1// SPDX-License-Identifier: GPL-2.0-only
2/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3 * Copyright (c) 2016 Facebook
4 */
5#include <linux/bpf.h>
6#include <linux/btf.h>
7#include <linux/jhash.h>
8#include <linux/filter.h>
9#include <linux/rculist_nulls.h>
10#include <linux/random.h>
11#include <uapi/linux/btf.h>
12#include <linux/rcupdate_trace.h>
13#include <linux/btf_ids.h>
14#include "percpu_freelist.h"
15#include "bpf_lru_list.h"
16#include "map_in_map.h"
17#include <linux/bpf_mem_alloc.h>
18
19#define HTAB_CREATE_FLAG_MASK \
20 (BPF_F_NO_PREALLOC | BPF_F_NO_COMMON_LRU | BPF_F_NUMA_NODE | \
21 BPF_F_ACCESS_MASK | BPF_F_ZERO_SEED)
22
23#define BATCH_OPS(_name) \
24 .map_lookup_batch = \
25 _name##_map_lookup_batch, \
26 .map_lookup_and_delete_batch = \
27 _name##_map_lookup_and_delete_batch, \
28 .map_update_batch = \
29 generic_map_update_batch, \
30 .map_delete_batch = \
31 generic_map_delete_batch
32
33/*
34 * The bucket lock has two protection scopes:
35 *
36 * 1) Serializing concurrent operations from BPF programs on different
37 * CPUs
38 *
39 * 2) Serializing concurrent operations from BPF programs and sys_bpf()
40 *
41 * BPF programs can execute in any context including perf, kprobes and
42 * tracing. As there are almost no limits where perf, kprobes and tracing
43 * can be invoked from the lock operations need to be protected against
44 * deadlocks. Deadlocks can be caused by recursion and by an invocation in
45 * the lock held section when functions which acquire this lock are invoked
46 * from sys_bpf(). BPF recursion is prevented by incrementing the per CPU
47 * variable bpf_prog_active, which prevents BPF programs attached to perf
48 * events, kprobes and tracing to be invoked before the prior invocation
49 * from one of these contexts completed. sys_bpf() uses the same mechanism
50 * by pinning the task to the current CPU and incrementing the recursion
51 * protection across the map operation.
52 *
53 * This has subtle implications on PREEMPT_RT. PREEMPT_RT forbids certain
54 * operations like memory allocations (even with GFP_ATOMIC) from atomic
55 * contexts. This is required because even with GFP_ATOMIC the memory
56 * allocator calls into code paths which acquire locks with long held lock
57 * sections. To ensure the deterministic behaviour these locks are regular
58 * spinlocks, which are converted to 'sleepable' spinlocks on RT. The only
59 * true atomic contexts on an RT kernel are the low level hardware
60 * handling, scheduling, low level interrupt handling, NMIs etc. None of
61 * these contexts should ever do memory allocations.
62 *
63 * As regular device interrupt handlers and soft interrupts are forced into
64 * thread context, the existing code which does
65 * spin_lock*(); alloc(GFP_ATOMIC); spin_unlock*();
66 * just works.
67 *
68 * In theory the BPF locks could be converted to regular spinlocks as well,
69 * but the bucket locks and percpu_freelist locks can be taken from
70 * arbitrary contexts (perf, kprobes, tracepoints) which are required to be
71 * atomic contexts even on RT. Before the introduction of bpf_mem_alloc,
72 * it is only safe to use raw spinlock for preallocated hash map on a RT kernel,
73 * because there is no memory allocation within the lock held sections. However
74 * after hash map was fully converted to use bpf_mem_alloc, there will be
75 * non-synchronous memory allocation for non-preallocated hash map, so it is
76 * safe to always use raw spinlock for bucket lock.
77 */
78struct bucket {
79 struct hlist_nulls_head head;
80 raw_spinlock_t raw_lock;
81};
82
83#define HASHTAB_MAP_LOCK_COUNT 8
84#define HASHTAB_MAP_LOCK_MASK (HASHTAB_MAP_LOCK_COUNT - 1)
85
86struct bpf_htab {
87 struct bpf_map map;
88 struct bpf_mem_alloc ma;
89 struct bpf_mem_alloc pcpu_ma;
90 struct bucket *buckets;
91 void *elems;
92 union {
93 struct pcpu_freelist freelist;
94 struct bpf_lru lru;
95 };
96 struct htab_elem *__percpu *extra_elems;
97 /* number of elements in non-preallocated hashtable are kept
98 * in either pcount or count
99 */
100 struct percpu_counter pcount;
101 atomic_t count;
102 bool use_percpu_counter;
103 u32 n_buckets; /* number of hash buckets */
104 u32 elem_size; /* size of each element in bytes */
105 u32 hashrnd;
106 struct lock_class_key lockdep_key;
107 int __percpu *map_locked[HASHTAB_MAP_LOCK_COUNT];
108};
109
110/* each htab element is struct htab_elem + key + value */
111struct htab_elem {
112 union {
113 struct hlist_nulls_node hash_node;
114 struct {
115 void *padding;
116 union {
117 struct pcpu_freelist_node fnode;
118 struct htab_elem *batch_flink;
119 };
120 };
121 };
122 union {
123 /* pointer to per-cpu pointer */
124 void *ptr_to_pptr;
125 struct bpf_lru_node lru_node;
126 };
127 u32 hash;
128 char key[] __aligned(8);
129};
130
131static inline bool htab_is_prealloc(const struct bpf_htab *htab)
132{
133 return !(htab->map.map_flags & BPF_F_NO_PREALLOC);
134}
135
136static void htab_init_buckets(struct bpf_htab *htab)
137{
138 unsigned int i;
139
140 for (i = 0; i < htab->n_buckets; i++) {
141 INIT_HLIST_NULLS_HEAD(&htab->buckets[i].head, i);
142 raw_spin_lock_init(&htab->buckets[i].raw_lock);
143 lockdep_set_class(&htab->buckets[i].raw_lock,
144 &htab->lockdep_key);
145 cond_resched();
146 }
147}
148
149static inline int htab_lock_bucket(const struct bpf_htab *htab,
150 struct bucket *b, u32 hash,
151 unsigned long *pflags)
152{
153 unsigned long flags;
154
155 hash = hash & min_t(u32, HASHTAB_MAP_LOCK_MASK, htab->n_buckets - 1);
156
157 preempt_disable();
158 local_irq_save(flags);
159 if (unlikely(__this_cpu_inc_return(*(htab->map_locked[hash])) != 1)) {
160 __this_cpu_dec(*(htab->map_locked[hash]));
161 local_irq_restore(flags);
162 preempt_enable();
163 return -EBUSY;
164 }
165
166 raw_spin_lock(&b->raw_lock);
167 *pflags = flags;
168
169 return 0;
170}
171
172static inline void htab_unlock_bucket(const struct bpf_htab *htab,
173 struct bucket *b, u32 hash,
174 unsigned long flags)
175{
176 hash = hash & min_t(u32, HASHTAB_MAP_LOCK_MASK, htab->n_buckets - 1);
177 raw_spin_unlock(&b->raw_lock);
178 __this_cpu_dec(*(htab->map_locked[hash]));
179 local_irq_restore(flags);
180 preempt_enable();
181}
182
183static bool htab_lru_map_delete_node(void *arg, struct bpf_lru_node *node);
184
185static bool htab_is_lru(const struct bpf_htab *htab)
186{
187 return htab->map.map_type == BPF_MAP_TYPE_LRU_HASH ||
188 htab->map.map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH;
189}
190
191static bool htab_is_percpu(const struct bpf_htab *htab)
192{
193 return htab->map.map_type == BPF_MAP_TYPE_PERCPU_HASH ||
194 htab->map.map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH;
195}
196
197static inline void htab_elem_set_ptr(struct htab_elem *l, u32 key_size,
198 void __percpu *pptr)
199{
200 *(void __percpu **)(l->key + key_size) = pptr;
201}
202
203static inline void __percpu *htab_elem_get_ptr(struct htab_elem *l, u32 key_size)
204{
205 return *(void __percpu **)(l->key + key_size);
206}
207
208static void *fd_htab_map_get_ptr(const struct bpf_map *map, struct htab_elem *l)
209{
210 return *(void **)(l->key + roundup(map->key_size, 8));
211}
212
213static struct htab_elem *get_htab_elem(struct bpf_htab *htab, int i)
214{
215 return (struct htab_elem *) (htab->elems + i * (u64)htab->elem_size);
216}
217
218static bool htab_has_extra_elems(struct bpf_htab *htab)
219{
220 return !htab_is_percpu(htab) && !htab_is_lru(htab);
221}
222
223static void htab_free_prealloced_timers(struct bpf_htab *htab)
224{
225 u32 num_entries = htab->map.max_entries;
226 int i;
227
228 if (!btf_record_has_field(rec: htab->map.record, type: BPF_TIMER))
229 return;
230 if (htab_has_extra_elems(htab))
231 num_entries += num_possible_cpus();
232
233 for (i = 0; i < num_entries; i++) {
234 struct htab_elem *elem;
235
236 elem = get_htab_elem(htab, i);
237 bpf_obj_free_timer(rec: htab->map.record, obj: elem->key + round_up(htab->map.key_size, 8));
238 cond_resched();
239 }
240}
241
242static void htab_free_prealloced_fields(struct bpf_htab *htab)
243{
244 u32 num_entries = htab->map.max_entries;
245 int i;
246
247 if (IS_ERR_OR_NULL(ptr: htab->map.record))
248 return;
249 if (htab_has_extra_elems(htab))
250 num_entries += num_possible_cpus();
251 for (i = 0; i < num_entries; i++) {
252 struct htab_elem *elem;
253
254 elem = get_htab_elem(htab, i);
255 if (htab_is_percpu(htab)) {
256 void __percpu *pptr = htab_elem_get_ptr(l: elem, key_size: htab->map.key_size);
257 int cpu;
258
259 for_each_possible_cpu(cpu) {
260 bpf_obj_free_fields(rec: htab->map.record, per_cpu_ptr(pptr, cpu));
261 cond_resched();
262 }
263 } else {
264 bpf_obj_free_fields(rec: htab->map.record, obj: elem->key + round_up(htab->map.key_size, 8));
265 cond_resched();
266 }
267 cond_resched();
268 }
269}
270
271static void htab_free_elems(struct bpf_htab *htab)
272{
273 int i;
274
275 if (!htab_is_percpu(htab))
276 goto free_elems;
277
278 for (i = 0; i < htab->map.max_entries; i++) {
279 void __percpu *pptr;
280
281 pptr = htab_elem_get_ptr(l: get_htab_elem(htab, i),
282 key_size: htab->map.key_size);
283 free_percpu(pdata: pptr);
284 cond_resched();
285 }
286free_elems:
287 bpf_map_area_free(base: htab->elems);
288}
289
290/* The LRU list has a lock (lru_lock). Each htab bucket has a lock
291 * (bucket_lock). If both locks need to be acquired together, the lock
292 * order is always lru_lock -> bucket_lock and this only happens in
293 * bpf_lru_list.c logic. For example, certain code path of
294 * bpf_lru_pop_free(), which is called by function prealloc_lru_pop(),
295 * will acquire lru_lock first followed by acquiring bucket_lock.
296 *
297 * In hashtab.c, to avoid deadlock, lock acquisition of
298 * bucket_lock followed by lru_lock is not allowed. In such cases,
299 * bucket_lock needs to be released first before acquiring lru_lock.
