191 last_member_type);
3192 else
3193 err = btf_type_ops(t: last_member_type)->check_member(env, v->t,
3194 last_member,
3195 last_member_type);
3196 if (err)
3197 return err;
3198 }
3199
3200 for_each_member_from(i, v->next_member, v->t, member) {
3201 u32 member_type_id = member->type;
3202 const struct btf_type *member_type = btf_type_by_id(env->btf,
3203 member_type_id);
3204
3205 if (btf_type_nosize_or_null(t: member_type) ||
3206 btf_type_is_resolve_source_only(t: member_type)) {
3207 btf_verifier_log_member(env, struct_type: v->t, member,
3208 fmt: "Invalid member");
3209 return -EINVAL;
3210 }
3211
3212 if (!env_type_is_resolve_sink(env, next_type: member_type) &&
3213 !env_type_is_resolved(env, type_id: member_type_id)) {
3214 env_stack_set_next_member(env, next_member: i + 1);
3215 return env_stack_push(env, t: member_type, type_id: member_type_id);
3216 }
3217
3218 if (btf_type_kflag(t: v->t))
3219 err = btf_type_ops(t: member_type)->check_kflag_member(env, v->t,
3220 member,
3221 member_type);
3222 else
3223 err = btf_type_ops(t: member_type)->check_member(env, v->t,
3224 member,
3225 member_type);
3226 if (err)
3227 return err;
3228 }
3229
3230 env_stack_pop_resolved(env, resolved_type_id: 0, resolved_size: 0);
3231
3232 return 0;
3233}
3234
3235static void btf_struct_log(struct btf_verifier_env *env,
3236 const struct btf_type *t)
3237{
3238 btf_verifier_log(env, fmt: "size=%u vlen=%u", t->size, btf_type_vlen(t));
3239}
3240
3241enum {
3242 BTF_FIELD_IGNORE = 0,
3243 BTF_FIELD_FOUND = 1,
3244};
3245
3246struct btf_field_info {
3247 enum btf_field_type type;
3248 u32 off;
3249 union {
3250 struct {
3251 u32 type_id;
3252 } kptr;
3253 struct {
3254 const char *node_name;
3255 u32 value_btf_id;
3256 } graph_root;
3257 };
3258};
3259
3260static int btf_find_struct(const struct btf *btf, const struct btf_type *t,
3261 u32 off, int sz, enum btf_field_type field_type,
3262 struct btf_field_info *info)
3263{
3264 if (!__btf_type_is_struct(t))
3265 return BTF_FIELD_IGNORE;
3266 if (t->size != sz)
3267 return BTF_FIELD_IGNORE;
3268 info->type = field_type;
3269 info->off = off;
3270 return BTF_FIELD_FOUND;
3271}
3272
3273static int btf_find_kptr(const struct btf *btf, const struct btf_type *t,
3274 u32 off, int sz, struct btf_field_info *info)
3275{
3276 enum btf_field_type type;
3277 u32 res_id;
3278
3279 /* Permit modifiers on the pointer itself */
3280 if (btf_type_is_volatile(t))
3281 t = btf_type_by_id(btf, t->type);
3282 /* For PTR, sz is always == 8 */
3283 if (!btf_type_is_ptr(t))
3284 return BTF_FIELD_IGNORE;
3285 t = btf_type_by_id(btf, t->type);
3286
3287 if (!btf_type_is_type_tag(t))
3288 return BTF_FIELD_IGNORE;
3289 /* Reject extra tags */
3290 if (btf_type_is_type_tag(t: btf_type_by_id(btf, t->type)))
3291 return -EINVAL;
3292 if (!strcmp("kptr_untrusted", __btf_name_by_offset(btf, offset: t->name_off)))
3293 type = BPF_KPTR_UNREF;
3294 else if (!strcmp("kptr", __btf_name_by_offset(btf, offset: t->name_off)))
3295 type = BPF_KPTR_REF;
3296 else if (!strcmp("percpu_kptr", __btf_name_by_offset(btf, offset: t->name_off)))
3297 type = BPF_KPTR_PERCPU;
3298 else
3299 return -EINVAL;
3300
3301 /* Get the base type */
3302 t = btf_type_skip_modifiers(btf, id: t->type, res_id: &res_id);
3303 /* Only pointer to struct is allowed */
3304 if (!__btf_type_is_struct(t))
3305 return -EINVAL;
3306
3307 info->type = type;
3308 info->off = off;
3309 info->kptr.type_id = res_id;
3310 return BTF_FIELD_FOUND;
3311}
3312
3313const char *btf_find_decl_tag_value(const struct btf *btf, const struct btf_type *pt,
3314 int comp_idx, const char *tag_key)
3315{
3316 const char *value = NULL;
3317 int i;
3318
3319 for (i = 1; i < btf_nr_types(btf); i++) {
3320 const struct btf_type *t = btf_type_by_id(btf, i);
3321 int len = strlen(tag_key);
3322
3323 if (!btf_type_is_decl_tag(t))
3324 continue;
3325 if (pt != btf_type_by_id(btf, t->type) ||
3326 btf_type_decl_tag(t)->component_idx != comp_idx)
3327 continue;
3328 if (strncmp(__btf_name_by_offset(btf, offset: t->name_off), tag_key, len))
3329 continue;
3330 /* Prevent duplicate entries for same type */
3331 if (value)
3332 return ERR_PTR(error: -EEXIST);
3333 value = __btf_name_by_offset(btf, offset: t->name_off) + len;
3334 }
3335 if (!value)
3336 return ERR_PTR(error: -ENOENT);
3337 return value;
3338}
3339
3340static int
3341btf_find_graph_root(const struct btf *btf, const struct btf_type *pt,
3342 const struct btf_type *t, int comp_idx, u32 off,
3343 int sz, struct btf_field_info *info,
3344 enum btf_field_type head_type)
3345{
3346 const char *node_field_name;
3347 const char *value_type;
3348 s32 id;
3349
3350 if (!__btf_type_is_struct(t))
3351 return BTF_FIELD_IGNORE;
3352 if (t->size != sz)
3353 return BTF_FIELD_IGNORE;
3354 value_type = btf_find_decl_tag_value(btf, pt, comp_idx, tag_key: "contains:");
3355 if (IS_ERR(ptr: value_type))
3356 return -EINVAL;
3357 node_field_name = strstr(value_type, ":");
3358 if (!node_field_name)
3359 return -EINVAL;
3360 value_type = kstrndup(s: value_type, len: node_field_name - value_type, GFP_KERNEL | __GFP_NOWARN);
3361 if (!value_type)
3362 return -ENOMEM;
3363 id = btf_find_by_name_kind(btf, name: value_type, kind: BTF_KIND_STRUCT);
3364 kfree(objp: value_type);
3365 if (id < 0)
3366 return id;
3367 node_field_name++;
3368 if (str_is_empty(s: node_field_name))
3369 return -EINVAL;
3370 info->type = head_type;
3371 info->off = off;
3372 info->graph_root.value_btf_id = id;
3373 info->graph_root.node_name = node_field_name;
3374 return BTF_FIELD_FOUND;
3375}
3376
3377#define field_mask_test_name(field_type, field_type_str) \
3378 if (field_mask & field_type && !strcmp(name, field_type_str)) { \
3379 type = field_type; \
3380 goto end; \
3381 }
3382
3383static int btf_get_field_type(const char *name, u32 field_mask, u32 *seen_mask,
3384 int *align, int *sz)
3385{
3386 int type = 0;
3387
3388 if (field_mask & BPF_SPIN_LOCK) {
3389 if (!strcmp(name, "bpf_spin_lock")) {
3390 if (*seen_mask & BPF_SPIN_LOCK)
3391 return -E2BIG;
3392 *seen_mask |= BPF_SPIN_LOCK;
3393 type = BPF_SPIN_LOCK;
3394 goto end;
3395 }
3396 }
3397 if (field_mask & BPF_TIMER) {
3398 if (!strcmp(name, "bpf_timer")) {
3399 if (*seen_mask & BPF_TIMER)
3400 return -E2BIG;
3401 *seen_mask |= BPF_TIMER;
3402 type = BPF_TIMER;
3403 goto end;
3404 }
3405 }
3406 field_mask_test_name(BPF_LIST_HEAD, "bpf_list_head");
3407 field_mask_test_name(BPF_LIST_NODE, "bpf_list_node");
3408 field_mask_test_name(BPF_RB_ROOT, "bpf_rb_root");
3409 field_mask_test_name(BPF_RB_NODE, "bpf_rb_node");
3410 field_mask_test_name(BPF_REFCOUNT, "bpf_refcount");
3411
3412 /* Only return BPF_KPTR when all other types with matchable names fail */
3413 if (field_mask & BPF_KPTR) {
3414 type = BPF_KPTR_REF;
3415 goto end;
3416 }
3417 return 0;
3418end:
3419 *sz = btf_field_type_size(type);
3420 *align = btf_field_type_align(type);
3421 return type;
3422}
3423
3424#undef field_mask_test_name
3425
3426static int btf_find_struct_field(const struct btf *btf,
3427 const struct btf_type *t, u32 field_mask,
3428 struct btf_field_info *info, int info_cnt)
3429{
3430 int ret, idx = 0, align, sz, field_type;
3431 const struct btf_member *member;
3432 struct btf_field_info tmp;
3433 u32 i, off, seen_mask = 0;
3434
3435 for_each_member(i, t, member) {
3436 const struct btf_type *member_type = btf_type_by_id(btf,
3437 member->type);
3438
3439 field_type = btf_get_field_type(name: __btf_name_by_offset(btf, offset: member_type->name_off),
3440 field_mask, seen_mask: &seen_mask, align: &align, sz: &sz);
3441 if (field_type == 0)
3442 continue;
3443 if (field_type < 0)
3444 return field_type;
3445
3446 off = __btf_member_bit_offset(struct_type: t, member);
3447 if (off % 8)
3448 /* valid C code cannot generate such BTF */
3449 return -EINVAL;
3450 off /= 8;
3451 if (off % align)
3452 continue;
3453
3454 switch (field_type) {
3455 case BPF_SPIN_LOCK:
3456 case BPF_TIMER:
3457 case BPF_LIST_NODE:
3458 case BPF_RB_NODE:
3459 case BPF_REFCOUNT:
3460 ret = btf_find_struct(btf, t: member_type, off, sz, field_type,
3461 info: idx < info_cnt ? &info[idx] : &tmp);
3462 if (ret < 0)
3463 return ret;
3464 break;
3465 case BPF_KPTR_UNREF:
3466 case BPF_KPTR_REF:
3467 case BPF_KPTR_PERCPU:
3468 ret = btf_find_kptr(btf, t: member_type, off, sz,
3469 info: idx < info_cnt ? &info[idx] : &tmp);
3470 if (ret < 0)
3471 return ret;
3472 break;
3473 case BPF_LIST_HEAD:
3474 case BPF_RB_ROOT:
3475 ret = btf_find_graph_root(btf, pt: t, t: member_type,
3476 comp_idx: i, off, sz,
3477 info: idx < info_cnt ? &info[idx] : &tmp,
3478 head_type: field_type);
3479 if (ret < 0)
3480 return ret;
3481 break;
3482 default:
3483 return -EFAULT;
3484 }
3485
3486 if (ret == BTF_FIELD_IGNORE)
3487 continue;
3488 if (idx >= info_cnt)
3489 return -E2BIG;
3490 ++idx;
3491 }
3492 return idx;
3493}
3494
3495static int btf_find_datasec_var(const struct btf *btf, const struct btf_type *t,
3496 u32 field_mask, struct btf_field_info *info,
3497 int info_cnt)
3498{
3499 int ret, idx = 0, align, sz, field_type;
3500 const struct btf_var_secinfo *vsi;
3501 struct btf_field_info tmp;
3502 u32 i, off, seen_mask = 0;
3503
3504 for_each_vsi(i, t, vsi) {
3505 const struct btf_type *var = btf_type_by_id(btf, vsi->type);
3506 const struct btf_type *var_type = btf_type_by_id(btf, var->type);
3507
3508 field_type = btf_get_field_type(name: __btf_name_by_offset(btf, offset: var_type->name_off),
3509 field_mask, seen_mask: &seen_mask, align: &align, sz: &sz);
3510 if (field_type == 0)
3511 continue;
3512 if (field_type < 0)
3513 return field_type;
3514
3515 off = vsi->offset;
3516 if (vsi->size != sz)
3517 continue;
3518 if (off % align)
3519 continue;
3520
3521 switch (field_type) {
3522 case BPF_SPIN_LOCK:
3523 case BPF_TIMER:
3524 case BPF_LIST_NODE:
3525 case BPF_RB_NODE:
3526 case BPF_REFCOUNT:
3527 ret = btf_find_struct(btf, t: var_type, off, sz, field_type,
3528 info: idx < info_cnt ? &info[idx] : &tmp);
3529 if (ret < 0)
3530 return ret;
3531 break;
3532 case BPF_KPTR_UNREF:
3533 case BPF_KPTR_REF:
3534 case BPF_KPTR_PERCPU:
3535 ret = btf_find_kptr(btf, t: var_type, off, sz,
3536 info: idx < info_cnt ? &info[idx] : &tmp);
3537 if (ret < 0)
3538 return ret;
3539 break;
3540 case BPF_LIST_HEAD:
3541 case BPF_RB_ROOT:
3542 ret = btf_find_graph_root(btf, pt: var, t: var_type,
3543 comp_idx: -1, off, sz,
3544 info: idx < info_cnt ? &info[idx] : &tmp,
3545 head_type: field_type);
3546 if (ret < 0)
3547 return ret;
3548 break;
3549 default:
3550 return -EFAULT;
3551 }
3552
3553 if (ret == BTF_FIELD_IGNORE)
3554 continue;
3555 if (idx >= info_cnt)
3556 return -E2BIG;
3557 ++idx;
3558 }
3559 return idx;
3560}
3561
3562static int btf_find_field(const struct btf *btf, const struct btf_type *t,
3563 u32 field_mask, struct btf_field_info *info,
3564 int info_cnt)
3565{
3566 if (__btf_type_is_struct(t))
3567 return btf_find_struct_field(btf, t, field_mask, info, info_cnt);
3568 else if (btf_type_is_datasec(t))
3569 return btf_find_datasec_var(btf, t, field_mask, info, info_cnt);
3570 return -EINVAL;
3571}
3572
3573static int btf_parse_kptr(const struct btf *btf, struct btf_field *field,
3574 struct btf_field_info *info)
3575{
3576 struct module *mod = NULL;
3577 const struct btf_type *t;
3578 /* If a matching btf type is found in kernel or module BTFs, kptr_ref
3579 * is that BTF, otherwise it's program BTF
3580 */
3581 struct btf *kptr_btf;
3582 int ret;
3583 s32 id;
3584
3585 /* Find type in map BTF, and use it to look up the matching type
3586 * in vmlinux or module BTFs, by name and kind.
3587 */
3588 t = btf_type_by_id(btf, info->kptr.type_id);
3589 id = bpf_find_btf_id(name: __btf_name_by_offset(btf, offset: t->name_off), BTF_INFO_KIND(t->info),
3590 btf_p: &kptr_btf);
3591 if (id == -ENOENT) {
3592 /* btf_parse_kptr should only be called w/ btf = program BTF */
3593 WARN_ON_ONCE(btf_is_kernel(btf));
3594
3595 /* Type exists only in program BTF. Assume that it's a MEM_ALLOC
3596 * kptr allocated via bpf_obj_new
3597 */
3598 field->kptr.dtor = NULL;
3599 id = info->kptr.type_id;
3600 kptr_btf = (struct btf *)btf;
3601 btf_get(btf: kptr_btf);
3602 goto found_dtor;
3603 }
3604 if (id < 0)
3605 return id;
3606
3607 /* Find and stash the function pointer for the destruction function that
3608 * needs to be eventually invoked from the map free path.
3609 */
3610 if (info->type == BPF_KPTR_REF) {
3611 const struct btf_type *dtor_func;
3612 const char *dtor_func_name;
3613 unsigned long addr;
3614 s32 dtor_btf_id;
3615
3616 /* This call also serves as a whitelist of allowed objects that
3617 * can be used as a referenced pointer and be stored in a map at
3618 * the same time.
3619 */
3620 dtor_btf_id = btf_find_dtor_kfunc(btf: kptr_btf, btf_id: id);
3621 if (dtor_btf_id < 0) {
3622 ret = dtor_btf_id;
3623 goto end_btf;
3624 }
3625
3626 dtor_func = btf_type_by_id(kptr_btf, dtor_btf_id);
3627 if (!dtor_func) {
3628 ret = -ENOENT;
3629 goto end_btf;
3630 }
3631
3632 if (btf_is_module(btf: kptr_btf)) {
3633 mod = btf_try_get_module(btf: kptr_btf);
3634 if (!mod) {
3635 ret = -ENXIO;
3636 goto end_btf;
3637 }
3638 }
3639
3640 /* We already verified dtor_func to be btf_type_is_func
3641 * in register_btf_id_dtor_kfuncs.
3642 */
3643 dtor_func_name = __btf_name_by_offset(btf: kptr_btf, offset: dtor_func->name_off);
3644 addr = kallsyms_lookup_name(name: dtor_func_name);
3645 if (!addr) {
3646 ret = -EINVAL;
3647 goto end_mod;
3648 }
3649 field->kptr.dtor = (void *)addr;
3650 }
3651
3652found_dtor:
3653 field->kptr.btf_id = id;
3654 field->kptr.btf = kptr_btf;
3655 field->kptr.module = mod;
3656 return 0;
3657end_mod:
3658 module_put(module: mod);
3659end_btf:
3660 btf_put(btf: kptr_btf);
3661 return ret;
3662}
3663
3664static int btf_parse_graph_root(const struct btf *btf,
3665 struct btf_field *field,
3666 struct btf_field_info *info,
3667 const char *node_type_name,
3668 size_t node_type_align)
3669{
3670 const struct btf_type *t, *n = NULL;
3671 const struct btf_member *member;
3672 u32 offset;
3673 int i;
3674
3675 t = btf_type_by_id(btf, info->graph_root.value_btf_id);
3676 /* We've already checked that value_btf_id is a struct type. We
3677 * just need to figure out the offset of the list_node, and
3678 * verify its type.
3679 */
3680 for_each_member(i, t, member) {
3681 if (strcmp(info->graph_root.node_name,
3682 __btf_name_by_offset(btf, offset: member->name_off)))
3683 continue;
3684 /* Invalid BTF, two members with same name */
3685 if (n)
3686 return -EINVAL;
3687 n = btf_type_by_id(btf, member->type);
3688 if (!__btf_type_is_struct(t: n))
3689 return -EINVAL;
3690 if (strcmp(node_type_name, __btf_name_by_offset(btf, offset: n->name_off)))
3691 return -EINVAL;
3692 offset = __btf_member_bit_offset(struct_type: n, member);
3693 if (offset % 8)
3694 return -EINVAL;
3695 offset /= 8;
3696 if (offset % node_type_align)
3697 return -EINVAL;
3698
3699 field->graph_root.btf = (struct btf *)btf;
3700 field->graph_root.value_btf_id = info->graph_root.value_btf_id;
3701 field->graph_root.node_offset = offset;
3702 }
3703 if (!n)
3704 return -ENOENT;
3705 return 0;
3706}
3707
3708static int btf_parse_list_head(const struct btf *btf, struct btf_field *field,
3709 struct btf_field_info *info)
3710{
3711 return btf_parse_graph_root(btf, field, info, node_type_name: "bpf_list_node",
3712 node_type_align: __alignof__(struct bpf_list_node));
3713}
3714
3715static int btf_parse_rb_root(const struct btf *btf, struct btf_field *field,
3716 struct btf_field_info *info)
3717{
3718 return btf_parse_graph_root(btf, field, info, node_type_name: "bpf_rb_node",
3719 node_type_align: __alignof__(struct bpf_rb_node));
3720}
3721
3722static int btf_field_cmp(const void *_a, const void *_b, const void *priv)
3723{
3724 const struct btf_field *a = (const struct btf_field *)_a;
3725 const struct btf_field *b = (const struct btf_field *)_b;
3726
3727 if (a->offset < b->offset)
3728 return -1;
3729 else if (a->offset > b->offset)
3730 return 1;
3731 return 0;
3732}
3733
3734struct btf_record *btf_parse_fields(const struct btf *btf, const struct btf_type *t,
3735 u32 field_mask, u32 value_size)
3736{
3737 struct btf_field_info info_arr[BTF_FIELDS_MAX];
3738 u32 next_off = 0, field_type_size;
3739 struct btf_record *rec;
3740 int ret, i, cnt;
3741
3742 ret = btf_find_field(btf, t, field_mask, info: info_arr, ARRAY_SIZE(info_arr));
3743 if (ret < 0)
3744 return ERR_PTR(error: ret);
3745 if (!ret)
3746 return NULL;
3747
3748 cnt = ret;
3749 /* This needs to be kzalloc to zero out padding and unused fields, see
3750 * comment in btf_record_equal.
3751 */
3752 rec = kzalloc(offsetof(struct btf_record, fields[cnt]), GFP_KERNEL | __GFP_NOWARN);
3753 if (!rec)
3754 return ERR_PTR(error: -ENOMEM);
3755
3756 rec->spin_lock_off = -EINVAL;
3757 rec->timer_off = -EINVAL;
3758 rec->refcount_off = -EINVAL;
3759 for (i = 0; i < cnt; i++) {
3760 field_type_size = btf_field_type_size(type: info_arr[i].type);
3761 if (info_arr[i].off + field_type_size > value_size) {
3762 WARN_ONCE(1, "verifier bug off %d size %d", info_arr[i].off, value_size);
3763 ret = -EFAULT;
3764 goto end;
3765 }
3766 if (info_arr[i].off < next_off) {
3767 ret = -EEXIST;
3768 goto end;
3769 }
3770 next_off = info_arr[i].off + field_type_size;
3771
3772 rec->field_mask |= info_arr[i].type;
3773 rec->fields[i].offset = info_arr[i].off;
3774 rec->fields[i].type = info_arr[i].type;
3775 rec->fields[i].size = field_type_size;
3776
3777 switch (info_arr[i].type) {
3778 case BPF_SPIN_LOCK:
3779 WARN_ON_ONCE(rec->spin_lock_off >= 0);
3780 /* Cache offset for faster lookup at runtime */
3781 rec->spin_lock_off = rec->fields[i].offset;
3782 break;
3783 case BPF_TIMER:
3784 WARN_ON_ONCE(rec->timer_off >= 0);
3785 /* Cache offset for faster lookup at runtime */
3786 rec->timer_off = rec->fields[i].offset;
3787 break;
3788 case BPF_REFCOUNT:
3789 WARN_ON_ONCE(rec->refcount_off >= 0);
3790 /* Cache offset for faster lookup at runtime */
3791 rec->refcount_off = rec->fields[i].offset;
3792 break;
3793 case BPF_KPTR_UNREF:
3794 case BPF_KPTR_REF:
3795 case BPF_KPTR_PERCPU:
3796 ret = btf_parse_kptr(btf, field: &rec->fields[i], info: &info_arr[i]);
3797 if (ret < 0)
3798 goto end;
3799 break;
3800 case BPF_LIST_HEAD:
3801 ret = btf_parse_list_head(btf, field: &rec->fields[i], info: &info_arr[i]);
3802 if (ret < 0)
3803 goto end;
3804 break;
3805 case BPF_RB_ROOT:
3806 ret = btf_parse_rb_root(btf, field: &rec->fields[i], info: &info_arr[i]);
3807 if (ret < 0)
3808 goto end;
3809 break;
3810 case BPF_LIST_NODE:
3811 case BPF_RB_NODE:
3812 break;
3813 default:
3814 ret = -EFAULT;
3815 goto end;
3816 }
3817 rec->cnt++;
3818 }
3819
3820 /* bpf_{list_head, rb_node} require bpf_spin_lock */
3821 if ((btf_record_has_field(rec, type: BPF_LIST_HEAD) ||
3822 btf_record_has_field(rec, type: BPF_RB_ROOT)) && rec->spin_lock_off < 0) {
3823 ret = -EINVAL;
3824 goto end;
3825 }
3826
3827 if (rec->refcount_off < 0 &&
3828 btf_record_has_field(rec, type: BPF_LIST_NODE) &&
3829 btf_record_has_field(rec, type: BPF_RB_NODE)) {
3830 ret = -EINVAL;
3831 goto end;
3832 }
3833
3834 sort_r(base: rec->fields, num: rec->cnt, size: sizeof(struct btf_field), cmp_func: btf_field_cmp,
3835 NULL, priv: rec);
3836
3837 return rec;
3838end:
3839 btf_record_free(rec);
3840 return ERR_PTR(error: ret);
3841}
3842
3843#define GRAPH_ROOT_MASK (BPF_LIST_HEAD | BPF_RB_ROOT)
3844#define GRAPH_NODE_MASK (BPF_LIST_NODE | BPF_RB_NODE)
3845
3846int btf_check_and_fixup_fields(const struct btf *btf, struct btf_record *rec)
3847{
3848 int i;
3849
3850 /* There are three types that signify ownership of some other type:
3851 * kptr_ref, bpf_list_head, bpf_rb_root.
