1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Longest prefix match list implementation
4 *
5 * Copyright (c) 2016,2017 Daniel Mack
6 * Copyright (c) 2016 David Herrmann
7 */
8
9#include <linux/bpf.h>
10#include <linux/btf.h>
11#include <linux/err.h>
12#include <linux/slab.h>
13#include <linux/spinlock.h>
14#include <linux/vmalloc.h>
15#include <net/ipv6.h>
16#include <uapi/linux/btf.h>
17#include <linux/btf_ids.h>
18
19/* Intermediate node */
20#define LPM_TREE_NODE_FLAG_IM BIT(0)
21
22struct lpm_trie_node;
23
24struct lpm_trie_node {
25 struct rcu_head rcu;
26 struct lpm_trie_node __rcu *child[2];
27 u32 prefixlen;
28 u32 flags;
29 u8 data[];
30};
31
32struct lpm_trie {
33 struct bpf_map map;
34 struct lpm_trie_node __rcu *root;
35 size_t n_entries;
36 size_t max_prefixlen;
37 size_t data_size;
38 spinlock_t lock;
39};
40
41/* This trie implements a longest prefix match algorithm that can be used to
42 * match IP addresses to a stored set of ranges.
43 *
44 * Data stored in @data of struct bpf_lpm_key and struct lpm_trie_node is
45 * interpreted as big endian, so data[0] stores the most significant byte.
46 *
47 * Match ranges are internally stored in instances of struct lpm_trie_node
48 * which each contain their prefix length as well as two pointers that may
49 * lead to more nodes containing more specific matches. Each node also stores
50 * a value that is defined by and returned to userspace via the update_elem
51 * and lookup functions.
52 *
53 * For instance, let's start with a trie that was created with a prefix length
54 * of 32, so it can be used for IPv4 addresses, and one single element that
55 * matches 192.168.0.0/16. The data array would hence contain
56 * [0xc0, 0xa8, 0x00, 0x00] in big-endian notation. This documentation will
57 * stick to IP-address notation for readability though.
58 *
59 * As the trie is empty initially, the new node (1) will be places as root
60 * node, denoted as (R) in the example below. As there are no other node, both
61 * child pointers are %NULL.
62 *
63 * +----------------+
64 * | (1) (R) |
65 * | 192.168.0.0/16 |
66 * | value: 1 |
67 * | [0] [1] |
68 * +----------------+
69 *
70 * Next, let's add a new node (2) matching 192.168.0.0/24. As there is already
71 * a node with the same data and a smaller prefix (ie, a less specific one),
72 * node (2) will become a child of (1). In child index depends on the next bit
73 * that is outside of what (1) matches, and that bit is 0, so (2) will be
74 * child[0] of (1):
75 *
76 * +----------------+
77 * | (1) (R) |
78 * | 192.168.0.0/16 |
79 * | value: 1 |
80 * | [0] [1] |
81 * +----------------+
82 * |
83 * +----------------+
84 * | (2) |
85 * | 192.168.0.0/24 |
86 * | value: 2 |
87 * | [0] [1] |
88 * +----------------+
89 *
90 * The child[1] slot of (1) could be filled with another node which has bit #17
91 * (the next bit after the ones that (1) matches on) set to 1. For instance,
92 * 192.168.128.0/24:
93 *
94 * +----------------+
95 * | (1) (R) |
96 * | 192.168.0.0/16 |
97 * | value: 1 |
98 * | [0] [1] |
99 * +----------------+
100 * | |
101 * +----------------+ +------------------+
102 * | (2) | | (3) |
103 * | 192.168.0.0/24 | | 192.168.128.0/24 |
104 * | value: 2 | | value: 3 |
105 * | [0] [1] | | [0] [1] |
106 * +----------------+ +------------------+
107 *
108 * Let's add another node (4) to the game for 192.168.1.0/24. In order to place
109 * it, node (1) is looked at first, and because (4) of the semantics laid out
110 * above (bit #17 is 0), it would normally be attached to (1) as child[0].
111 * However, that slot is already allocated, so a new node is needed in between.