300 */
301static struct htab_elem *prealloc_lru_pop(struct bpf_htab *htab, void *key,
302 u32 hash)
303{
304 struct bpf_lru_node *node = bpf_lru_pop_free(lru: &htab->lru, hash);
305 struct htab_elem *l;
306
307 if (node) {
308 bpf_map_inc_elem_count(map: &htab->map);
309 l = container_of(node, struct htab_elem, lru_node);
310 memcpy(l->key, key, htab->map.key_size);
311 return l;
312 }
313
314 return NULL;
315}
316
317static int prealloc_init(struct bpf_htab *htab)
318{
319 u32 num_entries = htab->map.max_entries;
320 int err = -ENOMEM, i;
321
322 if (htab_has_extra_elems(htab))
323 num_entries += num_possible_cpus();
324
325 htab->elems = bpf_map_area_alloc(size: (u64)htab->elem_size * num_entries,
326 numa_node: htab->map.numa_node);
327 if (!htab->elems)
328 return -ENOMEM;
329
330 if (!htab_is_percpu(htab))
331 goto skip_percpu_elems;
332
333 for (i = 0; i < num_entries; i++) {
334 u32 size = round_up(htab->map.value_size, 8);
335 void __percpu *pptr;
336
337 pptr = bpf_map_alloc_percpu(map: &htab->map, size, align: 8,
338 GFP_USER | __GFP_NOWARN);
339 if (!pptr)
340 goto free_elems;
341 htab_elem_set_ptr(l: get_htab_elem(htab, i), key_size: htab->map.key_size,
342 pptr);
343 cond_resched();
344 }
345
346skip_percpu_elems:
347 if (htab_is_lru(htab))
348 err = bpf_lru_init(lru: &htab->lru,
349 percpu: htab->map.map_flags & BPF_F_NO_COMMON_LRU,
350 offsetof(struct htab_elem, hash) -
351 offsetof(struct htab_elem, lru_node),
352 del_from_htab: htab_lru_map_delete_node,
353 delete_arg: htab);
354 else
355 err = pcpu_freelist_init(&htab->freelist);
356
357 if (err)
358 goto free_elems;
359
360 if (htab_is_lru(htab))
361 bpf_lru_populate(lru: &htab->lru, buf: htab->elems,
362 offsetof(struct htab_elem, lru_node),
363 elem_size: htab->elem_size, nr_elems: num_entries);
364 else
365 pcpu_freelist_populate(s: &htab->freelist,
366 buf: htab->elems + offsetof(struct htab_elem, fnode),
367 elem_size: htab->elem_size, nr_elems: num_entries);
368
369 return 0;
370
371free_elems:
372 htab_free_elems(htab);
373 return err;
374}
375
376static void prealloc_destroy(struct bpf_htab *htab)
377{
378 htab_free_elems(htab);
379
380 if (htab_is_lru(htab))
381 bpf_lru_destroy(lru: &htab->lru);
382 else
383 pcpu_freelist_destroy(s: &htab->freelist);
384}
385
386static int alloc_extra_elems(struct bpf_htab *htab)
387{
388 struct htab_elem *__percpu *pptr, *l_new;
389 struct pcpu_freelist_node *l;
390 int cpu;
391
392 pptr = bpf_map_alloc_percpu(map: &htab->map, size: sizeof(struct htab_elem *), align: 8,
393 GFP_USER | __GFP_NOWARN);
394 if (!pptr)
395 return -ENOMEM;
396
397 for_each_possible_cpu(cpu) {
398 l = pcpu_freelist_pop(&htab->freelist);
399 /* pop will succeed, since prealloc_init()
400 * preallocated extra num_possible_cpus elements
401 */
402 l_new = container_of(l, struct htab_elem, fnode);
403 *per_cpu_ptr(pptr, cpu) = l_new;
404 }
405 htab->extra_elems = pptr;
406 return 0;
407}
408
409/* Called from syscall */
410static int htab_map_alloc_check(union bpf_attr *attr)
411{
412 bool percpu = (attr->map_type == BPF_MAP_TYPE_PERCPU_HASH ||
413 attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH);
414 bool lru = (attr->map_type == BPF_MAP_TYPE_LRU_HASH ||
415 attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH);
416 /* percpu_lru means each cpu has its own LRU list.
417 * it is different from BPF_MAP_TYPE_PERCPU_HASH where
418 * the map's value itself is percpu. percpu_lru has
419 * nothing to do with the map's value.
420 */
421 bool percpu_lru = (attr->map_flags & BPF_F_NO_COMMON_LRU);
422 bool prealloc = !(attr->map_flags & BPF_F_NO_PREALLOC);
423 bool zero_seed = (attr->map_flags & BPF_F_ZERO_SEED);
424 int numa_node = bpf_map_attr_numa_node(attr);
425
426 BUILD_BUG_ON(offsetof(struct htab_elem, fnode.next) !=
427 offsetof(struct htab_elem, hash_node.pprev));
428
429 if (zero_seed && !capable(CAP_SYS_ADMIN))
430 /* Guard against local DoS, and discourage production use. */
431 return -EPERM;
432
433 if (attr->map_flags & ~HTAB_CREATE_FLAG_MASK ||
434 !bpf_map_flags_access_ok(access_flags: attr->map_flags))
435 return -EINVAL;
436
437 if (!lru && percpu_lru)
438 return -EINVAL;
439
440 if (lru && !prealloc)
441 return -ENOTSUPP;
442
443 if (numa_node != NUMA_NO_NODE && (percpu || percpu_lru))
444 return -EINVAL;
445
446 /* check sanity of attributes.
447 * value_size == 0 may be allowed in the future to use map as a set
448 */
449 if (attr->max_entries == 0 || attr->key_size == 0 ||
450 attr->value_size == 0)
451 return -EINVAL;
452
453 if ((u64)attr->key_size + attr->value_size >= KMALLOC_MAX_SIZE -
454 sizeof(struct htab_elem))
455 /* if key_size + value_size is bigger, the user space won't be
456 * able to access the elements via bpf syscall. This check
457 * also makes sure that the elem_size doesn't overflow and it's
458 * kmalloc-able later in htab_map_update_elem()
459 */
460 return -E2BIG;
461
462 return 0;
463}
464
465static struct bpf_map *htab_map_alloc(union bpf_attr *attr)
466{
467 bool percpu = (attr->map_type == BPF_MAP_TYPE_PERCPU_HASH ||
468 attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH);
469 bool lru = (attr->map_type == BPF_MAP_TYPE_LRU_HASH ||
470 attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH);
471 /* percpu_lru means each cpu has its own LRU list.
472 * it is different from BPF_MAP_TYPE_PERCPU_HASH where
473 * the map's value itself is percpu. percpu_lru has
474 * nothing to do with the map's value.
475 */
476 bool percpu_lru = (attr->map_flags & BPF_F_NO_COMMON_LRU);
477 bool prealloc = !(attr->map_flags & BPF_F_NO_PREALLOC);
478 struct bpf_htab *htab;
479 int err, i;
480
481 htab = bpf_map_area_alloc(size: sizeof(*htab), NUMA_NO_NODE);
482 if (!htab)
483 return ERR_PTR(error: -ENOMEM);
484
485 lockdep_register_key(key: &htab->lockdep_key);
486
487 bpf_map_init_from_attr(map: &htab->map, attr);
488
489 if (percpu_lru) {
490 /* ensure each CPU's lru list has >=1 elements.
491 * since we are at it, make each lru list has the same
492 * number of elements.
493 */
494 htab->map.max_entries = roundup(attr->max_entries,
495 num_possible_cpus());
496 if (htab->map.max_entries < attr->max_entries)
497 htab->map.max_entries = rounddown(attr->max_entries,
498 num_possible_cpus());
499 }
500
501 /* hash table size must be power of 2 */
502 htab->n_buckets = roundup_pow_of_two(htab->map.max_entries);
503
504 htab->elem_size = sizeof(struct htab_elem) +
505 round_up(htab->map.key_size, 8);
506 if (percpu)
507 htab->elem_size += sizeof(void *);
508 else
509 htab->elem_size += round_up(htab->map.value_size, 8);
510
511 err = -E2BIG;
512 /* prevent zero size kmalloc and check for u32 overflow */
513 if (htab->n_buckets == 0 ||
514 htab->n_buckets > U32_MAX / sizeof(struct bucket))
515 goto free_htab;
516
517 err = bpf_map_init_elem_count(map: &htab->map);
518 if (err)
519 goto free_htab;
520
521 err = -ENOMEM;
522 htab->buckets = bpf_map_area_alloc(size: htab->n_buckets *
523 sizeof(struct bucket),
524 numa_node: htab->map.numa_node);
525 if (!htab->buckets)
526 goto free_elem_count;
527
528 for (i = 0; i < HASHTAB_MAP_LOCK_COUNT; i++) {
529 htab->map_locked[i] = bpf_map_alloc_percpu(map: &htab->map,
530 size: sizeof(int),
531 align: sizeof(int),
532 GFP_USER);
533 if (!htab->map_locked[i])
534 goto free_map_locked;
535 }
536
537 if (htab->map.map_flags & BPF_F_ZERO_SEED)
538 htab->hashrnd = 0;
539 else
540 htab->hashrnd = get_random_u32();
541
542 htab_init_buckets(htab);
543
544/* compute_batch_value() computes batch value as num_online_cpus() * 2
545 * and __percpu_counter_compare() needs
546 * htab->max_entries - cur_number_of_elems to be more than batch * num_online_cpus()
547 * for percpu_counter to be faster than atomic_t. In practice the average bpf
548 * hash map size is 10k, which means that a system with 64 cpus will fill
549 * hashmap to 20% of 10k before percpu_counter becomes ineffective. Therefore
550 * define our own batch count as 32 then 10k hash map can be filled up to 80%:
551 * 10k - 8k > 32 _batch_ * 64 _cpus_
552 * and __percpu_counter_compare() will still be fast. At that point hash map
553 * collisions will dominate its performance anyway. Assume that hash map filled
554 * to 50+% isn't going to be O(1) and use the following formula to choose
555 * between percpu_counter and atomic_t.
556 */
557#define PERCPU_COUNTER_BATCH 32
558 if (attr->max_entries / 2 > num_online_cpus() * PERCPU_COUNTER_BATCH)
559 htab->use_percpu_counter = true;
560
561 if (htab->use_percpu_counter) {
562 err = percpu_counter_init(&htab->pcount, 0, GFP_KERNEL);
563 if (err)
564 goto free_map_locked;
565 }
566
567 if (prealloc) {
568 err = prealloc_init(htab);
569 if (err)
570 goto free_map_locked;
571
572 if (!percpu && !lru) {
573 /* lru itself can remove the least used element, so
574 * there is no need for an extra elem during map_update.
575 */
576 err = alloc_extra_elems(htab);
577 if (err)
578 goto free_prealloc;
579 }
580 } else {
581 err = bpf_mem_alloc_init(ma: &htab->ma, size: htab->elem_size, percpu: false);
582 if (err)
583 goto free_map_locked;
584 if (percpu) {
585 err = bpf_mem_alloc_init(ma: &htab->pcpu_ma,
586 round_up(htab->map.value_size, 8), percpu: true);
587 if (err)
588 goto free_map_locked;
589 }
590 }
591
592 return &htab->map;
593
594free_prealloc:
595 prealloc_destroy(htab);
596free_map_locked:
597 if (htab->use_percpu_counter)
598 percpu_counter_destroy(fbc: &htab->pcount);
599 for (i = 0; i < HASHTAB_MAP_LOCK_COUNT; i++)
600 free_percpu(pdata: htab->map_locked[i]);
601 bpf_map_area_free(base: htab->buckets);
602 bpf_mem_alloc_destroy(ma: &htab->pcpu_ma);
603 bpf_mem_alloc_destroy(ma: &htab->ma);
604free_elem_count:
605 bpf_map_free_elem_count(map: &htab->map);
606free_htab:
607 lockdep_unregister_key(key: &htab->lockdep_key);
608 bpf_map_area_free(base: htab);
609 return ERR_PTR(error: err);
610}
611
612static inline u32 htab_map_hash(const void *key, u32 key_len, u32 hashrnd)
613{
614 if (likely(key_len % 4 == 0))
615 return jhash2(k: key, length: key_len / 4, initval: hashrnd);
616 return jhash(key, length: key_len, initval: hashrnd);
617}
618
619static inline struct bucket *__select_bucket(struct bpf_htab *htab, u32 hash)
620{
621 return &htab->buckets[hash & (htab->n_buckets - 1)];
622}
623
624static inline struct hlist_nulls_head *select_bucket(struct bpf_htab *htab, u32 hash)
625{
626 return &__select_bucket(htab, hash)->head;
627}
628
629/* this lookup function can only be called with bucket lock taken */
630static struct htab_elem *lookup_elem_raw(struct hlist_nulls_head *head, u32 hash,
631 void *key, u32 key_size)
632{
633 struct hlist_nulls_node *n;
634 struct htab_elem *l;
635
636 hlist_nulls_for_each_entry_rcu(l, n, head, hash_node)
637 if (l->hash == hash && !memcmp(p: &l->key, q: key, size: key_size))
638 return l;
639
640 return NULL;
641}
642
643/* can be called without bucket lock. it will repeat the loop in
644 * the unlikely event when elements moved from one bucket into another
645 * while link list is being walked
646 */
647static struct htab_elem *lookup_nulls_elem_raw(struct hlist_nulls_head *head,
648 u32 hash, void *key,
649 u32 key_size, u32 n_buckets)
650{
651 struct hlist_nulls_node *n;
652 struct htab_elem *l;
653
654again:
655 hlist_nulls_for_each_entry_rcu(l, n, head, hash_node)
656 if (l->hash == hash && !memcmp(p: &l->key, q: key, size: key_size))
657 return l;
658
659 if (unlikely(get_nulls_value(n) != (hash & (n_buckets - 1))))
660 goto again;
661
662 return NULL;
663}
664
665/* Called from syscall or from eBPF program directly, so
666 * arguments have to match bpf_map_lookup_elem() exactly.