3852 * kptr_ref only supports storing kernel types, which can't store
3853 * references to program allocated local types.
3854 *
3855 * Hence we only need to ensure that bpf_{list_head,rb_root} ownership
3856 * does not form cycles.
3857 */
3858 if (IS_ERR_OR_NULL(ptr: rec) || !(rec->field_mask & GRAPH_ROOT_MASK))
3859 return 0;
3860 for (i = 0; i < rec->cnt; i++) {
3861 struct btf_struct_meta *meta;
3862 u32 btf_id;
3863
3864 if (!(rec->fields[i].type & GRAPH_ROOT_MASK))
3865 continue;
3866 btf_id = rec->fields[i].graph_root.value_btf_id;
3867 meta = btf_find_struct_meta(btf, btf_id);
3868 if (!meta)
3869 return -EFAULT;
3870 rec->fields[i].graph_root.value_rec = meta->record;
3871
3872 /* We need to set value_rec for all root types, but no need
3873 * to check ownership cycle for a type unless it's also a
3874 * node type.
3875 */
3876 if (!(rec->field_mask & GRAPH_NODE_MASK))
3877 continue;
3878
3879 /* We need to ensure ownership acyclicity among all types. The
3880 * proper way to do it would be to topologically sort all BTF
3881 * IDs based on the ownership edges, since there can be multiple
3882 * bpf_{list_head,rb_node} in a type. Instead, we use the
3883 * following resaoning:
3884 *
3885 * - A type can only be owned by another type in user BTF if it
3886 * has a bpf_{list,rb}_node. Let's call these node types.
3887 * - A type can only _own_ another type in user BTF if it has a
3888 * bpf_{list_head,rb_root}. Let's call these root types.
3889 *
3890 * We ensure that if a type is both a root and node, its
3891 * element types cannot be root types.
3892 *
3893 * To ensure acyclicity:
3894 *
3895 * When A is an root type but not a node, its ownership
3896 * chain can be:
3897 * A -> B -> C
3898 * Where:
3899 * - A is an root, e.g. has bpf_rb_root.
3900 * - B is both a root and node, e.g. has bpf_rb_node and
3901 * bpf_list_head.
3902 * - C is only an root, e.g. has bpf_list_node
3903 *
3904 * When A is both a root and node, some other type already
3905 * owns it in the BTF domain, hence it can not own
3906 * another root type through any of the ownership edges.
3907 * A -> B
3908 * Where:
3909 * - A is both an root and node.
3910 * - B is only an node.
3911 */
3912 if (meta->record->field_mask & GRAPH_ROOT_MASK)
3913 return -ELOOP;
3914 }
3915 return 0;
3916}
3917
3918static void __btf_struct_show(const struct btf *btf, const struct btf_type *t,
3919 u32 type_id, void *data, u8 bits_offset,
3920 struct btf_show *show)
3921{
3922 const struct btf_member *member;
3923 void *safe_data;
3924 u32 i;
3925
3926 safe_data = btf_show_start_struct_type(show, t, type_id, data);
3927 if (!safe_data)
3928 return;
3929
3930 for_each_member(i, t, member) {
3931 const struct btf_type *member_type = btf_type_by_id(btf,
3932 member->type);
3933 const struct btf_kind_operations *ops;
3934 u32 member_offset, bitfield_size;
3935 u32 bytes_offset;
3936 u8 bits8_offset;
3937
3938 btf_show_start_member(show, m: member);
3939
3940 member_offset = __btf_member_bit_offset(struct_type: t, member);
3941 bitfield_size = __btf_member_bitfield_size(struct_type: t, member);
3942 bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset);
3943 bits8_offset = BITS_PER_BYTE_MASKED(member_offset);
3944 if (bitfield_size) {
3945 safe_data = btf_show_start_type(show, t: member_type,
3946 type_id: member->type,
3947 data: data + bytes_offset);
3948 if (safe_data)
3949 btf_bitfield_show(data: safe_data,
3950 bits_offset: bits8_offset,
3951 nr_bits: bitfield_size, show);
3952 btf_show_end_type(show);
3953 } else {
3954 ops = btf_type_ops(t: member_type);
3955 ops->show(btf, member_type, member->type,
3956 data + bytes_offset, bits8_offset, show);
3957 }
3958
3959 btf_show_end_member(show);
3960 }
3961
3962 btf_show_end_struct_type(show);
3963}
3964
3965static void btf_struct_show(const struct btf *btf, const struct btf_type *t,
3966 u32 type_id, void *data, u8 bits_offset,
3967 struct btf_show *show)
3968{
3969 const struct btf_member *m = show->state.member;
3970
3971 /*
3972 * First check if any members would be shown (are non-zero).
3973 * See comments above "struct btf_show" definition for more
3974 * details on how this works at a high-level.
3975 */
3976 if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
3977 if (!show->state.depth_check) {
3978 show->state.depth_check = show->state.depth + 1;
3979 show->state.depth_to_show = 0;
3980 }
3981 __btf_struct_show(btf, t, type_id, data, bits_offset, show);
3982 /* Restore saved member data here */
3983 show->state.member = m;
3984 if (show->state.depth_check != show->state.depth + 1)
3985 return;
3986 show->state.depth_check = 0;
3987
3988 if (show->state.depth_to_show <= show->state.depth)
3989 return;
3990 /*
3991 * Reaching here indicates we have recursed and found
3992 * non-zero child values.
3993 */
3994 }
3995
3996 __btf_struct_show(btf, t, type_id, data, bits_offset, show);
3997}
3998
3999static struct btf_kind_operations struct_ops = {
4000 .check_meta = btf_struct_check_meta,
4001 .resolve = btf_struct_resolve,
4002 .check_member = btf_struct_check_member,
4003 .check_kflag_member = btf_generic_check_kflag_member,
4004 .log_details = btf_struct_log,
4005 .show = btf_struct_show,
4006};
4007
4008static int btf_enum_check_member(struct btf_verifier_env *env,
4009 const struct btf_type *struct_type,
4010 const struct btf_member *member,
4011 const struct btf_type *member_type)
4012{
4013 u32 struct_bits_off = member->offset;
4014 u32 struct_size, bytes_offset;
4015
4016 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
4017 btf_verifier_log_member(env, struct_type, member,
4018 fmt: "Member is not byte aligned");
4019 return -EINVAL;
4020 }
4021
4022 struct_size = struct_type->size;
4023 bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
4024 if (struct_size - bytes_offset < member_type->size) {
4025 btf_verifier_log_member(env, struct_type, member,
4026 fmt: "Member exceeds struct_size");
4027 return -EINVAL;
4028 }
4029
4030 return 0;
4031}
4032
4033static int btf_enum_check_kflag_member(struct btf_verifier_env *env,
4034 const struct btf_type *struct_type,
4035 const struct btf_member *member,
4036 const struct btf_type *member_type)
4037{
4038 u32 struct_bits_off, nr_bits, bytes_end, struct_size;
4039 u32 int_bitsize = sizeof(int) * BITS_PER_BYTE;
4040
4041 struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
4042 nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
4043 if (!nr_bits) {
4044 if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
4045 btf_verifier_log_member(env, struct_type, member,
4046 fmt: "Member is not byte aligned");
4047 return -EINVAL;
4048 }
4049
4050 nr_bits = int_bitsize;
4051 } else if (nr_bits > int_bitsize) {
4052 btf_verifier_log_member(env, struct_type, member,
4053 fmt: "Invalid member bitfield_size");
4054 return -EINVAL;
4055 }
4056
4057 struct_size = struct_type->size;
4058 bytes_end = BITS_ROUNDUP_BYTES(struct_bits_off + nr_bits);
4059 if (struct_size < bytes_end) {
4060 btf_verifier_log_member(env, struct_type, member,
4061 fmt: "Member exceeds struct_size");
4062 return -EINVAL;
4063 }
4064
4065 return 0;
4066}
4067
4068static s32 btf_enum_check_meta(struct btf_verifier_env *env,
4069 const struct btf_type *t,
4070 u32 meta_left)
4071{
4072 const struct btf_enum *enums = btf_type_enum(t);
4073 struct btf *btf = env->btf;
4074 const char *fmt_str;
4075 u16 i, nr_enums;
4076 u32 meta_needed;
4077
4078 nr_enums = btf_type_vlen(t);
4079 meta_needed = nr_enums * sizeof(*enums);
4080
4081 if (meta_left < meta_needed) {
4082 btf_verifier_log_basic(env, t,
4083 "meta_left:%u meta_needed:%u",
4084 meta_left, meta_needed);
4085 return -EINVAL;
4086 }
4087
4088 if (t->size > 8 || !is_power_of_2(n: t->size)) {
4089 btf_verifier_log_type(env, t, "Unexpected size");
4090 return -EINVAL;
4091 }
4092
4093 /* enum type either no name or a valid one */
4094 if (t->name_off &&
4095 !btf_name_valid_identifier(btf: env->btf, offset: t->name_off)) {
4096 btf_verifier_log_type(env, t, "Invalid name");
4097 return -EINVAL;
4098 }
4099
4100 btf_verifier_log_type(env, t, NULL);
4101
4102 for (i = 0; i < nr_enums; i++) {
4103 if (!btf_name_offset_valid(btf, offset: enums[i].name_off)) {
4104 btf_verifier_log(env, fmt: "\tInvalid name_offset:%u",
4105 enums[i].name_off);
4106 return -EINVAL;
4107 }
4108
4109 /* enum member must have a valid name */
4110 if (!enums[i].name_off ||
4111 !btf_name_valid_identifier(btf, offset: enums[i].name_off)) {
4112 btf_verifier_log_type(env, t, "Invalid name");
4113 return -EINVAL;
4114 }
4115
4116 if (env->log.level == BPF_LOG_KERNEL)
4117 continue;
4118 fmt_str = btf_type_kflag(t) ? "\t%s val=%d\n" : "\t%s val=%u\n";
4119 btf_verifier_log(env, fmt: fmt_str,
4120 __btf_name_by_offset(btf, offset: enums[i].name_off),
4121 enums[i].val);
4122 }
4123
4124 return meta_needed;
4125}
4126
4127static void btf_enum_log(struct btf_verifier_env *env,
4128 const struct btf_type *t)
4129{
4130 btf_verifier_log(env, fmt: "size=%u vlen=%u", t->size, btf_type_vlen(t));
4131}
4132
4133static void btf_enum_show(const struct btf *btf, const struct btf_type *t,
4134 u32 type_id, void *data, u8 bits_offset,
4135 struct btf_show *show)
4136{
4137 const struct btf_enum *enums = btf_type_enum(t);
4138 u32 i, nr_enums = btf_type_vlen(t);
4139 void *safe_data;
4140 int v;
4141
4142 safe_data = btf_show_start_type(show, t, type_id, data);
4143 if (!safe_data)
4144 return;
4145
4146 v = *(int *)safe_data;
4147
4148 for (i = 0; i < nr_enums; i++) {
4149 if (v != enums[i].val)
4150 continue;
4151
4152 btf_show_type_value(show, "%s",
4153 __btf_name_by_offset(btf,
4154 enums[i].name_off));
4155
4156 btf_show_end_type(show);
4157 return;
4158 }
4159
4160 if (btf_type_kflag(t))
4161 btf_show_type_value(show, "%d", v);
4162 else
4163 btf_show_type_value(show, "%u", v);
4164 btf_show_end_type(show);
4165}
4166
4167static struct btf_kind_operations enum_ops = {
4168 .check_meta = btf_enum_check_meta,
4169 .resolve = btf_df_resolve,
4170 .check_member = btf_enum_check_member,
4171 .check_kflag_member = btf_enum_check_kflag_member,
4172 .log_details = btf_enum_log,
4173 .show = btf_enum_show,
4174};
4175
4176static s32 btf_enum64_check_meta(struct btf_verifier_env *env,
4177 const struct btf_type *t,
4178 u32 meta_left)
4179{
4180 const struct btf_enum64 *enums = btf_type_enum64(t);
4181 struct btf *btf = env->btf;
4182 const char *fmt_str;
4183 u16 i, nr_enums;
4184 u32 meta_needed;
4185
4186 nr_enums = btf_type_vlen(t);
4187 meta_needed = nr_enums * sizeof(*enums);
4188
4189 if (meta_left < meta_needed) {
4190 btf_verifier_log_basic(env, t,
4191 "meta_left:%u meta_needed:%u",
4192 meta_left, meta_needed);
4193 return -EINVAL;
4194 }
4195
4196 if (t->size > 8 || !is_power_of_2(n: t->size)) {
4197 btf_verifier_log_type(env, t, "Unexpected size");
4198 return -EINVAL;
4199 }
4200
4201 /* enum type either no name or a valid one */
4202 if (t->name_off &&
4203 !btf_name_valid_identifier(btf: env->btf, offset: t->name_off)) {
4204 btf_verifier_log_type(env, t, "Invalid name");
4205 return -EINVAL;
4206 }
4207
4208 btf_verifier_log_type(env, t, NULL);
4209
4210 for (i = 0; i < nr_enums; i++) {
4211 if (!btf_name_offset_valid(btf, offset: enums[i].name_off)) {
4212 btf_verifier_log(env, fmt: "\tInvalid name_offset:%u",
4213 enums[i].name_off);
4214 return -EINVAL;
4215 }
4216
4217 /* enum member must have a valid name */
4218 if (!enums[i].name_off ||
4219 !btf_name_valid_identifier(btf, offset: enums[i].name_off)) {
4220 btf_verifier_log_type(env, t, "Invalid name");
4221 return -EINVAL;
4222 }
4223
4224 if (env->log.level == BPF_LOG_KERNEL)
4225 continue;
4226
4227 fmt_str = btf_type_kflag(t) ? "\t%s val=%lld\n" : "\t%s val=%llu\n";
4228 btf_verifier_log(env, fmt: fmt_str,
4229 __btf_name_by_offset(btf, offset: enums[i].name_off),
4230 btf_enum64_value(e: enums + i));
4231 }
4232
4233 return meta_needed;
4234}
4235
4236static void btf_enum64_show(const struct btf *btf, const struct btf_type *t,
4237 u32 type_id, void *data, u8 bits_offset,
4238 struct btf_show *show)
4239{
4240 const struct btf_enum64 *enums = btf_type_enum64(t);
4241 u32 i, nr_enums = btf_type_vlen(t);
4242 void *safe_data;
4243 s64 v;
4244
4245 safe_data = btf_show_start_type(show, t, type_id, data);
4246 if (!safe_data)
4247 return;
4248
4249 v = *(u64 *)safe_data;
4250
4251 for (i = 0; i < nr_enums; i++) {
4252 if (v != btf_enum64_value(e: enums + i))
4253 continue;
4254
4255 btf_show_type_value(show, "%s",
4256 __btf_name_by_offset(btf,
4257 enums[i].name_off));
4258
4259 btf_show_end_type(show);
4260 return;
4261 }
4262
4263 if (btf_type_kflag(t))
4264 btf_show_type_value(show, "%lld", v);
4265 else
4266 btf_show_type_value(show, "%llu", v);
4267 btf_show_end_type(show);
4268}
4269
4270static struct btf_kind_operations enum64_ops = {
4271 .check_meta = btf_enum64_check_meta,
4272 .resolve = btf_df_resolve,
4273 .check_member = btf_enum_check_member,
4274 .check_kflag_member = btf_enum_check_kflag_member,
4275 .log_details = btf_enum_log,
4276 .show = btf_enum64_show,
4277};
4278
4279static s32 btf_func_proto_check_meta(struct btf_verifier_env *env,
4280 const struct btf_type *t,
4281 u32 meta_left)
4282{
4283 u32 meta_needed = btf_type_vlen(t) * sizeof(struct btf_param);
4284
4285 if (meta_left < meta_needed) {
4286 btf_verifier_log_basic(env, t,
4287 "meta_left:%u meta_needed:%u",
4288 meta_left, meta_needed);
4289 return -EINVAL;
4290 }
4291
4292 if (t->name_off) {
4293 btf_verifier_log_type(env, t, "Invalid name");
4294 return -EINVAL;
4295 }
4296
4297 if (btf_type_kflag(t)) {
4298 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4299 return -EINVAL;
4300 }
4301
4302 btf_verifier_log_type(env, t, NULL);
4303
4304 return meta_needed;
4305}
4306
4307static void btf_func_proto_log(struct btf_verifier_env *env,
4308 const struct btf_type *t)
4309{
4310 const struct btf_param *args = (const struct btf_param *)(t + 1);
4311 u16 nr_args = btf_type_vlen(t), i;
4312
4313 btf_verifier_log(env, fmt: "return=%u args=(", t->type);
4314 if (!nr_args) {
4315 btf_verifier_log(env, fmt: "void");
4316 goto done;
4317 }
4318
4319 if (nr_args == 1 && !args[0].type) {
4320 /* Only one vararg */
4321 btf_verifier_log(env, fmt: "vararg");
4322 goto done;
4323 }
4324
4325 btf_verifier_log(env, fmt: "%u %s", args[0].type,
4326 __btf_name_by_offset(btf: env->btf,
4327 offset: args[0].name_off));
4328 for (i = 1; i < nr_args - 1; i++)
4329 btf_verifier_log(env, fmt: ", %u %s", args[i].type,
4330 __btf_name_by_offset(btf: env->btf,
4331 offset: args[i].name_off));
4332
4333 if (nr_args > 1) {
4334 const struct btf_param *last_arg = &args[nr_args - 1];
4335
4336 if (last_arg->type)
4337 btf_verifier_log(env, fmt: ", %u %s", last_arg->type,
4338 __btf_name_by_offset(btf: env->btf,
4339 offset: last_arg->name_off));
4340 else
4341 btf_verifier_log(env, fmt: ", vararg");
4342 }
4343
4344done:
4345 btf_verifier_log(env, fmt: ")");
4346}
4347
4348static struct btf_kind_operations func_proto_ops = {
4349 .check_meta = btf_func_proto_check_meta,
4350 .resolve = btf_df_resolve,
4351 /*
4352 * BTF_KIND_FUNC_PROTO cannot be directly referred by
4353 * a struct's member.
4354 *
4355 * It should be a function pointer instead.
4356 * (i.e. struct's member -> BTF_KIND_PTR -> BTF_KIND_FUNC_PROTO)
4357 *
4358 * Hence, there is no btf_func_check_member().
4359 */
4360 .check_member = btf_df_check_member,
4361 .check_kflag_member = btf_df_check_kflag_member,
4362 .log_details = btf_func_proto_log,
4363 .show = btf_df_show,
4364};
4365
4366static s32 btf_func_check_meta(struct btf_verifier_env *env,
4367 const struct btf_type *t,
4368 u32 meta_left)
4369{
4370 if (!t->name_off ||
4371 !btf_name_valid_identifier(btf: env->btf, offset: t->name_off)) {
4372 btf_verifier_log_type(env, t, "Invalid name");
4373 return -EINVAL;
4374 }
4375
4376 if (btf_type_vlen(t) > BTF_FUNC_GLOBAL) {
4377 btf_verifier_log_type(env, t, "Invalid func linkage");
4378 return -EINVAL;
4379 }
4380
4381 if (btf_type_kflag(t)) {
4382 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4383 return -EINVAL;
4384 }
4385
4386 btf_verifier_log_type(env, t, NULL);
4387
4388 return 0;
4389}
4390
4391static int btf_func_resolve(struct btf_verifier_env *env,
4392 const struct resolve_vertex *v)
4393{
4394 const struct btf_type *t = v->t;
4395 u32 next_type_id = t->type;
4396 int err;
4397
4398 err = btf_func_check(env, t);
4399 if (err)
4400 return err;
4401
4402 env_stack_pop_resolved(env, resolved_type_id: next_type_id, resolved_size: 0);
4403 return 0;
4404}
4405
4406static struct btf_kind_operations func_ops = {
4407 .check_meta = btf_func_check_meta,
4408 .resolve = btf_func_resolve,
4409 .check_member = btf_df_check_member,
4410 .check_kflag_member = btf_df_check_kflag_member,
4411 .log_details = btf_ref_type_log,
4412 .show = btf_df_show,
4413};
4414
4415static s32 btf_var_check_meta(struct btf_verifier_env *env,
4416 const struct btf_type *t,
4417 u32 meta_left)
4418{
4419 const struct btf_var *var;
4420 u32 meta_needed = sizeof(*var);
4421
4422 if (meta_left < meta_needed) {
4423 btf_verifier_log_basic(env, t,
4424 "meta_left:%u meta_needed:%u",
4425 meta_left, meta_needed);
4426 return -EINVAL;
4427 }
4428
4429 if (btf_type_vlen(t)) {
4430 btf_verifier_log_type(env, t, "vlen != 0");
4431 return -EINVAL;
4432 }
4433
4434 if (btf_type_kflag(t)) {
4435 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4436 return -EINVAL;
4437 }
4438
4439 if (!t->name_off ||
4440 !__btf_name_valid(btf: env->btf, offset: t->name_off)) {
4441 btf_verifier_log_type(env, t, "Invalid name");
4442 return -EINVAL;
4443 }
4444
4445 /* A var cannot be in type void */
4446 if (!t->type || !BTF_TYPE_ID_VALID(t->type)) {
4447 btf_verifier_log_type(env, t, "Invalid type_id");
4448 return -EINVAL;
4449 }
4450
4451 var = btf_type_var(t);
4452 if (var->linkage != BTF_VAR_STATIC &&
4453 var->linkage != BTF_VAR_GLOBAL_ALLOCATED) {
4454 btf_verifier_log_type(env, t, "Linkage not supported");
4455 return -EINVAL;
4456 }
4457
4458 btf_verifier_log_type(env, t, NULL);
4459
4460 return meta_needed;
4461}
4462
4463static void btf_var_log(struct btf_verifier_env *env, const struct btf_type *t)
4464{
4465 const struct btf_var *var = btf_type_var(t);
4466
4467 btf_verifier_log(env, fmt: "type_id=%u linkage=%u", t->type, var->linkage);
4468}
4469
4470static const struct btf_kind_operations var_ops = {
4471 .check_meta = btf_var_check_meta,
4472 .resolve = btf_var_resolve,
4473 .check_member = btf_df_check_member,
4474 .check_kflag_member = btf_df_check_kflag_member,
4475 .log_details = btf_var_log,
4476 .show = btf_var_show,
4477};
4478
4479static s32 btf_datasec_check_meta(struct btf_verifier_env *env,
4480 const struct btf_type *t,
4481 u32 meta_left)
4482{
4483 const struct btf_var_secinfo *vsi;
4484 u64 last_vsi_end_off = 0, sum = 0;
4485 u32 i, meta_needed;
4486
4487 meta_needed = btf_type_vlen(t) * sizeof(*vsi);
4488 if (meta_left < meta_needed) {
4489 btf_verifier_log_basic(env, t,
4490 "meta_left:%u meta_needed:%u",
4491 meta_left, meta_needed);
4492 return -EINVAL;
4493 }
4494
4495 if (!t->size) {
4496 btf_verifier_log_type(env, t, "size == 0");
4497 return -EINVAL;
4498 }
4499
4500 if (btf_type_kflag(t)) {
4501 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4502 return -EINVAL;
4503 }
4504
4505 if (!t->name_off ||
4506 !btf_name_valid_section(btf: env->btf, offset: t->name_off)) {
4507 btf_verifier_log_type(env, t, "Invalid name");
4508 return -EINVAL;
4509 }
4510
4511 btf_verifier_log_type(env, t, NULL);
4512
4513 for_each_vsi(i, t, vsi) {
4514 /* A var cannot be in type void */
4515 if (!vsi->type || !BTF_TYPE_ID_VALID(vsi->type)) {
4516 btf_verifier_log_vsi(env, datasec_type: t, vsi,
4517 fmt: "Invalid type_id");
4518 return -EINVAL;
4519 }
4520
4521 if (vsi->offset < last_vsi_end_off || vsi->offset >= t->size) {
4522 btf_verifier_log_vsi(env, datasec_type: t, vsi,
4523 fmt: "Invalid offset");
4524 return -EINVAL;
4525 }
4526
4527 if (!vsi->size || vsi->size > t->size) {
4528 btf_verifier_log_vsi(env, datasec_type: t, vsi,
4529 fmt: "Invalid size");
4530 return -EINVAL;
4531 }
4532
4533 last_vsi_end_off = vsi->offset + vsi->size;
4534 if (last_vsi_end_off > t->size) {
4535 btf_verifier_log_vsi(env, datasec_type: t, vsi,
4536 fmt: "Invalid offset+size");
4537 return -EINVAL;
4538 }
4539
4540 btf_verifier_log_vsi(env, datasec_type: t, vsi, NULL);
4541 sum += vsi->size;
4542 }
4543
4544 if (t->size < sum) {
4545 btf_verifier_log_type(env, t, "Invalid btf_info size");
4546 return -EINVAL;
4547 }
4548
4549 return meta_needed;
4550}
4551
4552static int btf_datasec_resolve(struct btf_verifier_env *env,
4553 const struct resolve_vertex *v)
4554{
4555 const struct btf_var_secinfo *vsi;
4556 struct btf *btf = env->btf;
4557 u16 i;
4558
4559 env->resolve_mode = RESOLVE_TBD;
4560 for_each_vsi_from(i, v->next_member, v->t, vsi) {
4561 u32 var_type_id = vsi->type, type_id, type_size = 0;
4562 const struct btf_type *var_type = btf_type_by_id(env->btf,
4563 var_type_id);
4564 if (!var_type || !btf_type_is_var(t: var_type)) {
4565 btf_verifier_log_vsi(env, datasec_type: v->t, vsi,
4566 fmt: "Not a VAR kind member");
4567 return -EINVAL;
4568 }
4569
4570 if (!env_type_is_resolve_sink(env, next_type: var_type) &&
4571 !env_type_is_resolved(env, type_id: var_type_id)) {
4572 env_stack_set_next_member(env, next_member: i + 1);
4573 return env_stack_push(env, t: var_type, type_id: var_type_id);
4574 }
4575
4576 type_id = var_type->type;
4577 if (!btf_type_id_size(btf, type_id: &type_id, ret_size: &type_size)) {
4578 btf_verifier_log_vsi(env, datasec_type: v->t, vsi, fmt: "Invalid type");
4579 return -EINVAL;
4580 }
4581
4582 if (vsi->size < type_size) {
4583 btf_verifier_log_vsi(env, datasec_type: v->t, vsi, fmt: "Invalid size");
4584 return -EINVAL;
4585 }
4586 }
4587
4588 env_stack_pop_resolved(env, resolved_type_id: 0, resolved_size: 0);
4589 return 0;
4590}
4591
4592static void btf_datasec_log(struct btf_verifier_env *env,
4593 const struct btf_type *t)
4594{
4595 btf_verifier_log(env, fmt: "size=%u vlen=%u", t->size, btf_type_vlen(t));
4596}
4597
4598static void btf_datasec_show(const struct btf *btf,
4599 const struct btf_type *t, u32 type_id,
4600 void *data, u8 bits_offset,
4601 struct btf_show *show)
4602{
4603 const struct btf_var_secinfo *vsi;
4604 const struct btf_type *var;
4605 u32 i;
4606
4607 if (!btf_show_start_type(show, t, type_id, data))
4608 return;
4609
4610 btf_show_type_value(show, "section (\"%s\") = {",
4611 __btf_name_by_offset(btf, t->name_off));
4612 for_each_vsi(i, t, vsi) {
4613 var = btf_type_by_id(btf, vsi->type);
4614 if (i)
4615 btf_show(show, fmt: ",");
4616 btf_type_ops(t: var)->show(btf, var, vsi->type,
4617 data + vsi->offset, bits_offset, show);
4618 }
4619 btf_show_end_type(show);
4620}
4621
4622static const struct btf_kind_operations datasec_ops = {
4623 .check_meta = btf_datasec_check_meta,
4624 .resolve = btf_datasec_resolve,
4625 .check_member = btf_df_check_member,
4626 .check_kflag_member = btf_df_check_kflag_member,
4627 .log_details = btf_datasec_log,
4628 .show = btf_datasec_show,
4629};
4630
4631static s32 btf_float_check_meta(struct btf_verifier_env *env,
4632 const struct btf_type *t,
4633 u32 meta_left)
4634{
4635 if (btf_type_vlen(t)) {
4636 btf_verifier_log_type(env, t, "vlen != 0");
4637 return -EINVAL;
4638 }
4639
4640 if (btf_type_kflag(t)) {
4641 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4642 return -EINVAL;
4643 }
4644
4645 if (t->size != 2 && t->size != 4 && t->size != 8 && t->size != 12 &&
4646 t->size != 16) {
4647 btf_verifier_log_type(env, t, "Invalid type_size");
4648 return -EINVAL;
4649 }
4650
4651 btf_verifier_log_type(env, t, NULL);
4652
4653 return 0;
4654}
4655
4656static int btf_float_check_member(struct btf_verifier_env *env,
4657 const struct btf_type *struct_type,
4658 const struct btf_member *member,
4659 const struct btf_type *member_type)
4660{
4661 u64 start_offset_bytes;
4662 u64 end_offset_bytes;
4663 u64 misalign_bits;
4664 u64 align_bytes;
4665 u64 align_bits;
4666
4667 /* Different architectures have different alignment requirements, so
4668 * here we check only for the reasonable minimum. This way we ensure
4669 * that types after CO-RE can pass the kernel BTF verifier.
