1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Performance events core code:
4 *
5 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9 */
10
11#include <linux/fs.h>
12#include <linux/mm.h>
13#include <linux/cpu.h>
14#include <linux/smp.h>
15#include <linux/idr.h>
16#include <linux/file.h>
17#include <linux/poll.h>
18#include <linux/slab.h>
19#include <linux/hash.h>
20#include <linux/tick.h>
21#include <linux/sysfs.h>
22#include <linux/dcache.h>
23#include <linux/percpu.h>
24#include <linux/ptrace.h>
25#include <linux/reboot.h>
26#include <linux/vmstat.h>
27#include <linux/device.h>
28#include <linux/export.h>
29#include <linux/vmalloc.h>
30#include <linux/hardirq.h>
31#include <linux/hugetlb.h>
32#include <linux/rculist.h>
33#include <linux/uaccess.h>
34#include <linux/syscalls.h>
35#include <linux/anon_inodes.h>
36#include <linux/kernel_stat.h>
37#include <linux/cgroup.h>
38#include <linux/perf_event.h>
39#include <linux/trace_events.h>
40#include <linux/hw_breakpoint.h>
41#include <linux/mm_types.h>
42#include <linux/module.h>
43#include <linux/mman.h>
44#include <linux/compat.h>
45#include <linux/bpf.h>
46#include <linux/filter.h>
47#include <linux/namei.h>
48#include <linux/parser.h>
49#include <linux/sched/clock.h>
50#include <linux/sched/mm.h>
51#include <linux/proc_ns.h>
52#include <linux/mount.h>
53#include <linux/min_heap.h>
54#include <linux/highmem.h>
55#include <linux/pgtable.h>
56#include <linux/buildid.h>
57#include <linux/task_work.h>
58
59#include "internal.h"
60
61#include <asm/irq_regs.h>
62
63typedef int (*remote_function_f)(void *);
64
65struct remote_function_call {
66 struct task_struct *p;
67 remote_function_f func;
68 void *info;
69 int ret;
70};
71
72static void remote_function(void *data)
73{
74 struct remote_function_call *tfc = data;
75 struct task_struct *p = tfc->p;
76
77 if (p) {
78 /* -EAGAIN */
79 if (task_cpu(p) != smp_processor_id())
80 return;
81
82 /*
83 * Now that we're on right CPU with IRQs disabled, we can test
84 * if we hit the right task without races.
85 */
86
87 tfc->ret = -ESRCH; /* No such (running) process */
88 if (p != current)
89 return;
90 }
91
92 tfc->ret = tfc->func(tfc->info);
93}
94
95/**
96 * task_function_call - call a function on the cpu on which a task runs
97 * @p: the task to evaluate
98 * @func: the function to be called
99 * @info: the function call argument
100 *
101 * Calls the function @func when the task is currently running. This might
102 * be on the current CPU, which just calls the function directly. This will
103 * retry due to any failures in smp_call_function_single(), such as if the
104 * task_cpu() goes offline concurrently.
105 *
106 * returns @func return value or -ESRCH or -ENXIO when the process isn't running
107 */
108static int
109task_function_call(struct task_struct *p, remote_function_f func, void *info)
110{
111 struct remote_function_call data = {
112 .p = p,
113 .func = func,
114 .info = info,
115 .ret = -EAGAIN,
116 };
117 int ret;
118
119 for (;;) {
120 ret = smp_call_function_single(cpuid: task_cpu(p), func: remote_function,
121 info: &data, wait: 1);
122 if (!ret)
123 ret = data.ret;
124
125 if (ret != -EAGAIN)
126 break;
127
128 cond_resched();
129 }
130
131 return ret;
132}
133
134/**
135 * cpu_function_call - call a function on the cpu
136 * @cpu: target cpu to queue this function
137 * @func: the function to be called
138 * @info: the function call argument
139 *
140 * Calls the function @func on the remote cpu.
141 *
142 * returns: @func return value or -ENXIO when the cpu is offline
143 */
144static int cpu_function_call(int cpu, remote_function_f func, void *info)
145{
146 struct remote_function_call data = {
147 .p = NULL,
148 .func = func,
149 .info = info,
150 .ret = -ENXIO, /* No such CPU */
151 };
152
153 smp_call_function_single(cpuid: cpu, func: remote_function, info: &data, wait: 1);
154
155 return data.ret;
156}
157
158static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
159 struct perf_event_context *ctx)
160{
161 raw_spin_lock(&cpuctx->ctx.lock);
162 if (ctx)
163 raw_spin_lock(&ctx->lock);
164}
165
166static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
167 struct perf_event_context *ctx)
168{
169 if (ctx)
170 raw_spin_unlock(&ctx->lock);
171 raw_spin_unlock(&cpuctx->ctx.lock);
172}
173
174#define TASK_TOMBSTONE ((void *)-1L)
175
176static bool is_kernel_event(struct perf_event *event)
177{
178 return READ_ONCE(event->owner) == TASK_TOMBSTONE;
179}
180
181static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
182
183struct perf_event_context *perf_cpu_task_ctx(void)
184{
185 lockdep_assert_irqs_disabled();
186 return this_cpu_ptr(&perf_cpu_context)->task_ctx;
187}
188
189/*
190 * On task ctx scheduling...
191 *
192 * When !ctx->nr_events a task context will not be scheduled. This means
193 * we can disable the scheduler hooks (for performance) without leaving
194 * pending task ctx state.
195 *
196 * This however results in two special cases:
197 *
198 * - removing the last event from a task ctx; this is relatively straight
199 * forward and is done in __perf_remove_from_context.
200 *
201 * - adding the first event to a task ctx; this is tricky because we cannot
202 * rely on ctx->is_active and therefore cannot use event_function_call().
203 * See perf_install_in_context().
204 *
205 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
206 */
207
208typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
209 struct perf_event_context *, void *);
210
211struct event_function_struct {
212 struct perf_event *event;
213 event_f func;
214 void *data;
215};
216
217static int event_function(void *info)
218{
219 struct event_function_struct *efs = info;
220 struct perf_event *event = efs->event;
221 struct perf_event_context *ctx = event->ctx;
222 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
223 struct perf_event_context *task_ctx = cpuctx->task_ctx;
224 int ret = 0;
225
226 lockdep_assert_irqs_disabled();
227
228 perf_ctx_lock(cpuctx, ctx: task_ctx);
229 /*
230 * Since we do the IPI call without holding ctx->lock things can have
231 * changed, double check we hit the task we set out to hit.
232 */
233 if (ctx->task) {
234 if (ctx->task != current) {
235 ret = -ESRCH;
236 goto unlock;
237 }
238
239 /*
240 * We only use event_function_call() on established contexts,
241 * and event_function() is only ever called when active (or
242 * rather, we'll have bailed in task_function_call() or the
243 * above ctx->task != current test), therefore we must have
244 * ctx->is_active here.
245 */
246 WARN_ON_ONCE(!ctx->is_active);
247 /*
248 * And since we have ctx->is_active, cpuctx->task_ctx must
249 * match.
250 */
251 WARN_ON_ONCE(task_ctx != ctx);
252 } else {
253 WARN_ON_ONCE(&cpuctx->ctx != ctx);
254 }
255
256 efs->func(event, cpuctx, ctx, efs->data);
257unlock:
258 perf_ctx_unlock(cpuctx, ctx: task_ctx);
259
260 return ret;
261}
262
263static void event_function_call(struct perf_event *event, event_f func, void *data)
264{
265 struct perf_event_context *ctx = event->ctx;
266 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
267 struct event_function_struct efs = {
268 .event = event,
269 .func = func,
270 .data = data,
271 };
272
273 if (!event->parent) {
274 /*
275 * If this is a !child event, we must hold ctx::mutex to
276 * stabilize the event->ctx relation. See
277 * perf_event_ctx_lock().
278 */
279 lockdep_assert_held(&ctx->mutex);
280 }
281
282 if (!task) {
283 cpu_function_call(cpu: event->cpu, func: event_function, info: &efs);
284 return;
285 }
286
287 if (task == TASK_TOMBSTONE)
288 return;
289
290again:
291 if (!task_function_call(p: task, func: event_function, info: &efs))
292 return;
293
294 raw_spin_lock_irq(&ctx->lock);
295 /*
296 * Reload the task pointer, it might have been changed by
297 * a concurrent perf_event_context_sched_out().
298 */
299 task = ctx->task;
300 if (task == TASK_TOMBSTONE) {
301 raw_spin_unlock_irq(&ctx->lock);
302 return;
303 }
304 if (ctx->is_active) {
305 raw_spin_unlock_irq(&ctx->lock);
306 goto again;
307 }
308 func(event, NULL, ctx, data);
309 raw_spin_unlock_irq(&ctx->lock);
310}
311
312/*
313 * Similar to event_function_call() + event_function(), but hard assumes IRQs
314 * are already disabled and we're on the right CPU.
315 */
316static void event_function_local(struct perf_event *event, event_f func, void *data)
317{
318 struct perf_event_context *ctx = event->ctx;
319 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
320 struct task_struct *task = READ_ONCE(ctx->task);
321 struct perf_event_context *task_ctx = NULL;
322
323 lockdep_assert_irqs_disabled();
324
325 if (task) {
326 if (task == TASK_TOMBSTONE)
327 return;
328
329 task_ctx = ctx;
330 }
331
332 perf_ctx_lock(cpuctx, ctx: task_ctx);
333
334 task = ctx->task;
335 if (task == TASK_TOMBSTONE)
336 goto unlock;
337
338 if (task) {
339 /*
340 * We must be either inactive or active and the right task,
341 * otherwise we're screwed, since we cannot IPI to somewhere
342 * else.
343 */
344 if (ctx->is_active) {
345 if (WARN_ON_ONCE(task != current))
346 goto unlock;
347
348 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
349 goto unlock;
350 }
351 } else {
352 WARN_ON_ONCE(&cpuctx->ctx != ctx);
353 }
354
355 func(event, cpuctx, ctx, data);
356unlock:
357 perf_ctx_unlock(cpuctx, ctx: task_ctx);
358}
359
360#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
361 PERF_FLAG_FD_OUTPUT |\
362 PERF_FLAG_PID_CGROUP |\
363 PERF_FLAG_FD_CLOEXEC)
364
365/*
366 * branch priv levels that need permission checks
367 */
368#define PERF_SAMPLE_BRANCH_PERM_PLM \
369 (PERF_SAMPLE_BRANCH_KERNEL |\
370 PERF_SAMPLE_BRANCH_HV)
371
372enum event_type_t {
373 EVENT_FLEXIBLE = 0x1,
374 EVENT_PINNED = 0x2,
375 EVENT_TIME = 0x4,
376 /* see ctx_resched() for details */
377 EVENT_CPU = 0x8,
378 EVENT_CGROUP = 0x10,
379 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
380};
381
382/*
383 * perf_sched_events : >0 events exist
384 */
385
386static void perf_sched_delayed(struct work_struct *work);
387DEFINE_STATIC_KEY_FALSE(perf_sched_events);
388static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
389static DEFINE_MUTEX(perf_sched_mutex);
390static atomic_t perf_sched_count;
391
392static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
393
394static atomic_t nr_mmap_events __read_mostly;
395static atomic_t nr_comm_events __read_mostly;
396static atomic_t nr_namespaces_events __read_mostly;
397static atomic_t nr_task_events __read_mostly;
398static atomic_t nr_freq_events __read_mostly;
399static atomic_t nr_switch_events __read_mostly;
400static atomic_t nr_ksymbol_events __read_mostly;
401static atomic_t nr_bpf_events __read_mostly;
402static atomic_t nr_cgroup_events __read_mostly;
403static atomic_t nr_text_poke_events __read_mostly;
404static atomic_t nr_build_id_events __read_mostly;
405
406static LIST_HEAD(pmus);
407static DEFINE_MUTEX(pmus_lock);
408static struct srcu_struct pmus_srcu;
409static cpumask_var_t perf_online_mask;
410static struct kmem_cache *perf_event_cache;
411
412/*
413 * perf event paranoia level:
414 * -1 - not paranoid at all
415 * 0 - disallow raw tracepoint access for unpriv
416 * 1 - disallow cpu events for unpriv
417 * 2 - disallow kernel profiling for unpriv
418 */
419int sysctl_perf_event_paranoid __read_mostly = 2;
420
421/* Minimum for 512 kiB + 1 user control page */
422int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
423
424/*
425 * max perf event sample rate
426 */
427#define DEFAULT_MAX_SAMPLE_RATE 100000
428#define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
429#define DEFAULT_CPU_TIME_MAX_PERCENT 25
430
431int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
432
433static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
434static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
435
436static int perf_sample_allowed_ns __read_mostly =
437 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
438
439static void update_perf_cpu_limits(void)
440{
441 u64 tmp = perf_sample_period_ns;
442
443 tmp *= sysctl_perf_cpu_time_max_percent;
444 tmp = div_u64(dividend: tmp, divisor: 100);
445 if (!tmp)
446 tmp = 1;
447
448 WRITE_ONCE(perf_sample_allowed_ns, tmp);
449}
450
451static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc);
452
453int perf_event_max_sample_rate_handler(struct ctl_table *table, int write,
454 void *buffer, size_t *lenp, loff_t *ppos)
455{
456 int ret;
457 int perf_cpu = sysctl_perf_cpu_time_max_percent;
458 /*
459 * If throttling is disabled don't allow the write:
460 */
461 if (write && (perf_cpu == 100 || perf_cpu == 0))
462 return -EINVAL;
463
464 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
465 if (ret || !write)
466 return ret;
467
468 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
469 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
470 update_perf_cpu_limits();
471
472 return 0;
473}
474
475int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
476
477int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
478 void *buffer, size_t *lenp, loff_t *ppos)
479{
480 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
481
482 if (ret || !write)
483 return ret;
484
485 if (sysctl_perf_cpu_time_max_percent == 100 ||
486 sysctl_perf_cpu_time_max_percent == 0) {
487 printk(KERN_WARNING
488 "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
489 WRITE_ONCE(perf_sample_allowed_ns, 0);
490 } else {
491 update_perf_cpu_limits();
492 }
493
494 return 0;
495}
496
497/*
498 * perf samples are done in some very critical code paths (NMIs).
499 * If they take too much CPU time, the system can lock up and not
500 * get any real work done. This will drop the sample rate when
501 * we detect that events are taking too long.
502 */
503#define NR_ACCUMULATED_SAMPLES 128
504static DEFINE_PER_CPU(u64, running_sample_length);
505
506static u64 __report_avg;
507static u64 __report_allowed;
508
509static void perf_duration_warn(struct irq_work *w)
510{
511 printk_ratelimited(KERN_INFO
512 "perf: interrupt took too long (%lld > %lld), lowering "
513 "kernel.perf_event_max_sample_rate to %d\n",
514 __report_avg, __report_allowed,
515 sysctl_perf_event_sample_rate);
516}
517
518static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
519
520void perf_sample_event_took(u64 sample_len_ns)
521{
522 u64 max_len = READ_ONCE(perf_sample_allowed_ns);
523 u64 running_len;
524 u64 avg_len;
525 u32 max;
526
527 if (max_len == 0)
528 return;
529
530 /* Decay the counter by 1 average sample. */
531 running_len = __this_cpu_read(running_sample_length);
532 running_len -= running_len/NR_ACCUMULATED_SAMPLES;
533 running_len += sample_len_ns;
534 __this_cpu_write(running_sample_length, running_len);
535
536 /*
537 * Note: this will be biased artifically low until we have
538 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
539 * from having to maintain a count.
540 */
541 avg_len = running_len/NR_ACCUMULATED_SAMPLES;
542 if (avg_len <= max_len)
543 return;
544
545 __report_avg = avg_len;
546 __report_allowed = max_len;
547
548 /*
549 * Compute a throttle threshold 25% below the current duration.
550 */
551 avg_len += avg_len / 4;
552 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
553 if (avg_len < max)
554 max /= (u32)avg_len;
555 else
556 max = 1;
557
558 WRITE_ONCE(perf_sample_allowed_ns, avg_len);
559 WRITE_ONCE(max_samples_per_tick, max);
560
561 sysctl_perf_event_sample_rate = max * HZ;
562 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
563
564 if (!irq_work_queue(work: &perf_duration_work)) {
565 early_printk(fmt: "perf: interrupt took too long (%lld > %lld), lowering "
566 "kernel.perf_event_max_sample_rate to %d\n",
567 __report_avg, __report_allowed,
568 sysctl_perf_event_sample_rate);
569 }
570}
571
572static atomic64_t perf_event_id;
573
574static void update_context_time(struct perf_event_context *ctx);
575static u64 perf_event_time(struct perf_event *event);
576
577void __weak perf_event_print_debug(void) { }
578
579static inline u64 perf_clock(void)
580{
581 return local_clock();
582}
583
584static inline u64 perf_event_clock(struct perf_event *event)
585{
586 return event->clock();
587}
588
589/*
590 * State based event timekeeping...
591 *
592 * The basic idea is to use event->state to determine which (if any) time
593 * fields to increment with the current delta. This means we only need to
594 * update timestamps when we change state or when they are explicitly requested
595 * (read).
596 *
597 * Event groups make things a little more complicated, but not terribly so. The
598 * rules for a group are that if the group leader is OFF the entire group is
599 * OFF, irrespecive of what the group member states are. This results in
600 * __perf_effective_state().
601 *
602 * A futher ramification is that when a group leader flips between OFF and
603 * !OFF, we need to update all group member times.
604 *
605 *
606 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
607 * need to make sure the relevant context time is updated before we try and
608 * update our timestamps.
609 */
610
611static __always_inline enum perf_event_state
612__perf_effective_state(struct perf_event *event)
613{
614 struct perf_event *leader = event->group_leader;
615
616 if (leader->state <= PERF_EVENT_STATE_OFF)
617 return leader->state;
618
619 return event->state;
620}
621
622static __always_inline void
623__perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
624{
625 enum perf_event_state state = __perf_effective_state(event);
626 u64 delta = now - event->tstamp;
627
628 *enabled = event->total_time_enabled;
629 if (state >= PERF_EVENT_STATE_INACTIVE)
630 *enabled += delta;
631
632 *running = event->total_time_running;
633 if (state >= PERF_EVENT_STATE_ACTIVE)
634 *running += delta;
635}
636
637static void perf_event_update_time(struct perf_event *event)
638{
639 u64 now = perf_event_time(event);
640
641 __perf_update_times(event, now, enabled: &event->total_time_enabled,
642 running: &event->total_time_running);
643 event->tstamp = now;
644}
645
646static void perf_event_update_sibling_time(struct perf_event *leader)
647{
648 struct perf_event *sibling;
649
650 for_each_sibling_event(sibling, leader)
651 perf_event_update_time(event: sibling);
652}
653
654static void
655perf_event_set_state(struct perf_event *event, enum perf_event_state state)
656{
657 if (event->state == state)
658 return;
659
660 perf_event_update_time(event);
661 /*
662 * If a group leader gets enabled/disabled all its siblings
663 * are affected too.
664 */
665 if ((event->state < 0) ^ (state < 0))
666 perf_event_update_sibling_time(leader: event);
667
668 WRITE_ONCE(event->state, state);
669}
670
671/*
672 * UP store-release, load-acquire
673 */
674
675#define __store_release(ptr, val) \
676do { \
677 barrier(); \
678 WRITE_ONCE(*(ptr), (val)); \
679} while (0)
680
681#define __load_acquire(ptr) \
682({ \
683 __unqual_scalar_typeof(*(ptr)) ___p = READ_ONCE(*(ptr)); \
684 barrier(); \
685 ___p; \
686})
687
688static void perf_ctx_disable(struct perf_event_context *ctx, bool cgroup)
689{
690 struct perf_event_pmu_context *pmu_ctx;
691
692 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
693 if (cgroup && !pmu_ctx->nr_cgroups)
694 continue;
695 perf_pmu_disable(pmu: pmu_ctx->pmu);
696 }
697}
698
699static void perf_ctx_enable(struct perf_event_context *ctx, bool cgroup)
700{
701 struct perf_event_pmu_context *pmu_ctx;
702
703 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
704 if (cgroup && !pmu_ctx->nr_cgroups)
705 continue;
706 perf_pmu_enable(pmu: pmu_ctx->pmu);
707 }
708}
709
710static void ctx_sched_out(struct perf_event_context *ctx, enum event_type_t event_type);
711static void ctx_sched_in(struct perf_event_context *ctx, enum event_type_t event_type);
712
713#ifdef CONFIG_CGROUP_PERF
714
715static inline bool
716perf_cgroup_match(struct perf_event *event)
717{
718 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
719
720 /* @event doesn't care about cgroup */
721 if (!event->cgrp)
722 return true;
723
724 /* wants specific cgroup scope but @cpuctx isn't associated with any */
725 if (!cpuctx->cgrp)
726 return false;
727
728 /*
729 * Cgroup scoping is recursive. An event enabled for a cgroup is
730 * also enabled for all its descendant cgroups. If @cpuctx's
731 * cgroup is a descendant of @event's (the test covers identity
732 * case), it's a match.
733 */
734 return cgroup_is_descendant(cgrp: cpuctx->cgrp->css.cgroup,
735 ancestor: event->cgrp->css.cgroup);
736}
737
738static inline void perf_detach_cgroup(struct perf_event *event)
739{
740 css_put(css: &event->cgrp->css);
741 event->cgrp = NULL;
742}
743
744static inline int is_cgroup_event(struct perf_event *event)
745{
746 return event->cgrp != NULL;
747}
748
749static inline u64 perf_cgroup_event_time(struct perf_event *event)
750{
751 struct perf_cgroup_info *t;
752
753 t = per_cpu_ptr(event->cgrp->info, event->cpu);
754 return t->time;
755}
756
757static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
758{
759 struct perf_cgroup_info *t;
760
761 t = per_cpu_ptr(event->cgrp->info, event->cpu);
762 if (!__load_acquire(&t->active))
763 return t->time;
764 now += READ_ONCE(t->timeoffset);
765 return now;
766}
767
768static inline void __update_cgrp_time(struct perf_cgroup_info *info, u64 now, bool adv)
769{
770 if (adv)
771 info->time += now - info->timestamp;
772 info->timestamp = now;
773 /*
774 * see update_context_time()
775 */
776 WRITE_ONCE(info->timeoffset, info->time - info->timestamp);
777}
778
779static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, bool final)
780{
781 struct perf_cgroup *cgrp = cpuctx->cgrp;
782 struct cgroup_subsys_state *css;
783 struct perf_cgroup_info *info;
784
785 if (cgrp) {
786 u64 now = perf_clock();
787
788 for (css = &cgrp->css; css; css = css->parent) {
789 cgrp = container_of(css, struct perf_cgroup, css);
790 info = this_cpu_ptr(cgrp->info);
791
792 __update_cgrp_time(info, now, adv: true);
793 if (final)
794 __store_release(&info->active, 0);
795 }
796 }
797}
798
799static inline void update_cgrp_time_from_event(struct perf_event *event)
800{
801 struct perf_cgroup_info *info;
802
803 /*
804 * ensure we access cgroup data only when needed and
805 * when we know the cgroup is pinned (css_get)
806 */
807 if (!is_cgroup_event(event))
808 return;
809
810 info = this_cpu_ptr(event->cgrp->info);
811 /*
812 * Do not update time when cgroup is not active
813 */
814 if (info->active)
815 __update_cgrp_time(info, now: perf_clock(), adv: true);
816}
817
818static inline void
819perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
820{
821 struct perf_event_context *ctx = &cpuctx->ctx;
822 struct perf_cgroup *cgrp = cpuctx->cgrp;
823 struct perf_cgroup_info *info;
824 struct cgroup_subsys_state *css;
825
826 /*
827 * ctx->lock held by caller
828 * ensure we do not access cgroup data
829 * unless we have the cgroup pinned (css_get)
830 */
831 if (!cgrp)
832 return;
833
834 WARN_ON_ONCE(!ctx->nr_cgroups);
835
836 for (css = &cgrp->css; css; css = css->parent) {
837 cgrp = container_of(css, struct perf_cgroup, css);
838 info = this_cpu_ptr(cgrp->info);
839 __update_cgrp_time(info, now: ctx->timestamp, adv: false);
840 __store_release(&info->active, 1);
841 }
842}
843
844/*
845 * reschedule events based on the cgroup constraint of task.
846 */
847static void perf_cgroup_switch(struct task_struct *task)
848{
849 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
850 struct perf_cgroup *cgrp;
851
852 /*
853 * cpuctx->cgrp is set when the first cgroup event enabled,
854 * and is cleared when the last cgroup event disabled.
855 */
856 if (READ_ONCE(cpuctx->cgrp) == NULL)
857 return;
858
859 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
860
861 cgrp = perf_cgroup_from_task(task, NULL);
862 if (READ_ONCE(cpuctx->cgrp) == cgrp)
863 return;
864
865 perf_ctx_lock(cpuctx, ctx: cpuctx->task_ctx);
866 perf_ctx_disable(ctx: &cpuctx->ctx, cgroup: true);
867
868 ctx_sched_out(ctx: &cpuctx->ctx, event_type: EVENT_ALL|EVENT_CGROUP);
869 /*
870 * must not be done before ctxswout due
871 * to update_cgrp_time_from_cpuctx() in
872 * ctx_sched_out()
873 */
874 cpuctx->cgrp = cgrp;
875 /*
876 * set cgrp before ctxsw in to allow
877 * perf_cgroup_set_timestamp() in ctx_sched_in()
878 * to not have to pass task around
879 */
880 ctx_sched_in(ctx: &cpuctx->ctx, event_type: EVENT_ALL|EVENT_CGROUP);
881
882 perf_ctx_enable(ctx: &cpuctx->ctx, cgroup: true);
883 perf_ctx_unlock(cpuctx, ctx: cpuctx->task_ctx);
884}
885
886static int perf_cgroup_ensure_storage(struct perf_event *event,
887 struct cgroup_subsys_state *css)
888{
889 struct perf_cpu_context *cpuctx;
890 struct perf_event **storage;
891 int cpu, heap_size, ret = 0;
892
893 /*
894 * Allow storage to have sufficent space for an iterator for each
895 * possibly nested cgroup plus an iterator for events with no cgroup.
896 */
897 for (heap_size = 1; css; css = css->parent)
898 heap_size++;
899
900 for_each_possible_cpu(cpu) {
901 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
902 if (heap_size <= cpuctx->heap_size)
903 continue;
904
905 storage = kmalloc_node(size: heap_size * sizeof(struct perf_event *),
906 GFP_KERNEL, cpu_to_node(cpu));
907 if (!storage) {
908 ret = -ENOMEM;
909 break;
910 }
911
912 raw_spin_lock_irq(&cpuctx->ctx.lock);
913 if (cpuctx->heap_size < heap_size) {
914 swap(cpuctx->heap, storage);
915 if (storage == cpuctx->heap_default)
916 storage = NULL;
917 cpuctx->heap_size = heap_size;
918 }
919 raw_spin_unlock_irq(&cpuctx->ctx.lock);
920
921 kfree(objp: storage);
922 }
923
924 return ret;
925}
926
927static inline int perf_cgroup_connect(int fd, struct perf_event *event,
928 struct perf_event_attr *attr,
929 struct perf_event *group_leader)
930{
931 struct perf_cgroup *cgrp;
932 struct cgroup_subsys_state *css;
933 struct fd f = fdget(fd);
934 int ret = 0;
935
936 if (!f.file)
937 return -EBADF;
938
939 css = css_tryget_online_from_dir(dentry: f.file->f_path.dentry,
940 ss: &perf_event_cgrp_subsys);
941 if (IS_ERR(ptr: css)) {
942 ret = PTR_ERR(ptr: css);
943 goto out;
944 }
945
946 ret = perf_cgroup_ensure_storage(event, css);
947 if (ret)
948 goto out;
949
950 cgrp = container_of(css, struct perf_cgroup, css);
951 event->cgrp = cgrp;
952
953 /*
954 * all events in a group must monitor
955 * the same cgroup because a task belongs
956 * to only one perf cgroup at a time
957 */
958 if (group_leader && group_leader->cgrp != cgrp) {
959 perf_detach_cgroup(event);
960 ret = -EINVAL;
961 }
962out:
963 fdput(fd: f);
964 return ret;
965}
966
967static inline void
968perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
969{
970 struct perf_cpu_context *cpuctx;
971
972 if (!is_cgroup_event(event))
973 return;
974
975 event->pmu_ctx->nr_cgroups++;
976
977 /*
978 * Because cgroup events are always per-cpu events,
979 * @ctx == &cpuctx->ctx.
980 */
981 cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
982
983 if (ctx->nr_cgroups++)
984 return;
985
986 cpuctx->cgrp = perf_cgroup_from_task(current, ctx);
987}
988
989static inline void
990perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
991{
992 struct perf_cpu_context *cpuctx;
993
994 if (!is_cgroup_event(event))
995 return;
996
997 event->pmu_ctx->nr_cgroups--;
998
999 /*
1000 * Because cgroup events are always per-cpu events,
1001 * @ctx == &cpuctx->ctx.
1002 */
1003 cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1004
1005 if (--ctx->nr_cgroups)
1006 return;
1007
1008 cpuctx->cgrp = NULL;
1009}
1010
1011#else /* !CONFIG_CGROUP_PERF */
1012
1013static inline bool
1014perf_cgroup_match(struct perf_event *event)
1015{
1016 return true;
1017}
1018
1019static inline void perf_detach_cgroup(struct perf_event *event)
1020{}
1021
1022static inline int is_cgroup_event(struct perf_event *event)
1023{
1024 return 0;
1025}
1026
1027static inline void update_cgrp_time_from_event(struct perf_event *event)
1028{
1029}
1030
1031static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx,
1032 bool final)
1033{
1034}
1035
1036static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1037 struct perf_event_attr *attr,
1038 struct perf_event *group_leader)
1039{
1040 return -EINVAL;
1041}
1042
1043static inline void
1044perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
1045{
1046}
1047
1048static inline u64 perf_cgroup_event_time(struct perf_event *event)
1049{
1050 return 0;
1051}
1052
1053static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
1054{
1055 return 0;
1056}
1057
1058static inline void
1059perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1060{
1061}
1062
1063static inline void
1064perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1065{
1066}
1067
1068static void perf_cgroup_switch(struct task_struct *task)
1069{
1070}
1071#endif
1072
1073/*
1074 * set default to be dependent on timer tick just
1075 * like original code
1076 */
1077#define PERF_CPU_HRTIMER (1000 / HZ)
1078/*
1079 * function must be called with interrupts disabled
1080 */
1081static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1082{
1083 struct perf_cpu_pmu_context *cpc;
1084 bool rotations;
1085
1086 lockdep_assert_irqs_disabled();
1087
1088 cpc = container_of(hr, struct perf_cpu_pmu_context, hrtimer);
1089 rotations = perf_rotate_context(cpc);
1090
1091 raw_spin_lock(&cpc->hrtimer_lock);
1092 if (rotations)
1093 hrtimer_forward_now(timer: hr, interval: cpc->hrtimer_interval);
1094 else
1095 cpc->hrtimer_active = 0;
1096 raw_spin_unlock(&cpc->hrtimer_lock);
1097
1098 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1099}
1100
1101static void __perf_mux_hrtimer_init(struct perf_cpu_pmu_context *cpc, int cpu)
1102{
1103 struct hrtimer *timer = &cpc->hrtimer;
1104 struct pmu *pmu = cpc->epc.pmu;
1105 u64 interval;
1106
1107 /*
1108 * check default is sane, if not set then force to
1109 * default interval (1/tick)
1110 */
1111 interval = pmu->hrtimer_interval_ms;
1112 if (interval < 1)
1113 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1114
1115 cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1116
1117 raw_spin_lock_init(&cpc->hrtimer_lock);
1118 hrtimer_init(timer, CLOCK_MONOTONIC, mode: HRTIMER_MODE_ABS_PINNED_HARD);
1119 timer->function = perf_mux_hrtimer_handler;
1120}
1121
1122static int perf_mux_hrtimer_restart(struct perf_cpu_pmu_context *cpc)
1123{
1124 struct hrtimer *timer = &cpc->hrtimer;
1125 unsigned long flags;
1126
1127 raw_spin_lock_irqsave(&cpc->hrtimer_lock, flags);
1128 if (!cpc->hrtimer_active) {
1129 cpc->hrtimer_active = 1;
1130 hrtimer_forward_now(timer, interval: cpc->hrtimer_interval);
1131 hrtimer_start_expires(timer, mode: HRTIMER_MODE_ABS_PINNED_HARD);
1132 }
1133 raw_spin_unlock_irqrestore(&cpc->hrtimer_lock, flags);
1134
1135 return 0;
1136}
1137
1138static int perf_mux_hrtimer_restart_ipi(void *arg)
1139{
1140 return perf_mux_hrtimer_restart(cpc: arg);
1141}
1142
1143void perf_pmu_disable(struct pmu *pmu)
1144{
1145 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1146 if (!(*count)++)
1147 pmu->pmu_disable(pmu);
1148}
1149
1150void perf_pmu_enable(struct pmu *pmu)
1151{
1152 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1153 if (!--(*count))
1154 pmu->pmu_enable(pmu);
1155}
1156
1157static void perf_assert_pmu_disabled(struct pmu *pmu)
1158{
1159 WARN_ON_ONCE(*this_cpu_ptr(pmu->pmu_disable_count) == 0);
1160}
1161
1162static void get_ctx(struct perf_event_context *ctx)
1163{
1164 refcount_inc(r: &ctx->refcount);
1165}
1166
1167static void *alloc_task_ctx_data(struct pmu *pmu)
1168{
1169 if (pmu->task_ctx_cache)
1170 return kmem_cache_zalloc(k: pmu->task_ctx_cache, GFP_KERNEL);
1171
1172 return NULL;
1173}
1174
1175static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data)
1176{
1177 if (pmu->task_ctx_cache && task_ctx_data)
1178 kmem_cache_free(s: pmu->task_ctx_cache, objp: task_ctx_data);
1179}
1180
1181static void free_ctx(struct rcu_head *head)
1182{
1183 struct perf_event_context *ctx;
1184
1185 ctx = container_of(head, struct perf_event_context, rcu_head);
1186 kfree(objp: ctx);
1187}
1188
1189static void put_ctx(struct perf_event_context *ctx)
1190{
1191 if (refcount_dec_and_test(r: &ctx->refcount)) {
1192 if (ctx->parent_ctx)
1193 put_ctx(ctx: ctx->parent_ctx);
1194 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1195 put_task_struct(t: ctx->task);
1196 call_rcu(head: &ctx->rcu_head, func: free_ctx);
1197 }
1198}
1199
1200/*
1201 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1202 * perf_pmu_migrate_context() we need some magic.
1203 *
1204 * Those places that change perf_event::ctx will hold both
1205 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1206 *
1207 * Lock ordering is by mutex address. There are two other sites where
1208 * perf_event_context::mutex nests and those are:
1209 *
1210 * - perf_event_exit_task_context() [ child , 0 ]
1211 * perf_event_exit_event()
1212 * put_event() [ parent, 1 ]
1213 *
1214 * - perf_event_init_context() [ parent, 0 ]
1215 * inherit_task_group()
1216 * inherit_group()
1217 * inherit_event()
1218 * perf_event_alloc()
1219 * perf_init_event()
1220 * perf_try_init_event() [ child , 1 ]
1221 *
1222 * While it appears there is an obvious deadlock here -- the parent and child
1223 * nesting levels are inverted between the two. This is in fact safe because
1224 * life-time rules separate them. That is an exiting task cannot fork, and a
1225 * spawning task cannot (yet) exit.
1226 *
1227 * But remember that these are parent<->child context relations, and
1228 * migration does not affect children, therefore these two orderings should not
1229 * interact.
1230 *
1231 * The change in perf_event::ctx does not affect children (as claimed above)
1232 * because the sys_perf_event_open() case will install a new event and break
1233 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1234 * concerned with cpuctx and that doesn't have children.
1235 *
1236 * The places that change perf_event::ctx will issue:
1237 *
1238 * perf_remove_from_context();
1239 * synchronize_rcu();
1240 * perf_install_in_context();
1241 *
1242 * to affect the change. The remove_from_context() + synchronize_rcu() should
1243 * quiesce the event, after which we can install it in the new location. This
1244 * means that only external vectors (perf_fops, prctl) can perturb the event
1245 * while in transit. Therefore all such accessors should also acquire
1246 * perf_event_context::mutex to serialize against this.
1247 *
1248 * However; because event->ctx can change while we're waiting to acquire
1249 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1250 * function.
1251 *
1252 * Lock order:
1253 * exec_update_lock
1254 * task_struct::perf_event_mutex
1255 * perf_event_context::mutex
1256 * perf_event::child_mutex;
1257 * perf_event_context::lock
1258 * perf_event::mmap_mutex
1259 * mmap_lock
1260 * perf_addr_filters_head::lock
1261 *
1262 * cpu_hotplug_lock
1263 * pmus_lock
1264 * cpuctx->mutex / perf_event_context::mutex
1265 */
1266static struct perf_event_context *
1267perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1268{
1269 struct perf_event_context *ctx;
1270
1271again:
1272 rcu_read_lock();
1273 ctx = READ_ONCE(event->ctx);
1274 if (!refcount_inc_not_zero(r: &ctx->refcount)) {
1275 rcu_read_unlock();
1276 goto again;
1277 }
1278 rcu_read_unlock();
1279
1280 mutex_lock_nested(lock: &ctx->mutex, subclass: nesting);
1281 if (event->ctx != ctx) {
1282 mutex_unlock(lock: &ctx->mutex);
1283 put_ctx(ctx);
1284 goto again;
1285 }
1286
1287 return ctx;
1288}
1289
1290static inline struct perf_event_context *
1291perf_event_ctx_lock(struct perf_event *event)
1292{
1293 return perf_event_ctx_lock_nested(event, nesting: 0);
1294}
1295
1296static void perf_event_ctx_unlock(struct perf_event *event,
1297 struct perf_event_context *ctx)
1298{
1299 mutex_unlock(lock: &ctx->mutex);
1300 put_ctx(ctx);
1301}
1302
1303/*
1304 * This must be done under the ctx->lock, such as to serialize against
1305 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1306 * calling scheduler related locks and ctx->lock nests inside those.
1307 */
1308static __must_check struct perf_event_context *
1309unclone_ctx(struct perf_event_context *ctx)
1310{
1311 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1312
1313 lockdep_assert_held(&ctx->lock);
1314
1315 if (parent_ctx)
1316 ctx->parent_ctx = NULL;
1317 ctx->generation++;
1318
1319 return parent_ctx;
1320}
1321
1322static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1323 enum pid_type type)
1324{
1325 u32 nr;
1326 /*
1327 * only top level events have the pid namespace they were created in
1328 */
1329 if (event->parent)
1330 event = event->parent;
1331
1332 nr = __task_pid_nr_ns(task: p, type, ns: event->ns);
1333 /* avoid -1 if it is idle thread or runs in another ns */
1334 if (!nr && !pid_alive(p))
1335 nr = -1;
1336 return nr;
1337}
1338
1339static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1340{
1341 return perf_event_pid_type(event, p, type: PIDTYPE_TGID);
1342}
1343
1344static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1345{
1346 return perf_event_pid_type(event, p, type: PIDTYPE_PID);
1347}
1348
1349/*
1350 * If we inherit events we want to return the parent event id
1351 * to userspace.
1352 */
1353static u64 primary_event_id(struct perf_event *event)
1354{
1355 u64 id = event->id;
1356
1357 if (event->parent)
1358 id = event->parent->id;
1359
1360 return id;
1361}
1362
1363/*
1364 * Get the perf_event_context for a task and lock it.
1365 *
1366 * This has to cope with the fact that until it is locked,
1367 * the context could get moved to another task.
1368 */
1369static struct perf_event_context *
1370perf_lock_task_context(struct task_struct *task, unsigned long *flags)
1371{
1372 struct perf_event_context *ctx;
1373
1374retry:
1375 /*
1376 * One of the few rules of preemptible RCU is that one cannot do
1377 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1378 * part of the read side critical section was irqs-enabled -- see
1379 * rcu_read_unlock_special().
1380 *
1381 * Since ctx->lock nests under rq->lock we must ensure the entire read
1382 * side critical section has interrupts disabled.
1383 */
1384 local_irq_save(*flags);
1385 rcu_read_lock();
1386 ctx = rcu_dereference(task->perf_event_ctxp);
1387 if (ctx) {
1388 /*
1389 * If this context is a clone of another, it might
1390 * get swapped for another underneath us by
1391 * perf_event_task_sched_out, though the
1392 * rcu_read_lock() protects us from any context
1393 * getting freed. Lock the context and check if it
1394 * got swapped before we could get the lock, and retry
1395 * if so. If we locked the right context, then it
1396 * can't get swapped on us any more.
1397 */
1398 raw_spin_lock(&ctx->lock);
1399 if (ctx != rcu_dereference(task->perf_event_ctxp)) {
1400 raw_spin_unlock(&ctx->lock);
1401 rcu_read_unlock();
1402 local_irq_restore(*flags);
1403 goto retry;
1404 }
1405
1406 if (ctx->task == TASK_TOMBSTONE ||
1407 !refcount_inc_not_zero(r: &ctx->refcount)) {
1408 raw_spin_unlock(&ctx->lock);
1409 ctx = NULL;
1410 } else {
1411 WARN_ON_ONCE(ctx->task != task);
1412 }
1413 }
1414 rcu_read_unlock();
1415 if (!ctx)
1416 local_irq_restore(*flags);
1417 return ctx;
1418}
1419
1420/*
1421 * Get the context for a task and increment its pin_count so it
1422 * can't get swapped to another task. This also increments its
1423 * reference count so that the context can't get freed.
1424 */
1425static struct perf_event_context *
1426perf_pin_task_context(struct task_struct *task)
1427{
1428 struct perf_event_context *ctx;
1429 unsigned long flags;
1430
1431 ctx = perf_lock_task_context(task, flags: &flags);
1432 if (ctx) {
1433 ++ctx->pin_count;
1434 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1435 }
1436 return ctx;
1437}
1438
1439static void perf_unpin_context(struct perf_event_context *ctx)
1440{
1441 unsigned long flags;
1442
1443 raw_spin_lock_irqsave(&ctx->lock, flags);
1444 --ctx->pin_count;
1445 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1446}
1447
1448/*
1449 * Update the record of the current time in a context.
1450 */
1451static void __update_context_time(struct perf_event_context *ctx, bool adv)
1452{
1453 u64 now = perf_clock();
1454
1455 lockdep_assert_held(&ctx->lock);
1456
1457 if (adv)
1458 ctx->time += now - ctx->timestamp;
1459 ctx->timestamp = now;
1460
1461 /*
1462 * The above: time' = time + (now - timestamp), can be re-arranged
1463 * into: time` = now + (time - timestamp), which gives a single value
1464 * offset to compute future time without locks on.
1465 *
1466 * See perf_event_time_now(), which can be used from NMI context where
1467 * it's (obviously) not possible to acquire ctx->lock in order to read
1468 * both the above values in a consistent manner.
1469 */
1470 WRITE_ONCE(ctx->timeoffset, ctx->time - ctx->timestamp);
1471}
1472
1473static void update_context_time(struct perf_event_context *ctx)
1474{
1475 __update_context_time(ctx, adv: true);
1476}
1477
1478static u64 perf_event_time(struct perf_event *event)
1479{
1480 struct perf_event_context *ctx = event->ctx;
1481
1482 if (unlikely(!ctx))
1483 return 0;
1484
1485 if (is_cgroup_event(event))
1486 return perf_cgroup_event_time(event);
1487
1488 return ctx->time;
1489}
1490
1491static u64 perf_event_time_now(struct perf_event *event, u64 now)
1492{
1493 struct perf_event_context *ctx = event->ctx;
1494
1495 if (unlikely(!ctx))
1496 return 0;
1497
1498 if (is_cgroup_event(event))
1499 return perf_cgroup_event_time_now(event, now);
1500
1501 if (!(__load_acquire(&ctx->is_active) & EVENT_TIME))
1502 return ctx->time;
1503
1504 now += READ_ONCE(ctx->timeoffset);
1505 return now;
1506}
1507
1508static enum event_type_t get_event_type(struct perf_event *event)
1509{
1510 struct perf_event_context *ctx = event->ctx;
1511 enum event_type_t event_type;
1512
1513 lockdep_assert_held(&ctx->lock);
1514
1515 /*
1516 * It's 'group type', really, because if our group leader is
1517 * pinned, so are we.
1518 */
1519 if (event->group_leader != event)
1520 event = event->group_leader;
1521
1522 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1523 if (!ctx->task)
1524 event_type |= EVENT_CPU;
1525
1526 return event_type;
1527}
1528
1529/*
1530 * Helper function to initialize event group nodes.
1531 */
1532static void init_event_group(struct perf_event *event)
1533{
1534 RB_CLEAR_NODE(&event->group_node);
1535 event->group_index = 0;
1536}
1537
1538/*
1539 * Extract pinned or flexible groups from the context
1540 * based on event attrs bits.
1541 */
1542static struct perf_event_groups *
1543get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1544{
1545 if (event->attr.pinned)
1546 return &ctx->pinned_groups;
1547 else
1548 return &ctx->flexible_groups;
1549}
1550
1551/*
1552 * Helper function to initializes perf_event_group trees.
1553 */
1554static void perf_event_groups_init(struct perf_event_groups *groups)
1555{
1556 groups->tree = RB_ROOT;
1557 groups->index = 0;
1558}
1559
1560static inline struct cgroup *event_cgroup(const struct perf_event *event)
1561{
1562 struct cgroup *cgroup = NULL;
1563
1564#ifdef CONFIG_CGROUP_PERF
1565 if (event->cgrp)
1566 cgroup = event->cgrp->css.cgroup;
1567#endif
1568
1569 return cgroup;
1570}
1571
1572/*
1573 * Compare function for event groups;
1574 *
1575 * Implements complex key that first sorts by CPU and then by virtual index
1576 * which provides ordering when rotating groups for the same CPU.
1577 */
1578static __always_inline int
1579perf_event_groups_cmp(const int left_cpu, const struct pmu *left_pmu,
1580 const struct cgroup *left_cgroup, const u64 left_group_index,
1581 const struct perf_event *right)
1582{
1583 if (left_cpu < right->cpu)
1584 return -1;
1585 if (left_cpu > right->cpu)
1586 return 1;
1587
1588 if (left_pmu) {
1589 if (left_pmu < right->pmu_ctx->pmu)
1590 return -1;
1591 if (left_pmu > right->pmu_ctx->pmu)
1592 return 1;
1593 }
1594
1595#ifdef CONFIG_CGROUP_PERF
1596 {
1597 const struct cgroup *right_cgroup = event_cgroup(event: right);
1598
1599 if (left_cgroup != right_cgroup) {
1600 if (!left_cgroup) {
1601 /*
1602 * Left has no cgroup but right does, no
1603 * cgroups come first.
1604 */
1605 return -1;
1606 }
1607 if (!right_cgroup) {
1608 /*
1609 * Right has no cgroup but left does, no
1610 * cgroups come first.