112 * That node does not have a value attached to it and it will never be
113 * returned to users as result of a lookup. It is only there to differentiate
114 * the traversal further. It will get a prefix as wide as necessary to
115 * distinguish its two children:
116 *
117 * +----------------+
118 * | (1) (R) |
119 * | 192.168.0.0/16 |
120 * | value: 1 |
121 * | [0] [1] |
122 * +----------------+
123 * | |
124 * +----------------+ +------------------+
125 * | (4) (I) | | (3) |
126 * | 192.168.0.0/23 | | 192.168.128.0/24 |
127 * | value: --- | | value: 3 |
128 * | [0] [1] | | [0] [1] |
129 * +----------------+ +------------------+
130 * | |
131 * +----------------+ +----------------+
132 * | (2) | | (5) |
133 * | 192.168.0.0/24 | | 192.168.1.0/24 |
134 * | value: 2 | | value: 5 |
135 * | [0] [1] | | [0] [1] |
136 * +----------------+ +----------------+
137 *
138 * 192.168.1.1/32 would be a child of (5) etc.
139 *
140 * An intermediate node will be turned into a 'real' node on demand. In the
141 * example above, (4) would be re-used if 192.168.0.0/23 is added to the trie.
142 *
143 * A fully populated trie would have a height of 32 nodes, as the trie was
144 * created with a prefix length of 32.
145 *
146 * The lookup starts at the root node. If the current node matches and if there
147 * is a child that can be used to become more specific, the trie is traversed
148 * downwards. The last node in the traversal that is a non-intermediate one is
149 * returned.
150 */
151
152static inline int extract_bit(const u8 *data, size_t index)
153{
154 return !!(data[index / 8] & (1 << (7 - (index % 8))));
155}
156
157/**
158 * longest_prefix_match() - determine the longest prefix
159 * @trie: The trie to get internal sizes from
160 * @node: The node to operate on
161 * @key: The key to compare to @node
162 *
163 * Determine the longest prefix of @node that matches the bits in @key.
164 */
165static size_t longest_prefix_match(const struct lpm_trie *trie,
166 const struct lpm_trie_node *node,
167 const struct bpf_lpm_trie_key *key)
168{
169 u32 limit = min(node->prefixlen, key->prefixlen);
170 u32 prefixlen = 0, i = 0;
171
172 BUILD_BUG_ON(offsetof(struct lpm_trie_node, data) % sizeof(u32));
173 BUILD_BUG_ON(offsetof(struct bpf_lpm_trie_key, data) % sizeof(u32));
174
175#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && defined(CONFIG_64BIT)
176
177 /* data_size >= 16 has very small probability.
178 * We do not use a loop for optimal code generation.
179 */
180 if (trie->data_size >= 8) {
181 u64 diff = be64_to_cpu(*(__be64 *)node->data ^
182 *(__be64 *)key->data);
183
184 prefixlen = 64 - fls64(x: diff);
185 if (prefixlen >= limit)
186 return limit;
187 if (diff)
188 return prefixlen;
189 i = 8;
190 }
191#endif
192
193 while (trie->data_size >= i + 4) {
194 u32 diff = be32_to_cpu(*(__be32 *)&node->data[i] ^
195 *(__be32 *)&key->data[i]);
196
197 prefixlen += 32 - fls(x: diff);
198 if (prefixlen >= limit)
199 return limit;
200 if (diff)
201 return prefixlen;
202 i += 4;
203 }
204
205 if (trie->data_size >= i + 2) {
206 u16 diff = be16_to_cpu(*(__be16 *)&node->data[i] ^
207 *(__be16 *)&key->data[i]);
208
209 prefixlen += 16 - fls(x: diff);
210 if (prefixlen >= limit)
211 return limit;
212 if (diff)
213 return prefixlen;
214 i += 2;
215 }
216
217 if (trie->data_size >= i + 1) {
218 prefixlen += 8 - fls(x: node->data[i] ^ key->data[i]);
219
220 if (prefixlen >= limit)
221 return limit;
222 }
223
224 return prefixlen;
225}
226
227/* Called from syscall or from eBPF program */
228static void *trie_lookup_elem(struct bpf_map *map, void *_key)
229{
230 struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
231 struct lpm_trie_node *node, *found = NULL;
232 struct bpf_lpm_trie_key *key = _key;
233
234 /* Start walking the trie from the root node ... */
235
236 for (node = rcu_dereference_check(trie->root, rcu_read_lock_bh_held());
237 node;) {
238 unsigned int next_bit;
239 size_t matchlen;
240
241 /* Determine the longest prefix of @node that matches @key.
242 * If it's the maximum possible prefix for this trie, we have
243 * an exact match and can return it directly.
244 */
245 matchlen = longest_prefix_match(trie, node, key);
246 if (matchlen == trie->max_prefixlen) {
247 found = node;
248 break;
249 }
250
251 /* If the number of bits that match is smaller than the prefix
252 * length of @node, bail out and return the node we have seen
253 * last in the traversal (ie, the parent).