4670 */
4671 align_bytes = min_t(u64, sizeof(void *), member_type->size);
4672 align_bits = align_bytes * BITS_PER_BYTE;
4673 div64_u64_rem(dividend: member->offset, divisor: align_bits, remainder: &misalign_bits);
4674 if (misalign_bits) {
4675 btf_verifier_log_member(env, struct_type, member,
4676 fmt: "Member is not properly aligned");
4677 return -EINVAL;
4678 }
4679
4680 start_offset_bytes = member->offset / BITS_PER_BYTE;
4681 end_offset_bytes = start_offset_bytes + member_type->size;
4682 if (end_offset_bytes > struct_type->size) {
4683 btf_verifier_log_member(env, struct_type, member,
4684 fmt: "Member exceeds struct_size");
4685 return -EINVAL;
4686 }
4687
4688 return 0;
4689}
4690
4691static void btf_float_log(struct btf_verifier_env *env,
4692 const struct btf_type *t)
4693{
4694 btf_verifier_log(env, fmt: "size=%u", t->size);
4695}
4696
4697static const struct btf_kind_operations float_ops = {
4698 .check_meta = btf_float_check_meta,
4699 .resolve = btf_df_resolve,
4700 .check_member = btf_float_check_member,
4701 .check_kflag_member = btf_generic_check_kflag_member,
4702 .log_details = btf_float_log,
4703 .show = btf_df_show,
4704};
4705
4706static s32 btf_decl_tag_check_meta(struct btf_verifier_env *env,
4707 const struct btf_type *t,
4708 u32 meta_left)
4709{
4710 const struct btf_decl_tag *tag;
4711 u32 meta_needed = sizeof(*tag);
4712 s32 component_idx;
4713 const char *value;
4714
4715 if (meta_left < meta_needed) {
4716 btf_verifier_log_basic(env, t,
4717 "meta_left:%u meta_needed:%u",
4718 meta_left, meta_needed);
4719 return -EINVAL;
4720 }
4721
4722 value = btf_name_by_offset(btf: env->btf, offset: t->name_off);
4723 if (!value || !value[0]) {
4724 btf_verifier_log_type(env, t, "Invalid value");
4725 return -EINVAL;
4726 }
4727
4728 if (btf_type_vlen(t)) {
4729 btf_verifier_log_type(env, t, "vlen != 0");
4730 return -EINVAL;
4731 }
4732
4733 if (btf_type_kflag(t)) {
4734 btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4735 return -EINVAL;
4736 }
4737
4738 component_idx = btf_type_decl_tag(t)->component_idx;
4739 if (component_idx < -1) {
4740 btf_verifier_log_type(env, t, "Invalid component_idx");
4741 return -EINVAL;
4742 }
4743
4744 btf_verifier_log_type(env, t, NULL);
4745
4746 return meta_needed;
4747}
4748
4749static int btf_decl_tag_resolve(struct btf_verifier_env *env,
4750 const struct resolve_vertex *v)
4751{
4752 const struct btf_type *next_type;
4753 const struct btf_type *t = v->t;
4754 u32 next_type_id = t->type;
4755 struct btf *btf = env->btf;
4756 s32 component_idx;
4757 u32 vlen;
4758
4759 next_type = btf_type_by_id(btf, next_type_id);
4760 if (!next_type || !btf_type_is_decl_tag_target(t: next_type)) {
4761 btf_verifier_log_type(env, v->t, "Invalid type_id");
4762 return -EINVAL;
4763 }
4764
4765 if (!env_type_is_resolve_sink(env, next_type) &&
4766 !env_type_is_resolved(env, type_id: next_type_id))
4767 return env_stack_push(env, t: next_type, type_id: next_type_id);
4768
4769 component_idx = btf_type_decl_tag(t)->component_idx;
4770 if (component_idx != -1) {
4771 if (btf_type_is_var(t: next_type) || btf_type_is_typedef(t: next_type)) {
4772 btf_verifier_log_type(env, v->t, "Invalid component_idx");
4773 return -EINVAL;
4774 }
4775
4776 if (btf_type_is_struct(t: next_type)) {
4777 vlen = btf_type_vlen(t: next_type);
4778 } else {
4779 /* next_type should be a function */
4780 next_type = btf_type_by_id(btf, next_type->type);
4781 vlen = btf_type_vlen(t: next_type);
4782 }
4783
4784 if ((u32)component_idx >= vlen) {
4785 btf_verifier_log_type(env, v->t, "Invalid component_idx");
4786 return -EINVAL;
4787 }
4788 }
4789
4790 env_stack_pop_resolved(env, resolved_type_id: next_type_id, resolved_size: 0);
4791
4792 return 0;
4793}
4794
4795static void btf_decl_tag_log(struct btf_verifier_env *env, const struct btf_type *t)
4796{
4797 btf_verifier_log(env, fmt: "type=%u component_idx=%d", t->type,
4798 btf_type_decl_tag(t)->component_idx);
4799}
4800
4801static const struct btf_kind_operations decl_tag_ops = {
4802 .check_meta = btf_decl_tag_check_meta,
4803 .resolve = btf_decl_tag_resolve,
4804 .check_member = btf_df_check_member,
4805 .check_kflag_member = btf_df_check_kflag_member,
4806 .log_details = btf_decl_tag_log,
4807 .show = btf_df_show,
4808};
4809
4810static int btf_func_proto_check(struct btf_verifier_env *env,
4811 const struct btf_type *t)
4812{
4813 const struct btf_type *ret_type;
4814 const struct btf_param *args;
4815 const struct btf *btf;
4816 u16 nr_args, i;
4817 int err;
4818
4819 btf = env->btf;
4820 args = (const struct btf_param *)(t + 1);
4821 nr_args = btf_type_vlen(t);
4822
4823 /* Check func return type which could be "void" (t->type == 0) */
4824 if (t->type) {
4825 u32 ret_type_id = t->type;
4826
4827 ret_type = btf_type_by_id(btf, ret_type_id);
4828 if (!ret_type) {
4829 btf_verifier_log_type(env, t, "Invalid return type");
4830 return -EINVAL;
4831 }
4832
4833 if (btf_type_is_resolve_source_only(t: ret_type)) {
4834 btf_verifier_log_type(env, t, "Invalid return type");
4835 return -EINVAL;
4836 }
4837
4838 if (btf_type_needs_resolve(t: ret_type) &&
4839 !env_type_is_resolved(env, type_id: ret_type_id)) {
4840 err = btf_resolve(env, t: ret_type, type_id: ret_type_id);
4841 if (err)
4842 return err;
4843 }
4844
4845 /* Ensure the return type is a type that has a size */
4846 if (!btf_type_id_size(btf, type_id: &ret_type_id, NULL)) {
4847 btf_verifier_log_type(env, t, "Invalid return type");
4848 return -EINVAL;
4849 }
4850 }
4851
4852 if (!nr_args)
4853 return 0;
4854
4855 /* Last func arg type_id could be 0 if it is a vararg */
4856 if (!args[nr_args - 1].type) {
4857 if (args[nr_args - 1].name_off) {
4858 btf_verifier_log_type(env, t, "Invalid arg#%u",
4859 nr_args);
4860 return -EINVAL;
4861 }
4862 nr_args--;
4863 }
4864
4865 for (i = 0; i < nr_args; i++) {
4866 const struct btf_type *arg_type;
4867 u32 arg_type_id;
4868
4869 arg_type_id = args[i].type;
4870 arg_type = btf_type_by_id(btf, arg_type_id);
4871 if (!arg_type) {
4872 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
4873 return -EINVAL;
4874 }
4875
4876 if (btf_type_is_resolve_source_only(t: arg_type)) {
4877 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
4878 return -EINVAL;
4879 }
4880
4881 if (args[i].name_off &&
4882 (!btf_name_offset_valid(btf, offset: args[i].name_off) ||
4883 !btf_name_valid_identifier(btf, offset: args[i].name_off))) {
4884 btf_verifier_log_type(env, t,
4885 "Invalid arg#%u", i + 1);
4886 return -EINVAL;
4887 }
4888
4889 if (btf_type_needs_resolve(t: arg_type) &&
4890 !env_type_is_resolved(env, type_id: arg_type_id)) {
4891 err = btf_resolve(env, t: arg_type, type_id: arg_type_id);
4892 if (err)
4893 return err;
4894 }
4895
4896 if (!btf_type_id_size(btf, type_id: &arg_type_id, NULL)) {
4897 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
4898 return -EINVAL;
4899 }
4900 }
4901
4902 return 0;
4903}
4904
4905static int btf_func_check(struct btf_verifier_env *env,
4906 const struct btf_type *t)
4907{
4908 const struct btf_type *proto_type;
4909 const struct btf_param *args;
4910 const struct btf *btf;
4911 u16 nr_args, i;
4912
4913 btf = env->btf;
4914 proto_type = btf_type_by_id(btf, t->type);
4915
4916 if (!proto_type || !btf_type_is_func_proto(t: proto_type)) {
4917 btf_verifier_log_type(env, t, "Invalid type_id");
4918 return -EINVAL;
4919 }
4920
4921 args = (const struct btf_param *)(proto_type + 1);
4922 nr_args = btf_type_vlen(t: proto_type);
4923 for (i = 0; i < nr_args; i++) {
4924 if (!args[i].name_off && args[i].type) {
4925 btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
4926 return -EINVAL;
4927 }
4928 }
4929
4930 return 0;
4931}
4932
4933static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = {
4934 [BTF_KIND_INT] = &int_ops,
4935 [BTF_KIND_PTR] = &ptr_ops,
4936 [BTF_KIND_ARRAY] = &array_ops,
4937 [BTF_KIND_STRUCT] = &struct_ops,
4938 [BTF_KIND_UNION] = &struct_ops,
4939 [BTF_KIND_ENUM] = &enum_ops,
4940 [BTF_KIND_FWD] = &fwd_ops,
4941 [BTF_KIND_TYPEDEF] = &modifier_ops,
4942 [BTF_KIND_VOLATILE] = &modifier_ops,
4943 [BTF_KIND_CONST] = &modifier_ops,
4944 [BTF_KIND_RESTRICT] = &modifier_ops,
4945 [BTF_KIND_FUNC] = &func_ops,
4946 [BTF_KIND_FUNC_PROTO] = &func_proto_ops,
4947 [BTF_KIND_VAR] = &var_ops,
4948 [BTF_KIND_DATASEC] = &datasec_ops,
4949 [BTF_KIND_FLOAT] = &float_ops,
4950 [BTF_KIND_DECL_TAG] = &decl_tag_ops,
4951 [BTF_KIND_TYPE_TAG] = &modifier_ops,
4952 [BTF_KIND_ENUM64] = &enum64_ops,
4953};
4954
4955static s32 btf_check_meta(struct btf_verifier_env *env,
4956 const struct btf_type *t,
4957 u32 meta_left)
4958{
4959 u32 saved_meta_left = meta_left;
4960 s32 var_meta_size;
4961
4962 if (meta_left < sizeof(*t)) {
4963 btf_verifier_log(env, fmt: "[%u] meta_left:%u meta_needed:%zu",
4964 env->log_type_id, meta_left, sizeof(*t));
4965 return -EINVAL;
4966 }
4967 meta_left -= sizeof(*t);
4968
4969 if (t->info & ~BTF_INFO_MASK) {
4970 btf_verifier_log(env, fmt: "[%u] Invalid btf_info:%x",
4971 env->log_type_id, t->info);
4972 return -EINVAL;
4973 }
4974
4975 if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX ||
4976 BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) {
4977 btf_verifier_log(env, fmt: "[%u] Invalid kind:%u",
4978 env->log_type_id, BTF_INFO_KIND(t->info));
4979 return -EINVAL;
4980 }
4981
4982 if (!btf_name_offset_valid(btf: env->btf, offset: t->name_off)) {
4983 btf_verifier_log(env, fmt: "[%u] Invalid name_offset:%u",
4984 env->log_type_id, t->name_off);
4985 return -EINVAL;
4986 }
4987
4988 var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left);
4989 if (var_meta_size < 0)
4990 return var_meta_size;
4991
4992 meta_left -= var_meta_size;
4993
4994 return saved_meta_left - meta_left;
4995}
4996
4997static int btf_check_all_metas(struct btf_verifier_env *env)
4998{
4999 struct btf *btf = env->btf;
5000 struct btf_header *hdr;
5001 void *cur, *end;
5002
5003 hdr = &btf->hdr;
5004 cur = btf->nohdr_data + hdr->type_off;
5005 end = cur + hdr->type_len;
5006
5007 env->log_type_id = btf->base_btf ? btf->start_id : 1;
5008 while (cur < end) {
5009 struct btf_type *t = cur;
5010 s32 meta_size;
5011
5012 meta_size = btf_check_meta(env, t, meta_left: end - cur);
5013 if (meta_size < 0)
5014 return meta_size;
5015
5016 btf_add_type(env, t);
5017 cur += meta_size;
5018 env->log_type_id++;
5019 }
5020
5021 return 0;
5022}
5023
5024static bool btf_resolve_valid(struct btf_verifier_env *env,
5025 const struct btf_type *t,
5026 u32 type_id)
5027{
5028 struct btf *btf = env->btf;
5029
5030 if (!env_type_is_resolved(env, type_id))
5031 return false;
5032
5033 if (btf_type_is_struct(t) || btf_type_is_datasec(t))
5034 return !btf_resolved_type_id(btf, type_id) &&
5035 !btf_resolved_type_size(btf, type_id);
5036
5037 if (btf_type_is_decl_tag(t) || btf_type_is_func(t))
5038 return btf_resolved_type_id(btf, type_id) &&
5039 !btf_resolved_type_size(btf, type_id);
5040
5041 if (btf_type_is_modifier(t) || btf_type_is_ptr(t) ||
5042 btf_type_is_var(t)) {
5043 t = btf_type_id_resolve(btf, type_id: &type_id);
5044 return t &&
5045 !btf_type_is_modifier(t) &&
5046 !btf_type_is_var(t) &&
5047 !btf_type_is_datasec(t);
5048 }
5049
5050 if (btf_type_is_array(t)) {
5051 const struct btf_array *array = btf_type_array(t);
5052 const struct btf_type *elem_type;
5053 u32 elem_type_id = array->type;
5054 u32 elem_size;
5055
5056 elem_type = btf_type_id_size(btf, type_id: &elem_type_id, ret_size: &elem_size);
5057 return elem_type && !btf_type_is_modifier(t: elem_type) &&
5058 (array->nelems * elem_size ==
5059 btf_resolved_type_size(btf, type_id));
5060 }
5061
5062 return false;
5063}
5064
5065static int btf_resolve(struct btf_verifier_env *env,
5066 const struct btf_type *t, u32 type_id)
5067{
5068 u32 save_log_type_id = env->log_type_id;
5069 const struct resolve_vertex *v;
5070 int err = 0;
5071
5072 env->resolve_mode = RESOLVE_TBD;
5073 env_stack_push(env, t, type_id);
5074 while (!err && (v = env_stack_peak(env))) {
5075 env->log_type_id = v->type_id;
5076 err = btf_type_ops(t: v->t)->resolve(env, v);
5077 }
5078
5079 env->log_type_id = type_id;
5080 if (err == -E2BIG) {
5081 btf_verifier_log_type(env, t,
5082 "Exceeded max resolving depth:%u",
5083 MAX_RESOLVE_DEPTH);
5084 } else if (err == -EEXIST) {
5085 btf_verifier_log_type(env, t, "Loop detected");
5086 }
5087
5088 /* Final sanity check */
5089 if (!err && !btf_resolve_valid(env, t, type_id)) {
5090 btf_verifier_log_type(env, t, "Invalid resolve state");
5091 err = -EINVAL;
5092 }
5093
5094 env->log_type_id = save_log_type_id;
5095 return err;
5096}
5097
5098static int btf_check_all_types(struct btf_verifier_env *env)
5099{
5100 struct btf *btf = env->btf;
5101 const struct btf_type *t;
5102 u32 type_id, i;
5103 int err;
5104
5105 err = env_resolve_init(env);
5106 if (err)
5107 return err;
5108
5109 env->phase++;
5110 for (i = btf->base_btf ? 0 : 1; i < btf->nr_types; i++) {
5111 type_id = btf->start_id + i;
5112 t = btf_type_by_id(btf, type_id);
5113
5114 env->log_type_id = type_id;
5115 if (btf_type_needs_resolve(t) &&
5116 !env_type_is_resolved(env, type_id)) {
5117 err = btf_resolve(env, t, type_id);
5118 if (err)
5119 return err;
5120 }
5121
5122 if (btf_type_is_func_proto(t)) {
5123 err = btf_func_proto_check(env, t);
5124 if (err)
5125 return err;
5126 }
5127 }
5128
5129 return 0;
5130}
5131
5132static int btf_parse_type_sec(struct btf_verifier_env *env)
5133{
5134 const struct btf_header *hdr = &env->btf->hdr;
5135 int err;
5136
5137 /* Type section must align to 4 bytes */
5138 if (hdr->type_off & (sizeof(u32) - 1)) {
5139 btf_verifier_log(env, fmt: "Unaligned type_off");
5140 return -EINVAL;
5141 }
5142
5143 if (!env->btf->base_btf && !hdr->type_len) {
5144 btf_verifier_log(env, fmt: "No type found");
5145 return -EINVAL;
5146 }
5147
5148 err = btf_check_all_metas(env);
5149 if (err)
5150 return err;
5151
5152 return btf_check_all_types(env);
5153}
5154
5155static int btf_parse_str_sec(struct btf_verifier_env *env)
5156{
5157 const struct btf_header *hdr;
5158 struct btf *btf = env->btf;
5159 const char *start, *end;
5160
5161 hdr = &btf->hdr;
5162 start = btf->nohdr_data + hdr->str_off;
5163 end = start + hdr->str_len;
5164
5165 if (end != btf->data + btf->data_size) {
5166 btf_verifier_log(env, fmt: "String section is not at the end");
5167 return -EINVAL;
5168 }
5169
5170 btf->strings = start;
5171
5172 if (btf->base_btf && !hdr->str_len)
5173 return 0;
5174 if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET || end[-1]) {
5175 btf_verifier_log(env, fmt: "Invalid string section");
5176 return -EINVAL;
5177 }
5178 if (!btf->base_btf && start[0]) {
5179 btf_verifier_log(env, fmt: "Invalid string section");
5180 return -EINVAL;
5181 }
5182
5183 return 0;
5184}
5185
5186static const size_t btf_sec_info_offset[] = {
5187 offsetof(struct btf_header, type_off),
5188 offsetof(struct btf_header, str_off),
5189};
5190
5191static int btf_sec_info_cmp(const void *a, const void *b)
5192{
5193 const struct btf_sec_info *x = a;
5194 const struct btf_sec_info *y = b;
5195
5196 return (int)(x->off - y->off) ? : (int)(x->len - y->len);
5197}
5198
5199static int btf_check_sec_info(struct btf_verifier_env *env,
5200 u32 btf_data_size)
5201{
5202 struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)];
5203 u32 total, expected_total, i;
5204 const struct btf_header *hdr;
5205 const struct btf *btf;
5206
5207 btf = env->btf;
5208 hdr = &btf->hdr;
5209
5210 /* Populate the secs from hdr */
5211 for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++)
5212 secs[i] = *(struct btf_sec_info *)((void *)hdr +
5213 btf_sec_info_offset[i]);
5214
5215 sort(base: secs, ARRAY_SIZE(btf_sec_info_offset),
5216 size: sizeof(struct btf_sec_info), cmp_func: btf_sec_info_cmp, NULL);
5217
5218 /* Check for gaps and overlap among sections */
5219 total = 0;
5220 expected_total = btf_data_size - hdr->hdr_len;
5221 for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) {
5222 if (expected_total < secs[i].off) {
5223 btf_verifier_log(env, fmt: "Invalid section offset");
5224 return -EINVAL;
5225 }
5226 if (total < secs[i].off) {
5227 /* gap */
5228 btf_verifier_log(env, fmt: "Unsupported section found");
5229 return -EINVAL;
5230 }
5231 if (total > secs[i].off) {
5232 btf_verifier_log(env, fmt: "Section overlap found");
5233 return -EINVAL;
5234 }
5235 if (expected_total - total < secs[i].len) {
5236 btf_verifier_log(env,
5237 fmt: "Total section length too long");
5238 return -EINVAL;
5239 }
5240 total += secs[i].len;
5241 }
5242
5243 /* There is data other than hdr and known sections */
5244 if (expected_total != total) {
5245 btf_verifier_log(env, fmt: "Unsupported section found");
5246 return -EINVAL;
5247 }
5248
5249 return 0;
5250}
5251
5252static int btf_parse_hdr(struct btf_verifier_env *env)
5253{
5254 u32 hdr_len, hdr_copy, btf_data_size;
5255 const struct btf_header *hdr;
5256 struct btf *btf;
5257
5258 btf = env->btf;
5259 btf_data_size = btf->data_size;
5260
5261 if (btf_data_size < offsetofend(struct btf_header, hdr_len)) {
5262 btf_verifier_log(env, fmt: "hdr_len not found");
5263 return -EINVAL;
5264 }
5265
5266 hdr = btf->data;
5267 hdr_len = hdr->hdr_len;
5268 if (btf_data_size < hdr_len) {
5269 btf_verifier_log(env, fmt: "btf_header not found");
5270 return -EINVAL;
5271 }
5272
5273 /* Ensure the unsupported header fields are zero */
5274 if (hdr_len > sizeof(btf->hdr)) {
5275 u8 *expected_zero = btf->data + sizeof(btf->hdr);
5276 u8 *end = btf->data + hdr_len;
5277
5278 for (; expected_zero < end; expected_zero++) {
5279 if (*expected_zero) {
5280 btf_verifier_log(env, fmt: "Unsupported btf_header");
5281 return -E2BIG;
5282 }
5283 }
5284 }
5285
5286 hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr));
5287 memcpy(&btf->hdr, btf->data, hdr_copy);
5288
5289 hdr = &btf->hdr;
5290
5291 btf_verifier_log_hdr(env, btf_data_size);
5292
5293 if (hdr->magic != BTF_MAGIC) {
5294 btf_verifier_log(env, fmt: "Invalid magic");
5295 return -EINVAL;
5296 }
5297
5298 if (hdr->version != BTF_VERSION) {
5299 btf_verifier_log(env, fmt: "Unsupported version");
5300 return -ENOTSUPP;
5301 }
5302
5303 if (hdr->flags) {
5304 btf_verifier_log(env, fmt: "Unsupported flags");
5305 return -ENOTSUPP;
5306 }
5307
5308 if (!btf->base_btf && btf_data_size == hdr->hdr_len) {
5309 btf_verifier_log(env, fmt: "No data");
5310 return -EINVAL;
5311 }
5312
5313 return btf_check_sec_info(env, btf_data_size);
5314}
5315
5316static const char *alloc_obj_fields[] = {
5317 "bpf_spin_lock",
5318 "bpf_list_head",
5319 "bpf_list_node",
5320 "bpf_rb_root",
5321 "bpf_rb_node",
5322 "bpf_refcount",
5323};
5324
5325static struct btf_struct_metas *
5326btf_parse_struct_metas(struct bpf_verifier_log *log, struct btf *btf)
5327{
5328 union {
5329 struct btf_id_set set;
5330 struct {
5331 u32 _cnt;
5332 u32 _ids[ARRAY_SIZE(alloc_obj_fields)];
5333 } _arr;
5334 } aof;
5335 struct btf_struct_metas *tab = NULL;
5336 int i, n, id, ret;
5337
5338 BUILD_BUG_ON(offsetof(struct btf_id_set, cnt) != 0);
5339 BUILD_BUG_ON(sizeof(struct btf_id_set) != sizeof(u32));
5340
5341 memset(&aof, 0, sizeof(aof));
5342 for (i = 0; i < ARRAY_SIZE(alloc_obj_fields); i++) {
5343 /* Try to find whether this special type exists in user BTF, and
5344 * if so remember its ID so we can easily find it among members
5345 * of structs that we iterate in the next loop.