1611 */
1612 return 1;
1613 }
1614 /* Two dissimilar cgroups, order by id. */
1615 if (cgroup_id(cgrp: left_cgroup) < cgroup_id(cgrp: right_cgroup))
1616 return -1;
1617
1618 return 1;
1619 }
1620 }
1621#endif
1622
1623 if (left_group_index < right->group_index)
1624 return -1;
1625 if (left_group_index > right->group_index)
1626 return 1;
1627
1628 return 0;
1629}
1630
1631#define __node_2_pe(node) \
1632 rb_entry((node), struct perf_event, group_node)
1633
1634static inline bool __group_less(struct rb_node *a, const struct rb_node *b)
1635{
1636 struct perf_event *e = __node_2_pe(a);
1637 return perf_event_groups_cmp(left_cpu: e->cpu, left_pmu: e->pmu_ctx->pmu, left_cgroup: event_cgroup(event: e),
1638 left_group_index: e->group_index, __node_2_pe(b)) < 0;
1639}
1640
1641struct __group_key {
1642 int cpu;
1643 struct pmu *pmu;
1644 struct cgroup *cgroup;
1645};
1646
1647static inline int __group_cmp(const void *key, const struct rb_node *node)
1648{
1649 const struct __group_key *a = key;
1650 const struct perf_event *b = __node_2_pe(node);
1651
1652 /* partial/subtree match: @cpu, @pmu, @cgroup; ignore: @group_index */
1653 return perf_event_groups_cmp(left_cpu: a->cpu, left_pmu: a->pmu, left_cgroup: a->cgroup, left_group_index: b->group_index, right: b);
1654}
1655
1656static inline int
1657__group_cmp_ignore_cgroup(const void *key, const struct rb_node *node)
1658{
1659 const struct __group_key *a = key;
1660 const struct perf_event *b = __node_2_pe(node);
1661
1662 /* partial/subtree match: @cpu, @pmu, ignore: @cgroup, @group_index */
1663 return perf_event_groups_cmp(left_cpu: a->cpu, left_pmu: a->pmu, left_cgroup: event_cgroup(event: b),
1664 left_group_index: b->group_index, right: b);
1665}
1666
1667/*
1668 * Insert @event into @groups' tree; using
1669 * {@event->cpu, @event->pmu_ctx->pmu, event_cgroup(@event), ++@groups->index}
1670 * as key. This places it last inside the {cpu,pmu,cgroup} subtree.
1671 */
1672static void
1673perf_event_groups_insert(struct perf_event_groups *groups,
1674 struct perf_event *event)
1675{
1676 event->group_index = ++groups->index;
1677
1678 rb_add(node: &event->group_node, tree: &groups->tree, less: __group_less);
1679}
1680
1681/*
1682 * Helper function to insert event into the pinned or flexible groups.
1683 */
1684static void
1685add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1686{
1687 struct perf_event_groups *groups;
1688
1689 groups = get_event_groups(event, ctx);
1690 perf_event_groups_insert(groups, event);
1691}
1692
1693/*
1694 * Delete a group from a tree.
1695 */
1696static void
1697perf_event_groups_delete(struct perf_event_groups *groups,
1698 struct perf_event *event)
1699{
1700 WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1701 RB_EMPTY_ROOT(&groups->tree));
1702
1703 rb_erase(&event->group_node, &groups->tree);
1704 init_event_group(event);
1705}
1706
1707/*
1708 * Helper function to delete event from its groups.
1709 */
1710static void
1711del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1712{
1713 struct perf_event_groups *groups;
1714
1715 groups = get_event_groups(event, ctx);
1716 perf_event_groups_delete(groups, event);
1717}
1718
1719/*
1720 * Get the leftmost event in the {cpu,pmu,cgroup} subtree.
1721 */
1722static struct perf_event *
1723perf_event_groups_first(struct perf_event_groups *groups, int cpu,
1724 struct pmu *pmu, struct cgroup *cgrp)
1725{
1726 struct __group_key key = {
1727 .cpu = cpu,
1728 .pmu = pmu,
1729 .cgroup = cgrp,
1730 };
1731 struct rb_node *node;
1732
1733 node = rb_find_first(key: &key, tree: &groups->tree, cmp: __group_cmp);
1734 if (node)
1735 return __node_2_pe(node);
1736
1737 return NULL;
1738}
1739
1740static struct perf_event *
1741perf_event_groups_next(struct perf_event *event, struct pmu *pmu)
1742{
1743 struct __group_key key = {
1744 .cpu = event->cpu,
1745 .pmu = pmu,
1746 .cgroup = event_cgroup(event),
1747 };
1748 struct rb_node *next;
1749
1750 next = rb_next_match(key: &key, node: &event->group_node, cmp: __group_cmp);
1751 if (next)
1752 return __node_2_pe(next);
1753
1754 return NULL;
1755}
1756
1757#define perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) \
1758 for (event = perf_event_groups_first(groups, cpu, pmu, NULL); \
1759 event; event = perf_event_groups_next(event, pmu))
1760
1761/*
1762 * Iterate through the whole groups tree.
1763 */
1764#define perf_event_groups_for_each(event, groups) \
1765 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \
1766 typeof(*event), group_node); event; \
1767 event = rb_entry_safe(rb_next(&event->group_node), \
1768 typeof(*event), group_node))
1769
1770/*
1771 * Add an event from the lists for its context.
1772 * Must be called with ctx->mutex and ctx->lock held.
1773 */
1774static void
1775list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1776{
1777 lockdep_assert_held(&ctx->lock);
1778
1779 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1780 event->attach_state |= PERF_ATTACH_CONTEXT;
1781
1782 event->tstamp = perf_event_time(event);
1783
1784 /*
1785 * If we're a stand alone event or group leader, we go to the context
1786 * list, group events are kept attached to the group so that
1787 * perf_group_detach can, at all times, locate all siblings.
1788 */
1789 if (event->group_leader == event) {
1790 event->group_caps = event->event_caps;
1791 add_event_to_groups(event, ctx);
1792 }
1793
1794 list_add_rcu(new: &event->event_entry, head: &ctx->event_list);
1795 ctx->nr_events++;
1796 if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
1797 ctx->nr_user++;
1798 if (event->attr.inherit_stat)
1799 ctx->nr_stat++;
1800
1801 if (event->state > PERF_EVENT_STATE_OFF)
1802 perf_cgroup_event_enable(event, ctx);
1803
1804 ctx->generation++;
1805 event->pmu_ctx->nr_events++;
1806}
1807
1808/*
1809 * Initialize event state based on the perf_event_attr::disabled.
1810 */
1811static inline void perf_event__state_init(struct perf_event *event)
1812{
1813 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1814 PERF_EVENT_STATE_INACTIVE;
1815}
1816
1817static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1818{
1819 int entry = sizeof(u64); /* value */
1820 int size = 0;
1821 int nr = 1;
1822
1823 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1824 size += sizeof(u64);
1825
1826 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1827 size += sizeof(u64);
1828
1829 if (event->attr.read_format & PERF_FORMAT_ID)
1830 entry += sizeof(u64);
1831
1832 if (event->attr.read_format & PERF_FORMAT_LOST)
1833 entry += sizeof(u64);
1834
1835 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1836 nr += nr_siblings;
1837 size += sizeof(u64);
1838 }
1839
1840 size += entry * nr;
1841 event->read_size = size;
1842}
1843
1844static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1845{
1846 struct perf_sample_data *data;
1847 u16 size = 0;
1848
1849 if (sample_type & PERF_SAMPLE_IP)
1850 size += sizeof(data->ip);
1851
1852 if (sample_type & PERF_SAMPLE_ADDR)
1853 size += sizeof(data->addr);
1854
1855 if (sample_type & PERF_SAMPLE_PERIOD)
1856 size += sizeof(data->period);
1857
1858 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
1859 size += sizeof(data->weight.full);
1860
1861 if (sample_type & PERF_SAMPLE_READ)
1862 size += event->read_size;
1863
1864 if (sample_type & PERF_SAMPLE_DATA_SRC)
1865 size += sizeof(data->data_src.val);
1866
1867 if (sample_type & PERF_SAMPLE_TRANSACTION)
1868 size += sizeof(data->txn);
1869
1870 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1871 size += sizeof(data->phys_addr);
1872
1873 if (sample_type & PERF_SAMPLE_CGROUP)
1874 size += sizeof(data->cgroup);
1875
1876 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
1877 size += sizeof(data->data_page_size);
1878
1879 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
1880 size += sizeof(data->code_page_size);
1881
1882 event->header_size = size;
1883}
1884
1885/*
1886 * Called at perf_event creation and when events are attached/detached from a
1887 * group.
1888 */
1889static void perf_event__header_size(struct perf_event *event)
1890{
1891 __perf_event_read_size(event,
1892 nr_siblings: event->group_leader->nr_siblings);
1893 __perf_event_header_size(event, sample_type: event->attr.sample_type);
1894}
1895
1896static void perf_event__id_header_size(struct perf_event *event)
1897{
1898 struct perf_sample_data *data;
1899 u64 sample_type = event->attr.sample_type;
1900 u16 size = 0;
1901
1902 if (sample_type & PERF_SAMPLE_TID)
1903 size += sizeof(data->tid_entry);
1904
1905 if (sample_type & PERF_SAMPLE_TIME)
1906 size += sizeof(data->time);
1907
1908 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1909 size += sizeof(data->id);
1910
1911 if (sample_type & PERF_SAMPLE_ID)
1912 size += sizeof(data->id);
1913
1914 if (sample_type & PERF_SAMPLE_STREAM_ID)
1915 size += sizeof(data->stream_id);
1916
1917 if (sample_type & PERF_SAMPLE_CPU)
1918 size += sizeof(data->cpu_entry);
1919
1920 event->id_header_size = size;
1921}
1922
1923static bool perf_event_validate_size(struct perf_event *event)
1924{
1925 /*
1926 * The values computed here will be over-written when we actually
1927 * attach the event.
1928 */
1929 __perf_event_read_size(event, nr_siblings: event->group_leader->nr_siblings + 1);
1930 __perf_event_header_size(event, sample_type: event->attr.sample_type & ~PERF_SAMPLE_READ);
1931 perf_event__id_header_size(event);
1932
1933 /*
1934 * Sum the lot; should not exceed the 64k limit we have on records.
1935 * Conservative limit to allow for callchains and other variable fields.
1936 */
1937 if (event->read_size + event->header_size +
1938 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1939 return false;
1940
1941 return true;
1942}
1943
1944static void perf_group_attach(struct perf_event *event)
1945{
1946 struct perf_event *group_leader = event->group_leader, *pos;
1947
1948 lockdep_assert_held(&event->ctx->lock);
1949
1950 /*
1951 * We can have double attach due to group movement (move_group) in
1952 * perf_event_open().
1953 */
1954 if (event->attach_state & PERF_ATTACH_GROUP)
1955 return;
1956
1957 event->attach_state |= PERF_ATTACH_GROUP;
1958
1959 if (group_leader == event)
1960 return;
1961
1962 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1963
1964 group_leader->group_caps &= event->event_caps;
1965
1966 list_add_tail(new: &event->sibling_list, head: &group_leader->sibling_list);
1967 group_leader->nr_siblings++;
1968 group_leader->group_generation++;
1969
1970 perf_event__header_size(event: group_leader);
1971
1972 for_each_sibling_event(pos, group_leader)
1973 perf_event__header_size(event: pos);
1974}
1975
1976/*
1977 * Remove an event from the lists for its context.
1978 * Must be called with ctx->mutex and ctx->lock held.
1979 */
1980static void
1981list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1982{
1983 WARN_ON_ONCE(event->ctx != ctx);
1984 lockdep_assert_held(&ctx->lock);
1985
1986 /*
1987 * We can have double detach due to exit/hot-unplug + close.
1988 */
1989 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1990 return;
1991
1992 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1993
1994 ctx->nr_events--;
1995 if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
1996 ctx->nr_user--;
1997 if (event->attr.inherit_stat)
1998 ctx->nr_stat--;
1999
2000 list_del_rcu(entry: &event->event_entry);
2001
2002 if (event->group_leader == event)
2003 del_event_from_groups(event, ctx);
2004
2005 /*
2006 * If event was in error state, then keep it
2007 * that way, otherwise bogus counts will be
2008 * returned on read(). The only way to get out
2009 * of error state is by explicit re-enabling
2010 * of the event
2011 */
2012 if (event->state > PERF_EVENT_STATE_OFF) {
2013 perf_cgroup_event_disable(event, ctx);
2014 perf_event_set_state(event, state: PERF_EVENT_STATE_OFF);
2015 }
2016
2017 ctx->generation++;
2018 event->pmu_ctx->nr_events--;
2019}
2020
2021static int
2022perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
2023{
2024 if (!has_aux(event: aux_event))
2025 return 0;
2026
2027 if (!event->pmu->aux_output_match)
2028 return 0;
2029
2030 return event->pmu->aux_output_match(aux_event);
2031}
2032
2033static void put_event(struct perf_event *event);
2034static void event_sched_out(struct perf_event *event,
2035 struct perf_event_context *ctx);
2036
2037static void perf_put_aux_event(struct perf_event *event)
2038{
2039 struct perf_event_context *ctx = event->ctx;
2040 struct perf_event *iter;
2041
2042 /*
2043 * If event uses aux_event tear down the link
2044 */
2045 if (event->aux_event) {
2046 iter = event->aux_event;
2047 event->aux_event = NULL;
2048 put_event(event: iter);
2049 return;
2050 }
2051
2052 /*
2053 * If the event is an aux_event, tear down all links to
2054 * it from other events.
2055 */
2056 for_each_sibling_event(iter, event->group_leader) {
2057 if (iter->aux_event != event)
2058 continue;
2059
2060 iter->aux_event = NULL;
2061 put_event(event);
2062
2063 /*
2064 * If it's ACTIVE, schedule it out and put it into ERROR
2065 * state so that we don't try to schedule it again. Note
2066 * that perf_event_enable() will clear the ERROR status.
2067 */
2068 event_sched_out(event: iter, ctx);
2069 perf_event_set_state(event, state: PERF_EVENT_STATE_ERROR);
2070 }
2071}
2072
2073static bool perf_need_aux_event(struct perf_event *event)
2074{
2075 return !!event->attr.aux_output || !!event->attr.aux_sample_size;
2076}
2077
2078static int perf_get_aux_event(struct perf_event *event,
2079 struct perf_event *group_leader)
2080{
2081 /*
2082 * Our group leader must be an aux event if we want to be
2083 * an aux_output. This way, the aux event will precede its
2084 * aux_output events in the group, and therefore will always
2085 * schedule first.
2086 */
2087 if (!group_leader)
2088 return 0;
2089
2090 /*
2091 * aux_output and aux_sample_size are mutually exclusive.
2092 */
2093 if (event->attr.aux_output && event->attr.aux_sample_size)
2094 return 0;
2095
2096 if (event->attr.aux_output &&
2097 !perf_aux_output_match(event, aux_event: group_leader))
2098 return 0;
2099
2100 if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
2101 return 0;
2102
2103 if (!atomic_long_inc_not_zero(v: &group_leader->refcount))
2104 return 0;
2105
2106 /*
2107 * Link aux_outputs to their aux event; this is undone in
2108 * perf_group_detach() by perf_put_aux_event(). When the
2109 * group in torn down, the aux_output events loose their
2110 * link to the aux_event and can't schedule any more.
2111 */
2112 event->aux_event = group_leader;
2113
2114 return 1;
2115}
2116
2117static inline struct list_head *get_event_list(struct perf_event *event)
2118{
2119 return event->attr.pinned ? &event->pmu_ctx->pinned_active :
2120 &event->pmu_ctx->flexible_active;
2121}
2122
2123/*
2124 * Events that have PERF_EV_CAP_SIBLING require being part of a group and
2125 * cannot exist on their own, schedule them out and move them into the ERROR
2126 * state. Also see _perf_event_enable(), it will not be able to recover
2127 * this ERROR state.
2128 */
2129static inline void perf_remove_sibling_event(struct perf_event *event)
2130{
2131 event_sched_out(event, ctx: event->ctx);
2132 perf_event_set_state(event, state: PERF_EVENT_STATE_ERROR);
2133}
2134
2135static void perf_group_detach(struct perf_event *event)
2136{
2137 struct perf_event *leader = event->group_leader;
2138 struct perf_event *sibling, *tmp;
2139 struct perf_event_context *ctx = event->ctx;
2140
2141 lockdep_assert_held(&ctx->lock);
2142
2143 /*
2144 * We can have double detach due to exit/hot-unplug + close.
2145 */
2146 if (!(event->attach_state & PERF_ATTACH_GROUP))
2147 return;
2148
2149 event->attach_state &= ~PERF_ATTACH_GROUP;
2150
2151 perf_put_aux_event(event);
2152
2153 /*
2154 * If this is a sibling, remove it from its group.
2155 */
2156 if (leader != event) {
2157 list_del_init(entry: &event->sibling_list);
2158 event->group_leader->nr_siblings--;
2159 event->group_leader->group_generation++;
2160 goto out;
2161 }
2162
2163 /*
2164 * If this was a group event with sibling events then
2165 * upgrade the siblings to singleton events by adding them
2166 * to whatever list we are on.
2167 */
2168 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2169
2170 if (sibling->event_caps & PERF_EV_CAP_SIBLING)
2171 perf_remove_sibling_event(event: sibling);
2172
2173 sibling->group_leader = sibling;
2174 list_del_init(entry: &sibling->sibling_list);
2175
2176 /* Inherit group flags from the previous leader */
2177 sibling->group_caps = event->group_caps;
2178
2179 if (sibling->attach_state & PERF_ATTACH_CONTEXT) {
2180 add_event_to_groups(event: sibling, ctx: event->ctx);
2181
2182 if (sibling->state == PERF_EVENT_STATE_ACTIVE)
2183 list_add_tail(new: &sibling->active_list, head: get_event_list(event: sibling));
2184 }
2185
2186 WARN_ON_ONCE(sibling->ctx != event->ctx);
2187 }
2188
2189out:
2190 for_each_sibling_event(tmp, leader)
2191 perf_event__header_size(event: tmp);
2192
2193 perf_event__header_size(event: leader);
2194}
2195
2196static void sync_child_event(struct perf_event *child_event);
2197
2198static void perf_child_detach(struct perf_event *event)
2199{
2200 struct perf_event *parent_event = event->parent;
2201
2202 if (!(event->attach_state & PERF_ATTACH_CHILD))
2203 return;
2204
2205 event->attach_state &= ~PERF_ATTACH_CHILD;
2206
2207 if (WARN_ON_ONCE(!parent_event))
2208 return;
2209
2210 lockdep_assert_held(&parent_event->child_mutex);
2211
2212 sync_child_event(child_event: event);
2213 list_del_init(entry: &event->child_list);
2214}
2215
2216static bool is_orphaned_event(struct perf_event *event)
2217{
2218 return event->state == PERF_EVENT_STATE_DEAD;
2219}
2220
2221static inline int
2222event_filter_match(struct perf_event *event)
2223{
2224 return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2225 perf_cgroup_match(event);
2226}
2227
2228static void
2229event_sched_out(struct perf_event *event, struct perf_event_context *ctx)
2230{
2231 struct perf_event_pmu_context *epc = event->pmu_ctx;
2232 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2233 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2234
2235 // XXX cpc serialization, probably per-cpu IRQ disabled
2236
2237 WARN_ON_ONCE(event->ctx != ctx);
2238 lockdep_assert_held(&ctx->lock);
2239
2240 if (event->state != PERF_EVENT_STATE_ACTIVE)
2241 return;
2242
2243 /*
2244 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2245 * we can schedule events _OUT_ individually through things like
2246 * __perf_remove_from_context().
2247 */
2248 list_del_init(entry: &event->active_list);
2249
2250 perf_pmu_disable(pmu: event->pmu);
2251
2252 event->pmu->del(event, 0);
2253 event->oncpu = -1;
2254
2255 if (event->pending_disable) {
2256 event->pending_disable = 0;
2257 perf_cgroup_event_disable(event, ctx);
2258 state = PERF_EVENT_STATE_OFF;
2259 }
2260
2261 if (event->pending_sigtrap) {
2262 bool dec = true;
2263
2264 event->pending_sigtrap = 0;
2265 if (state != PERF_EVENT_STATE_OFF &&
2266 !event->pending_work) {
2267 event->pending_work = 1;
2268 dec = false;
2269 WARN_ON_ONCE(!atomic_long_inc_not_zero(&event->refcount));
2270 task_work_add(current, twork: &event->pending_task, mode: TWA_RESUME);
2271 }
2272 if (dec)
2273 local_dec(l: &event->ctx->nr_pending);
2274 }
2275
2276 perf_event_set_state(event, state);
2277
2278 if (!is_software_event(event))
2279 cpc->active_oncpu--;
2280 if (event->attr.freq && event->attr.sample_freq)
2281 ctx->nr_freq--;
2282 if (event->attr.exclusive || !cpc->active_oncpu)
2283 cpc->exclusive = 0;
2284
2285 perf_pmu_enable(pmu: event->pmu);
2286}
2287
2288static void
2289group_sched_out(struct perf_event *group_event, struct perf_event_context *ctx)
2290{
2291 struct perf_event *event;
2292
2293 if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2294 return;
2295
2296 perf_assert_pmu_disabled(pmu: group_event->pmu_ctx->pmu);
2297
2298 event_sched_out(event: group_event, ctx);
2299
2300 /*
2301 * Schedule out siblings (if any):
2302 */
2303 for_each_sibling_event(event, group_event)
2304 event_sched_out(event, ctx);
2305}
2306
2307#define DETACH_GROUP 0x01UL
2308#define DETACH_CHILD 0x02UL
2309#define DETACH_DEAD 0x04UL
2310
2311/*
2312 * Cross CPU call to remove a performance event
2313 *
2314 * We disable the event on the hardware level first. After that we
2315 * remove it from the context list.
2316 */
2317static void
2318__perf_remove_from_context(struct perf_event *event,
2319 struct perf_cpu_context *cpuctx,
2320 struct perf_event_context *ctx,
2321 void *info)
2322{
2323 struct perf_event_pmu_context *pmu_ctx = event->pmu_ctx;
2324 unsigned long flags = (unsigned long)info;
2325
2326 if (ctx->is_active & EVENT_TIME) {
2327 update_context_time(ctx);
2328 update_cgrp_time_from_cpuctx(cpuctx, final: false);
2329 }
2330
2331 /*
2332 * Ensure event_sched_out() switches to OFF, at the very least
2333 * this avoids raising perf_pending_task() at this time.
2334 */
2335 if (flags & DETACH_DEAD)
2336 event->pending_disable = 1;
2337 event_sched_out(event, ctx);
2338 if (flags & DETACH_GROUP)
2339 perf_group_detach(event);
2340 if (flags & DETACH_CHILD)
2341 perf_child_detach(event);
2342 list_del_event(event, ctx);
2343 if (flags & DETACH_DEAD)
2344 event->state = PERF_EVENT_STATE_DEAD;
2345
2346 if (!pmu_ctx->nr_events) {
2347 pmu_ctx->rotate_necessary = 0;
2348
2349 if (ctx->task && ctx->is_active) {
2350 struct perf_cpu_pmu_context *cpc;
2351
2352 cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
2353 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
2354 cpc->task_epc = NULL;
2355 }
2356 }
2357
2358 if (!ctx->nr_events && ctx->is_active) {
2359 if (ctx == &cpuctx->ctx)
2360 update_cgrp_time_from_cpuctx(cpuctx, final: true);
2361
2362 ctx->is_active = 0;
2363 if (ctx->task) {
2364 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2365 cpuctx->task_ctx = NULL;
2366 }
2367 }
2368}
2369
2370/*
2371 * Remove the event from a task's (or a CPU's) list of events.
2372 *
2373 * If event->ctx is a cloned context, callers must make sure that
2374 * every task struct that event->ctx->task could possibly point to
2375 * remains valid. This is OK when called from perf_release since
2376 * that only calls us on the top-level context, which can't be a clone.
2377 * When called from perf_event_exit_task, it's OK because the
2378 * context has been detached from its task.
2379 */
2380static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2381{
2382 struct perf_event_context *ctx = event->ctx;
2383
2384 lockdep_assert_held(&ctx->mutex);
2385
2386 /*
2387 * Because of perf_event_exit_task(), perf_remove_from_context() ought
2388 * to work in the face of TASK_TOMBSTONE, unlike every other
2389 * event_function_call() user.
2390 */
2391 raw_spin_lock_irq(&ctx->lock);
2392 if (!ctx->is_active) {
2393 __perf_remove_from_context(event, this_cpu_ptr(&perf_cpu_context),
2394 ctx, info: (void *)flags);
2395 raw_spin_unlock_irq(&ctx->lock);
2396 return;
2397 }
2398 raw_spin_unlock_irq(&ctx->lock);
2399
2400 event_function_call(event, func: __perf_remove_from_context, data: (void *)flags);
2401}
2402
2403/*
2404 * Cross CPU call to disable a performance event
2405 */
2406static void __perf_event_disable(struct perf_event *event,
2407 struct perf_cpu_context *cpuctx,
2408 struct perf_event_context *ctx,
2409 void *info)
2410{
2411 if (event->state < PERF_EVENT_STATE_INACTIVE)
2412 return;
2413
2414 if (ctx->is_active & EVENT_TIME) {
2415 update_context_time(ctx);
2416 update_cgrp_time_from_event(event);
2417 }
2418
2419 perf_pmu_disable(pmu: event->pmu_ctx->pmu);
2420
2421 if (event == event->group_leader)
2422 group_sched_out(group_event: event, ctx);
2423 else
2424 event_sched_out(event, ctx);
2425
2426 perf_event_set_state(event, state: PERF_EVENT_STATE_OFF);
2427 perf_cgroup_event_disable(event, ctx);
2428
2429 perf_pmu_enable(pmu: event->pmu_ctx->pmu);
2430}
2431
2432/*
2433 * Disable an event.
2434 *
2435 * If event->ctx is a cloned context, callers must make sure that
2436 * every task struct that event->ctx->task could possibly point to
2437 * remains valid. This condition is satisfied when called through
2438 * perf_event_for_each_child or perf_event_for_each because they
2439 * hold the top-level event's child_mutex, so any descendant that
2440 * goes to exit will block in perf_event_exit_event().
2441 *
2442 * When called from perf_pending_irq it's OK because event->ctx
2443 * is the current context on this CPU and preemption is disabled,
2444 * hence we can't get into perf_event_task_sched_out for this context.
2445 */
2446static void _perf_event_disable(struct perf_event *event)
2447{
2448 struct perf_event_context *ctx = event->ctx;
2449
2450 raw_spin_lock_irq(&ctx->lock);
2451 if (event->state <= PERF_EVENT_STATE_OFF) {
2452 raw_spin_unlock_irq(&ctx->lock);
2453 return;
2454 }
2455 raw_spin_unlock_irq(&ctx->lock);
2456
2457 event_function_call(event, func: __perf_event_disable, NULL);
2458}
2459
2460void perf_event_disable_local(struct perf_event *event)
2461{
2462 event_function_local(event, func: __perf_event_disable, NULL);
2463}
2464
2465/*
2466 * Strictly speaking kernel users cannot create groups and therefore this
2467 * interface does not need the perf_event_ctx_lock() magic.
2468 */
2469void perf_event_disable(struct perf_event *event)
2470{
2471 struct perf_event_context *ctx;
2472
2473 ctx = perf_event_ctx_lock(event);
2474 _perf_event_disable(event);
2475 perf_event_ctx_unlock(event, ctx);
2476}
2477EXPORT_SYMBOL_GPL(perf_event_disable);
2478
2479void perf_event_disable_inatomic(struct perf_event *event)
2480{
2481 event->pending_disable = 1;
2482 irq_work_queue(work: &event->pending_irq);
2483}
2484
2485#define MAX_INTERRUPTS (~0ULL)
2486
2487static void perf_log_throttle(struct perf_event *event, int enable);
2488static void perf_log_itrace_start(struct perf_event *event);
2489
2490static int
2491event_sched_in(struct perf_event *event, struct perf_event_context *ctx)
2492{
2493 struct perf_event_pmu_context *epc = event->pmu_ctx;
2494 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2495 int ret = 0;
2496
2497 WARN_ON_ONCE(event->ctx != ctx);
2498
2499 lockdep_assert_held(&ctx->lock);
2500
2501 if (event->state <= PERF_EVENT_STATE_OFF)
2502 return 0;
2503
2504 WRITE_ONCE(event->oncpu, smp_processor_id());
2505 /*
2506 * Order event::oncpu write to happen before the ACTIVE state is
2507 * visible. This allows perf_event_{stop,read}() to observe the correct
2508 * ->oncpu if it sees ACTIVE.
2509 */
2510 smp_wmb();
2511 perf_event_set_state(event, state: PERF_EVENT_STATE_ACTIVE);
2512
2513 /*
2514 * Unthrottle events, since we scheduled we might have missed several
2515 * ticks already, also for a heavily scheduling task there is little
2516 * guarantee it'll get a tick in a timely manner.
2517 */
2518 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2519 perf_log_throttle(event, enable: 1);
2520 event->hw.interrupts = 0;
2521 }
2522
2523 perf_pmu_disable(pmu: event->pmu);
2524
2525 perf_log_itrace_start(event);
2526
2527 if (event->pmu->add(event, PERF_EF_START)) {
2528 perf_event_set_state(event, state: PERF_EVENT_STATE_INACTIVE);
2529 event->oncpu = -1;
2530 ret = -EAGAIN;
2531 goto out;
2532 }
2533
2534 if (!is_software_event(event))
2535 cpc->active_oncpu++;
2536 if (event->attr.freq && event->attr.sample_freq)
2537 ctx->nr_freq++;
2538
2539 if (event->attr.exclusive)
2540 cpc->exclusive = 1;
2541
2542out:
2543 perf_pmu_enable(pmu: event->pmu);
2544
2545 return ret;
2546}
2547
2548static int
2549group_sched_in(struct perf_event *group_event, struct perf_event_context *ctx)
2550{
2551 struct perf_event *event, *partial_group = NULL;
2552 struct pmu *pmu = group_event->pmu_ctx->pmu;
2553
2554 if (group_event->state == PERF_EVENT_STATE_OFF)
2555 return 0;
2556
2557 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2558
2559 if (event_sched_in(event: group_event, ctx))
2560 goto error;
2561
2562 /*
2563 * Schedule in siblings as one group (if any):
2564 */
2565 for_each_sibling_event(event, group_event) {
2566 if (event_sched_in(event, ctx)) {
2567 partial_group = event;
2568 goto group_error;
2569 }
2570 }
2571
2572 if (!pmu->commit_txn(pmu))
2573 return 0;
2574
2575group_error:
2576 /*
2577 * Groups can be scheduled in as one unit only, so undo any
2578 * partial group before returning:
2579 * The events up to the failed event are scheduled out normally.
2580 */
2581 for_each_sibling_event(event, group_event) {
2582 if (event == partial_group)
2583 break;
2584
2585 event_sched_out(event, ctx);
2586 }
2587 event_sched_out(event: group_event, ctx);
2588
2589error:
2590 pmu->cancel_txn(pmu);
2591 return -EAGAIN;
2592}
2593
2594/*
2595 * Work out whether we can put this event group on the CPU now.
2596 */
2597static int group_can_go_on(struct perf_event *event, int can_add_hw)
2598{
2599 struct perf_event_pmu_context *epc = event->pmu_ctx;
2600 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2601
2602 /*
2603 * Groups consisting entirely of software events can always go on.
2604 */
2605 if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2606 return 1;
2607 /*
2608 * If an exclusive group is already on, no other hardware
2609 * events can go on.
2610 */
2611 if (cpc->exclusive)
2612 return 0;
2613 /*
2614 * If this group is exclusive and there are already
2615 * events on the CPU, it can't go on.
2616 */
2617 if (event->attr.exclusive && !list_empty(head: get_event_list(event)))
2618 return 0;
2619 /*
2620 * Otherwise, try to add it if all previous groups were able
2621 * to go on.
2622 */
2623 return can_add_hw;
2624}
2625
2626static void add_event_to_ctx(struct perf_event *event,
2627 struct perf_event_context *ctx)
2628{
2629 list_add_event(event, ctx);
2630 perf_group_attach(event);
2631}
2632
2633static void task_ctx_sched_out(struct perf_event_context *ctx,
2634 enum event_type_t event_type)
2635{
2636 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2637
2638 if (!cpuctx->task_ctx)
2639 return;
2640
2641 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2642 return;
2643
2644 ctx_sched_out(ctx, event_type);
2645}
2646
2647static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2648 struct perf_event_context *ctx)
2649{
2650 ctx_sched_in(ctx: &cpuctx->ctx, event_type: EVENT_PINNED);
2651 if (ctx)
2652 ctx_sched_in(ctx, event_type: EVENT_PINNED);
2653 ctx_sched_in(ctx: &cpuctx->ctx, event_type: EVENT_FLEXIBLE);
2654 if (ctx)
2655 ctx_sched_in(ctx, event_type: EVENT_FLEXIBLE);
2656}
2657
2658/*
2659 * We want to maintain the following priority of scheduling:
2660 * - CPU pinned (EVENT_CPU | EVENT_PINNED)
2661 * - task pinned (EVENT_PINNED)
2662 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2663 * - task flexible (EVENT_FLEXIBLE).
2664 *
2665 * In order to avoid unscheduling and scheduling back in everything every
2666 * time an event is added, only do it for the groups of equal priority and
2667 * below.
2668 *
2669 * This can be called after a batch operation on task events, in which case
2670 * event_type is a bit mask of the types of events involved. For CPU events,
2671 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2672 */
2673/*
2674 * XXX: ctx_resched() reschedule entire perf_event_context while adding new
2675 * event to the context or enabling existing event in the context. We can
2676 * probably optimize it by rescheduling only affected pmu_ctx.
2677 */
2678static void ctx_resched(struct perf_cpu_context *cpuctx,
2679 struct perf_event_context *task_ctx,
2680 enum event_type_t event_type)
2681{
2682 bool cpu_event = !!(event_type & EVENT_CPU);
2683
2684 /*
2685 * If pinned groups are involved, flexible groups also need to be
2686 * scheduled out.
2687 */
2688 if (event_type & EVENT_PINNED)
2689 event_type |= EVENT_FLEXIBLE;
2690
2691 event_type &= EVENT_ALL;
2692
2693 perf_ctx_disable(ctx: &cpuctx->ctx, cgroup: false);
2694 if (task_ctx) {
2695 perf_ctx_disable(ctx: task_ctx, cgroup: false);
2696 task_ctx_sched_out(ctx: task_ctx, event_type);
2697 }
2698
2699 /*
2700 * Decide which cpu ctx groups to schedule out based on the types
2701 * of events that caused rescheduling:
2702 * - EVENT_CPU: schedule out corresponding groups;
2703 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2704 * - otherwise, do nothing more.
2705 */
2706 if (cpu_event)
2707 ctx_sched_out(ctx: &cpuctx->ctx, event_type);
2708 else if (event_type & EVENT_PINNED)
2709 ctx_sched_out(ctx: &cpuctx->ctx, event_type: EVENT_FLEXIBLE);
2710
2711 perf_event_sched_in(cpuctx, ctx: task_ctx);
2712
2713 perf_ctx_enable(ctx: &cpuctx->ctx, cgroup: false);
2714 if (task_ctx)
2715 perf_ctx_enable(ctx: task_ctx, cgroup: false);
2716}
2717
2718void perf_pmu_resched(struct pmu *pmu)
2719{
2720 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2721 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2722
2723 perf_ctx_lock(cpuctx, ctx: task_ctx);
2724 ctx_resched(cpuctx, task_ctx, event_type: EVENT_ALL|EVENT_CPU);
2725 perf_ctx_unlock(cpuctx, ctx: task_ctx);
2726}
2727
2728/*
2729 * Cross CPU call to install and enable a performance event
2730 *
2731 * Very similar to remote_function() + event_function() but cannot assume that
2732 * things like ctx->is_active and cpuctx->task_ctx are set.
2733 */
2734static int __perf_install_in_context(void *info)
2735{
2736 struct perf_event *event = info;
2737 struct perf_event_context *ctx = event->ctx;
2738 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2739 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2740 bool reprogram = true;
2741 int ret = 0;
2742
2743 raw_spin_lock(&cpuctx->ctx.lock);
2744 if (ctx->task) {
2745 raw_spin_lock(&ctx->lock);
2746 task_ctx = ctx;
2747
2748 reprogram = (ctx->task == current);
2749
2750 /*
2751 * If the task is running, it must be running on this CPU,
2752 * otherwise we cannot reprogram things.
2753 *
2754 * If its not running, we don't care, ctx->lock will
2755 * serialize against it becoming runnable.
2756 */
2757 if (task_curr(p: ctx->task) && !reprogram) {
2758 ret = -ESRCH;
2759 goto unlock;
2760 }
2761
2762 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2763 } else if (task_ctx) {
2764 raw_spin_lock(&task_ctx->lock);
2765 }
2766
2767#ifdef CONFIG_CGROUP_PERF
2768 if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) {
2769 /*
2770 * If the current cgroup doesn't match the event's
2771 * cgroup, we should not try to schedule it.
2772 */
2773 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2774 reprogram = cgroup_is_descendant(cgrp: cgrp->css.cgroup,
2775 ancestor: event->cgrp->css.cgroup);
2776 }
2777#endif
2778
2779 if (reprogram) {
2780 ctx_sched_out(ctx, event_type: EVENT_TIME);
2781 add_event_to_ctx(event, ctx);
2782 ctx_resched(cpuctx, task_ctx, event_type: get_event_type(event));
2783 } else {
2784 add_event_to_ctx(event, ctx);
2785 }
2786
2787unlock:
2788 perf_ctx_unlock(cpuctx, ctx: task_ctx);
2789
2790 return ret;
2791}
2792
2793static bool exclusive_event_installable(struct perf_event *event,
2794 struct perf_event_context *ctx);
2795
2796/*
2797 * Attach a performance event to a context.
2798 *
2799 * Very similar to event_function_call, see comment there.
2800 */
2801static void
2802perf_install_in_context(struct perf_event_context *ctx,
2803 struct perf_event *event,
2804 int cpu)
2805{
2806 struct task_struct *task = READ_ONCE(ctx->task);
2807
2808 lockdep_assert_held(&ctx->mutex);
2809
2810 WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2811
2812 if (event->cpu != -1)
2813 WARN_ON_ONCE(event->cpu != cpu);
2814
2815 /*
2816 * Ensures that if we can observe event->ctx, both the event and ctx
2817 * will be 'complete'. See perf_iterate_sb_cpu().
2818 */
2819 smp_store_release(&event->ctx, ctx);
2820
2821 /*
2822 * perf_event_attr::disabled events will not run and can be initialized
2823 * without IPI. Except when this is the first event for the context, in
2824 * that case we need the magic of the IPI to set ctx->is_active.
2825 *
2826 * The IOC_ENABLE that is sure to follow the creation of a disabled
2827 * event will issue the IPI and reprogram the hardware.
2828 */
2829 if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF &&
2830 ctx->nr_events && !is_cgroup_event(event)) {
2831 raw_spin_lock_irq(&ctx->lock);
2832 if (ctx->task == TASK_TOMBSTONE) {
2833 raw_spin_unlock_irq(&ctx->lock);
2834 return;
2835 }
2836 add_event_to_ctx(event, ctx);
2837 raw_spin_unlock_irq(&ctx->lock);
2838 return;
2839 }
2840
2841 if (!task) {
2842 cpu_function_call(cpu, func: __perf_install_in_context, info: event);
2843 return;
2844 }
2845
2846 /*
2847 * Should not happen, we validate the ctx is still alive before calling.
2848 */
2849 if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2850 return;
2851
2852 /*
2853 * Installing events is tricky because we cannot rely on ctx->is_active
2854 * to be set in case this is the nr_events 0 -> 1 transition.
2855 *
2856 * Instead we use task_curr(), which tells us if the task is running.
2857 * However, since we use task_curr() outside of rq::lock, we can race
2858 * against the actual state. This means the result can be wrong.
2859 *
2860 * If we get a false positive, we retry, this is harmless.
2861 *
2862 * If we get a false negative, things are complicated. If we are after
2863 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2864 * value must be correct. If we're before, it doesn't matter since
2865 * perf_event_context_sched_in() will program the counter.
2866 *
2867 * However, this hinges on the remote context switch having observed
2868 * our task->perf_event_ctxp[] store, such that it will in fact take
2869 * ctx::lock in perf_event_context_sched_in().
2870 *
2871 * We do this by task_function_call(), if the IPI fails to hit the task
2872 * we know any future context switch of task must see the
2873 * perf_event_ctpx[] store.
2874 */
2875
2876 /*
2877 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2878 * task_cpu() load, such that if the IPI then does not find the task
2879 * running, a future context switch of that task must observe the
2880 * store.
2881 */
2882 smp_mb();
2883again:
2884 if (!task_function_call(p: task, func: __perf_install_in_context, info: event))
2885 return;
2886
2887 raw_spin_lock_irq(&ctx->lock);
2888 task = ctx->task;
2889 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2890 /*
2891 * Cannot happen because we already checked above (which also
2892 * cannot happen), and we hold ctx->mutex, which serializes us
2893 * against perf_event_exit_task_context().
2894 */
2895 raw_spin_unlock_irq(&ctx->lock);
2896 return;
2897 }
2898 /*
2899 * If the task is not running, ctx->lock will avoid it becoming so,
2900 * thus we can safely install the event.
2901 */
2902 if (task_curr(p: task)) {
2903 raw_spin_unlock_irq(&ctx->lock);
2904 goto again;
2905 }
2906 add_event_to_ctx(event, ctx);
2907 raw_spin_unlock_irq(&ctx->lock);
2908}
2909
2910/*
2911 * Cross CPU call to enable a performance event
2912 */
2913static void __perf_event_enable(struct perf_event *event,
2914 struct perf_cpu_context *cpuctx,
2915 struct perf_event_context *ctx,
2916 void *info)
2917{
2918 struct perf_event *leader = event->group_leader;
2919 struct perf_event_context *task_ctx;
2920
2921 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2922 event->state <= PERF_EVENT_STATE_ERROR)
2923 return;
2924
2925 if (ctx->is_active)
2926 ctx_sched_out(ctx, event_type: EVENT_TIME);
2927
2928 perf_event_set_state(event, state: PERF_EVENT_STATE_INACTIVE);
2929 perf_cgroup_event_enable(event, ctx);
2930
2931 if (!ctx->is_active)
2932 return;
2933
2934 if (!event_filter_match(event)) {
2935 ctx_sched_in(ctx, event_type: EVENT_TIME);
2936 return;
2937 }
2938
2939 /*
2940 * If the event is in a group and isn't the group leader,
2941 * then don't put it on unless the group is on.
2942 */
2943 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2944 ctx_sched_in(ctx, event_type: EVENT_TIME);
2945 return;
2946 }
2947
2948 task_ctx = cpuctx->task_ctx;
2949 if (ctx->task)
2950 WARN_ON_ONCE(task_ctx != ctx);
2951
2952 ctx_resched(cpuctx, task_ctx, event_type: get_event_type(event));
2953}
2954
2955/*
2956 * Enable an event.
2957 *
2958 * If event->ctx is a cloned context, callers must make sure that
2959 * every task struct that event->ctx->task could possibly point to
2960 * remains valid. This condition is satisfied when called through
2961 * perf_event_for_each_child or perf_event_for_each as described
2962 * for perf_event_disable.
2963 */
2964static void _perf_event_enable(struct perf_event *event)
2965{
2966 struct perf_event_context *ctx = event->ctx;
2967
2968 raw_spin_lock_irq(&ctx->lock);
2969 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2970 event->state < PERF_EVENT_STATE_ERROR) {
2971out:
2972 raw_spin_unlock_irq(&ctx->lock);
2973 return;
2974 }
2975
2976 /*
2977 * If the event is in error state, clear that first.
2978 *
2979 * That way, if we see the event in error state below, we know that it
2980 * has gone back into error state, as distinct from the task having
2981 * been scheduled away before the cross-call arrived.
2982 */
2983 if (event->state == PERF_EVENT_STATE_ERROR) {
2984 /*
2985 * Detached SIBLING events cannot leave ERROR state.
2986 */
2987 if (event->event_caps & PERF_EV_CAP_SIBLING &&
2988 event->group_leader == event)
2989 goto out;
2990
2991 event->state = PERF_EVENT_STATE_OFF;
2992 }
2993 raw_spin_unlock_irq(&ctx->lock);
2994
2995 event_function_call(event, func: __perf_event_enable, NULL);
2996}
2997
2998/*
2999 * See perf_event_disable();
3000 */
3001void perf_event_enable(struct perf_event *event)
3002{
3003 struct perf_event_context *ctx;
3004
3005 ctx = perf_event_ctx_lock(event);
3006 _perf_event_enable(event);
3007 perf_event_ctx_unlock(event, ctx);
3008}
3009EXPORT_SYMBOL_GPL(perf_event_enable);
3010
3011struct stop_event_data {
3012 struct perf_event *event;
3013 unsigned int restart;
3014};
3015
3016static int __perf_event_stop(void *info)
3017{
3018 struct stop_event_data *sd = info;
3019 struct perf_event *event = sd->event;
3020
3021 /* if it's already INACTIVE, do nothing */
3022 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3023 return 0;
3024
3025 /* matches smp_wmb() in event_sched_in() */
3026 smp_rmb();
3027
3028 /*
3029 * There is a window with interrupts enabled before we get here,
3030 * so we need to check again lest we try to stop another CPU's event.
3031 */
3032 if (READ_ONCE(event->oncpu) != smp_processor_id())
3033 return -EAGAIN;
3034
3035 event->pmu->stop(event, PERF_EF_UPDATE);
3036
3037 /*
3038 * May race with the actual stop (through perf_pmu_output_stop()),
3039 * but it is only used for events with AUX ring buffer, and such
3040 * events will refuse to restart because of rb::aux_mmap_count==0,
3041 * see comments in perf_aux_output_begin().
3042 *
3043 * Since this is happening on an event-local CPU, no trace is lost
3044 * while restarting.
3045 */
3046 if (sd->restart)
3047 event->pmu->start(event, 0);
3048
3049 return 0;
3050}
3051
3052static int perf_event_stop(struct perf_event *event, int restart)
3053{
3054 struct stop_event_data sd = {
3055 .event = event,
3056 .restart = restart,
3057 };
3058 int ret = 0;
3059
3060 do {
3061 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3062 return 0;
3063
3064 /* matches smp_wmb() in event_sched_in() */
3065 smp_rmb();
3066
3067 /*
3068 * We only want to restart ACTIVE events, so if the event goes
3069 * inactive here (event->oncpu==-1), there's nothing more to do;
3070 * fall through with ret==-ENXIO.
3071 */
3072 ret = cpu_function_call(READ_ONCE(event->oncpu),
3073 func: __perf_event_stop, info: &sd);
3074 } while (ret == -EAGAIN);
3075
3076 return ret;
3077}
3078
3079/*
3080 * In order to contain the amount of racy and tricky in the address filter
3081 * configuration management, it is a two part process:
3082 *
3083 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
3084 * we update the addresses of corresponding vmas in
3085 * event::addr_filter_ranges array and bump the event::addr_filters_gen;
3086 * (p2) when an event is scheduled in (pmu::add), it calls
3087 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
3088 * if the generation has changed since the previous call.
3089 *
3090 * If (p1) happens while the event is active, we restart it to force (p2).
3091 *
3092 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
3093 * pre-existing mappings, called once when new filters arrive via SET_FILTER
3094 * ioctl;
3095 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
3096 * registered mapping, called for every new mmap(), with mm::mmap_lock down
3097 * for reading;
3098 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
3099 * of exec.