667 * The return value is adjusted by BPF instructions
668 * in htab_map_gen_lookup().
669 */
670static void *__htab_map_lookup_elem(struct bpf_map *map, void *key)
671{
672 struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
673 struct hlist_nulls_head *head;
674 struct htab_elem *l;
675 u32 hash, key_size;
676
677 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
678 !rcu_read_lock_bh_held());
679
680 key_size = map->key_size;
681
682 hash = htab_map_hash(key, key_len: key_size, hashrnd: htab->hashrnd);
683
684 head = select_bucket(htab, hash);
685
686 l = lookup_nulls_elem_raw(head, hash, key, key_size, n_buckets: htab->n_buckets);
687
688 return l;
689}
690
691static void *htab_map_lookup_elem(struct bpf_map *map, void *key)
692{
693 struct htab_elem *l = __htab_map_lookup_elem(map, key);
694
695 if (l)
696 return l->key + round_up(map->key_size, 8);
697
698 return NULL;
699}
700
701/* inline bpf_map_lookup_elem() call.
702 * Instead of:
703 * bpf_prog
704 * bpf_map_lookup_elem
705 * map->ops->map_lookup_elem
706 * htab_map_lookup_elem
707 * __htab_map_lookup_elem
708 * do:
709 * bpf_prog
710 * __htab_map_lookup_elem
711 */
712static int htab_map_gen_lookup(struct bpf_map *map, struct bpf_insn *insn_buf)
713{
714 struct bpf_insn *insn = insn_buf;
715 const int ret = BPF_REG_0;
716
717 BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem,
718 (void *(*)(struct bpf_map *map, void *key))NULL));
719 *insn++ = BPF_EMIT_CALL(__htab_map_lookup_elem);
720 *insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 1);
721 *insn++ = BPF_ALU64_IMM(BPF_ADD, ret,
722 offsetof(struct htab_elem, key) +
723 round_up(map->key_size, 8));
724 return insn - insn_buf;
725}
726
727static __always_inline void *__htab_lru_map_lookup_elem(struct bpf_map *map,
728 void *key, const bool mark)
729{
730 struct htab_elem *l = __htab_map_lookup_elem(map, key);
731
732 if (l) {
733 if (mark)
734 bpf_lru_node_set_ref(node: &l->lru_node);
735 return l->key + round_up(map->key_size, 8);
736 }
737
738 return NULL;
739}
740
741static void *htab_lru_map_lookup_elem(struct bpf_map *map, void *key)
742{
743 return __htab_lru_map_lookup_elem(map, key, mark: true);
744}
745
746static void *htab_lru_map_lookup_elem_sys(struct bpf_map *map, void *key)
747{
748 return __htab_lru_map_lookup_elem(map, key, mark: false);
749}
750
751static int htab_lru_map_gen_lookup(struct bpf_map *map,
752 struct bpf_insn *insn_buf)
753{
754 struct bpf_insn *insn = insn_buf;
755 const int ret = BPF_REG_0;
756 const int ref_reg = BPF_REG_1;
757
758 BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem,
759 (void *(*)(struct bpf_map *map, void *key))NULL));
760 *insn++ = BPF_EMIT_CALL(__htab_map_lookup_elem);
761 *insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 4);
762 *insn++ = BPF_LDX_MEM(BPF_B, ref_reg, ret,
763 offsetof(struct htab_elem, lru_node) +
764 offsetof(struct bpf_lru_node, ref));
765 *insn++ = BPF_JMP_IMM(BPF_JNE, ref_reg, 0, 1);
766 *insn++ = BPF_ST_MEM(BPF_B, ret,
767 offsetof(struct htab_elem, lru_node) +
768 offsetof(struct bpf_lru_node, ref),
769 1);
770 *insn++ = BPF_ALU64_IMM(BPF_ADD, ret,
771 offsetof(struct htab_elem, key) +
772 round_up(map->key_size, 8));
773 return insn - insn_buf;
774}
775
776static void check_and_free_fields(struct bpf_htab *htab,
777 struct htab_elem *elem)
778{
779 if (htab_is_percpu(htab)) {
780 void __percpu *pptr = htab_elem_get_ptr(l: elem, key_size: htab->map.key_size);
781 int cpu;
782
783 for_each_possible_cpu(cpu)
784 bpf_obj_free_fields(rec: htab->map.record, per_cpu_ptr(pptr, cpu));
785 } else {
786 void *map_value = elem->key + round_up(htab->map.key_size, 8);
787
788 bpf_obj_free_fields(rec: htab->map.record, obj: map_value);
789 }
790}
791
792/* It is called from the bpf_lru_list when the LRU needs to delete
793 * older elements from the htab.
794 */
795static bool htab_lru_map_delete_node(void *arg, struct bpf_lru_node *node)
796{
797 struct bpf_htab *htab = arg;
798 struct htab_elem *l = NULL, *tgt_l;
799 struct hlist_nulls_head *head;
800 struct hlist_nulls_node *n;
801 unsigned long flags;
802 struct bucket *b;
803 int ret;
804
805 tgt_l = container_of(node, struct htab_elem, lru_node);
806 b = __select_bucket(htab, hash: tgt_l->hash);
807 head = &b->head;
808
809 ret = htab_lock_bucket(htab, b, hash: tgt_l->hash, pflags: &flags);
810 if (ret)
811 return false;
812
813 hlist_nulls_for_each_entry_rcu(l, n, head, hash_node)
814 if (l == tgt_l) {
815 hlist_nulls_del_rcu(n: &l->hash_node);
816 check_and_free_fields(htab, elem: l);
817 bpf_map_dec_elem_count(map: &htab->map);
818 break;
819 }
820
821 htab_unlock_bucket(htab, b, hash: tgt_l->hash, flags);
822
823 return l == tgt_l;
824}
825
826/* Called from syscall */
827static int htab_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
828{
829 struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
830 struct hlist_nulls_head *head;
831 struct htab_elem *l, *next_l;
832 u32 hash, key_size;
833 int i = 0;
834
835 WARN_ON_ONCE(!rcu_read_lock_held());
836
837 key_size = map->key_size;
838
839 if (!key)
840 goto find_first_elem;
841
842 hash = htab_map_hash(key, key_len: key_size, hashrnd: htab->hashrnd);
843
844 head = select_bucket(htab, hash);
845
846 /* lookup the key */
847 l = lookup_nulls_elem_raw(head, hash, key, key_size, n_buckets: htab->n_buckets);
848
849 if (!l)
850 goto find_first_elem;
851
852 /* key was found, get next key in the same bucket */
853 next_l = hlist_nulls_entry_safe(rcu_dereference_raw(hlist_nulls_next_rcu(&l->hash_node)),
854 struct htab_elem, hash_node);
855
856 if (next_l) {
857 /* if next elem in this hash list is non-zero, just return it */
858 memcpy(next_key, next_l->key, key_size);
859 return 0;
860 }
861
862 /* no more elements in this hash list, go to the next bucket */
863 i = hash & (htab->n_buckets - 1);
864 i++;
865
866find_first_elem:
867 /* iterate over buckets */
868 for (; i < htab->n_buckets; i++) {
869 head = select_bucket(htab, hash: i);
870
871 /* pick first element in the bucket */
872 next_l = hlist_nulls_entry_safe(rcu_dereference_raw(hlist_nulls_first_rcu(head)),
873 struct htab_elem, hash_node);
874 if (next_l) {
875 /* if it's not empty, just return it */
876 memcpy(next_key, next_l->key, key_size);
877 return 0;
878 }
879 }
880
881 /* iterated over all buckets and all elements */
882 return -ENOENT;
883}
884
885static void htab_elem_free(struct bpf_htab *htab, struct htab_elem *l)
886{
887 check_and_free_fields(htab, elem: l);
888 if (htab->map.map_type == BPF_MAP_TYPE_PERCPU_HASH)
889 bpf_mem_cache_free(ma: &htab->pcpu_ma, ptr: l->ptr_to_pptr);
890 bpf_mem_cache_free(ma: &htab->ma, ptr: l);
891}
892
893static void htab_put_fd_value(struct bpf_htab *htab, struct htab_elem *l)
894{
895 struct bpf_map *map = &htab->map;
896 void *ptr;
897
898 if (map->ops->map_fd_put_ptr) {
899 ptr = fd_htab_map_get_ptr(map, l);
900 map->ops->map_fd_put_ptr(ptr);
901 }
902}
903
904static bool is_map_full(struct bpf_htab *htab)
905{
906 if (htab->use_percpu_counter)
907 return __percpu_counter_compare(fbc: &htab->pcount, rhs: htab->map.max_entries,
908 PERCPU_COUNTER_BATCH) >= 0;
909 return atomic_read(v: &htab->count) >= htab->map.max_entries;
910}
911
912static void inc_elem_count(struct bpf_htab *htab)
913{
914 bpf_map_inc_elem_count(map: &htab->map);
915
916 if (htab->use_percpu_counter)
917 percpu_counter_add_batch(fbc: &htab->pcount, amount: 1, PERCPU_COUNTER_BATCH);
918 else
919 atomic_inc(v: &htab->count);
920}
921
922static void dec_elem_count(struct bpf_htab *htab)
923{
924 bpf_map_dec_elem_count(map: &htab->map);
925
926 if (htab->use_percpu_counter)
927 percpu_counter_add_batch(fbc: &htab->pcount, amount: -1, PERCPU_COUNTER_BATCH);
928 else
929 atomic_dec(v: &htab->count);
930}
931
932
933static void free_htab_elem(struct bpf_htab *htab, struct htab_elem *l)
934{
935 htab_put_fd_value(htab, l);
936
937 if (htab_is_prealloc(htab)) {
938 bpf_map_dec_elem_count(map: &htab->map);
939 check_and_free_fields(htab, elem: l);
940 __pcpu_freelist_push(&htab->freelist, &l->fnode);
941 } else {
942 dec_elem_count(htab);
943 htab_elem_free(htab, l);
944 }
945}
946
947static void pcpu_copy_value(struct bpf_htab *htab, void __percpu *pptr,
948 void *value, bool onallcpus)
949{
950 if (!onallcpus) {
951 /* copy true value_size bytes */
952 copy_map_value(map: &htab->map, this_cpu_ptr(pptr), src: value);
953 } else {
954 u32 size = round_up(htab->map.value_size, 8);
955 int off = 0, cpu;
956
957 for_each_possible_cpu(cpu) {
958 copy_map_value_long(map: &htab->map, per_cpu_ptr(pptr, cpu), src: value + off);
959 off += size;
960 }
961 }
962}
963
964static void pcpu_init_value(struct bpf_htab *htab, void __percpu *pptr,
965 void *value, bool onallcpus)
966{
967 /* When not setting the initial value on all cpus, zero-fill element
968 * values for other cpus. Otherwise, bpf program has no way to ensure
969 * known initial values for cpus other than current one
970 * (onallcpus=false always when coming from bpf prog).