5346 */
5347 id = btf_find_by_name_kind(btf, name: alloc_obj_fields[i], kind: BTF_KIND_STRUCT);
5348 if (id < 0)
5349 continue;
5350 aof.set.ids[aof.set.cnt++] = id;
5351 }
5352
5353 if (!aof.set.cnt)
5354 return NULL;
5355 sort(base: &aof.set.ids, num: aof.set.cnt, size: sizeof(aof.set.ids[0]), cmp_func: btf_id_cmp_func, NULL);
5356
5357 n = btf_nr_types(btf);
5358 for (i = 1; i < n; i++) {
5359 struct btf_struct_metas *new_tab;
5360 const struct btf_member *member;
5361 struct btf_struct_meta *type;
5362 struct btf_record *record;
5363 const struct btf_type *t;
5364 int j, tab_cnt;
5365
5366 t = btf_type_by_id(btf, i);
5367 if (!t) {
5368 ret = -EINVAL;
5369 goto free;
5370 }
5371 if (!__btf_type_is_struct(t))
5372 continue;
5373
5374 cond_resched();
5375
5376 for_each_member(j, t, member) {
5377 if (btf_id_set_contains(set: &aof.set, id: member->type))
5378 goto parse;
5379 }
5380 continue;
5381 parse:
5382 tab_cnt = tab ? tab->cnt : 0;
5383 new_tab = krealloc(objp: tab, offsetof(struct btf_struct_metas, types[tab_cnt + 1]),
5384 GFP_KERNEL | __GFP_NOWARN);
5385 if (!new_tab) {
5386 ret = -ENOMEM;
5387 goto free;
5388 }
5389 if (!tab)
5390 new_tab->cnt = 0;
5391 tab = new_tab;
5392
5393 type = &tab->types[tab->cnt];
5394 type->btf_id = i;
5395 record = btf_parse_fields(btf, t, field_mask: BPF_SPIN_LOCK | BPF_LIST_HEAD | BPF_LIST_NODE |
5396 BPF_RB_ROOT | BPF_RB_NODE | BPF_REFCOUNT, value_size: t->size);
5397 /* The record cannot be unset, treat it as an error if so */
5398 if (IS_ERR_OR_NULL(ptr: record)) {
5399 ret = PTR_ERR_OR_ZERO(ptr: record) ?: -EFAULT;
5400 goto free;
5401 }
5402 type->record = record;
5403 tab->cnt++;
5404 }
5405 return tab;
5406free:
5407 btf_struct_metas_free(tab);
5408 return ERR_PTR(error: ret);
5409}
5410
5411struct btf_struct_meta *btf_find_struct_meta(const struct btf *btf, u32 btf_id)
5412{
5413 struct btf_struct_metas *tab;
5414
5415 BUILD_BUG_ON(offsetof(struct btf_struct_meta, btf_id) != 0);
5416 tab = btf->struct_meta_tab;
5417 if (!tab)
5418 return NULL;
5419 return bsearch(key: &btf_id, base: tab->types, num: tab->cnt, size: sizeof(tab->types[0]), cmp: btf_id_cmp_func);
5420}
5421
5422static int btf_check_type_tags(struct btf_verifier_env *env,
5423 struct btf *btf, int start_id)
5424{
5425 int i, n, good_id = start_id - 1;
5426 bool in_tags;
5427
5428 n = btf_nr_types(btf);
5429 for (i = start_id; i < n; i++) {
5430 const struct btf_type *t;
5431 int chain_limit = 32;
5432 u32 cur_id = i;
5433
5434 t = btf_type_by_id(btf, i);
5435 if (!t)
5436 return -EINVAL;
5437 if (!btf_type_is_modifier(t))
5438 continue;
5439
5440 cond_resched();
5441
5442 in_tags = btf_type_is_type_tag(t);
5443 while (btf_type_is_modifier(t)) {
5444 if (!chain_limit--) {
5445 btf_verifier_log(env, fmt: "Max chain length or cycle detected");
5446 return -ELOOP;
5447 }
5448 if (btf_type_is_type_tag(t)) {
5449 if (!in_tags) {
5450 btf_verifier_log(env, fmt: "Type tags don't precede modifiers");
5451 return -EINVAL;
5452 }
5453 } else if (in_tags) {
5454 in_tags = false;
5455 }
5456 if (cur_id <= good_id)
5457 break;
5458 /* Move to next type */
5459 cur_id = t->type;
5460 t = btf_type_by_id(btf, cur_id);
5461 if (!t)
5462 return -EINVAL;
5463 }
5464 good_id = i;
5465 }
5466 return 0;
5467}
5468
5469static int finalize_log(struct bpf_verifier_log *log, bpfptr_t uattr, u32 uattr_size)
5470{
5471 u32 log_true_size;
5472 int err;
5473
5474 err = bpf_vlog_finalize(log, log_size_actual: &log_true_size);
5475
5476 if (uattr_size >= offsetofend(union bpf_attr, btf_log_true_size) &&
5477 copy_to_bpfptr_offset(dst: uattr, offsetof(union bpf_attr, btf_log_true_size),
5478 src: &log_true_size, size: sizeof(log_true_size)))
5479 err = -EFAULT;
5480
5481 return err;
5482}
5483
5484static struct btf *btf_parse(const union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size)
5485{
5486 bpfptr_t btf_data = make_bpfptr(addr: attr->btf, is_kernel: uattr.is_kernel);
5487 char __user *log_ubuf = u64_to_user_ptr(attr->btf_log_buf);
5488 struct btf_struct_metas *struct_meta_tab;
5489 struct btf_verifier_env *env = NULL;
5490 struct btf *btf = NULL;
5491 u8 *data;
5492 int err, ret;
5493
5494 if (attr->btf_size > BTF_MAX_SIZE)
5495 return ERR_PTR(error: -E2BIG);
5496
5497 env = kzalloc(size: sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
5498 if (!env)
5499 return ERR_PTR(error: -ENOMEM);
5500
5501 /* user could have requested verbose verifier output
5502 * and supplied buffer to store the verification trace
5503 */
5504 err = bpf_vlog_init(log: &env->log, log_level: attr->btf_log_level,
5505 log_buf: log_ubuf, log_size: attr->btf_log_size);
5506 if (err)
5507 goto errout_free;
5508
5509 btf = kzalloc(size: sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
5510 if (!btf) {
5511 err = -ENOMEM;
5512 goto errout;
5513 }
5514 env->btf = btf;
5515
5516 data = kvmalloc(size: attr->btf_size, GFP_KERNEL | __GFP_NOWARN);
5517 if (!data) {
5518 err = -ENOMEM;
5519 goto errout;
5520 }
5521
5522 btf->data = data;
5523 btf->data_size = attr->btf_size;
5524
5525 if (copy_from_bpfptr(dst: data, src: btf_data, size: attr->btf_size)) {
5526 err = -EFAULT;
5527 goto errout;
5528 }
5529
5530 err = btf_parse_hdr(env);
5531 if (err)
5532 goto errout;
5533
5534 btf->nohdr_data = btf->data + btf->hdr.hdr_len;
5535
5536 err = btf_parse_str_sec(env);
5537 if (err)
5538 goto errout;
5539
5540 err = btf_parse_type_sec(env);
5541 if (err)
5542 goto errout;
5543
5544 err = btf_check_type_tags(env, btf, start_id: 1);
5545 if (err)
5546 goto errout;
5547
5548 struct_meta_tab = btf_parse_struct_metas(log: &env->log, btf);
5549 if (IS_ERR(ptr: struct_meta_tab)) {
5550 err = PTR_ERR(ptr: struct_meta_tab);
5551 goto errout;
5552 }
5553 btf->struct_meta_tab = struct_meta_tab;
5554
5555 if (struct_meta_tab) {
5556 int i;
5557
5558 for (i = 0; i < struct_meta_tab->cnt; i++) {
5559 err = btf_check_and_fixup_fields(btf, rec: struct_meta_tab->types[i].record);
5560 if (err < 0)
5561 goto errout_meta;
5562 }
5563 }
5564
5565 err = finalize_log(log: &env->log, uattr, uattr_size);
5566 if (err)
5567 goto errout_free;
5568
5569 btf_verifier_env_free(env);
5570 refcount_set(r: &btf->refcnt, n: 1);
5571 return btf;
5572
5573errout_meta:
5574 btf_free_struct_meta_tab(btf);
5575errout:
5576 /* overwrite err with -ENOSPC or -EFAULT */
5577 ret = finalize_log(log: &env->log, uattr, uattr_size);
5578 if (ret)
5579 err = ret;
5580errout_free:
5581 btf_verifier_env_free(env);
5582 if (btf)
5583 btf_free(btf);
5584 return ERR_PTR(error: err);
5585}
5586
5587extern char __weak __start_BTF[];
5588extern char __weak __stop_BTF[];
5589extern struct btf *btf_vmlinux;
5590
5591#define BPF_MAP_TYPE(_id, _ops)
5592#define BPF_LINK_TYPE(_id, _name)
5593static union {
5594 struct bpf_ctx_convert {
5595#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
5596 prog_ctx_type _id##_prog; \
5597 kern_ctx_type _id##_kern;
5598#include <linux/bpf_types.h>
5599#undef BPF_PROG_TYPE
5600 } *__t;
5601 /* 't' is written once under lock. Read many times. */
5602 const struct btf_type *t;
5603} bpf_ctx_convert;
5604enum {
5605#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
5606 __ctx_convert##_id,
5607#include <linux/bpf_types.h>
5608#undef BPF_PROG_TYPE
5609 __ctx_convert_unused, /* to avoid empty enum in extreme .config */
5610};
5611static u8 bpf_ctx_convert_map[] = {
5612#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
5613 [_id] = __ctx_convert##_id,
5614#include <linux/bpf_types.h>
5615#undef BPF_PROG_TYPE
5616 0, /* avoid empty array */
5617};
5618#undef BPF_MAP_TYPE
5619#undef BPF_LINK_TYPE
5620
5621const struct btf_member *
5622btf_get_prog_ctx_type(struct bpf_verifier_log *log, const struct btf *btf,
5623 const struct btf_type *t, enum bpf_prog_type prog_type,
5624 int arg)
5625{
5626 const struct btf_type *conv_struct;
5627 const struct btf_type *ctx_struct;
5628 const struct btf_member *ctx_type;
5629 const char *tname, *ctx_tname;
5630
5631 conv_struct = bpf_ctx_convert.t;
5632 if (!conv_struct) {
5633 bpf_log(log, fmt: "btf_vmlinux is malformed\n");
5634 return NULL;
5635 }
5636 t = btf_type_by_id(btf, t->type);
5637 while (btf_type_is_modifier(t))
5638 t = btf_type_by_id(btf, t->type);
5639 if (!btf_type_is_struct(t)) {
5640 /* Only pointer to struct is supported for now.
5641 * That means that BPF_PROG_TYPE_TRACEPOINT with BTF
5642 * is not supported yet.
5643 * BPF_PROG_TYPE_RAW_TRACEPOINT is fine.
5644 */
5645 return NULL;
5646 }
5647 tname = btf_name_by_offset(btf, offset: t->name_off);
5648 if (!tname) {
5649 bpf_log(log, fmt: "arg#%d struct doesn't have a name\n", arg);
5650 return NULL;
5651 }
5652 /* prog_type is valid bpf program type. No need for bounds check. */
5653 ctx_type = btf_type_member(t: conv_struct) + bpf_ctx_convert_map[prog_type] * 2;
5654 /* ctx_struct is a pointer to prog_ctx_type in vmlinux.
5655 * Like 'struct __sk_buff'
5656 */
5657 ctx_struct = btf_type_by_id(btf_vmlinux, ctx_type->type);
5658 if (!ctx_struct)
5659 /* should not happen */
5660 return NULL;
5661again:
5662 ctx_tname = btf_name_by_offset(btf: btf_vmlinux, offset: ctx_struct->name_off);
5663 if (!ctx_tname) {
5664 /* should not happen */
5665 bpf_log(log, fmt: "Please fix kernel include/linux/bpf_types.h\n");
5666 return NULL;
5667 }
5668 /* only compare that prog's ctx type name is the same as
5669 * kernel expects. No need to compare field by field.
5670 * It's ok for bpf prog to do:
5671 * struct __sk_buff {};
5672 * int socket_filter_bpf_prog(struct __sk_buff *skb)
5673 * { // no fields of skb are ever used }
5674 */
5675 if (strcmp(ctx_tname, "__sk_buff") == 0 && strcmp(tname, "sk_buff") == 0)
5676 return ctx_type;
5677 if (strcmp(ctx_tname, "xdp_md") == 0 && strcmp(tname, "xdp_buff") == 0)
5678 return ctx_type;
5679 if (strcmp(ctx_tname, tname)) {
5680 /* bpf_user_pt_regs_t is a typedef, so resolve it to
5681 * underlying struct and check name again
5682 */
5683 if (!btf_type_is_modifier(t: ctx_struct))
5684 return NULL;
5685 while (btf_type_is_modifier(t: ctx_struct))
5686 ctx_struct = btf_type_by_id(btf_vmlinux, ctx_struct->type);
5687 goto again;
5688 }
5689 return ctx_type;
5690}
5691
5692static int btf_translate_to_vmlinux(struct bpf_verifier_log *log,
5693 struct btf *btf,
5694 const struct btf_type *t,
5695 enum bpf_prog_type prog_type,
5696 int arg)
5697{
5698 const struct btf_member *prog_ctx_type, *kern_ctx_type;
5699
5700 prog_ctx_type = btf_get_prog_ctx_type(log, btf, t, prog_type, arg);
5701 if (!prog_ctx_type)
5702 return -ENOENT;
5703 kern_ctx_type = prog_ctx_type + 1;
5704 return kern_ctx_type->type;
5705}
5706
5707int get_kern_ctx_btf_id(struct bpf_verifier_log *log, enum bpf_prog_type prog_type)
5708{
5709 const struct btf_member *kctx_member;
5710 const struct btf_type *conv_struct;
5711 const struct btf_type *kctx_type;
5712 u32 kctx_type_id;
5713
5714 conv_struct = bpf_ctx_convert.t;
5715 /* get member for kernel ctx type */
5716 kctx_member = btf_type_member(t: conv_struct) + bpf_ctx_convert_map[prog_type] * 2 + 1;
5717 kctx_type_id = kctx_member->type;
5718 kctx_type = btf_type_by_id(btf_vmlinux, kctx_type_id);
5719 if (!btf_type_is_struct(t: kctx_type)) {
5720 bpf_log(log, fmt: "kern ctx type id %u is not a struct\n", kctx_type_id);
5721 return -EINVAL;
5722 }
5723
5724 return kctx_type_id;
5725}
5726
5727BTF_ID_LIST(bpf_ctx_convert_btf_id)
5728BTF_ID(struct, bpf_ctx_convert)
5729
5730struct btf *btf_parse_vmlinux(void)
5731{
5732 struct btf_verifier_env *env = NULL;
5733 struct bpf_verifier_log *log;
5734 struct btf *btf = NULL;
5735 int err;
5736
5737 env = kzalloc(size: sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
5738 if (!env)
5739 return ERR_PTR(error: -ENOMEM);
5740
5741 log = &env->log;
5742 log->level = BPF_LOG_KERNEL;
5743
5744 btf = kzalloc(size: sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
5745 if (!btf) {
5746 err = -ENOMEM;
5747 goto errout;
5748 }
5749 env->btf = btf;
5750
5751 btf->data = __start_BTF;
5752 btf->data_size = __stop_BTF - __start_BTF;
5753 btf->kernel_btf = true;
5754 snprintf(buf: btf->name, size: sizeof(btf->name), fmt: "vmlinux");
5755
5756 err = btf_parse_hdr(env);
5757 if (err)
5758 goto errout;
5759
5760 btf->nohdr_data = btf->data + btf->hdr.hdr_len;
5761
5762 err = btf_parse_str_sec(env);
5763 if (err)
5764 goto errout;
5765
5766 err = btf_check_all_metas(env);
5767 if (err)
5768 goto errout;
5769
5770 err = btf_check_type_tags(env, btf, start_id: 1);
5771 if (err)
5772 goto errout;
5773
5774 /* btf_parse_vmlinux() runs under bpf_verifier_lock */
5775 bpf_ctx_convert.t = btf_type_by_id(btf, bpf_ctx_convert_btf_id[0]);
5776
5777 bpf_struct_ops_init(btf, log);
5778
5779 refcount_set(r: &btf->refcnt, n: 1);
5780
5781 err = btf_alloc_id(btf);
5782 if (err)
5783 goto errout;
5784
5785 btf_verifier_env_free(env);
5786 return btf;
5787
5788errout:
5789 btf_verifier_env_free(env);
5790 if (btf) {
5791 kvfree(addr: btf->types);
5792 kfree(objp: btf);
5793 }
5794 return ERR_PTR(error: err);
5795}
5796
5797#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
5798
5799static struct btf *btf_parse_module(const char *module_name, const void *data, unsigned int data_size)
5800{
5801 struct btf_verifier_env *env = NULL;
5802 struct bpf_verifier_log *log;
5803 struct btf *btf = NULL, *base_btf;
5804 int err;
5805
5806 base_btf = bpf_get_btf_vmlinux();
5807 if (IS_ERR(base_btf))
5808 return base_btf;
5809 if (!base_btf)
5810 return ERR_PTR(-EINVAL);
5811
5812 env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
5813 if (!env)
5814 return ERR_PTR(-ENOMEM);
5815
5816 log = &env->log;
5817 log->level = BPF_LOG_KERNEL;
5818
5819 btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
5820 if (!btf) {
5821 err = -ENOMEM;
5822 goto errout;
5823 }
5824 env->btf = btf;
5825
5826 btf->base_btf = base_btf;
5827 btf->start_id = base_btf->nr_types;
5828 btf->start_str_off = base_btf->hdr.str_len;
5829 btf->kernel_btf = true;
5830 snprintf(btf->name, sizeof(btf->name), "%s", module_name);
5831
5832 btf->data = kvmalloc(data_size, GFP_KERNEL | __GFP_NOWARN);
5833 if (!btf->data) {
5834 err = -ENOMEM;
5835 goto errout;
5836 }
5837 memcpy(btf->data, data, data_size);
5838 btf->data_size = data_size;
5839
5840 err = btf_parse_hdr(env);
5841 if (err)
5842 goto errout;
5843
5844 btf->nohdr_data = btf->data + btf->hdr.hdr_len;
5845
5846 err = btf_parse_str_sec(env);
5847 if (err)
5848 goto errout;
5849
5850 err = btf_check_all_metas(env);
5851 if (err)
5852 goto errout;
5853
5854 err = btf_check_type_tags(env, btf, btf_nr_types(base_btf));
5855 if (err)
5856 goto errout;
5857
5858 btf_verifier_env_free(env);
5859 refcount_set(&btf->refcnt, 1);
5860 return btf;
5861
5862errout:
5863 btf_verifier_env_free(env);
5864 if (btf) {
5865 kvfree(btf->data);
5866 kvfree(btf->types);
5867 kfree(btf);
5868 }
5869 return ERR_PTR(err);
5870}
5871
5872#endif /* CONFIG_DEBUG_INFO_BTF_MODULES */
5873
5874struct btf *bpf_prog_get_target_btf(const struct bpf_prog *prog)
5875{
5876 struct bpf_prog *tgt_prog = prog->aux->dst_prog;
5877
5878 if (tgt_prog)
5879 return tgt_prog->aux->btf;
5880 else
5881 return prog->aux->attach_btf;
5882}
5883
5884static bool is_int_ptr(struct btf *btf, const struct btf_type *t)
5885{
5886 /* skip modifiers */
5887 t = btf_type_skip_modifiers(btf, id: t->type, NULL);
5888
5889 return btf_type_is_int(t);
5890}
5891
5892static u32 get_ctx_arg_idx(struct btf *btf, const struct btf_type *func_proto,
5893 int off)
5894{
5895 const struct btf_param *args;
5896 const struct btf_type *t;
5897 u32 offset = 0, nr_args;
5898 int i;
5899
5900 if (!func_proto)
5901 return off / 8;
5902
5903 nr_args = btf_type_vlen(t: func_proto);
5904 args = (const struct btf_param *)(func_proto + 1);
5905 for (i = 0; i < nr_args; i++) {
5906 t = btf_type_skip_modifiers(btf, id: args[i].type, NULL);
5907 offset += btf_type_is_ptr(t) ? 8 : roundup(t->size, 8);
5908 if (off < offset)
5909 return i;
5910 }
5911
5912 t = btf_type_skip_modifiers(btf, id: func_proto->type, NULL);
5913 offset += btf_type_is_ptr(t) ? 8 : roundup(t->size, 8);
5914 if (off < offset)
5915 return nr_args;
5916
5917 return nr_args + 1;
5918}
5919
5920static bool prog_args_trusted(const struct bpf_prog *prog)
5921{
5922 enum bpf_attach_type atype = prog->expected_attach_type;
5923
5924 switch (prog->type) {
5925 case BPF_PROG_TYPE_TRACING:
5926 return atype == BPF_TRACE_RAW_TP || atype == BPF_TRACE_ITER;
5927 case BPF_PROG_TYPE_LSM:
5928 return bpf_lsm_is_trusted(prog);
5929 case BPF_PROG_TYPE_STRUCT_OPS:
5930 return true;
5931 default:
5932 return false;
5933 }
5934}
5935
5936bool btf_ctx_access(int off, int size, enum bpf_access_type type,
5937 const struct bpf_prog *prog,
5938 struct bpf_insn_access_aux *info)
5939{
5940 const struct btf_type *t = prog->aux->attach_func_proto;
5941 struct bpf_prog *tgt_prog = prog->aux->dst_prog;
5942 struct btf *btf = bpf_prog_get_target_btf(prog);
5943 const char *tname = prog->aux->attach_func_name;
5944 struct bpf_verifier_log *log = info->log;
5945 const struct btf_param *args;
5946 const char *tag_value;
5947 u32 nr_args, arg;
5948 int i, ret;
5949
5950 if (off % 8) {
5951 bpf_log(log, fmt: "func '%s' offset %d is not multiple of 8\n",
5952 tname, off);
5953 return false;
5954 }
5955 arg = get_ctx_arg_idx(btf, func_proto: t, off);
5956 args = (const struct btf_param *)(t + 1);
5957 /* if (t == NULL) Fall back to default BPF prog with
5958 * MAX_BPF_FUNC_REG_ARGS u64 arguments.