3100 */
3101void perf_event_addr_filters_sync(struct perf_event *event)
3102{
3103 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
3104
3105 if (!has_addr_filter(event))
3106 return;
3107
3108 raw_spin_lock(&ifh->lock);
3109 if (event->addr_filters_gen != event->hw.addr_filters_gen) {
3110 event->pmu->addr_filters_sync(event);
3111 event->hw.addr_filters_gen = event->addr_filters_gen;
3112 }
3113 raw_spin_unlock(&ifh->lock);
3114}
3115EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
3116
3117static int _perf_event_refresh(struct perf_event *event, int refresh)
3118{
3119 /*
3120 * not supported on inherited events
3121 */
3122 if (event->attr.inherit || !is_sampling_event(event))
3123 return -EINVAL;
3124
3125 atomic_add(i: refresh, v: &event->event_limit);
3126 _perf_event_enable(event);
3127
3128 return 0;
3129}
3130
3131/*
3132 * See perf_event_disable()
3133 */
3134int perf_event_refresh(struct perf_event *event, int refresh)
3135{
3136 struct perf_event_context *ctx;
3137 int ret;
3138
3139 ctx = perf_event_ctx_lock(event);
3140 ret = _perf_event_refresh(event, refresh);
3141 perf_event_ctx_unlock(event, ctx);
3142
3143 return ret;
3144}
3145EXPORT_SYMBOL_GPL(perf_event_refresh);
3146
3147static int perf_event_modify_breakpoint(struct perf_event *bp,
3148 struct perf_event_attr *attr)
3149{
3150 int err;
3151
3152 _perf_event_disable(event: bp);
3153
3154 err = modify_user_hw_breakpoint_check(bp, attr, check: true);
3155
3156 if (!bp->attr.disabled)
3157 _perf_event_enable(event: bp);
3158
3159 return err;
3160}
3161
3162/*
3163 * Copy event-type-independent attributes that may be modified.
3164 */
3165static void perf_event_modify_copy_attr(struct perf_event_attr *to,
3166 const struct perf_event_attr *from)
3167{
3168 to->sig_data = from->sig_data;
3169}
3170
3171static int perf_event_modify_attr(struct perf_event *event,
3172 struct perf_event_attr *attr)
3173{
3174 int (*func)(struct perf_event *, struct perf_event_attr *);
3175 struct perf_event *child;
3176 int err;
3177
3178 if (event->attr.type != attr->type)
3179 return -EINVAL;
3180
3181 switch (event->attr.type) {
3182 case PERF_TYPE_BREAKPOINT:
3183 func = perf_event_modify_breakpoint;
3184 break;
3185 default:
3186 /* Place holder for future additions. */
3187 return -EOPNOTSUPP;
3188 }
3189
3190 WARN_ON_ONCE(event->ctx->parent_ctx);
3191
3192 mutex_lock(&event->child_mutex);
3193 /*
3194 * Event-type-independent attributes must be copied before event-type
3195 * modification, which will validate that final attributes match the
3196 * source attributes after all relevant attributes have been copied.
3197 */
3198 perf_event_modify_copy_attr(to: &event->attr, from: attr);
3199 err = func(event, attr);
3200 if (err)
3201 goto out;
3202 list_for_each_entry(child, &event->child_list, child_list) {
3203 perf_event_modify_copy_attr(to: &child->attr, from: attr);
3204 err = func(child, attr);
3205 if (err)
3206 goto out;
3207 }
3208out:
3209 mutex_unlock(lock: &event->child_mutex);
3210 return err;
3211}
3212
3213static void __pmu_ctx_sched_out(struct perf_event_pmu_context *pmu_ctx,
3214 enum event_type_t event_type)
3215{
3216 struct perf_event_context *ctx = pmu_ctx->ctx;
3217 struct perf_event *event, *tmp;
3218 struct pmu *pmu = pmu_ctx->pmu;
3219
3220 if (ctx->task && !ctx->is_active) {
3221 struct perf_cpu_pmu_context *cpc;
3222
3223 cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3224 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
3225 cpc->task_epc = NULL;
3226 }
3227
3228 if (!event_type)
3229 return;
3230
3231 perf_pmu_disable(pmu);
3232 if (event_type & EVENT_PINNED) {
3233 list_for_each_entry_safe(event, tmp,
3234 &pmu_ctx->pinned_active,
3235 active_list)
3236 group_sched_out(group_event: event, ctx);
3237 }
3238
3239 if (event_type & EVENT_FLEXIBLE) {
3240 list_for_each_entry_safe(event, tmp,
3241 &pmu_ctx->flexible_active,
3242 active_list)
3243 group_sched_out(group_event: event, ctx);
3244 /*
3245 * Since we cleared EVENT_FLEXIBLE, also clear
3246 * rotate_necessary, is will be reset by
3247 * ctx_flexible_sched_in() when needed.
3248 */
3249 pmu_ctx->rotate_necessary = 0;
3250 }
3251 perf_pmu_enable(pmu);
3252}
3253
3254static void
3255ctx_sched_out(struct perf_event_context *ctx, enum event_type_t event_type)
3256{
3257 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3258 struct perf_event_pmu_context *pmu_ctx;
3259 int is_active = ctx->is_active;
3260 bool cgroup = event_type & EVENT_CGROUP;
3261
3262 event_type &= ~EVENT_CGROUP;
3263
3264 lockdep_assert_held(&ctx->lock);
3265
3266 if (likely(!ctx->nr_events)) {
3267 /*
3268 * See __perf_remove_from_context().
3269 */
3270 WARN_ON_ONCE(ctx->is_active);
3271 if (ctx->task)
3272 WARN_ON_ONCE(cpuctx->task_ctx);
3273 return;
3274 }
3275
3276 /*
3277 * Always update time if it was set; not only when it changes.
3278 * Otherwise we can 'forget' to update time for any but the last
3279 * context we sched out. For example:
3280 *
3281 * ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3282 * ctx_sched_out(.event_type = EVENT_PINNED)
3283 *
3284 * would only update time for the pinned events.
3285 */
3286 if (is_active & EVENT_TIME) {
3287 /* update (and stop) ctx time */
3288 update_context_time(ctx);
3289 update_cgrp_time_from_cpuctx(cpuctx, final: ctx == &cpuctx->ctx);
3290 /*
3291 * CPU-release for the below ->is_active store,
3292 * see __load_acquire() in perf_event_time_now()
3293 */
3294 barrier();
3295 }
3296
3297 ctx->is_active &= ~event_type;
3298 if (!(ctx->is_active & EVENT_ALL))
3299 ctx->is_active = 0;
3300
3301 if (ctx->task) {
3302 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3303 if (!ctx->is_active)
3304 cpuctx->task_ctx = NULL;
3305 }
3306
3307 is_active ^= ctx->is_active; /* changed bits */
3308
3309 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
3310 if (cgroup && !pmu_ctx->nr_cgroups)
3311 continue;
3312 __pmu_ctx_sched_out(pmu_ctx, event_type: is_active);
3313 }
3314}
3315
3316/*
3317 * Test whether two contexts are equivalent, i.e. whether they have both been
3318 * cloned from the same version of the same context.
3319 *
3320 * Equivalence is measured using a generation number in the context that is
3321 * incremented on each modification to it; see unclone_ctx(), list_add_event()
3322 * and list_del_event().
3323 */
3324static int context_equiv(struct perf_event_context *ctx1,
3325 struct perf_event_context *ctx2)
3326{
3327 lockdep_assert_held(&ctx1->lock);
3328 lockdep_assert_held(&ctx2->lock);
3329
3330 /* Pinning disables the swap optimization */
3331 if (ctx1->pin_count || ctx2->pin_count)
3332 return 0;
3333
3334 /* If ctx1 is the parent of ctx2 */
3335 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3336 return 1;
3337
3338 /* If ctx2 is the parent of ctx1 */
3339 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3340 return 1;
3341
3342 /*
3343 * If ctx1 and ctx2 have the same parent; we flatten the parent
3344 * hierarchy, see perf_event_init_context().
3345 */
3346 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3347 ctx1->parent_gen == ctx2->parent_gen)
3348 return 1;
3349
3350 /* Unmatched */
3351 return 0;
3352}
3353
3354static void __perf_event_sync_stat(struct perf_event *event,
3355 struct perf_event *next_event)
3356{
3357 u64 value;
3358
3359 if (!event->attr.inherit_stat)
3360 return;
3361
3362 /*
3363 * Update the event value, we cannot use perf_event_read()
3364 * because we're in the middle of a context switch and have IRQs
3365 * disabled, which upsets smp_call_function_single(), however
3366 * we know the event must be on the current CPU, therefore we
3367 * don't need to use it.
3368 */
3369 if (event->state == PERF_EVENT_STATE_ACTIVE)
3370 event->pmu->read(event);
3371
3372 perf_event_update_time(event);
3373
3374 /*
3375 * In order to keep per-task stats reliable we need to flip the event
3376 * values when we flip the contexts.
3377 */
3378 value = local64_read(&next_event->count);
3379 value = local64_xchg(&event->count, value);
3380 local64_set(&next_event->count, value);
3381
3382 swap(event->total_time_enabled, next_event->total_time_enabled);
3383 swap(event->total_time_running, next_event->total_time_running);
3384
3385 /*
3386 * Since we swizzled the values, update the user visible data too.
3387 */
3388 perf_event_update_userpage(event);
3389 perf_event_update_userpage(event: next_event);
3390}
3391
3392static void perf_event_sync_stat(struct perf_event_context *ctx,
3393 struct perf_event_context *next_ctx)
3394{
3395 struct perf_event *event, *next_event;
3396
3397 if (!ctx->nr_stat)
3398 return;
3399
3400 update_context_time(ctx);
3401
3402 event = list_first_entry(&ctx->event_list,
3403 struct perf_event, event_entry);
3404
3405 next_event = list_first_entry(&next_ctx->event_list,
3406 struct perf_event, event_entry);
3407
3408 while (&event->event_entry != &ctx->event_list &&
3409 &next_event->event_entry != &next_ctx->event_list) {
3410
3411 __perf_event_sync_stat(event, next_event);
3412
3413 event = list_next_entry(event, event_entry);
3414 next_event = list_next_entry(next_event, event_entry);
3415 }
3416}
3417
3418#define double_list_for_each_entry(pos1, pos2, head1, head2, member) \
3419 for (pos1 = list_first_entry(head1, typeof(*pos1), member), \
3420 pos2 = list_first_entry(head2, typeof(*pos2), member); \
3421 !list_entry_is_head(pos1, head1, member) && \
3422 !list_entry_is_head(pos2, head2, member); \
3423 pos1 = list_next_entry(pos1, member), \
3424 pos2 = list_next_entry(pos2, member))
3425
3426static void perf_event_swap_task_ctx_data(struct perf_event_context *prev_ctx,
3427 struct perf_event_context *next_ctx)
3428{
3429 struct perf_event_pmu_context *prev_epc, *next_epc;
3430
3431 if (!prev_ctx->nr_task_data)
3432 return;
3433
3434 double_list_for_each_entry(prev_epc, next_epc,
3435 &prev_ctx->pmu_ctx_list, &next_ctx->pmu_ctx_list,
3436 pmu_ctx_entry) {
3437
3438 if (WARN_ON_ONCE(prev_epc->pmu != next_epc->pmu))
3439 continue;
3440
3441 /*
3442 * PMU specific parts of task perf context can require
3443 * additional synchronization. As an example of such
3444 * synchronization see implementation details of Intel
3445 * LBR call stack data profiling;
3446 */
3447 if (prev_epc->pmu->swap_task_ctx)
3448 prev_epc->pmu->swap_task_ctx(prev_epc, next_epc);
3449 else
3450 swap(prev_epc->task_ctx_data, next_epc->task_ctx_data);
3451 }
3452}
3453
3454static void perf_ctx_sched_task_cb(struct perf_event_context *ctx, bool sched_in)
3455{
3456 struct perf_event_pmu_context *pmu_ctx;
3457 struct perf_cpu_pmu_context *cpc;
3458
3459 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
3460 cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
3461
3462 if (cpc->sched_cb_usage && pmu_ctx->pmu->sched_task)
3463 pmu_ctx->pmu->sched_task(pmu_ctx, sched_in);
3464 }
3465}
3466
3467static void
3468perf_event_context_sched_out(struct task_struct *task, struct task_struct *next)
3469{
3470 struct perf_event_context *ctx = task->perf_event_ctxp;
3471 struct perf_event_context *next_ctx;
3472 struct perf_event_context *parent, *next_parent;
3473 int do_switch = 1;
3474
3475 if (likely(!ctx))
3476 return;
3477
3478 rcu_read_lock();
3479 next_ctx = rcu_dereference(next->perf_event_ctxp);
3480 if (!next_ctx)
3481 goto unlock;
3482
3483 parent = rcu_dereference(ctx->parent_ctx);
3484 next_parent = rcu_dereference(next_ctx->parent_ctx);
3485
3486 /* If neither context have a parent context; they cannot be clones. */
3487 if (!parent && !next_parent)
3488 goto unlock;
3489
3490 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3491 /*
3492 * Looks like the two contexts are clones, so we might be
3493 * able to optimize the context switch. We lock both
3494 * contexts and check that they are clones under the
3495 * lock (including re-checking that neither has been
3496 * uncloned in the meantime). It doesn't matter which
3497 * order we take the locks because no other cpu could
3498 * be trying to lock both of these tasks.
3499 */
3500 raw_spin_lock(&ctx->lock);
3501 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3502 if (context_equiv(ctx1: ctx, ctx2: next_ctx)) {
3503
3504 perf_ctx_disable(ctx, cgroup: false);
3505
3506 /* PMIs are disabled; ctx->nr_pending is stable. */
3507 if (local_read(&ctx->nr_pending) ||
3508 local_read(&next_ctx->nr_pending)) {
3509 /*
3510 * Must not swap out ctx when there's pending
3511 * events that rely on the ctx->task relation.
3512 */
3513 raw_spin_unlock(&next_ctx->lock);
3514 rcu_read_unlock();
3515 goto inside_switch;
3516 }
3517
3518 WRITE_ONCE(ctx->task, next);
3519 WRITE_ONCE(next_ctx->task, task);
3520
3521 perf_ctx_sched_task_cb(ctx, sched_in: false);
3522 perf_event_swap_task_ctx_data(prev_ctx: ctx, next_ctx);
3523
3524 perf_ctx_enable(ctx, cgroup: false);
3525
3526 /*
3527 * RCU_INIT_POINTER here is safe because we've not
3528 * modified the ctx and the above modification of
3529 * ctx->task and ctx->task_ctx_data are immaterial
3530 * since those values are always verified under
3531 * ctx->lock which we're now holding.
3532 */
3533 RCU_INIT_POINTER(task->perf_event_ctxp, next_ctx);
3534 RCU_INIT_POINTER(next->perf_event_ctxp, ctx);
3535
3536 do_switch = 0;
3537
3538 perf_event_sync_stat(ctx, next_ctx);
3539 }
3540 raw_spin_unlock(&next_ctx->lock);
3541 raw_spin_unlock(&ctx->lock);
3542 }
3543unlock:
3544 rcu_read_unlock();
3545
3546 if (do_switch) {
3547 raw_spin_lock(&ctx->lock);
3548 perf_ctx_disable(ctx, cgroup: false);
3549
3550inside_switch:
3551 perf_ctx_sched_task_cb(ctx, sched_in: false);
3552 task_ctx_sched_out(ctx, event_type: EVENT_ALL);
3553
3554 perf_ctx_enable(ctx, cgroup: false);
3555 raw_spin_unlock(&ctx->lock);
3556 }
3557}
3558
3559static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3560static DEFINE_PER_CPU(int, perf_sched_cb_usages);
3561
3562void perf_sched_cb_dec(struct pmu *pmu)
3563{
3564 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3565
3566 this_cpu_dec(perf_sched_cb_usages);
3567 barrier();
3568
3569 if (!--cpc->sched_cb_usage)
3570 list_del(entry: &cpc->sched_cb_entry);
3571}
3572
3573
3574void perf_sched_cb_inc(struct pmu *pmu)
3575{
3576 struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3577
3578 if (!cpc->sched_cb_usage++)
3579 list_add(new: &cpc->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3580
3581 barrier();
3582 this_cpu_inc(perf_sched_cb_usages);
3583}
3584
3585/*
3586 * This function provides the context switch callback to the lower code
3587 * layer. It is invoked ONLY when the context switch callback is enabled.
3588 *
3589 * This callback is relevant even to per-cpu events; for example multi event
3590 * PEBS requires this to provide PID/TID information. This requires we flush
3591 * all queued PEBS records before we context switch to a new task.
3592 */
3593static void __perf_pmu_sched_task(struct perf_cpu_pmu_context *cpc, bool sched_in)
3594{
3595 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3596 struct pmu *pmu;
3597
3598 pmu = cpc->epc.pmu;
3599
3600 /* software PMUs will not have sched_task */
3601 if (WARN_ON_ONCE(!pmu->sched_task))
3602 return;
3603
3604 perf_ctx_lock(cpuctx, ctx: cpuctx->task_ctx);
3605 perf_pmu_disable(pmu);
3606
3607 pmu->sched_task(cpc->task_epc, sched_in);
3608
3609 perf_pmu_enable(pmu);
3610 perf_ctx_unlock(cpuctx, ctx: cpuctx->task_ctx);
3611}
3612
3613static void perf_pmu_sched_task(struct task_struct *prev,
3614 struct task_struct *next,
3615 bool sched_in)
3616{
3617 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3618 struct perf_cpu_pmu_context *cpc;
3619
3620 /* cpuctx->task_ctx will be handled in perf_event_context_sched_in/out */
3621 if (prev == next || cpuctx->task_ctx)
3622 return;
3623
3624 list_for_each_entry(cpc, this_cpu_ptr(&sched_cb_list), sched_cb_entry)
3625 __perf_pmu_sched_task(cpc, sched_in);
3626}
3627
3628static void perf_event_switch(struct task_struct *task,
3629 struct task_struct *next_prev, bool sched_in);
3630
3631/*
3632 * Called from scheduler to remove the events of the current task,
3633 * with interrupts disabled.
3634 *
3635 * We stop each event and update the event value in event->count.
3636 *
3637 * This does not protect us against NMI, but disable()
3638 * sets the disabled bit in the control field of event _before_
3639 * accessing the event control register. If a NMI hits, then it will
3640 * not restart the event.
3641 */
3642void __perf_event_task_sched_out(struct task_struct *task,
3643 struct task_struct *next)
3644{
3645 if (__this_cpu_read(perf_sched_cb_usages))
3646 perf_pmu_sched_task(prev: task, next, sched_in: false);
3647
3648 if (atomic_read(v: &nr_switch_events))
3649 perf_event_switch(task, next_prev: next, sched_in: false);
3650
3651 perf_event_context_sched_out(task, next);
3652
3653 /*
3654 * if cgroup events exist on this CPU, then we need
3655 * to check if we have to switch out PMU state.
3656 * cgroup event are system-wide mode only
3657 */
3658 perf_cgroup_switch(task: next);
3659}
3660
3661static bool perf_less_group_idx(const void *l, const void *r)
3662{
3663 const struct perf_event *le = *(const struct perf_event **)l;
3664 const struct perf_event *re = *(const struct perf_event **)r;
3665
3666 return le->group_index < re->group_index;
3667}
3668
3669static void swap_ptr(void *l, void *r)
3670{
3671 void **lp = l, **rp = r;
3672
3673 swap(*lp, *rp);
3674}
3675
3676static const struct min_heap_callbacks perf_min_heap = {
3677 .elem_size = sizeof(struct perf_event *),
3678 .less = perf_less_group_idx,
3679 .swp = swap_ptr,
3680};
3681
3682static void __heap_add(struct min_heap *heap, struct perf_event *event)
3683{
3684 struct perf_event **itrs = heap->data;
3685
3686 if (event) {
3687 itrs[heap->nr] = event;
3688 heap->nr++;
3689 }
3690}
3691
3692static void __link_epc(struct perf_event_pmu_context *pmu_ctx)
3693{
3694 struct perf_cpu_pmu_context *cpc;
3695
3696 if (!pmu_ctx->ctx->task)
3697 return;
3698
3699 cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
3700 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
3701 cpc->task_epc = pmu_ctx;
3702}
3703
3704static noinline int visit_groups_merge(struct perf_event_context *ctx,
3705 struct perf_event_groups *groups, int cpu,
3706 struct pmu *pmu,
3707 int (*func)(struct perf_event *, void *),
3708 void *data)
3709{
3710#ifdef CONFIG_CGROUP_PERF
3711 struct cgroup_subsys_state *css = NULL;
3712#endif
3713 struct perf_cpu_context *cpuctx = NULL;
3714 /* Space for per CPU and/or any CPU event iterators. */
3715 struct perf_event *itrs[2];
3716 struct min_heap event_heap;
3717 struct perf_event **evt;
3718 int ret;
3719
3720 if (pmu->filter && pmu->filter(pmu, cpu))
3721 return 0;
3722
3723 if (!ctx->task) {
3724 cpuctx = this_cpu_ptr(&perf_cpu_context);
3725 event_heap = (struct min_heap){
3726 .data = cpuctx->heap,
3727 .nr = 0,
3728 .size = cpuctx->heap_size,
3729 };
3730
3731 lockdep_assert_held(&cpuctx->ctx.lock);
3732
3733#ifdef CONFIG_CGROUP_PERF
3734 if (cpuctx->cgrp)
3735 css = &cpuctx->cgrp->css;
3736#endif
3737 } else {
3738 event_heap = (struct min_heap){
3739 .data = itrs,
3740 .nr = 0,
3741 .size = ARRAY_SIZE(itrs),
3742 };
3743 /* Events not within a CPU context may be on any CPU. */
3744 __heap_add(heap: &event_heap, event: perf_event_groups_first(groups, cpu: -1, pmu, NULL));
3745 }
3746 evt = event_heap.data;
3747
3748 __heap_add(heap: &event_heap, event: perf_event_groups_first(groups, cpu, pmu, NULL));
3749
3750#ifdef CONFIG_CGROUP_PERF
3751 for (; css; css = css->parent)
3752 __heap_add(heap: &event_heap, event: perf_event_groups_first(groups, cpu, pmu, cgrp: css->cgroup));
3753#endif
3754
3755 if (event_heap.nr) {
3756 __link_epc(pmu_ctx: (*evt)->pmu_ctx);
3757 perf_assert_pmu_disabled(pmu: (*evt)->pmu_ctx->pmu);
3758 }
3759
3760 min_heapify_all(heap: &event_heap, func: &perf_min_heap);
3761
3762 while (event_heap.nr) {
3763 ret = func(*evt, data);
3764 if (ret)
3765 return ret;
3766
3767 *evt = perf_event_groups_next(event: *evt, pmu);
3768 if (*evt)
3769 min_heapify(heap: &event_heap, pos: 0, func: &perf_min_heap);
3770 else
3771 min_heap_pop(heap: &event_heap, func: &perf_min_heap);
3772 }
3773
3774 return 0;
3775}
3776
3777/*
3778 * Because the userpage is strictly per-event (there is no concept of context,
3779 * so there cannot be a context indirection), every userpage must be updated
3780 * when context time starts :-(
3781 *
3782 * IOW, we must not miss EVENT_TIME edges.
3783 */
3784static inline bool event_update_userpage(struct perf_event *event)
3785{
3786 if (likely(!atomic_read(&event->mmap_count)))
3787 return false;
3788
3789 perf_event_update_time(event);
3790 perf_event_update_userpage(event);
3791
3792 return true;
3793}
3794
3795static inline void group_update_userpage(struct perf_event *group_event)
3796{
3797 struct perf_event *event;
3798
3799 if (!event_update_userpage(event: group_event))
3800 return;
3801
3802 for_each_sibling_event(event, group_event)
3803 event_update_userpage(event);
3804}
3805
3806static int merge_sched_in(struct perf_event *event, void *data)
3807{
3808 struct perf_event_context *ctx = event->ctx;
3809 int *can_add_hw = data;
3810
3811 if (event->state <= PERF_EVENT_STATE_OFF)
3812 return 0;
3813
3814 if (!event_filter_match(event))
3815 return 0;
3816
3817 if (group_can_go_on(event, can_add_hw: *can_add_hw)) {
3818 if (!group_sched_in(group_event: event, ctx))
3819 list_add_tail(new: &event->active_list, head: get_event_list(event));
3820 }
3821
3822 if (event->state == PERF_EVENT_STATE_INACTIVE) {
3823 *can_add_hw = 0;
3824 if (event->attr.pinned) {
3825 perf_cgroup_event_disable(event, ctx);
3826 perf_event_set_state(event, state: PERF_EVENT_STATE_ERROR);
3827 } else {
3828 struct perf_cpu_pmu_context *cpc;
3829
3830 event->pmu_ctx->rotate_necessary = 1;
3831 cpc = this_cpu_ptr(event->pmu_ctx->pmu->cpu_pmu_context);
3832 perf_mux_hrtimer_restart(cpc);
3833 group_update_userpage(group_event: event);
3834 }
3835 }
3836
3837 return 0;
3838}
3839
3840static void pmu_groups_sched_in(struct perf_event_context *ctx,
3841 struct perf_event_groups *groups,
3842 struct pmu *pmu)
3843{
3844 int can_add_hw = 1;
3845 visit_groups_merge(ctx, groups, smp_processor_id(), pmu,
3846 func: merge_sched_in, data: &can_add_hw);
3847}
3848
3849static void ctx_groups_sched_in(struct perf_event_context *ctx,
3850 struct perf_event_groups *groups,
3851 bool cgroup)
3852{
3853 struct perf_event_pmu_context *pmu_ctx;
3854
3855 list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
3856 if (cgroup && !pmu_ctx->nr_cgroups)
3857 continue;
3858 pmu_groups_sched_in(ctx, groups, pmu: pmu_ctx->pmu);
3859 }
3860}
3861
3862static void __pmu_ctx_sched_in(struct perf_event_context *ctx,
3863 struct pmu *pmu)
3864{
3865 pmu_groups_sched_in(ctx, groups: &ctx->flexible_groups, pmu);
3866}
3867
3868static void
3869ctx_sched_in(struct perf_event_context *ctx, enum event_type_t event_type)
3870{
3871 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3872 int is_active = ctx->is_active;
3873 bool cgroup = event_type & EVENT_CGROUP;
3874
3875 event_type &= ~EVENT_CGROUP;
3876
3877 lockdep_assert_held(&ctx->lock);
3878
3879 if (likely(!ctx->nr_events))
3880 return;
3881
3882 if (!(is_active & EVENT_TIME)) {
3883 /* start ctx time */
3884 __update_context_time(ctx, adv: false);
3885 perf_cgroup_set_timestamp(cpuctx);
3886 /*
3887 * CPU-release for the below ->is_active store,
3888 * see __load_acquire() in perf_event_time_now()
3889 */
3890 barrier();
3891 }
3892
3893 ctx->is_active |= (event_type | EVENT_TIME);
3894 if (ctx->task) {
3895 if (!is_active)
3896 cpuctx->task_ctx = ctx;
3897 else
3898 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3899 }
3900
3901 is_active ^= ctx->is_active; /* changed bits */
3902
3903 /*
3904 * First go through the list and put on any pinned groups
3905 * in order to give them the best chance of going on.
3906 */
3907 if (is_active & EVENT_PINNED)
3908 ctx_groups_sched_in(ctx, groups: &ctx->pinned_groups, cgroup);
3909
3910 /* Then walk through the lower prio flexible groups */
3911 if (is_active & EVENT_FLEXIBLE)
3912 ctx_groups_sched_in(ctx, groups: &ctx->flexible_groups, cgroup);
3913}
3914
3915static void perf_event_context_sched_in(struct task_struct *task)
3916{
3917 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3918 struct perf_event_context *ctx;
3919
3920 rcu_read_lock();
3921 ctx = rcu_dereference(task->perf_event_ctxp);
3922 if (!ctx)
3923 goto rcu_unlock;
3924
3925 if (cpuctx->task_ctx == ctx) {
3926 perf_ctx_lock(cpuctx, ctx);
3927 perf_ctx_disable(ctx, cgroup: false);
3928
3929 perf_ctx_sched_task_cb(ctx, sched_in: true);
3930
3931 perf_ctx_enable(ctx, cgroup: false);
3932 perf_ctx_unlock(cpuctx, ctx);
3933 goto rcu_unlock;
3934 }
3935
3936 perf_ctx_lock(cpuctx, ctx);
3937 /*
3938 * We must check ctx->nr_events while holding ctx->lock, such
3939 * that we serialize against perf_install_in_context().
3940 */
3941 if (!ctx->nr_events)
3942 goto unlock;
3943
3944 perf_ctx_disable(ctx, cgroup: false);
3945 /*
3946 * We want to keep the following priority order:
3947 * cpu pinned (that don't need to move), task pinned,
3948 * cpu flexible, task flexible.
3949 *
3950 * However, if task's ctx is not carrying any pinned
3951 * events, no need to flip the cpuctx's events around.
3952 */
3953 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) {
3954 perf_ctx_disable(ctx: &cpuctx->ctx, cgroup: false);
3955 ctx_sched_out(ctx: &cpuctx->ctx, event_type: EVENT_FLEXIBLE);
3956 }
3957
3958 perf_event_sched_in(cpuctx, ctx);
3959
3960 perf_ctx_sched_task_cb(ctx: cpuctx->task_ctx, sched_in: true);
3961
3962 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3963 perf_ctx_enable(ctx: &cpuctx->ctx, cgroup: false);
3964
3965 perf_ctx_enable(ctx, cgroup: false);
3966
3967unlock:
3968 perf_ctx_unlock(cpuctx, ctx);
3969rcu_unlock:
3970 rcu_read_unlock();
3971}
3972
3973/*
3974 * Called from scheduler to add the events of the current task
3975 * with interrupts disabled.
3976 *
3977 * We restore the event value and then enable it.
3978 *
3979 * This does not protect us against NMI, but enable()
3980 * sets the enabled bit in the control field of event _before_
3981 * accessing the event control register. If a NMI hits, then it will
3982 * keep the event running.
3983 */
3984void __perf_event_task_sched_in(struct task_struct *prev,
3985 struct task_struct *task)
3986{
3987 perf_event_context_sched_in(task);
3988
3989 if (atomic_read(v: &nr_switch_events))
3990 perf_event_switch(task, next_prev: prev, sched_in: true);
3991
3992 if (__this_cpu_read(perf_sched_cb_usages))
3993 perf_pmu_sched_task(prev, next: task, sched_in: true);
3994}
3995
3996static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3997{
3998 u64 frequency = event->attr.sample_freq;
3999 u64 sec = NSEC_PER_SEC;
4000 u64 divisor, dividend;
4001
4002 int count_fls, nsec_fls, frequency_fls, sec_fls;
4003
4004 count_fls = fls64(x: count);
4005 nsec_fls = fls64(x: nsec);
4006 frequency_fls = fls64(x: frequency);
4007 sec_fls = 30;
4008
4009 /*
4010 * We got @count in @nsec, with a target of sample_freq HZ
4011 * the target period becomes:
4012 *
4013 * @count * 10^9
4014 * period = -------------------
4015 * @nsec * sample_freq
4016 *
4017 */
4018
4019 /*
4020 * Reduce accuracy by one bit such that @a and @b converge
4021 * to a similar magnitude.
4022 */
4023#define REDUCE_FLS(a, b) \
4024do { \
4025 if (a##_fls > b##_fls) { \
4026 a >>= 1; \
4027 a##_fls--; \
4028 } else { \
4029 b >>= 1; \
4030 b##_fls--; \
4031 } \
4032} while (0)
4033
4034 /*
4035 * Reduce accuracy until either term fits in a u64, then proceed with
4036 * the other, so that finally we can do a u64/u64 division.
4037 */
4038 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
4039 REDUCE_FLS(nsec, frequency);
4040 REDUCE_FLS(sec, count);
4041 }
4042
4043 if (count_fls + sec_fls > 64) {
4044 divisor = nsec * frequency;
4045
4046 while (count_fls + sec_fls > 64) {
4047 REDUCE_FLS(count, sec);
4048 divisor >>= 1;
4049 }
4050
4051 dividend = count * sec;
4052 } else {
4053 dividend = count * sec;
4054
4055 while (nsec_fls + frequency_fls > 64) {
4056 REDUCE_FLS(nsec, frequency);
4057 dividend >>= 1;
4058 }
4059
4060 divisor = nsec * frequency;
4061 }
4062
4063 if (!divisor)
4064 return dividend;
4065
4066 return div64_u64(dividend, divisor);
4067}
4068
4069static DEFINE_PER_CPU(int, perf_throttled_count);
4070static DEFINE_PER_CPU(u64, perf_throttled_seq);
4071
4072static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
4073{
4074 struct hw_perf_event *hwc = &event->hw;
4075 s64 period, sample_period;
4076 s64 delta;
4077
4078 period = perf_calculate_period(event, nsec, count);
4079
4080 delta = (s64)(period - hwc->sample_period);
4081 delta = (delta + 7) / 8; /* low pass filter */
4082
4083 sample_period = hwc->sample_period + delta;
4084
4085 if (!sample_period)
4086 sample_period = 1;
4087
4088 hwc->sample_period = sample_period;
4089
4090 if (local64_read(&hwc->period_left) > 8*sample_period) {
4091 if (disable)
4092 event->pmu->stop(event, PERF_EF_UPDATE);
4093
4094 local64_set(&hwc->period_left, 0);
4095
4096 if (disable)
4097 event->pmu->start(event, PERF_EF_RELOAD);
4098 }
4099}
4100
4101/*
4102 * combine freq adjustment with unthrottling to avoid two passes over the
4103 * events. At the same time, make sure, having freq events does not change
4104 * the rate of unthrottling as that would introduce bias.
4105 */
4106static void
4107perf_adjust_freq_unthr_context(struct perf_event_context *ctx, bool unthrottle)
4108{
4109 struct perf_event *event;
4110 struct hw_perf_event *hwc;
4111 u64 now, period = TICK_NSEC;
4112 s64 delta;
4113
4114 /*
4115 * only need to iterate over all events iff:
4116 * - context have events in frequency mode (needs freq adjust)
4117 * - there are events to unthrottle on this cpu
4118 */
4119 if (!(ctx->nr_freq || unthrottle))
4120 return;
4121
4122 raw_spin_lock(&ctx->lock);
4123
4124 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4125 if (event->state != PERF_EVENT_STATE_ACTIVE)
4126 continue;
4127
4128 // XXX use visit thingy to avoid the -1,cpu match
4129 if (!event_filter_match(event))
4130 continue;
4131
4132 perf_pmu_disable(pmu: event->pmu);
4133
4134 hwc = &event->hw;
4135
4136 if (hwc->interrupts == MAX_INTERRUPTS) {
4137 hwc->interrupts = 0;
4138 perf_log_throttle(event, enable: 1);
4139 event->pmu->start(event, 0);
4140 }
4141
4142 if (!event->attr.freq || !event->attr.sample_freq)
4143 goto next;
4144
4145 /*
4146 * stop the event and update event->count
4147 */
4148 event->pmu->stop(event, PERF_EF_UPDATE);
4149
4150 now = local64_read(&event->count);
4151 delta = now - hwc->freq_count_stamp;
4152 hwc->freq_count_stamp = now;
4153
4154 /*
4155 * restart the event
4156 * reload only if value has changed
4157 * we have stopped the event so tell that
4158 * to perf_adjust_period() to avoid stopping it
4159 * twice.
4160 */
4161 if (delta > 0)
4162 perf_adjust_period(event, nsec: period, count: delta, disable: false);
4163
4164 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
4165 next:
4166 perf_pmu_enable(pmu: event->pmu);
4167 }
4168
4169 raw_spin_unlock(&ctx->lock);
4170}
4171
4172/*
4173 * Move @event to the tail of the @ctx's elegible events.
4174 */
4175static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
4176{
4177 /*
4178 * Rotate the first entry last of non-pinned groups. Rotation might be
4179 * disabled by the inheritance code.
4180 */
4181 if (ctx->rotate_disable)
4182 return;
4183
4184 perf_event_groups_delete(groups: &ctx->flexible_groups, event);
4185 perf_event_groups_insert(groups: &ctx->flexible_groups, event);
4186}
4187
4188/* pick an event from the flexible_groups to rotate */
4189static inline struct perf_event *
4190ctx_event_to_rotate(struct perf_event_pmu_context *pmu_ctx)
4191{
4192 struct perf_event *event;
4193 struct rb_node *node;
4194 struct rb_root *tree;
4195 struct __group_key key = {
4196 .pmu = pmu_ctx->pmu,
4197 };
4198
4199 /* pick the first active flexible event */
4200 event = list_first_entry_or_null(&pmu_ctx->flexible_active,
4201 struct perf_event, active_list);
4202 if (event)
4203 goto out;
4204
4205 /* if no active flexible event, pick the first event */
4206 tree = &pmu_ctx->ctx->flexible_groups.tree;
4207
4208 if (!pmu_ctx->ctx->task) {
4209 key.cpu = smp_processor_id();
4210
4211 node = rb_find_first(key: &key, tree, cmp: __group_cmp_ignore_cgroup);
4212 if (node)
4213 event = __node_2_pe(node);
4214 goto out;
4215 }
4216
4217 key.cpu = -1;
4218 node = rb_find_first(key: &key, tree, cmp: __group_cmp_ignore_cgroup);
4219 if (node) {
4220 event = __node_2_pe(node);
4221 goto out;
4222 }
4223
4224 key.cpu = smp_processor_id();
4225 node = rb_find_first(key: &key, tree, cmp: __group_cmp_ignore_cgroup);
4226 if (node)
4227 event = __node_2_pe(node);
4228
4229out:
4230 /*
4231 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
4232 * finds there are unschedulable events, it will set it again.
4233 */
4234 pmu_ctx->rotate_necessary = 0;
4235
4236 return event;
4237}
4238
4239static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc)
4240{
4241 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4242 struct perf_event_pmu_context *cpu_epc, *task_epc = NULL;
4243 struct perf_event *cpu_event = NULL, *task_event = NULL;
4244 int cpu_rotate, task_rotate;
4245 struct pmu *pmu;
4246
4247 /*
4248 * Since we run this from IRQ context, nobody can install new
4249 * events, thus the event count values are stable.
4250 */
4251
4252 cpu_epc = &cpc->epc;
4253 pmu = cpu_epc->pmu;
4254 task_epc = cpc->task_epc;
4255
4256 cpu_rotate = cpu_epc->rotate_necessary;
4257 task_rotate = task_epc ? task_epc->rotate_necessary : 0;
4258
4259 if (!(cpu_rotate || task_rotate))
4260 return false;
4261
4262 perf_ctx_lock(cpuctx, ctx: cpuctx->task_ctx);
4263 perf_pmu_disable(pmu);
4264
4265 if (task_rotate)
4266 task_event = ctx_event_to_rotate(pmu_ctx: task_epc);
4267 if (cpu_rotate)
4268 cpu_event = ctx_event_to_rotate(pmu_ctx: cpu_epc);
4269
4270 /*
4271 * As per the order given at ctx_resched() first 'pop' task flexible
4272 * and then, if needed CPU flexible.
4273 */
4274 if (task_event || (task_epc && cpu_event)) {
4275 update_context_time(ctx: task_epc->ctx);
4276 __pmu_ctx_sched_out(pmu_ctx: task_epc, event_type: EVENT_FLEXIBLE);
4277 }
4278
4279 if (cpu_event) {
4280 update_context_time(ctx: &cpuctx->ctx);
4281 __pmu_ctx_sched_out(pmu_ctx: cpu_epc, event_type: EVENT_FLEXIBLE);
4282 rotate_ctx(ctx: &cpuctx->ctx, event: cpu_event);
4283 __pmu_ctx_sched_in(ctx: &cpuctx->ctx, pmu);
4284 }
4285
4286 if (task_event)
4287 rotate_ctx(ctx: task_epc->ctx, event: task_event);
4288
4289 if (task_event || (task_epc && cpu_event))
4290 __pmu_ctx_sched_in(ctx: task_epc->ctx, pmu);
4291
4292 perf_pmu_enable(pmu);
4293 perf_ctx_unlock(cpuctx, ctx: cpuctx->task_ctx);
4294
4295 return true;
4296}
4297
4298void perf_event_task_tick(void)
4299{
4300 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4301 struct perf_event_context *ctx;
4302 int throttled;
4303
4304 lockdep_assert_irqs_disabled();
4305
4306 __this_cpu_inc(perf_throttled_seq);
4307 throttled = __this_cpu_xchg(perf_throttled_count, 0);
4308 tick_dep_clear_cpu(smp_processor_id(), bit: TICK_DEP_BIT_PERF_EVENTS);
4309
4310 perf_adjust_freq_unthr_context(ctx: &cpuctx->ctx, unthrottle: !!throttled);
4311
4312 rcu_read_lock();
4313 ctx = rcu_dereference(current->perf_event_ctxp);
4314 if (ctx)
4315 perf_adjust_freq_unthr_context(ctx, unthrottle: !!throttled);
4316 rcu_read_unlock();
4317}
4318
4319static int event_enable_on_exec(struct perf_event *event,
4320 struct perf_event_context *ctx)
4321{
4322 if (!event->attr.enable_on_exec)
4323 return 0;
4324
4325 event->attr.enable_on_exec = 0;
4326 if (event->state >= PERF_EVENT_STATE_INACTIVE)
4327 return 0;
4328
4329 perf_event_set_state(event, state: PERF_EVENT_STATE_INACTIVE);
4330
4331 return 1;
4332}
4333
4334/*
4335 * Enable all of a task's events that have been marked enable-on-exec.
4336 * This expects task == current.
4337 */
4338static void perf_event_enable_on_exec(struct perf_event_context *ctx)
4339{
4340 struct perf_event_context *clone_ctx = NULL;
4341 enum event_type_t event_type = 0;
4342 struct perf_cpu_context *cpuctx;
4343 struct perf_event *event;
4344 unsigned long flags;
4345 int enabled = 0;
4346
4347 local_irq_save(flags);
4348 if (WARN_ON_ONCE(current->perf_event_ctxp != ctx))
4349 goto out;
4350
4351 if (!ctx->nr_events)
4352 goto out;
4353
4354 cpuctx = this_cpu_ptr(&perf_cpu_context);
4355 perf_ctx_lock(cpuctx, ctx);
4356 ctx_sched_out(ctx, event_type: EVENT_TIME);
4357
4358 list_for_each_entry(event, &ctx->event_list, event_entry) {
4359 enabled |= event_enable_on_exec(event, ctx);
4360 event_type |= get_event_type(event);
4361 }
4362
4363 /*
4364 * Unclone and reschedule this context if we enabled any event.
4365 */
4366 if (enabled) {
4367 clone_ctx = unclone_ctx(ctx);
4368 ctx_resched(cpuctx, task_ctx: ctx, event_type);
4369 } else {
4370 ctx_sched_in(ctx, event_type: EVENT_TIME);
4371 }
4372 perf_ctx_unlock(cpuctx, ctx);
4373
4374out:
4375 local_irq_restore(flags);
4376
4377 if (clone_ctx)
4378 put_ctx(ctx: clone_ctx);
4379}
4380
4381static void perf_remove_from_owner(struct perf_event *event);
4382static void perf_event_exit_event(struct perf_event *event,
4383 struct perf_event_context *ctx);
4384
4385/*
4386 * Removes all events from the current task that have been marked
4387 * remove-on-exec, and feeds their values back to parent events.
4388 */
4389static void perf_event_remove_on_exec(struct perf_event_context *ctx)
4390{
4391 struct perf_event_context *clone_ctx = NULL;
4392 struct perf_event *event, *next;
4393 unsigned long flags;
4394 bool modified = false;
4395
4396 mutex_lock(&ctx->mutex);
4397
4398 if (WARN_ON_ONCE(ctx->task != current))
4399 goto unlock;
4400
4401 list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) {
4402 if (!event->attr.remove_on_exec)
4403 continue;
4404
4405 if (!is_kernel_event(event))
4406 perf_remove_from_owner(event);
4407
4408 modified = true;
4409
4410 perf_event_exit_event(event, ctx);
4411 }
4412
4413 raw_spin_lock_irqsave(&ctx->lock, flags);
4414 if (modified)
4415 clone_ctx = unclone_ctx(ctx);
4416 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4417
4418unlock:
4419 mutex_unlock(lock: &ctx->mutex);
4420
4421 if (clone_ctx)
4422 put_ctx(ctx: clone_ctx);
4423}
4424
4425struct perf_read_data {
4426 struct perf_event *event;
4427 bool group;
4428 int ret;
4429};
4430
4431static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
4432{
4433 u16 local_pkg, event_pkg;
4434
4435 if ((unsigned)event_cpu >= nr_cpu_ids)
4436 return event_cpu;
4437
4438 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
4439 int local_cpu = smp_processor_id();
4440
4441 event_pkg = topology_physical_package_id(event_cpu);
4442 local_pkg = topology_physical_package_id(local_cpu);
4443
4444 if (event_pkg == local_pkg)
4445 return local_cpu;
4446 }
4447
4448 return event_cpu;
4449}
4450
4451/*
4452 * Cross CPU call to read the hardware event
4453 */
4454static void __perf_event_read(void *info)
4455{
4456 struct perf_read_data *data = info;
4457 struct perf_event *sub, *event = data->event;
4458 struct perf_event_context *ctx = event->ctx;
4459 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4460 struct pmu *pmu = event->pmu;
4461
4462 /*
4463 * If this is a task context, we need to check whether it is
4464 * the current task context of this cpu. If not it has been
4465 * scheduled out before the smp call arrived. In that case
4466 * event->count would have been updated to a recent sample
4467 * when the event was scheduled out.
4468 */
4469 if (ctx->task && cpuctx->task_ctx != ctx)
4470 return;
4471
4472 raw_spin_lock(&ctx->lock);
4473 if (ctx->is_active & EVENT_TIME) {
4474 update_context_time(ctx);
4475 update_cgrp_time_from_event(event);
4476 }
4477
4478 perf_event_update_time(event);
4479 if (data->group)
4480 perf_event_update_sibling_time(leader: event);
4481
4482 if (event->state != PERF_EVENT_STATE_ACTIVE)
4483 goto unlock;
4484
4485 if (!data->group) {
4486 pmu->read(event);
4487 data->ret = 0;
4488 goto unlock;
4489 }
4490
4491 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4492
4493 pmu->read(event);
4494
4495 for_each_sibling_event(sub, event) {
4496 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
4497 /*
4498 * Use sibling's PMU rather than @event's since
4499 * sibling could be on different (eg: software) PMU.
4500 */
4501 sub->pmu->read(sub);
4502 }
4503 }
4504
4505 data->ret = pmu->commit_txn(pmu);
4506
4507unlock:
4508 raw_spin_unlock(&ctx->lock);
4509}
4510
4511static inline u64 perf_event_count(struct perf_event *event)
4512{
4513 return local64_read(&event->count) + atomic64_read(v: &event->child_count);
4514}
4515
4516static void calc_timer_values(struct perf_event *event,
4517 u64 *now,
4518 u64 *enabled,
4519 u64 *running)
4520{
4521 u64 ctx_time;
4522
4523 *now = perf_clock();
4524 ctx_time = perf_event_time_now(event, now: *now);
4525 __perf_update_times(event, now: ctx_time, enabled, running);
4526}
4527
4528/*
4529 * NMI-safe method to read a local event, that is an event that
4530 * is:
4531 * - either for the current task, or for this CPU
4532 * - does not have inherit set, for inherited task events
4533 * will not be local and we cannot read them atomically
4534 * - must not have a pmu::count method
4535 */
4536int perf_event_read_local(struct perf_event *event, u64 *value,
4537 u64 *enabled, u64 *running)
4538{
4539 unsigned long flags;
4540 int event_oncpu;
4541 int event_cpu;
4542 int ret = 0;
4543
4544 /*
4545 * Disabling interrupts avoids all counter scheduling (context
4546 * switches, timer based rotation and IPIs).
4547 */
4548 local_irq_save(flags);
4549
4550 /*
4551 * It must not be an event with inherit set, we cannot read
4552 * all child counters from atomic context.
4553 */
4554 if (event->attr.inherit) {
4555 ret = -EOPNOTSUPP;
4556 goto out;
4557 }
4558
4559 /* If this is a per-task event, it must be for current */
4560 if ((event->attach_state & PERF_ATTACH_TASK) &&
4561 event->hw.target != current) {
4562 ret = -EINVAL;
4563 goto out;
4564 }
4565
4566 /*
4567 * Get the event CPU numbers, and adjust them to local if the event is
4568 * a per-package event that can be read locally
4569 */
4570 event_oncpu = __perf_event_read_cpu(event, event_cpu: event->oncpu);
4571 event_cpu = __perf_event_read_cpu(event, event_cpu: event->cpu);
4572
4573 /* If this is a per-CPU event, it must be for this CPU */
4574 if (!(event->attach_state & PERF_ATTACH_TASK) &&
4575 event_cpu != smp_processor_id()) {
4576 ret = -EINVAL;
4577 goto out;
4578 }
4579
4580 /* If this is a pinned event it must be running on this CPU */
4581 if (event->attr.pinned && event_oncpu != smp_processor_id()) {
4582 ret = -EBUSY;
4583 goto out;
4584 }
4585
4586 /*
4587 * If the event is currently on this CPU, its either a per-task event,
4588 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4589 * oncpu == -1).