254 */
255 if (matchlen < node->prefixlen)
256 break;
257
258 /* Consider this node as return candidate unless it is an
259 * artificially added intermediate one.
260 */
261 if (!(node->flags & LPM_TREE_NODE_FLAG_IM))
262 found = node;
263
264 /* If the node match is fully satisfied, let's see if we can
265 * become more specific. Determine the next bit in the key and
266 * traverse down.
267 */
268 next_bit = extract_bit(data: key->data, index: node->prefixlen);
269 node = rcu_dereference_check(node->child[next_bit],
270 rcu_read_lock_bh_held());
271 }
272
273 if (!found)
274 return NULL;
275
276 return found->data + trie->data_size;
277}
278
279static struct lpm_trie_node *lpm_trie_node_alloc(const struct lpm_trie *trie,
280 const void *value)
281{
282 struct lpm_trie_node *node;
283 size_t size = sizeof(struct lpm_trie_node) + trie->data_size;
284
285 if (value)
286 size += trie->map.value_size;
287
288 node = bpf_map_kmalloc_node(map: &trie->map, size, GFP_NOWAIT | __GFP_NOWARN,
289 node: trie->map.numa_node);
290 if (!node)
291 return NULL;
292
293 node->flags = 0;
294
295 if (value)
296 memcpy(node->data + trie->data_size, value,
297 trie->map.value_size);
298
299 return node;
300}
301
302/* Called from syscall or from eBPF program */
303static long trie_update_elem(struct bpf_map *map,
304 void *_key, void *value, u64 flags)
305{
306 struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
307 struct lpm_trie_node *node, *im_node = NULL, *new_node = NULL;
308 struct lpm_trie_node __rcu **slot;
309 struct bpf_lpm_trie_key *key = _key;
310 unsigned long irq_flags;
311 unsigned int next_bit;
312 size_t matchlen = 0;
313 int ret = 0;
314
315 if (unlikely(flags > BPF_EXIST))
316 return -EINVAL;
317
318 if (key->prefixlen > trie->max_prefixlen)
319 return -EINVAL;
320
321 spin_lock_irqsave(&trie->lock, irq_flags);
322
323 /* Allocate and fill a new node */
324
325 if (trie->n_entries == trie->map.max_entries) {
326 ret = -ENOSPC;
327 goto out;
328 }
329
330 new_node = lpm_trie_node_alloc(trie, value);
331 if (!new_node) {
332 ret = -ENOMEM;
333 goto out;
334 }
335
336 trie->n_entries++;
337
338 new_node->prefixlen = key->prefixlen;
339 RCU_INIT_POINTER(new_node->child[0], NULL);
340 RCU_INIT_POINTER(new_node->child[1], NULL);
341 memcpy(new_node->data, key->data, trie->data_size);
342
343 /* Now find a slot to attach the new node. To do that, walk the tree
344 * from the root and match as many bits as possible for each node until
345 * we either find an empty slot or a slot that needs to be replaced by
346 * an intermediate node.
347 */
348 slot = &trie->root;
349
350 while ((node = rcu_dereference_protected(*slot,
351 lockdep_is_held(&trie->lock)))) {
352 matchlen = longest_prefix_match(trie, node, key);
353
354 if (node->prefixlen != matchlen ||
355 node->prefixlen == key->prefixlen ||
356 node->prefixlen == trie->max_prefixlen)
357 break;
358
359 next_bit = extract_bit(data: key->data, index: node->prefixlen);
360 slot = &node->child[next_bit];
361 }
362
363 /* If the slot is empty (a free child pointer or an empty root),
364 * simply assign the @new_node to that slot and be done.
365 */
366 if (!node) {
367 rcu_assign_pointer(*slot, new_node);
368 goto out;
369 }
370
371 /* If the slot we picked already exists, replace it with @new_node
372 * which already has the correct data array set.
373 */
374 if (node->prefixlen == matchlen) {
375 new_node->child[0] = node->child[0];
376 new_node->child[1] = node->child[1];
377
378 if (!(node->flags & LPM_TREE_NODE_FLAG_IM))
379 trie->n_entries--;
380
381 rcu_assign_pointer(*slot, new_node);
382 kfree_rcu(node, rcu);
383
384 goto out;
385 }
386
387 /* If the new node matches the prefix completely, it must be inserted
388 * as an ancestor. Simply insert it between @node and *@slot.