5959 */
5960 nr_args = t ? btf_type_vlen(t) : MAX_BPF_FUNC_REG_ARGS;
5961 if (prog->aux->attach_btf_trace) {
5962 /* skip first 'void *__data' argument in btf_trace_##name typedef */
5963 args++;
5964 nr_args--;
5965 }
5966
5967 if (arg > nr_args) {
5968 bpf_log(log, fmt: "func '%s' doesn't have %d-th argument\n",
5969 tname, arg + 1);
5970 return false;
5971 }
5972
5973 if (arg == nr_args) {
5974 switch (prog->expected_attach_type) {
5975 case BPF_LSM_CGROUP:
5976 case BPF_LSM_MAC:
5977 case BPF_TRACE_FEXIT:
5978 /* When LSM programs are attached to void LSM hooks
5979 * they use FEXIT trampolines and when attached to
5980 * int LSM hooks, they use MODIFY_RETURN trampolines.
5981 *
5982 * While the LSM programs are BPF_MODIFY_RETURN-like
5983 * the check:
5984 *
5985 * if (ret_type != 'int')
5986 * return -EINVAL;
5987 *
5988 * is _not_ done here. This is still safe as LSM hooks
5989 * have only void and int return types.
5990 */
5991 if (!t)
5992 return true;
5993 t = btf_type_by_id(btf, t->type);
5994 break;
5995 case BPF_MODIFY_RETURN:
5996 /* For now the BPF_MODIFY_RETURN can only be attached to
5997 * functions that return an int.
5998 */
5999 if (!t)
6000 return false;
6001
6002 t = btf_type_skip_modifiers(btf, id: t->type, NULL);
6003 if (!btf_type_is_small_int(t)) {
6004 bpf_log(log,
6005 fmt: "ret type %s not allowed for fmod_ret\n",
6006 btf_type_str(t));
6007 return false;
6008 }
6009 break;
6010 default:
6011 bpf_log(log, fmt: "func '%s' doesn't have %d-th argument\n",
6012 tname, arg + 1);
6013 return false;
6014 }
6015 } else {
6016 if (!t)
6017 /* Default prog with MAX_BPF_FUNC_REG_ARGS args */
6018 return true;
6019 t = btf_type_by_id(btf, args[arg].type);
6020 }
6021
6022 /* skip modifiers */
6023 while (btf_type_is_modifier(t))
6024 t = btf_type_by_id(btf, t->type);
6025 if (btf_type_is_small_int(t) || btf_is_any_enum(t) || __btf_type_is_struct(t))
6026 /* accessing a scalar */
6027 return true;
6028 if (!btf_type_is_ptr(t)) {
6029 bpf_log(log,
6030 fmt: "func '%s' arg%d '%s' has type %s. Only pointer access is allowed\n",
6031 tname, arg,
6032 __btf_name_by_offset(btf, offset: t->name_off),
6033 btf_type_str(t));
6034 return false;
6035 }
6036
6037 /* check for PTR_TO_RDONLY_BUF_OR_NULL or PTR_TO_RDWR_BUF_OR_NULL */
6038 for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
6039 const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
6040 u32 type, flag;
6041
6042 type = base_type(type: ctx_arg_info->reg_type);
6043 flag = type_flag(type: ctx_arg_info->reg_type);
6044 if (ctx_arg_info->offset == off && type == PTR_TO_BUF &&
6045 (flag & PTR_MAYBE_NULL)) {
6046 info->reg_type = ctx_arg_info->reg_type;
6047 return true;
6048 }
6049 }
6050
6051 if (t->type == 0)
6052 /* This is a pointer to void.
6053 * It is the same as scalar from the verifier safety pov.
6054 * No further pointer walking is allowed.
6055 */
6056 return true;
6057
6058 if (is_int_ptr(btf, t))
6059 return true;
6060
6061 /* this is a pointer to another type */
6062 for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
6063 const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
6064
6065 if (ctx_arg_info->offset == off) {
6066 if (!ctx_arg_info->btf_id) {
6067 bpf_log(log,fmt: "invalid btf_id for context argument offset %u\n", off);
6068 return false;
6069 }
6070
6071 info->reg_type = ctx_arg_info->reg_type;
6072 info->btf = btf_vmlinux;
6073 info->btf_id = ctx_arg_info->btf_id;
6074 return true;
6075 }
6076 }
6077
6078 info->reg_type = PTR_TO_BTF_ID;
6079 if (prog_args_trusted(prog))
6080 info->reg_type |= PTR_TRUSTED;
6081
6082 if (tgt_prog) {
6083 enum bpf_prog_type tgt_type;
6084
6085 if (tgt_prog->type == BPF_PROG_TYPE_EXT)
6086 tgt_type = tgt_prog->aux->saved_dst_prog_type;
6087 else
6088 tgt_type = tgt_prog->type;
6089
6090 ret = btf_translate_to_vmlinux(log, btf, t, prog_type: tgt_type, arg);
6091 if (ret > 0) {
6092 info->btf = btf_vmlinux;
6093 info->btf_id = ret;
6094 return true;
6095 } else {
6096 return false;
6097 }
6098 }
6099
6100 info->btf = btf;
6101 info->btf_id = t->type;
6102 t = btf_type_by_id(btf, t->type);
6103
6104 if (btf_type_is_type_tag(t)) {
6105 tag_value = __btf_name_by_offset(btf, offset: t->name_off);
6106 if (strcmp(tag_value, "user") == 0)
6107 info->reg_type |= MEM_USER;
6108 if (strcmp(tag_value, "percpu") == 0)
6109 info->reg_type |= MEM_PERCPU;
6110 }
6111
6112 /* skip modifiers */
6113 while (btf_type_is_modifier(t)) {
6114 info->btf_id = t->type;
6115 t = btf_type_by_id(btf, t->type);
6116 }
6117 if (!btf_type_is_struct(t)) {
6118 bpf_log(log,
6119 fmt: "func '%s' arg%d type %s is not a struct\n",
6120 tname, arg, btf_type_str(t));
6121 return false;
6122 }
6123 bpf_log(log, fmt: "func '%s' arg%d has btf_id %d type %s '%s'\n",
6124 tname, arg, info->btf_id, btf_type_str(t),
6125 __btf_name_by_offset(btf, offset: t->name_off));
6126 return true;
6127}
6128
6129enum bpf_struct_walk_result {
6130 /* < 0 error */
6131 WALK_SCALAR = 0,
6132 WALK_PTR,
6133 WALK_STRUCT,
6134};
6135
6136static int btf_struct_walk(struct bpf_verifier_log *log, const struct btf *btf,
6137 const struct btf_type *t, int off, int size,
6138 u32 *next_btf_id, enum bpf_type_flag *flag,
6139 const char **field_name)
6140{
6141 u32 i, moff, mtrue_end, msize = 0, total_nelems = 0;
6142 const struct btf_type *mtype, *elem_type = NULL;
6143 const struct btf_member *member;
6144 const char *tname, *mname, *tag_value;
6145 u32 vlen, elem_id, mid;
6146
6147again:
6148 if (btf_type_is_modifier(t))
6149 t = btf_type_skip_modifiers(btf, id: t->type, NULL);
6150 tname = __btf_name_by_offset(btf, offset: t->name_off);
6151 if (!btf_type_is_struct(t)) {
6152 bpf_log(log, fmt: "Type '%s' is not a struct\n", tname);
6153 return -EINVAL;
6154 }
6155
6156 vlen = btf_type_vlen(t);
6157 if (BTF_INFO_KIND(t->info) == BTF_KIND_UNION && vlen != 1 && !(*flag & PTR_UNTRUSTED))
6158 /*
6159 * walking unions yields untrusted pointers
6160 * with exception of __bpf_md_ptr and other
6161 * unions with a single member
6162 */
6163 *flag |= PTR_UNTRUSTED;
6164
6165 if (off + size > t->size) {
6166 /* If the last element is a variable size array, we may
6167 * need to relax the rule.
6168 */
6169 struct btf_array *array_elem;
6170
6171 if (vlen == 0)
6172 goto error;
6173
6174 member = btf_type_member(t) + vlen - 1;
6175 mtype = btf_type_skip_modifiers(btf, id: member->type,
6176 NULL);
6177 if (!btf_type_is_array(t: mtype))
6178 goto error;
6179
6180 array_elem = (struct btf_array *)(mtype + 1);
6181 if (array_elem->nelems != 0)
6182 goto error;
6183
6184 moff = __btf_member_bit_offset(struct_type: t, member) / 8;
6185 if (off < moff)
6186 goto error;
6187
6188 /* allow structure and integer */
6189 t = btf_type_skip_modifiers(btf, id: array_elem->type,
6190 NULL);
6191
6192 if (btf_type_is_int(t))
6193 return WALK_SCALAR;
6194
6195 if (!btf_type_is_struct(t))
6196 goto error;
6197
6198 off = (off - moff) % t->size;
6199 goto again;
6200
6201error:
6202 bpf_log(log, fmt: "access beyond struct %s at off %u size %u\n",
6203 tname, off, size);
6204 return -EACCES;
6205 }
6206
6207 for_each_member(i, t, member) {
6208 /* offset of the field in bytes */
6209 moff = __btf_member_bit_offset(struct_type: t, member) / 8;
6210 if (off + size <= moff)
6211 /* won't find anything, field is already too far */
6212 break;
6213
6214 if (__btf_member_bitfield_size(struct_type: t, member)) {
6215 u32 end_bit = __btf_member_bit_offset(struct_type: t, member) +
6216 __btf_member_bitfield_size(struct_type: t, member);
6217
6218 /* off <= moff instead of off == moff because clang
6219 * does not generate a BTF member for anonymous
6220 * bitfield like the ":16" here:
6221 * struct {
6222 * int :16;
6223 * int x:8;
6224 * };
6225 */
6226 if (off <= moff &&
6227 BITS_ROUNDUP_BYTES(end_bit) <= off + size)
6228 return WALK_SCALAR;
6229
6230 /* off may be accessing a following member
6231 *
6232 * or
6233 *
6234 * Doing partial access at either end of this
6235 * bitfield. Continue on this case also to
6236 * treat it as not accessing this bitfield
6237 * and eventually error out as field not
6238 * found to keep it simple.
6239 * It could be relaxed if there was a legit
6240 * partial access case later.
6241 */
6242 continue;
6243 }
6244
6245 /* In case of "off" is pointing to holes of a struct */
6246 if (off < moff)
6247 break;
6248
6249 /* type of the field */
6250 mid = member->type;
6251 mtype = btf_type_by_id(btf, member->type);
6252 mname = __btf_name_by_offset(btf, offset: member->name_off);
6253
6254 mtype = __btf_resolve_size(btf, type: mtype, type_size: &msize,
6255 elem_type: &elem_type, elem_id: &elem_id, total_nelems: &total_nelems,
6256 type_id: &mid);
6257 if (IS_ERR(ptr: mtype)) {
6258 bpf_log(log, fmt: "field %s doesn't have size\n", mname);
6259 return -EFAULT;
6260 }
6261
6262 mtrue_end = moff + msize;
6263 if (off >= mtrue_end)
6264 /* no overlap with member, keep iterating */
6265 continue;
6266
6267 if (btf_type_is_array(t: mtype)) {
6268 u32 elem_idx;
6269
6270 /* __btf_resolve_size() above helps to
6271 * linearize a multi-dimensional array.
6272 *
6273 * The logic here is treating an array
6274 * in a struct as the following way:
6275 *
6276 * struct outer {
6277 * struct inner array[2][2];
6278 * };
6279 *
6280 * looks like:
6281 *
6282 * struct outer {
6283 * struct inner array_elem0;
6284 * struct inner array_elem1;
6285 * struct inner array_elem2;
6286 * struct inner array_elem3;
6287 * };
6288 *
6289 * When accessing outer->array[1][0], it moves
6290 * moff to "array_elem2", set mtype to
6291 * "struct inner", and msize also becomes
6292 * sizeof(struct inner). Then most of the
6293 * remaining logic will fall through without
6294 * caring the current member is an array or
6295 * not.
6296 *
6297 * Unlike mtype/msize/moff, mtrue_end does not
6298 * change. The naming difference ("_true") tells
6299 * that it is not always corresponding to
6300 * the current mtype/msize/moff.
6301 * It is the true end of the current
6302 * member (i.e. array in this case). That
6303 * will allow an int array to be accessed like
6304 * a scratch space,
6305 * i.e. allow access beyond the size of
6306 * the array's element as long as it is
6307 * within the mtrue_end boundary.
6308 */
6309
6310 /* skip empty array */
6311 if (moff == mtrue_end)
6312 continue;
6313
6314 msize /= total_nelems;
6315 elem_idx = (off - moff) / msize;
6316 moff += elem_idx * msize;
6317 mtype = elem_type;
6318 mid = elem_id;
6319 }
6320
6321 /* the 'off' we're looking for is either equal to start
6322 * of this field or inside of this struct
6323 */
6324 if (btf_type_is_struct(t: mtype)) {
6325 /* our field must be inside that union or struct */
6326 t = mtype;
6327
6328 /* return if the offset matches the member offset */
6329 if (off == moff) {
6330 *next_btf_id = mid;
6331 return WALK_STRUCT;
6332 }
6333
6334 /* adjust offset we're looking for */
6335 off -= moff;
6336 goto again;
6337 }
6338
6339 if (btf_type_is_ptr(t: mtype)) {
6340 const struct btf_type *stype, *t;
6341 enum bpf_type_flag tmp_flag = 0;
6342 u32 id;
6343
6344 if (msize != size || off != moff) {
6345 bpf_log(log,
6346 fmt: "cannot access ptr member %s with moff %u in struct %s with off %u size %u\n",
6347 mname, moff, tname, off, size);
6348 return -EACCES;
6349 }
6350
6351 /* check type tag */
6352 t = btf_type_by_id(btf, mtype->type);
6353 if (btf_type_is_type_tag(t)) {
6354 tag_value = __btf_name_by_offset(btf, offset: t->name_off);
6355 /* check __user tag */
6356 if (strcmp(tag_value, "user") == 0)
6357 tmp_flag = MEM_USER;
6358 /* check __percpu tag */
6359 if (strcmp(tag_value, "percpu") == 0)
6360 tmp_flag = MEM_PERCPU;
6361 /* check __rcu tag */
6362 if (strcmp(tag_value, "rcu") == 0)
6363 tmp_flag = MEM_RCU;
6364 }
6365
6366 stype = btf_type_skip_modifiers(btf, id: mtype->type, res_id: &id);
6367 if (btf_type_is_struct(t: stype)) {
6368 *next_btf_id = id;
6369 *flag |= tmp_flag;
6370 if (field_name)
6371 *field_name = mname;
6372 return WALK_PTR;
6373 }
6374 }
6375
6376 /* Allow more flexible access within an int as long as
6377 * it is within mtrue_end.
6378 * Since mtrue_end could be the end of an array,
6379 * that also allows using an array of int as a scratch
6380 * space. e.g. skb->cb[].
6381 */
6382 if (off + size > mtrue_end && !(*flag & PTR_UNTRUSTED)) {
6383 bpf_log(log,
6384 fmt: "access beyond the end of member %s (mend:%u) in struct %s with off %u size %u\n",
6385 mname, mtrue_end, tname, off, size);
6386 return -EACCES;
6387 }
6388
6389 return WALK_SCALAR;
6390 }
6391 bpf_log(log, fmt: "struct %s doesn't have field at offset %d\n", tname, off);
6392 return -EINVAL;
6393}
6394
6395int btf_struct_access(struct bpf_verifier_log *log,
6396 const struct bpf_reg_state *reg,
6397 int off, int size, enum bpf_access_type atype __maybe_unused,
6398 u32 *next_btf_id, enum bpf_type_flag *flag,
6399 const char **field_name)
6400{
6401 const struct btf *btf = reg->btf;
6402 enum bpf_type_flag tmp_flag = 0;
6403 const struct btf_type *t;
6404 u32 id = reg->btf_id;
6405 int err;
6406
6407 while (type_is_alloc(type: reg->type)) {
6408 struct btf_struct_meta *meta;
6409 struct btf_record *rec;
6410 int i;
6411
6412 meta = btf_find_struct_meta(btf, btf_id: id);
6413 if (!meta)
6414 break;
6415 rec = meta->record;
6416 for (i = 0; i < rec->cnt; i++) {
6417 struct btf_field *field = &rec->fields[i];
6418 u32 offset = field->offset;
6419 if (off < offset + btf_field_type_size(type: field->type) && offset < off + size) {
6420 bpf_log(log,
6421 fmt: "direct access to %s is disallowed\n",
6422 btf_field_type_name(type: field->type));
6423 return -EACCES;
6424 }
6425 }
6426 break;
6427 }
6428
6429 t = btf_type_by_id(btf, id);
6430 do {
6431 err = btf_struct_walk(log, btf, t, off, size, next_btf_id: &id, flag: &tmp_flag, field_name);
6432
6433 switch (err) {
6434 case WALK_PTR:
6435 /* For local types, the destination register cannot
6436 * become a pointer again.
6437 */
6438 if (type_is_alloc(type: reg->type))
6439 return SCALAR_VALUE;
6440 /* If we found the pointer or scalar on t+off,
6441 * we're done.
6442 */
6443 *next_btf_id = id;
6444 *flag = tmp_flag;
6445 return PTR_TO_BTF_ID;
6446 case WALK_SCALAR:
6447 return SCALAR_VALUE;
6448 case WALK_STRUCT:
6449 /* We found nested struct, so continue the search
6450 * by diving in it. At this point the offset is
6451 * aligned with the new type, so set it to 0.
6452 */
6453 t = btf_type_by_id(btf, id);
6454 off = 0;
6455 break;
6456 default:
6457 /* It's either error or unknown return value..
6458 * scream and leave.
6459 */
6460 if (WARN_ONCE(err > 0, "unknown btf_struct_walk return value"))
6461 return -EINVAL;
6462 return err;
6463 }
6464 } while (t);
6465
6466 return -EINVAL;
6467}
6468
6469/* Check that two BTF types, each specified as an BTF object + id, are exactly
6470 * the same. Trivial ID check is not enough due to module BTFs, because we can
6471 * end up with two different module BTFs, but IDs point to the common type in
6472 * vmlinux BTF.
6473 */
6474bool btf_types_are_same(const struct btf *btf1, u32 id1,
6475 const struct btf *btf2, u32 id2)
6476{
6477 if (id1 != id2)
6478 return false;
6479 if (btf1 == btf2)
6480 return true;
6481 return btf_type_by_id(btf1, id1) == btf_type_by_id(btf2, id2);
6482}
6483
6484bool btf_struct_ids_match(struct bpf_verifier_log *log,
6485 const struct btf *btf, u32 id, int off,
6486 const struct btf *need_btf, u32 need_type_id,
6487 bool strict)
6488{
6489 const struct btf_type *type;
6490 enum bpf_type_flag flag = 0;
6491 int err;
6492
6493 /* Are we already done? */
6494 if (off == 0 && btf_types_are_same(btf1: btf, id1: id, btf2: need_btf, id2: need_type_id))
6495 return true;
6496 /* In case of strict type match, we do not walk struct, the top level
6497 * type match must succeed. When strict is true, off should have already
6498 * been 0.
6499 */
6500 if (strict)
6501 return false;
6502again:
6503 type = btf_type_by_id(btf, id);
6504 if (!type)
6505 return false;
6506 err = btf_struct_walk(log, btf, t: type, off, size: 1, next_btf_id: &id, flag: &flag, NULL);
6507 if (err != WALK_STRUCT)
6508 return false;
6509
6510 /* We found nested struct object. If it matches
6511 * the requested ID, we're done. Otherwise let's
6512 * continue the search with offset 0 in the new
6513 * type.
6514 */
6515 if (!btf_types_are_same(btf1: btf, id1: id, btf2: need_btf, id2: need_type_id)) {
6516 off = 0;
6517 goto again;
6518 }
6519
6520 return true;
6521}
6522
6523static int __get_type_size(struct btf *btf, u32 btf_id,
6524 const struct btf_type **ret_type)
6525{
6526 const struct btf_type *t;
6527
6528 *ret_type = btf_type_by_id(btf, 0);
6529 if (!btf_id)
6530 /* void */
6531 return 0;
6532 t = btf_type_by_id(btf, btf_id);
6533 while (t && btf_type_is_modifier(t))
6534 t = btf_type_by_id(btf, t->type);
6535 if (!t)
6536 return -EINVAL;
6537 *ret_type = t;
6538 if (btf_type_is_ptr(t))
6539 /* kernel size of pointer. Not BPF's size of pointer*/
6540 return sizeof(void *);
6541 if (btf_type_is_int(t) || btf_is_any_enum(t) || __btf_type_is_struct(t))
6542 return t->size;
6543 return -EINVAL;
6544}
6545
6546static u8 __get_type_fmodel_flags(const struct btf_type *t)
6547{
6548 u8 flags = 0;
6549
6550 if (__btf_type_is_struct(t))
6551 flags |= BTF_FMODEL_STRUCT_ARG;
6552 if (btf_type_is_signed_int(t))
6553 flags |= BTF_FMODEL_SIGNED_ARG;
6554
6555 return flags;
6556}
6557
6558int btf_distill_func_proto(struct bpf_verifier_log *log,
6559 struct btf *btf,
6560 const struct btf_type *func,
6561 const char *tname,
6562 struct btf_func_model *m)
6563{
6564 const struct btf_param *args;
6565 const struct btf_type *t;
6566 u32 i, nargs;
6567 int ret;
6568
6569 if (!func) {
6570 /* BTF function prototype doesn't match the verifier types.
6571 * Fall back to MAX_BPF_FUNC_REG_ARGS u64 args.
6572 */
6573 for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
6574 m->arg_size[i] = 8;
6575 m->arg_flags[i] = 0;
6576 }
6577 m->ret_size = 8;
6578 m->ret_flags = 0;
6579 m->nr_args = MAX_BPF_FUNC_REG_ARGS;
6580 return 0;
6581 }
6582 args = (const struct btf_param *)(func + 1);
6583 nargs = btf_type_vlen(t: func);
6584 if (nargs > MAX_BPF_FUNC_ARGS) {
6585 bpf_log(log,
6586 fmt: "The function %s has %d arguments. Too many.\n",
6587 tname, nargs);
6588 return -EINVAL;
6589 }
6590 ret = __get_type_size(btf, btf_id: func->type, ret_type: &t);
6591 if (ret < 0 || __btf_type_is_struct(t)) {
6592 bpf_log(log,
6593 fmt: "The function %s return type %s is unsupported.\n",
6594 tname, btf_type_str(t));
6595 return -EINVAL;
6596 }
6597 m->ret_size = ret;
6598 m->ret_flags = __get_type_fmodel_flags(t);
6599
6600 for (i = 0; i < nargs; i++) {
6601 if (i == nargs - 1 && args[i].type == 0) {
6602 bpf_log(log,
6603 fmt: "The function %s with variable args is unsupported.\n",
6604 tname);
6605 return -EINVAL;
6606 }
6607 ret = __get_type_size(btf, btf_id: args[i].type, ret_type: &t);
6608
6609 /* No support of struct argument size greater than 16 bytes */
6610 if (ret < 0 || ret > 16) {
6611 bpf_log(log,
6612 fmt: "The function %s arg%d type %s is unsupported.\n",
6613 tname, i, btf_type_str(t));
6614 return -EINVAL;
6615 }
6616 if (ret == 0) {
6617 bpf_log(log,
6618 fmt: "The function %s has malformed void argument.\n",
6619 tname);
6620 return -EINVAL;
6621 }
6622 m->arg_size[i] = ret;
6623 m->arg_flags[i] = __get_type_fmodel_flags(t);
6624 }
6625 m->nr_args = nargs;
6626 return 0;
6627}
6628
6629/* Compare BTFs of two functions assuming only scalars and pointers to context.
6630 * t1 points to BTF_KIND_FUNC in btf1
6631 * t2 points to BTF_KIND_FUNC in btf2
6632 * Returns:
6633 * EINVAL - function prototype mismatch
6634 * EFAULT - verifier bug
6635 * 0 - 99% match. The last 1% is validated by the verifier.