4590 */
4591 if (event_oncpu == smp_processor_id())
4592 event->pmu->read(event);
4593
4594 *value = local64_read(&event->count);
4595 if (enabled || running) {
4596 u64 __enabled, __running, __now;
4597
4598 calc_timer_values(event, now: &__now, enabled: &__enabled, running: &__running);
4599 if (enabled)
4600 *enabled = __enabled;
4601 if (running)
4602 *running = __running;
4603 }
4604out:
4605 local_irq_restore(flags);
4606
4607 return ret;
4608}
4609
4610static int perf_event_read(struct perf_event *event, bool group)
4611{
4612 enum perf_event_state state = READ_ONCE(event->state);
4613 int event_cpu, ret = 0;
4614
4615 /*
4616 * If event is enabled and currently active on a CPU, update the
4617 * value in the event structure:
4618 */
4619again:
4620 if (state == PERF_EVENT_STATE_ACTIVE) {
4621 struct perf_read_data data;
4622
4623 /*
4624 * Orders the ->state and ->oncpu loads such that if we see
4625 * ACTIVE we must also see the right ->oncpu.
4626 *
4627 * Matches the smp_wmb() from event_sched_in().
4628 */
4629 smp_rmb();
4630
4631 event_cpu = READ_ONCE(event->oncpu);
4632 if ((unsigned)event_cpu >= nr_cpu_ids)
4633 return 0;
4634
4635 data = (struct perf_read_data){
4636 .event = event,
4637 .group = group,
4638 .ret = 0,
4639 };
4640
4641 preempt_disable();
4642 event_cpu = __perf_event_read_cpu(event, event_cpu);
4643
4644 /*
4645 * Purposely ignore the smp_call_function_single() return
4646 * value.
4647 *
4648 * If event_cpu isn't a valid CPU it means the event got
4649 * scheduled out and that will have updated the event count.
4650 *
4651 * Therefore, either way, we'll have an up-to-date event count
4652 * after this.
4653 */
4654 (void)smp_call_function_single(cpuid: event_cpu, func: __perf_event_read, info: &data, wait: 1);
4655 preempt_enable();
4656 ret = data.ret;
4657
4658 } else if (state == PERF_EVENT_STATE_INACTIVE) {
4659 struct perf_event_context *ctx = event->ctx;
4660 unsigned long flags;
4661
4662 raw_spin_lock_irqsave(&ctx->lock, flags);
4663 state = event->state;
4664 if (state != PERF_EVENT_STATE_INACTIVE) {
4665 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4666 goto again;
4667 }
4668
4669 /*
4670 * May read while context is not active (e.g., thread is
4671 * blocked), in that case we cannot update context time
4672 */
4673 if (ctx->is_active & EVENT_TIME) {
4674 update_context_time(ctx);
4675 update_cgrp_time_from_event(event);
4676 }
4677
4678 perf_event_update_time(event);
4679 if (group)
4680 perf_event_update_sibling_time(leader: event);
4681 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4682 }
4683
4684 return ret;
4685}
4686
4687/*
4688 * Initialize the perf_event context in a task_struct:
4689 */
4690static void __perf_event_init_context(struct perf_event_context *ctx)
4691{
4692 raw_spin_lock_init(&ctx->lock);
4693 mutex_init(&ctx->mutex);
4694 INIT_LIST_HEAD(list: &ctx->pmu_ctx_list);
4695 perf_event_groups_init(groups: &ctx->pinned_groups);
4696 perf_event_groups_init(groups: &ctx->flexible_groups);
4697 INIT_LIST_HEAD(list: &ctx->event_list);
4698 refcount_set(r: &ctx->refcount, n: 1);
4699}
4700
4701static void
4702__perf_init_event_pmu_context(struct perf_event_pmu_context *epc, struct pmu *pmu)
4703{
4704 epc->pmu = pmu;
4705 INIT_LIST_HEAD(list: &epc->pmu_ctx_entry);
4706 INIT_LIST_HEAD(list: &epc->pinned_active);
4707 INIT_LIST_HEAD(list: &epc->flexible_active);
4708 atomic_set(v: &epc->refcount, i: 1);
4709}
4710
4711static struct perf_event_context *
4712alloc_perf_context(struct task_struct *task)
4713{
4714 struct perf_event_context *ctx;
4715
4716 ctx = kzalloc(size: sizeof(struct perf_event_context), GFP_KERNEL);
4717 if (!ctx)
4718 return NULL;
4719
4720 __perf_event_init_context(ctx);
4721 if (task)
4722 ctx->task = get_task_struct(t: task);
4723
4724 return ctx;
4725}
4726
4727static struct task_struct *
4728find_lively_task_by_vpid(pid_t vpid)
4729{
4730 struct task_struct *task;
4731
4732 rcu_read_lock();
4733 if (!vpid)
4734 task = current;
4735 else
4736 task = find_task_by_vpid(nr: vpid);
4737 if (task)
4738 get_task_struct(t: task);
4739 rcu_read_unlock();
4740
4741 if (!task)
4742 return ERR_PTR(error: -ESRCH);
4743
4744 return task;
4745}
4746
4747/*
4748 * Returns a matching context with refcount and pincount.
4749 */
4750static struct perf_event_context *
4751find_get_context(struct task_struct *task, struct perf_event *event)
4752{
4753 struct perf_event_context *ctx, *clone_ctx = NULL;
4754 struct perf_cpu_context *cpuctx;
4755 unsigned long flags;
4756 int err;
4757
4758 if (!task) {
4759 /* Must be root to operate on a CPU event: */
4760 err = perf_allow_cpu(attr: &event->attr);
4761 if (err)
4762 return ERR_PTR(error: err);
4763
4764 cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu);
4765 ctx = &cpuctx->ctx;
4766 get_ctx(ctx);
4767 raw_spin_lock_irqsave(&ctx->lock, flags);
4768 ++ctx->pin_count;
4769 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4770
4771 return ctx;
4772 }
4773
4774 err = -EINVAL;
4775retry:
4776 ctx = perf_lock_task_context(task, flags: &flags);
4777 if (ctx) {
4778 clone_ctx = unclone_ctx(ctx);
4779 ++ctx->pin_count;
4780
4781 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4782
4783 if (clone_ctx)
4784 put_ctx(ctx: clone_ctx);
4785 } else {
4786 ctx = alloc_perf_context(task);
4787 err = -ENOMEM;
4788 if (!ctx)
4789 goto errout;
4790
4791 err = 0;
4792 mutex_lock(&task->perf_event_mutex);
4793 /*
4794 * If it has already passed perf_event_exit_task().
4795 * we must see PF_EXITING, it takes this mutex too.
4796 */
4797 if (task->flags & PF_EXITING)
4798 err = -ESRCH;
4799 else if (task->perf_event_ctxp)
4800 err = -EAGAIN;
4801 else {
4802 get_ctx(ctx);
4803 ++ctx->pin_count;
4804 rcu_assign_pointer(task->perf_event_ctxp, ctx);
4805 }
4806 mutex_unlock(lock: &task->perf_event_mutex);
4807
4808 if (unlikely(err)) {
4809 put_ctx(ctx);
4810
4811 if (err == -EAGAIN)
4812 goto retry;
4813 goto errout;
4814 }
4815 }
4816
4817 return ctx;
4818
4819errout:
4820 return ERR_PTR(error: err);
4821}
4822
4823static struct perf_event_pmu_context *
4824find_get_pmu_context(struct pmu *pmu, struct perf_event_context *ctx,
4825 struct perf_event *event)
4826{
4827 struct perf_event_pmu_context *new = NULL, *epc;
4828 void *task_ctx_data = NULL;
4829
4830 if (!ctx->task) {
4831 struct perf_cpu_pmu_context *cpc;
4832
4833 cpc = per_cpu_ptr(pmu->cpu_pmu_context, event->cpu);
4834 epc = &cpc->epc;
4835 raw_spin_lock_irq(&ctx->lock);
4836 if (!epc->ctx) {
4837 atomic_set(v: &epc->refcount, i: 1);
4838 epc->embedded = 1;
4839 list_add(new: &epc->pmu_ctx_entry, head: &ctx->pmu_ctx_list);
4840 epc->ctx = ctx;
4841 } else {
4842 WARN_ON_ONCE(epc->ctx != ctx);
4843 atomic_inc(v: &epc->refcount);
4844 }
4845 raw_spin_unlock_irq(&ctx->lock);
4846 return epc;
4847 }
4848
4849 new = kzalloc(size: sizeof(*epc), GFP_KERNEL);
4850 if (!new)
4851 return ERR_PTR(error: -ENOMEM);
4852
4853 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4854 task_ctx_data = alloc_task_ctx_data(pmu);
4855 if (!task_ctx_data) {
4856 kfree(objp: new);
4857 return ERR_PTR(error: -ENOMEM);
4858 }
4859 }
4860
4861 __perf_init_event_pmu_context(epc: new, pmu);
4862
4863 /*
4864 * XXX
4865 *
4866 * lockdep_assert_held(&ctx->mutex);
4867 *
4868 * can't because perf_event_init_task() doesn't actually hold the
4869 * child_ctx->mutex.
4870 */
4871
4872 raw_spin_lock_irq(&ctx->lock);
4873 list_for_each_entry(epc, &ctx->pmu_ctx_list, pmu_ctx_entry) {
4874 if (epc->pmu == pmu) {
4875 WARN_ON_ONCE(epc->ctx != ctx);
4876 atomic_inc(v: &epc->refcount);
4877 goto found_epc;
4878 }
4879 }
4880
4881 epc = new;
4882 new = NULL;
4883
4884 list_add(new: &epc->pmu_ctx_entry, head: &ctx->pmu_ctx_list);
4885 epc->ctx = ctx;
4886
4887found_epc:
4888 if (task_ctx_data && !epc->task_ctx_data) {
4889 epc->task_ctx_data = task_ctx_data;
4890 task_ctx_data = NULL;
4891 ctx->nr_task_data++;
4892 }
4893 raw_spin_unlock_irq(&ctx->lock);
4894
4895 free_task_ctx_data(pmu, task_ctx_data);
4896 kfree(objp: new);
4897
4898 return epc;
4899}
4900
4901static void get_pmu_ctx(struct perf_event_pmu_context *epc)
4902{
4903 WARN_ON_ONCE(!atomic_inc_not_zero(&epc->refcount));
4904}
4905
4906static void free_epc_rcu(struct rcu_head *head)
4907{
4908 struct perf_event_pmu_context *epc = container_of(head, typeof(*epc), rcu_head);
4909
4910 kfree(objp: epc->task_ctx_data);
4911 kfree(objp: epc);
4912}
4913
4914static void put_pmu_ctx(struct perf_event_pmu_context *epc)
4915{
4916 struct perf_event_context *ctx = epc->ctx;
4917 unsigned long flags;
4918
4919 /*
4920 * XXX
4921 *
4922 * lockdep_assert_held(&ctx->mutex);
4923 *
4924 * can't because of the call-site in _free_event()/put_event()
4925 * which isn't always called under ctx->mutex.
4926 */
4927 if (!atomic_dec_and_raw_lock_irqsave(&epc->refcount, &ctx->lock, flags))
4928 return;
4929
4930 WARN_ON_ONCE(list_empty(&epc->pmu_ctx_entry));
4931
4932 list_del_init(entry: &epc->pmu_ctx_entry);
4933 epc->ctx = NULL;
4934
4935 WARN_ON_ONCE(!list_empty(&epc->pinned_active));
4936 WARN_ON_ONCE(!list_empty(&epc->flexible_active));
4937
4938 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4939
4940 if (epc->embedded)
4941 return;
4942
4943 call_rcu(head: &epc->rcu_head, func: free_epc_rcu);
4944}
4945
4946static void perf_event_free_filter(struct perf_event *event);
4947
4948static void free_event_rcu(struct rcu_head *head)
4949{
4950 struct perf_event *event = container_of(head, typeof(*event), rcu_head);
4951
4952 if (event->ns)
4953 put_pid_ns(ns: event->ns);
4954 perf_event_free_filter(event);
4955 kmem_cache_free(s: perf_event_cache, objp: event);
4956}
4957
4958static void ring_buffer_attach(struct perf_event *event,
4959 struct perf_buffer *rb);
4960
4961static void detach_sb_event(struct perf_event *event)
4962{
4963 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4964
4965 raw_spin_lock(&pel->lock);
4966 list_del_rcu(entry: &event->sb_list);
4967 raw_spin_unlock(&pel->lock);
4968}
4969
4970static bool is_sb_event(struct perf_event *event)
4971{
4972 struct perf_event_attr *attr = &event->attr;
4973
4974 if (event->parent)
4975 return false;
4976
4977 if (event->attach_state & PERF_ATTACH_TASK)
4978 return false;
4979
4980 if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4981 attr->comm || attr->comm_exec ||
4982 attr->task || attr->ksymbol ||
4983 attr->context_switch || attr->text_poke ||
4984 attr->bpf_event)
4985 return true;
4986 return false;
4987}
4988
4989static void unaccount_pmu_sb_event(struct perf_event *event)
4990{
4991 if (is_sb_event(event))
4992 detach_sb_event(event);
4993}
4994
4995#ifdef CONFIG_NO_HZ_FULL
4996static DEFINE_SPINLOCK(nr_freq_lock);
4997#endif
4998
4999static void unaccount_freq_event_nohz(void)
5000{
5001#ifdef CONFIG_NO_HZ_FULL
5002 spin_lock(&nr_freq_lock);
5003 if (atomic_dec_and_test(&nr_freq_events))
5004 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
5005 spin_unlock(&nr_freq_lock);
5006#endif
5007}
5008
5009static void unaccount_freq_event(void)
5010{
5011 if (tick_nohz_full_enabled())
5012 unaccount_freq_event_nohz();
5013 else
5014 atomic_dec(v: &nr_freq_events);
5015}
5016
5017static void unaccount_event(struct perf_event *event)
5018{
5019 bool dec = false;
5020
5021 if (event->parent)
5022 return;
5023
5024 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
5025 dec = true;
5026 if (event->attr.mmap || event->attr.mmap_data)
5027 atomic_dec(v: &nr_mmap_events);
5028 if (event->attr.build_id)
5029 atomic_dec(v: &nr_build_id_events);
5030 if (event->attr.comm)
5031 atomic_dec(v: &nr_comm_events);
5032 if (event->attr.namespaces)
5033 atomic_dec(v: &nr_namespaces_events);
5034 if (event->attr.cgroup)
5035 atomic_dec(v: &nr_cgroup_events);
5036 if (event->attr.task)
5037 atomic_dec(v: &nr_task_events);
5038 if (event->attr.freq)
5039 unaccount_freq_event();
5040 if (event->attr.context_switch) {
5041 dec = true;
5042 atomic_dec(v: &nr_switch_events);
5043 }
5044 if (is_cgroup_event(event))
5045 dec = true;
5046 if (has_branch_stack(event))
5047 dec = true;
5048 if (event->attr.ksymbol)
5049 atomic_dec(v: &nr_ksymbol_events);
5050 if (event->attr.bpf_event)
5051 atomic_dec(v: &nr_bpf_events);
5052 if (event->attr.text_poke)
5053 atomic_dec(v: &nr_text_poke_events);
5054
5055 if (dec) {
5056 if (!atomic_add_unless(v: &perf_sched_count, a: -1, u: 1))
5057 schedule_delayed_work(dwork: &perf_sched_work, HZ);
5058 }
5059
5060 unaccount_pmu_sb_event(event);
5061}
5062
5063static void perf_sched_delayed(struct work_struct *work)
5064{
5065 mutex_lock(&perf_sched_mutex);
5066 if (atomic_dec_and_test(v: &perf_sched_count))
5067 static_branch_disable(&perf_sched_events);
5068 mutex_unlock(lock: &perf_sched_mutex);
5069}
5070
5071/*
5072 * The following implement mutual exclusion of events on "exclusive" pmus
5073 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
5074 * at a time, so we disallow creating events that might conflict, namely:
5075 *
5076 * 1) cpu-wide events in the presence of per-task events,
5077 * 2) per-task events in the presence of cpu-wide events,
5078 * 3) two matching events on the same perf_event_context.
5079 *
5080 * The former two cases are handled in the allocation path (perf_event_alloc(),
5081 * _free_event()), the latter -- before the first perf_install_in_context().
5082 */
5083static int exclusive_event_init(struct perf_event *event)
5084{
5085 struct pmu *pmu = event->pmu;
5086
5087 if (!is_exclusive_pmu(pmu))
5088 return 0;
5089
5090 /*
5091 * Prevent co-existence of per-task and cpu-wide events on the
5092 * same exclusive pmu.
5093 *
5094 * Negative pmu::exclusive_cnt means there are cpu-wide
5095 * events on this "exclusive" pmu, positive means there are
5096 * per-task events.
5097 *
5098 * Since this is called in perf_event_alloc() path, event::ctx
5099 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
5100 * to mean "per-task event", because unlike other attach states it
5101 * never gets cleared.
5102 */
5103 if (event->attach_state & PERF_ATTACH_TASK) {
5104 if (!atomic_inc_unless_negative(v: &pmu->exclusive_cnt))
5105 return -EBUSY;
5106 } else {
5107 if (!atomic_dec_unless_positive(v: &pmu->exclusive_cnt))
5108 return -EBUSY;
5109 }
5110
5111 return 0;
5112}
5113
5114static void exclusive_event_destroy(struct perf_event *event)
5115{
5116 struct pmu *pmu = event->pmu;
5117
5118 if (!is_exclusive_pmu(pmu))
5119 return;
5120
5121 /* see comment in exclusive_event_init() */
5122 if (event->attach_state & PERF_ATTACH_TASK)
5123 atomic_dec(v: &pmu->exclusive_cnt);
5124 else
5125 atomic_inc(v: &pmu->exclusive_cnt);
5126}
5127
5128static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
5129{
5130 if ((e1->pmu == e2->pmu) &&
5131 (e1->cpu == e2->cpu ||
5132 e1->cpu == -1 ||
5133 e2->cpu == -1))
5134 return true;
5135 return false;
5136}
5137
5138static bool exclusive_event_installable(struct perf_event *event,
5139 struct perf_event_context *ctx)
5140{
5141 struct perf_event *iter_event;
5142 struct pmu *pmu = event->pmu;
5143
5144 lockdep_assert_held(&ctx->mutex);
5145
5146 if (!is_exclusive_pmu(pmu))
5147 return true;
5148
5149 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
5150 if (exclusive_event_match(e1: iter_event, e2: event))
5151 return false;
5152 }
5153
5154 return true;
5155}
5156
5157static void perf_addr_filters_splice(struct perf_event *event,
5158 struct list_head *head);
5159
5160static void _free_event(struct perf_event *event)
5161{
5162 irq_work_sync(work: &event->pending_irq);
5163
5164 unaccount_event(event);
5165
5166 security_perf_event_free(event);
5167
5168 if (event->rb) {
5169 /*
5170 * Can happen when we close an event with re-directed output.
5171 *
5172 * Since we have a 0 refcount, perf_mmap_close() will skip
5173 * over us; possibly making our ring_buffer_put() the last.
5174 */
5175 mutex_lock(&event->mmap_mutex);
5176 ring_buffer_attach(event, NULL);
5177 mutex_unlock(lock: &event->mmap_mutex);
5178 }
5179
5180 if (is_cgroup_event(event))
5181 perf_detach_cgroup(event);
5182
5183 if (!event->parent) {
5184 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
5185 put_callchain_buffers();
5186 }
5187
5188 perf_event_free_bpf_prog(event);
5189 perf_addr_filters_splice(event, NULL);
5190 kfree(objp: event->addr_filter_ranges);
5191
5192 if (event->destroy)
5193 event->destroy(event);
5194
5195 /*
5196 * Must be after ->destroy(), due to uprobe_perf_close() using
5197 * hw.target.
5198 */
5199 if (event->hw.target)
5200 put_task_struct(t: event->hw.target);
5201
5202 if (event->pmu_ctx)
5203 put_pmu_ctx(epc: event->pmu_ctx);
5204
5205 /*
5206 * perf_event_free_task() relies on put_ctx() being 'last', in particular
5207 * all task references must be cleaned up.
5208 */
5209 if (event->ctx)
5210 put_ctx(ctx: event->ctx);
5211
5212 exclusive_event_destroy(event);
5213 module_put(module: event->pmu->module);
5214
5215 call_rcu(head: &event->rcu_head, func: free_event_rcu);
5216}
5217
5218/*
5219 * Used to free events which have a known refcount of 1, such as in error paths
5220 * where the event isn't exposed yet and inherited events.
5221 */
5222static void free_event(struct perf_event *event)
5223{
5224 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
5225 "unexpected event refcount: %ld; ptr=%p\n",
5226 atomic_long_read(&event->refcount), event)) {
5227 /* leak to avoid use-after-free */
5228 return;
5229 }
5230
5231 _free_event(event);
5232}
5233
5234/*
5235 * Remove user event from the owner task.
5236 */
5237static void perf_remove_from_owner(struct perf_event *event)
5238{
5239 struct task_struct *owner;
5240
5241 rcu_read_lock();
5242 /*
5243 * Matches the smp_store_release() in perf_event_exit_task(). If we
5244 * observe !owner it means the list deletion is complete and we can
5245 * indeed free this event, otherwise we need to serialize on
5246 * owner->perf_event_mutex.
5247 */
5248 owner = READ_ONCE(event->owner);
5249 if (owner) {
5250 /*
5251 * Since delayed_put_task_struct() also drops the last
5252 * task reference we can safely take a new reference
5253 * while holding the rcu_read_lock().
5254 */
5255 get_task_struct(t: owner);
5256 }
5257 rcu_read_unlock();
5258
5259 if (owner) {
5260 /*
5261 * If we're here through perf_event_exit_task() we're already
5262 * holding ctx->mutex which would be an inversion wrt. the
5263 * normal lock order.
5264 *
5265 * However we can safely take this lock because its the child
5266 * ctx->mutex.
5267 */
5268 mutex_lock_nested(lock: &owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
5269
5270 /*
5271 * We have to re-check the event->owner field, if it is cleared
5272 * we raced with perf_event_exit_task(), acquiring the mutex
5273 * ensured they're done, and we can proceed with freeing the
5274 * event.
5275 */
5276 if (event->owner) {
5277 list_del_init(entry: &event->owner_entry);
5278 smp_store_release(&event->owner, NULL);
5279 }
5280 mutex_unlock(lock: &owner->perf_event_mutex);
5281 put_task_struct(t: owner);
5282 }
5283}
5284
5285static void put_event(struct perf_event *event)
5286{
5287 if (!atomic_long_dec_and_test(v: &event->refcount))
5288 return;
5289
5290 _free_event(event);
5291}
5292
5293/*
5294 * Kill an event dead; while event:refcount will preserve the event
5295 * object, it will not preserve its functionality. Once the last 'user'
5296 * gives up the object, we'll destroy the thing.
5297 */
5298int perf_event_release_kernel(struct perf_event *event)
5299{
5300 struct perf_event_context *ctx = event->ctx;
5301 struct perf_event *child, *tmp;
5302 LIST_HEAD(free_list);
5303
5304 /*
5305 * If we got here through err_alloc: free_event(event); we will not
5306 * have attached to a context yet.
5307 */
5308 if (!ctx) {
5309 WARN_ON_ONCE(event->attach_state &
5310 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
5311 goto no_ctx;
5312 }
5313
5314 if (!is_kernel_event(event))
5315 perf_remove_from_owner(event);
5316
5317 ctx = perf_event_ctx_lock(event);
5318 WARN_ON_ONCE(ctx->parent_ctx);
5319
5320 /*
5321 * Mark this event as STATE_DEAD, there is no external reference to it
5322 * anymore.
5323 *
5324 * Anybody acquiring event->child_mutex after the below loop _must_
5325 * also see this, most importantly inherit_event() which will avoid
5326 * placing more children on the list.
5327 *
5328 * Thus this guarantees that we will in fact observe and kill _ALL_
5329 * child events.
5330 */
5331 perf_remove_from_context(event, DETACH_GROUP|DETACH_DEAD);
5332
5333 perf_event_ctx_unlock(event, ctx);
5334
5335again:
5336 mutex_lock(&event->child_mutex);
5337 list_for_each_entry(child, &event->child_list, child_list) {
5338
5339 /*
5340 * Cannot change, child events are not migrated, see the
5341 * comment with perf_event_ctx_lock_nested().
5342 */
5343 ctx = READ_ONCE(child->ctx);
5344 /*
5345 * Since child_mutex nests inside ctx::mutex, we must jump
5346 * through hoops. We start by grabbing a reference on the ctx.
5347 *
5348 * Since the event cannot get freed while we hold the
5349 * child_mutex, the context must also exist and have a !0
5350 * reference count.
5351 */
5352 get_ctx(ctx);
5353
5354 /*
5355 * Now that we have a ctx ref, we can drop child_mutex, and
5356 * acquire ctx::mutex without fear of it going away. Then we
5357 * can re-acquire child_mutex.
5358 */
5359 mutex_unlock(lock: &event->child_mutex);
5360 mutex_lock(&ctx->mutex);
5361 mutex_lock(&event->child_mutex);
5362
5363 /*
5364 * Now that we hold ctx::mutex and child_mutex, revalidate our
5365 * state, if child is still the first entry, it didn't get freed
5366 * and we can continue doing so.
5367 */
5368 tmp = list_first_entry_or_null(&event->child_list,
5369 struct perf_event, child_list);
5370 if (tmp == child) {
5371 perf_remove_from_context(event: child, DETACH_GROUP);
5372 list_move(list: &child->child_list, head: &free_list);
5373 /*
5374 * This matches the refcount bump in inherit_event();
5375 * this can't be the last reference.
5376 */
5377 put_event(event);
5378 }
5379
5380 mutex_unlock(lock: &event->child_mutex);
5381 mutex_unlock(lock: &ctx->mutex);
5382 put_ctx(ctx);
5383 goto again;
5384 }
5385 mutex_unlock(lock: &event->child_mutex);
5386
5387 list_for_each_entry_safe(child, tmp, &free_list, child_list) {
5388 void *var = &child->ctx->refcount;
5389
5390 list_del(entry: &child->child_list);
5391 free_event(event: child);
5392
5393 /*
5394 * Wake any perf_event_free_task() waiting for this event to be
5395 * freed.
5396 */
5397 smp_mb(); /* pairs with wait_var_event() */
5398 wake_up_var(var);
5399 }
5400
5401no_ctx:
5402 put_event(event); /* Must be the 'last' reference */
5403 return 0;
5404}
5405EXPORT_SYMBOL_GPL(perf_event_release_kernel);
5406
5407/*
5408 * Called when the last reference to the file is gone.
5409 */
5410static int perf_release(struct inode *inode, struct file *file)
5411{
5412 perf_event_release_kernel(file->private_data);
5413 return 0;
5414}
5415
5416static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5417{
5418 struct perf_event *child;
5419 u64 total = 0;
5420
5421 *enabled = 0;
5422 *running = 0;
5423
5424 mutex_lock(&event->child_mutex);
5425
5426 (void)perf_event_read(event, group: false);
5427 total += perf_event_count(event);
5428
5429 *enabled += event->total_time_enabled +
5430 atomic64_read(v: &event->child_total_time_enabled);
5431 *running += event->total_time_running +
5432 atomic64_read(v: &event->child_total_time_running);
5433
5434 list_for_each_entry(child, &event->child_list, child_list) {
5435 (void)perf_event_read(event: child, group: false);
5436 total += perf_event_count(event: child);
5437 *enabled += child->total_time_enabled;
5438 *running += child->total_time_running;
5439 }
5440 mutex_unlock(lock: &event->child_mutex);
5441
5442 return total;
5443}
5444
5445u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5446{
5447 struct perf_event_context *ctx;
5448 u64 count;
5449
5450 ctx = perf_event_ctx_lock(event);
5451 count = __perf_event_read_value(event, enabled, running);
5452 perf_event_ctx_unlock(event, ctx);
5453
5454 return count;
5455}
5456EXPORT_SYMBOL_GPL(perf_event_read_value);
5457
5458static int __perf_read_group_add(struct perf_event *leader,
5459 u64 read_format, u64 *values)
5460{
5461 struct perf_event_context *ctx = leader->ctx;
5462 struct perf_event *sub, *parent;
5463 unsigned long flags;
5464 int n = 1; /* skip @nr */
5465 int ret;
5466
5467 ret = perf_event_read(event: leader, group: true);
5468 if (ret)
5469 return ret;
5470
5471 raw_spin_lock_irqsave(&ctx->lock, flags);
5472 /*
5473 * Verify the grouping between the parent and child (inherited)
5474 * events is still in tact.
5475 *
5476 * Specifically:
5477 * - leader->ctx->lock pins leader->sibling_list
5478 * - parent->child_mutex pins parent->child_list
5479 * - parent->ctx->mutex pins parent->sibling_list
5480 *
5481 * Because parent->ctx != leader->ctx (and child_list nests inside
5482 * ctx->mutex), group destruction is not atomic between children, also
5483 * see perf_event_release_kernel(). Additionally, parent can grow the
5484 * group.
5485 *
5486 * Therefore it is possible to have parent and child groups in a
5487 * different configuration and summing over such a beast makes no sense
5488 * what so ever.
5489 *
5490 * Reject this.
5491 */
5492 parent = leader->parent;
5493 if (parent &&
5494 (parent->group_generation != leader->group_generation ||
5495 parent->nr_siblings != leader->nr_siblings)) {
5496 ret = -ECHILD;
5497 goto unlock;
5498 }
5499
5500 /*
5501 * Since we co-schedule groups, {enabled,running} times of siblings
5502 * will be identical to those of the leader, so we only publish one
5503 * set.
5504 */
5505 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5506 values[n++] += leader->total_time_enabled +
5507 atomic64_read(v: &leader->child_total_time_enabled);
5508 }
5509
5510 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5511 values[n++] += leader->total_time_running +
5512 atomic64_read(v: &leader->child_total_time_running);
5513 }
5514
5515 /*
5516 * Write {count,id} tuples for every sibling.
5517 */
5518 values[n++] += perf_event_count(event: leader);
5519 if (read_format & PERF_FORMAT_ID)
5520 values[n++] = primary_event_id(event: leader);
5521 if (read_format & PERF_FORMAT_LOST)
5522 values[n++] = atomic64_read(v: &leader->lost_samples);
5523
5524 for_each_sibling_event(sub, leader) {
5525 values[n++] += perf_event_count(event: sub);
5526 if (read_format & PERF_FORMAT_ID)
5527 values[n++] = primary_event_id(event: sub);
5528 if (read_format & PERF_FORMAT_LOST)
5529 values[n++] = atomic64_read(v: &sub->lost_samples);
5530 }
5531
5532unlock:
5533 raw_spin_unlock_irqrestore(&ctx->lock, flags);
5534 return ret;
5535}
5536
5537static int perf_read_group(struct perf_event *event,
5538 u64 read_format, char __user *buf)
5539{
5540 struct perf_event *leader = event->group_leader, *child;
5541 struct perf_event_context *ctx = leader->ctx;
5542 int ret;
5543 u64 *values;
5544
5545 lockdep_assert_held(&ctx->mutex);
5546
5547 values = kzalloc(size: event->read_size, GFP_KERNEL);
5548 if (!values)
5549 return -ENOMEM;
5550
5551 values[0] = 1 + leader->nr_siblings;
5552
5553 mutex_lock(&leader->child_mutex);
5554
5555 ret = __perf_read_group_add(leader, read_format, values);
5556 if (ret)
5557 goto unlock;
5558
5559 list_for_each_entry(child, &leader->child_list, child_list) {
5560 ret = __perf_read_group_add(leader: child, read_format, values);
5561 if (ret)
5562 goto unlock;
5563 }
5564
5565 mutex_unlock(lock: &leader->child_mutex);
5566
5567 ret = event->read_size;
5568 if (copy_to_user(to: buf, from: values, n: event->read_size))
5569 ret = -EFAULT;
5570 goto out;
5571
5572unlock:
5573 mutex_unlock(lock: &leader->child_mutex);
5574out:
5575 kfree(objp: values);
5576 return ret;
5577}
5578
5579static int perf_read_one(struct perf_event *event,
5580 u64 read_format, char __user *buf)
5581{
5582 u64 enabled, running;
5583 u64 values[5];
5584 int n = 0;
5585
5586 values[n++] = __perf_event_read_value(event, enabled: &enabled, running: &running);
5587 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5588 values[n++] = enabled;
5589 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5590 values[n++] = running;
5591 if (read_format & PERF_FORMAT_ID)
5592 values[n++] = primary_event_id(event);
5593 if (read_format & PERF_FORMAT_LOST)
5594 values[n++] = atomic64_read(v: &event->lost_samples);
5595
5596 if (copy_to_user(to: buf, from: values, n: n * sizeof(u64)))
5597 return -EFAULT;
5598
5599 return n * sizeof(u64);
5600}
5601
5602static bool is_event_hup(struct perf_event *event)
5603{
5604 bool no_children;
5605
5606 if (event->state > PERF_EVENT_STATE_EXIT)
5607 return false;
5608
5609 mutex_lock(&event->child_mutex);
5610 no_children = list_empty(head: &event->child_list);
5611 mutex_unlock(lock: &event->child_mutex);
5612 return no_children;
5613}
5614
5615/*
5616 * Read the performance event - simple non blocking version for now
5617 */
5618static ssize_t
5619__perf_read(struct perf_event *event, char __user *buf, size_t count)
5620{
5621 u64 read_format = event->attr.read_format;
5622 int ret;
5623
5624 /*
5625 * Return end-of-file for a read on an event that is in
5626 * error state (i.e. because it was pinned but it couldn't be
5627 * scheduled on to the CPU at some point).
5628 */
5629 if (event->state == PERF_EVENT_STATE_ERROR)
5630 return 0;
5631
5632 if (count < event->read_size)
5633 return -ENOSPC;
5634
5635 WARN_ON_ONCE(event->ctx->parent_ctx);
5636 if (read_format & PERF_FORMAT_GROUP)
5637 ret = perf_read_group(event, read_format, buf);
5638 else
5639 ret = perf_read_one(event, read_format, buf);
5640
5641 return ret;
5642}
5643
5644static ssize_t
5645perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
5646{
5647 struct perf_event *event = file->private_data;
5648 struct perf_event_context *ctx;
5649 int ret;
5650
5651 ret = security_perf_event_read(event);
5652 if (ret)
5653 return ret;
5654
5655 ctx = perf_event_ctx_lock(event);
5656 ret = __perf_read(event, buf, count);
5657 perf_event_ctx_unlock(event, ctx);
5658
5659 return ret;
5660}
5661
5662static __poll_t perf_poll(struct file *file, poll_table *wait)
5663{
5664 struct perf_event *event = file->private_data;
5665 struct perf_buffer *rb;
5666 __poll_t events = EPOLLHUP;
5667
5668 poll_wait(filp: file, wait_address: &event->waitq, p: wait);
5669
5670 if (is_event_hup(event))
5671 return events;
5672
5673 /*
5674 * Pin the event->rb by taking event->mmap_mutex; otherwise
5675 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
5676 */
5677 mutex_lock(&event->mmap_mutex);
5678 rb = event->rb;
5679 if (rb)
5680 events = atomic_xchg(v: &rb->poll, new: 0);
5681 mutex_unlock(lock: &event->mmap_mutex);
5682 return events;
5683}
5684
5685static void _perf_event_reset(struct perf_event *event)
5686{
5687 (void)perf_event_read(event, group: false);
5688 local64_set(&event->count, 0);
5689 perf_event_update_userpage(event);
5690}
5691
5692/* Assume it's not an event with inherit set. */
5693u64 perf_event_pause(struct perf_event *event, bool reset)
5694{
5695 struct perf_event_context *ctx;
5696 u64 count;
5697
5698 ctx = perf_event_ctx_lock(event);
5699 WARN_ON_ONCE(event->attr.inherit);
5700 _perf_event_disable(event);
5701 count = local64_read(&event->count);
5702 if (reset)
5703 local64_set(&event->count, 0);
5704 perf_event_ctx_unlock(event, ctx);
5705
5706 return count;
5707}
5708EXPORT_SYMBOL_GPL(perf_event_pause);
5709
5710/*
5711 * Holding the top-level event's child_mutex means that any
5712 * descendant process that has inherited this event will block
5713 * in perf_event_exit_event() if it goes to exit, thus satisfying the
5714 * task existence requirements of perf_event_enable/disable.
5715 */
5716static void perf_event_for_each_child(struct perf_event *event,
5717 void (*func)(struct perf_event *))
5718{
5719 struct perf_event *child;
5720
5721 WARN_ON_ONCE(event->ctx->parent_ctx);
5722
5723 mutex_lock(&event->child_mutex);
5724 func(event);
5725 list_for_each_entry(child, &event->child_list, child_list)
5726 func(child);
5727 mutex_unlock(lock: &event->child_mutex);
5728}
5729
5730static void perf_event_for_each(struct perf_event *event,
5731 void (*func)(struct perf_event *))
5732{
5733 struct perf_event_context *ctx = event->ctx;
5734 struct perf_event *sibling;
5735
5736 lockdep_assert_held(&ctx->mutex);
5737
5738 event = event->group_leader;
5739
5740 perf_event_for_each_child(event, func);
5741 for_each_sibling_event(sibling, event)
5742 perf_event_for_each_child(event: sibling, func);
5743}
5744
5745static void __perf_event_period(struct perf_event *event,
5746 struct perf_cpu_context *cpuctx,
5747 struct perf_event_context *ctx,
5748 void *info)
5749{
5750 u64 value = *((u64 *)info);
5751 bool active;
5752
5753 if (event->attr.freq) {
5754 event->attr.sample_freq = value;
5755 } else {
5756 event->attr.sample_period = value;
5757 event->hw.sample_period = value;
5758 }
5759
5760 active = (event->state == PERF_EVENT_STATE_ACTIVE);
5761 if (active) {
5762 perf_pmu_disable(pmu: event->pmu);
5763 /*
5764 * We could be throttled; unthrottle now to avoid the tick
5765 * trying to unthrottle while we already re-started the event.
5766 */
5767 if (event->hw.interrupts == MAX_INTERRUPTS) {
5768 event->hw.interrupts = 0;
5769 perf_log_throttle(event, enable: 1);
5770 }
5771 event->pmu->stop(event, PERF_EF_UPDATE);
5772 }
5773
5774 local64_set(&event->hw.period_left, 0);
5775
5776 if (active) {
5777 event->pmu->start(event, PERF_EF_RELOAD);
5778 perf_pmu_enable(pmu: event->pmu);
5779 }
5780}
5781
5782static int perf_event_check_period(struct perf_event *event, u64 value)
5783{
5784 return event->pmu->check_period(event, value);
5785}
5786
5787static int _perf_event_period(struct perf_event *event, u64 value)
5788{
5789 if (!is_sampling_event(event))
5790 return -EINVAL;
5791
5792 if (!value)
5793 return -EINVAL;
5794
5795 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5796 return -EINVAL;
5797
5798 if (perf_event_check_period(event, value))
5799 return -EINVAL;
5800
5801 if (!event->attr.freq && (value & (1ULL << 63)))
5802 return -EINVAL;
5803
5804 event_function_call(event, func: __perf_event_period, data: &value);
5805
5806 return 0;
5807}
5808
5809int perf_event_period(struct perf_event *event, u64 value)
5810{
5811 struct perf_event_context *ctx;
5812 int ret;
5813
5814 ctx = perf_event_ctx_lock(event);
5815 ret = _perf_event_period(event, value);
5816 perf_event_ctx_unlock(event, ctx);
5817
5818 return ret;
5819}
5820EXPORT_SYMBOL_GPL(perf_event_period);
5821
5822static const struct file_operations perf_fops;
5823
5824static inline int perf_fget_light(int fd, struct fd *p)
5825{
5826 struct fd f = fdget(fd);
5827 if (!f.file)
5828 return -EBADF;
5829
5830 if (f.file->f_op != &perf_fops) {
5831 fdput(fd: f);
5832 return -EBADF;
5833 }
5834 *p = f;
5835 return 0;
5836}
5837
5838static int perf_event_set_output(struct perf_event *event,
5839 struct perf_event *output_event);
5840static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5841static int perf_copy_attr(struct perf_event_attr __user *uattr,
5842 struct perf_event_attr *attr);
5843
5844static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5845{
5846 void (*func)(struct perf_event *);
5847 u32 flags = arg;
5848
5849 switch (cmd) {
5850 case PERF_EVENT_IOC_ENABLE:
5851 func = _perf_event_enable;
5852 break;
5853 case PERF_EVENT_IOC_DISABLE:
5854 func = _perf_event_disable;
5855 break;
5856 case PERF_EVENT_IOC_RESET:
5857 func = _perf_event_reset;
5858 break;
5859
5860 case PERF_EVENT_IOC_REFRESH:
5861 return _perf_event_refresh(event, refresh: arg);
5862
5863 case PERF_EVENT_IOC_PERIOD:
5864 {
5865 u64 value;
5866
5867 if (copy_from_user(to: &value, from: (u64 __user *)arg, n: sizeof(value)))
5868 return -EFAULT;
5869
5870 return _perf_event_period(event, value);
5871 }
5872 case PERF_EVENT_IOC_ID:
5873 {
5874 u64 id = primary_event_id(event);
5875
5876 if (copy_to_user(to: (void __user *)arg, from: &id, n: sizeof(id)))
5877 return -EFAULT;
5878 return 0;
5879 }
5880
5881 case PERF_EVENT_IOC_SET_OUTPUT:
5882 {
5883 int ret;
5884 if (arg != -1) {
5885 struct perf_event *output_event;
5886 struct fd output;
5887 ret = perf_fget_light(fd: arg, p: &output);
5888 if (ret)
5889 return ret;
5890 output_event = output.file->private_data;
5891 ret = perf_event_set_output(event, output_event);
5892 fdput(fd: output);
5893 } else {
5894 ret = perf_event_set_output(event, NULL);
5895 }
5896 return ret;
5897 }
5898
5899 case PERF_EVENT_IOC_SET_FILTER:
5900 return perf_event_set_filter(event, arg: (void __user *)arg);
5901
5902 case PERF_EVENT_IOC_SET_BPF:
5903 {
5904 struct bpf_prog *prog;
5905 int err;
5906
5907 prog = bpf_prog_get(ufd: arg);
5908 if (IS_ERR(ptr: prog))
5909 return PTR_ERR(ptr: prog);
5910
5911 err = perf_event_set_bpf_prog(event, prog, bpf_cookie: 0);
5912 if (err) {
5913 bpf_prog_put(prog);
5914 return err;
5915 }
5916
5917 return 0;
5918 }
5919
5920 case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5921 struct perf_buffer *rb;
5922
5923 rcu_read_lock();
5924 rb = rcu_dereference(event->rb);
5925 if (!rb || !rb->nr_pages) {
5926 rcu_read_unlock();
5927 return -EINVAL;
5928 }
5929 rb_toggle_paused(rb, pause: !!arg);
5930 rcu_read_unlock();
5931 return 0;
5932 }
5933
5934 case PERF_EVENT_IOC_QUERY_BPF:
5935 return perf_event_query_prog_array(event, info: (void __user *)arg);
5936
5937 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5938 struct perf_event_attr new_attr;
5939 int err = perf_copy_attr(uattr: (struct perf_event_attr __user *)arg,
5940 attr: &new_attr);
5941
5942 if (err)
5943 return err;
5944
5945 return perf_event_modify_attr(event, attr: &new_attr);
5946 }
5947 default:
5948 return -ENOTTY;
5949 }
5950
5951 if (flags & PERF_IOC_FLAG_GROUP)
5952 perf_event_for_each(event, func);
5953 else
5954 perf_event_for_each_child(event, func);
5955
5956 return 0;
5957}
5958
5959static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5960{
5961 struct perf_event *event = file->private_data;
5962 struct perf_event_context *ctx;
5963 long ret;
5964
5965 /* Treat ioctl like writes as it is likely a mutating operation. */
5966 ret = security_perf_event_write(event);
5967 if (ret)
5968 return ret;
5969
5970 ctx = perf_event_ctx_lock(event);
5971 ret = _perf_ioctl(event, cmd, arg);
5972 perf_event_ctx_unlock(event, ctx);
5973
5974 return ret;
5975}
5976
5977#ifdef CONFIG_COMPAT
5978static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5979 unsigned long arg)
5980{
5981 switch (_IOC_NR(cmd)) {
5982 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5983 case _IOC_NR(PERF_EVENT_IOC_ID):
5984 case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5985 case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
5986 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5987 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5988 cmd &= ~IOCSIZE_MASK;
5989 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5990 }
5991 break;
5992 }
5993 return perf_ioctl(file, cmd, arg);
5994}
5995#else
5996# define perf_compat_ioctl NULL
5997#endif
5998
5999int perf_event_task_enable(void)
6000{
6001 struct perf_event_context *ctx;
6002 struct perf_event *event;
6003
6004 mutex_lock(&current->perf_event_mutex);
6005 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
6006 ctx = perf_event_ctx_lock(event);
6007 perf_event_for_each_child(event, func: _perf_event_enable);
6008 perf_event_ctx_unlock(event, ctx);
6009 }
6010 mutex_unlock(lock: &current->perf_event_mutex);
6011
6012 return 0;
6013}
6014
6015int perf_event_task_disable(void)
6016{
6017 struct perf_event_context *ctx;
6018 struct perf_event *event;
6019
6020 mutex_lock(&current->perf_event_mutex);
6021 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
6022 ctx = perf_event_ctx_lock(event);
6023 perf_event_for_each_child(event, func: _perf_event_disable);
6024 perf_event_ctx_unlock(event, ctx);
6025 }
6026 mutex_unlock(lock: &current->perf_event_mutex);
6027
6028 return 0;
6029}
6030
6031static int perf_event_index(struct perf_event *event)
6032{
6033 if (event->hw.state & PERF_HES_STOPPED)
6034 return 0;
6035
6036 if (event->state != PERF_EVENT_STATE_ACTIVE)
6037 return 0;
6038
6039 return event->pmu->event_idx(event);
6040}
6041
6042static void perf_event_init_userpage(struct perf_event *event)
6043{
6044 struct perf_event_mmap_page *userpg;
6045 struct perf_buffer *rb;
6046
6047 rcu_read_lock();
6048 rb = rcu_dereference(event->rb);
6049 if (!rb)
6050 goto unlock;
6051
6052 userpg = rb->user_page;
6053
6054 /* Allow new userspace to detect that bit 0 is deprecated */
6055 userpg->cap_bit0_is_deprecated = 1;
6056 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
6057 userpg->data_offset = PAGE_SIZE;
6058 userpg->data_size = perf_data_size(rb);
6059
6060unlock:
6061 rcu_read_unlock();
6062}
6063
6064void __weak arch_perf_update_userpage(
6065 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
6066{
6067}
6068
6069/*
6070 * Callers need to ensure there can be no nesting of this function, otherwise
6071 * the seqlock logic goes bad. We can not serialize this because the arch
6072 * code calls this from NMI context.
6073 */
6074void perf_event_update_userpage(struct perf_event *event)
6075{
6076 struct perf_event_mmap_page *userpg;
6077 struct perf_buffer *rb;
6078 u64 enabled, running, now;
6079
6080 rcu_read_lock();
6081 rb = rcu_dereference(event->rb);
6082 if (!rb)
6083 goto unlock;
6084
6085 /*
6086 * compute total_time_enabled, total_time_running
6087 * based on snapshot values taken when the event
6088 * was last scheduled in.