389 */
390 if (matchlen == key->prefixlen) {
391 next_bit = extract_bit(data: node->data, index: matchlen);
392 rcu_assign_pointer(new_node->child[next_bit], node);
393 rcu_assign_pointer(*slot, new_node);
394 goto out;
395 }
396
397 im_node = lpm_trie_node_alloc(trie, NULL);
398 if (!im_node) {
399 ret = -ENOMEM;
400 goto out;
401 }
402
403 im_node->prefixlen = matchlen;
404 im_node->flags |= LPM_TREE_NODE_FLAG_IM;
405 memcpy(im_node->data, node->data, trie->data_size);
406
407 /* Now determine which child to install in which slot */
408 if (extract_bit(data: key->data, index: matchlen)) {
409 rcu_assign_pointer(im_node->child[0], node);
410 rcu_assign_pointer(im_node->child[1], new_node);
411 } else {
412 rcu_assign_pointer(im_node->child[0], new_node);
413 rcu_assign_pointer(im_node->child[1], node);
414 }
415
416 /* Finally, assign the intermediate node to the determined slot */
417 rcu_assign_pointer(*slot, im_node);
418
419out:
420 if (ret) {
421 if (new_node)
422 trie->n_entries--;
423
424 kfree(objp: new_node);
425 kfree(objp: im_node);
426 }
427
428 spin_unlock_irqrestore(lock: &trie->lock, flags: irq_flags);
429
430 return ret;
431}
432
433/* Called from syscall or from eBPF program */
434static long trie_delete_elem(struct bpf_map *map, void *_key)
435{
436 struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
437 struct bpf_lpm_trie_key *key = _key;
438 struct lpm_trie_node __rcu **trim, **trim2;
439 struct lpm_trie_node *node, *parent;
440 unsigned long irq_flags;
441 unsigned int next_bit;
442 size_t matchlen = 0;
443 int ret = 0;
444
445 if (key->prefixlen > trie->max_prefixlen)
446 return -EINVAL;
447
448 spin_lock_irqsave(&trie->lock, irq_flags);
449
450 /* Walk the tree looking for an exact key/length match and keeping
451 * track of the path we traverse. We will need to know the node
452 * we wish to delete, and the slot that points to the node we want
453 * to delete. We may also need to know the nodes parent and the
454 * slot that contains it.
455 */
456 trim = &trie->root;
457 trim2 = trim;
458 parent = NULL;
459 while ((node = rcu_dereference_protected(
460 *trim, lockdep_is_held(&trie->lock)))) {
461 matchlen = longest_prefix_match(trie, node, key);
462
463 if (node->prefixlen != matchlen ||
464 node->prefixlen == key->prefixlen)
465 break;
466
467 parent = node;
468 trim2 = trim;
469 next_bit = extract_bit(data: key->data, index: node->prefixlen);
470 trim = &node->child[next_bit];
471 }
472
473 if (!node || node->prefixlen != key->prefixlen ||
474 node->prefixlen != matchlen ||
475 (node->flags & LPM_TREE_NODE_FLAG_IM)) {
476 ret = -ENOENT;
477 goto out;
478 }
479
480 trie->n_entries--;
481
482 /* If the node we are removing has two children, simply mark it
483 * as intermediate and we are done.
484 */
485 if (rcu_access_pointer(node->child[0]) &&
486 rcu_access_pointer(node->child[1])) {
487 node->flags |= LPM_TREE_NODE_FLAG_IM;
488 goto out;
489 }
490
491 /* If the parent of the node we are about to delete is an intermediate
492 * node, and the deleted node doesn't have any children, we can delete
493 * the intermediate parent as well and promote its other child
494 * up the tree. Doing this maintains the invariant that all
495 * intermediate nodes have exactly 2 children and that there are no
496 * unnecessary intermediate nodes in the tree.
497 */
498 if (parent && (parent->flags & LPM_TREE_NODE_FLAG_IM) &&
499 !node->child[0] && !node->child[1]) {
500 if (node == rcu_access_pointer(parent->child[0]))
501 rcu_assign_pointer(
502 *trim2, rcu_access_pointer(parent->child[1]));
503 else
504 rcu_assign_pointer(
505 *trim2, rcu_access_pointer(parent->child[0]));
506 kfree_rcu(parent, rcu);
507 kfree_rcu(node, rcu);
508 goto out;
509 }
510
511 /* The node we are removing has either zero or one child. If there
512 * is a child, move it into the removed node's slot then delete
513 * the node. Otherwise just clear the slot and delete the node.