6636 */
6637static int btf_check_func_type_match(struct bpf_verifier_log *log,
6638 struct btf *btf1, const struct btf_type *t1,
6639 struct btf *btf2, const struct btf_type *t2)
6640{
6641 const struct btf_param *args1, *args2;
6642 const char *fn1, *fn2, *s1, *s2;
6643 u32 nargs1, nargs2, i;
6644
6645 fn1 = btf_name_by_offset(btf: btf1, offset: t1->name_off);
6646 fn2 = btf_name_by_offset(btf: btf2, offset: t2->name_off);
6647
6648 if (btf_func_linkage(t: t1) != BTF_FUNC_GLOBAL) {
6649 bpf_log(log, fmt: "%s() is not a global function\n", fn1);
6650 return -EINVAL;
6651 }
6652 if (btf_func_linkage(t: t2) != BTF_FUNC_GLOBAL) {
6653 bpf_log(log, fmt: "%s() is not a global function\n", fn2);
6654 return -EINVAL;
6655 }
6656
6657 t1 = btf_type_by_id(btf1, t1->type);
6658 if (!t1 || !btf_type_is_func_proto(t: t1))
6659 return -EFAULT;
6660 t2 = btf_type_by_id(btf2, t2->type);
6661 if (!t2 || !btf_type_is_func_proto(t: t2))
6662 return -EFAULT;
6663
6664 args1 = (const struct btf_param *)(t1 + 1);
6665 nargs1 = btf_type_vlen(t: t1);
6666 args2 = (const struct btf_param *)(t2 + 1);
6667 nargs2 = btf_type_vlen(t: t2);
6668
6669 if (nargs1 != nargs2) {
6670 bpf_log(log, fmt: "%s() has %d args while %s() has %d args\n",
6671 fn1, nargs1, fn2, nargs2);
6672 return -EINVAL;
6673 }
6674
6675 t1 = btf_type_skip_modifiers(btf: btf1, id: t1->type, NULL);
6676 t2 = btf_type_skip_modifiers(btf: btf2, id: t2->type, NULL);
6677 if (t1->info != t2->info) {
6678 bpf_log(log,
6679 fmt: "Return type %s of %s() doesn't match type %s of %s()\n",
6680 btf_type_str(t: t1), fn1,
6681 btf_type_str(t: t2), fn2);
6682 return -EINVAL;
6683 }
6684
6685 for (i = 0; i < nargs1; i++) {
6686 t1 = btf_type_skip_modifiers(btf: btf1, id: args1[i].type, NULL);
6687 t2 = btf_type_skip_modifiers(btf: btf2, id: args2[i].type, NULL);
6688
6689 if (t1->info != t2->info) {
6690 bpf_log(log, fmt: "arg%d in %s() is %s while %s() has %s\n",
6691 i, fn1, btf_type_str(t: t1),
6692 fn2, btf_type_str(t: t2));
6693 return -EINVAL;
6694 }
6695 if (btf_type_has_size(t: t1) && t1->size != t2->size) {
6696 bpf_log(log,
6697 fmt: "arg%d in %s() has size %d while %s() has %d\n",
6698 i, fn1, t1->size,
6699 fn2, t2->size);
6700 return -EINVAL;
6701 }
6702
6703 /* global functions are validated with scalars and pointers
6704 * to context only. And only global functions can be replaced.
6705 * Hence type check only those types.
6706 */
6707 if (btf_type_is_int(t: t1) || btf_is_any_enum(t: t1))
6708 continue;
6709 if (!btf_type_is_ptr(t: t1)) {
6710 bpf_log(log,
6711 fmt: "arg%d in %s() has unrecognized type\n",
6712 i, fn1);
6713 return -EINVAL;
6714 }
6715 t1 = btf_type_skip_modifiers(btf: btf1, id: t1->type, NULL);
6716 t2 = btf_type_skip_modifiers(btf: btf2, id: t2->type, NULL);
6717 if (!btf_type_is_struct(t: t1)) {
6718 bpf_log(log,
6719 fmt: "arg%d in %s() is not a pointer to context\n",
6720 i, fn1);
6721 return -EINVAL;
6722 }
6723 if (!btf_type_is_struct(t: t2)) {
6724 bpf_log(log,
6725 fmt: "arg%d in %s() is not a pointer to context\n",
6726 i, fn2);
6727 return -EINVAL;
6728 }
6729 /* This is an optional check to make program writing easier.
6730 * Compare names of structs and report an error to the user.
6731 * btf_prepare_func_args() already checked that t2 struct
6732 * is a context type. btf_prepare_func_args() will check
6733 * later that t1 struct is a context type as well.
6734 */
6735 s1 = btf_name_by_offset(btf: btf1, offset: t1->name_off);
6736 s2 = btf_name_by_offset(btf: btf2, offset: t2->name_off);
6737 if (strcmp(s1, s2)) {
6738 bpf_log(log,
6739 fmt: "arg%d %s(struct %s *) doesn't match %s(struct %s *)\n",
6740 i, fn1, s1, fn2, s2);
6741 return -EINVAL;
6742 }
6743 }
6744 return 0;
6745}
6746
6747/* Compare BTFs of given program with BTF of target program */
6748int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog,
6749 struct btf *btf2, const struct btf_type *t2)
6750{
6751 struct btf *btf1 = prog->aux->btf;
6752 const struct btf_type *t1;
6753 u32 btf_id = 0;
6754
6755 if (!prog->aux->func_info) {
6756 bpf_log(log, fmt: "Program extension requires BTF\n");
6757 return -EINVAL;
6758 }
6759
6760 btf_id = prog->aux->func_info[0].type_id;
6761 if (!btf_id)
6762 return -EFAULT;
6763
6764 t1 = btf_type_by_id(btf1, btf_id);
6765 if (!t1 || !btf_type_is_func(t: t1))
6766 return -EFAULT;
6767
6768 return btf_check_func_type_match(log, btf1, t1, btf2, t2);
6769}
6770
6771static int btf_check_func_arg_match(struct bpf_verifier_env *env,
6772 const struct btf *btf, u32 func_id,
6773 struct bpf_reg_state *regs,
6774 bool ptr_to_mem_ok,
6775 bool processing_call)
6776{
6777 enum bpf_prog_type prog_type = resolve_prog_type(prog: env->prog);
6778 struct bpf_verifier_log *log = &env->log;
6779 const char *func_name, *ref_tname;
6780 const struct btf_type *t, *ref_t;
6781 const struct btf_param *args;
6782 u32 i, nargs, ref_id;
6783 int ret;
6784
6785 t = btf_type_by_id(btf, func_id);
6786 if (!t || !btf_type_is_func(t)) {
6787 /* These checks were already done by the verifier while loading
6788 * struct bpf_func_info or in add_kfunc_call().
6789 */
6790 bpf_log(log, fmt: "BTF of func_id %u doesn't point to KIND_FUNC\n",
6791 func_id);
6792 return -EFAULT;
6793 }
6794 func_name = btf_name_by_offset(btf, offset: t->name_off);
6795
6796 t = btf_type_by_id(btf, t->type);
6797 if (!t || !btf_type_is_func_proto(t)) {
6798 bpf_log(log, fmt: "Invalid BTF of func %s\n", func_name);
6799 return -EFAULT;
6800 }
6801 args = (const struct btf_param *)(t + 1);
6802 nargs = btf_type_vlen(t);
6803 if (nargs > MAX_BPF_FUNC_REG_ARGS) {
6804 bpf_log(log, fmt: "Function %s has %d > %d args\n", func_name, nargs,
6805 MAX_BPF_FUNC_REG_ARGS);
6806 return -EINVAL;
6807 }
6808
6809 /* check that BTF function arguments match actual types that the
6810 * verifier sees.
6811 */
6812 for (i = 0; i < nargs; i++) {
6813 enum bpf_arg_type arg_type = ARG_DONTCARE;
6814 u32 regno = i + 1;
6815 struct bpf_reg_state *reg = &regs[regno];
6816
6817 t = btf_type_skip_modifiers(btf, id: args[i].type, NULL);
6818 if (btf_type_is_scalar(t)) {
6819 if (reg->type == SCALAR_VALUE)
6820 continue;
6821 bpf_log(log, fmt: "R%d is not a scalar\n", regno);
6822 return -EINVAL;
6823 }
6824
6825 if (!btf_type_is_ptr(t)) {
6826 bpf_log(log, fmt: "Unrecognized arg#%d type %s\n",
6827 i, btf_type_str(t));
6828 return -EINVAL;
6829 }
6830
6831 ref_t = btf_type_skip_modifiers(btf, id: t->type, res_id: &ref_id);
6832 ref_tname = btf_name_by_offset(btf, offset: ref_t->name_off);
6833
6834 ret = check_func_arg_reg_off(env, reg, regno, arg_type);
6835 if (ret < 0)
6836 return ret;
6837
6838 if (btf_get_prog_ctx_type(log, btf, t, prog_type, arg: i)) {
6839 /* If function expects ctx type in BTF check that caller
6840 * is passing PTR_TO_CTX.
6841 */
6842 if (reg->type != PTR_TO_CTX) {
6843 bpf_log(log,
6844 fmt: "arg#%d expected pointer to ctx, but got %s\n",
6845 i, btf_type_str(t));
6846 return -EINVAL;
6847 }
6848 } else if (ptr_to_mem_ok && processing_call) {
6849 const struct btf_type *resolve_ret;
6850 u32 type_size;
6851
6852 resolve_ret = btf_resolve_size(btf, type: ref_t, type_size: &type_size);
6853 if (IS_ERR(ptr: resolve_ret)) {
6854 bpf_log(log,
6855 fmt: "arg#%d reference type('%s %s') size cannot be determined: %ld\n",
6856 i, btf_type_str(t: ref_t), ref_tname,
6857 PTR_ERR(ptr: resolve_ret));
6858 return -EINVAL;
6859 }
6860
6861 if (check_mem_reg(env, reg, regno, mem_size: type_size))
6862 return -EINVAL;
6863 } else {
6864 bpf_log(log, fmt: "reg type unsupported for arg#%d function %s#%d\n", i,
6865 func_name, func_id);
6866 return -EINVAL;
6867 }
6868 }
6869
6870 return 0;
6871}
6872
6873/* Compare BTF of a function declaration with given bpf_reg_state.
6874 * Returns:
6875 * EFAULT - there is a verifier bug. Abort verification.
6876 * EINVAL - there is a type mismatch or BTF is not available.
6877 * 0 - BTF matches with what bpf_reg_state expects.
6878 * Only PTR_TO_CTX and SCALAR_VALUE states are recognized.
6879 */
6880int btf_check_subprog_arg_match(struct bpf_verifier_env *env, int subprog,
6881 struct bpf_reg_state *regs)
6882{
6883 struct bpf_prog *prog = env->prog;
6884 struct btf *btf = prog->aux->btf;
6885 bool is_global;
6886 u32 btf_id;
6887 int err;
6888
6889 if (!prog->aux->func_info)
6890 return -EINVAL;
6891
6892 btf_id = prog->aux->func_info[subprog].type_id;
6893 if (!btf_id)
6894 return -EFAULT;
6895
6896 if (prog->aux->func_info_aux[subprog].unreliable)
6897 return -EINVAL;
6898
6899 is_global = prog->aux->func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
6900 err = btf_check_func_arg_match(env, btf, func_id: btf_id, regs, ptr_to_mem_ok: is_global, processing_call: false);
6901
6902 /* Compiler optimizations can remove arguments from static functions
6903 * or mismatched type can be passed into a global function.
6904 * In such cases mark the function as unreliable from BTF point of view.
6905 */
6906 if (err)
6907 prog->aux->func_info_aux[subprog].unreliable = true;
6908 return err;
6909}
6910
6911/* Compare BTF of a function call with given bpf_reg_state.
6912 * Returns:
6913 * EFAULT - there is a verifier bug. Abort verification.
6914 * EINVAL - there is a type mismatch or BTF is not available.
6915 * 0 - BTF matches with what bpf_reg_state expects.
6916 * Only PTR_TO_CTX and SCALAR_VALUE states are recognized.
6917 *
6918 * NOTE: the code is duplicated from btf_check_subprog_arg_match()
6919 * because btf_check_func_arg_match() is still doing both. Once that
6920 * function is split in 2, we can call from here btf_check_subprog_arg_match()
6921 * first, and then treat the calling part in a new code path.
6922 */
6923int btf_check_subprog_call(struct bpf_verifier_env *env, int subprog,
6924 struct bpf_reg_state *regs)
6925{
6926 struct bpf_prog *prog = env->prog;
6927 struct btf *btf = prog->aux->btf;
6928 bool is_global;
6929 u32 btf_id;
6930 int err;
6931
6932 if (!prog->aux->func_info)
6933 return -EINVAL;
6934
6935 btf_id = prog->aux->func_info[subprog].type_id;
6936 if (!btf_id)
6937 return -EFAULT;
6938
6939 if (prog->aux->func_info_aux[subprog].unreliable)
6940 return -EINVAL;
6941
6942 is_global = prog->aux->func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
6943 err = btf_check_func_arg_match(env, btf, func_id: btf_id, regs, ptr_to_mem_ok: is_global, processing_call: true);
6944
6945 /* Compiler optimizations can remove arguments from static functions
6946 * or mismatched type can be passed into a global function.
6947 * In such cases mark the function as unreliable from BTF point of view.
6948 */
6949 if (err)
6950 prog->aux->func_info_aux[subprog].unreliable = true;
6951 return err;
6952}
6953
6954/* Convert BTF of a function into bpf_reg_state if possible
6955 * Returns:
6956 * EFAULT - there is a verifier bug. Abort verification.
6957 * EINVAL - cannot convert BTF.
6958 * 0 - Successfully converted BTF into bpf_reg_state
6959 * (either PTR_TO_CTX or SCALAR_VALUE).
6960 */
6961int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog,
6962 struct bpf_reg_state *regs, bool is_ex_cb)
6963{
6964 struct bpf_verifier_log *log = &env->log;
6965 struct bpf_prog *prog = env->prog;
6966 enum bpf_prog_type prog_type = prog->type;
6967 struct btf *btf = prog->aux->btf;
6968 const struct btf_param *args;
6969 const struct btf_type *t, *ref_t;
6970 u32 i, nargs, btf_id;
6971 const char *tname;
6972
6973 if (!prog->aux->func_info ||
6974 prog->aux->func_info_aux[subprog].linkage != BTF_FUNC_GLOBAL) {
6975 bpf_log(log, fmt: "Verifier bug\n");
6976 return -EFAULT;
6977 }
6978
6979 btf_id = prog->aux->func_info[subprog].type_id;
6980 if (!btf_id) {
6981 bpf_log(log, fmt: "Global functions need valid BTF\n");
6982 return -EFAULT;
6983 }
6984
6985 t = btf_type_by_id(btf, btf_id);
6986 if (!t || !btf_type_is_func(t)) {
6987 /* These checks were already done by the verifier while loading
6988 * struct bpf_func_info
6989 */
6990 bpf_log(log, fmt: "BTF of func#%d doesn't point to KIND_FUNC\n",
6991 subprog);
6992 return -EFAULT;
6993 }
6994 tname = btf_name_by_offset(btf, offset: t->name_off);
6995
6996 if (log->level & BPF_LOG_LEVEL)
6997 bpf_log(log, fmt: "Validating %s() func#%d...\n",
6998 tname, subprog);
6999
7000 if (prog->aux->func_info_aux[subprog].unreliable) {
7001 bpf_log(log, fmt: "Verifier bug in function %s()\n", tname);
7002 return -EFAULT;
7003 }
7004 if (prog_type == BPF_PROG_TYPE_EXT)
7005 prog_type = prog->aux->dst_prog->type;
7006
7007 t = btf_type_by_id(btf, t->type);
7008 if (!t || !btf_type_is_func_proto(t)) {
7009 bpf_log(log, fmt: "Invalid type of function %s()\n", tname);
7010 return -EFAULT;
7011 }
7012 args = (const struct btf_param *)(t + 1);
7013 nargs = btf_type_vlen(t);
7014 if (nargs > MAX_BPF_FUNC_REG_ARGS) {
7015 bpf_log(log, fmt: "Global function %s() with %d > %d args. Buggy compiler.\n",
7016 tname, nargs, MAX_BPF_FUNC_REG_ARGS);
7017 return -EINVAL;
7018 }
7019 /* check that function returns int, exception cb also requires this */
7020 t = btf_type_by_id(btf, t->type);
7021 while (btf_type_is_modifier(t))
7022 t = btf_type_by_id(btf, t->type);
7023 if (!btf_type_is_int(t) && !btf_is_any_enum(t)) {
7024 bpf_log(log,
7025 fmt: "Global function %s() doesn't return scalar. Only those are supported.\n",
7026 tname);
7027 return -EINVAL;
7028 }
7029 /* Convert BTF function arguments into verifier types.
7030 * Only PTR_TO_CTX and SCALAR are supported atm.
7031 */
7032 for (i = 0; i < nargs; i++) {
7033 struct bpf_reg_state *reg = &regs[i + 1];
7034
7035 t = btf_type_by_id(btf, args[i].type);
7036 while (btf_type_is_modifier(t))
7037 t = btf_type_by_id(btf, t->type);
7038 if (btf_type_is_int(t) || btf_is_any_enum(t)) {
7039 reg->type = SCALAR_VALUE;
7040 continue;
7041 }
7042 if (btf_type_is_ptr(t)) {
7043 if (btf_get_prog_ctx_type(log, btf, t, prog_type, arg: i)) {
7044 reg->type = PTR_TO_CTX;
7045 continue;
7046 }
7047
7048 t = btf_type_skip_modifiers(btf, id: t->type, NULL);
7049
7050 ref_t = btf_resolve_size(btf, type: t, type_size: &reg->mem_size);
7051 if (IS_ERR(ptr: ref_t)) {
7052 bpf_log(log,
7053 fmt: "arg#%d reference type('%s %s') size cannot be determined: %ld\n",
7054 i, btf_type_str(t), btf_name_by_offset(btf, offset: t->name_off),
7055 PTR_ERR(ptr: ref_t));
7056 return -EINVAL;
7057 }
7058
7059 reg->type = PTR_TO_MEM | PTR_MAYBE_NULL;
7060 reg->id = ++env->id_gen;
7061
7062 continue;
7063 }
7064 bpf_log(log, fmt: "Arg#%d type %s in %s() is not supported yet.\n",
7065 i, btf_type_str(t), tname);
7066 return -EINVAL;
7067 }
7068 /* We have already ensured that the callback returns an integer, just
7069 * like all global subprogs. We need to determine it only has a single
7070 * scalar argument.
7071 */
7072 if (is_ex_cb && (nargs != 1 || regs[BPF_REG_1].type != SCALAR_VALUE)) {
7073 bpf_log(log, fmt: "exception cb only supports single integer argument\n");
7074 return -EINVAL;
7075 }
7076 return 0;
7077}
7078
7079static void btf_type_show(const struct btf *btf, u32 type_id, void *obj,
7080 struct btf_show *show)
7081{
7082 const struct btf_type *t = btf_type_by_id(btf, type_id);
7083
7084 show->btf = btf;
7085 memset(&show->state, 0, sizeof(show->state));
7086 memset(&show->obj, 0, sizeof(show->obj));
7087
7088 btf_type_ops(t)->show(btf, t, type_id, obj, 0, show);
7089}
7090
7091static void btf_seq_show(struct btf_show *show, const char *fmt,
7092 va_list args)
7093{
7094 seq_vprintf(m: (struct seq_file *)show->target, fmt, args);
7095}
7096
7097int btf_type_seq_show_flags(const struct btf *btf, u32 type_id,
7098 void *obj, struct seq_file *m, u64 flags)
7099{
7100 struct btf_show sseq;
7101
7102 sseq.target = m;
7103 sseq.showfn = btf_seq_show;
7104 sseq.flags = flags;
7105
7106 btf_type_show(btf, type_id, obj, show: &sseq);
7107
7108 return sseq.state.status;
7109}
7110
7111void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj,
7112 struct seq_file *m)
7113{
7114 (void) btf_type_seq_show_flags(btf, type_id, obj, m,
7115 BTF_SHOW_NONAME | BTF_SHOW_COMPACT |
7116 BTF_SHOW_ZERO | BTF_SHOW_UNSAFE);
7117}
7118
7119struct btf_show_snprintf {
7120 struct btf_show show;
7121 int len_left; /* space left in string */
7122 int len; /* length we would have written */
7123};
7124
7125static void btf_snprintf_show(struct btf_show *show, const char *fmt,
7126 va_list args)
7127{
7128 struct btf_show_snprintf *ssnprintf = (struct btf_show_snprintf *)show;
7129 int len;
7130
7131 len = vsnprintf(buf: show->target, size: ssnprintf->len_left, fmt, args);
7132
7133 if (len < 0) {
7134 ssnprintf->len_left = 0;
7135 ssnprintf->len = len;
7136 } else if (len >= ssnprintf->len_left) {
7137 /* no space, drive on to get length we would have written */
7138 ssnprintf->len_left = 0;
7139 ssnprintf->len += len;
7140 } else {
7141 ssnprintf->len_left -= len;
7142 ssnprintf->len += len;
7143 show->target += len;
7144 }
7145}
7146
7147int btf_type_snprintf_show(const struct btf *btf, u32 type_id, void *obj,
7148 char *buf, int len, u64 flags)
7149{
7150 struct btf_show_snprintf ssnprintf;
7151
7152 ssnprintf.show.target = buf;
7153 ssnprintf.show.flags = flags;
7154 ssnprintf.show.showfn = btf_snprintf_show;
7155 ssnprintf.len_left = len;
7156 ssnprintf.len = 0;
7157
7158 btf_type_show(btf, type_id, obj, show: (struct btf_show *)&ssnprintf);
7159
7160 /* If we encountered an error, return it. */
7161 if (ssnprintf.show.state.status)
7162 return ssnprintf.show.state.status;
7163
7164 /* Otherwise return length we would have written */
7165 return ssnprintf.len;
7166}
7167
7168#ifdef CONFIG_PROC_FS
7169static void bpf_btf_show_fdinfo(struct seq_file *m, struct file *filp)
7170{
7171 const struct btf *btf = filp->private_data;
7172
7173 seq_printf(m, fmt: "btf_id:\t%u\n", btf->id);
7174}
7175#endif
7176
7177static int btf_release(struct inode *inode, struct file *filp)
7178{
7179 btf_put(btf: filp->private_data);
7180 return 0;
7181}
7182
7183const struct file_operations btf_fops = {
7184#ifdef CONFIG_PROC_FS
7185 .show_fdinfo = bpf_btf_show_fdinfo,
7186#endif
7187 .release = btf_release,
7188};
7189
7190static int __btf_new_fd(struct btf *btf)
7191{
7192 return anon_inode_getfd(name: "btf", fops: &btf_fops, priv: btf, O_RDONLY | O_CLOEXEC);
7193}
7194
7195int btf_new_fd(const union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size)
7196{
7197 struct btf *btf;
7198 int ret;
7199
7200 btf = btf_parse(attr, uattr, uattr_size);
7201 if (IS_ERR(ptr: btf))
7202 return PTR_ERR(ptr: btf);
7203
7204 ret = btf_alloc_id(btf);
7205 if (ret) {
7206 btf_free(btf);
7207 return ret;
7208 }
7209
7210 /*
7211 * The BTF ID is published to the userspace.
7212 * All BTF free must go through call_rcu() from
7213 * now on (i.e. free by calling btf_put()).