6089 *
6090 * we cannot simply called update_context_time()
6091 * because of locking issue as we can be called in
6092 * NMI context
6093 */
6094 calc_timer_values(event, now: &now, enabled: &enabled, running: &running);
6095
6096 userpg = rb->user_page;
6097 /*
6098 * Disable preemption to guarantee consistent time stamps are stored to
6099 * the user page.
6100 */
6101 preempt_disable();
6102 ++userpg->lock;
6103 barrier();
6104 userpg->index = perf_event_index(event);
6105 userpg->offset = perf_event_count(event);
6106 if (userpg->index)
6107 userpg->offset -= local64_read(&event->hw.prev_count);
6108
6109 userpg->time_enabled = enabled +
6110 atomic64_read(v: &event->child_total_time_enabled);
6111
6112 userpg->time_running = running +
6113 atomic64_read(v: &event->child_total_time_running);
6114
6115 arch_perf_update_userpage(event, userpg, now);
6116
6117 barrier();
6118 ++userpg->lock;
6119 preempt_enable();
6120unlock:
6121 rcu_read_unlock();
6122}
6123EXPORT_SYMBOL_GPL(perf_event_update_userpage);
6124
6125static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
6126{
6127 struct perf_event *event = vmf->vma->vm_file->private_data;
6128 struct perf_buffer *rb;
6129 vm_fault_t ret = VM_FAULT_SIGBUS;
6130
6131 if (vmf->flags & FAULT_FLAG_MKWRITE) {
6132 if (vmf->pgoff == 0)
6133 ret = 0;
6134 return ret;
6135 }
6136
6137 rcu_read_lock();
6138 rb = rcu_dereference(event->rb);
6139 if (!rb)
6140 goto unlock;
6141
6142 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
6143 goto unlock;
6144
6145 vmf->page = perf_mmap_to_page(rb, pgoff: vmf->pgoff);
6146 if (!vmf->page)
6147 goto unlock;
6148
6149 get_page(page: vmf->page);
6150 vmf->page->mapping = vmf->vma->vm_file->f_mapping;
6151 vmf->page->index = vmf->pgoff;
6152
6153 ret = 0;
6154unlock:
6155 rcu_read_unlock();
6156
6157 return ret;
6158}
6159
6160static void ring_buffer_attach(struct perf_event *event,
6161 struct perf_buffer *rb)
6162{
6163 struct perf_buffer *old_rb = NULL;
6164 unsigned long flags;
6165
6166 WARN_ON_ONCE(event->parent);
6167
6168 if (event->rb) {
6169 /*
6170 * Should be impossible, we set this when removing
6171 * event->rb_entry and wait/clear when adding event->rb_entry.
6172 */
6173 WARN_ON_ONCE(event->rcu_pending);
6174
6175 old_rb = event->rb;
6176 spin_lock_irqsave(&old_rb->event_lock, flags);
6177 list_del_rcu(entry: &event->rb_entry);
6178 spin_unlock_irqrestore(lock: &old_rb->event_lock, flags);
6179
6180 event->rcu_batches = get_state_synchronize_rcu();
6181 event->rcu_pending = 1;
6182 }
6183
6184 if (rb) {
6185 if (event->rcu_pending) {
6186 cond_synchronize_rcu(oldstate: event->rcu_batches);
6187 event->rcu_pending = 0;
6188 }
6189
6190 spin_lock_irqsave(&rb->event_lock, flags);
6191 list_add_rcu(new: &event->rb_entry, head: &rb->event_list);
6192 spin_unlock_irqrestore(lock: &rb->event_lock, flags);
6193 }
6194
6195 /*
6196 * Avoid racing with perf_mmap_close(AUX): stop the event
6197 * before swizzling the event::rb pointer; if it's getting
6198 * unmapped, its aux_mmap_count will be 0 and it won't
6199 * restart. See the comment in __perf_pmu_output_stop().
6200 *
6201 * Data will inevitably be lost when set_output is done in
6202 * mid-air, but then again, whoever does it like this is
6203 * not in for the data anyway.
6204 */
6205 if (has_aux(event))
6206 perf_event_stop(event, restart: 0);
6207
6208 rcu_assign_pointer(event->rb, rb);
6209
6210 if (old_rb) {
6211 ring_buffer_put(rb: old_rb);
6212 /*
6213 * Since we detached before setting the new rb, so that we
6214 * could attach the new rb, we could have missed a wakeup.
6215 * Provide it now.
6216 */
6217 wake_up_all(&event->waitq);
6218 }
6219}
6220
6221static void ring_buffer_wakeup(struct perf_event *event)
6222{
6223 struct perf_buffer *rb;
6224
6225 if (event->parent)
6226 event = event->parent;
6227
6228 rcu_read_lock();
6229 rb = rcu_dereference(event->rb);
6230 if (rb) {
6231 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
6232 wake_up_all(&event->waitq);
6233 }
6234 rcu_read_unlock();
6235}
6236
6237struct perf_buffer *ring_buffer_get(struct perf_event *event)
6238{
6239 struct perf_buffer *rb;
6240
6241 if (event->parent)
6242 event = event->parent;
6243
6244 rcu_read_lock();
6245 rb = rcu_dereference(event->rb);
6246 if (rb) {
6247 if (!refcount_inc_not_zero(r: &rb->refcount))
6248 rb = NULL;
6249 }
6250 rcu_read_unlock();
6251
6252 return rb;
6253}
6254
6255void ring_buffer_put(struct perf_buffer *rb)
6256{
6257 if (!refcount_dec_and_test(r: &rb->refcount))
6258 return;
6259
6260 WARN_ON_ONCE(!list_empty(&rb->event_list));
6261
6262 call_rcu(head: &rb->rcu_head, func: rb_free_rcu);
6263}
6264
6265static void perf_mmap_open(struct vm_area_struct *vma)
6266{
6267 struct perf_event *event = vma->vm_file->private_data;
6268
6269 atomic_inc(v: &event->mmap_count);
6270 atomic_inc(v: &event->rb->mmap_count);
6271
6272 if (vma->vm_pgoff)
6273 atomic_inc(v: &event->rb->aux_mmap_count);
6274
6275 if (event->pmu->event_mapped)
6276 event->pmu->event_mapped(event, vma->vm_mm);
6277}
6278
6279static void perf_pmu_output_stop(struct perf_event *event);
6280
6281/*
6282 * A buffer can be mmap()ed multiple times; either directly through the same
6283 * event, or through other events by use of perf_event_set_output().
6284 *
6285 * In order to undo the VM accounting done by perf_mmap() we need to destroy
6286 * the buffer here, where we still have a VM context. This means we need
6287 * to detach all events redirecting to us.
6288 */
6289static void perf_mmap_close(struct vm_area_struct *vma)
6290{
6291 struct perf_event *event = vma->vm_file->private_data;
6292 struct perf_buffer *rb = ring_buffer_get(event);
6293 struct user_struct *mmap_user = rb->mmap_user;
6294 int mmap_locked = rb->mmap_locked;
6295 unsigned long size = perf_data_size(rb);
6296 bool detach_rest = false;
6297
6298 if (event->pmu->event_unmapped)
6299 event->pmu->event_unmapped(event, vma->vm_mm);
6300
6301 /*
6302 * rb->aux_mmap_count will always drop before rb->mmap_count and
6303 * event->mmap_count, so it is ok to use event->mmap_mutex to
6304 * serialize with perf_mmap here.
6305 */
6306 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
6307 atomic_dec_and_mutex_lock(cnt: &rb->aux_mmap_count, lock: &event->mmap_mutex)) {
6308 /*
6309 * Stop all AUX events that are writing to this buffer,
6310 * so that we can free its AUX pages and corresponding PMU
6311 * data. Note that after rb::aux_mmap_count dropped to zero,
6312 * they won't start any more (see perf_aux_output_begin()).
6313 */
6314 perf_pmu_output_stop(event);
6315
6316 /* now it's safe to free the pages */
6317 atomic_long_sub(i: rb->aux_nr_pages - rb->aux_mmap_locked, v: &mmap_user->locked_vm);
6318 atomic64_sub(i: rb->aux_mmap_locked, v: &vma->vm_mm->pinned_vm);
6319
6320 /* this has to be the last one */
6321 rb_free_aux(rb);
6322 WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
6323
6324 mutex_unlock(lock: &event->mmap_mutex);
6325 }
6326
6327 if (atomic_dec_and_test(v: &rb->mmap_count))
6328 detach_rest = true;
6329
6330 if (!atomic_dec_and_mutex_lock(cnt: &event->mmap_count, lock: &event->mmap_mutex))
6331 goto out_put;
6332
6333 ring_buffer_attach(event, NULL);
6334 mutex_unlock(lock: &event->mmap_mutex);
6335
6336 /* If there's still other mmap()s of this buffer, we're done. */
6337 if (!detach_rest)
6338 goto out_put;
6339
6340 /*
6341 * No other mmap()s, detach from all other events that might redirect
6342 * into the now unreachable buffer. Somewhat complicated by the
6343 * fact that rb::event_lock otherwise nests inside mmap_mutex.
6344 */
6345again:
6346 rcu_read_lock();
6347 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
6348 if (!atomic_long_inc_not_zero(v: &event->refcount)) {
6349 /*
6350 * This event is en-route to free_event() which will
6351 * detach it and remove it from the list.
6352 */
6353 continue;
6354 }
6355 rcu_read_unlock();
6356
6357 mutex_lock(&event->mmap_mutex);
6358 /*
6359 * Check we didn't race with perf_event_set_output() which can
6360 * swizzle the rb from under us while we were waiting to
6361 * acquire mmap_mutex.
6362 *
6363 * If we find a different rb; ignore this event, a next
6364 * iteration will no longer find it on the list. We have to
6365 * still restart the iteration to make sure we're not now
6366 * iterating the wrong list.
6367 */
6368 if (event->rb == rb)
6369 ring_buffer_attach(event, NULL);
6370
6371 mutex_unlock(lock: &event->mmap_mutex);
6372 put_event(event);
6373
6374 /*
6375 * Restart the iteration; either we're on the wrong list or
6376 * destroyed its integrity by doing a deletion.
6377 */
6378 goto again;
6379 }
6380 rcu_read_unlock();
6381
6382 /*
6383 * It could be there's still a few 0-ref events on the list; they'll
6384 * get cleaned up by free_event() -- they'll also still have their
6385 * ref on the rb and will free it whenever they are done with it.
6386 *
6387 * Aside from that, this buffer is 'fully' detached and unmapped,
6388 * undo the VM accounting.
6389 */
6390
6391 atomic_long_sub(i: (size >> PAGE_SHIFT) + 1 - mmap_locked,
6392 v: &mmap_user->locked_vm);
6393 atomic64_sub(i: mmap_locked, v: &vma->vm_mm->pinned_vm);
6394 free_uid(mmap_user);
6395
6396out_put:
6397 ring_buffer_put(rb); /* could be last */
6398}
6399
6400static const struct vm_operations_struct perf_mmap_vmops = {
6401 .open = perf_mmap_open,
6402 .close = perf_mmap_close, /* non mergeable */
6403 .fault = perf_mmap_fault,
6404 .page_mkwrite = perf_mmap_fault,
6405};
6406
6407static int perf_mmap(struct file *file, struct vm_area_struct *vma)
6408{
6409 struct perf_event *event = file->private_data;
6410 unsigned long user_locked, user_lock_limit;
6411 struct user_struct *user = current_user();
6412 struct perf_buffer *rb = NULL;
6413 unsigned long locked, lock_limit;
6414 unsigned long vma_size;
6415 unsigned long nr_pages;
6416 long user_extra = 0, extra = 0;
6417 int ret = 0, flags = 0;
6418
6419 /*
6420 * Don't allow mmap() of inherited per-task counters. This would
6421 * create a performance issue due to all children writing to the
6422 * same rb.
6423 */
6424 if (event->cpu == -1 && event->attr.inherit)
6425 return -EINVAL;
6426
6427 if (!(vma->vm_flags & VM_SHARED))
6428 return -EINVAL;
6429
6430 ret = security_perf_event_read(event);
6431 if (ret)
6432 return ret;
6433
6434 vma_size = vma->vm_end - vma->vm_start;
6435
6436 if (vma->vm_pgoff == 0) {
6437 nr_pages = (vma_size / PAGE_SIZE) - 1;
6438 } else {
6439 /*
6440 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
6441 * mapped, all subsequent mappings should have the same size
6442 * and offset. Must be above the normal perf buffer.
6443 */
6444 u64 aux_offset, aux_size;
6445
6446 if (!event->rb)
6447 return -EINVAL;
6448
6449 nr_pages = vma_size / PAGE_SIZE;
6450
6451 mutex_lock(&event->mmap_mutex);
6452 ret = -EINVAL;
6453
6454 rb = event->rb;
6455 if (!rb)
6456 goto aux_unlock;
6457
6458 aux_offset = READ_ONCE(rb->user_page->aux_offset);
6459 aux_size = READ_ONCE(rb->user_page->aux_size);
6460
6461 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
6462 goto aux_unlock;
6463
6464 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
6465 goto aux_unlock;
6466
6467 /* already mapped with a different offset */
6468 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
6469 goto aux_unlock;
6470
6471 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
6472 goto aux_unlock;
6473
6474 /* already mapped with a different size */
6475 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
6476 goto aux_unlock;
6477
6478 if (!is_power_of_2(n: nr_pages))
6479 goto aux_unlock;
6480
6481 if (!atomic_inc_not_zero(v: &rb->mmap_count))
6482 goto aux_unlock;
6483
6484 if (rb_has_aux(rb)) {
6485 atomic_inc(v: &rb->aux_mmap_count);
6486 ret = 0;
6487 goto unlock;
6488 }
6489
6490 atomic_set(v: &rb->aux_mmap_count, i: 1);
6491 user_extra = nr_pages;
6492
6493 goto accounting;
6494 }
6495
6496 /*
6497 * If we have rb pages ensure they're a power-of-two number, so we
6498 * can do bitmasks instead of modulo.
6499 */
6500 if (nr_pages != 0 && !is_power_of_2(n: nr_pages))
6501 return -EINVAL;
6502
6503 if (vma_size != PAGE_SIZE * (1 + nr_pages))
6504 return -EINVAL;
6505
6506 WARN_ON_ONCE(event->ctx->parent_ctx);
6507again:
6508 mutex_lock(&event->mmap_mutex);
6509 if (event->rb) {
6510 if (data_page_nr(rb: event->rb) != nr_pages) {
6511 ret = -EINVAL;
6512 goto unlock;
6513 }
6514
6515 if (!atomic_inc_not_zero(v: &event->rb->mmap_count)) {
6516 /*
6517 * Raced against perf_mmap_close(); remove the
6518 * event and try again.
6519 */
6520 ring_buffer_attach(event, NULL);
6521 mutex_unlock(lock: &event->mmap_mutex);
6522 goto again;
6523 }
6524
6525 goto unlock;
6526 }
6527
6528 user_extra = nr_pages + 1;
6529
6530accounting:
6531 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
6532
6533 /*
6534 * Increase the limit linearly with more CPUs:
6535 */
6536 user_lock_limit *= num_online_cpus();
6537
6538 user_locked = atomic_long_read(v: &user->locked_vm);
6539
6540 /*
6541 * sysctl_perf_event_mlock may have changed, so that
6542 * user->locked_vm > user_lock_limit
6543 */
6544 if (user_locked > user_lock_limit)
6545 user_locked = user_lock_limit;
6546 user_locked += user_extra;
6547
6548 if (user_locked > user_lock_limit) {
6549 /*
6550 * charge locked_vm until it hits user_lock_limit;
6551 * charge the rest from pinned_vm
6552 */
6553 extra = user_locked - user_lock_limit;
6554 user_extra -= extra;
6555 }
6556
6557 lock_limit = rlimit(RLIMIT_MEMLOCK);
6558 lock_limit >>= PAGE_SHIFT;
6559 locked = atomic64_read(v: &vma->vm_mm->pinned_vm) + extra;
6560
6561 if ((locked > lock_limit) && perf_is_paranoid() &&
6562 !capable(CAP_IPC_LOCK)) {
6563 ret = -EPERM;
6564 goto unlock;
6565 }
6566
6567 WARN_ON(!rb && event->rb);
6568
6569 if (vma->vm_flags & VM_WRITE)
6570 flags |= RING_BUFFER_WRITABLE;
6571
6572 if (!rb) {
6573 rb = rb_alloc(nr_pages,
6574 watermark: event->attr.watermark ? event->attr.wakeup_watermark : 0,
6575 cpu: event->cpu, flags);
6576
6577 if (!rb) {
6578 ret = -ENOMEM;
6579 goto unlock;
6580 }
6581
6582 atomic_set(v: &rb->mmap_count, i: 1);
6583 rb->mmap_user = get_current_user();
6584 rb->mmap_locked = extra;
6585
6586 ring_buffer_attach(event, rb);
6587
6588 perf_event_update_time(event);
6589 perf_event_init_userpage(event);
6590 perf_event_update_userpage(event);
6591 } else {
6592 ret = rb_alloc_aux(rb, event, pgoff: vma->vm_pgoff, nr_pages,
6593 watermark: event->attr.aux_watermark, flags);
6594 if (!ret)
6595 rb->aux_mmap_locked = extra;
6596 }
6597
6598unlock:
6599 if (!ret) {
6600 atomic_long_add(i: user_extra, v: &user->locked_vm);
6601 atomic64_add(i: extra, v: &vma->vm_mm->pinned_vm);
6602
6603 atomic_inc(v: &event->mmap_count);
6604 } else if (rb) {
6605 atomic_dec(v: &rb->mmap_count);
6606 }
6607aux_unlock:
6608 mutex_unlock(lock: &event->mmap_mutex);
6609
6610 /*
6611 * Since pinned accounting is per vm we cannot allow fork() to copy our
6612 * vma.
6613 */
6614 vm_flags_set(vma, VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP);
6615 vma->vm_ops = &perf_mmap_vmops;
6616
6617 if (event->pmu->event_mapped)
6618 event->pmu->event_mapped(event, vma->vm_mm);
6619
6620 return ret;
6621}
6622
6623static int perf_fasync(int fd, struct file *filp, int on)
6624{
6625 struct inode *inode = file_inode(f: filp);
6626 struct perf_event *event = filp->private_data;
6627 int retval;
6628
6629 inode_lock(inode);
6630 retval = fasync_helper(fd, filp, on, &event->fasync);
6631 inode_unlock(inode);
6632
6633 if (retval < 0)
6634 return retval;
6635
6636 return 0;
6637}
6638
6639static const struct file_operations perf_fops = {
6640 .llseek = no_llseek,
6641 .release = perf_release,
6642 .read = perf_read,
6643 .poll = perf_poll,
6644 .unlocked_ioctl = perf_ioctl,
6645 .compat_ioctl = perf_compat_ioctl,
6646 .mmap = perf_mmap,
6647 .fasync = perf_fasync,
6648};
6649
6650/*
6651 * Perf event wakeup
6652 *
6653 * If there's data, ensure we set the poll() state and publish everything
6654 * to user-space before waking everybody up.
6655 */
6656
6657static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
6658{
6659 /* only the parent has fasync state */
6660 if (event->parent)
6661 event = event->parent;
6662 return &event->fasync;
6663}
6664
6665void perf_event_wakeup(struct perf_event *event)
6666{
6667 ring_buffer_wakeup(event);
6668
6669 if (event->pending_kill) {
6670 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
6671 event->pending_kill = 0;
6672 }
6673}
6674
6675static void perf_sigtrap(struct perf_event *event)
6676{
6677 /*
6678 * We'd expect this to only occur if the irq_work is delayed and either
6679 * ctx->task or current has changed in the meantime. This can be the
6680 * case on architectures that do not implement arch_irq_work_raise().
6681 */
6682 if (WARN_ON_ONCE(event->ctx->task != current))
6683 return;
6684
6685 /*
6686 * Both perf_pending_task() and perf_pending_irq() can race with the
6687 * task exiting.
6688 */
6689 if (current->flags & PF_EXITING)
6690 return;
6691
6692 send_sig_perf(addr: (void __user *)event->pending_addr,
6693 type: event->orig_type, sig_data: event->attr.sig_data);
6694}
6695
6696/*
6697 * Deliver the pending work in-event-context or follow the context.
6698 */
6699static void __perf_pending_irq(struct perf_event *event)
6700{
6701 int cpu = READ_ONCE(event->oncpu);
6702
6703 /*
6704 * If the event isn't running; we done. event_sched_out() will have
6705 * taken care of things.
6706 */
6707 if (cpu < 0)
6708 return;
6709
6710 /*
6711 * Yay, we hit home and are in the context of the event.
6712 */
6713 if (cpu == smp_processor_id()) {
6714 if (event->pending_sigtrap) {
6715 event->pending_sigtrap = 0;
6716 perf_sigtrap(event);
6717 local_dec(l: &event->ctx->nr_pending);
6718 }
6719 if (event->pending_disable) {
6720 event->pending_disable = 0;
6721 perf_event_disable_local(event);
6722 }
6723 return;
6724 }
6725
6726 /*
6727 * CPU-A CPU-B
6728 *
6729 * perf_event_disable_inatomic()
6730 * @pending_disable = CPU-A;
6731 * irq_work_queue();
6732 *
6733 * sched-out
6734 * @pending_disable = -1;
6735 *
6736 * sched-in
6737 * perf_event_disable_inatomic()
6738 * @pending_disable = CPU-B;
6739 * irq_work_queue(); // FAILS
6740 *
6741 * irq_work_run()
6742 * perf_pending_irq()
6743 *
6744 * But the event runs on CPU-B and wants disabling there.
6745 */
6746 irq_work_queue_on(work: &event->pending_irq, cpu);
6747}
6748
6749static void perf_pending_irq(struct irq_work *entry)
6750{
6751 struct perf_event *event = container_of(entry, struct perf_event, pending_irq);
6752 int rctx;
6753
6754 /*
6755 * If we 'fail' here, that's OK, it means recursion is already disabled
6756 * and we won't recurse 'further'.
6757 */
6758 rctx = perf_swevent_get_recursion_context();
6759
6760 /*
6761 * The wakeup isn't bound to the context of the event -- it can happen
6762 * irrespective of where the event is.
6763 */
6764 if (event->pending_wakeup) {
6765 event->pending_wakeup = 0;
6766 perf_event_wakeup(event);
6767 }
6768
6769 __perf_pending_irq(event);
6770
6771 if (rctx >= 0)
6772 perf_swevent_put_recursion_context(rctx);
6773}
6774
6775static void perf_pending_task(struct callback_head *head)
6776{
6777 struct perf_event *event = container_of(head, struct perf_event, pending_task);
6778 int rctx;
6779
6780 /*
6781 * If we 'fail' here, that's OK, it means recursion is already disabled
6782 * and we won't recurse 'further'.
6783 */
6784 preempt_disable_notrace();
6785 rctx = perf_swevent_get_recursion_context();
6786
6787 if (event->pending_work) {
6788 event->pending_work = 0;
6789 perf_sigtrap(event);
6790 local_dec(l: &event->ctx->nr_pending);
6791 }
6792
6793 if (rctx >= 0)
6794 perf_swevent_put_recursion_context(rctx);
6795 preempt_enable_notrace();
6796
6797 put_event(event);
6798}
6799
6800#ifdef CONFIG_GUEST_PERF_EVENTS
6801struct perf_guest_info_callbacks __rcu *perf_guest_cbs;
6802
6803DEFINE_STATIC_CALL_RET0(__perf_guest_state, *perf_guest_cbs->state);
6804DEFINE_STATIC_CALL_RET0(__perf_guest_get_ip, *perf_guest_cbs->get_ip);
6805DEFINE_STATIC_CALL_RET0(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr);
6806
6807void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6808{
6809 if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs)))
6810 return;
6811
6812 rcu_assign_pointer(perf_guest_cbs, cbs);
6813 static_call_update(__perf_guest_state, cbs->state);
6814 static_call_update(__perf_guest_get_ip, cbs->get_ip);
6815
6816 /* Implementing ->handle_intel_pt_intr is optional. */
6817 if (cbs->handle_intel_pt_intr)
6818 static_call_update(__perf_guest_handle_intel_pt_intr,
6819 cbs->handle_intel_pt_intr);
6820}
6821EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
6822
6823void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6824{
6825 if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs) != cbs))
6826 return;
6827
6828 rcu_assign_pointer(perf_guest_cbs, NULL);
6829 static_call_update(__perf_guest_state, (void *)&__static_call_return0);
6830 static_call_update(__perf_guest_get_ip, (void *)&__static_call_return0);
6831 static_call_update(__perf_guest_handle_intel_pt_intr,
6832 (void *)&__static_call_return0);
6833 synchronize_rcu();
6834}
6835EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
6836#endif
6837
6838static void
6839perf_output_sample_regs(struct perf_output_handle *handle,
6840 struct pt_regs *regs, u64 mask)
6841{
6842 int bit;
6843 DECLARE_BITMAP(_mask, 64);
6844
6845 bitmap_from_u64(dst: _mask, mask);
6846 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
6847 u64 val;
6848
6849 val = perf_reg_value(regs, idx: bit);
6850 perf_output_put(handle, val);
6851 }
6852}
6853
6854static void perf_sample_regs_user(struct perf_regs *regs_user,
6855 struct pt_regs *regs)
6856{
6857 if (user_mode(regs)) {
6858 regs_user->abi = perf_reg_abi(current);
6859 regs_user->regs = regs;
6860 } else if (!(current->flags & PF_KTHREAD)) {
6861 perf_get_regs_user(regs_user, regs);
6862 } else {
6863 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
6864 regs_user->regs = NULL;
6865 }
6866}
6867
6868static void perf_sample_regs_intr(struct perf_regs *regs_intr,
6869 struct pt_regs *regs)
6870{
6871 regs_intr->regs = regs;
6872 regs_intr->abi = perf_reg_abi(current);
6873}
6874
6875
6876/*
6877 * Get remaining task size from user stack pointer.
6878 *
6879 * It'd be better to take stack vma map and limit this more
6880 * precisely, but there's no way to get it safely under interrupt,
6881 * so using TASK_SIZE as limit.
6882 */
6883static u64 perf_ustack_task_size(struct pt_regs *regs)
6884{
6885 unsigned long addr = perf_user_stack_pointer(regs);
6886
6887 if (!addr || addr >= TASK_SIZE)
6888 return 0;
6889
6890 return TASK_SIZE - addr;
6891}
6892
6893static u16
6894perf_sample_ustack_size(u16 stack_size, u16 header_size,
6895 struct pt_regs *regs)
6896{
6897 u64 task_size;
6898
6899 /* No regs, no stack pointer, no dump. */
6900 if (!regs)
6901 return 0;
6902
6903 /*
6904 * Check if we fit in with the requested stack size into the:
6905 * - TASK_SIZE
6906 * If we don't, we limit the size to the TASK_SIZE.
6907 *
6908 * - remaining sample size
6909 * If we don't, we customize the stack size to
6910 * fit in to the remaining sample size.
6911 */
6912
6913 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6914 stack_size = min(stack_size, (u16) task_size);
6915
6916 /* Current header size plus static size and dynamic size. */
6917 header_size += 2 * sizeof(u64);
6918
6919 /* Do we fit in with the current stack dump size? */
6920 if ((u16) (header_size + stack_size) < header_size) {
6921 /*
6922 * If we overflow the maximum size for the sample,
6923 * we customize the stack dump size to fit in.
6924 */
6925 stack_size = USHRT_MAX - header_size - sizeof(u64);
6926 stack_size = round_up(stack_size, sizeof(u64));
6927 }
6928
6929 return stack_size;
6930}
6931
6932static void
6933perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6934 struct pt_regs *regs)
6935{
6936 /* Case of a kernel thread, nothing to dump */
6937 if (!regs) {
6938 u64 size = 0;
6939 perf_output_put(handle, size);
6940 } else {
6941 unsigned long sp;
6942 unsigned int rem;
6943 u64 dyn_size;
6944
6945 /*
6946 * We dump:
6947 * static size
6948 * - the size requested by user or the best one we can fit
6949 * in to the sample max size
6950 * data
6951 * - user stack dump data
6952 * dynamic size
6953 * - the actual dumped size
6954 */
6955
6956 /* Static size. */
6957 perf_output_put(handle, dump_size);
6958
6959 /* Data. */
6960 sp = perf_user_stack_pointer(regs);
6961 rem = __output_copy_user(handle, buf: (void *) sp, len: dump_size);
6962 dyn_size = dump_size - rem;
6963
6964 perf_output_skip(handle, len: rem);
6965
6966 /* Dynamic size. */
6967 perf_output_put(handle, dyn_size);
6968 }
6969}
6970
6971static unsigned long perf_prepare_sample_aux(struct perf_event *event,
6972 struct perf_sample_data *data,
6973 size_t size)
6974{
6975 struct perf_event *sampler = event->aux_event;
6976 struct perf_buffer *rb;
6977
6978 data->aux_size = 0;
6979
6980 if (!sampler)
6981 goto out;
6982
6983 if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
6984 goto out;
6985
6986 if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
6987 goto out;
6988
6989 rb = ring_buffer_get(event: sampler);
6990 if (!rb)
6991 goto out;
6992
6993 /*
6994 * If this is an NMI hit inside sampling code, don't take
6995 * the sample. See also perf_aux_sample_output().
6996 */
6997 if (READ_ONCE(rb->aux_in_sampling)) {
6998 data->aux_size = 0;
6999 } else {
7000 size = min_t(size_t, size, perf_aux_size(rb));
7001 data->aux_size = ALIGN(size, sizeof(u64));
7002 }
7003 ring_buffer_put(rb);
7004
7005out:
7006 return data->aux_size;
7007}
7008
7009static long perf_pmu_snapshot_aux(struct perf_buffer *rb,
7010 struct perf_event *event,
7011 struct perf_output_handle *handle,
7012 unsigned long size)
7013{
7014 unsigned long flags;
7015 long ret;
7016
7017 /*
7018 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
7019 * paths. If we start calling them in NMI context, they may race with
7020 * the IRQ ones, that is, for example, re-starting an event that's just
7021 * been stopped, which is why we're using a separate callback that
7022 * doesn't change the event state.
7023 *
7024 * IRQs need to be disabled to prevent IPIs from racing with us.
7025 */
7026 local_irq_save(flags);
7027 /*
7028 * Guard against NMI hits inside the critical section;
7029 * see also perf_prepare_sample_aux().
7030 */
7031 WRITE_ONCE(rb->aux_in_sampling, 1);
7032 barrier();
7033
7034 ret = event->pmu->snapshot_aux(event, handle, size);
7035
7036 barrier();
7037 WRITE_ONCE(rb->aux_in_sampling, 0);
7038 local_irq_restore(flags);
7039
7040 return ret;
7041}
7042
7043static void perf_aux_sample_output(struct perf_event *event,
7044 struct perf_output_handle *handle,
7045 struct perf_sample_data *data)
7046{
7047 struct perf_event *sampler = event->aux_event;
7048 struct perf_buffer *rb;
7049 unsigned long pad;
7050 long size;
7051
7052 if (WARN_ON_ONCE(!sampler || !data->aux_size))
7053 return;
7054
7055 rb = ring_buffer_get(event: sampler);
7056 if (!rb)
7057 return;
7058
7059 size = perf_pmu_snapshot_aux(rb, event: sampler, handle, size: data->aux_size);
7060
7061 /*
7062 * An error here means that perf_output_copy() failed (returned a
7063 * non-zero surplus that it didn't copy), which in its current
7064 * enlightened implementation is not possible. If that changes, we'd
7065 * like to know.
7066 */
7067 if (WARN_ON_ONCE(size < 0))
7068 goto out_put;
7069
7070 /*
7071 * The pad comes from ALIGN()ing data->aux_size up to u64 in
7072 * perf_prepare_sample_aux(), so should not be more than that.
7073 */
7074 pad = data->aux_size - size;
7075 if (WARN_ON_ONCE(pad >= sizeof(u64)))
7076 pad = 8;
7077
7078 if (pad) {
7079 u64 zero = 0;
7080 perf_output_copy(handle, buf: &zero, len: pad);
7081 }
7082
7083out_put:
7084 ring_buffer_put(rb);
7085}
7086
7087/*
7088 * A set of common sample data types saved even for non-sample records
7089 * when event->attr.sample_id_all is set.
7090 */
7091#define PERF_SAMPLE_ID_ALL (PERF_SAMPLE_TID | PERF_SAMPLE_TIME | \
7092 PERF_SAMPLE_ID | PERF_SAMPLE_STREAM_ID | \
7093 PERF_SAMPLE_CPU | PERF_SAMPLE_IDENTIFIER)
7094
7095static void __perf_event_header__init_id(struct perf_sample_data *data,
7096 struct perf_event *event,
7097 u64 sample_type)
7098{
7099 data->type = event->attr.sample_type;
7100 data->sample_flags |= data->type & PERF_SAMPLE_ID_ALL;
7101
7102 if (sample_type & PERF_SAMPLE_TID) {
7103 /* namespace issues */
7104 data->tid_entry.pid = perf_event_pid(event, current);
7105 data->tid_entry.tid = perf_event_tid(event, current);
7106 }
7107
7108 if (sample_type & PERF_SAMPLE_TIME)
7109 data->time = perf_event_clock(event);
7110
7111 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
7112 data->id = primary_event_id(event);
7113
7114 if (sample_type & PERF_SAMPLE_STREAM_ID)
7115 data->stream_id = event->id;
7116
7117 if (sample_type & PERF_SAMPLE_CPU) {
7118 data->cpu_entry.cpu = raw_smp_processor_id();
7119 data->cpu_entry.reserved = 0;
7120 }
7121}
7122
7123void perf_event_header__init_id(struct perf_event_header *header,
7124 struct perf_sample_data *data,
7125 struct perf_event *event)
7126{
7127 if (event->attr.sample_id_all) {
7128 header->size += event->id_header_size;
7129 __perf_event_header__init_id(data, event, sample_type: event->attr.sample_type);
7130 }
7131}
7132
7133static void __perf_event__output_id_sample(struct perf_output_handle *handle,
7134 struct perf_sample_data *data)
7135{
7136 u64 sample_type = data->type;
7137
7138 if (sample_type & PERF_SAMPLE_TID)
7139 perf_output_put(handle, data->tid_entry);
7140
7141 if (sample_type & PERF_SAMPLE_TIME)
7142 perf_output_put(handle, data->time);
7143
7144 if (sample_type & PERF_SAMPLE_ID)
7145 perf_output_put(handle, data->id);
7146
7147 if (sample_type & PERF_SAMPLE_STREAM_ID)
7148 perf_output_put(handle, data->stream_id);
7149
7150 if (sample_type & PERF_SAMPLE_CPU)
7151 perf_output_put(handle, data->cpu_entry);
7152
7153 if (sample_type & PERF_SAMPLE_IDENTIFIER)
7154 perf_output_put(handle, data->id);
7155}
7156
7157void perf_event__output_id_sample(struct perf_event *event,
7158 struct perf_output_handle *handle,
7159 struct perf_sample_data *sample)
7160{
7161 if (event->attr.sample_id_all)
7162 __perf_event__output_id_sample(handle, data: sample);
7163}
7164
7165static void perf_output_read_one(struct perf_output_handle *handle,
7166 struct perf_event *event,
7167 u64 enabled, u64 running)
7168{
7169 u64 read_format = event->attr.read_format;
7170 u64 values[5];
7171 int n = 0;
7172
7173 values[n++] = perf_event_count(event);
7174 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
7175 values[n++] = enabled +
7176 atomic64_read(v: &event->child_total_time_enabled);
7177 }
7178 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
7179 values[n++] = running +
7180 atomic64_read(v: &event->child_total_time_running);
7181 }
7182 if (read_format & PERF_FORMAT_ID)
7183 values[n++] = primary_event_id(event);
7184 if (read_format & PERF_FORMAT_LOST)
7185 values[n++] = atomic64_read(v: &event->lost_samples);
7186
7187 __output_copy(handle, buf: values, len: n * sizeof(u64));
7188}
7189
7190static void perf_output_read_group(struct perf_output_handle *handle,
7191 struct perf_event *event,
7192 u64 enabled, u64 running)
7193{
7194 struct perf_event *leader = event->group_leader, *sub;
7195 u64 read_format = event->attr.read_format;
7196 unsigned long flags;
7197 u64 values[6];
7198 int n = 0;
7199
7200 /*
7201 * Disabling interrupts avoids all counter scheduling
7202 * (context switches, timer based rotation and IPIs).
7203 */
7204 local_irq_save(flags);
7205
7206 values[n++] = 1 + leader->nr_siblings;
7207
7208 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
7209 values[n++] = enabled;
7210
7211 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
7212 values[n++] = running;
7213
7214 if ((leader != event) &&
7215 (leader->state == PERF_EVENT_STATE_ACTIVE))
7216 leader->pmu->read(leader);
7217
7218 values[n++] = perf_event_count(event: leader);
7219 if (read_format & PERF_FORMAT_ID)
7220 values[n++] = primary_event_id(event: leader);
7221 if (read_format & PERF_FORMAT_LOST)
7222 values[n++] = atomic64_read(v: &leader->lost_samples);
7223
7224 __output_copy(handle, buf: values, len: n * sizeof(u64));
7225
7226 for_each_sibling_event(sub, leader) {
7227 n = 0;
7228
7229 if ((sub != event) &&
7230 (sub->state == PERF_EVENT_STATE_ACTIVE))
7231 sub->pmu->read(sub);
7232
7233 values[n++] = perf_event_count(event: sub);
7234 if (read_format & PERF_FORMAT_ID)
7235 values[n++] = primary_event_id(event: sub);
7236 if (read_format & PERF_FORMAT_LOST)
7237 values[n++] = atomic64_read(v: &sub->lost_samples);
7238
7239 __output_copy(handle, buf: values, len: n * sizeof(u64));
7240 }
7241
7242 local_irq_restore(flags);
7243}
7244
7245#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
7246 PERF_FORMAT_TOTAL_TIME_RUNNING)
7247
7248/*
7249 * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
7250 *
7251 * The problem is that its both hard and excessively expensive to iterate the
7252 * child list, not to mention that its impossible to IPI the children running
7253 * on another CPU, from interrupt/NMI context.
7254 */
7255static void perf_output_read(struct perf_output_handle *handle,
7256 struct perf_event *event)
7257{
7258 u64 enabled = 0, running = 0, now;
7259 u64 read_format = event->attr.read_format;
7260
7261 /*
7262 * compute total_time_enabled, total_time_running
7263 * based on snapshot values taken when the event
7264 * was last scheduled in.
7265 *
7266 * we cannot simply called update_context_time()
7267 * because of locking issue as we are called in
7268 * NMI context
7269 */
7270 if (read_format & PERF_FORMAT_TOTAL_TIMES)
7271 calc_timer_values(event, now: &now, enabled: &enabled, running: &running);
7272
7273 if (event->attr.read_format & PERF_FORMAT_GROUP)
7274 perf_output_read_group(handle, event, enabled, running);
7275 else
7276 perf_output_read_one(handle, event, enabled, running);
7277}
7278
7279void perf_output_sample(struct perf_output_handle *handle,
7280 struct perf_event_header *header,
7281 struct perf_sample_data *data,
7282 struct perf_event *event)
7283{
7284 u64 sample_type = data->type;
7285
7286 perf_output_put(handle, *header);
7287
7288 if (sample_type & PERF_SAMPLE_IDENTIFIER)
7289 perf_output_put(handle, data->id);
7290
7291 if (sample_type & PERF_SAMPLE_IP)
7292 perf_output_put(handle, data->ip);
7293
7294 if (sample_type & PERF_SAMPLE_TID)
7295 perf_output_put(handle, data->tid_entry);
7296
7297 if (sample_type & PERF_SAMPLE_TIME)
7298 perf_output_put(handle, data->time);
7299
7300 if (sample_type & PERF_SAMPLE_ADDR)
7301 perf_output_put(handle, data->addr);
7302
7303 if (sample_type & PERF_SAMPLE_ID)
7304 perf_output_put(handle, data->id);
7305
7306 if (sample_type & PERF_SAMPLE_STREAM_ID)
7307 perf_output_put(handle, data->stream_id);
7308
7309 if (sample_type & PERF_SAMPLE_CPU)
7310 perf_output_put(handle, data->cpu_entry);
7311
7312 if (sample_type & PERF_SAMPLE_PERIOD)
7313 perf_output_put(handle, data->period);
7314
7315 if (sample_type & PERF_SAMPLE_READ)
7316 perf_output_read(handle, event);
7317
7318 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7319 int size = 1;
7320
7321 size += data->callchain->nr;
7322 size *= sizeof(u64);
7323 __output_copy(handle, buf: data->callchain, len: size);
7324 }
7325
7326 if (sample_type & PERF_SAMPLE_RAW) {
7327 struct perf_raw_record *raw = data->raw;
7328
7329 if (raw) {
7330 struct perf_raw_frag *frag = &raw->frag;
7331
7332 perf_output_put(handle, raw->size);
7333 do {
7334 if (frag->copy) {
7335 __output_custom(handle, copy_func: frag->copy,
7336 buf: frag->data, len: frag->size);
7337 } else {
7338 __output_copy(handle, buf: frag->data,
7339 len: frag->size);
7340 }
7341 if (perf_raw_frag_last(frag))
7342 break;
7343 frag = frag->next;
7344 } while (1);
7345 if (frag->pad)
7346 __output_skip(handle, NULL, len: frag->pad);
7347 } else {
7348 struct {
7349 u32 size;
7350 u32 data;
7351 } raw = {
7352 .size = sizeof(u32),
7353 .data = 0,
7354 };
7355 perf_output_put(handle, raw);
7356 }
7357 }
7358
7359 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7360 if (data->br_stack) {
7361 size_t size;
7362
7363 size = data->br_stack->nr
7364 * sizeof(struct perf_branch_entry);
7365
7366 perf_output_put(handle, data->br_stack->nr);
7367 if (branch_sample_hw_index(event))
7368 perf_output_put(handle, data->br_stack->hw_idx);
7369 perf_output_copy(handle, buf: data->br_stack->entries, len: size);
7370 } else {
7371 /*
7372 * we always store at least the value of nr
7373 */
7374 u64 nr = 0;
7375 perf_output_put(handle, nr);
7376 }
7377 }
7378
7379 if (sample_type & PERF_SAMPLE_REGS_USER) {
7380 u64 abi = data->regs_user.abi;
7381
7382 /*
7383 * If there are no regs to dump, notice it through
7384 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7385 */
7386 perf_output_put(handle, abi);
7387
7388 if (abi) {
7389 u64 mask = event->attr.sample_regs_user;
7390 perf_output_sample_regs(handle,
7391 regs: data->regs_user.regs,
7392 mask);
7393 }
7394 }
7395
7396 if (sample_type & PERF_SAMPLE_STACK_USER) {
7397 perf_output_sample_ustack(handle,
7398 dump_size: data->stack_user_size,
7399 regs: data->regs_user.regs);
7400 }
7401
7402 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
7403 perf_output_put(handle, data->weight.full);
7404
7405 if (sample_type & PERF_SAMPLE_DATA_SRC)
7406 perf_output_put(handle, data->data_src.val);
7407
7408 if (sample_type & PERF_SAMPLE_TRANSACTION)
7409 perf_output_put(handle, data->txn);
7410
7411 if (sample_type & PERF_SAMPLE_REGS_INTR) {
7412 u64 abi = data->regs_intr.abi;
7413 /*
7414 * If there are no regs to dump, notice it through
7415 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7416 */
7417 perf_output_put(handle, abi);
7418
7419 if (abi) {
7420 u64 mask = event->attr.sample_regs_intr;
7421
7422 perf_output_sample_regs(handle,
7423 regs: data->regs_intr.regs,
7424 mask);
7425 }
7426 }
7427
7428 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7429 perf_output_put(handle, data->phys_addr);
7430
7431 if (sample_type & PERF_SAMPLE_CGROUP)
7432 perf_output_put(handle, data->cgroup);
7433
7434 if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7435 perf_output_put(handle, data->data_page_size);
7436
7437 if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7438 perf_output_put(handle, data->code_page_size);
7439
7440 if (sample_type & PERF_SAMPLE_AUX) {
7441 perf_output_put(handle, data->aux_size);
7442
7443 if (data->aux_size)
7444 perf_aux_sample_output(event, handle, data);
7445 }
7446
7447 if (!event->attr.watermark) {
7448 int wakeup_events = event->attr.wakeup_events;
7449
7450 if (wakeup_events) {
7451 struct perf_buffer *rb = handle->rb;
7452 int events = local_inc_return(&rb->events);
7453
7454 if (events >= wakeup_events) {
7455 local_sub(i: wakeup_events, l: &rb->events);
7456 local_inc(l: &rb->wakeup);
7457 }
7458 }
7459 }
7460}
7461
7462static u64 perf_virt_to_phys(u64 virt)
7463{
7464 u64 phys_addr = 0;
7465
7466 if (!virt)
7467 return 0;
7468
7469 if (virt >= TASK_SIZE) {
7470 /* If it's vmalloc()d memory, leave phys_addr as 0 */
7471 if (virt_addr_valid((void *)(uintptr_t)virt) &&
7472 !(virt >= VMALLOC_START && virt < VMALLOC_END))
7473 phys_addr = (u64)virt_to_phys(address: (void *)(uintptr_t)virt);
7474 } else {
7475 /*
7476 * Walking the pages tables for user address.
7477 * Interrupts are disabled, so it prevents any tear down
7478 * of the page tables.
7479 * Try IRQ-safe get_user_page_fast_only first.
7480 * If failed, leave phys_addr as 0.
7481 */
7482 if (current->mm != NULL) {
7483 struct page *p;
7484
7485 pagefault_disable();
7486 if (get_user_page_fast_only(addr: virt, gup_flags: 0, pagep: &p)) {
7487 phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
7488 put_page(page: p);
7489 }
7490 pagefault_enable();
7491 }
7492 }
7493
7494 return phys_addr;
7495}
7496
7497/*
7498 * Return the pagetable size of a given virtual address.
7499 */
7500static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr)
7501{
7502 u64 size = 0;
7503
7504#ifdef CONFIG_HAVE_FAST_GUP
7505 pgd_t *pgdp, pgd;
7506 p4d_t *p4dp, p4d;
7507 pud_t *pudp, pud;
7508 pmd_t *pmdp, pmd;
7509 pte_t *ptep, pte;
7510
7511 pgdp = pgd_offset(mm, addr);
7512 pgd = READ_ONCE(*pgdp);
7513 if (pgd_none(pgd))
7514 return 0;
7515
7516 if (pgd_leaf(pgd))
7517 return pgd_leaf_size(pgd);
7518
7519 p4dp = p4d_offset_lockless(pgdp, pgd, addr);
7520 p4d = READ_ONCE(*p4dp);
7521 if (!p4d_present(p4d))
7522 return 0;
7523
7524 if (p4d_leaf(p4d))
7525 return p4d_leaf_size(p4d);
7526
7527 pudp = pud_offset_lockless(p4dp, p4d, addr);
7528 pud = READ_ONCE(*pudp);
7529 if (!pud_present(pud))
7530 return 0;
7531
7532 if (pud_leaf(pud))
7533 return pud_leaf_size(pud);
7534
7535 pmdp = pmd_offset_lockless(pudp, pud, addr);
7536again:
7537 pmd = pmdp_get_lockless(pmdp);
7538 if (!pmd_present(pmd))
7539 return 0;
7540
7541 if (pmd_leaf(pte: pmd))
7542 return pmd_leaf_size(pmd);
7543
7544 ptep = pte_offset_map(pmd: &pmd, addr);
7545 if (!ptep)
7546 goto again;
7547
7548 pte = ptep_get_lockless(ptep);
7549 if (pte_present(a: pte))
7550 size = pte_leaf_size(pte);
7551 pte_unmap(pte: ptep);
7552#endif /* CONFIG_HAVE_FAST_GUP */
7553
7554 return size;
7555}
7556
7557static u64 perf_get_page_size(unsigned long addr)
7558{
7559 struct mm_struct *mm;
7560 unsigned long flags;
7561 u64 size;
7562
7563 if (!addr)
7564 return 0;
7565
7566 /*
7567 * Software page-table walkers must disable IRQs,
7568 * which prevents any tear down of the page tables.