514 */
515 if (node->child[0])
516 rcu_assign_pointer(*trim, rcu_access_pointer(node->child[0]));
517 else if (node->child[1])
518 rcu_assign_pointer(*trim, rcu_access_pointer(node->child[1]));
519 else
520 RCU_INIT_POINTER(*trim, NULL);
521 kfree_rcu(node, rcu);
522
523out:
524 spin_unlock_irqrestore(lock: &trie->lock, flags: irq_flags);
525
526 return ret;
527}
528
529#define LPM_DATA_SIZE_MAX 256
530#define LPM_DATA_SIZE_MIN 1
531
532#define LPM_VAL_SIZE_MAX (KMALLOC_MAX_SIZE - LPM_DATA_SIZE_MAX - \
533 sizeof(struct lpm_trie_node))
534#define LPM_VAL_SIZE_MIN 1
535
536#define LPM_KEY_SIZE(X) (sizeof(struct bpf_lpm_trie_key) + (X))
537#define LPM_KEY_SIZE_MAX LPM_KEY_SIZE(LPM_DATA_SIZE_MAX)
538#define LPM_KEY_SIZE_MIN LPM_KEY_SIZE(LPM_DATA_SIZE_MIN)
539
540#define LPM_CREATE_FLAG_MASK (BPF_F_NO_PREALLOC | BPF_F_NUMA_NODE | \
541 BPF_F_ACCESS_MASK)
542
543static struct bpf_map *trie_alloc(union bpf_attr *attr)
544{
545 struct lpm_trie *trie;
546
547 /* check sanity of attributes */
548 if (attr->max_entries == 0 ||
549 !(attr->map_flags & BPF_F_NO_PREALLOC) ||
550 attr->map_flags & ~LPM_CREATE_FLAG_MASK ||
551 !bpf_map_flags_access_ok(access_flags: attr->map_flags) ||
552 attr->key_size < LPM_KEY_SIZE_MIN ||
553 attr->key_size > LPM_KEY_SIZE_MAX ||
554 attr->value_size < LPM_VAL_SIZE_MIN ||
555 attr->value_size > LPM_VAL_SIZE_MAX)
556 return ERR_PTR(error: -EINVAL);
557
558 trie = bpf_map_area_alloc(size: sizeof(*trie), NUMA_NO_NODE);
559 if (!trie)
560 return ERR_PTR(error: -ENOMEM);
561
562 /* copy mandatory map attributes */
563 bpf_map_init_from_attr(map: &trie->map, attr);
564 trie->data_size = attr->key_size -
565 offsetof(struct bpf_lpm_trie_key, data);
566 trie->max_prefixlen = trie->data_size * 8;
567
568 spin_lock_init(&trie->lock);
569
570 return &trie->map;
571}
572
573static void trie_free(struct bpf_map *map)
574{
575 struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
576 struct lpm_trie_node __rcu **slot;
577 struct lpm_trie_node *node;
578
579 /* Always start at the root and walk down to a node that has no
580 * children. Then free that node, nullify its reference in the parent
581 * and start over.
582 */
583
584 for (;;) {
585 slot = &trie->root;
586
587 for (;;) {
588 node = rcu_dereference_protected(*slot, 1);
589 if (!node)
590 goto out;
591
592 if (rcu_access_pointer(node->child[0])) {
593 slot = &node->child[0];
594 continue;
595 }
596
597 if (rcu_access_pointer(node->child[1])) {
598 slot = &node->child[1];
599 continue;
600 }
601
602 kfree(objp: node);
603 RCU_INIT_POINTER(*slot, NULL);
604 break;
605 }
606 }
607
608out:
609 bpf_map_area_free(base: trie);
610}
611
612static int trie_get_next_key(struct bpf_map *map, void *_key, void *_next_key)
613{
614 struct lpm_trie_node *node, *next_node = NULL, *parent, *search_root;
615 struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
616 struct bpf_lpm_trie_key *key = _key, *next_key = _next_key;
617 struct lpm_trie_node **node_stack = NULL;
618 int err = 0, stack_ptr = -1;
619 unsigned int next_bit;
620 size_t matchlen;
621
622 /* The get_next_key follows postorder. For the 4 node example in
623 * the top of this file, the trie_get_next_key() returns the following
624 * one after another:
625 * 192.168.0.0/24
626 * 192.168.1.0/24
627 * 192.168.128.0/24
628 * 192.168.0.0/16
629 *
630 * The idea is to return more specific keys before less specific ones.