971 */
972 if (!onallcpus) {
973 int current_cpu = raw_smp_processor_id();
974 int cpu;
975
976 for_each_possible_cpu(cpu) {
977 if (cpu == current_cpu)
978 copy_map_value_long(map: &htab->map, per_cpu_ptr(pptr, cpu), src: value);
979 else /* Since elem is preallocated, we cannot touch special fields */
980 zero_map_value(map: &htab->map, per_cpu_ptr(pptr, cpu));
981 }
982 } else {
983 pcpu_copy_value(htab, pptr, value, onallcpus);
984 }
985}
986
987static bool fd_htab_map_needs_adjust(const struct bpf_htab *htab)
988{
989 return htab->map.map_type == BPF_MAP_TYPE_HASH_OF_MAPS &&
990 BITS_PER_LONG == 64;
991}
992
993static struct htab_elem *alloc_htab_elem(struct bpf_htab *htab, void *key,
994 void *value, u32 key_size, u32 hash,
995 bool percpu, bool onallcpus,
996 struct htab_elem *old_elem)
997{
998 u32 size = htab->map.value_size;
999 bool prealloc = htab_is_prealloc(htab);
1000 struct htab_elem *l_new, **pl_new;
1001 void __percpu *pptr;
1002
1003 if (prealloc) {
1004 if (old_elem) {
1005 /* if we're updating the existing element,
1006 * use per-cpu extra elems to avoid freelist_pop/push
1007 */
1008 pl_new = this_cpu_ptr(htab->extra_elems);
1009 l_new = *pl_new;
1010 htab_put_fd_value(htab, l: old_elem);
1011 *pl_new = old_elem;
1012 } else {
1013 struct pcpu_freelist_node *l;
1014
1015 l = __pcpu_freelist_pop(&htab->freelist);
1016 if (!l)
1017 return ERR_PTR(error: -E2BIG);
1018 l_new = container_of(l, struct htab_elem, fnode);
1019 bpf_map_inc_elem_count(map: &htab->map);
1020 }
1021 } else {
1022 if (is_map_full(htab))
1023 if (!old_elem)
1024 /* when map is full and update() is replacing
1025 * old element, it's ok to allocate, since
1026 * old element will be freed immediately.
1027 * Otherwise return an error
1028 */
1029 return ERR_PTR(error: -E2BIG);
1030 inc_elem_count(htab);
1031 l_new = bpf_mem_cache_alloc(ma: &htab->ma);
1032 if (!l_new) {
1033 l_new = ERR_PTR(error: -ENOMEM);
1034 goto dec_count;
1035 }
1036 }
1037
1038 memcpy(l_new->key, key, key_size);
1039 if (percpu) {
1040 if (prealloc) {
1041 pptr = htab_elem_get_ptr(l: l_new, key_size);
1042 } else {
1043 /* alloc_percpu zero-fills */
1044 pptr = bpf_mem_cache_alloc(ma: &htab->pcpu_ma);
1045 if (!pptr) {
1046 bpf_mem_cache_free(ma: &htab->ma, ptr: l_new);
1047 l_new = ERR_PTR(error: -ENOMEM);
1048 goto dec_count;
1049 }
1050 l_new->ptr_to_pptr = pptr;
1051 pptr = *(void **)pptr;
1052 }
1053
1054 pcpu_init_value(htab, pptr, value, onallcpus);
1055
1056 if (!prealloc)
1057 htab_elem_set_ptr(l: l_new, key_size, pptr);
1058 } else if (fd_htab_map_needs_adjust(htab)) {
1059 size = round_up(size, 8);
1060 memcpy(l_new->key + round_up(key_size, 8), value, size);
1061 } else {
1062 copy_map_value(map: &htab->map,
1063 dst: l_new->key + round_up(key_size, 8),
1064 src: value);
1065 }
1066
1067 l_new->hash = hash;
1068 return l_new;
1069dec_count:
1070 dec_elem_count(htab);
1071 return l_new;
1072}
1073
1074static int check_flags(struct bpf_htab *htab, struct htab_elem *l_old,
1075 u64 map_flags)
1076{
1077 if (l_old && (map_flags & ~BPF_F_LOCK) == BPF_NOEXIST)
1078 /* elem already exists */
1079 return -EEXIST;
1080
1081 if (!l_old && (map_flags & ~BPF_F_LOCK) == BPF_EXIST)
1082 /* elem doesn't exist, cannot update it */
1083 return -ENOENT;
1084
1085 return 0;
1086}
1087
1088/* Called from syscall or from eBPF program */
1089static long htab_map_update_elem(struct bpf_map *map, void *key, void *value,
1090 u64 map_flags)
1091{
1092 struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1093 struct htab_elem *l_new = NULL, *l_old;
1094 struct hlist_nulls_head *head;
1095 unsigned long flags;
1096 struct bucket *b;
1097 u32 key_size, hash;
1098 int ret;
1099
1100 if (unlikely((map_flags & ~BPF_F_LOCK) > BPF_EXIST))
1101 /* unknown flags */
1102 return -EINVAL;
1103
1104 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
1105 !rcu_read_lock_bh_held());
1106
1107 key_size = map->key_size;
1108
1109 hash = htab_map_hash(key, key_len: key_size, hashrnd: htab->hashrnd);
1110
1111 b = __select_bucket(htab, hash);
1112 head = &b->head;
1113
1114 if (unlikely(map_flags & BPF_F_LOCK)) {
1115 if (unlikely(!btf_record_has_field(map->record, BPF_SPIN_LOCK)))
1116 return -EINVAL;
1117 /* find an element without taking the bucket lock */
1118 l_old = lookup_nulls_elem_raw(head, hash, key, key_size,
1119 n_buckets: htab->n_buckets);
1120 ret = check_flags(htab, l_old, map_flags);
1121 if (ret)
1122 return ret;
1123 if (l_old) {
1124 /* grab the element lock and update value in place */
1125 copy_map_value_locked(map,
1126 dst: l_old->key + round_up(key_size, 8),
1127 src: value, lock_src: false);
1128 return 0;
1129 }
1130 /* fall through, grab the bucket lock and lookup again.
1131 * 99.9% chance that the element won't be found,
1132 * but second lookup under lock has to be done.
1133 */
1134 }
1135
1136 ret = htab_lock_bucket(htab, b, hash, pflags: &flags);
1137 if (ret)
1138 return ret;
1139
1140 l_old = lookup_elem_raw(head, hash, key, key_size);
1141
1142 ret = check_flags(htab, l_old, map_flags);
1143 if (ret)
1144 goto err;
1145
1146 if (unlikely(l_old && (map_flags & BPF_F_LOCK))) {
1147 /* first lookup without the bucket lock didn't find the element,
1148 * but second lookup with the bucket lock found it.
1149 * This case is highly unlikely, but has to be dealt with:
1150 * grab the element lock in addition to the bucket lock
1151 * and update element in place
1152 */
1153 copy_map_value_locked(map,
1154 dst: l_old->key + round_up(key_size, 8),
1155 src: value, lock_src: false);
1156 ret = 0;
1157 goto err;
1158 }
1159
1160 l_new = alloc_htab_elem(htab, key, value, key_size, hash, percpu: false, onallcpus: false,
1161 old_elem: l_old);
1162 if (IS_ERR(ptr: l_new)) {
1163 /* all pre-allocated elements are in use or memory exhausted */
1164 ret = PTR_ERR(ptr: l_new);
1165 goto err;
1166 }
1167
1168 /* add new element to the head of the list, so that
1169 * concurrent search will find it before old elem
1170 */
1171 hlist_nulls_add_head_rcu(n: &l_new->hash_node, h: head);
1172 if (l_old) {
1173 hlist_nulls_del_rcu(n: &l_old->hash_node);
1174 if (!htab_is_prealloc(htab))
1175 free_htab_elem(htab, l: l_old);
1176 else
1177 check_and_free_fields(htab, elem: l_old);
1178 }
1179 ret = 0;
1180err:
1181 htab_unlock_bucket(htab, b, hash, flags);
1182 return ret;
1183}
1184
1185static void htab_lru_push_free(struct bpf_htab *htab, struct htab_elem *elem)
1186{
1187 check_and_free_fields(htab, elem);
1188 bpf_map_dec_elem_count(map: &htab->map);
1189 bpf_lru_push_free(lru: &htab->lru, node: &elem->lru_node);
1190}
1191
1192static long htab_lru_map_update_elem(struct bpf_map *map, void *key, void *value,
1193 u64 map_flags)
1194{
1195 struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1196 struct htab_elem *l_new, *l_old = NULL;
1197 struct hlist_nulls_head *head;
1198 unsigned long flags;
1199 struct bucket *b;
1200 u32 key_size, hash;
1201 int ret;
1202
1203 if (unlikely(map_flags > BPF_EXIST))
1204 /* unknown flags */
1205 return -EINVAL;
1206
1207 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
1208 !rcu_read_lock_bh_held());
1209
1210 key_size = map->key_size;
1211
1212 hash = htab_map_hash(key, key_len: key_size, hashrnd: htab->hashrnd);
1213
1214 b = __select_bucket(htab, hash);
1215 head = &b->head;
1216
1217 /* For LRU, we need to alloc before taking bucket's
1218 * spinlock because getting free nodes from LRU may need
1219 * to remove older elements from htab and this removal
1220 * operation will need a bucket lock.
1221 */
1222 l_new = prealloc_lru_pop(htab, key, hash);
1223 if (!l_new)
1224 return -ENOMEM;
1225 copy_map_value(map: &htab->map,
1226 dst: l_new->key + round_up(map->key_size, 8), src: value);
1227
1228 ret = htab_lock_bucket(htab, b, hash, pflags: &flags);
1229 if (ret)
1230 goto err_lock_bucket;
1231
1232 l_old = lookup_elem_raw(head, hash, key, key_size);
1233
1234 ret = check_flags(htab, l_old, map_flags);
1235 if (ret)
1236 goto err;
1237
1238 /* add new element to the head of the list, so that
1239 * concurrent search will find it before old elem
1240 */
1241 hlist_nulls_add_head_rcu(n: &l_new->hash_node, h: head);
1242 if (l_old) {
1243 bpf_lru_node_set_ref(node: &l_new->lru_node);
1244 hlist_nulls_del_rcu(n: &l_old->hash_node);
1245 }
1246 ret = 0;
1247
1248err:
1249 htab_unlock_bucket(htab, b, hash, flags);
1250
1251err_lock_bucket:
1252 if (ret)
1253 htab_lru_push_free(htab, elem: l_new);
1254 else if (l_old)
1255 htab_lru_push_free(htab, elem: l_old);
1256
1257 return ret;
1258}
1259
1260static long __htab_percpu_map_update_elem(struct bpf_map *map, void *key,
1261 void *value, u64 map_flags,
1262 bool onallcpus)
1263{
1264 struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1265 struct htab_elem *l_new = NULL, *l_old;
1266 struct hlist_nulls_head *head;
1267 unsigned long flags;
1268 struct bucket *b;
1269 u32 key_size, hash;
1270 int ret;
1271
1272 if (unlikely(map_flags > BPF_EXIST))
1273 /* unknown flags */
1274 return -EINVAL;
1275
1276 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
1277 !rcu_read_lock_bh_held());
1278
1279 key_size = map->key_size;
1280
1281 hash = htab_map_hash(key, key_len: key_size, hashrnd: htab->hashrnd);
1282
1283 b = __select_bucket(htab, hash);
1284 head = &b->head;
1285
1286 ret = htab_lock_bucket(htab, b, hash, pflags: &flags);
1287 if (ret)
1288 return ret;
1289
1290 l_old = lookup_elem_raw(head, hash, key, key_size);
1291
1292 ret = check_flags(htab, l_old, map_flags);
1293 if (ret)
1294 goto err;
1295
1296 if (l_old) {
1297 /* per-cpu hash map can update value in-place */
1298 pcpu_copy_value(htab, pptr: htab_elem_get_ptr(l: l_old, key_size),
1299 value, onallcpus);
1300 } else {
1301 l_new = alloc_htab_elem(htab, key, value, key_size,
1302 hash, percpu: true, onallcpus, NULL);
1303 if (IS_ERR(ptr: l_new)) {
1304 ret = PTR_ERR(ptr: l_new);
1305 goto err;
1306 }
1307 hlist_nulls_add_head_rcu(n: &l_new->hash_node, h: head);
1308 }
1309 ret = 0;
1310err:
1311 htab_unlock_bucket(htab, b, hash, flags);
1312 return ret;
1313}
1314
1315static long __htab_lru_percpu_map_update_elem(struct bpf_map *map, void *key,
1316 void *value, u64 map_flags,
1317 bool onallcpus)
1318{
1319 struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1320 struct htab_elem *l_new = NULL, *l_old;
1321 struct hlist_nulls_head *head;
1322 unsigned long flags;
1323 struct bucket *b;
1324 u32 key_size, hash;
1325 int ret;
1326
1327 if (unlikely(map_flags > BPF_EXIST))
1328 /* unknown flags */
1329 return -EINVAL;
1330
1331 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
1332 !rcu_read_lock_bh_held());
1333
1334 key_size = map->key_size;
1335
1336 hash = htab_map_hash(key, key_len: key_size, hashrnd: htab->hashrnd);
1337
1338 b = __select_bucket(htab, hash);
1339 head = &b->head;
1340
1341 /* For LRU, we need to alloc before taking bucket's
1342 * spinlock because LRU's elem alloc may need
1343 * to remove older elem from htab and this removal
1344 * operation will need a bucket lock.