7569 */
7570 local_irq_save(flags);
7571
7572 mm = current->mm;
7573 if (!mm) {
7574 /*
7575 * For kernel threads and the like, use init_mm so that
7576 * we can find kernel memory.
7577 */
7578 mm = &init_mm;
7579 }
7580
7581 size = perf_get_pgtable_size(mm, addr);
7582
7583 local_irq_restore(flags);
7584
7585 return size;
7586}
7587
7588static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
7589
7590struct perf_callchain_entry *
7591perf_callchain(struct perf_event *event, struct pt_regs *regs)
7592{
7593 bool kernel = !event->attr.exclude_callchain_kernel;
7594 bool user = !event->attr.exclude_callchain_user;
7595 /* Disallow cross-task user callchains. */
7596 bool crosstask = event->ctx->task && event->ctx->task != current;
7597 const u32 max_stack = event->attr.sample_max_stack;
7598 struct perf_callchain_entry *callchain;
7599
7600 if (!kernel && !user)
7601 return &__empty_callchain;
7602
7603 callchain = get_perf_callchain(regs, init_nr: 0, kernel, user,
7604 max_stack, crosstask, add_mark: true);
7605 return callchain ?: &__empty_callchain;
7606}
7607
7608static __always_inline u64 __cond_set(u64 flags, u64 s, u64 d)
7609{
7610 return d * !!(flags & s);
7611}
7612
7613void perf_prepare_sample(struct perf_sample_data *data,
7614 struct perf_event *event,
7615 struct pt_regs *regs)
7616{
7617 u64 sample_type = event->attr.sample_type;
7618 u64 filtered_sample_type;
7619
7620 /*
7621 * Add the sample flags that are dependent to others. And clear the
7622 * sample flags that have already been done by the PMU driver.
7623 */
7624 filtered_sample_type = sample_type;
7625 filtered_sample_type |= __cond_set(flags: sample_type, s: PERF_SAMPLE_CODE_PAGE_SIZE,
7626 d: PERF_SAMPLE_IP);
7627 filtered_sample_type |= __cond_set(flags: sample_type, s: PERF_SAMPLE_DATA_PAGE_SIZE |
7628 PERF_SAMPLE_PHYS_ADDR, d: PERF_SAMPLE_ADDR);
7629 filtered_sample_type |= __cond_set(flags: sample_type, s: PERF_SAMPLE_STACK_USER,
7630 d: PERF_SAMPLE_REGS_USER);
7631 filtered_sample_type &= ~data->sample_flags;
7632
7633 if (filtered_sample_type == 0) {
7634 /* Make sure it has the correct data->type for output */
7635 data->type = event->attr.sample_type;
7636 return;
7637 }
7638
7639 __perf_event_header__init_id(data, event, sample_type: filtered_sample_type);
7640
7641 if (filtered_sample_type & PERF_SAMPLE_IP) {
7642 data->ip = perf_instruction_pointer(regs);
7643 data->sample_flags |= PERF_SAMPLE_IP;
7644 }
7645
7646 if (filtered_sample_type & PERF_SAMPLE_CALLCHAIN)
7647 perf_sample_save_callchain(data, event, regs);
7648
7649 if (filtered_sample_type & PERF_SAMPLE_RAW) {
7650 data->raw = NULL;
7651 data->dyn_size += sizeof(u64);
7652 data->sample_flags |= PERF_SAMPLE_RAW;
7653 }
7654
7655 if (filtered_sample_type & PERF_SAMPLE_BRANCH_STACK) {
7656 data->br_stack = NULL;
7657 data->dyn_size += sizeof(u64);
7658 data->sample_flags |= PERF_SAMPLE_BRANCH_STACK;
7659 }
7660
7661 if (filtered_sample_type & PERF_SAMPLE_REGS_USER)
7662 perf_sample_regs_user(regs_user: &data->regs_user, regs);
7663
7664 /*
7665 * It cannot use the filtered_sample_type here as REGS_USER can be set
7666 * by STACK_USER (using __cond_set() above) and we don't want to update
7667 * the dyn_size if it's not requested by users.
7668 */
7669 if ((sample_type & ~data->sample_flags) & PERF_SAMPLE_REGS_USER) {
7670 /* regs dump ABI info */
7671 int size = sizeof(u64);
7672
7673 if (data->regs_user.regs) {
7674 u64 mask = event->attr.sample_regs_user;
7675 size += hweight64(mask) * sizeof(u64);
7676 }
7677
7678 data->dyn_size += size;
7679 data->sample_flags |= PERF_SAMPLE_REGS_USER;
7680 }
7681
7682 if (filtered_sample_type & PERF_SAMPLE_STACK_USER) {
7683 /*
7684 * Either we need PERF_SAMPLE_STACK_USER bit to be always
7685 * processed as the last one or have additional check added
7686 * in case new sample type is added, because we could eat
7687 * up the rest of the sample size.
7688 */
7689 u16 stack_size = event->attr.sample_stack_user;
7690 u16 header_size = perf_sample_data_size(data, event);
7691 u16 size = sizeof(u64);
7692
7693 stack_size = perf_sample_ustack_size(stack_size, header_size,
7694 regs: data->regs_user.regs);
7695
7696 /*
7697 * If there is something to dump, add space for the dump
7698 * itself and for the field that tells the dynamic size,
7699 * which is how many have been actually dumped.
7700 */
7701 if (stack_size)
7702 size += sizeof(u64) + stack_size;
7703
7704 data->stack_user_size = stack_size;
7705 data->dyn_size += size;
7706 data->sample_flags |= PERF_SAMPLE_STACK_USER;
7707 }
7708
7709 if (filtered_sample_type & PERF_SAMPLE_WEIGHT_TYPE) {
7710 data->weight.full = 0;
7711 data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE;
7712 }
7713
7714 if (filtered_sample_type & PERF_SAMPLE_DATA_SRC) {
7715 data->data_src.val = PERF_MEM_NA;
7716 data->sample_flags |= PERF_SAMPLE_DATA_SRC;
7717 }
7718
7719 if (filtered_sample_type & PERF_SAMPLE_TRANSACTION) {
7720 data->txn = 0;
7721 data->sample_flags |= PERF_SAMPLE_TRANSACTION;
7722 }
7723
7724 if (filtered_sample_type & PERF_SAMPLE_ADDR) {
7725 data->addr = 0;
7726 data->sample_flags |= PERF_SAMPLE_ADDR;
7727 }
7728
7729 if (filtered_sample_type & PERF_SAMPLE_REGS_INTR) {
7730 /* regs dump ABI info */
7731 int size = sizeof(u64);
7732
7733 perf_sample_regs_intr(regs_intr: &data->regs_intr, regs);
7734
7735 if (data->regs_intr.regs) {
7736 u64 mask = event->attr.sample_regs_intr;
7737
7738 size += hweight64(mask) * sizeof(u64);
7739 }
7740
7741 data->dyn_size += size;
7742 data->sample_flags |= PERF_SAMPLE_REGS_INTR;
7743 }
7744
7745 if (filtered_sample_type & PERF_SAMPLE_PHYS_ADDR) {
7746 data->phys_addr = perf_virt_to_phys(virt: data->addr);
7747 data->sample_flags |= PERF_SAMPLE_PHYS_ADDR;
7748 }
7749
7750#ifdef CONFIG_CGROUP_PERF
7751 if (filtered_sample_type & PERF_SAMPLE_CGROUP) {
7752 struct cgroup *cgrp;
7753
7754 /* protected by RCU */
7755 cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup;
7756 data->cgroup = cgroup_id(cgrp);
7757 data->sample_flags |= PERF_SAMPLE_CGROUP;
7758 }
7759#endif
7760
7761 /*
7762 * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't
7763 * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr,
7764 * but the value will not dump to the userspace.
7765 */
7766 if (filtered_sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) {
7767 data->data_page_size = perf_get_page_size(addr: data->addr);
7768 data->sample_flags |= PERF_SAMPLE_DATA_PAGE_SIZE;
7769 }
7770
7771 if (filtered_sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) {
7772 data->code_page_size = perf_get_page_size(addr: data->ip);
7773 data->sample_flags |= PERF_SAMPLE_CODE_PAGE_SIZE;
7774 }
7775
7776 if (filtered_sample_type & PERF_SAMPLE_AUX) {
7777 u64 size;
7778 u16 header_size = perf_sample_data_size(data, event);
7779
7780 header_size += sizeof(u64); /* size */
7781
7782 /*
7783 * Given the 16bit nature of header::size, an AUX sample can
7784 * easily overflow it, what with all the preceding sample bits.
7785 * Make sure this doesn't happen by using up to U16_MAX bytes
7786 * per sample in total (rounded down to 8 byte boundary).
7787 */
7788 size = min_t(size_t, U16_MAX - header_size,
7789 event->attr.aux_sample_size);
7790 size = rounddown(size, 8);
7791 size = perf_prepare_sample_aux(event, data, size);
7792
7793 WARN_ON_ONCE(size + header_size > U16_MAX);
7794 data->dyn_size += size + sizeof(u64); /* size above */
7795 data->sample_flags |= PERF_SAMPLE_AUX;
7796 }
7797}
7798
7799void perf_prepare_header(struct perf_event_header *header,
7800 struct perf_sample_data *data,
7801 struct perf_event *event,
7802 struct pt_regs *regs)
7803{
7804 header->type = PERF_RECORD_SAMPLE;
7805 header->size = perf_sample_data_size(data, event);
7806 header->misc = perf_misc_flags(regs);
7807
7808 /*
7809 * If you're adding more sample types here, you likely need to do
7810 * something about the overflowing header::size, like repurpose the
7811 * lowest 3 bits of size, which should be always zero at the moment.
7812 * This raises a more important question, do we really need 512k sized
7813 * samples and why, so good argumentation is in order for whatever you
7814 * do here next.
7815 */
7816 WARN_ON_ONCE(header->size & 7);
7817}
7818
7819static __always_inline int
7820__perf_event_output(struct perf_event *event,
7821 struct perf_sample_data *data,
7822 struct pt_regs *regs,
7823 int (*output_begin)(struct perf_output_handle *,
7824 struct perf_sample_data *,
7825 struct perf_event *,
7826 unsigned int))
7827{
7828 struct perf_output_handle handle;
7829 struct perf_event_header header;
7830 int err;
7831
7832 /* protect the callchain buffers */
7833 rcu_read_lock();
7834
7835 perf_prepare_sample(data, event, regs);
7836 perf_prepare_header(header: &header, data, event, regs);
7837
7838 err = output_begin(&handle, data, event, header.size);
7839 if (err)
7840 goto exit;
7841
7842 perf_output_sample(handle: &handle, header: &header, data, event);
7843
7844 perf_output_end(handle: &handle);
7845
7846exit:
7847 rcu_read_unlock();
7848 return err;
7849}
7850
7851void
7852perf_event_output_forward(struct perf_event *event,
7853 struct perf_sample_data *data,
7854 struct pt_regs *regs)
7855{
7856 __perf_event_output(event, data, regs, output_begin: perf_output_begin_forward);
7857}
7858
7859void
7860perf_event_output_backward(struct perf_event *event,
7861 struct perf_sample_data *data,
7862 struct pt_regs *regs)
7863{
7864 __perf_event_output(event, data, regs, output_begin: perf_output_begin_backward);
7865}
7866
7867int
7868perf_event_output(struct perf_event *event,
7869 struct perf_sample_data *data,
7870 struct pt_regs *regs)
7871{
7872 return __perf_event_output(event, data, regs, output_begin: perf_output_begin);
7873}
7874
7875/*
7876 * read event_id
7877 */
7878
7879struct perf_read_event {
7880 struct perf_event_header header;
7881
7882 u32 pid;
7883 u32 tid;
7884};
7885
7886static void
7887perf_event_read_event(struct perf_event *event,
7888 struct task_struct *task)
7889{
7890 struct perf_output_handle handle;
7891 struct perf_sample_data sample;
7892 struct perf_read_event read_event = {
7893 .header = {
7894 .type = PERF_RECORD_READ,
7895 .misc = 0,
7896 .size = sizeof(read_event) + event->read_size,
7897 },
7898 .pid = perf_event_pid(event, p: task),
7899 .tid = perf_event_tid(event, p: task),
7900 };
7901 int ret;
7902
7903 perf_event_header__init_id(header: &read_event.header, data: &sample, event);
7904 ret = perf_output_begin(handle: &handle, data: &sample, event, size: read_event.header.size);
7905 if (ret)
7906 return;
7907
7908 perf_output_put(&handle, read_event);
7909 perf_output_read(handle: &handle, event);
7910 perf_event__output_id_sample(event, handle: &handle, sample: &sample);
7911
7912 perf_output_end(handle: &handle);
7913}
7914
7915typedef void (perf_iterate_f)(struct perf_event *event, void *data);
7916
7917static void
7918perf_iterate_ctx(struct perf_event_context *ctx,
7919 perf_iterate_f output,
7920 void *data, bool all)
7921{
7922 struct perf_event *event;
7923
7924 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7925 if (!all) {
7926 if (event->state < PERF_EVENT_STATE_INACTIVE)
7927 continue;
7928 if (!event_filter_match(event))
7929 continue;
7930 }
7931
7932 output(event, data);
7933 }
7934}
7935
7936static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
7937{
7938 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
7939 struct perf_event *event;
7940
7941 list_for_each_entry_rcu(event, &pel->list, sb_list) {
7942 /*
7943 * Skip events that are not fully formed yet; ensure that
7944 * if we observe event->ctx, both event and ctx will be
7945 * complete enough. See perf_install_in_context().
7946 */
7947 if (!smp_load_acquire(&event->ctx))
7948 continue;
7949
7950 if (event->state < PERF_EVENT_STATE_INACTIVE)
7951 continue;
7952 if (!event_filter_match(event))
7953 continue;
7954 output(event, data);
7955 }
7956}
7957
7958/*
7959 * Iterate all events that need to receive side-band events.
7960 *
7961 * For new callers; ensure that account_pmu_sb_event() includes
7962 * your event, otherwise it might not get delivered.
7963 */
7964static void
7965perf_iterate_sb(perf_iterate_f output, void *data,
7966 struct perf_event_context *task_ctx)
7967{
7968 struct perf_event_context *ctx;
7969
7970 rcu_read_lock();
7971 preempt_disable();
7972
7973 /*
7974 * If we have task_ctx != NULL we only notify the task context itself.
7975 * The task_ctx is set only for EXIT events before releasing task
7976 * context.
7977 */
7978 if (task_ctx) {
7979 perf_iterate_ctx(ctx: task_ctx, output, data, all: false);
7980 goto done;
7981 }
7982
7983 perf_iterate_sb_cpu(output, data);
7984
7985 ctx = rcu_dereference(current->perf_event_ctxp);
7986 if (ctx)
7987 perf_iterate_ctx(ctx, output, data, all: false);
7988done:
7989 preempt_enable();
7990 rcu_read_unlock();
7991}
7992
7993/*
7994 * Clear all file-based filters at exec, they'll have to be
7995 * re-instated when/if these objects are mmapped again.
7996 */
7997static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
7998{
7999 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8000 struct perf_addr_filter *filter;
8001 unsigned int restart = 0, count = 0;
8002 unsigned long flags;
8003
8004 if (!has_addr_filter(event))
8005 return;
8006
8007 raw_spin_lock_irqsave(&ifh->lock, flags);
8008 list_for_each_entry(filter, &ifh->list, entry) {
8009 if (filter->path.dentry) {
8010 event->addr_filter_ranges[count].start = 0;
8011 event->addr_filter_ranges[count].size = 0;
8012 restart++;
8013 }
8014
8015 count++;
8016 }
8017
8018 if (restart)
8019 event->addr_filters_gen++;
8020 raw_spin_unlock_irqrestore(&ifh->lock, flags);
8021
8022 if (restart)
8023 perf_event_stop(event, restart: 1);
8024}
8025
8026void perf_event_exec(void)
8027{
8028 struct perf_event_context *ctx;
8029
8030 ctx = perf_pin_task_context(current);
8031 if (!ctx)
8032 return;
8033
8034 perf_event_enable_on_exec(ctx);
8035 perf_event_remove_on_exec(ctx);
8036 perf_iterate_ctx(ctx, output: perf_event_addr_filters_exec, NULL, all: true);
8037
8038 perf_unpin_context(ctx);
8039 put_ctx(ctx);
8040}
8041
8042struct remote_output {
8043 struct perf_buffer *rb;
8044 int err;
8045};
8046
8047static void __perf_event_output_stop(struct perf_event *event, void *data)
8048{
8049 struct perf_event *parent = event->parent;
8050 struct remote_output *ro = data;
8051 struct perf_buffer *rb = ro->rb;
8052 struct stop_event_data sd = {
8053 .event = event,
8054 };
8055
8056 if (!has_aux(event))
8057 return;
8058
8059 if (!parent)
8060 parent = event;
8061
8062 /*
8063 * In case of inheritance, it will be the parent that links to the
8064 * ring-buffer, but it will be the child that's actually using it.
8065 *
8066 * We are using event::rb to determine if the event should be stopped,
8067 * however this may race with ring_buffer_attach() (through set_output),
8068 * which will make us skip the event that actually needs to be stopped.
8069 * So ring_buffer_attach() has to stop an aux event before re-assigning
8070 * its rb pointer.
8071 */
8072 if (rcu_dereference(parent->rb) == rb)
8073 ro->err = __perf_event_stop(info: &sd);
8074}
8075
8076static int __perf_pmu_output_stop(void *info)
8077{
8078 struct perf_event *event = info;
8079 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
8080 struct remote_output ro = {
8081 .rb = event->rb,
8082 };
8083
8084 rcu_read_lock();
8085 perf_iterate_ctx(ctx: &cpuctx->ctx, output: __perf_event_output_stop, data: &ro, all: false);
8086 if (cpuctx->task_ctx)
8087 perf_iterate_ctx(ctx: cpuctx->task_ctx, output: __perf_event_output_stop,
8088 data: &ro, all: false);
8089 rcu_read_unlock();
8090
8091 return ro.err;
8092}
8093
8094static void perf_pmu_output_stop(struct perf_event *event)
8095{
8096 struct perf_event *iter;
8097 int err, cpu;
8098
8099restart:
8100 rcu_read_lock();
8101 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
8102 /*
8103 * For per-CPU events, we need to make sure that neither they
8104 * nor their children are running; for cpu==-1 events it's
8105 * sufficient to stop the event itself if it's active, since
8106 * it can't have children.
8107 */
8108 cpu = iter->cpu;
8109 if (cpu == -1)
8110 cpu = READ_ONCE(iter->oncpu);
8111
8112 if (cpu == -1)
8113 continue;
8114
8115 err = cpu_function_call(cpu, func: __perf_pmu_output_stop, info: event);
8116 if (err == -EAGAIN) {
8117 rcu_read_unlock();
8118 goto restart;
8119 }
8120 }
8121 rcu_read_unlock();
8122}
8123
8124/*
8125 * task tracking -- fork/exit
8126 *
8127 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
8128 */
8129
8130struct perf_task_event {
8131 struct task_struct *task;
8132 struct perf_event_context *task_ctx;
8133
8134 struct {
8135 struct perf_event_header header;
8136
8137 u32 pid;
8138 u32 ppid;
8139 u32 tid;
8140 u32 ptid;
8141 u64 time;
8142 } event_id;
8143};
8144
8145static int perf_event_task_match(struct perf_event *event)
8146{
8147 return event->attr.comm || event->attr.mmap ||
8148 event->attr.mmap2 || event->attr.mmap_data ||
8149 event->attr.task;
8150}
8151
8152static void perf_event_task_output(struct perf_event *event,
8153 void *data)
8154{
8155 struct perf_task_event *task_event = data;
8156 struct perf_output_handle handle;
8157 struct perf_sample_data sample;
8158 struct task_struct *task = task_event->task;
8159 int ret, size = task_event->event_id.header.size;
8160
8161 if (!perf_event_task_match(event))
8162 return;
8163
8164 perf_event_header__init_id(header: &task_event->event_id.header, data: &sample, event);
8165
8166 ret = perf_output_begin(handle: &handle, data: &sample, event,
8167 size: task_event->event_id.header.size);
8168 if (ret)
8169 goto out;
8170
8171 task_event->event_id.pid = perf_event_pid(event, p: task);
8172 task_event->event_id.tid = perf_event_tid(event, p: task);
8173
8174 if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
8175 task_event->event_id.ppid = perf_event_pid(event,
8176 p: task->real_parent);
8177 task_event->event_id.ptid = perf_event_pid(event,
8178 p: task->real_parent);
8179 } else { /* PERF_RECORD_FORK */
8180 task_event->event_id.ppid = perf_event_pid(event, current);
8181 task_event->event_id.ptid = perf_event_tid(event, current);
8182 }
8183
8184 task_event->event_id.time = perf_event_clock(event);
8185
8186 perf_output_put(&handle, task_event->event_id);
8187
8188 perf_event__output_id_sample(event, handle: &handle, sample: &sample);
8189
8190 perf_output_end(handle: &handle);
8191out:
8192 task_event->event_id.header.size = size;
8193}
8194
8195static void perf_event_task(struct task_struct *task,
8196 struct perf_event_context *task_ctx,
8197 int new)
8198{
8199 struct perf_task_event task_event;
8200
8201 if (!atomic_read(v: &nr_comm_events) &&
8202 !atomic_read(v: &nr_mmap_events) &&
8203 !atomic_read(v: &nr_task_events))
8204 return;
8205
8206 task_event = (struct perf_task_event){
8207 .task = task,
8208 .task_ctx = task_ctx,
8209 .event_id = {
8210 .header = {
8211 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
8212 .misc = 0,
8213 .size = sizeof(task_event.event_id),
8214 },
8215 /* .pid */
8216 /* .ppid */
8217 /* .tid */
8218 /* .ptid */
8219 /* .time */
8220 },
8221 };
8222
8223 perf_iterate_sb(output: perf_event_task_output,
8224 data: &task_event,
8225 task_ctx);
8226}
8227
8228void perf_event_fork(struct task_struct *task)
8229{
8230 perf_event_task(task, NULL, new: 1);
8231 perf_event_namespaces(tsk: task);
8232}
8233
8234/*
8235 * comm tracking
8236 */
8237
8238struct perf_comm_event {
8239 struct task_struct *task;
8240 char *comm;
8241 int comm_size;
8242
8243 struct {
8244 struct perf_event_header header;
8245
8246 u32 pid;
8247 u32 tid;
8248 } event_id;
8249};
8250
8251static int perf_event_comm_match(struct perf_event *event)
8252{
8253 return event->attr.comm;
8254}
8255
8256static void perf_event_comm_output(struct perf_event *event,
8257 void *data)
8258{
8259 struct perf_comm_event *comm_event = data;
8260 struct perf_output_handle handle;
8261 struct perf_sample_data sample;
8262 int size = comm_event->event_id.header.size;
8263 int ret;
8264
8265 if (!perf_event_comm_match(event))
8266 return;
8267
8268 perf_event_header__init_id(header: &comm_event->event_id.header, data: &sample, event);
8269 ret = perf_output_begin(handle: &handle, data: &sample, event,
8270 size: comm_event->event_id.header.size);
8271
8272 if (ret)
8273 goto out;
8274
8275 comm_event->event_id.pid = perf_event_pid(event, p: comm_event->task);
8276 comm_event->event_id.tid = perf_event_tid(event, p: comm_event->task);
8277
8278 perf_output_put(&handle, comm_event->event_id);
8279 __output_copy(handle: &handle, buf: comm_event->comm,
8280 len: comm_event->comm_size);
8281
8282 perf_event__output_id_sample(event, handle: &handle, sample: &sample);
8283
8284 perf_output_end(handle: &handle);
8285out:
8286 comm_event->event_id.header.size = size;
8287}
8288
8289static void perf_event_comm_event(struct perf_comm_event *comm_event)
8290{
8291 char comm[TASK_COMM_LEN];
8292 unsigned int size;
8293
8294 memset(comm, 0, sizeof(comm));
8295 strscpy(p: comm, q: comm_event->task->comm, size: sizeof(comm));
8296 size = ALIGN(strlen(comm)+1, sizeof(u64));
8297
8298 comm_event->comm = comm;
8299 comm_event->comm_size = size;
8300
8301 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8302
8303 perf_iterate_sb(output: perf_event_comm_output,
8304 data: comm_event,
8305 NULL);
8306}
8307
8308void perf_event_comm(struct task_struct *task, bool exec)
8309{
8310 struct perf_comm_event comm_event;
8311
8312 if (!atomic_read(v: &nr_comm_events))
8313 return;
8314
8315 comm_event = (struct perf_comm_event){
8316 .task = task,
8317 /* .comm */
8318 /* .comm_size */
8319 .event_id = {
8320 .header = {
8321 .type = PERF_RECORD_COMM,
8322 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
8323 /* .size */
8324 },
8325 /* .pid */
8326 /* .tid */
8327 },
8328 };
8329
8330 perf_event_comm_event(comm_event: &comm_event);
8331}
8332
8333/*
8334 * namespaces tracking
8335 */
8336
8337struct perf_namespaces_event {
8338 struct task_struct *task;
8339
8340 struct {
8341 struct perf_event_header header;
8342
8343 u32 pid;
8344 u32 tid;
8345 u64 nr_namespaces;
8346 struct perf_ns_link_info link_info[NR_NAMESPACES];
8347 } event_id;
8348};
8349
8350static int perf_event_namespaces_match(struct perf_event *event)
8351{
8352 return event->attr.namespaces;
8353}
8354
8355static void perf_event_namespaces_output(struct perf_event *event,
8356 void *data)
8357{
8358 struct perf_namespaces_event *namespaces_event = data;
8359 struct perf_output_handle handle;
8360 struct perf_sample_data sample;
8361 u16 header_size = namespaces_event->event_id.header.size;
8362 int ret;
8363
8364 if (!perf_event_namespaces_match(event))
8365 return;
8366
8367 perf_event_header__init_id(header: &namespaces_event->event_id.header,
8368 data: &sample, event);
8369 ret = perf_output_begin(handle: &handle, data: &sample, event,
8370 size: namespaces_event->event_id.header.size);
8371 if (ret)
8372 goto out;
8373
8374 namespaces_event->event_id.pid = perf_event_pid(event,
8375 p: namespaces_event->task);
8376 namespaces_event->event_id.tid = perf_event_tid(event,
8377 p: namespaces_event->task);
8378
8379 perf_output_put(&handle, namespaces_event->event_id);
8380
8381 perf_event__output_id_sample(event, handle: &handle, sample: &sample);
8382
8383 perf_output_end(handle: &handle);
8384out:
8385 namespaces_event->event_id.header.size = header_size;
8386}
8387
8388static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
8389 struct task_struct *task,
8390 const struct proc_ns_operations *ns_ops)
8391{
8392 struct path ns_path;
8393 struct inode *ns_inode;
8394 int error;
8395
8396 error = ns_get_path(path: &ns_path, task, ns_ops);
8397 if (!error) {
8398 ns_inode = ns_path.dentry->d_inode;
8399 ns_link_info->dev = new_encode_dev(dev: ns_inode->i_sb->s_dev);
8400 ns_link_info->ino = ns_inode->i_ino;
8401 path_put(&ns_path);
8402 }
8403}
8404
8405void perf_event_namespaces(struct task_struct *task)
8406{
8407 struct perf_namespaces_event namespaces_event;
8408 struct perf_ns_link_info *ns_link_info;
8409
8410 if (!atomic_read(v: &nr_namespaces_events))
8411 return;
8412
8413 namespaces_event = (struct perf_namespaces_event){
8414 .task = task,
8415 .event_id = {
8416 .header = {
8417 .type = PERF_RECORD_NAMESPACES,
8418 .misc = 0,
8419 .size = sizeof(namespaces_event.event_id),
8420 },
8421 /* .pid */
8422 /* .tid */
8423 .nr_namespaces = NR_NAMESPACES,
8424 /* .link_info[NR_NAMESPACES] */
8425 },
8426 };
8427
8428 ns_link_info = namespaces_event.event_id.link_info;
8429
8430 perf_fill_ns_link_info(ns_link_info: &ns_link_info[MNT_NS_INDEX],
8431 task, ns_ops: &mntns_operations);
8432
8433#ifdef CONFIG_USER_NS
8434 perf_fill_ns_link_info(ns_link_info: &ns_link_info[USER_NS_INDEX],
8435 task, ns_ops: &userns_operations);
8436#endif
8437#ifdef CONFIG_NET_NS
8438 perf_fill_ns_link_info(ns_link_info: &ns_link_info[NET_NS_INDEX],
8439 task, ns_ops: &netns_operations);
8440#endif
8441#ifdef CONFIG_UTS_NS
8442 perf_fill_ns_link_info(ns_link_info: &ns_link_info[UTS_NS_INDEX],
8443 task, ns_ops: &utsns_operations);
8444#endif
8445#ifdef CONFIG_IPC_NS
8446 perf_fill_ns_link_info(ns_link_info: &ns_link_info[IPC_NS_INDEX],
8447 task, ns_ops: &ipcns_operations);
8448#endif
8449#ifdef CONFIG_PID_NS
8450 perf_fill_ns_link_info(ns_link_info: &ns_link_info[PID_NS_INDEX],
8451 task, ns_ops: &pidns_operations);
8452#endif
8453#ifdef CONFIG_CGROUPS
8454 perf_fill_ns_link_info(ns_link_info: &ns_link_info[CGROUP_NS_INDEX],
8455 task, ns_ops: &cgroupns_operations);
8456#endif
8457
8458 perf_iterate_sb(output: perf_event_namespaces_output,
8459 data: &namespaces_event,
8460 NULL);
8461}
8462
8463/*
8464 * cgroup tracking
8465 */
8466#ifdef CONFIG_CGROUP_PERF
8467
8468struct perf_cgroup_event {
8469 char *path;
8470 int path_size;
8471 struct {
8472 struct perf_event_header header;
8473 u64 id;
8474 char path[];
8475 } event_id;
8476};
8477
8478static int perf_event_cgroup_match(struct perf_event *event)
8479{
8480 return event->attr.cgroup;
8481}
8482
8483static void perf_event_cgroup_output(struct perf_event *event, void *data)
8484{
8485 struct perf_cgroup_event *cgroup_event = data;
8486 struct perf_output_handle handle;
8487 struct perf_sample_data sample;
8488 u16 header_size = cgroup_event->event_id.header.size;
8489 int ret;
8490
8491 if (!perf_event_cgroup_match(event))
8492 return;
8493
8494 perf_event_header__init_id(header: &cgroup_event->event_id.header,
8495 data: &sample, event);
8496 ret = perf_output_begin(handle: &handle, data: &sample, event,
8497 size: cgroup_event->event_id.header.size);
8498 if (ret)
8499 goto out;
8500
8501 perf_output_put(&handle, cgroup_event->event_id);
8502 __output_copy(handle: &handle, buf: cgroup_event->path, len: cgroup_event->path_size);
8503
8504 perf_event__output_id_sample(event, handle: &handle, sample: &sample);
8505
8506 perf_output_end(handle: &handle);
8507out:
8508 cgroup_event->event_id.header.size = header_size;
8509}
8510
8511static void perf_event_cgroup(struct cgroup *cgrp)
8512{
8513 struct perf_cgroup_event cgroup_event;
8514 char path_enomem[16] = "//enomem";
8515 char *pathname;
8516 size_t size;
8517
8518 if (!atomic_read(v: &nr_cgroup_events))
8519 return;
8520
8521 cgroup_event = (struct perf_cgroup_event){
8522 .event_id = {
8523 .header = {
8524 .type = PERF_RECORD_CGROUP,
8525 .misc = 0,
8526 .size = sizeof(cgroup_event.event_id),
8527 },
8528 .id = cgroup_id(cgrp),
8529 },
8530 };
8531
8532 pathname = kmalloc(PATH_MAX, GFP_KERNEL);
8533 if (pathname == NULL) {
8534 cgroup_event.path = path_enomem;
8535 } else {
8536 /* just to be sure to have enough space for alignment */
8537 cgroup_path(cgrp, buf: pathname, PATH_MAX - sizeof(u64));
8538 cgroup_event.path = pathname;
8539 }
8540
8541 /*
8542 * Since our buffer works in 8 byte units we need to align our string
8543 * size to a multiple of 8. However, we must guarantee the tail end is
8544 * zero'd out to avoid leaking random bits to userspace.
8545 */
8546 size = strlen(cgroup_event.path) + 1;
8547 while (!IS_ALIGNED(size, sizeof(u64)))
8548 cgroup_event.path[size++] = '\0';
8549
8550 cgroup_event.event_id.header.size += size;
8551 cgroup_event.path_size = size;
8552
8553 perf_iterate_sb(output: perf_event_cgroup_output,
8554 data: &cgroup_event,
8555 NULL);
8556
8557 kfree(objp: pathname);
8558}
8559
8560#endif
8561
8562/*
8563 * mmap tracking
8564 */
8565
8566struct perf_mmap_event {
8567 struct vm_area_struct *vma;
8568
8569 const char *file_name;
8570 int file_size;
8571 int maj, min;
8572 u64 ino;
8573 u64 ino_generation;
8574 u32 prot, flags;
8575 u8 build_id[BUILD_ID_SIZE_MAX];
8576 u32 build_id_size;
8577
8578 struct {
8579 struct perf_event_header header;
8580
8581 u32 pid;
8582 u32 tid;
8583 u64 start;
8584 u64 len;
8585 u64 pgoff;
8586 } event_id;
8587};
8588
8589static int perf_event_mmap_match(struct perf_event *event,
8590 void *data)
8591{
8592 struct perf_mmap_event *mmap_event = data;
8593 struct vm_area_struct *vma = mmap_event->vma;
8594 int executable = vma->vm_flags & VM_EXEC;
8595
8596 return (!executable && event->attr.mmap_data) ||
8597 (executable && (event->attr.mmap || event->attr.mmap2));
8598}
8599
8600static void perf_event_mmap_output(struct perf_event *event,
8601 void *data)
8602{
8603 struct perf_mmap_event *mmap_event = data;
8604 struct perf_output_handle handle;
8605 struct perf_sample_data sample;
8606 int size = mmap_event->event_id.header.size;
8607 u32 type = mmap_event->event_id.header.type;
8608 bool use_build_id;
8609 int ret;
8610
8611 if (!perf_event_mmap_match(event, data))
8612 return;
8613
8614 if (event->attr.mmap2) {
8615 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
8616 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
8617 mmap_event->event_id.header.size += sizeof(mmap_event->min);
8618 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
8619 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
8620 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
8621 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
8622 }
8623
8624 perf_event_header__init_id(header: &mmap_event->event_id.header, data: &sample, event);
8625 ret = perf_output_begin(handle: &handle, data: &sample, event,
8626 size: mmap_event->event_id.header.size);
8627 if (ret)
8628 goto out;
8629
8630 mmap_event->event_id.pid = perf_event_pid(event, current);
8631 mmap_event->event_id.tid = perf_event_tid(event, current);
8632
8633 use_build_id = event->attr.build_id && mmap_event->build_id_size;
8634
8635 if (event->attr.mmap2 && use_build_id)
8636 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID;
8637
8638 perf_output_put(&handle, mmap_event->event_id);
8639
8640 if (event->attr.mmap2) {
8641 if (use_build_id) {
8642 u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 };
8643
8644 __output_copy(handle: &handle, buf: size, len: 4);
8645 __output_copy(handle: &handle, buf: mmap_event->build_id, BUILD_ID_SIZE_MAX);
8646 } else {
8647 perf_output_put(&handle, mmap_event->maj);
8648 perf_output_put(&handle, mmap_event->min);
8649 perf_output_put(&handle, mmap_event->ino);
8650 perf_output_put(&handle, mmap_event->ino_generation);
8651 }
8652 perf_output_put(&handle, mmap_event->prot);
8653 perf_output_put(&handle, mmap_event->flags);
8654 }
8655
8656 __output_copy(handle: &handle, buf: mmap_event->file_name,
8657 len: mmap_event->file_size);
8658
8659 perf_event__output_id_sample(event, handle: &handle, sample: &sample);
8660
8661 perf_output_end(handle: &handle);
8662out:
8663 mmap_event->event_id.header.size = size;
8664 mmap_event->event_id.header.type = type;
8665}
8666
8667static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
8668{
8669 struct vm_area_struct *vma = mmap_event->vma;
8670 struct file *file = vma->vm_file;
8671 int maj = 0, min = 0;
8672 u64 ino = 0, gen = 0;
8673 u32 prot = 0, flags = 0;
8674 unsigned int size;
8675 char tmp[16];
8676 char *buf = NULL;
8677 char *name = NULL;
8678
8679 if (vma->vm_flags & VM_READ)
8680 prot |= PROT_READ;
8681 if (vma->vm_flags & VM_WRITE)
8682 prot |= PROT_WRITE;
8683 if (vma->vm_flags & VM_EXEC)
8684 prot |= PROT_EXEC;
8685
8686 if (vma->vm_flags & VM_MAYSHARE)
8687 flags = MAP_SHARED;
8688 else
8689 flags = MAP_PRIVATE;
8690
8691 if (vma->vm_flags & VM_LOCKED)
8692 flags |= MAP_LOCKED;
8693 if (is_vm_hugetlb_page(vma))
8694 flags |= MAP_HUGETLB;
8695
8696 if (file) {
8697 struct inode *inode;
8698 dev_t dev;
8699
8700 buf = kmalloc(PATH_MAX, GFP_KERNEL);
8701 if (!buf) {
8702 name = "//enomem";
8703 goto cpy_name;
8704 }
8705 /*
8706 * d_path() works from the end of the rb backwards, so we
8707 * need to add enough zero bytes after the string to handle
8708 * the 64bit alignment we do later.
8709 */
8710 name = file_path(file, buf, PATH_MAX - sizeof(u64));
8711 if (IS_ERR(ptr: name)) {
8712 name = "//toolong";
8713 goto cpy_name;
8714 }
8715 inode = file_inode(f: vma->vm_file);
8716 dev = inode->i_sb->s_dev;
8717 ino = inode->i_ino;
8718 gen = inode->i_generation;
8719 maj = MAJOR(dev);
8720 min = MINOR(dev);
8721
8722 goto got_name;
8723 } else {
8724 if (vma->vm_ops && vma->vm_ops->name)
8725 name = (char *) vma->vm_ops->name(vma);
8726 if (!name)
8727 name = (char *)arch_vma_name(vma);
8728 if (!name) {
8729 if (vma_is_initial_heap(vma))
8730 name = "[heap]";
8731 else if (vma_is_initial_stack(vma))
8732 name = "[stack]";
8733 else
8734 name = "//anon";
8735 }
8736 }
8737
8738cpy_name:
8739 strscpy(p: tmp, q: name, size: sizeof(tmp));
8740 name = tmp;
8741got_name:
8742 /*
8743 * Since our buffer works in 8 byte units we need to align our string
8744 * size to a multiple of 8. However, we must guarantee the tail end is
8745 * zero'd out to avoid leaking random bits to userspace.
8746 */
8747 size = strlen(name)+1;
8748 while (!IS_ALIGNED(size, sizeof(u64)))
8749 name[size++] = '\0';
8750
8751 mmap_event->file_name = name;
8752 mmap_event->file_size = size;
8753 mmap_event->maj = maj;
8754 mmap_event->min = min;
8755 mmap_event->ino = ino;
8756 mmap_event->ino_generation = gen;
8757 mmap_event->prot = prot;
8758 mmap_event->flags = flags;
8759
8760 if (!(vma->vm_flags & VM_EXEC))
8761 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
8762
8763 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
8764
8765 if (atomic_read(v: &nr_build_id_events))
8766 build_id_parse(vma, build_id: mmap_event->build_id, size: &mmap_event->build_id_size);
8767
8768 perf_iterate_sb(output: perf_event_mmap_output,
8769 data: mmap_event,
8770 NULL);
8771
8772 kfree(objp: buf);
8773}
8774
8775/*
8776 * Check whether inode and address range match filter criteria.