631 */
632
633 /* Empty trie */
634 search_root = rcu_dereference(trie->root);
635 if (!search_root)
636 return -ENOENT;
637
638 /* For invalid key, find the leftmost node in the trie */
639 if (!key || key->prefixlen > trie->max_prefixlen)
640 goto find_leftmost;
641
642 node_stack = kmalloc_array(n: trie->max_prefixlen,
643 size: sizeof(struct lpm_trie_node *),
644 GFP_ATOMIC | __GFP_NOWARN);
645 if (!node_stack)
646 return -ENOMEM;
647
648 /* Try to find the exact node for the given key */
649 for (node = search_root; node;) {
650 node_stack[++stack_ptr] = node;
651 matchlen = longest_prefix_match(trie, node, key);
652 if (node->prefixlen != matchlen ||
653 node->prefixlen == key->prefixlen)
654 break;
655
656 next_bit = extract_bit(data: key->data, index: node->prefixlen);
657 node = rcu_dereference(node->child[next_bit]);
658 }
659 if (!node || node->prefixlen != key->prefixlen ||
660 (node->flags & LPM_TREE_NODE_FLAG_IM))
661 goto find_leftmost;
662
663 /* The node with the exactly-matching key has been found,
664 * find the first node in postorder after the matched node.
665 */
666 node = node_stack[stack_ptr];
667 while (stack_ptr > 0) {
668 parent = node_stack[stack_ptr - 1];
669 if (rcu_dereference(parent->child[0]) == node) {
670 search_root = rcu_dereference(parent->child[1]);
671 if (search_root)
672 goto find_leftmost;
673 }
674 if (!(parent->flags & LPM_TREE_NODE_FLAG_IM)) {
675 next_node = parent;
676 goto do_copy;
677 }
678
679 node = parent;
680 stack_ptr--;
681 }
682
683 /* did not find anything */
684 err = -ENOENT;
685 goto free_stack;
686
687find_leftmost:
688 /* Find the leftmost non-intermediate node, all intermediate nodes
689 * have exact two children, so this function will never return NULL.
690 */
691 for (node = search_root; node;) {
692 if (node->flags & LPM_TREE_NODE_FLAG_IM) {
693 node = rcu_dereference(node->child[0]);
694 } else {
695 next_node = node;
696 node = rcu_dereference(node->child[0]);
697 if (!node)
698 node = rcu_dereference(next_node->child[1]);
699 }
700 }
701do_copy:
702 next_key->prefixlen = next_node->prefixlen;
703 memcpy((void *)next_key + offsetof(struct bpf_lpm_trie_key, data),
704 next_node->data, trie->data_size);
705free_stack:
706 kfree(objp: node_stack);
707 return err;
708}
709
710static int trie_check_btf(const struct bpf_map *map,
711 const struct btf *btf,
712 const struct btf_type *key_type,
713 const struct btf_type *value_type)
714{
715 /* Keys must have struct bpf_lpm_trie_key embedded. */
716 return BTF_INFO_KIND(key_type->info) != BTF_KIND_STRUCT ?
717 -EINVAL : 0;
718}
719
720static u64 trie_mem_usage(const struct bpf_map *map)
721{
722 struct lpm_trie *trie = container_of(map, struct lpm_trie, map);
723 u64 elem_size;
724
725 elem_size = sizeof(struct lpm_trie_node) + trie->data_size +
726 trie->map.value_size;
727 return elem_size * READ_ONCE(trie->n_entries);
728}
729
730BTF_ID_LIST_SINGLE(trie_map_btf_ids, struct, lpm_trie)
731const struct bpf_map_ops trie_map_ops = {
732 .map_meta_equal = bpf_map_meta_equal,
733 .map_alloc = trie_alloc,
734 .map_free = trie_free,
735 .map_get_next_key = trie_get_next_key,
736 .map_lookup_elem = trie_lookup_elem,
737 .map_update_elem = trie_update_elem,
738 .map_delete_elem = trie_delete_elem,
739 .map_lookup_batch = generic_map_lookup_batch,
740 .map_update_batch = generic_map_update_batch,
741 .map_delete_batch = generic_map_delete_batch,
742 .map_check_btf = trie_check_btf,
743 .map_mem_usage = trie_mem_usage,
744 .map_btf_id = &trie_map_btf_ids[0],
745};
746

source code of linux/kernel/bpf/lpm_trie.c