1345 */
1346 if (map_flags != BPF_EXIST) {
1347 l_new = prealloc_lru_pop(htab, key, hash);
1348 if (!l_new)
1349 return -ENOMEM;
1350 }
1351
1352 ret = htab_lock_bucket(htab, b, hash, pflags: &flags);
1353 if (ret)
1354 goto err_lock_bucket;
1355
1356 l_old = lookup_elem_raw(head, hash, key, key_size);
1357
1358 ret = check_flags(htab, l_old, map_flags);
1359 if (ret)
1360 goto err;
1361
1362 if (l_old) {
1363 bpf_lru_node_set_ref(node: &l_old->lru_node);
1364
1365 /* per-cpu hash map can update value in-place */
1366 pcpu_copy_value(htab, pptr: htab_elem_get_ptr(l: l_old, key_size),
1367 value, onallcpus);
1368 } else {
1369 pcpu_init_value(htab, pptr: htab_elem_get_ptr(l: l_new, key_size),
1370 value, onallcpus);
1371 hlist_nulls_add_head_rcu(n: &l_new->hash_node, h: head);
1372 l_new = NULL;
1373 }
1374 ret = 0;
1375err:
1376 htab_unlock_bucket(htab, b, hash, flags);
1377err_lock_bucket:
1378 if (l_new) {
1379 bpf_map_dec_elem_count(map: &htab->map);
1380 bpf_lru_push_free(lru: &htab->lru, node: &l_new->lru_node);
1381 }
1382 return ret;
1383}
1384
1385static long htab_percpu_map_update_elem(struct bpf_map *map, void *key,
1386 void *value, u64 map_flags)
1387{
1388 return __htab_percpu_map_update_elem(map, key, value, map_flags, onallcpus: false);
1389}
1390
1391static long htab_lru_percpu_map_update_elem(struct bpf_map *map, void *key,
1392 void *value, u64 map_flags)
1393{
1394 return __htab_lru_percpu_map_update_elem(map, key, value, map_flags,
1395 onallcpus: false);
1396}
1397
1398/* Called from syscall or from eBPF program */
1399static long htab_map_delete_elem(struct bpf_map *map, void *key)
1400{
1401 struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1402 struct hlist_nulls_head *head;
1403 struct bucket *b;
1404 struct htab_elem *l;
1405 unsigned long flags;
1406 u32 hash, key_size;
1407 int ret;
1408
1409 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
1410 !rcu_read_lock_bh_held());
1411
1412 key_size = map->key_size;
1413
1414 hash = htab_map_hash(key, key_len: key_size, hashrnd: htab->hashrnd);
1415 b = __select_bucket(htab, hash);
1416 head = &b->head;
1417
1418 ret = htab_lock_bucket(htab, b, hash, pflags: &flags);
1419 if (ret)
1420 return ret;
1421
1422 l = lookup_elem_raw(head, hash, key, key_size);
1423
1424 if (l) {
1425 hlist_nulls_del_rcu(n: &l->hash_node);
1426 free_htab_elem(htab, l);
1427 } else {
1428 ret = -ENOENT;
1429 }
1430
1431 htab_unlock_bucket(htab, b, hash, flags);
1432 return ret;
1433}
1434
1435static long htab_lru_map_delete_elem(struct bpf_map *map, void *key)
1436{
1437 struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1438 struct hlist_nulls_head *head;
1439 struct bucket *b;
1440 struct htab_elem *l;
1441 unsigned long flags;
1442 u32 hash, key_size;
1443 int ret;
1444
1445 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
1446 !rcu_read_lock_bh_held());
1447
1448 key_size = map->key_size;
1449
1450 hash = htab_map_hash(key, key_len: key_size, hashrnd: htab->hashrnd);
1451 b = __select_bucket(htab, hash);
1452 head = &b->head;
1453
1454 ret = htab_lock_bucket(htab, b, hash, pflags: &flags);
1455 if (ret)
1456 return ret;
1457
1458 l = lookup_elem_raw(head, hash, key, key_size);
1459
1460 if (l)
1461 hlist_nulls_del_rcu(n: &l->hash_node);
1462 else
1463 ret = -ENOENT;
1464
1465 htab_unlock_bucket(htab, b, hash, flags);
1466 if (l)
1467 htab_lru_push_free(htab, elem: l);
1468 return ret;
1469}
1470
1471static void delete_all_elements(struct bpf_htab *htab)
1472{
1473 int i;
1474
1475 /* It's called from a worker thread, so disable migration here,
1476 * since bpf_mem_cache_free() relies on that.
1477 */
1478 migrate_disable();
1479 for (i = 0; i < htab->n_buckets; i++) {
1480 struct hlist_nulls_head *head = select_bucket(htab, hash: i);
1481 struct hlist_nulls_node *n;
1482 struct htab_elem *l;
1483
1484 hlist_nulls_for_each_entry_safe(l, n, head, hash_node) {
1485 hlist_nulls_del_rcu(n: &l->hash_node);
1486 htab_elem_free(htab, l);
1487 }
1488 }
1489 migrate_enable();
1490}
1491
1492static void htab_free_malloced_timers(struct bpf_htab *htab)
1493{
1494 int i;
1495
1496 rcu_read_lock();
1497 for (i = 0; i < htab->n_buckets; i++) {
1498 struct hlist_nulls_head *head = select_bucket(htab, hash: i);
1499 struct hlist_nulls_node *n;
1500 struct htab_elem *l;
1501
1502 hlist_nulls_for_each_entry(l, n, head, hash_node) {
1503 /* We only free timer on uref dropping to zero */
1504 bpf_obj_free_timer(rec: htab->map.record, obj: l->key + round_up(htab->map.key_size, 8));
1505 }
1506 cond_resched_rcu();
1507 }
1508 rcu_read_unlock();
1509}
1510
1511static void htab_map_free_timers(struct bpf_map *map)
1512{
1513 struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1514
1515 /* We only free timer on uref dropping to zero */
1516 if (!btf_record_has_field(rec: htab->map.record, type: BPF_TIMER))
1517 return;
1518 if (!htab_is_prealloc(htab))
1519 htab_free_malloced_timers(htab);
1520 else
1521 htab_free_prealloced_timers(htab);
1522}
1523
1524/* Called when map->refcnt goes to zero, either from workqueue or from syscall */
1525static void htab_map_free(struct bpf_map *map)
1526{
1527 struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1528 int i;
1529
1530 /* bpf_free_used_maps() or close(map_fd) will trigger this map_free callback.
1531 * bpf_free_used_maps() is called after bpf prog is no longer executing.
1532 * There is no need to synchronize_rcu() here to protect map elements.
1533 */
1534
1535 /* htab no longer uses call_rcu() directly. bpf_mem_alloc does it
1536 * underneath and is reponsible for waiting for callbacks to finish
1537 * during bpf_mem_alloc_destroy().
1538 */
1539 if (!htab_is_prealloc(htab)) {
1540 delete_all_elements(htab);
1541 } else {
1542 htab_free_prealloced_fields(htab);
1543 prealloc_destroy(htab);
1544 }
1545
1546 bpf_map_free_elem_count(map);
1547 free_percpu(pdata: htab->extra_elems);
1548 bpf_map_area_free(base: htab->buckets);
1549 bpf_mem_alloc_destroy(ma: &htab->pcpu_ma);
1550 bpf_mem_alloc_destroy(ma: &htab->ma);
1551 if (htab->use_percpu_counter)
1552 percpu_counter_destroy(fbc: &htab->pcount);
1553 for (i = 0; i < HASHTAB_MAP_LOCK_COUNT; i++)
1554 free_percpu(pdata: htab->map_locked[i]);
1555 lockdep_unregister_key(key: &htab->lockdep_key);
1556 bpf_map_area_free(base: htab);
1557}
1558
1559static void htab_map_seq_show_elem(struct bpf_map *map, void *key,
1560 struct seq_file *m)
1561{
1562 void *value;
1563
1564 rcu_read_lock();
1565
1566 value = htab_map_lookup_elem(map, key);
1567 if (!value) {
1568 rcu_read_unlock();
1569 return;
1570 }
1571
1572 btf_type_seq_show(btf: map->btf, type_id: map->btf_key_type_id, obj: key, m);
1573 seq_puts(m, s: ": ");
1574 btf_type_seq_show(btf: map->btf, type_id: map->btf_value_type_id, obj: value, m);
1575 seq_puts(m, s: "\n");
1576
1577 rcu_read_unlock();
1578}
1579
1580static int __htab_map_lookup_and_delete_elem(struct bpf_map *map, void *key,
1581 void *value, bool is_lru_map,
1582 bool is_percpu, u64 flags)
1583{
1584 struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1585 struct hlist_nulls_head *head;
1586 unsigned long bflags;
1587 struct htab_elem *l;
1588 u32 hash, key_size;
1589 struct bucket *b;
1590 int ret;
1591
1592 key_size = map->key_size;
1593
1594 hash = htab_map_hash(key, key_len: key_size, hashrnd: htab->hashrnd);
1595 b = __select_bucket(htab, hash);
1596 head = &b->head;
1597
1598 ret = htab_lock_bucket(htab, b, hash, pflags: &bflags);
1599 if (ret)
1600 return ret;
1601
1602 l = lookup_elem_raw(head, hash, key, key_size);
1603 if (!l) {
1604 ret = -ENOENT;
1605 } else {
1606 if (is_percpu) {
1607 u32 roundup_value_size = round_up(map->value_size, 8);
1608 void __percpu *pptr;
1609 int off = 0, cpu;
1610
1611 pptr = htab_elem_get_ptr(l, key_size);
1612 for_each_possible_cpu(cpu) {
1613 copy_map_value_long(map: &htab->map, dst: value + off, per_cpu_ptr(pptr, cpu));
1614 check_and_init_map_value(map: &htab->map, dst: value + off);
1615 off += roundup_value_size;
1616 }
1617 } else {
1618 u32 roundup_key_size = round_up(map->key_size, 8);
1619
1620 if (flags & BPF_F_LOCK)
1621 copy_map_value_locked(map, dst: value, src: l->key +
1622 roundup_key_size,
1623 lock_src: true);
1624 else
1625 copy_map_value(map, dst: value, src: l->key +
1626 roundup_key_size);
1627 /* Zeroing special fields in the temp buffer */
1628 check_and_init_map_value(map, dst: value);
1629 }
1630
1631 hlist_nulls_del_rcu(n: &l->hash_node);
1632 if (!is_lru_map)
1633 free_htab_elem(htab, l);
1634 }
1635
1636 htab_unlock_bucket(htab, b, hash, flags: bflags);
1637
1638 if (is_lru_map && l)
1639 htab_lru_push_free(htab, elem: l);
1640
1641 return ret;
1642}
1643
1644static int htab_map_lookup_and_delete_elem(struct bpf_map *map, void *key,
1645 void *value, u64 flags)
1646{
1647 return __htab_map_lookup_and_delete_elem(map, key, value, is_lru_map: false, is_percpu: false,
1648 flags);
1649}
1650
1651static int htab_percpu_map_lookup_and_delete_elem(struct bpf_map *map,
1652 void *key, void *value,
1653 u64 flags)
1654{
1655 return __htab_map_lookup_and_delete_elem(map, key, value, is_lru_map: false, is_percpu: true,
1656 flags);
1657}
1658
1659static int htab_lru_map_lookup_and_delete_elem(struct bpf_map *map, void *key,
1660 void *value, u64 flags)
1661{
1662 return __htab_map_lookup_and_delete_elem(map, key, value, is_lru_map: true, is_percpu: false,
1663 flags);
1664}
1665
1666static int htab_lru_percpu_map_lookup_and_delete_elem(struct bpf_map *map,
1667 void *key, void *value,
1668 u64 flags)
1669{
1670 return __htab_map_lookup_and_delete_elem(map, key, value, is_lru_map: true, is_percpu: true,
1671 flags);
1672}
1673
1674static int
1675__htab_map_lookup_and_delete_batch(struct bpf_map *map,
1676 const union bpf_attr *attr,
1677 union bpf_attr __user *uattr,
1678 bool do_delete, bool is_lru_map,
1679 bool is_percpu)
1680{
1681 struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1682 u32 bucket_cnt, total, key_size, value_size, roundup_key_size;
1683 void *keys = NULL, *values = NULL, *value, *dst_key, *dst_val;
1684 void __user *uvalues = u64_to_user_ptr(attr->batch.values);
1685 void __user *ukeys = u64_to_user_ptr(attr->batch.keys);
1686 void __user *ubatch = u64_to_user_ptr(attr->batch.in_batch);
1687 u32 batch, max_count, size, bucket_size, map_id;
1688 struct htab_elem *node_to_free = NULL;
1689 u64 elem_map_flags, map_flags;
1690 struct hlist_nulls_head *head;
1691 struct hlist_nulls_node *n;
1692 unsigned long flags = 0;
1693 bool locked = false;
1694 struct htab_elem *l;
1695 struct bucket *b;
1696 int ret = 0;
1697
1698 elem_map_flags = attr->batch.elem_flags;
1699 if ((elem_map_flags & ~BPF_F_LOCK) ||
1700 ((elem_map_flags & BPF_F_LOCK) && !btf_record_has_field(rec: map->record, type: BPF_SPIN_LOCK)))
1701 return -EINVAL;
1702
1703 map_flags = attr->batch.flags;
1704 if (map_flags)
1705 return -EINVAL;
1706
1707 max_count = attr->batch.count;
1708 if (!max_count)
1709 return 0;
1710
1711 if (put_user(0, &uattr->batch.count))
1712 return -EFAULT;
1713
1714 batch = 0;
1715 if (ubatch && copy_from_user(to: &batch, from: ubatch, n: sizeof(batch)))
1716 return -EFAULT;
1717
1718 if (batch >= htab->n_buckets)
1719 return -ENOENT;
1720
1721 key_size = htab->map.key_size;
1722 roundup_key_size = round_up(htab->map.key_size, 8);
1723 value_size = htab->map.value_size;
1724 size = round_up(value_size, 8);
1725 if (is_percpu)
1726 value_size = size * num_possible_cpus();
1727 total = 0;
1728 /* while experimenting with hash tables with sizes ranging from 10 to
1729 * 1000, it was observed that a bucket can have up to 5 entries.