8777 */
8778static bool perf_addr_filter_match(struct perf_addr_filter *filter,
8779 struct file *file, unsigned long offset,
8780 unsigned long size)
8781{
8782 /* d_inode(NULL) won't be equal to any mapped user-space file */
8783 if (!filter->path.dentry)
8784 return false;
8785
8786 if (d_inode(dentry: filter->path.dentry) != file_inode(f: file))
8787 return false;
8788
8789 if (filter->offset > offset + size)
8790 return false;
8791
8792 if (filter->offset + filter->size < offset)
8793 return false;
8794
8795 return true;
8796}
8797
8798static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
8799 struct vm_area_struct *vma,
8800 struct perf_addr_filter_range *fr)
8801{
8802 unsigned long vma_size = vma->vm_end - vma->vm_start;
8803 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8804 struct file *file = vma->vm_file;
8805
8806 if (!perf_addr_filter_match(filter, file, offset: off, size: vma_size))
8807 return false;
8808
8809 if (filter->offset < off) {
8810 fr->start = vma->vm_start;
8811 fr->size = min(vma_size, filter->size - (off - filter->offset));
8812 } else {
8813 fr->start = vma->vm_start + filter->offset - off;
8814 fr->size = min(vma->vm_end - fr->start, filter->size);
8815 }
8816
8817 return true;
8818}
8819
8820static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
8821{
8822 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8823 struct vm_area_struct *vma = data;
8824 struct perf_addr_filter *filter;
8825 unsigned int restart = 0, count = 0;
8826 unsigned long flags;
8827
8828 if (!has_addr_filter(event))
8829 return;
8830
8831 if (!vma->vm_file)
8832 return;
8833
8834 raw_spin_lock_irqsave(&ifh->lock, flags);
8835 list_for_each_entry(filter, &ifh->list, entry) {
8836 if (perf_addr_filter_vma_adjust(filter, vma,
8837 fr: &event->addr_filter_ranges[count]))
8838 restart++;
8839
8840 count++;
8841 }
8842
8843 if (restart)
8844 event->addr_filters_gen++;
8845 raw_spin_unlock_irqrestore(&ifh->lock, flags);
8846
8847 if (restart)
8848 perf_event_stop(event, restart: 1);
8849}
8850
8851/*
8852 * Adjust all task's events' filters to the new vma
8853 */
8854static void perf_addr_filters_adjust(struct vm_area_struct *vma)
8855{
8856 struct perf_event_context *ctx;
8857
8858 /*
8859 * Data tracing isn't supported yet and as such there is no need
8860 * to keep track of anything that isn't related to executable code:
8861 */
8862 if (!(vma->vm_flags & VM_EXEC))
8863 return;
8864
8865 rcu_read_lock();
8866 ctx = rcu_dereference(current->perf_event_ctxp);
8867 if (ctx)
8868 perf_iterate_ctx(ctx, output: __perf_addr_filters_adjust, data: vma, all: true);
8869 rcu_read_unlock();
8870}
8871
8872void perf_event_mmap(struct vm_area_struct *vma)
8873{
8874 struct perf_mmap_event mmap_event;
8875
8876 if (!atomic_read(v: &nr_mmap_events))
8877 return;
8878
8879 mmap_event = (struct perf_mmap_event){
8880 .vma = vma,
8881 /* .file_name */
8882 /* .file_size */
8883 .event_id = {
8884 .header = {
8885 .type = PERF_RECORD_MMAP,
8886 .misc = PERF_RECORD_MISC_USER,
8887 /* .size */
8888 },
8889 /* .pid */
8890 /* .tid */
8891 .start = vma->vm_start,
8892 .len = vma->vm_end - vma->vm_start,
8893 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
8894 },
8895 /* .maj (attr_mmap2 only) */
8896 /* .min (attr_mmap2 only) */
8897 /* .ino (attr_mmap2 only) */
8898 /* .ino_generation (attr_mmap2 only) */
8899 /* .prot (attr_mmap2 only) */
8900 /* .flags (attr_mmap2 only) */
8901 };
8902
8903 perf_addr_filters_adjust(vma);
8904 perf_event_mmap_event(mmap_event: &mmap_event);
8905}
8906
8907void perf_event_aux_event(struct perf_event *event, unsigned long head,
8908 unsigned long size, u64 flags)
8909{
8910 struct perf_output_handle handle;
8911 struct perf_sample_data sample;
8912 struct perf_aux_event {
8913 struct perf_event_header header;
8914 u64 offset;
8915 u64 size;
8916 u64 flags;
8917 } rec = {
8918 .header = {
8919 .type = PERF_RECORD_AUX,
8920 .misc = 0,
8921 .size = sizeof(rec),
8922 },
8923 .offset = head,
8924 .size = size,
8925 .flags = flags,
8926 };
8927 int ret;
8928
8929 perf_event_header__init_id(header: &rec.header, data: &sample, event);
8930 ret = perf_output_begin(handle: &handle, data: &sample, event, size: rec.header.size);
8931
8932 if (ret)
8933 return;
8934
8935 perf_output_put(&handle, rec);
8936 perf_event__output_id_sample(event, handle: &handle, sample: &sample);
8937
8938 perf_output_end(handle: &handle);
8939}
8940
8941/*
8942 * Lost/dropped samples logging
8943 */
8944void perf_log_lost_samples(struct perf_event *event, u64 lost)
8945{
8946 struct perf_output_handle handle;
8947 struct perf_sample_data sample;
8948 int ret;
8949
8950 struct {
8951 struct perf_event_header header;
8952 u64 lost;
8953 } lost_samples_event = {
8954 .header = {
8955 .type = PERF_RECORD_LOST_SAMPLES,
8956 .misc = 0,
8957 .size = sizeof(lost_samples_event),
8958 },
8959 .lost = lost,
8960 };
8961
8962 perf_event_header__init_id(header: &lost_samples_event.header, data: &sample, event);
8963
8964 ret = perf_output_begin(handle: &handle, data: &sample, event,
8965 size: lost_samples_event.header.size);
8966 if (ret)
8967 return;
8968
8969 perf_output_put(&handle, lost_samples_event);
8970 perf_event__output_id_sample(event, handle: &handle, sample: &sample);
8971 perf_output_end(handle: &handle);
8972}
8973
8974/*
8975 * context_switch tracking
8976 */
8977
8978struct perf_switch_event {
8979 struct task_struct *task;
8980 struct task_struct *next_prev;
8981
8982 struct {
8983 struct perf_event_header header;
8984 u32 next_prev_pid;
8985 u32 next_prev_tid;
8986 } event_id;
8987};
8988
8989static int perf_event_switch_match(struct perf_event *event)
8990{
8991 return event->attr.context_switch;
8992}
8993
8994static void perf_event_switch_output(struct perf_event *event, void *data)
8995{
8996 struct perf_switch_event *se = data;
8997 struct perf_output_handle handle;
8998 struct perf_sample_data sample;
8999 int ret;
9000
9001 if (!perf_event_switch_match(event))
9002 return;
9003
9004 /* Only CPU-wide events are allowed to see next/prev pid/tid */
9005 if (event->ctx->task) {
9006 se->event_id.header.type = PERF_RECORD_SWITCH;
9007 se->event_id.header.size = sizeof(se->event_id.header);
9008 } else {
9009 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
9010 se->event_id.header.size = sizeof(se->event_id);
9011 se->event_id.next_prev_pid =
9012 perf_event_pid(event, p: se->next_prev);
9013 se->event_id.next_prev_tid =
9014 perf_event_tid(event, p: se->next_prev);
9015 }
9016
9017 perf_event_header__init_id(header: &se->event_id.header, data: &sample, event);
9018
9019 ret = perf_output_begin(handle: &handle, data: &sample, event, size: se->event_id.header.size);
9020 if (ret)
9021 return;
9022
9023 if (event->ctx->task)
9024 perf_output_put(&handle, se->event_id.header);
9025 else
9026 perf_output_put(&handle, se->event_id);
9027
9028 perf_event__output_id_sample(event, handle: &handle, sample: &sample);
9029
9030 perf_output_end(handle: &handle);
9031}
9032
9033static void perf_event_switch(struct task_struct *task,
9034 struct task_struct *next_prev, bool sched_in)
9035{
9036 struct perf_switch_event switch_event;
9037
9038 /* N.B. caller checks nr_switch_events != 0 */
9039
9040 switch_event = (struct perf_switch_event){
9041 .task = task,
9042 .next_prev = next_prev,
9043 .event_id = {
9044 .header = {
9045 /* .type */
9046 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
9047 /* .size */
9048 },
9049 /* .next_prev_pid */
9050 /* .next_prev_tid */
9051 },
9052 };
9053
9054 if (!sched_in && task->on_rq) {
9055 switch_event.event_id.header.misc |=
9056 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
9057 }
9058
9059 perf_iterate_sb(output: perf_event_switch_output, data: &switch_event, NULL);
9060}
9061
9062/*
9063 * IRQ throttle logging
9064 */
9065
9066static void perf_log_throttle(struct perf_event *event, int enable)
9067{
9068 struct perf_output_handle handle;
9069 struct perf_sample_data sample;
9070 int ret;
9071
9072 struct {
9073 struct perf_event_header header;
9074 u64 time;
9075 u64 id;
9076 u64 stream_id;
9077 } throttle_event = {
9078 .header = {
9079 .type = PERF_RECORD_THROTTLE,
9080 .misc = 0,
9081 .size = sizeof(throttle_event),
9082 },
9083 .time = perf_event_clock(event),
9084 .id = primary_event_id(event),
9085 .stream_id = event->id,
9086 };
9087
9088 if (enable)
9089 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
9090
9091 perf_event_header__init_id(header: &throttle_event.header, data: &sample, event);
9092
9093 ret = perf_output_begin(handle: &handle, data: &sample, event,
9094 size: throttle_event.header.size);
9095 if (ret)
9096 return;
9097
9098 perf_output_put(&handle, throttle_event);
9099 perf_event__output_id_sample(event, handle: &handle, sample: &sample);
9100 perf_output_end(handle: &handle);
9101}
9102
9103/*
9104 * ksymbol register/unregister tracking
9105 */
9106
9107struct perf_ksymbol_event {
9108 const char *name;
9109 int name_len;
9110 struct {
9111 struct perf_event_header header;
9112 u64 addr;
9113 u32 len;
9114 u16 ksym_type;
9115 u16 flags;
9116 } event_id;
9117};
9118
9119static int perf_event_ksymbol_match(struct perf_event *event)
9120{
9121 return event->attr.ksymbol;
9122}
9123
9124static void perf_event_ksymbol_output(struct perf_event *event, void *data)
9125{
9126 struct perf_ksymbol_event *ksymbol_event = data;
9127 struct perf_output_handle handle;
9128 struct perf_sample_data sample;
9129 int ret;
9130
9131 if (!perf_event_ksymbol_match(event))
9132 return;
9133
9134 perf_event_header__init_id(header: &ksymbol_event->event_id.header,
9135 data: &sample, event);
9136 ret = perf_output_begin(handle: &handle, data: &sample, event,
9137 size: ksymbol_event->event_id.header.size);
9138 if (ret)
9139 return;
9140
9141 perf_output_put(&handle, ksymbol_event->event_id);
9142 __output_copy(handle: &handle, buf: ksymbol_event->name, len: ksymbol_event->name_len);
9143 perf_event__output_id_sample(event, handle: &handle, sample: &sample);
9144
9145 perf_output_end(handle: &handle);
9146}
9147
9148void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
9149 const char *sym)
9150{
9151 struct perf_ksymbol_event ksymbol_event;
9152 char name[KSYM_NAME_LEN];
9153 u16 flags = 0;
9154 int name_len;
9155
9156 if (!atomic_read(v: &nr_ksymbol_events))
9157 return;
9158
9159 if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
9160 ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
9161 goto err;
9162
9163 strscpy(p: name, q: sym, KSYM_NAME_LEN);
9164 name_len = strlen(name) + 1;
9165 while (!IS_ALIGNED(name_len, sizeof(u64)))
9166 name[name_len++] = '\0';
9167 BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
9168
9169 if (unregister)
9170 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
9171
9172 ksymbol_event = (struct perf_ksymbol_event){
9173 .name = name,
9174 .name_len = name_len,
9175 .event_id = {
9176 .header = {
9177 .type = PERF_RECORD_KSYMBOL,
9178 .size = sizeof(ksymbol_event.event_id) +
9179 name_len,
9180 },
9181 .addr = addr,
9182 .len = len,
9183 .ksym_type = ksym_type,
9184 .flags = flags,
9185 },
9186 };
9187
9188 perf_iterate_sb(output: perf_event_ksymbol_output, data: &ksymbol_event, NULL);
9189 return;
9190err:
9191 WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
9192}
9193
9194/*
9195 * bpf program load/unload tracking
9196 */
9197
9198struct perf_bpf_event {
9199 struct bpf_prog *prog;
9200 struct {
9201 struct perf_event_header header;
9202 u16 type;
9203 u16 flags;
9204 u32 id;
9205 u8 tag[BPF_TAG_SIZE];
9206 } event_id;
9207};
9208
9209static int perf_event_bpf_match(struct perf_event *event)
9210{
9211 return event->attr.bpf_event;
9212}
9213
9214static void perf_event_bpf_output(struct perf_event *event, void *data)
9215{
9216 struct perf_bpf_event *bpf_event = data;
9217 struct perf_output_handle handle;
9218 struct perf_sample_data sample;
9219 int ret;
9220
9221 if (!perf_event_bpf_match(event))
9222 return;
9223
9224 perf_event_header__init_id(header: &bpf_event->event_id.header,
9225 data: &sample, event);
9226 ret = perf_output_begin(handle: &handle, data: &sample, event,
9227 size: bpf_event->event_id.header.size);
9228 if (ret)
9229 return;
9230
9231 perf_output_put(&handle, bpf_event->event_id);
9232 perf_event__output_id_sample(event, handle: &handle, sample: &sample);
9233
9234 perf_output_end(handle: &handle);
9235}
9236
9237static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
9238 enum perf_bpf_event_type type)
9239{
9240 bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
9241 int i;
9242
9243 if (prog->aux->func_cnt == 0) {
9244 perf_event_ksymbol(ksym_type: PERF_RECORD_KSYMBOL_TYPE_BPF,
9245 addr: (u64)(unsigned long)prog->bpf_func,
9246 len: prog->jited_len, unregister,
9247 sym: prog->aux->ksym.name);
9248 } else {
9249 for (i = 0; i < prog->aux->func_cnt; i++) {
9250 struct bpf_prog *subprog = prog->aux->func[i];
9251
9252 perf_event_ksymbol(
9253 ksym_type: PERF_RECORD_KSYMBOL_TYPE_BPF,
9254 addr: (u64)(unsigned long)subprog->bpf_func,
9255 len: subprog->jited_len, unregister,
9256 sym: subprog->aux->ksym.name);
9257 }
9258 }
9259}
9260
9261void perf_event_bpf_event(struct bpf_prog *prog,
9262 enum perf_bpf_event_type type,
9263 u16 flags)
9264{
9265 struct perf_bpf_event bpf_event;
9266
9267 if (type <= PERF_BPF_EVENT_UNKNOWN ||
9268 type >= PERF_BPF_EVENT_MAX)
9269 return;
9270
9271 switch (type) {
9272 case PERF_BPF_EVENT_PROG_LOAD:
9273 case PERF_BPF_EVENT_PROG_UNLOAD:
9274 if (atomic_read(v: &nr_ksymbol_events))
9275 perf_event_bpf_emit_ksymbols(prog, type);
9276 break;
9277 default:
9278 break;
9279 }
9280
9281 if (!atomic_read(v: &nr_bpf_events))
9282 return;
9283
9284 bpf_event = (struct perf_bpf_event){
9285 .prog = prog,
9286 .event_id = {
9287 .header = {
9288 .type = PERF_RECORD_BPF_EVENT,
9289 .size = sizeof(bpf_event.event_id),
9290 },
9291 .type = type,
9292 .flags = flags,
9293 .id = prog->aux->id,
9294 },
9295 };
9296
9297 BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
9298
9299 memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
9300 perf_iterate_sb(output: perf_event_bpf_output, data: &bpf_event, NULL);
9301}
9302
9303struct perf_text_poke_event {
9304 const void *old_bytes;
9305 const void *new_bytes;
9306 size_t pad;
9307 u16 old_len;
9308 u16 new_len;
9309
9310 struct {
9311 struct perf_event_header header;
9312
9313 u64 addr;
9314 } event_id;
9315};
9316
9317static int perf_event_text_poke_match(struct perf_event *event)
9318{
9319 return event->attr.text_poke;
9320}
9321
9322static void perf_event_text_poke_output(struct perf_event *event, void *data)
9323{
9324 struct perf_text_poke_event *text_poke_event = data;
9325 struct perf_output_handle handle;
9326 struct perf_sample_data sample;
9327 u64 padding = 0;
9328 int ret;
9329
9330 if (!perf_event_text_poke_match(event))
9331 return;
9332
9333 perf_event_header__init_id(header: &text_poke_event->event_id.header, data: &sample, event);
9334
9335 ret = perf_output_begin(handle: &handle, data: &sample, event,
9336 size: text_poke_event->event_id.header.size);
9337 if (ret)
9338 return;
9339
9340 perf_output_put(&handle, text_poke_event->event_id);
9341 perf_output_put(&handle, text_poke_event->old_len);
9342 perf_output_put(&handle, text_poke_event->new_len);
9343
9344 __output_copy(handle: &handle, buf: text_poke_event->old_bytes, len: text_poke_event->old_len);
9345 __output_copy(handle: &handle, buf: text_poke_event->new_bytes, len: text_poke_event->new_len);
9346
9347 if (text_poke_event->pad)
9348 __output_copy(handle: &handle, buf: &padding, len: text_poke_event->pad);
9349
9350 perf_event__output_id_sample(event, handle: &handle, sample: &sample);
9351
9352 perf_output_end(handle: &handle);
9353}
9354
9355void perf_event_text_poke(const void *addr, const void *old_bytes,
9356 size_t old_len, const void *new_bytes, size_t new_len)
9357{
9358 struct perf_text_poke_event text_poke_event;
9359 size_t tot, pad;
9360
9361 if (!atomic_read(v: &nr_text_poke_events))
9362 return;
9363
9364 tot = sizeof(text_poke_event.old_len) + old_len;
9365 tot += sizeof(text_poke_event.new_len) + new_len;
9366 pad = ALIGN(tot, sizeof(u64)) - tot;
9367
9368 text_poke_event = (struct perf_text_poke_event){
9369 .old_bytes = old_bytes,
9370 .new_bytes = new_bytes,
9371 .pad = pad,
9372 .old_len = old_len,
9373 .new_len = new_len,
9374 .event_id = {
9375 .header = {
9376 .type = PERF_RECORD_TEXT_POKE,
9377 .misc = PERF_RECORD_MISC_KERNEL,
9378 .size = sizeof(text_poke_event.event_id) + tot + pad,
9379 },
9380 .addr = (unsigned long)addr,
9381 },
9382 };
9383
9384 perf_iterate_sb(output: perf_event_text_poke_output, data: &text_poke_event, NULL);
9385}
9386
9387void perf_event_itrace_started(struct perf_event *event)
9388{
9389 event->attach_state |= PERF_ATTACH_ITRACE;
9390}
9391
9392static void perf_log_itrace_start(struct perf_event *event)
9393{
9394 struct perf_output_handle handle;
9395 struct perf_sample_data sample;
9396 struct perf_aux_event {
9397 struct perf_event_header header;
9398 u32 pid;
9399 u32 tid;
9400 } rec;
9401 int ret;
9402
9403 if (event->parent)
9404 event = event->parent;
9405
9406 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
9407 event->attach_state & PERF_ATTACH_ITRACE)
9408 return;
9409
9410 rec.header.type = PERF_RECORD_ITRACE_START;
9411 rec.header.misc = 0;
9412 rec.header.size = sizeof(rec);
9413 rec.pid = perf_event_pid(event, current);
9414 rec.tid = perf_event_tid(event, current);
9415
9416 perf_event_header__init_id(header: &rec.header, data: &sample, event);
9417 ret = perf_output_begin(handle: &handle, data: &sample, event, size: rec.header.size);
9418
9419 if (ret)
9420 return;
9421
9422 perf_output_put(&handle, rec);
9423 perf_event__output_id_sample(event, handle: &handle, sample: &sample);
9424
9425 perf_output_end(handle: &handle);
9426}
9427
9428void perf_report_aux_output_id(struct perf_event *event, u64 hw_id)
9429{
9430 struct perf_output_handle handle;
9431 struct perf_sample_data sample;
9432 struct perf_aux_event {
9433 struct perf_event_header header;
9434 u64 hw_id;
9435 } rec;
9436 int ret;
9437
9438 if (event->parent)
9439 event = event->parent;
9440
9441 rec.header.type = PERF_RECORD_AUX_OUTPUT_HW_ID;
9442 rec.header.misc = 0;
9443 rec.header.size = sizeof(rec);
9444 rec.hw_id = hw_id;
9445
9446 perf_event_header__init_id(header: &rec.header, data: &sample, event);
9447 ret = perf_output_begin(handle: &handle, data: &sample, event, size: rec.header.size);
9448
9449 if (ret)
9450 return;
9451
9452 perf_output_put(&handle, rec);
9453 perf_event__output_id_sample(event, handle: &handle, sample: &sample);
9454
9455 perf_output_end(handle: &handle);
9456}
9457EXPORT_SYMBOL_GPL(perf_report_aux_output_id);
9458
9459static int
9460__perf_event_account_interrupt(struct perf_event *event, int throttle)
9461{
9462 struct hw_perf_event *hwc = &event->hw;
9463 int ret = 0;
9464 u64 seq;
9465
9466 seq = __this_cpu_read(perf_throttled_seq);
9467 if (seq != hwc->interrupts_seq) {
9468 hwc->interrupts_seq = seq;
9469 hwc->interrupts = 1;
9470 } else {
9471 hwc->interrupts++;
9472 if (unlikely(throttle &&
9473 hwc->interrupts > max_samples_per_tick)) {
9474 __this_cpu_inc(perf_throttled_count);
9475 tick_dep_set_cpu(smp_processor_id(), bit: TICK_DEP_BIT_PERF_EVENTS);
9476 hwc->interrupts = MAX_INTERRUPTS;
9477 perf_log_throttle(event, enable: 0);
9478 ret = 1;
9479 }
9480 }
9481
9482 if (event->attr.freq) {
9483 u64 now = perf_clock();
9484 s64 delta = now - hwc->freq_time_stamp;
9485
9486 hwc->freq_time_stamp = now;
9487
9488 if (delta > 0 && delta < 2*TICK_NSEC)
9489 perf_adjust_period(event, nsec: delta, count: hwc->last_period, disable: true);
9490 }
9491
9492 return ret;
9493}
9494
9495int perf_event_account_interrupt(struct perf_event *event)
9496{
9497 return __perf_event_account_interrupt(event, throttle: 1);
9498}
9499
9500static inline bool sample_is_allowed(struct perf_event *event, struct pt_regs *regs)
9501{
9502 /*
9503 * Due to interrupt latency (AKA "skid"), we may enter the
9504 * kernel before taking an overflow, even if the PMU is only
9505 * counting user events.
9506 */
9507 if (event->attr.exclude_kernel && !user_mode(regs))
9508 return false;
9509
9510 return true;
9511}
9512
9513/*
9514 * Generic event overflow handling, sampling.
9515 */
9516
9517static int __perf_event_overflow(struct perf_event *event,
9518 int throttle, struct perf_sample_data *data,
9519 struct pt_regs *regs)
9520{
9521 int events = atomic_read(v: &event->event_limit);
9522 int ret = 0;
9523
9524 /*
9525 * Non-sampling counters might still use the PMI to fold short
9526 * hardware counters, ignore those.
9527 */
9528 if (unlikely(!is_sampling_event(event)))
9529 return 0;
9530
9531 ret = __perf_event_account_interrupt(event, throttle);
9532
9533 /*
9534 * XXX event_limit might not quite work as expected on inherited
9535 * events
9536 */
9537
9538 event->pending_kill = POLL_IN;
9539 if (events && atomic_dec_and_test(v: &event->event_limit)) {
9540 ret = 1;
9541 event->pending_kill = POLL_HUP;
9542 perf_event_disable_inatomic(event);
9543 }
9544
9545 if (event->attr.sigtrap) {
9546 /*
9547 * The desired behaviour of sigtrap vs invalid samples is a bit
9548 * tricky; on the one hand, one should not loose the SIGTRAP if
9549 * it is the first event, on the other hand, we should also not
9550 * trigger the WARN or override the data address.
9551 */
9552 bool valid_sample = sample_is_allowed(event, regs);
9553 unsigned int pending_id = 1;
9554
9555 if (regs)
9556 pending_id = hash32_ptr(ptr: (void *)instruction_pointer(regs)) ?: 1;
9557 if (!event->pending_sigtrap) {
9558 event->pending_sigtrap = pending_id;
9559 local_inc(l: &event->ctx->nr_pending);
9560 } else if (event->attr.exclude_kernel && valid_sample) {
9561 /*
9562 * Should not be able to return to user space without
9563 * consuming pending_sigtrap; with exceptions:
9564 *
9565 * 1. Where !exclude_kernel, events can overflow again
9566 * in the kernel without returning to user space.
9567 *
9568 * 2. Events that can overflow again before the IRQ-
9569 * work without user space progress (e.g. hrtimer).
9570 * To approximate progress (with false negatives),
9571 * check 32-bit hash of the current IP.
9572 */
9573 WARN_ON_ONCE(event->pending_sigtrap != pending_id);
9574 }
9575
9576 event->pending_addr = 0;
9577 if (valid_sample && (data->sample_flags & PERF_SAMPLE_ADDR))
9578 event->pending_addr = data->addr;
9579 irq_work_queue(work: &event->pending_irq);
9580 }
9581
9582 READ_ONCE(event->overflow_handler)(event, data, regs);
9583
9584 if (*perf_event_fasync(event) && event->pending_kill) {
9585 event->pending_wakeup = 1;
9586 irq_work_queue(work: &event->pending_irq);
9587 }
9588
9589 return ret;
9590}
9591
9592int perf_event_overflow(struct perf_event *event,
9593 struct perf_sample_data *data,
9594 struct pt_regs *regs)
9595{
9596 return __perf_event_overflow(event, throttle: 1, data, regs);
9597}
9598
9599/*
9600 * Generic software event infrastructure
9601 */
9602
9603struct swevent_htable {
9604 struct swevent_hlist *swevent_hlist;
9605 struct mutex hlist_mutex;
9606 int hlist_refcount;
9607
9608 /* Recursion avoidance in each contexts */
9609 int recursion[PERF_NR_CONTEXTS];
9610};
9611
9612static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
9613
9614/*
9615 * We directly increment event->count and keep a second value in
9616 * event->hw.period_left to count intervals. This period event
9617 * is kept in the range [-sample_period, 0] so that we can use the
9618 * sign as trigger.
9619 */
9620
9621u64 perf_swevent_set_period(struct perf_event *event)
9622{
9623 struct hw_perf_event *hwc = &event->hw;
9624 u64 period = hwc->last_period;
9625 u64 nr, offset;
9626 s64 old, val;
9627
9628 hwc->last_period = hwc->sample_period;
9629
9630 old = local64_read(&hwc->period_left);
9631 do {
9632 val = old;
9633 if (val < 0)
9634 return 0;
9635
9636 nr = div64_u64(dividend: period + val, divisor: period);
9637 offset = nr * period;
9638 val -= offset;
9639 } while (!local64_try_cmpxchg(l: &hwc->period_left, old: &old, new: val));
9640
9641 return nr;
9642}
9643
9644static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
9645 struct perf_sample_data *data,
9646 struct pt_regs *regs)
9647{
9648 struct hw_perf_event *hwc = &event->hw;
9649 int throttle = 0;
9650
9651 if (!overflow)
9652 overflow = perf_swevent_set_period(event);
9653
9654 if (hwc->interrupts == MAX_INTERRUPTS)
9655 return;
9656
9657 for (; overflow; overflow--) {
9658 if (__perf_event_overflow(event, throttle,
9659 data, regs)) {
9660 /*
9661 * We inhibit the overflow from happening when
9662 * hwc->interrupts == MAX_INTERRUPTS.
9663 */
9664 break;
9665 }
9666 throttle = 1;
9667 }
9668}
9669
9670static void perf_swevent_event(struct perf_event *event, u64 nr,
9671 struct perf_sample_data *data,
9672 struct pt_regs *regs)
9673{
9674 struct hw_perf_event *hwc = &event->hw;
9675
9676 local64_add(nr, &event->count);
9677
9678 if (!regs)
9679 return;
9680
9681 if (!is_sampling_event(event))
9682 return;
9683
9684 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
9685 data->period = nr;
9686 return perf_swevent_overflow(event, overflow: 1, data, regs);
9687 } else
9688 data->period = event->hw.last_period;
9689
9690 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
9691 return perf_swevent_overflow(event, overflow: 1, data, regs);
9692
9693 if (local64_add_negative(nr, &hwc->period_left))
9694 return;
9695
9696 perf_swevent_overflow(event, overflow: 0, data, regs);
9697}
9698
9699static int perf_exclude_event(struct perf_event *event,
9700 struct pt_regs *regs)
9701{
9702 if (event->hw.state & PERF_HES_STOPPED)
9703 return 1;
9704
9705 if (regs) {
9706 if (event->attr.exclude_user && user_mode(regs))
9707 return 1;
9708
9709 if (event->attr.exclude_kernel && !user_mode(regs))
9710 return 1;
9711 }
9712
9713 return 0;
9714}
9715
9716static int perf_swevent_match(struct perf_event *event,
9717 enum perf_type_id type,
9718 u32 event_id,
9719 struct perf_sample_data *data,
9720 struct pt_regs *regs)
9721{
9722 if (event->attr.type != type)
9723 return 0;
9724
9725 if (event->attr.config != event_id)
9726 return 0;
9727
9728 if (perf_exclude_event(event, regs))
9729 return 0;
9730
9731 return 1;
9732}
9733
9734static inline u64 swevent_hash(u64 type, u32 event_id)
9735{
9736 u64 val = event_id | (type << 32);
9737
9738 return hash_64(val, SWEVENT_HLIST_BITS);
9739}
9740
9741static inline struct hlist_head *
9742__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
9743{
9744 u64 hash = swevent_hash(type, event_id);
9745
9746 return &hlist->heads[hash];
9747}
9748
9749/* For the read side: events when they trigger */
9750static inline struct hlist_head *
9751find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
9752{
9753 struct swevent_hlist *hlist;
9754
9755 hlist = rcu_dereference(swhash->swevent_hlist);
9756 if (!hlist)
9757 return NULL;
9758
9759 return __find_swevent_head(hlist, type, event_id);
9760}
9761
9762/* For the event head insertion and removal in the hlist */
9763static inline struct hlist_head *
9764find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
9765{
9766 struct swevent_hlist *hlist;
9767 u32 event_id = event->attr.config;
9768 u64 type = event->attr.type;
9769
9770 /*
9771 * Event scheduling is always serialized against hlist allocation
9772 * and release. Which makes the protected version suitable here.
9773 * The context lock guarantees that.
9774 */
9775 hlist = rcu_dereference_protected(swhash->swevent_hlist,
9776 lockdep_is_held(&event->ctx->lock));
9777 if (!hlist)
9778 return NULL;
9779
9780 return __find_swevent_head(hlist, type, event_id);
9781}
9782
9783static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
9784 u64 nr,
9785 struct perf_sample_data *data,
9786 struct pt_regs *regs)
9787{
9788 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9789 struct perf_event *event;
9790 struct hlist_head *head;
9791
9792 rcu_read_lock();
9793 head = find_swevent_head_rcu(swhash, type, event_id);
9794 if (!head)
9795 goto end;
9796
9797 hlist_for_each_entry_rcu(event, head, hlist_entry) {
9798 if (perf_swevent_match(event, type, event_id, data, regs))
9799 perf_swevent_event(event, nr, data, regs);
9800 }
9801end:
9802 rcu_read_unlock();
9803}
9804
9805DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
9806
9807int perf_swevent_get_recursion_context(void)
9808{
9809 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9810
9811 return get_recursion_context(recursion: swhash->recursion);
9812}
9813EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
9814
9815void perf_swevent_put_recursion_context(int rctx)
9816{
9817 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9818
9819 put_recursion_context(recursion: swhash->recursion, rctx);
9820}
9821
9822void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9823{
9824 struct perf_sample_data data;
9825
9826 if (WARN_ON_ONCE(!regs))
9827 return;
9828
9829 perf_sample_data_init(data: &data, addr, period: 0);
9830 do_perf_sw_event(type: PERF_TYPE_SOFTWARE, event_id, nr, data: &data, regs);
9831}
9832
9833void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9834{
9835 int rctx;
9836
9837 preempt_disable_notrace();
9838 rctx = perf_swevent_get_recursion_context();
9839 if (unlikely(rctx < 0))
9840 goto fail;
9841
9842 ___perf_sw_event(event_id, nr, regs, addr);
9843
9844 perf_swevent_put_recursion_context(rctx);
9845fail:
9846 preempt_enable_notrace();
9847}
9848
9849static void perf_swevent_read(struct perf_event *event)
9850{
9851}
9852
9853static int perf_swevent_add(struct perf_event *event, int flags)
9854{
9855 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9856 struct hw_perf_event *hwc = &event->hw;
9857 struct hlist_head *head;
9858
9859 if (is_sampling_event(event)) {
9860 hwc->last_period = hwc->sample_period;
9861 perf_swevent_set_period(event);
9862 }
9863
9864 hwc->state = !(flags & PERF_EF_START);
9865
9866 head = find_swevent_head(swhash, event);
9867 if (WARN_ON_ONCE(!head))
9868 return -EINVAL;
9869
9870 hlist_add_head_rcu(n: &event->hlist_entry, h: head);
9871 perf_event_update_userpage(event);
9872
9873 return 0;
9874}
9875
9876static void perf_swevent_del(struct perf_event *event, int flags)
9877{
9878 hlist_del_rcu(n: &event->hlist_entry);
9879}
9880
9881static void perf_swevent_start(struct perf_event *event, int flags)
9882{
9883 event->hw.state = 0;
9884}
9885
9886static void perf_swevent_stop(struct perf_event *event, int flags)
9887{
9888 event->hw.state = PERF_HES_STOPPED;
9889}
9890
9891/* Deref the hlist from the update side */
9892static inline struct swevent_hlist *
9893swevent_hlist_deref(struct swevent_htable *swhash)
9894{
9895 return rcu_dereference_protected(swhash->swevent_hlist,
9896 lockdep_is_held(&swhash->hlist_mutex));
9897}
9898
9899static void swevent_hlist_release(struct swevent_htable *swhash)
9900{
9901 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
9902
9903 if (!hlist)
9904 return;
9905
9906 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
9907 kfree_rcu(hlist, rcu_head);
9908}
9909
9910static void swevent_hlist_put_cpu(int cpu)
9911{
9912 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9913
9914 mutex_lock(&swhash->hlist_mutex);
9915
9916 if (!--swhash->hlist_refcount)
9917 swevent_hlist_release(swhash);
9918
9919 mutex_unlock(lock: &swhash->hlist_mutex);
9920}
9921
9922static void swevent_hlist_put(void)
9923{
9924 int cpu;
9925
9926 for_each_possible_cpu(cpu)
9927 swevent_hlist_put_cpu(cpu);
9928}
9929
9930static int swevent_hlist_get_cpu(int cpu)
9931{
9932 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9933 int err = 0;
9934
9935 mutex_lock(&swhash->hlist_mutex);
9936 if (!swevent_hlist_deref(swhash) &&
9937 cpumask_test_cpu(cpu, cpumask: perf_online_mask)) {
9938 struct swevent_hlist *hlist;
9939
9940 hlist = kzalloc(size: sizeof(*hlist), GFP_KERNEL);
9941 if (!hlist) {
9942 err = -ENOMEM;
9943 goto exit;
9944 }
9945 rcu_assign_pointer(swhash->swevent_hlist, hlist);
9946 }
9947 swhash->hlist_refcount++;
9948exit:
9949 mutex_unlock(lock: &swhash->hlist_mutex);
9950
9951 return err;
9952}
9953
9954static int swevent_hlist_get(void)
9955{
9956 int err, cpu, failed_cpu;
9957
9958 mutex_lock(&pmus_lock);
9959 for_each_possible_cpu(cpu) {
9960 err = swevent_hlist_get_cpu(cpu);
9961 if (err) {
9962 failed_cpu = cpu;
9963 goto fail;
9964 }
9965 }
9966 mutex_unlock(lock: &pmus_lock);
9967 return 0;
9968fail:
9969 for_each_possible_cpu(cpu) {
9970 if (cpu == failed_cpu)
9971 break;
9972 swevent_hlist_put_cpu(cpu);
9973 }
9974 mutex_unlock(lock: &pmus_lock);
9975 return err;
9976}
9977
9978struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
9979
9980static void sw_perf_event_destroy(struct perf_event *event)
9981{
9982 u64 event_id = event->attr.config;
9983
9984 WARN_ON(event->parent);
9985
9986 static_key_slow_dec(key: &perf_swevent_enabled[event_id]);
9987 swevent_hlist_put();
9988}
9989
9990static struct pmu perf_cpu_clock; /* fwd declaration */
9991static struct pmu perf_task_clock;
9992
9993static int perf_swevent_init(struct perf_event *event)
9994{
9995 u64 event_id = event->attr.config;
9996
9997 if (event->attr.type != PERF_TYPE_SOFTWARE)
9998 return -ENOENT;
9999
10000 /*
10001 * no branch sampling for software events
10002 */
10003 if (has_branch_stack(event))
10004 return -EOPNOTSUPP;
10005
10006 switch (event_id) {
10007 case PERF_COUNT_SW_CPU_CLOCK:
10008 event->attr.type = perf_cpu_clock.type;
10009 return -ENOENT;
10010 case PERF_COUNT_SW_TASK_CLOCK:
10011 event->attr.type = perf_task_clock.type;
10012 return -ENOENT;
10013
10014 default:
10015 break;
10016 }
10017
10018 if (event_id >= PERF_COUNT_SW_MAX)
10019 return -ENOENT;
10020
10021 if (!event->parent) {
10022 int err;
10023
10024 err = swevent_hlist_get();
10025 if (err)
10026 return err;
10027
10028 static_key_slow_inc(key: &perf_swevent_enabled[event_id]);
10029 event->destroy = sw_perf_event_destroy;
10030 }
10031
10032 return 0;
10033}
10034
10035static struct pmu perf_swevent = {
10036 .task_ctx_nr = perf_sw_context,
10037
10038 .capabilities = PERF_PMU_CAP_NO_NMI,
10039
10040 .event_init = perf_swevent_init,
10041 .add = perf_swevent_add,
10042 .del = perf_swevent_del,
10043 .start = perf_swevent_start,
10044 .stop = perf_swevent_stop,
10045 .read = perf_swevent_read,
10046};
10047
10048#ifdef CONFIG_EVENT_TRACING
10049
10050static void tp_perf_event_destroy(struct perf_event *event)
10051{
10052 perf_trace_destroy(event);
10053}
10054
10055static int perf_tp_event_init(struct perf_event *event)
10056{
10057 int err;
10058
10059 if (event->attr.type != PERF_TYPE_TRACEPOINT)
10060 return -ENOENT;
10061
10062 /*
10063 * no branch sampling for tracepoint events
10064 */
10065 if (has_branch_stack(event))
10066 return -EOPNOTSUPP;
10067
10068 err = perf_trace_init(event);
10069 if (err)
10070 return err;
10071
10072 event->destroy = tp_perf_event_destroy;
10073
10074 return 0;
10075}
10076
10077static struct pmu perf_tracepoint = {
10078 .task_ctx_nr = perf_sw_context,
10079
10080 .event_init = perf_tp_event_init,
10081 .add = perf_trace_add,
10082 .del = perf_trace_del,
10083 .start = perf_swevent_start,
10084 .stop = perf_swevent_stop,
10085 .read = perf_swevent_read,
10086};
10087
10088static int perf_tp_filter_match(struct perf_event *event,
10089 struct perf_sample_data *data)
10090{
10091 void *record = data->raw->frag.data;
10092
10093 /* only top level events have filters set */
10094 if (event->parent)
10095 event = event->parent;
10096
10097 if (likely(!event->filter) || filter_match_preds(filter: event->filter, rec: record))
10098 return 1;
10099 return 0;
10100}
10101
10102static int perf_tp_event_match(struct perf_event *event,
10103 struct perf_sample_data *data,
10104 struct pt_regs *regs)
10105{
10106 if (event->hw.state & PERF_HES_STOPPED)
10107 return 0;
10108 /*
10109 * If exclude_kernel, only trace user-space tracepoints (uprobes)
10110 */
10111 if (event->attr.exclude_kernel && !user_mode(regs))
10112 return 0;
10113
10114 if (!perf_tp_filter_match(event, data))
10115 return 0;
10116
10117 return 1;
10118}
10119
10120void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
10121 struct trace_event_call *call, u64 count,
10122 struct pt_regs *regs, struct hlist_head *head,
10123 struct task_struct *task)
10124{
10125 if (bpf_prog_array_valid(call)) {
10126 *(struct pt_regs **)raw_data = regs;
10127 if (!trace_call_bpf(call, ctx: raw_data) || hlist_empty(h: head)) {
10128 perf_swevent_put_recursion_context(rctx);
10129 return;
10130 }
10131 }
10132 perf_tp_event(event_type: call->event.type, count, record: raw_data, entry_size: size, regs, head,
10133 rctx, task);
10134}
10135EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
10136
10137static void __perf_tp_event_target_task(u64 count, void *record,
10138 struct pt_regs *regs,
10139 struct perf_sample_data *data,
10140 struct perf_event *event)
10141{
10142 struct trace_entry *entry = record;
10143
10144 if (event->attr.config != entry->type)
10145 return;
10146 /* Cannot deliver synchronous signal to other task. */
10147 if (event->attr.sigtrap)
10148 return;
10149 if (perf_tp_event_match(event, data, regs))
10150 perf_swevent_event(event, nr: count, data, regs);
10151}
10152
10153static void perf_tp_event_target_task(u64 count, void *record,
10154 struct pt_regs *regs,
10155 struct perf_sample_data *data,
10156 struct perf_event_context *ctx)
10157{
10158 unsigned int cpu = smp_processor_id();
10159 struct pmu *pmu = &perf_tracepoint;
10160 struct perf_event *event, *sibling;
10161
10162 perf_event_groups_for_cpu_pmu(event, &ctx->pinned_groups, cpu, pmu) {
10163 __perf_tp_event_target_task(count, record, regs, data, event);
10164 for_each_sibling_event(sibling, event)
10165 __perf_tp_event_target_task(count, record, regs, data, event: sibling);
10166 }
10167
10168 perf_event_groups_for_cpu_pmu(event, &ctx->flexible_groups, cpu, pmu) {
10169 __perf_tp_event_target_task(count, record, regs, data, event);
10170 for_each_sibling_event(sibling, event)
10171 __perf_tp_event_target_task(count, record, regs, data, event: sibling);
10172 }
10173}
10174
10175void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
10176 struct pt_regs *regs, struct hlist_head *head, int rctx,
10177 struct task_struct *task)
10178{
10179 struct perf_sample_data data;
10180 struct perf_event *event;
10181
10182 struct perf_raw_record raw = {
10183 .frag = {
10184 .size = entry_size,
10185 .data = record,
10186 },
10187 };
10188
10189 perf_sample_data_init(data: &data, addr: 0, period: 0);
10190 perf_sample_save_raw_data(data: &data, raw: &raw);
10191
10192 perf_trace_buf_update(record, type: event_type);
10193
10194 hlist_for_each_entry_rcu(event, head, hlist_entry) {
10195 if (perf_tp_event_match(event, data: &data, regs)) {
10196 perf_swevent_event(event, nr: count, data: &data, regs);
10197
10198 /*
10199 * Here use the same on-stack perf_sample_data,
10200 * some members in data are event-specific and
10201 * need to be re-computed for different sweveents.
10202 * Re-initialize data->sample_flags safely to avoid
10203 * the problem that next event skips preparing data
10204 * because data->sample_flags is set.
10205 */
10206 perf_sample_data_init(data: &data, addr: 0, period: 0);
10207 perf_sample_save_raw_data(data: &data, raw: &raw);
10208 }
10209 }
10210
10211 /*
10212 * If we got specified a target task, also iterate its context and
10213 * deliver this event there too.
10214 */
10215 if (task && task != current) {
10216 struct perf_event_context *ctx;
10217
10218 rcu_read_lock();
10219 ctx = rcu_dereference(task->perf_event_ctxp);
10220 if (!ctx)
10221 goto unlock;
10222
10223 raw_spin_lock(&ctx->lock);
10224 perf_tp_event_target_task(count, record, regs, data: &data, ctx);
10225 raw_spin_unlock(&ctx->lock);
10226unlock:
10227 rcu_read_unlock();
10228 }
10229
10230 perf_swevent_put_recursion_context(rctx);
10231}
10232EXPORT_SYMBOL_GPL(perf_tp_event);
10233
10234#if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
10235/*
10236 * Flags in config, used by dynamic PMU kprobe and uprobe
10237 * The flags should match following PMU_FORMAT_ATTR().
10238 *
10239 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
10240 * if not set, create kprobe/uprobe
10241 *
10242 * The following values specify a reference counter (or semaphore in the
10243 * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
10244 * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
10245 *
10246 * PERF_UPROBE_REF_CTR_OFFSET_BITS # of bits in config as th offset
10247 * PERF_UPROBE_REF_CTR_OFFSET_SHIFT # of bits to shift left
10248 */
10249enum perf_probe_config {
10250 PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0, /* [k,u]retprobe */
10251 PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
10252 PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
10253};
10254
10255PMU_FORMAT_ATTR(retprobe, "config:0");
10256#endif
10257
10258#ifdef CONFIG_KPROBE_EVENTS
10259static struct attribute *kprobe_attrs[] = {
10260 &format_attr_retprobe.attr,
10261 NULL,
10262};
10263
10264static struct attribute_group kprobe_format_group = {
10265 .name = "format",
10266 .attrs = kprobe_attrs,
10267};
10268
10269static const struct attribute_group *kprobe_attr_groups[] = {
10270 &kprobe_format_group,
10271 NULL,
10272};
10273
10274static int perf_kprobe_event_init(struct perf_event *event);
10275static struct pmu perf_kprobe = {
10276 .task_ctx_nr = perf_sw_context,
10277 .event_init = perf_kprobe_event_init,
10278 .add = perf_trace_add,
10279 .del = perf_trace_del,
10280 .start = perf_swevent_start,
10281 .stop = perf_swevent_stop,
10282 .read = perf_swevent_read,
10283 .attr_groups = kprobe_attr_groups,
10284};
10285
10286static int perf_kprobe_event_init(struct perf_event *event)
10287{
10288 int err;
10289 bool is_retprobe;
10290
10291 if (event->attr.type != perf_kprobe.type)
10292 return -ENOENT;
10293
10294 if (!perfmon_capable())
10295 return -EACCES;
10296
10297 /*
10298 * no branch sampling for probe events
10299 */
10300 if (has_branch_stack(event))
10301 return -EOPNOTSUPP;
10302
10303 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
10304 err = perf_kprobe_init(event, is_retprobe);
10305 if (err)
10306 return err;
10307
10308 event->destroy = perf_kprobe_destroy;
10309
10310 return 0;
10311}
10312#endif /* CONFIG_KPROBE_EVENTS */
10313
10314#ifdef CONFIG_UPROBE_EVENTS
10315PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
10316
10317static struct attribute *uprobe_attrs[] = {
10318 &format_attr_retprobe.attr,
10319 &format_attr_ref_ctr_offset.attr,
10320 NULL,
10321};
10322
10323static struct attribute_group uprobe_format_group = {
10324 .name = "format",
10325 .attrs = uprobe_attrs,
10326};
10327
10328static const struct attribute_group *uprobe_attr_groups[] = {
10329 &uprobe_format_group,
10330 NULL,
10331};
10332
10333static int perf_uprobe_event_init(struct perf_event *event);
10334static struct pmu perf_uprobe = {
10335 .task_ctx_nr = perf_sw_context,
10336 .event_init = perf_uprobe_event_init,
10337 .add = perf_trace_add,
10338 .del = perf_trace_del,
10339 .start = perf_swevent_start,
10340 .stop = perf_swevent_stop,
10341 .read = perf_swevent_read,
10342 .attr_groups = uprobe_attr_groups,
10343};
10344
10345static int perf_uprobe_event_init(struct perf_event *event)
10346{
10347 int err;
10348 unsigned long ref_ctr_offset;
10349 bool is_retprobe;
10350
10351 if (event->attr.type != perf_uprobe.type)
10352 return -ENOENT;
10353
10354 if (!perfmon_capable())
10355 return -EACCES;
10356
10357 /*
10358 * no branch sampling for probe events
10359 */
10360 if (has_branch_stack(event))
10361 return -EOPNOTSUPP;
10362
10363 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
10364 ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
10365 err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
10366 if (err)
10367 return err;
10368
10369 event->destroy = perf_uprobe_destroy;
10370
10371 return 0;
10372}
10373#endif /* CONFIG_UPROBE_EVENTS */
10374
10375static inline void perf_tp_register(void)
10376{
10377 perf_pmu_register(pmu: &perf_tracepoint, name: "tracepoint", type: PERF_TYPE_TRACEPOINT);
10378#ifdef CONFIG_KPROBE_EVENTS
10379 perf_pmu_register(pmu: &perf_kprobe, name: "kprobe", type: -1);
10380#endif
10381#ifdef CONFIG_UPROBE_EVENTS
10382 perf_pmu_register(pmu: &perf_uprobe, name: "uprobe", type: -1);
10383#endif
10384}
10385
10386static void perf_event_free_filter(struct perf_event *event)
10387{
10388 ftrace_profile_free_filter(event);
10389}
10390
10391#ifdef CONFIG_BPF_SYSCALL
10392static void bpf_overflow_handler(struct perf_event *event,
10393 struct perf_sample_data *data,
10394 struct pt_regs *regs)
10395{
10396 struct bpf_perf_event_data_kern ctx = {
10397 .data = data,
10398 .event = event,
10399 };
10400 struct bpf_prog *prog;
10401 int ret = 0;
10402
10403 ctx.regs = perf_arch_bpf_user_pt_regs(regs);
10404 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
10405 goto out;
10406 rcu_read_lock();
10407 prog = READ_ONCE(event->prog);
10408 if (prog) {
10409 perf_prepare_sample(data, event, regs);
10410 ret = bpf_prog_run(prog, ctx: &ctx);
10411 }
10412 rcu_read_unlock();
10413out:
10414 __this_cpu_dec(bpf_prog_active);
10415 if (!ret)
10416 return;
10417
10418 event->orig_overflow_handler(event, data, regs);
10419}
10420
10421static int perf_event_set_bpf_handler(struct perf_event *event,
10422 struct bpf_prog *prog,
10423 u64 bpf_cookie)
10424{
10425 if (event->overflow_handler_context)
10426 /* hw breakpoint or kernel counter */
10427 return -EINVAL;
10428
10429 if (event->prog)
10430 return -EEXIST;
10431
10432 if (prog->type != BPF_PROG_TYPE_PERF_EVENT)
10433 return -EINVAL;
10434
10435 if (event->attr.precise_ip &&
10436 prog->call_get_stack &&
10437 (!(event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) ||
10438 event->attr.exclude_callchain_kernel ||
10439 event->attr.exclude_callchain_user)) {
10440 /*
10441 * On perf_event with precise_ip, calling bpf_get_stack()
10442 * may trigger unwinder warnings and occasional crashes.
10443 * bpf_get_[stack|stackid] works around this issue by using
10444 * callchain attached to perf_sample_data. If the
10445 * perf_event does not full (kernel and user) callchain
10446 * attached to perf_sample_data, do not allow attaching BPF
10447 * program that calls bpf_get_[stack|stackid].
10448 */
10449 return -EPROTO;
10450 }
10451
10452 event->prog = prog;
10453 event->bpf_cookie = bpf_cookie;
10454 event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
10455 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
10456 return 0;
10457}
10458
10459static void perf_event_free_bpf_handler(struct perf_event *event)
10460{
10461 struct bpf_prog *prog = event->prog;
10462
10463 if (!prog)
10464 return;
10465
10466 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
10467 event->prog = NULL;
10468 bpf_prog_put(prog);
10469}
10470#else
10471static int perf_event_set_bpf_handler(struct perf_event *event,
10472 struct bpf_prog *prog,
10473 u64 bpf_cookie)
10474{
10475 return -EOPNOTSUPP;
10476}
10477static void perf_event_free_bpf_handler(struct perf_event *event)
10478{
10479}
10480#endif
10481
10482/*
10483 * returns true if the event is a tracepoint, or a kprobe/upprobe created
10484 * with perf_event_open()
10485 */
10486static inline bool perf_event_is_tracing(struct perf_event *event)
10487{
10488 if (event->pmu == &perf_tracepoint)
10489 return true;
10490#ifdef CONFIG_KPROBE_EVENTS
10491 if (event->pmu == &perf_kprobe)
10492 return true;
10493#endif
10494#ifdef CONFIG_UPROBE_EVENTS
10495 if (event->pmu == &perf_uprobe)
10496 return true;
10497#endif
10498 return false;
10499}
10500
10501int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10502 u64 bpf_cookie)
10503{
10504 bool is_kprobe, is_uprobe, is_tracepoint, is_syscall_tp;
10505
10506 if (!perf_event_is_tracing(event))
10507 return perf_event_set_bpf_handler(event, prog, bpf_cookie);
10508
10509 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_KPROBE;
10510 is_uprobe = event->tp_event->flags & TRACE_EVENT_FL_UPROBE;
10511 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
10512 is_syscall_tp = is_syscall_trace_event(tp_event: event->tp_event);
10513 if (!is_kprobe && !is_uprobe && !is_tracepoint && !is_syscall_tp)
10514 /* bpf programs can only be attached to u/kprobe or tracepoint */
10515 return -EINVAL;
10516
10517 if (((is_kprobe || is_uprobe) && prog->type != BPF_PROG_TYPE_KPROBE) ||
10518 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
10519 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT))
10520 return -EINVAL;
10521
10522 if (prog->type == BPF_PROG_TYPE_KPROBE && prog->aux->sleepable && !is_uprobe)
10523 /* only uprobe programs are allowed to be sleepable */
10524 return -EINVAL;
10525
10526 /* Kprobe override only works for kprobes, not uprobes. */
10527 if (prog->kprobe_override && !is_kprobe)
10528 return -EINVAL;
10529
10530 if (is_tracepoint || is_syscall_tp) {
10531 int off = trace_event_get_offsets(call: event->tp_event);
10532
10533 if (prog->aux->max_ctx_offset > off)
10534 return -EACCES;
10535 }
10536
10537 return perf_event_attach_bpf_prog(event, prog, bpf_cookie);
10538}
10539
10540void perf_event_free_bpf_prog(struct perf_event *event)
10541{
10542 if (!perf_event_is_tracing(event)) {
10543 perf_event_free_bpf_handler(event);
10544 return;
10545 }
10546 perf_event_detach_bpf_prog(event);
10547}
10548
10549#else
10550
10551static inline void perf_tp_register(void)
10552{
10553}
10554
10555static void perf_event_free_filter(struct perf_event *event)
10556{
10557}
10558
10559int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10560 u64 bpf_cookie)
10561{
10562 return -ENOENT;
10563}
10564
10565void perf_event_free_bpf_prog(struct perf_event *event)
10566{
10567}
10568#endif /* CONFIG_EVENT_TRACING */
10569
10570#ifdef CONFIG_HAVE_HW_BREAKPOINT
10571void perf_bp_event(struct perf_event *bp, void *data)
10572{
10573 struct perf_sample_data sample;
10574 struct pt_regs *regs = data;
10575
10576 perf_sample_data_init(data: &sample, addr: bp->attr.bp_addr, period: 0);
10577
10578 if (!bp->hw.state && !perf_exclude_event(event: bp, regs))
10579 perf_swevent_event(event: bp, nr: 1, data: &sample, regs);
10580}
10581#endif
10582
10583/*
10584 * Allocate a new address filter
10585 */
10586static struct perf_addr_filter *
10587perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
10588{
10589 int node = cpu_to_node(cpu: event->cpu == -1 ? 0 : event->cpu);
10590 struct perf_addr_filter *filter;
10591
10592 filter = kzalloc_node(size: sizeof(*filter), GFP_KERNEL, node);
10593 if (!filter)
10594 return NULL;
10595
10596 INIT_LIST_HEAD(list: &filter->entry);
10597 list_add_tail(new: &filter->entry, head: filters);
10598
10599 return filter;
10600}
10601
10602static void free_filters_list(struct list_head *filters)
10603{
10604 struct perf_addr_filter *filter, *iter;
10605
10606 list_for_each_entry_safe(filter, iter, filters, entry) {
10607 path_put(&filter->path);
10608 list_del(entry: &filter->entry);
10609 kfree(objp: filter);
10610 }
10611}
10612
10613/*
10614 * Free existing address filters and optionally install new ones
10615 */
10616static void perf_addr_filters_splice(struct perf_event *event,
10617 struct list_head *head)
10618{
10619 unsigned long flags;
10620 LIST_HEAD(list);
10621
10622 if (!has_addr_filter(event))
10623 return;
10624
10625 /* don't bother with children, they don't have their own filters */
10626 if (event->parent)
10627 return;
10628
10629 raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
10630
10631 list_splice_init(list: &event->addr_filters.list, head: &list);
10632 if (head)
10633 list_splice(list: head, head: &event->addr_filters.list);
10634
10635 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
10636
10637 free_filters_list(filters: &list);
10638}
10639
10640/*
10641 * Scan through mm's vmas and see if one of them matches the
10642 * @filter; if so, adjust filter's address range.