7214 */
7215
7216 ret = __btf_new_fd(btf);
7217 if (ret < 0)
7218 btf_put(btf);
7219
7220 return ret;
7221}
7222
7223struct btf *btf_get_by_fd(int fd)
7224{
7225 struct btf *btf;
7226 struct fd f;
7227
7228 f = fdget(fd);
7229
7230 if (!f.file)
7231 return ERR_PTR(error: -EBADF);
7232
7233 if (f.file->f_op != &btf_fops) {
7234 fdput(fd: f);
7235 return ERR_PTR(error: -EINVAL);
7236 }
7237
7238 btf = f.file->private_data;
7239 refcount_inc(r: &btf->refcnt);
7240 fdput(fd: f);
7241
7242 return btf;
7243}
7244
7245int btf_get_info_by_fd(const struct btf *btf,
7246 const union bpf_attr *attr,
7247 union bpf_attr __user *uattr)
7248{
7249 struct bpf_btf_info __user *uinfo;
7250 struct bpf_btf_info info;
7251 u32 info_copy, btf_copy;
7252 void __user *ubtf;
7253 char __user *uname;
7254 u32 uinfo_len, uname_len, name_len;
7255 int ret = 0;
7256
7257 uinfo = u64_to_user_ptr(attr->info.info);
7258 uinfo_len = attr->info.info_len;
7259
7260 info_copy = min_t(u32, uinfo_len, sizeof(info));
7261 memset(&info, 0, sizeof(info));
7262 if (copy_from_user(to: &info, from: uinfo, n: info_copy))
7263 return -EFAULT;
7264
7265 info.id = btf->id;
7266 ubtf = u64_to_user_ptr(info.btf);
7267 btf_copy = min_t(u32, btf->data_size, info.btf_size);
7268 if (copy_to_user(to: ubtf, from: btf->data, n: btf_copy))
7269 return -EFAULT;
7270 info.btf_size = btf->data_size;
7271
7272 info.kernel_btf = btf->kernel_btf;
7273
7274 uname = u64_to_user_ptr(info.name);
7275 uname_len = info.name_len;
7276 if (!uname ^ !uname_len)
7277 return -EINVAL;
7278
7279 name_len = strlen(btf->name);
7280 info.name_len = name_len;
7281
7282 if (uname) {
7283 if (uname_len >= name_len + 1) {
7284 if (copy_to_user(to: uname, from: btf->name, n: name_len + 1))
7285 return -EFAULT;
7286 } else {
7287 char zero = '\0';
7288
7289 if (copy_to_user(to: uname, from: btf->name, n: uname_len - 1))
7290 return -EFAULT;
7291 if (put_user(zero, uname + uname_len - 1))
7292 return -EFAULT;
7293 /* let user-space know about too short buffer */
7294 ret = -ENOSPC;
7295 }
7296 }
7297
7298 if (copy_to_user(to: uinfo, from: &info, n: info_copy) ||
7299 put_user(info_copy, &uattr->info.info_len))
7300 return -EFAULT;
7301
7302 return ret;
7303}
7304
7305int btf_get_fd_by_id(u32 id)
7306{
7307 struct btf *btf;
7308 int fd;
7309
7310 rcu_read_lock();
7311 btf = idr_find(&btf_idr, id);
7312 if (!btf || !refcount_inc_not_zero(r: &btf->refcnt))
7313 btf = ERR_PTR(error: -ENOENT);
7314 rcu_read_unlock();
7315
7316 if (IS_ERR(ptr: btf))
7317 return PTR_ERR(ptr: btf);
7318
7319 fd = __btf_new_fd(btf);
7320 if (fd < 0)
7321 btf_put(btf);
7322
7323 return fd;
7324}
7325
7326u32 btf_obj_id(const struct btf *btf)
7327{
7328 return btf->id;
7329}
7330
7331bool btf_is_kernel(const struct btf *btf)
7332{
7333 return btf->kernel_btf;
7334}
7335
7336bool btf_is_module(const struct btf *btf)
7337{
7338 return btf->kernel_btf && strcmp(btf->name, "vmlinux") != 0;
7339}
7340
7341enum {
7342 BTF_MODULE_F_LIVE = (1 << 0),
7343};
7344
7345#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
7346struct btf_module {
7347 struct list_head list;
7348 struct module *module;
7349 struct btf *btf;
7350 struct bin_attribute *sysfs_attr;
7351 int flags;
7352};
7353
7354static LIST_HEAD(btf_modules);
7355static DEFINE_MUTEX(btf_module_mutex);
7356
7357static ssize_t
7358btf_module_read(struct file *file, struct kobject *kobj,
7359 struct bin_attribute *bin_attr,
7360 char *buf, loff_t off, size_t len)
7361{
7362 const struct btf *btf = bin_attr->private;
7363
7364 memcpy(buf, btf->data + off, len);
7365 return len;
7366}
7367
7368static void purge_cand_cache(struct btf *btf);
7369
7370static int btf_module_notify(struct notifier_block *nb, unsigned long op,
7371 void *module)
7372{
7373 struct btf_module *btf_mod, *tmp;
7374 struct module *mod = module;
7375 struct btf *btf;
7376 int err = 0;
7377
7378 if (mod->btf_data_size == 0 ||
7379 (op != MODULE_STATE_COMING && op != MODULE_STATE_LIVE &&
7380 op != MODULE_STATE_GOING))
7381 goto out;
7382
7383 switch (op) {
7384 case MODULE_STATE_COMING:
7385 btf_mod = kzalloc(sizeof(*btf_mod), GFP_KERNEL);
7386 if (!btf_mod) {
7387 err = -ENOMEM;
7388 goto out;
7389 }
7390 btf = btf_parse_module(mod->name, mod->btf_data, mod->btf_data_size);
7391 if (IS_ERR(btf)) {
7392 kfree(btf_mod);
7393 if (!IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH)) {
7394 pr_warn("failed to validate module [%s] BTF: %ld\n",
7395 mod->name, PTR_ERR(btf));
7396 err = PTR_ERR(btf);
7397 } else {
7398 pr_warn_once("Kernel module BTF mismatch detected, BTF debug info may be unavailable for some modules\n");
7399 }
7400 goto out;
7401 }
7402 err = btf_alloc_id(btf);
7403 if (err) {
7404 btf_free(btf);
7405 kfree(btf_mod);
7406 goto out;
7407 }
7408
7409 purge_cand_cache(NULL);
7410 mutex_lock(&btf_module_mutex);
7411 btf_mod->module = module;
7412 btf_mod->btf = btf;
7413 list_add(&btf_mod->list, &btf_modules);
7414 mutex_unlock(&btf_module_mutex);
7415
7416 if (IS_ENABLED(CONFIG_SYSFS)) {
7417 struct bin_attribute *attr;
7418
7419 attr = kzalloc(sizeof(*attr), GFP_KERNEL);
7420 if (!attr)
7421 goto out;
7422
7423 sysfs_bin_attr_init(attr);
7424 attr->attr.name = btf->name;
7425 attr->attr.mode = 0444;
7426 attr->size = btf->data_size;
7427 attr->private = btf;
7428 attr->read = btf_module_read;
7429
7430 err = sysfs_create_bin_file(btf_kobj, attr);
7431 if (err) {
7432 pr_warn("failed to register module [%s] BTF in sysfs: %d\n",
7433 mod->name, err);
7434 kfree(attr);
7435 err = 0;
7436 goto out;
7437 }
7438
7439 btf_mod->sysfs_attr = attr;
7440 }
7441
7442 break;
7443 case MODULE_STATE_LIVE:
7444 mutex_lock(&btf_module_mutex);
7445 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
7446 if (btf_mod->module != module)
7447 continue;
7448
7449 btf_mod->flags |= BTF_MODULE_F_LIVE;
7450 break;
7451 }
7452 mutex_unlock(&btf_module_mutex);
7453 break;
7454 case MODULE_STATE_GOING:
7455 mutex_lock(&btf_module_mutex);
7456 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
7457 if (btf_mod->module != module)
7458 continue;
7459
7460 list_del(&btf_mod->list);
7461 if (btf_mod->sysfs_attr)
7462 sysfs_remove_bin_file(btf_kobj, btf_mod->sysfs_attr);
7463 purge_cand_cache(btf_mod->btf);
7464 btf_put(btf_mod->btf);
7465 kfree(btf_mod->sysfs_attr);
7466 kfree(btf_mod);
7467 break;
7468 }
7469 mutex_unlock(&btf_module_mutex);
7470 break;
7471 }
7472out:
7473 return notifier_from_errno(err);
7474}
7475
7476static struct notifier_block btf_module_nb = {
7477 .notifier_call = btf_module_notify,
7478};
7479
7480static int __init btf_module_init(void)
7481{
7482 register_module_notifier(&btf_module_nb);
7483 return 0;
7484}
7485
7486fs_initcall(btf_module_init);
7487#endif /* CONFIG_DEBUG_INFO_BTF_MODULES */
7488
7489struct module *btf_try_get_module(const struct btf *btf)
7490{
7491 struct module *res = NULL;
7492#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
7493 struct btf_module *btf_mod, *tmp;
7494
7495 mutex_lock(&btf_module_mutex);
7496 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
7497 if (btf_mod->btf != btf)
7498 continue;
7499
7500 /* We must only consider module whose __init routine has
7501 * finished, hence we must check for BTF_MODULE_F_LIVE flag,
7502 * which is set from the notifier callback for
7503 * MODULE_STATE_LIVE.
7504 */
7505 if ((btf_mod->flags & BTF_MODULE_F_LIVE) && try_module_get(btf_mod->module))
7506 res = btf_mod->module;
7507
7508 break;
7509 }
7510 mutex_unlock(&btf_module_mutex);
7511#endif
7512
7513 return res;
7514}
7515
7516/* Returns struct btf corresponding to the struct module.
7517 * This function can return NULL or ERR_PTR.
7518 */
7519static struct btf *btf_get_module_btf(const struct module *module)
7520{
7521#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
7522 struct btf_module *btf_mod, *tmp;
7523#endif
7524 struct btf *btf = NULL;
7525
7526 if (!module) {
7527 btf = bpf_get_btf_vmlinux();
7528 if (!IS_ERR_OR_NULL(ptr: btf))
7529 btf_get(btf);
7530 return btf;
7531 }
7532
7533#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
7534 mutex_lock(&btf_module_mutex);
7535 list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
7536 if (btf_mod->module != module)
7537 continue;
7538
7539 btf_get(btf_mod->btf);
7540 btf = btf_mod->btf;
7541 break;
7542 }
7543 mutex_unlock(&btf_module_mutex);
7544#endif
7545
7546 return btf;
7547}
7548
7549BPF_CALL_4(bpf_btf_find_by_name_kind, char *, name, int, name_sz, u32, kind, int, flags)
7550{
7551 struct btf *btf = NULL;
7552 int btf_obj_fd = 0;
7553 long ret;
7554
7555 if (flags)
7556 return -EINVAL;
7557
7558 if (name_sz <= 1 || name[name_sz - 1])
7559 return -EINVAL;
7560
7561 ret = bpf_find_btf_id(name, kind, btf_p: &btf);
7562 if (ret > 0 && btf_is_module(btf)) {
7563 btf_obj_fd = __btf_new_fd(btf);
7564 if (btf_obj_fd < 0) {
7565 btf_put(btf);
7566 return btf_obj_fd;
7567 }
7568 return ret | (((u64)btf_obj_fd) << 32);
7569 }
7570 if (ret > 0)
7571 btf_put(btf);
7572 return ret;
7573}
7574
7575const struct bpf_func_proto bpf_btf_find_by_name_kind_proto = {
7576 .func = bpf_btf_find_by_name_kind,
7577 .gpl_only = false,
7578 .ret_type = RET_INTEGER,
7579 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY,
7580 .arg2_type = ARG_CONST_SIZE,
7581 .arg3_type = ARG_ANYTHING,
7582 .arg4_type = ARG_ANYTHING,
7583};
7584
7585BTF_ID_LIST_GLOBAL(btf_tracing_ids, MAX_BTF_TRACING_TYPE)
7586#define BTF_TRACING_TYPE(name, type) BTF_ID(struct, type)
7587BTF_TRACING_TYPE_xxx
7588#undef BTF_TRACING_TYPE
7589
7590static int btf_check_iter_kfuncs(struct btf *btf, const char *func_name,
7591 const struct btf_type *func, u32 func_flags)
7592{
7593 u32 flags = func_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY);
7594 const char *name, *sfx, *iter_name;
7595 const struct btf_param *arg;
7596 const struct btf_type *t;
7597 char exp_name[128];
7598 u32 nr_args;
7599
7600 /* exactly one of KF_ITER_{NEW,NEXT,DESTROY} can be set */
7601 if (!flags || (flags & (flags - 1)))
7602 return -EINVAL;
7603
7604 /* any BPF iter kfunc should have `struct bpf_iter_<type> *` first arg */
7605 nr_args = btf_type_vlen(t: func);
7606 if (nr_args < 1)
7607 return -EINVAL;
7608
7609 arg = &btf_params(t: func)[0];
7610 t = btf_type_skip_modifiers(btf, id: arg->type, NULL);
7611 if (!t || !btf_type_is_ptr(t))
7612 return -EINVAL;
7613 t = btf_type_skip_modifiers(btf, id: t->type, NULL);
7614 if (!t || !__btf_type_is_struct(t))
7615 return -EINVAL;
7616
7617 name = btf_name_by_offset(btf, offset: t->name_off);
7618 if (!name || strncmp(name, ITER_PREFIX, sizeof(ITER_PREFIX) - 1))
7619 return -EINVAL;
7620
7621 /* sizeof(struct bpf_iter_<type>) should be a multiple of 8 to
7622 * fit nicely in stack slots
7623 */
7624 if (t->size == 0 || (t->size % 8))
7625 return -EINVAL;
7626
7627 /* validate bpf_iter_<type>_{new,next,destroy}(struct bpf_iter_<type> *)
7628 * naming pattern
7629 */
7630 iter_name = name + sizeof(ITER_PREFIX) - 1;
7631 if (flags & KF_ITER_NEW)
7632 sfx = "new";
7633 else if (flags & KF_ITER_NEXT)
7634 sfx = "next";
7635 else /* (flags & KF_ITER_DESTROY) */
7636 sfx = "destroy";
7637
7638 snprintf(buf: exp_name, size: sizeof(exp_name), fmt: "bpf_iter_%s_%s", iter_name, sfx);
7639 if (strcmp(func_name, exp_name))
7640 return -EINVAL;
7641
7642 /* only iter constructor should have extra arguments */
7643 if (!(flags & KF_ITER_NEW) && nr_args != 1)
7644 return -EINVAL;
7645
7646 if (flags & KF_ITER_NEXT) {
7647 /* bpf_iter_<type>_next() should return pointer */
7648 t = btf_type_skip_modifiers(btf, id: func->type, NULL);
7649 if (!t || !btf_type_is_ptr(t))
7650 return -EINVAL;
7651 }
7652
7653 if (flags & KF_ITER_DESTROY) {
7654 /* bpf_iter_<type>_destroy() should return void */
7655 t = btf_type_by_id(btf, func->type);
7656 if (!t || !btf_type_is_void(t))
7657 return -EINVAL;
7658 }
7659
7660 return 0;
7661}
7662
7663static int btf_check_kfunc_protos(struct btf *btf, u32 func_id, u32 func_flags)
7664{
7665 const struct btf_type *func;
7666 const char *func_name;
7667 int err;
7668
7669 /* any kfunc should be FUNC -> FUNC_PROTO */
7670 func = btf_type_by_id(btf, func_id);
7671 if (!func || !btf_type_is_func(t: func))
7672 return -EINVAL;
7673
7674 /* sanity check kfunc name */
7675 func_name = btf_name_by_offset(btf, offset: func->name_off);
7676 if (!func_name || !func_name[0])
7677 return -EINVAL;
7678
7679 func = btf_type_by_id(btf, func->type);
7680 if (!func || !btf_type_is_func_proto(t: func))
7681 return -EINVAL;
7682
7683 if (func_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY)) {
7684 err = btf_check_iter_kfuncs(btf, func_name, func, func_flags);
7685 if (err)
7686 return err;
7687 }
7688
7689 return 0;
7690}
7691
7692/* Kernel Function (kfunc) BTF ID set registration API */
7693
7694static int btf_populate_kfunc_set(struct btf *btf, enum btf_kfunc_hook hook,
7695 const struct btf_kfunc_id_set *kset)
7696{
7697 struct btf_kfunc_hook_filter *hook_filter;
7698 struct btf_id_set8 *add_set = kset->set;
7699 bool vmlinux_set = !btf_is_module(btf);
7700 bool add_filter = !!kset->filter;
7701 struct btf_kfunc_set_tab *tab;
7702 struct btf_id_set8 *set;
7703 u32 set_cnt;
7704 int ret;
7705
7706 if (hook >= BTF_KFUNC_HOOK_MAX) {
7707 ret = -EINVAL;
7708 goto end;
7709 }
7710
7711 if (!add_set->cnt)
7712 return 0;
7713
7714 tab = btf->kfunc_set_tab;
7715
7716 if (tab && add_filter) {
7717 u32 i;
7718
7719 hook_filter = &tab->hook_filters[hook];
7720 for (i = 0; i < hook_filter->nr_filters; i++) {
7721 if (hook_filter->filters[i] == kset->filter) {
7722 add_filter = false;
7723 break;
7724 }
7725 }
7726
7727 if (add_filter && hook_filter->nr_filters == BTF_KFUNC_FILTER_MAX_CNT) {
7728 ret = -E2BIG;
7729 goto end;
7730 }
7731 }
7732
7733 if (!tab) {
7734 tab = kzalloc(size: sizeof(*tab), GFP_KERNEL | __GFP_NOWARN);
7735 if (!tab)
7736 return -ENOMEM;
7737 btf->kfunc_set_tab = tab;
7738 }
7739
7740 set = tab->sets[hook];
7741 /* Warn when register_btf_kfunc_id_set is called twice for the same hook
7742 * for module sets.
7743 */
7744 if (WARN_ON_ONCE(set && !vmlinux_set)) {
7745 ret = -EINVAL;
7746 goto end;
7747 }
7748
7749 /* We don't need to allocate, concatenate, and sort module sets, because
7750 * only one is allowed per hook. Hence, we can directly assign the
7751 * pointer and return.
7752 */
7753 if (!vmlinux_set) {
7754 tab->sets[hook] = add_set;
7755 goto do_add_filter;
7756 }
7757
7758 /* In case of vmlinux sets, there may be more than one set being
7759 * registered per hook. To create a unified set, we allocate a new set
7760 * and concatenate all individual sets being registered. While each set
7761 * is individually sorted, they may become unsorted when concatenated,
7762 * hence re-sorting the final set again is required to make binary
7763 * searching the set using btf_id_set8_contains function work.
7764 */
7765 set_cnt = set ? set->cnt : 0;
7766
7767 if (set_cnt > U32_MAX - add_set->cnt) {
7768 ret = -EOVERFLOW;
7769 goto end;
7770 }
7771
7772 if (set_cnt + add_set->cnt > BTF_KFUNC_SET_MAX_CNT) {
7773 ret = -E2BIG;
7774 goto end;
7775 }
7776
7777 /* Grow set */
7778 set = krealloc(objp: tab->sets[hook],
7779 offsetof(struct btf_id_set8, pairs[set_cnt + add_set->cnt]),
7780 GFP_KERNEL | __GFP_NOWARN);
7781 if (!set) {
7782 ret = -ENOMEM;
7783 goto end;
7784 }
7785
7786 /* For newly allocated set, initialize set->cnt to 0 */
7787 if (!tab->sets[hook])
7788 set->cnt = 0;
7789 tab->sets[hook] = set;
7790
7791 /* Concatenate the two sets */
7792 memcpy(set->pairs + set->cnt, add_set->pairs, add_set->cnt * sizeof(set->pairs[0]));
7793 set->cnt += add_set->cnt;
7794
7795 sort(base: set->pairs, num: set->cnt, size: sizeof(set->pairs[0]), cmp_func: btf_id_cmp_func, NULL);
7796
7797do_add_filter:
7798 if (add_filter) {
7799 hook_filter = &tab->hook_filters[hook];
7800 hook_filter->filters[hook_filter->nr_filters++] = kset->filter;
7801 }
7802 return 0;
7803end:
7804 btf_free_kfunc_set_tab(btf);
7805 return ret;
7806}
7807
7808static u32 *__btf_kfunc_id_set_contains(const struct btf *btf,
7809 enum btf_kfunc_hook hook,
7810 u32 kfunc_btf_id,
7811 const struct bpf_prog *prog)
7812{
7813 struct btf_kfunc_hook_filter *hook_filter;
7814 struct btf_id_set8 *set;
7815 u32 *id, i;
7816
7817 if (hook >= BTF_KFUNC_HOOK_MAX)
7818 return NULL;
7819 if (!btf->kfunc_set_tab)
7820 return NULL;
7821 hook_filter = &btf->kfunc_set_tab->hook_filters[hook];
7822 for (i = 0; i < hook_filter->nr_filters; i++) {
7823 if (hook_filter->filters[i](prog, kfunc_btf_id))
7824 return NULL;
7825 }
7826 set = btf->kfunc_set_tab->sets[hook];
7827 if (!set)
7828 return NULL;
7829 id = btf_id_set8_contains(set, id: kfunc_btf_id);
7830 if (!id)
7831 return NULL;
7832 /* The flags for BTF ID are located next to it */
7833 return id + 1;
7834}
7835
7836static int bpf_prog_type_to_kfunc_hook(enum bpf_prog_type prog_type)
7837{
7838 switch (prog_type) {
7839 case BPF_PROG_TYPE_UNSPEC:
7840 return BTF_KFUNC_HOOK_COMMON;
7841 case BPF_PROG_TYPE_XDP:
7842 return BTF_KFUNC_HOOK_XDP;
7843 case BPF_PROG_TYPE_SCHED_CLS:
7844 return BTF_KFUNC_HOOK_TC;
7845 case BPF_PROG_TYPE_STRUCT_OPS:
7846 return BTF_KFUNC_HOOK_STRUCT_OPS;
7847 case BPF_PROG_TYPE_TRACING:
7848 case BPF_PROG_TYPE_LSM:
7849 return BTF_KFUNC_HOOK_TRACING;
7850 case BPF_PROG_TYPE_SYSCALL:
7851 return BTF_KFUNC_HOOK_SYSCALL;
7852 case BPF_PROG_TYPE_CGROUP_SKB:
7853 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
7854 return BTF_KFUNC_HOOK_CGROUP_SKB;
7855 case BPF_PROG_TYPE_SCHED_ACT:
7856 return BTF_KFUNC_HOOK_SCHED_ACT;
7857 case BPF_PROG_TYPE_SK_SKB:
7858 return BTF_KFUNC_HOOK_SK_SKB;
7859 case BPF_PROG_TYPE_SOCKET_FILTER:
7860 return BTF_KFUNC_HOOK_SOCKET_FILTER;
7861 case BPF_PROG_TYPE_LWT_OUT:
7862 case BPF_PROG_TYPE_LWT_IN:
7863 case BPF_PROG_TYPE_LWT_XMIT:
7864 case BPF_PROG_TYPE_LWT_SEG6LOCAL:
7865 return BTF_KFUNC_HOOK_LWT;
7866 case BPF_PROG_TYPE_NETFILTER:
7867 return BTF_KFUNC_HOOK_NETFILTER;
7868 default:
7869 return BTF_KFUNC_HOOK_MAX;
7870 }
7871}
7872
7873/* Caution:
7874 * Reference to the module (obtained using btf_try_get_module) corresponding to
7875 * the struct btf *MUST* be held when calling this function from verifier
7876 * context. This is usually true as we stash references in prog's kfunc_btf_tab;
7877 * keeping the reference for the duration of the call provides the necessary
7878 * protection for looking up a well-formed btf->kfunc_set_tab.
7879 */
7880u32 *btf_kfunc_id_set_contains(const struct btf *btf,
7881 u32 kfunc_btf_id,
7882 const struct bpf_prog *prog)
7883{
7884 enum bpf_prog_type prog_type = resolve_prog_type(prog);
7885 enum btf_kfunc_hook hook;
7886 u32 *kfunc_flags;
7887
7888 kfunc_flags = __btf_kfunc_id_set_contains(btf, hook: BTF_KFUNC_HOOK_COMMON, kfunc_btf_id, prog);
7889 if (kfunc_flags)
7890 return kfunc_flags;
7891
7892 hook = bpf_prog_type_to_kfunc_hook(prog_type);
7893 return __btf_kfunc_id_set_contains(btf, hook, kfunc_btf_id, prog);
7894}
7895
7896u32 *btf_kfunc_is_modify_return(const struct btf *btf, u32 kfunc_btf_id,
7897 const struct bpf_prog *prog)
7898{
7899 return __btf_kfunc_id_set_contains(btf, hook: BTF_KFUNC_HOOK_FMODRET, kfunc_btf_id, prog);
7900}
7901
7902static int __register_btf_kfunc_id_set(enum btf_kfunc_hook hook,
7903 const struct btf_kfunc_id_set *kset)
7904{
7905 struct btf *btf;
7906 int ret, i;
7907
7908 btf = btf_get_module_btf(module: kset->owner);
7909 if (!btf) {
7910 if (!kset->owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
7911 pr_err("missing vmlinux BTF, cannot register kfuncs\n");
7912 return -ENOENT;
7913 }
7914 if (kset->owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES))
7915 pr_warn("missing module BTF, cannot register kfuncs\n");
7916 return 0;
7917 }
7918 if (IS_ERR(ptr: btf))
7919 return PTR_ERR(ptr: btf);
7920
7921 for (i = 0; i < kset->set->cnt; i++) {
7922 ret = btf_check_kfunc_protos(btf, func_id: kset->set->pairs[i].id,
7923 func_flags: kset->set->pairs[i].flags);
7924 if (ret)
7925 goto err_out;
7926 }
7927
7928 ret = btf_populate_kfunc_set(btf, hook, kset);
7929
7930err_out:
7931 btf_put(btf);
7932 return ret;
7933}
7934
7935/* This function must be invoked only from initcalls/module init functions */
7936int register_btf_kfunc_id_set(enum bpf_prog_type prog_type,
7937 const struct btf_kfunc_id_set *kset)
7938{
7939 enum btf_kfunc_hook hook;
7940
7941 hook = bpf_prog_type_to_kfunc_hook(prog_type);
7942 return __register_btf_kfunc_id_set(hook, kset);
7943}
7944EXPORT_SYMBOL_GPL(register_btf_kfunc_id_set);
7945
7946/* This function must be invoked only from initcalls/module init functions */
7947int register_btf_fmodret_id_set(const struct btf_kfunc_id_set *kset)
7948{
7949 return __register_btf_kfunc_id_set(hook: BTF_KFUNC_HOOK_FMODRET, kset);
7950}
7951EXPORT_SYMBOL_GPL(register_btf_fmodret_id_set);
7952
7953s32 btf_find_dtor_kfunc(struct btf *btf, u32 btf_id)
7954{
7955 struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab;
7956 struct btf_id_dtor_kfunc *dtor;
7957
7958 if (!tab)
7959 return -ENOENT;
7960 /* Even though the size of tab->dtors[0] is > sizeof(u32), we only need
7961 * to compare the first u32 with btf_id, so we can reuse btf_id_cmp_func.