1730 */
1731 bucket_size = 5;
1732
1733alloc:
1734 /* We cannot do copy_from_user or copy_to_user inside
1735 * the rcu_read_lock. Allocate enough space here.
1736 */
1737 keys = kvmalloc_array(n: key_size, size: bucket_size, GFP_USER | __GFP_NOWARN);
1738 values = kvmalloc_array(n: value_size, size: bucket_size, GFP_USER | __GFP_NOWARN);
1739 if (!keys || !values) {
1740 ret = -ENOMEM;
1741 goto after_loop;
1742 }
1743
1744again:
1745 bpf_disable_instrumentation();
1746 rcu_read_lock();
1747again_nocopy:
1748 dst_key = keys;
1749 dst_val = values;
1750 b = &htab->buckets[batch];
1751 head = &b->head;
1752 /* do not grab the lock unless need it (bucket_cnt > 0). */
1753 if (locked) {
1754 ret = htab_lock_bucket(htab, b, hash: batch, pflags: &flags);
1755 if (ret) {
1756 rcu_read_unlock();
1757 bpf_enable_instrumentation();
1758 goto after_loop;
1759 }
1760 }
1761
1762 bucket_cnt = 0;
1763 hlist_nulls_for_each_entry_rcu(l, n, head, hash_node)
1764 bucket_cnt++;
1765
1766 if (bucket_cnt && !locked) {
1767 locked = true;
1768 goto again_nocopy;
1769 }
1770
1771 if (bucket_cnt > (max_count - total)) {
1772 if (total == 0)
1773 ret = -ENOSPC;
1774 /* Note that since bucket_cnt > 0 here, it is implicit
1775 * that the locked was grabbed, so release it.
1776 */
1777 htab_unlock_bucket(htab, b, hash: batch, flags);
1778 rcu_read_unlock();
1779 bpf_enable_instrumentation();
1780 goto after_loop;
1781 }
1782
1783 if (bucket_cnt > bucket_size) {
1784 bucket_size = bucket_cnt;
1785 /* Note that since bucket_cnt > 0 here, it is implicit
1786 * that the locked was grabbed, so release it.
1787 */
1788 htab_unlock_bucket(htab, b, hash: batch, flags);
1789 rcu_read_unlock();
1790 bpf_enable_instrumentation();
1791 kvfree(addr: keys);
1792 kvfree(addr: values);
1793 goto alloc;
1794 }
1795
1796 /* Next block is only safe to run if you have grabbed the lock */
1797 if (!locked)
1798 goto next_batch;
1799
1800 hlist_nulls_for_each_entry_safe(l, n, head, hash_node) {
1801 memcpy(dst_key, l->key, key_size);
1802
1803 if (is_percpu) {
1804 int off = 0, cpu;
1805 void __percpu *pptr;
1806
1807 pptr = htab_elem_get_ptr(l, key_size: map->key_size);
1808 for_each_possible_cpu(cpu) {
1809 copy_map_value_long(map: &htab->map, dst: dst_val + off, per_cpu_ptr(pptr, cpu));
1810 check_and_init_map_value(map: &htab->map, dst: dst_val + off);
1811 off += size;
1812 }
1813 } else {
1814 value = l->key + roundup_key_size;
1815 if (map->map_type == BPF_MAP_TYPE_HASH_OF_MAPS) {
1816 struct bpf_map **inner_map = value;
1817
1818 /* Actual value is the id of the inner map */
1819 map_id = map->ops->map_fd_sys_lookup_elem(*inner_map);
1820 value = &map_id;
1821 }
1822
1823 if (elem_map_flags & BPF_F_LOCK)
1824 copy_map_value_locked(map, dst: dst_val, src: value,
1825 lock_src: true);
1826 else
1827 copy_map_value(map, dst: dst_val, src: value);
1828 /* Zeroing special fields in the temp buffer */
1829 check_and_init_map_value(map, dst: dst_val);
1830 }
1831 if (do_delete) {
1832 hlist_nulls_del_rcu(n: &l->hash_node);
1833
1834 /* bpf_lru_push_free() will acquire lru_lock, which
1835 * may cause deadlock. See comments in function
1836 * prealloc_lru_pop(). Let us do bpf_lru_push_free()
1837 * after releasing the bucket lock.
1838 */
1839 if (is_lru_map) {
1840 l->batch_flink = node_to_free;
1841 node_to_free = l;
1842 } else {
1843 free_htab_elem(htab, l);
1844 }
1845 }
1846 dst_key += key_size;
1847 dst_val += value_size;
1848 }
1849
1850 htab_unlock_bucket(htab, b, hash: batch, flags);
1851 locked = false;
1852
1853 while (node_to_free) {
1854 l = node_to_free;
1855 node_to_free = node_to_free->batch_flink;
1856 htab_lru_push_free(htab, elem: l);
1857 }
1858
1859next_batch:
1860 /* If we are not copying data, we can go to next bucket and avoid
1861 * unlocking the rcu.
1862 */
1863 if (!bucket_cnt && (batch + 1 < htab->n_buckets)) {
1864 batch++;
1865 goto again_nocopy;
1866 }
1867
1868 rcu_read_unlock();
1869 bpf_enable_instrumentation();
1870 if (bucket_cnt && (copy_to_user(to: ukeys + total * key_size, from: keys,
1871 n: key_size * bucket_cnt) ||
1872 copy_to_user(to: uvalues + total * value_size, from: values,
1873 n: value_size * bucket_cnt))) {
1874 ret = -EFAULT;
1875 goto after_loop;
1876 }
1877
1878 total += bucket_cnt;
1879 batch++;
1880 if (batch >= htab->n_buckets) {
1881 ret = -ENOENT;
1882 goto after_loop;
1883 }
1884 goto again;
1885
1886after_loop:
1887 if (ret == -EFAULT)
1888 goto out;
1889
1890 /* copy # of entries and next batch */
1891 ubatch = u64_to_user_ptr(attr->batch.out_batch);
1892 if (copy_to_user(to: ubatch, from: &batch, n: sizeof(batch)) ||
1893 put_user(total, &uattr->batch.count))
1894 ret = -EFAULT;
1895
1896out:
1897 kvfree(addr: keys);
1898 kvfree(addr: values);
1899 return ret;
1900}
1901
1902static int
1903htab_percpu_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr,
1904 union bpf_attr __user *uattr)
1905{
1906 return __htab_map_lookup_and_delete_batch(map, attr, uattr, do_delete: false,
1907 is_lru_map: false, is_percpu: true);
1908}
1909
1910static int
1911htab_percpu_map_lookup_and_delete_batch(struct bpf_map *map,
1912 const union bpf_attr *attr,
1913 union bpf_attr __user *uattr)
1914{
1915 return __htab_map_lookup_and_delete_batch(map, attr, uattr, do_delete: true,
1916 is_lru_map: false, is_percpu: true);
1917}
1918
1919static int
1920htab_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr,
1921 union bpf_attr __user *uattr)
1922{
1923 return __htab_map_lookup_and_delete_batch(map, attr, uattr, do_delete: false,
1924 is_lru_map: false, is_percpu: false);
1925}
1926
1927static int
1928htab_map_lookup_and_delete_batch(struct bpf_map *map,
1929 const union bpf_attr *attr,
1930 union bpf_attr __user *uattr)
1931{
1932 return __htab_map_lookup_and_delete_batch(map, attr, uattr, do_delete: true,
1933 is_lru_map: false, is_percpu: false);
1934}
1935
1936static int
1937htab_lru_percpu_map_lookup_batch(struct bpf_map *map,
1938 const union bpf_attr *attr,
1939 union bpf_attr __user *uattr)
1940{
1941 return __htab_map_lookup_and_delete_batch(map, attr, uattr, do_delete: false,
1942 is_lru_map: true, is_percpu: true);
1943}
1944
1945static int
1946htab_lru_percpu_map_lookup_and_delete_batch(struct bpf_map *map,
1947 const union bpf_attr *attr,
1948 union bpf_attr __user *uattr)
1949{
1950 return __htab_map_lookup_and_delete_batch(map, attr, uattr, do_delete: true,
1951 is_lru_map: true, is_percpu: true);
1952}
1953
1954static int
1955htab_lru_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr,
1956 union bpf_attr __user *uattr)
1957{
1958 return __htab_map_lookup_and_delete_batch(map, attr, uattr, do_delete: false,
1959 is_lru_map: true, is_percpu: false);
1960}
1961
1962static int
1963htab_lru_map_lookup_and_delete_batch(struct bpf_map *map,
1964 const union bpf_attr *attr,
1965 union bpf_attr __user *uattr)
1966{
1967 return __htab_map_lookup_and_delete_batch(map, attr, uattr, do_delete: true,
1968 is_lru_map: true, is_percpu: false);
1969}
1970
1971struct bpf_iter_seq_hash_map_info {
1972 struct bpf_map *map;
1973 struct bpf_htab *htab;
1974 void *percpu_value_buf; // non-zero means percpu hash
1975 u32 bucket_id;
1976 u32 skip_elems;
1977};
1978
1979static struct htab_elem *
1980bpf_hash_map_seq_find_next(struct bpf_iter_seq_hash_map_info *info,
1981 struct htab_elem *prev_elem)
1982{
1983 const struct bpf_htab *htab = info->htab;
1984 u32 skip_elems = info->skip_elems;
1985 u32 bucket_id = info->bucket_id;
1986 struct hlist_nulls_head *head;
1987 struct hlist_nulls_node *n;
1988 struct htab_elem *elem;
1989 struct bucket *b;
1990 u32 i, count;
1991
1992 if (bucket_id >= htab->n_buckets)
1993 return NULL;
1994
1995 /* try to find next elem in the same bucket */
1996 if (prev_elem) {
1997 /* no update/deletion on this bucket, prev_elem should be still valid
1998 * and we won't skip elements.