7962 */
7963 BUILD_BUG_ON(offsetof(struct btf_id_dtor_kfunc, btf_id) != 0);
7964 dtor = bsearch(key: &btf_id, base: tab->dtors, num: tab->cnt, size: sizeof(tab->dtors[0]), cmp: btf_id_cmp_func);
7965 if (!dtor)
7966 return -ENOENT;
7967 return dtor->kfunc_btf_id;
7968}
7969
7970static int btf_check_dtor_kfuncs(struct btf *btf, const struct btf_id_dtor_kfunc *dtors, u32 cnt)
7971{
7972 const struct btf_type *dtor_func, *dtor_func_proto, *t;
7973 const struct btf_param *args;
7974 s32 dtor_btf_id;
7975 u32 nr_args, i;
7976
7977 for (i = 0; i < cnt; i++) {
7978 dtor_btf_id = dtors[i].kfunc_btf_id;
7979
7980 dtor_func = btf_type_by_id(btf, dtor_btf_id);
7981 if (!dtor_func || !btf_type_is_func(t: dtor_func))
7982 return -EINVAL;
7983
7984 dtor_func_proto = btf_type_by_id(btf, dtor_func->type);
7985 if (!dtor_func_proto || !btf_type_is_func_proto(t: dtor_func_proto))
7986 return -EINVAL;
7987
7988 /* Make sure the prototype of the destructor kfunc is 'void func(type *)' */
7989 t = btf_type_by_id(btf, dtor_func_proto->type);
7990 if (!t || !btf_type_is_void(t))
7991 return -EINVAL;
7992
7993 nr_args = btf_type_vlen(t: dtor_func_proto);
7994 if (nr_args != 1)
7995 return -EINVAL;
7996 args = btf_params(t: dtor_func_proto);
7997 t = btf_type_by_id(btf, args[0].type);
7998 /* Allow any pointer type, as width on targets Linux supports
7999 * will be same for all pointer types (i.e. sizeof(void *))
8000 */
8001 if (!t || !btf_type_is_ptr(t))
8002 return -EINVAL;
8003 }
8004 return 0;
8005}
8006
8007/* This function must be invoked only from initcalls/module init functions */
8008int register_btf_id_dtor_kfuncs(const struct btf_id_dtor_kfunc *dtors, u32 add_cnt,
8009 struct module *owner)
8010{
8011 struct btf_id_dtor_kfunc_tab *tab;
8012 struct btf *btf;
8013 u32 tab_cnt;
8014 int ret;
8015
8016 btf = btf_get_module_btf(module: owner);
8017 if (!btf) {
8018 if (!owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
8019 pr_err("missing vmlinux BTF, cannot register dtor kfuncs\n");
8020 return -ENOENT;
8021 }
8022 if (owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES)) {
8023 pr_err("missing module BTF, cannot register dtor kfuncs\n");
8024 return -ENOENT;
8025 }
8026 return 0;
8027 }
8028 if (IS_ERR(ptr: btf))
8029 return PTR_ERR(ptr: btf);
8030
8031 if (add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) {
8032 pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT);
8033 ret = -E2BIG;
8034 goto end;
8035 }
8036
8037 /* Ensure that the prototype of dtor kfuncs being registered is sane */
8038 ret = btf_check_dtor_kfuncs(btf, dtors, cnt: add_cnt);
8039 if (ret < 0)
8040 goto end;
8041
8042 tab = btf->dtor_kfunc_tab;
8043 /* Only one call allowed for modules */
8044 if (WARN_ON_ONCE(tab && btf_is_module(btf))) {
8045 ret = -EINVAL;
8046 goto end;
8047 }
8048
8049 tab_cnt = tab ? tab->cnt : 0;
8050 if (tab_cnt > U32_MAX - add_cnt) {
8051 ret = -EOVERFLOW;
8052 goto end;
8053 }
8054 if (tab_cnt + add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) {
8055 pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT);
8056 ret = -E2BIG;
8057 goto end;
8058 }
8059
8060 tab = krealloc(objp: btf->dtor_kfunc_tab,
8061 offsetof(struct btf_id_dtor_kfunc_tab, dtors[tab_cnt + add_cnt]),
8062 GFP_KERNEL | __GFP_NOWARN);
8063 if (!tab) {
8064 ret = -ENOMEM;
8065 goto end;
8066 }
8067
8068 if (!btf->dtor_kfunc_tab)
8069 tab->cnt = 0;
8070 btf->dtor_kfunc_tab = tab;
8071
8072 memcpy(tab->dtors + tab->cnt, dtors, add_cnt * sizeof(tab->dtors[0]));
8073 tab->cnt += add_cnt;
8074
8075 sort(base: tab->dtors, num: tab->cnt, size: sizeof(tab->dtors[0]), cmp_func: btf_id_cmp_func, NULL);
8076
8077end:
8078 if (ret)
8079 btf_free_dtor_kfunc_tab(btf);
8080 btf_put(btf);
8081 return ret;
8082}
8083EXPORT_SYMBOL_GPL(register_btf_id_dtor_kfuncs);
8084
8085#define MAX_TYPES_ARE_COMPAT_DEPTH 2
8086
8087/* Check local and target types for compatibility. This check is used for
8088 * type-based CO-RE relocations and follow slightly different rules than
8089 * field-based relocations. This function assumes that root types were already
8090 * checked for name match. Beyond that initial root-level name check, names
8091 * are completely ignored. Compatibility rules are as follows:
8092 * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs/ENUM64s are considered compatible, but
8093 * kind should match for local and target types (i.e., STRUCT is not
8094 * compatible with UNION);
8095 * - for ENUMs/ENUM64s, the size is ignored;
8096 * - for INT, size and signedness are ignored;
8097 * - for ARRAY, dimensionality is ignored, element types are checked for
8098 * compatibility recursively;
8099 * - CONST/VOLATILE/RESTRICT modifiers are ignored;
8100 * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible;
8101 * - FUNC_PROTOs are compatible if they have compatible signature: same
8102 * number of input args and compatible return and argument types.
8103 * These rules are not set in stone and probably will be adjusted as we get
8104 * more experience with using BPF CO-RE relocations.
8105 */
8106int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id,
8107 const struct btf *targ_btf, __u32 targ_id)
8108{
8109 return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id,
8110 MAX_TYPES_ARE_COMPAT_DEPTH);
8111}
8112
8113#define MAX_TYPES_MATCH_DEPTH 2
8114
8115int bpf_core_types_match(const struct btf *local_btf, u32 local_id,
8116 const struct btf *targ_btf, u32 targ_id)
8117{
8118 return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, behind_ptr: false,
8119 MAX_TYPES_MATCH_DEPTH);
8120}
8121
8122static bool bpf_core_is_flavor_sep(const char *s)
8123{
8124 /* check X___Y name pattern, where X and Y are not underscores */
8125 return s[0] != '_' && /* X */
8126 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */
8127 s[4] != '_'; /* Y */
8128}
8129
8130size_t bpf_core_essential_name_len(const char *name)
8131{
8132 size_t n = strlen(name);
8133 int i;
8134
8135 for (i = n - 5; i >= 0; i--) {
8136 if (bpf_core_is_flavor_sep(s: name + i))
8137 return i + 1;
8138 }
8139 return n;
8140}
8141
8142struct bpf_cand_cache {
8143 const char *name;
8144 u32 name_len;
8145 u16 kind;
8146 u16 cnt;
8147 struct {
8148 const struct btf *btf;
8149 u32 id;
8150 } cands[];
8151};
8152
8153static void bpf_free_cands(struct bpf_cand_cache *cands)
8154{
8155 if (!cands->cnt)
8156 /* empty candidate array was allocated on stack */
8157 return;
8158 kfree(objp: cands);
8159}
8160
8161static void bpf_free_cands_from_cache(struct bpf_cand_cache *cands)
8162{
8163 kfree(objp: cands->name);
8164 kfree(objp: cands);
8165}
8166
8167#define VMLINUX_CAND_CACHE_SIZE 31
8168static struct bpf_cand_cache *vmlinux_cand_cache[VMLINUX_CAND_CACHE_SIZE];
8169
8170#define MODULE_CAND_CACHE_SIZE 31
8171static struct bpf_cand_cache *module_cand_cache[MODULE_CAND_CACHE_SIZE];
8172
8173static DEFINE_MUTEX(cand_cache_mutex);
8174
8175static void __print_cand_cache(struct bpf_verifier_log *log,
8176 struct bpf_cand_cache **cache,
8177 int cache_size)
8178{
8179 struct bpf_cand_cache *cc;
8180 int i, j;
8181
8182 for (i = 0; i < cache_size; i++) {
8183 cc = cache[i];
8184 if (!cc)
8185 continue;
8186 bpf_log(log, fmt: "[%d]%s(", i, cc->name);
8187 for (j = 0; j < cc->cnt; j++) {
8188 bpf_log(log, fmt: "%d", cc->cands[j].id);
8189 if (j < cc->cnt - 1)
8190 bpf_log(log, fmt: " ");
8191 }
8192 bpf_log(log, fmt: "), ");
8193 }
8194}
8195
8196static void print_cand_cache(struct bpf_verifier_log *log)
8197{
8198 mutex_lock(&cand_cache_mutex);
8199 bpf_log(log, fmt: "vmlinux_cand_cache:");
8200 __print_cand_cache(log, cache: vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
8201 bpf_log(log, fmt: "\nmodule_cand_cache:");
8202 __print_cand_cache(log, cache: module_cand_cache, MODULE_CAND_CACHE_SIZE);
8203 bpf_log(log, fmt: "\n");
8204 mutex_unlock(lock: &cand_cache_mutex);
8205}
8206
8207static u32 hash_cands(struct bpf_cand_cache *cands)
8208{
8209 return jhash(key: cands->name, length: cands->name_len, initval: 0);
8210}
8211
8212static struct bpf_cand_cache *check_cand_cache(struct bpf_cand_cache *cands,
8213 struct bpf_cand_cache **cache,
8214 int cache_size)
8215{
8216 struct bpf_cand_cache *cc = cache[hash_cands(cands) % cache_size];
8217
8218 if (cc && cc->name_len == cands->name_len &&
8219 !strncmp(cc->name, cands->name, cands->name_len))
8220 return cc;
8221 return NULL;
8222}
8223
8224static size_t sizeof_cands(int cnt)
8225{
8226 return offsetof(struct bpf_cand_cache, cands[cnt]);
8227}
8228
8229static struct bpf_cand_cache *populate_cand_cache(struct bpf_cand_cache *cands,
8230 struct bpf_cand_cache **cache,
8231 int cache_size)
8232{
8233 struct bpf_cand_cache **cc = &cache[hash_cands(cands) % cache_size], *new_cands;
8234
8235 if (*cc) {
8236 bpf_free_cands_from_cache(cands: *cc);
8237 *cc = NULL;
8238 }
8239 new_cands = kmemdup(p: cands, size: sizeof_cands(cnt: cands->cnt), GFP_KERNEL);
8240 if (!new_cands) {
8241 bpf_free_cands(cands);
8242 return ERR_PTR(error: -ENOMEM);
8243 }
8244 /* strdup the name, since it will stay in cache.
8245 * the cands->name points to strings in prog's BTF and the prog can be unloaded.
8246 */
8247 new_cands->name = kmemdup_nul(s: cands->name, len: cands->name_len, GFP_KERNEL);
8248 bpf_free_cands(cands);
8249 if (!new_cands->name) {
8250 kfree(objp: new_cands);
8251 return ERR_PTR(error: -ENOMEM);
8252 }
8253 *cc = new_cands;
8254 return new_cands;
8255}
8256
8257#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
8258static void __purge_cand_cache(struct btf *btf, struct bpf_cand_cache **cache,
8259 int cache_size)
8260{
8261 struct bpf_cand_cache *cc;
8262 int i, j;
8263
8264 for (i = 0; i < cache_size; i++) {
8265 cc = cache[i];
8266 if (!cc)
8267 continue;
8268 if (!btf) {
8269 /* when new module is loaded purge all of module_cand_cache,
8270 * since new module might have candidates with the name
8271 * that matches cached cands.
8272 */
8273 bpf_free_cands_from_cache(cc);
8274 cache[i] = NULL;
8275 continue;
8276 }
8277 /* when module is unloaded purge cache entries
8278 * that match module's btf
8279 */
8280 for (j = 0; j < cc->cnt; j++)
8281 if (cc->cands[j].btf == btf) {
8282 bpf_free_cands_from_cache(cc);
8283 cache[i] = NULL;
8284 break;
8285 }
8286 }
8287
8288}
8289
8290static void purge_cand_cache(struct btf *btf)
8291{
8292 mutex_lock(&cand_cache_mutex);
8293 __purge_cand_cache(btf, module_cand_cache, MODULE_CAND_CACHE_SIZE);
8294 mutex_unlock(&cand_cache_mutex);
8295}
8296#endif
8297
8298static struct bpf_cand_cache *
8299bpf_core_add_cands(struct bpf_cand_cache *cands, const struct btf *targ_btf,
8300 int targ_start_id)
8301{
8302 struct bpf_cand_cache *new_cands;
8303 const struct btf_type *t;
8304 const char *targ_name;
8305 size_t targ_essent_len;
8306 int n, i;
8307
8308 n = btf_nr_types(btf: targ_btf);
8309 for (i = targ_start_id; i < n; i++) {
8310 t = btf_type_by_id(targ_btf, i);
8311 if (btf_kind(t) != cands->kind)
8312 continue;
8313
8314 targ_name = btf_name_by_offset(btf: targ_btf, offset: t->name_off);
8315 if (!targ_name)
8316 continue;
8317
8318 /* the resched point is before strncmp to make sure that search
8319 * for non-existing name will have a chance to schedule().
8320 */
8321 cond_resched();
8322
8323 if (strncmp(cands->name, targ_name, cands->name_len) != 0)
8324 continue;
8325
8326 targ_essent_len = bpf_core_essential_name_len(name: targ_name);
8327 if (targ_essent_len != cands->name_len)
8328 continue;
8329
8330 /* most of the time there is only one candidate for a given kind+name pair */
8331 new_cands = kmalloc(size: sizeof_cands(cnt: cands->cnt + 1), GFP_KERNEL);
8332 if (!new_cands) {
8333 bpf_free_cands(cands);
8334 return ERR_PTR(error: -ENOMEM);
8335 }
8336
8337 memcpy(new_cands, cands, sizeof_cands(cands->cnt));
8338 bpf_free_cands(cands);
8339 cands = new_cands;
8340 cands->cands[cands->cnt].btf = targ_btf;
8341 cands->cands[cands->cnt].id = i;
8342 cands->cnt++;
8343 }
8344 return cands;
8345}
8346
8347static struct bpf_cand_cache *
8348bpf_core_find_cands(struct bpf_core_ctx *ctx, u32 local_type_id)
8349{
8350 struct bpf_cand_cache *cands, *cc, local_cand = {};
8351 const struct btf *local_btf = ctx->btf;
8352 const struct btf_type *local_type;
8353 const struct btf *main_btf;
8354 size_t local_essent_len;
8355 struct btf *mod_btf;
8356 const char *name;
8357 int id;
8358
8359 main_btf = bpf_get_btf_vmlinux();
8360 if (IS_ERR(ptr: main_btf))
8361 return ERR_CAST(ptr: main_btf);
8362 if (!main_btf)
8363 return ERR_PTR(error: -EINVAL);
8364
8365 local_type = btf_type_by_id(local_btf, local_type_id);
8366 if (!local_type)
8367 return ERR_PTR(error: -EINVAL);
8368
8369 name = btf_name_by_offset(btf: local_btf, offset: local_type->name_off);
8370 if (str_is_empty(s: name))
8371 return ERR_PTR(error: -EINVAL);
8372 local_essent_len = bpf_core_essential_name_len(name);
8373
8374 cands = &local_cand;
8375 cands->name = name;
8376 cands->kind = btf_kind(t: local_type);
8377 cands->name_len = local_essent_len;
8378
8379 cc = check_cand_cache(cands, cache: vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
8380 /* cands is a pointer to stack here */
8381 if (cc) {
8382 if (cc->cnt)
8383 return cc;
8384 goto check_modules;
8385 }
8386
8387 /* Attempt to find target candidates in vmlinux BTF first */
8388 cands = bpf_core_add_cands(cands, targ_btf: main_btf, targ_start_id: 1);
8389 if (IS_ERR(ptr: cands))
8390 return ERR_CAST(ptr: cands);
8391
8392 /* cands is a pointer to kmalloced memory here if cands->cnt > 0 */
8393
8394 /* populate cache even when cands->cnt == 0 */
8395 cc = populate_cand_cache(cands, cache: vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
8396 if (IS_ERR(ptr: cc))
8397 return ERR_CAST(ptr: cc);
8398
8399 /* if vmlinux BTF has any candidate, don't go for module BTFs */
8400 if (cc->cnt)
8401 return cc;
8402
8403check_modules:
8404 /* cands is a pointer to stack here and cands->cnt == 0 */
8405 cc = check_cand_cache(cands, cache: module_cand_cache, MODULE_CAND_CACHE_SIZE);
8406 if (cc)
8407 /* if cache has it return it even if cc->cnt == 0 */
8408 return cc;
8409
8410 /* If candidate is not found in vmlinux's BTF then search in module's BTFs */
8411 spin_lock_bh(lock: &btf_idr_lock);
8412 idr_for_each_entry(&btf_idr, mod_btf, id) {
8413 if (!btf_is_module(btf: mod_btf))
8414 continue;
8415 /* linear search could be slow hence unlock/lock
8416 * the IDR to avoiding holding it for too long
8417 */
8418 btf_get(btf: mod_btf);
8419 spin_unlock_bh(lock: &btf_idr_lock);
8420 cands = bpf_core_add_cands(cands, targ_btf: mod_btf, targ_start_id: btf_nr_types(btf: main_btf));
8421 btf_put(btf: mod_btf);
8422 if (IS_ERR(ptr: cands))
8423 return ERR_CAST(ptr: cands);
8424 spin_lock_bh(lock: &btf_idr_lock);
8425 }
8426 spin_unlock_bh(lock: &btf_idr_lock);
8427 /* cands is a pointer to kmalloced memory here if cands->cnt > 0
8428 * or pointer to stack if cands->cnd == 0.
8429 * Copy it into the cache even when cands->cnt == 0 and
8430 * return the result.
8431 */
8432 return populate_cand_cache(cands, cache: module_cand_cache, MODULE_CAND_CACHE_SIZE);
8433}
8434
8435int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo,
8436 int relo_idx, void *insn)
8437{
8438 bool need_cands = relo->kind != BPF_CORE_TYPE_ID_LOCAL;
8439 struct bpf_core_cand_list cands = {};
8440 struct bpf_core_relo_res targ_res;
8441 struct bpf_core_spec *specs;
8442 int err;
8443
8444 /* ~4k of temp memory necessary to convert LLVM spec like "0:1:0:5"
8445 * into arrays of btf_ids of struct fields and array indices.
8446 */
8447 specs = kcalloc(n: 3, size: sizeof(*specs), GFP_KERNEL);
8448 if (!specs)
8449 return -ENOMEM;
8450
8451 if (need_cands) {
8452 struct bpf_cand_cache *cc;
8453 int i;
8454
8455 mutex_lock(&cand_cache_mutex);
8456 cc = bpf_core_find_cands(ctx, local_type_id: relo->type_id);
8457 if (IS_ERR(ptr: cc)) {
8458 bpf_log(log: ctx->log, fmt: "target candidate search failed for %d\n",
8459 relo->type_id);
8460 err = PTR_ERR(ptr: cc);
8461 goto out;
8462 }
8463 if (cc->cnt) {
8464 cands.cands = kcalloc(n: cc->cnt, size: sizeof(*cands.cands), GFP_KERNEL);
8465 if (!cands.cands) {
8466 err = -ENOMEM;
8467 goto out;
8468 }
8469 }
8470 for (i = 0; i < cc->cnt; i++) {
8471 bpf_log(log: ctx->log,
8472 fmt: "CO-RE relocating %s %s: found target candidate [%d]\n",
8473 btf_kind_str[cc->kind], cc->name, cc->cands[i].id);
8474 cands.cands[i].btf = cc->cands[i].btf;
8475 cands.cands[i].id = cc->cands[i].id;
8476 }
8477 cands.len = cc->cnt;
8478 /* cand_cache_mutex needs to span the cache lookup and
8479 * copy of btf pointer into bpf_core_cand_list,
8480 * since module can be unloaded while bpf_core_calc_relo_insn
8481 * is working with module's btf.
8482 */
8483 }
8484
8485 err = bpf_core_calc_relo_insn(prog_name: (void *)ctx->log, relo, relo_idx, local_btf: ctx->btf, cands: &cands, specs_scratch: specs,
8486 targ_res: &targ_res);
8487 if (err)
8488 goto out;
8489
8490 err = bpf_core_patch_insn(prog_name: (void *)ctx->log, insn, insn_idx: relo->insn_off / 8, relo, relo_idx,
8491 res: &targ_res);
8492
8493out:
8494 kfree(objp: specs);
8495 if (need_cands) {
8496 kfree(objp: cands.cands);
8497 mutex_unlock(lock: &cand_cache_mutex);
8498 if (ctx->log->level & BPF_LOG_LEVEL2)
8499 print_cand_cache(log: ctx->log);
8500 }
8501 return err;
8502}
8503
8504bool btf_nested_type_is_trusted(struct bpf_verifier_log *log,
8505 const struct bpf_reg_state *reg,
8506 const char *field_name, u32 btf_id, const char *suffix)
8507{
8508 struct btf *btf = reg->btf;
8509 const struct btf_type *walk_type, *safe_type;
8510 const char *tname;
8511 char safe_tname[64];
8512 long ret, safe_id;
8513 const struct btf_member *member;
8514 u32 i;
8515
8516 walk_type = btf_type_by_id(btf, reg->btf_id);
8517 if (!walk_type)
8518 return false;
8519
8520 tname = btf_name_by_offset(btf, offset: walk_type->name_off);
8521
8522 ret = snprintf(buf: safe_tname, size: sizeof(safe_tname), fmt: "%s%s", tname, suffix);
8523 if (ret >= sizeof(safe_tname))
8524 return false;
8525
8526 safe_id = btf_find_by_name_kind(btf, name: safe_tname, BTF_INFO_KIND(walk_type->info));
8527 if (safe_id < 0)
8528 return false;
8529
8530 safe_type = btf_type_by_id(btf, safe_id);
8531 if (!safe_type)
8532 return false;
8533
8534 for_each_member(i, safe_type, member) {
8535 const char *m_name = __btf_name_by_offset(btf, offset: member->name_off);
8536 const struct btf_type *mtype = btf_type_by_id(btf, member->type);
8537 u32 id;
8538
8539 if (!btf_type_is_ptr(t: mtype))
8540 continue;
8541
8542 btf_type_skip_modifiers(btf, id: mtype->type, res_id: &id);
8543 /* If we match on both type and name, the field is considered trusted. */
8544 if (btf_id == id && !strcmp(field_name, m_name))
8545 return true;
8546 }
8547
8548 return false;
8549}
8550
8551bool btf_type_ids_nocast_alias(struct bpf_verifier_log *log,
8552 const struct btf *reg_btf, u32 reg_id,
8553 const struct btf *arg_btf, u32 arg_id)
8554{
8555 const char *reg_name, *arg_name, *search_needle;
8556 const struct btf_type *reg_type, *arg_type;
8557 int reg_len, arg_len, cmp_len;
8558 size_t pattern_len = sizeof(NOCAST_ALIAS_SUFFIX) - sizeof(char);
8559
8560 reg_type = btf_type_by_id(reg_btf, reg_id);
8561 if (!reg_type)
8562 return false;
8563
8564 arg_type = btf_type_by_id(arg_btf, arg_id);
8565 if (!arg_type)
8566 return false;
8567
8568 reg_name = btf_name_by_offset(btf: reg_btf, offset: reg_type->name_off);
8569 arg_name = btf_name_by_offset(btf: arg_btf, offset: arg_type->name_off);
8570
8571 reg_len = strlen(reg_name);
8572 arg_len = strlen(arg_name);
8573
8574 /* Exactly one of the two type names may be suffixed with ___init, so
8575 * if the strings are the same size, they can't possibly be no-cast
8576 * aliases of one another. If you have two of the same type names, e.g.
8577 * they're both nf_conn___init, it would be improper to return true
8578 * because they are _not_ no-cast aliases, they are the same type.
8579 */
8580 if (reg_len == arg_len)
8581 return false;
8582
8583 /* Either of the two names must be the other name, suffixed with ___init. */
8584 if ((reg_len != arg_len + pattern_len) &&
8585 (arg_len != reg_len + pattern_len))
8586 return false;
8587
8588 if (reg_len < arg_len) {
8589 search_needle = strstr(arg_name, NOCAST_ALIAS_SUFFIX);
8590 cmp_len = reg_len;
8591 } else {
8592 search_needle = strstr(reg_name, NOCAST_ALIAS_SUFFIX);
8593 cmp_len = arg_len;
8594 }
8595
8596 if (!search_needle)
8597 return false;
8598
8599 /* ___init suffix must come at the end of the name */
8600 if (*(search_needle + pattern_len) != '\0')
8601 return false;
8602
8603 return !strncmp(reg_name, arg_name, cmp_len);
8604}
8605

source code of linux/kernel/bpf/btf.c