1999 */
2000 n = rcu_dereference_raw(hlist_nulls_next_rcu(&prev_elem->hash_node));
2001 elem = hlist_nulls_entry_safe(n, struct htab_elem, hash_node);
2002 if (elem)
2003 return elem;
2004
2005 /* not found, unlock and go to the next bucket */
2006 b = &htab->buckets[bucket_id++];
2007 rcu_read_unlock();
2008 skip_elems = 0;
2009 }
2010
2011 for (i = bucket_id; i < htab->n_buckets; i++) {
2012 b = &htab->buckets[i];
2013 rcu_read_lock();
2014
2015 count = 0;
2016 head = &b->head;
2017 hlist_nulls_for_each_entry_rcu(elem, n, head, hash_node) {
2018 if (count >= skip_elems) {
2019 info->bucket_id = i;
2020 info->skip_elems = count;
2021 return elem;
2022 }
2023 count++;
2024 }
2025
2026 rcu_read_unlock();
2027 skip_elems = 0;
2028 }
2029
2030 info->bucket_id = i;
2031 info->skip_elems = 0;
2032 return NULL;
2033}
2034
2035static void *bpf_hash_map_seq_start(struct seq_file *seq, loff_t *pos)
2036{
2037 struct bpf_iter_seq_hash_map_info *info = seq->private;
2038 struct htab_elem *elem;
2039
2040 elem = bpf_hash_map_seq_find_next(info, NULL);
2041 if (!elem)
2042 return NULL;
2043
2044 if (*pos == 0)
2045 ++*pos;
2046 return elem;
2047}
2048
2049static void *bpf_hash_map_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2050{
2051 struct bpf_iter_seq_hash_map_info *info = seq->private;
2052
2053 ++*pos;
2054 ++info->skip_elems;
2055 return bpf_hash_map_seq_find_next(info, prev_elem: v);
2056}
2057
2058static int __bpf_hash_map_seq_show(struct seq_file *seq, struct htab_elem *elem)
2059{
2060 struct bpf_iter_seq_hash_map_info *info = seq->private;
2061 u32 roundup_key_size, roundup_value_size;
2062 struct bpf_iter__bpf_map_elem ctx = {};
2063 struct bpf_map *map = info->map;
2064 struct bpf_iter_meta meta;
2065 int ret = 0, off = 0, cpu;
2066 struct bpf_prog *prog;
2067 void __percpu *pptr;
2068
2069 meta.seq = seq;
2070 prog = bpf_iter_get_info(meta: &meta, in_stop: elem == NULL);
2071 if (prog) {
2072 ctx.meta = &meta;
2073 ctx.map = info->map;
2074 if (elem) {
2075 roundup_key_size = round_up(map->key_size, 8);
2076 ctx.key = elem->key;
2077 if (!info->percpu_value_buf) {
2078 ctx.value = elem->key + roundup_key_size;
2079 } else {
2080 roundup_value_size = round_up(map->value_size, 8);
2081 pptr = htab_elem_get_ptr(l: elem, key_size: map->key_size);
2082 for_each_possible_cpu(cpu) {
2083 copy_map_value_long(map, dst: info->percpu_value_buf + off,
2084 per_cpu_ptr(pptr, cpu));
2085 check_and_init_map_value(map, dst: info->percpu_value_buf + off);
2086 off += roundup_value_size;
2087 }
2088 ctx.value = info->percpu_value_buf;
2089 }
2090 }
2091 ret = bpf_iter_run_prog(prog, ctx: &ctx);
2092 }
2093
2094 return ret;
2095}
2096
2097static int bpf_hash_map_seq_show(struct seq_file *seq, void *v)
2098{
2099 return __bpf_hash_map_seq_show(seq, elem: v);
2100}
2101
2102static void bpf_hash_map_seq_stop(struct seq_file *seq, void *v)
2103{
2104 if (!v)
2105 (void)__bpf_hash_map_seq_show(seq, NULL);
2106 else
2107 rcu_read_unlock();
2108}
2109
2110static int bpf_iter_init_hash_map(void *priv_data,
2111 struct bpf_iter_aux_info *aux)
2112{
2113 struct bpf_iter_seq_hash_map_info *seq_info = priv_data;
2114 struct bpf_map *map = aux->map;
2115 void *value_buf;
2116 u32 buf_size;
2117
2118 if (map->map_type == BPF_MAP_TYPE_PERCPU_HASH ||
2119 map->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH) {
2120 buf_size = round_up(map->value_size, 8) * num_possible_cpus();
2121 value_buf = kmalloc(size: buf_size, GFP_USER | __GFP_NOWARN);
2122 if (!value_buf)
2123 return -ENOMEM;
2124
2125 seq_info->percpu_value_buf = value_buf;
2126 }
2127
2128 bpf_map_inc_with_uref(map);
2129 seq_info->map = map;
2130 seq_info->htab = container_of(map, struct bpf_htab, map);
2131 return 0;
2132}
2133
2134static void bpf_iter_fini_hash_map(void *priv_data)
2135{
2136 struct bpf_iter_seq_hash_map_info *seq_info = priv_data;
2137
2138 bpf_map_put_with_uref(map: seq_info->map);
2139 kfree(objp: seq_info->percpu_value_buf);
2140}
2141
2142static const struct seq_operations bpf_hash_map_seq_ops = {
2143 .start = bpf_hash_map_seq_start,
2144 .next = bpf_hash_map_seq_next,
2145 .stop = bpf_hash_map_seq_stop,
2146 .show = bpf_hash_map_seq_show,
2147};
2148
2149static const struct bpf_iter_seq_info iter_seq_info = {
2150 .seq_ops = &bpf_hash_map_seq_ops,
2151 .init_seq_private = bpf_iter_init_hash_map,
2152 .fini_seq_private = bpf_iter_fini_hash_map,
2153 .seq_priv_size = sizeof(struct bpf_iter_seq_hash_map_info),
2154};
2155
2156static long bpf_for_each_hash_elem(struct bpf_map *map, bpf_callback_t callback_fn,
2157 void *callback_ctx, u64 flags)
2158{
2159 struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
2160 struct hlist_nulls_head *head;
2161 struct hlist_nulls_node *n;
2162 struct htab_elem *elem;
2163 u32 roundup_key_size;
2164 int i, num_elems = 0;
2165 void __percpu *pptr;
2166 struct bucket *b;
2167 void *key, *val;
2168 bool is_percpu;
2169 u64 ret = 0;
2170
2171 if (flags != 0)
2172 return -EINVAL;
2173
2174 is_percpu = htab_is_percpu(htab);
2175
2176 roundup_key_size = round_up(map->key_size, 8);
2177 /* disable migration so percpu value prepared here will be the
2178 * same as the one seen by the bpf program with bpf_map_lookup_elem().
2179 */
2180 if (is_percpu)
2181 migrate_disable();
2182 for (i = 0; i < htab->n_buckets; i++) {
2183 b = &htab->buckets[i];
2184 rcu_read_lock();
2185 head = &b->head;
2186 hlist_nulls_for_each_entry_rcu(elem, n, head, hash_node) {
2187 key = elem->key;
2188 if (is_percpu) {
2189 /* current cpu value for percpu map */
2190 pptr = htab_elem_get_ptr(l: elem, key_size: map->key_size);
2191 val = this_cpu_ptr(pptr);
2192 } else {
2193 val = elem->key + roundup_key_size;
2194 }
2195 num_elems++;
2196 ret = callback_fn((u64)(long)map, (u64)(long)key,
2197 (u64)(long)val, (u64)(long)callback_ctx, 0);
2198 /* return value: 0 - continue, 1 - stop and return */
2199 if (ret) {
2200 rcu_read_unlock();
2201 goto out;
2202 }
2203 }
2204 rcu_read_unlock();
2205 }
2206out:
2207 if (is_percpu)
2208 migrate_enable();
2209 return num_elems;
2210}
2211
2212static u64 htab_map_mem_usage(const struct bpf_map *map)
2213{
2214 struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
2215 u32 value_size = round_up(htab->map.value_size, 8);
2216 bool prealloc = htab_is_prealloc(htab);
2217 bool percpu = htab_is_percpu(htab);
2218 bool lru = htab_is_lru(htab);
2219 u64 num_entries;
2220 u64 usage = sizeof(struct bpf_htab);
2221
2222 usage += sizeof(struct bucket) * htab->n_buckets;
2223 usage += sizeof(int) * num_possible_cpus() * HASHTAB_MAP_LOCK_COUNT;
2224 if (prealloc) {
2225 num_entries = map->max_entries;
2226 if (htab_has_extra_elems(htab))
2227 num_entries += num_possible_cpus();
2228
2229 usage += htab->elem_size * num_entries;
2230
2231 if (percpu)
2232 usage += value_size * num_possible_cpus() * num_entries;
2233 else if (!lru)
2234 usage += sizeof(struct htab_elem *) * num_possible_cpus();
2235 } else {
2236#define LLIST_NODE_SZ sizeof(struct llist_node)
2237
2238 num_entries = htab->use_percpu_counter ?
2239 percpu_counter_sum(fbc: &htab->pcount) :
2240 atomic_read(v: &htab->count);
2241 usage += (htab->elem_size + LLIST_NODE_SZ) * num_entries;
2242 if (percpu) {
2243 usage += (LLIST_NODE_SZ + sizeof(void *)) * num_entries;
2244 usage += value_size * num_possible_cpus() * num_entries;
2245 }
2246 }
2247 return usage;
2248}
2249
2250BTF_ID_LIST_SINGLE(htab_map_btf_ids, struct, bpf_htab)
2251const struct bpf_map_ops htab_map_ops = {
2252 .map_meta_equal = bpf_map_meta_equal,
2253 .map_alloc_check = htab_map_alloc_check,
2254 .map_alloc = htab_map_alloc,
2255 .map_free = htab_map_free,
2256 .map_get_next_key = htab_map_get_next_key,
2257 .map_release_uref = htab_map_free_timers,
2258 .map_lookup_elem = htab_map_lookup_elem,
2259 .map_lookup_and_delete_elem = htab_map_lookup_and_delete_elem,
2260 .map_update_elem = htab_map_update_elem,
2261 .map_delete_elem = htab_map_delete_elem,
2262 .map_gen_lookup = htab_map_gen_lookup,
2263 .map_seq_show_elem = htab_map_seq_show_elem,
2264 .map_set_for_each_callback_args = map_set_for_each_callback_args,
2265 .map_for_each_callback = bpf_for_each_hash_elem,
2266 .map_mem_usage = htab_map_mem_usage,
2267 BATCH_OPS(htab),
2268 .map_btf_id = &htab_map_btf_ids[0],
2269 .iter_seq_info = &iter_seq_info,
2270};
2271
2272const struct bpf_map_ops htab_lru_map_ops = {
2273 .map_meta_equal = bpf_map_meta_equal,
2274 .map_alloc_check = htab_map_alloc_check,
2275 .map_alloc = htab_map_alloc,
2276 .map_free = htab_map_free,
2277 .map_get_next_key = htab_map_get_next_key,
2278 .map_release_uref = htab_map_free_timers,
2279 .map_lookup_elem = htab_lru_map_lookup_elem,
2280 .map_lookup_and_delete_elem = htab_lru_map_lookup_and_delete_elem,
2281 .map_lookup_elem_sys_only = htab_lru_map_lookup_elem_sys,
2282 .map_update_elem = htab_lru_map_update_elem,
2283 .map_delete_elem = htab_lru_map_delete_elem,
2284 .map_gen_lookup = htab_lru_map_gen_lookup,
2285 .map_seq_show_elem = htab_map_seq_show_elem,
2286 .map_set_for_each_callback_args = map_set_for_each_callback_args,
2287 .map_for_each_callback = bpf_for_each_hash_elem,
2288 .map_mem_usage = htab_map_mem_usage,
2289 BATCH_OPS(htab_lru),
2290 .map_btf_id = &htab_map_btf_ids[0],
2291 .iter_seq_info = &iter_seq_info,
2292};
2293
2294/* Called from eBPF program */
2295static void *htab_percpu_map_lookup_elem(struct bpf_map *map, void *key)
2296{
2297 struct htab_elem *l = __htab_map_lookup_elem(map, key);
2298
2299 if (l)
2300 return this_cpu_ptr(htab_elem_get_ptr(l, map->key_size));
2301 else
2302 return NULL;
2303}
2304
2305static void *htab_percpu_map_lookup_percpu_elem(struct bpf_map *map, void *key, u32 cpu)
2306{
2307 struct htab_elem *l;
2308
2309 if (cpu >= nr_cpu_ids)
2310 return NULL;
2311
2312 l = __htab_map_lookup_elem(map, key);
2313 if (l)
2314 return per_cpu_ptr(htab_elem_get_ptr(l, map->key_size), cpu);
2315 else
2316 return NULL;
2317}
2318
2319static void *htab_lru_percpu_map_lookup_elem(struct bpf_map *map, void *key)
2320{
2321 struct htab_elem *l = __htab_map_lookup_elem(map, key);
2322
2323 if (l) {
2324 bpf_lru_node_set_ref(node: &l->lru_node);
2325 return this_cpu_ptr(htab_elem_get_ptr(l, map->key_size));
2326 }
2327
2328 return NULL;
2329}
2330
2331static void *htab_lru_percpu_map_lookup_percpu_elem(struct bpf_map *map, void *key, u32 cpu)
2332{
2333 struct htab_elem *l;
2334
2335 if (cpu >= nr_cpu_ids)
2336 return NULL;
2337
2338 l = __htab_map_lookup_elem(map, key);
2339 if (l) {
2340 bpf_lru_node_set_ref(node: &l->lru_node);
2341 return per_cpu_ptr(htab_elem_get_ptr(l, map->key_size), cpu);
2342 }
2343
2344 return NULL;
2345}
2346
2347int bpf_percpu_hash_copy(struct bpf_map *map, void *key, void *value)
2348{
2349 struct htab_elem *l;
2350 void __percpu *pptr;
2351 int ret = -ENOENT;
2352 int cpu, off = 0;
2353 u32 size;
2354
2355 /* per_cpu areas are zero-filled and bpf programs can only
2356 * access 'value_size' of them, so copying rounded areas
2357 * will not leak any kernel data
2358 */
2359 size = round_up(map->value_size, 8);
2360 rcu_read_lock();
2361 l = __htab_map_lookup_elem(map, key);
2362 if (!l)
2363 goto out;
2364 /* We do not mark LRU map element here in order to not mess up
2365 * eviction heuristics when user space does a map walk.
2366 */
2367 pptr = htab_elem_get_ptr(l, key_size: map->key_size);
2368 for_each_possible_cpu(cpu) {
2369 copy_map_value_long(map, dst: value + off, per_cpu_ptr(pptr, cpu));
2370 check_and_init_map_value(map, dst: value + off);
2371 off += size;
2372 }
2373 ret = 0;
2374out:
2375 rcu_read_unlock();
2376 return ret;
2377}
2378
2379int bpf_percpu_hash_update(struct bpf_map *map, void *key, void *value,
2380 u64 map_flags)
2381{
2382 struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
2383 int ret;
2384
2385 rcu_read_lock();
2386 if (htab_is_lru(htab))
2387 ret = __htab_lru_percpu_map_update_elem(map, key, value,
2388 map_flags, onallcpus: true);
2389 else
2390 ret = __htab_percpu_map_update_elem(map, key, value, map_flags,
2391 onallcpus: true);
2392 rcu_read_unlock();
2393
2394 return ret;
2395}
2396
2397static void htab_percpu_map_seq_show_elem(struct bpf_map *map, void *key,
2398 struct seq_file *m)
2399{
2400 struct htab_elem *l;
2401 void __percpu *pptr;
2402 int cpu;
2403
2404 rcu_read_lock();
2405
2406 l = __htab_map_lookup_elem(map, key);
2407 if (!l) {
2408 rcu_read_unlock();
2409 return;
2410 }
2411
2412 btf_type_seq_show(btf: map->btf, type_id: map->btf_key_type_id, obj: key, m);
2413 seq_puts(m, s: ": {\n");
2414 pptr = htab_elem_get_ptr(l, key_size: map->key_size);
2415 for_each_possible_cpu(cpu) {
2416 seq_printf(m, fmt: "\tcpu%d: ", cpu);
2417 btf_type_seq_show(btf: map->btf, type_id: map->btf_value_type_id,
2418 per_cpu_ptr(pptr, cpu), m);
2419 seq_puts(m, s: "\n");
2420 }
2421 seq_puts(m, s: "}\n");
2422
2423 rcu_read_unlock();
2424}
2425
2426const struct bpf_map_ops htab_percpu_map_ops = {
2427 .map_meta_equal = bpf_map_meta_equal,
2428 .map_alloc_check = htab_map_alloc_check,
2429 .map_alloc = htab_map_alloc,
2430 .map_free = htab_map_free,
2431 .map_get_next_key = htab_map_get_next_key,
2432 .map_lookup_elem = htab_percpu_map_lookup_elem,
2433 .map_lookup_and_delete_elem = htab_percpu_map_lookup_and_delete_elem,
2434 .map_update_elem = htab_percpu_map_update_elem,
2435 .map_delete_elem = htab_map_delete_elem,
2436 .map_lookup_percpu_elem = htab_percpu_map_lookup_percpu_elem,
2437 .map_seq_show_elem = htab_percpu_map_seq_show_elem,
2438 .map_set_for_each_callback_args = map_set_for_each_callback_args,
2439 .map_for_each_callback = bpf_for_each_hash_elem,
2440 .map_mem_usage = htab_map_mem_usage,
2441 BATCH_OPS(htab_percpu),
2442 .map_btf_id = &htab_map_btf_ids[0],
2443 .iter_seq_info = &iter_seq_info,
2444};
2445
2446const struct bpf_map_ops htab_lru_percpu_map_ops = {
2447 .map_meta_equal = bpf_map_meta_equal,
2448 .map_alloc_check = htab_map_alloc_check,
2449 .map_alloc = htab_map_alloc,
2450 .map_free = htab_map_free,
2451 .map_get_next_key = htab_map_get_next_key,
2452 .map_lookup_elem = htab_lru_percpu_map_lookup_elem,
2453 .map_lookup_and_delete_elem = htab_lru_percpu_map_lookup_and_delete_elem,
2454 .map_update_elem = htab_lru_percpu_map_update_elem,
2455 .map_delete_elem = htab_lru_map_delete_elem,
2456 .map_lookup_percpu_elem = htab_lru_percpu_map_lookup_percpu_elem,
2457 .map_seq_show_elem = htab_percpu_map_seq_show_elem,
2458 .map_set_for_each_callback_args = map_set_for_each_callback_args,
2459 .map_for_each_callback = bpf_for_each_hash_elem,
2460 .map_mem_usage = htab_map_mem_usage,
2461 BATCH_OPS(htab_lru_percpu),
2462 .map_btf_id = &htab_map_btf_ids[0],
2463 .iter_seq_info = &iter_seq_info,
2464};
2465
2466static int fd_htab_map_alloc_check(union bpf_attr *attr)
2467{
2468 if (attr->value_size != sizeof(u32))
2469 return -EINVAL;
2470 return htab_map_alloc_check(attr);
2471}
2472
2473static void fd_htab_map_free(struct bpf_map *map)
2474{
2475 struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
2476 struct hlist_nulls_node *n;
2477 struct hlist_nulls_head *head;
2478 struct htab_elem *l;
2479 int i;
2480
2481 for (i = 0; i < htab->n_buckets; i++) {
2482 head = select_bucket(htab, hash: i);
2483
2484 hlist_nulls_for_each_entry_safe(l, n, head, hash_node) {
2485 void *ptr = fd_htab_map_get_ptr(map, l);
2486
2487 map->ops->map_fd_put_ptr(ptr);
2488 }
2489 }
2490
2491 htab_map_free(map);
2492}
2493
2494/* only called from syscall */
2495int bpf_fd_htab_map_lookup_elem(struct bpf_map *map, void *key, u32 *value)
2496{
2497 void **ptr;
2498 int ret = 0;
2499
2500 if (!map->ops->map_fd_sys_lookup_elem)
2501 return -ENOTSUPP;
2502
2503 rcu_read_lock();
2504 ptr = htab_map_lookup_elem(map, key);
2505 if (ptr)
2506 *value = map->ops->map_fd_sys_lookup_elem(READ_ONCE(*ptr));
2507 else
2508 ret = -ENOENT;
2509 rcu_read_unlock();
2510
2511 return ret;
2512}
2513
2514/* only called from syscall */
2515int bpf_fd_htab_map_update_elem(struct bpf_map *map, struct file *map_file,
2516 void *key, void *value, u64 map_flags)
2517{
2518 void *ptr;
2519 int ret;
2520 u32 ufd = *(u32 *)value;
2521
2522 ptr = map->ops->map_fd_get_ptr(map, map_file, ufd);
2523 if (IS_ERR(ptr))
2524 return PTR_ERR(ptr);
2525
2526 ret = htab_map_update_elem(map, key, value: &ptr, map_flags);
2527 if (ret)
2528 map->ops->map_fd_put_ptr(ptr);
2529
2530 return ret;
2531}
2532
2533static struct bpf_map *htab_of_map_alloc(union bpf_attr *attr)
2534{
2535 struct bpf_map *map, *inner_map_meta;
2536
2537 inner_map_meta = bpf_map_meta_alloc(inner_map_ufd: attr->inner_map_fd);
2538 if (IS_ERR(ptr: inner_map_meta))
2539 return inner_map_meta;
2540
2541 map = htab_map_alloc(attr);
2542 if (IS_ERR(ptr: map)) {
2543 bpf_map_meta_free(map_meta: inner_map_meta);
2544 return map;
2545 }
2546
2547 map->inner_map_meta = inner_map_meta;
2548
2549 return map;
2550}
2551
2552static void *htab_of_map_lookup_elem(struct bpf_map *map, void *key)
2553{
2554 struct bpf_map **inner_map = htab_map_lookup_elem(map, key);
2555
2556 if (!inner_map)
2557 return NULL;
2558
2559 return READ_ONCE(*inner_map);
2560}
2561
2562static int htab_of_map_gen_lookup(struct bpf_map *map,
2563 struct bpf_insn *insn_buf)
2564{
2565 struct bpf_insn *insn = insn_buf;
2566 const int ret = BPF_REG_0;
2567
2568 BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem,
2569 (void *(*)(struct bpf_map *map, void *key))NULL));
2570 *insn++ = BPF_EMIT_CALL(__htab_map_lookup_elem);
2571 *insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 2);
2572 *insn++ = BPF_ALU64_IMM(BPF_ADD, ret,
2573 offsetof(struct htab_elem, key) +
2574 round_up(map->key_size, 8));
2575 *insn++ = BPF_LDX_MEM(BPF_DW, ret, ret, 0);
2576
2577 return insn - insn_buf;
2578}
2579
2580static void htab_of_map_free(struct bpf_map *map)
2581{
2582 bpf_map_meta_free(map_meta: map->inner_map_meta);
2583 fd_htab_map_free(map);
2584}
2585
2586const struct bpf_map_ops htab_of_maps_map_ops = {
2587 .map_alloc_check = fd_htab_map_alloc_check,
2588 .map_alloc = htab_of_map_alloc,
2589 .map_free = htab_of_map_free,
2590 .map_get_next_key = htab_map_get_next_key,
2591 .map_lookup_elem = htab_of_map_lookup_elem,
2592 .map_delete_elem = htab_map_delete_elem,
2593 .map_fd_get_ptr = bpf_map_fd_get_ptr,
2594 .map_fd_put_ptr = bpf_map_fd_put_ptr,
2595 .map_fd_sys_lookup_elem = bpf_map_fd_sys_lookup_elem,
2596 .map_gen_lookup = htab_of_map_gen_lookup,
2597 .map_check_btf = map_check_no_btf,
2598 .map_mem_usage = htab_map_mem_usage,
2599 BATCH_OPS(htab),
2600 .map_btf_id = &htab_map_btf_ids[0],
2601};
2602

source code of linux/kernel/bpf/hashtab.c