10643 * Called with mm::mmap_lock down for reading.
10644 */
10645static void perf_addr_filter_apply(struct perf_addr_filter *filter,
10646 struct mm_struct *mm,
10647 struct perf_addr_filter_range *fr)
10648{
10649 struct vm_area_struct *vma;
10650 VMA_ITERATOR(vmi, mm, 0);
10651
10652 for_each_vma(vmi, vma) {
10653 if (!vma->vm_file)
10654 continue;
10655
10656 if (perf_addr_filter_vma_adjust(filter, vma, fr))
10657 return;
10658 }
10659}
10660
10661/*
10662 * Update event's address range filters based on the
10663 * task's existing mappings, if any.
10664 */
10665static void perf_event_addr_filters_apply(struct perf_event *event)
10666{
10667 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10668 struct task_struct *task = READ_ONCE(event->ctx->task);
10669 struct perf_addr_filter *filter;
10670 struct mm_struct *mm = NULL;
10671 unsigned int count = 0;
10672 unsigned long flags;
10673
10674 /*
10675 * We may observe TASK_TOMBSTONE, which means that the event tear-down
10676 * will stop on the parent's child_mutex that our caller is also holding
10677 */
10678 if (task == TASK_TOMBSTONE)
10679 return;
10680
10681 if (ifh->nr_file_filters) {
10682 mm = get_task_mm(task);
10683 if (!mm)
10684 goto restart;
10685
10686 mmap_read_lock(mm);
10687 }
10688
10689 raw_spin_lock_irqsave(&ifh->lock, flags);
10690 list_for_each_entry(filter, &ifh->list, entry) {
10691 if (filter->path.dentry) {
10692 /*
10693 * Adjust base offset if the filter is associated to a
10694 * binary that needs to be mapped:
10695 */
10696 event->addr_filter_ranges[count].start = 0;
10697 event->addr_filter_ranges[count].size = 0;
10698
10699 perf_addr_filter_apply(filter, mm, fr: &event->addr_filter_ranges[count]);
10700 } else {
10701 event->addr_filter_ranges[count].start = filter->offset;
10702 event->addr_filter_ranges[count].size = filter->size;
10703 }
10704
10705 count++;
10706 }
10707
10708 event->addr_filters_gen++;
10709 raw_spin_unlock_irqrestore(&ifh->lock, flags);
10710
10711 if (ifh->nr_file_filters) {
10712 mmap_read_unlock(mm);
10713
10714 mmput(mm);
10715 }
10716
10717restart:
10718 perf_event_stop(event, restart: 1);
10719}
10720
10721/*
10722 * Address range filtering: limiting the data to certain
10723 * instruction address ranges. Filters are ioctl()ed to us from
10724 * userspace as ascii strings.
10725 *
10726 * Filter string format:
10727 *
10728 * ACTION RANGE_SPEC
10729 * where ACTION is one of the
10730 * * "filter": limit the trace to this region
10731 * * "start": start tracing from this address
10732 * * "stop": stop tracing at this address/region;
10733 * RANGE_SPEC is
10734 * * for kernel addresses: <start address>[/<size>]
10735 * * for object files: <start address>[/<size>]@</path/to/object/file>
10736 *
10737 * if <size> is not specified or is zero, the range is treated as a single
10738 * address; not valid for ACTION=="filter".
10739 */
10740enum {
10741 IF_ACT_NONE = -1,
10742 IF_ACT_FILTER,
10743 IF_ACT_START,
10744 IF_ACT_STOP,
10745 IF_SRC_FILE,
10746 IF_SRC_KERNEL,
10747 IF_SRC_FILEADDR,
10748 IF_SRC_KERNELADDR,
10749};
10750
10751enum {
10752 IF_STATE_ACTION = 0,
10753 IF_STATE_SOURCE,
10754 IF_STATE_END,
10755};
10756
10757static const match_table_t if_tokens = {
10758 { IF_ACT_FILTER, "filter" },
10759 { IF_ACT_START, "start" },
10760 { IF_ACT_STOP, "stop" },
10761 { IF_SRC_FILE, "%u/%u@%s" },
10762 { IF_SRC_KERNEL, "%u/%u" },
10763 { IF_SRC_FILEADDR, "%u@%s" },
10764 { IF_SRC_KERNELADDR, "%u" },
10765 { IF_ACT_NONE, NULL },
10766};
10767
10768/*
10769 * Address filter string parser
10770 */
10771static int
10772perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
10773 struct list_head *filters)
10774{
10775 struct perf_addr_filter *filter = NULL;
10776 char *start, *orig, *filename = NULL;
10777 substring_t args[MAX_OPT_ARGS];
10778 int state = IF_STATE_ACTION, token;
10779 unsigned int kernel = 0;
10780 int ret = -EINVAL;
10781
10782 orig = fstr = kstrdup(s: fstr, GFP_KERNEL);
10783 if (!fstr)
10784 return -ENOMEM;
10785
10786 while ((start = strsep(&fstr, " ,\n")) != NULL) {
10787 static const enum perf_addr_filter_action_t actions[] = {
10788 [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER,
10789 [IF_ACT_START] = PERF_ADDR_FILTER_ACTION_START,
10790 [IF_ACT_STOP] = PERF_ADDR_FILTER_ACTION_STOP,
10791 };
10792 ret = -EINVAL;
10793
10794 if (!*start)
10795 continue;
10796
10797 /* filter definition begins */
10798 if (state == IF_STATE_ACTION) {
10799 filter = perf_addr_filter_new(event, filters);
10800 if (!filter)
10801 goto fail;
10802 }
10803
10804 token = match_token(start, table: if_tokens, args);
10805 switch (token) {
10806 case IF_ACT_FILTER:
10807 case IF_ACT_START:
10808 case IF_ACT_STOP:
10809 if (state != IF_STATE_ACTION)
10810 goto fail;
10811
10812 filter->action = actions[token];
10813 state = IF_STATE_SOURCE;
10814 break;
10815
10816 case IF_SRC_KERNELADDR:
10817 case IF_SRC_KERNEL:
10818 kernel = 1;
10819 fallthrough;
10820
10821 case IF_SRC_FILEADDR:
10822 case IF_SRC_FILE:
10823 if (state != IF_STATE_SOURCE)
10824 goto fail;
10825
10826 *args[0].to = 0;
10827 ret = kstrtoul(s: args[0].from, base: 0, res: &filter->offset);
10828 if (ret)
10829 goto fail;
10830
10831 if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
10832 *args[1].to = 0;
10833 ret = kstrtoul(s: args[1].from, base: 0, res: &filter->size);
10834 if (ret)
10835 goto fail;
10836 }
10837
10838 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
10839 int fpos = token == IF_SRC_FILE ? 2 : 1;
10840
10841 kfree(objp: filename);
10842 filename = match_strdup(&args[fpos]);
10843 if (!filename) {
10844 ret = -ENOMEM;
10845 goto fail;
10846 }
10847 }
10848
10849 state = IF_STATE_END;
10850 break;
10851
10852 default:
10853 goto fail;
10854 }
10855
10856 /*
10857 * Filter definition is fully parsed, validate and install it.
10858 * Make sure that it doesn't contradict itself or the event's
10859 * attribute.
10860 */
10861 if (state == IF_STATE_END) {
10862 ret = -EINVAL;
10863
10864 /*
10865 * ACTION "filter" must have a non-zero length region
10866 * specified.
10867 */
10868 if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
10869 !filter->size)
10870 goto fail;
10871
10872 if (!kernel) {
10873 if (!filename)
10874 goto fail;
10875
10876 /*
10877 * For now, we only support file-based filters
10878 * in per-task events; doing so for CPU-wide
10879 * events requires additional context switching
10880 * trickery, since same object code will be
10881 * mapped at different virtual addresses in
10882 * different processes.
10883 */
10884 ret = -EOPNOTSUPP;
10885 if (!event->ctx->task)
10886 goto fail;
10887
10888 /* look up the path and grab its inode */
10889 ret = kern_path(filename, LOOKUP_FOLLOW,
10890 &filter->path);
10891 if (ret)
10892 goto fail;
10893
10894 ret = -EINVAL;
10895 if (!filter->path.dentry ||
10896 !S_ISREG(d_inode(filter->path.dentry)
10897 ->i_mode))
10898 goto fail;
10899
10900 event->addr_filters.nr_file_filters++;
10901 }
10902
10903 /* ready to consume more filters */
10904 kfree(objp: filename);
10905 filename = NULL;
10906 state = IF_STATE_ACTION;
10907 filter = NULL;
10908 kernel = 0;
10909 }
10910 }
10911
10912 if (state != IF_STATE_ACTION)
10913 goto fail;
10914
10915 kfree(objp: filename);
10916 kfree(objp: orig);
10917
10918 return 0;
10919
10920fail:
10921 kfree(objp: filename);
10922 free_filters_list(filters);
10923 kfree(objp: orig);
10924
10925 return ret;
10926}
10927
10928static int
10929perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
10930{
10931 LIST_HEAD(filters);
10932 int ret;
10933
10934 /*
10935 * Since this is called in perf_ioctl() path, we're already holding
10936 * ctx::mutex.
10937 */
10938 lockdep_assert_held(&event->ctx->mutex);
10939
10940 if (WARN_ON_ONCE(event->parent))
10941 return -EINVAL;
10942
10943 ret = perf_event_parse_addr_filter(event, fstr: filter_str, filters: &filters);
10944 if (ret)
10945 goto fail_clear_files;
10946
10947 ret = event->pmu->addr_filters_validate(&filters);
10948 if (ret)
10949 goto fail_free_filters;
10950
10951 /* remove existing filters, if any */
10952 perf_addr_filters_splice(event, head: &filters);
10953
10954 /* install new filters */
10955 perf_event_for_each_child(event, func: perf_event_addr_filters_apply);
10956
10957 return ret;
10958
10959fail_free_filters:
10960 free_filters_list(filters: &filters);
10961
10962fail_clear_files:
10963 event->addr_filters.nr_file_filters = 0;
10964
10965 return ret;
10966}
10967
10968static int perf_event_set_filter(struct perf_event *event, void __user *arg)
10969{
10970 int ret = -EINVAL;
10971 char *filter_str;
10972
10973 filter_str = strndup_user(arg, PAGE_SIZE);
10974 if (IS_ERR(ptr: filter_str))
10975 return PTR_ERR(ptr: filter_str);
10976
10977#ifdef CONFIG_EVENT_TRACING
10978 if (perf_event_is_tracing(event)) {
10979 struct perf_event_context *ctx = event->ctx;
10980
10981 /*
10982 * Beware, here be dragons!!
10983 *
10984 * the tracepoint muck will deadlock against ctx->mutex, but
10985 * the tracepoint stuff does not actually need it. So
10986 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
10987 * already have a reference on ctx.
10988 *
10989 * This can result in event getting moved to a different ctx,
10990 * but that does not affect the tracepoint state.
10991 */
10992 mutex_unlock(lock: &ctx->mutex);
10993 ret = ftrace_profile_set_filter(event, event_id: event->attr.config, filter_str);
10994 mutex_lock(&ctx->mutex);
10995 } else
10996#endif
10997 if (has_addr_filter(event))
10998 ret = perf_event_set_addr_filter(event, filter_str);
10999
11000 kfree(objp: filter_str);
11001 return ret;
11002}
11003
11004/*
11005 * hrtimer based swevent callback
11006 */
11007
11008static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
11009{
11010 enum hrtimer_restart ret = HRTIMER_RESTART;
11011 struct perf_sample_data data;
11012 struct pt_regs *regs;
11013 struct perf_event *event;
11014 u64 period;
11015
11016 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
11017
11018 if (event->state != PERF_EVENT_STATE_ACTIVE)
11019 return HRTIMER_NORESTART;
11020
11021 event->pmu->read(event);
11022
11023 perf_sample_data_init(data: &data, addr: 0, period: event->hw.last_period);
11024 regs = get_irq_regs();
11025
11026 if (regs && !perf_exclude_event(event, regs)) {
11027 if (!(event->attr.exclude_idle && is_idle_task(current)))
11028 if (__perf_event_overflow(event, throttle: 1, data: &data, regs))
11029 ret = HRTIMER_NORESTART;
11030 }
11031
11032 period = max_t(u64, 10000, event->hw.sample_period);
11033 hrtimer_forward_now(timer: hrtimer, interval: ns_to_ktime(ns: period));
11034
11035 return ret;
11036}
11037
11038static void perf_swevent_start_hrtimer(struct perf_event *event)
11039{
11040 struct hw_perf_event *hwc = &event->hw;
11041 s64 period;
11042
11043 if (!is_sampling_event(event))
11044 return;
11045
11046 period = local64_read(&hwc->period_left);
11047 if (period) {
11048 if (period < 0)
11049 period = 10000;
11050
11051 local64_set(&hwc->period_left, 0);
11052 } else {
11053 period = max_t(u64, 10000, hwc->sample_period);
11054 }
11055 hrtimer_start(timer: &hwc->hrtimer, tim: ns_to_ktime(ns: period),
11056 mode: HRTIMER_MODE_REL_PINNED_HARD);
11057}
11058
11059static void perf_swevent_cancel_hrtimer(struct perf_event *event)
11060{
11061 struct hw_perf_event *hwc = &event->hw;
11062
11063 if (is_sampling_event(event)) {
11064 ktime_t remaining = hrtimer_get_remaining(timer: &hwc->hrtimer);
11065 local64_set(&hwc->period_left, ktime_to_ns(remaining));
11066
11067 hrtimer_cancel(timer: &hwc->hrtimer);
11068 }
11069}
11070
11071static void perf_swevent_init_hrtimer(struct perf_event *event)
11072{
11073 struct hw_perf_event *hwc = &event->hw;
11074
11075 if (!is_sampling_event(event))
11076 return;
11077
11078 hrtimer_init(timer: &hwc->hrtimer, CLOCK_MONOTONIC, mode: HRTIMER_MODE_REL_HARD);
11079 hwc->hrtimer.function = perf_swevent_hrtimer;
11080
11081 /*
11082 * Since hrtimers have a fixed rate, we can do a static freq->period
11083 * mapping and avoid the whole period adjust feedback stuff.
11084 */
11085 if (event->attr.freq) {
11086 long freq = event->attr.sample_freq;
11087
11088 event->attr.sample_period = NSEC_PER_SEC / freq;
11089 hwc->sample_period = event->attr.sample_period;
11090 local64_set(&hwc->period_left, hwc->sample_period);
11091 hwc->last_period = hwc->sample_period;
11092 event->attr.freq = 0;
11093 }
11094}
11095
11096/*
11097 * Software event: cpu wall time clock
11098 */
11099
11100static void cpu_clock_event_update(struct perf_event *event)
11101{
11102 s64 prev;
11103 u64 now;
11104
11105 now = local_clock();
11106 prev = local64_xchg(&event->hw.prev_count, now);
11107 local64_add(now - prev, &event->count);
11108}
11109
11110static void cpu_clock_event_start(struct perf_event *event, int flags)
11111{
11112 local64_set(&event->hw.prev_count, local_clock());
11113 perf_swevent_start_hrtimer(event);
11114}
11115
11116static void cpu_clock_event_stop(struct perf_event *event, int flags)
11117{
11118 perf_swevent_cancel_hrtimer(event);
11119 cpu_clock_event_update(event);
11120}
11121
11122static int cpu_clock_event_add(struct perf_event *event, int flags)
11123{
11124 if (flags & PERF_EF_START)
11125 cpu_clock_event_start(event, flags);
11126 perf_event_update_userpage(event);
11127
11128 return 0;
11129}
11130
11131static void cpu_clock_event_del(struct perf_event *event, int flags)
11132{
11133 cpu_clock_event_stop(event, flags);
11134}
11135
11136static void cpu_clock_event_read(struct perf_event *event)
11137{
11138 cpu_clock_event_update(event);
11139}
11140
11141static int cpu_clock_event_init(struct perf_event *event)
11142{
11143 if (event->attr.type != perf_cpu_clock.type)
11144 return -ENOENT;
11145
11146 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
11147 return -ENOENT;
11148
11149 /*
11150 * no branch sampling for software events
11151 */
11152 if (has_branch_stack(event))
11153 return -EOPNOTSUPP;
11154
11155 perf_swevent_init_hrtimer(event);
11156
11157 return 0;
11158}
11159
11160static struct pmu perf_cpu_clock = {
11161 .task_ctx_nr = perf_sw_context,
11162
11163 .capabilities = PERF_PMU_CAP_NO_NMI,
11164 .dev = PMU_NULL_DEV,
11165
11166 .event_init = cpu_clock_event_init,
11167 .add = cpu_clock_event_add,
11168 .del = cpu_clock_event_del,
11169 .start = cpu_clock_event_start,
11170 .stop = cpu_clock_event_stop,
11171 .read = cpu_clock_event_read,
11172};
11173
11174/*
11175 * Software event: task time clock
11176 */
11177
11178static void task_clock_event_update(struct perf_event *event, u64 now)
11179{
11180 u64 prev;
11181 s64 delta;
11182
11183 prev = local64_xchg(&event->hw.prev_count, now);
11184 delta = now - prev;
11185 local64_add(delta, &event->count);
11186}
11187
11188static void task_clock_event_start(struct perf_event *event, int flags)
11189{
11190 local64_set(&event->hw.prev_count, event->ctx->time);
11191 perf_swevent_start_hrtimer(event);
11192}
11193
11194static void task_clock_event_stop(struct perf_event *event, int flags)
11195{
11196 perf_swevent_cancel_hrtimer(event);
11197 task_clock_event_update(event, now: event->ctx->time);
11198}
11199
11200static int task_clock_event_add(struct perf_event *event, int flags)
11201{
11202 if (flags & PERF_EF_START)
11203 task_clock_event_start(event, flags);
11204 perf_event_update_userpage(event);
11205
11206 return 0;
11207}
11208
11209static void task_clock_event_del(struct perf_event *event, int flags)
11210{
11211 task_clock_event_stop(event, PERF_EF_UPDATE);
11212}
11213
11214static void task_clock_event_read(struct perf_event *event)
11215{
11216 u64 now = perf_clock();
11217 u64 delta = now - event->ctx->timestamp;
11218 u64 time = event->ctx->time + delta;
11219
11220 task_clock_event_update(event, now: time);
11221}
11222
11223static int task_clock_event_init(struct perf_event *event)
11224{
11225 if (event->attr.type != perf_task_clock.type)
11226 return -ENOENT;
11227
11228 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
11229 return -ENOENT;
11230
11231 /*
11232 * no branch sampling for software events
11233 */
11234 if (has_branch_stack(event))
11235 return -EOPNOTSUPP;
11236
11237 perf_swevent_init_hrtimer(event);
11238
11239 return 0;
11240}
11241
11242static struct pmu perf_task_clock = {
11243 .task_ctx_nr = perf_sw_context,
11244
11245 .capabilities = PERF_PMU_CAP_NO_NMI,
11246 .dev = PMU_NULL_DEV,
11247
11248 .event_init = task_clock_event_init,
11249 .add = task_clock_event_add,
11250 .del = task_clock_event_del,
11251 .start = task_clock_event_start,
11252 .stop = task_clock_event_stop,
11253 .read = task_clock_event_read,
11254};
11255
11256static void perf_pmu_nop_void(struct pmu *pmu)
11257{
11258}
11259
11260static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
11261{
11262}
11263
11264static int perf_pmu_nop_int(struct pmu *pmu)
11265{
11266 return 0;
11267}
11268
11269static int perf_event_nop_int(struct perf_event *event, u64 value)
11270{
11271 return 0;
11272}
11273
11274static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
11275
11276static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
11277{
11278 __this_cpu_write(nop_txn_flags, flags);
11279
11280 if (flags & ~PERF_PMU_TXN_ADD)
11281 return;
11282
11283 perf_pmu_disable(pmu);
11284}
11285
11286static int perf_pmu_commit_txn(struct pmu *pmu)
11287{
11288 unsigned int flags = __this_cpu_read(nop_txn_flags);
11289
11290 __this_cpu_write(nop_txn_flags, 0);
11291
11292 if (flags & ~PERF_PMU_TXN_ADD)
11293 return 0;
11294
11295 perf_pmu_enable(pmu);
11296 return 0;
11297}
11298
11299static void perf_pmu_cancel_txn(struct pmu *pmu)
11300{
11301 unsigned int flags = __this_cpu_read(nop_txn_flags);
11302
11303 __this_cpu_write(nop_txn_flags, 0);
11304
11305 if (flags & ~PERF_PMU_TXN_ADD)
11306 return;
11307
11308 perf_pmu_enable(pmu);
11309}
11310
11311static int perf_event_idx_default(struct perf_event *event)
11312{
11313 return 0;
11314}
11315
11316static void free_pmu_context(struct pmu *pmu)
11317{
11318 free_percpu(pdata: pmu->cpu_pmu_context);
11319}
11320
11321/*
11322 * Let userspace know that this PMU supports address range filtering:
11323 */
11324static ssize_t nr_addr_filters_show(struct device *dev,
11325 struct device_attribute *attr,
11326 char *page)
11327{
11328 struct pmu *pmu = dev_get_drvdata(dev);
11329
11330 return scnprintf(buf: page, PAGE_SIZE - 1, fmt: "%d\n", pmu->nr_addr_filters);
11331}
11332DEVICE_ATTR_RO(nr_addr_filters);
11333
11334static struct idr pmu_idr;
11335
11336static ssize_t
11337type_show(struct device *dev, struct device_attribute *attr, char *page)
11338{
11339 struct pmu *pmu = dev_get_drvdata(dev);
11340
11341 return scnprintf(buf: page, PAGE_SIZE - 1, fmt: "%d\n", pmu->type);
11342}
11343static DEVICE_ATTR_RO(type);
11344
11345static ssize_t
11346perf_event_mux_interval_ms_show(struct device *dev,
11347 struct device_attribute *attr,
11348 char *page)
11349{
11350 struct pmu *pmu = dev_get_drvdata(dev);
11351
11352 return scnprintf(buf: page, PAGE_SIZE - 1, fmt: "%d\n", pmu->hrtimer_interval_ms);
11353}
11354
11355static DEFINE_MUTEX(mux_interval_mutex);
11356
11357static ssize_t
11358perf_event_mux_interval_ms_store(struct device *dev,
11359 struct device_attribute *attr,
11360 const char *buf, size_t count)
11361{
11362 struct pmu *pmu = dev_get_drvdata(dev);
11363 int timer, cpu, ret;
11364
11365 ret = kstrtoint(s: buf, base: 0, res: &timer);
11366 if (ret)
11367 return ret;
11368
11369 if (timer < 1)
11370 return -EINVAL;
11371
11372 /* same value, noting to do */
11373 if (timer == pmu->hrtimer_interval_ms)
11374 return count;
11375
11376 mutex_lock(&mux_interval_mutex);
11377 pmu->hrtimer_interval_ms = timer;
11378
11379 /* update all cpuctx for this PMU */
11380 cpus_read_lock();
11381 for_each_online_cpu(cpu) {
11382 struct perf_cpu_pmu_context *cpc;
11383 cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu);
11384 cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
11385
11386 cpu_function_call(cpu, func: perf_mux_hrtimer_restart_ipi, info: cpc);
11387 }
11388 cpus_read_unlock();
11389 mutex_unlock(lock: &mux_interval_mutex);
11390
11391 return count;
11392}
11393static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
11394
11395static struct attribute *pmu_dev_attrs[] = {
11396 &dev_attr_type.attr,
11397 &dev_attr_perf_event_mux_interval_ms.attr,
11398 NULL,
11399};
11400ATTRIBUTE_GROUPS(pmu_dev);
11401
11402static int pmu_bus_running;
11403static struct bus_type pmu_bus = {
11404 .name = "event_source",
11405 .dev_groups = pmu_dev_groups,
11406};
11407
11408static void pmu_dev_release(struct device *dev)
11409{
11410 kfree(objp: dev);
11411}
11412
11413static int pmu_dev_alloc(struct pmu *pmu)
11414{
11415 int ret = -ENOMEM;
11416
11417 pmu->dev = kzalloc(size: sizeof(struct device), GFP_KERNEL);
11418 if (!pmu->dev)
11419 goto out;
11420
11421 pmu->dev->groups = pmu->attr_groups;
11422 device_initialize(dev: pmu->dev);
11423
11424 dev_set_drvdata(dev: pmu->dev, data: pmu);
11425 pmu->dev->bus = &pmu_bus;
11426 pmu->dev->parent = pmu->parent;
11427 pmu->dev->release = pmu_dev_release;
11428
11429 ret = dev_set_name(dev: pmu->dev, name: "%s", pmu->name);
11430 if (ret)
11431 goto free_dev;
11432
11433 ret = device_add(dev: pmu->dev);
11434 if (ret)
11435 goto free_dev;
11436
11437 /* For PMUs with address filters, throw in an extra attribute: */
11438 if (pmu->nr_addr_filters)
11439 ret = device_create_file(device: pmu->dev, entry: &dev_attr_nr_addr_filters);
11440
11441 if (ret)
11442 goto del_dev;
11443
11444 if (pmu->attr_update)
11445 ret = sysfs_update_groups(kobj: &pmu->dev->kobj, groups: pmu->attr_update);
11446
11447 if (ret)
11448 goto del_dev;
11449
11450out:
11451 return ret;
11452
11453del_dev:
11454 device_del(dev: pmu->dev);
11455
11456free_dev:
11457 put_device(dev: pmu->dev);
11458 goto out;
11459}
11460
11461static struct lock_class_key cpuctx_mutex;
11462static struct lock_class_key cpuctx_lock;
11463
11464int perf_pmu_register(struct pmu *pmu, const char *name, int type)
11465{
11466 int cpu, ret, max = PERF_TYPE_MAX;
11467
11468 mutex_lock(&pmus_lock);
11469 ret = -ENOMEM;
11470 pmu->pmu_disable_count = alloc_percpu(int);
11471 if (!pmu->pmu_disable_count)
11472 goto unlock;
11473
11474 pmu->type = -1;
11475 if (WARN_ONCE(!name, "Can not register anonymous pmu.\n")) {
11476 ret = -EINVAL;
11477 goto free_pdc;
11478 }
11479
11480 pmu->name = name;
11481
11482 if (type >= 0)
11483 max = type;
11484
11485 ret = idr_alloc(&pmu_idr, ptr: pmu, start: max, end: 0, GFP_KERNEL);
11486 if (ret < 0)
11487 goto free_pdc;
11488
11489 WARN_ON(type >= 0 && ret != type);
11490
11491 type = ret;
11492 pmu->type = type;
11493
11494 if (pmu_bus_running && !pmu->dev) {
11495 ret = pmu_dev_alloc(pmu);
11496 if (ret)
11497 goto free_idr;
11498 }
11499
11500 ret = -ENOMEM;
11501 pmu->cpu_pmu_context = alloc_percpu(struct perf_cpu_pmu_context);
11502 if (!pmu->cpu_pmu_context)
11503 goto free_dev;
11504
11505 for_each_possible_cpu(cpu) {
11506 struct perf_cpu_pmu_context *cpc;
11507
11508 cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu);
11509 __perf_init_event_pmu_context(epc: &cpc->epc, pmu);
11510 __perf_mux_hrtimer_init(cpc, cpu);
11511 }
11512
11513 if (!pmu->start_txn) {
11514 if (pmu->pmu_enable) {
11515 /*
11516 * If we have pmu_enable/pmu_disable calls, install
11517 * transaction stubs that use that to try and batch
11518 * hardware accesses.
11519 */
11520 pmu->start_txn = perf_pmu_start_txn;
11521 pmu->commit_txn = perf_pmu_commit_txn;
11522 pmu->cancel_txn = perf_pmu_cancel_txn;
11523 } else {
11524 pmu->start_txn = perf_pmu_nop_txn;
11525 pmu->commit_txn = perf_pmu_nop_int;
11526 pmu->cancel_txn = perf_pmu_nop_void;
11527 }
11528 }
11529
11530 if (!pmu->pmu_enable) {
11531 pmu->pmu_enable = perf_pmu_nop_void;
11532 pmu->pmu_disable = perf_pmu_nop_void;
11533 }
11534
11535 if (!pmu->check_period)
11536 pmu->check_period = perf_event_nop_int;
11537
11538 if (!pmu->event_idx)
11539 pmu->event_idx = perf_event_idx_default;
11540
11541 list_add_rcu(new: &pmu->entry, head: &pmus);
11542 atomic_set(v: &pmu->exclusive_cnt, i: 0);
11543 ret = 0;
11544unlock:
11545 mutex_unlock(lock: &pmus_lock);
11546
11547 return ret;
11548
11549free_dev:
11550 if (pmu->dev && pmu->dev != PMU_NULL_DEV) {
11551 device_del(dev: pmu->dev);
11552 put_device(dev: pmu->dev);
11553 }
11554
11555free_idr:
11556 idr_remove(&pmu_idr, id: pmu->type);
11557
11558free_pdc:
11559 free_percpu(pdata: pmu->pmu_disable_count);
11560 goto unlock;
11561}
11562EXPORT_SYMBOL_GPL(perf_pmu_register);
11563
11564void perf_pmu_unregister(struct pmu *pmu)
11565{
11566 mutex_lock(&pmus_lock);
11567 list_del_rcu(entry: &pmu->entry);
11568
11569 /*
11570 * We dereference the pmu list under both SRCU and regular RCU, so
11571 * synchronize against both of those.
11572 */
11573 synchronize_srcu(ssp: &pmus_srcu);
11574 synchronize_rcu();
11575
11576 free_percpu(pdata: pmu->pmu_disable_count);
11577 idr_remove(&pmu_idr, id: pmu->type);
11578 if (pmu_bus_running && pmu->dev && pmu->dev != PMU_NULL_DEV) {
11579 if (pmu->nr_addr_filters)
11580 device_remove_file(dev: pmu->dev, attr: &dev_attr_nr_addr_filters);
11581 device_del(dev: pmu->dev);
11582 put_device(dev: pmu->dev);
11583 }
11584 free_pmu_context(pmu);
11585 mutex_unlock(lock: &pmus_lock);
11586}
11587EXPORT_SYMBOL_GPL(perf_pmu_unregister);
11588
11589static inline bool has_extended_regs(struct perf_event *event)
11590{
11591 return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
11592 (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
11593}
11594
11595static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
11596{
11597 struct perf_event_context *ctx = NULL;
11598 int ret;
11599
11600 if (!try_module_get(module: pmu->module))
11601 return -ENODEV;
11602
11603 /*
11604 * A number of pmu->event_init() methods iterate the sibling_list to,
11605 * for example, validate if the group fits on the PMU. Therefore,
11606 * if this is a sibling event, acquire the ctx->mutex to protect
11607 * the sibling_list.
11608 */
11609 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
11610 /*
11611 * This ctx->mutex can nest when we're called through
11612 * inheritance. See the perf_event_ctx_lock_nested() comment.
11613 */
11614 ctx = perf_event_ctx_lock_nested(event: event->group_leader,
11615 SINGLE_DEPTH_NESTING);
11616 BUG_ON(!ctx);
11617 }
11618
11619 event->pmu = pmu;
11620 ret = pmu->event_init(event);
11621
11622 if (ctx)
11623 perf_event_ctx_unlock(event: event->group_leader, ctx);
11624
11625 if (!ret) {
11626 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
11627 has_extended_regs(event))
11628 ret = -EOPNOTSUPP;
11629
11630 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
11631 event_has_any_exclude_flag(event))
11632 ret = -EINVAL;
11633
11634 if (ret && event->destroy)
11635 event->destroy(event);
11636 }
11637
11638 if (ret)
11639 module_put(module: pmu->module);
11640
11641 return ret;
11642}
11643
11644static struct pmu *perf_init_event(struct perf_event *event)
11645{
11646 bool extended_type = false;
11647 int idx, type, ret;
11648 struct pmu *pmu;
11649
11650 idx = srcu_read_lock(ssp: &pmus_srcu);
11651
11652 /*
11653 * Save original type before calling pmu->event_init() since certain
11654 * pmus overwrites event->attr.type to forward event to another pmu.
11655 */
11656 event->orig_type = event->attr.type;
11657
11658 /* Try parent's PMU first: */
11659 if (event->parent && event->parent->pmu) {
11660 pmu = event->parent->pmu;
11661 ret = perf_try_init_event(pmu, event);
11662 if (!ret)
11663 goto unlock;
11664 }
11665
11666 /*
11667 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
11668 * are often aliases for PERF_TYPE_RAW.
11669 */
11670 type = event->attr.type;
11671 if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) {
11672 type = event->attr.config >> PERF_PMU_TYPE_SHIFT;
11673 if (!type) {
11674 type = PERF_TYPE_RAW;
11675 } else {
11676 extended_type = true;
11677 event->attr.config &= PERF_HW_EVENT_MASK;
11678 }
11679 }
11680
11681again:
11682 rcu_read_lock();
11683 pmu = idr_find(&pmu_idr, id: type);
11684 rcu_read_unlock();
11685 if (pmu) {
11686 if (event->attr.type != type && type != PERF_TYPE_RAW &&
11687 !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE))
11688 goto fail;
11689
11690 ret = perf_try_init_event(pmu, event);
11691 if (ret == -ENOENT && event->attr.type != type && !extended_type) {
11692 type = event->attr.type;
11693 goto again;
11694 }
11695
11696 if (ret)
11697 pmu = ERR_PTR(error: ret);
11698
11699 goto unlock;
11700 }
11701
11702 list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
11703 ret = perf_try_init_event(pmu, event);
11704 if (!ret)
11705 goto unlock;
11706
11707 if (ret != -ENOENT) {
11708 pmu = ERR_PTR(error: ret);
11709 goto unlock;
11710 }
11711 }
11712fail:
11713 pmu = ERR_PTR(error: -ENOENT);
11714unlock:
11715 srcu_read_unlock(ssp: &pmus_srcu, idx);
11716
11717 return pmu;
11718}
11719
11720static void attach_sb_event(struct perf_event *event)
11721{
11722 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
11723
11724 raw_spin_lock(&pel->lock);
11725 list_add_rcu(new: &event->sb_list, head: &pel->list);
11726 raw_spin_unlock(&pel->lock);
11727}
11728
11729/*
11730 * We keep a list of all !task (and therefore per-cpu) events
11731 * that need to receive side-band records.
11732 *
11733 * This avoids having to scan all the various PMU per-cpu contexts
11734 * looking for them.
11735 */
11736static void account_pmu_sb_event(struct perf_event *event)
11737{
11738 if (is_sb_event(event))
11739 attach_sb_event(event);
11740}
11741
11742/* Freq events need the tick to stay alive (see perf_event_task_tick). */
11743static void account_freq_event_nohz(void)
11744{
11745#ifdef CONFIG_NO_HZ_FULL
11746 /* Lock so we don't race with concurrent unaccount */
11747 spin_lock(&nr_freq_lock);
11748 if (atomic_inc_return(&nr_freq_events) == 1)
11749 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
11750 spin_unlock(&nr_freq_lock);
11751#endif
11752}
11753
11754static void account_freq_event(void)
11755{
11756 if (tick_nohz_full_enabled())
11757 account_freq_event_nohz();
11758 else
11759 atomic_inc(v: &nr_freq_events);
11760}
11761
11762
11763static void account_event(struct perf_event *event)
11764{
11765 bool inc = false;
11766
11767 if (event->parent)
11768 return;
11769
11770 if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
11771 inc = true;
11772 if (event->attr.mmap || event->attr.mmap_data)
11773 atomic_inc(v: &nr_mmap_events);
11774 if (event->attr.build_id)
11775 atomic_inc(v: &nr_build_id_events);
11776 if (event->attr.comm)
11777 atomic_inc(v: &nr_comm_events);
11778 if (event->attr.namespaces)
11779 atomic_inc(v: &nr_namespaces_events);
11780 if (event->attr.cgroup)
11781 atomic_inc(v: &nr_cgroup_events);
11782 if (event->attr.task)
11783 atomic_inc(v: &nr_task_events);
11784 if (event->attr.freq)
11785 account_freq_event();
11786 if (event->attr.context_switch) {
11787 atomic_inc(v: &nr_switch_events);
11788 inc = true;
11789 }
11790 if (has_branch_stack(event))
11791 inc = true;
11792 if (is_cgroup_event(event))
11793 inc = true;
11794 if (event->attr.ksymbol)
11795 atomic_inc(v: &nr_ksymbol_events);
11796 if (event->attr.bpf_event)
11797 atomic_inc(v: &nr_bpf_events);
11798 if (event->attr.text_poke)
11799 atomic_inc(v: &nr_text_poke_events);
11800
11801 if (inc) {
11802 /*
11803 * We need the mutex here because static_branch_enable()
11804 * must complete *before* the perf_sched_count increment
11805 * becomes visible.
11806 */
11807 if (atomic_inc_not_zero(v: &perf_sched_count))
11808 goto enabled;
11809
11810 mutex_lock(&perf_sched_mutex);
11811 if (!atomic_read(v: &perf_sched_count)) {
11812 static_branch_enable(&perf_sched_events);
11813 /*
11814 * Guarantee that all CPUs observe they key change and
11815 * call the perf scheduling hooks before proceeding to
11816 * install events that need them.
11817 */
11818 synchronize_rcu();
11819 }
11820 /*
11821 * Now that we have waited for the sync_sched(), allow further
11822 * increments to by-pass the mutex.
11823 */
11824 atomic_inc(v: &perf_sched_count);
11825 mutex_unlock(lock: &perf_sched_mutex);
11826 }
11827enabled:
11828
11829 account_pmu_sb_event(event);
11830}
11831
11832/*
11833 * Allocate and initialize an event structure
11834 */
11835static struct perf_event *
11836perf_event_alloc(struct perf_event_attr *attr, int cpu,
11837 struct task_struct *task,
11838 struct perf_event *group_leader,
11839 struct perf_event *parent_event,
11840 perf_overflow_handler_t overflow_handler,
11841 void *context, int cgroup_fd)
11842{
11843 struct pmu *pmu;
11844 struct perf_event *event;
11845 struct hw_perf_event *hwc;
11846 long err = -EINVAL;
11847 int node;
11848
11849 if ((unsigned)cpu >= nr_cpu_ids) {
11850 if (!task || cpu != -1)
11851 return ERR_PTR(error: -EINVAL);
11852 }
11853 if (attr->sigtrap && !task) {
11854 /* Requires a task: avoid signalling random tasks. */
11855 return ERR_PTR(error: -EINVAL);
11856 }
11857
11858 node = (cpu >= 0) ? cpu_to_node(cpu) : -1;
11859 event = kmem_cache_alloc_node(s: perf_event_cache, GFP_KERNEL | __GFP_ZERO,
11860 node);
11861 if (!event)
11862 return ERR_PTR(error: -ENOMEM);
11863
11864 /*
11865 * Single events are their own group leaders, with an
11866 * empty sibling list:
11867 */
11868 if (!group_leader)
11869 group_leader = event;
11870
11871 mutex_init(&event->child_mutex);
11872 INIT_LIST_HEAD(list: &event->child_list);
11873
11874 INIT_LIST_HEAD(list: &event->event_entry);
11875 INIT_LIST_HEAD(list: &event->sibling_list);
11876 INIT_LIST_HEAD(list: &event->active_list);
11877 init_event_group(event);
11878 INIT_LIST_HEAD(list: &event->rb_entry);
11879 INIT_LIST_HEAD(list: &event->active_entry);
11880 INIT_LIST_HEAD(list: &event->addr_filters.list);
11881 INIT_HLIST_NODE(h: &event->hlist_entry);
11882
11883
11884 init_waitqueue_head(&event->waitq);
11885 init_irq_work(work: &event->pending_irq, func: perf_pending_irq);
11886 init_task_work(twork: &event->pending_task, func: perf_pending_task);
11887
11888 mutex_init(&event->mmap_mutex);
11889 raw_spin_lock_init(&event->addr_filters.lock);
11890
11891 atomic_long_set(v: &event->refcount, i: 1);
11892 event->cpu = cpu;
11893 event->attr = *attr;
11894 event->group_leader = group_leader;
11895 event->pmu = NULL;
11896 event->oncpu = -1;
11897
11898 event->parent = parent_event;
11899
11900 event->ns = get_pid_ns(ns: task_active_pid_ns(current));
11901 event->id = atomic64_inc_return(v: &perf_event_id);
11902
11903 event->state = PERF_EVENT_STATE_INACTIVE;
11904
11905 if (parent_event)
11906 event->event_caps = parent_event->event_caps;
11907
11908 if (task) {
11909 event->attach_state = PERF_ATTACH_TASK;
11910 /*
11911 * XXX pmu::event_init needs to know what task to account to
11912 * and we cannot use the ctx information because we need the
11913 * pmu before we get a ctx.
11914 */
11915 event->hw.target = get_task_struct(t: task);
11916 }
11917
11918 event->clock = &local_clock;
11919 if (parent_event)
11920 event->clock = parent_event->clock;
11921
11922 if (!overflow_handler && parent_event) {
11923 overflow_handler = parent_event->overflow_handler;
11924 context = parent_event->overflow_handler_context;
11925#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
11926 if (overflow_handler == bpf_overflow_handler) {
11927 struct bpf_prog *prog = parent_event->prog;
11928
11929 bpf_prog_inc(prog);
11930 event->prog = prog;
11931 event->orig_overflow_handler =
11932 parent_event->orig_overflow_handler;
11933 }
11934#endif
11935 }
11936
11937 if (overflow_handler) {
11938 event->overflow_handler = overflow_handler;
11939 event->overflow_handler_context = context;
11940 } else if (is_write_backward(event)){
11941 event->overflow_handler = perf_event_output_backward;
11942 event->overflow_handler_context = NULL;
11943 } else {
11944 event->overflow_handler = perf_event_output_forward;
11945 event->overflow_handler_context = NULL;
11946 }
11947
11948 perf_event__state_init(event);
11949
11950 pmu = NULL;
11951
11952 hwc = &event->hw;
11953 hwc->sample_period = attr->sample_period;
11954 if (attr->freq && attr->sample_freq)
11955 hwc->sample_period = 1;
11956 hwc->last_period = hwc->sample_period;
11957
11958 local64_set(&hwc->period_left, hwc->sample_period);
11959
11960 /*
11961 * We currently do not support PERF_SAMPLE_READ on inherited events.
11962 * See perf_output_read().
11963 */
11964 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
11965 goto err_ns;
11966
11967 if (!has_branch_stack(event))
11968 event->attr.branch_sample_type = 0;
11969
11970 pmu = perf_init_event(event);
11971 if (IS_ERR(ptr: pmu)) {
11972 err = PTR_ERR(ptr: pmu);
11973 goto err_ns;
11974 }
11975
11976 /*
11977 * Disallow uncore-task events. Similarly, disallow uncore-cgroup
11978 * events (they don't make sense as the cgroup will be different
11979 * on other CPUs in the uncore mask).
11980 */
11981 if (pmu->task_ctx_nr == perf_invalid_context && (task || cgroup_fd != -1)) {
11982 err = -EINVAL;
11983 goto err_pmu;
11984 }
11985
11986 if (event->attr.aux_output &&
11987 !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
11988 err = -EOPNOTSUPP;
11989 goto err_pmu;
11990 }
11991
11992 if (cgroup_fd != -1) {
11993 err = perf_cgroup_connect(fd: cgroup_fd, event, attr, group_leader);
11994 if (err)
11995 goto err_pmu;
11996 }
11997
11998 err = exclusive_event_init(event);
11999 if (err)
12000 goto err_pmu;
12001
12002 if (has_addr_filter(event)) {
12003 event->addr_filter_ranges = kcalloc(n: pmu->nr_addr_filters,
12004 size: sizeof(struct perf_addr_filter_range),
12005 GFP_KERNEL);
12006 if (!event->addr_filter_ranges) {
12007 err = -ENOMEM;
12008 goto err_per_task;
12009 }
12010
12011 /*
12012 * Clone the parent's vma offsets: they are valid until exec()
12013 * even if the mm is not shared with the parent.
12014 */
12015 if (event->parent) {
12016 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
12017
12018 raw_spin_lock_irq(&ifh->lock);
12019 memcpy(event->addr_filter_ranges,
12020 event->parent->addr_filter_ranges,
12021 pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
12022 raw_spin_unlock_irq(&ifh->lock);
12023 }
12024
12025 /* force hw sync on the address filters */
12026 event->addr_filters_gen = 1;
12027 }
12028
12029 if (!event->parent) {
12030 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
12031 err = get_callchain_buffers(max_stack: attr->sample_max_stack);
12032 if (err)
12033 goto err_addr_filters;
12034 }
12035 }
12036
12037 err = security_perf_event_alloc(event);
12038 if (err)
12039 goto err_callchain_buffer;
12040
12041 /* symmetric to unaccount_event() in _free_event() */
12042 account_event(event);
12043
12044 return event;
12045
12046err_callchain_buffer:
12047 if (!event->parent) {
12048 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
12049 put_callchain_buffers();
12050 }
12051err_addr_filters:
12052 kfree(objp: event->addr_filter_ranges);
12053
12054err_per_task:
12055 exclusive_event_destroy(event);
12056
12057err_pmu:
12058 if (is_cgroup_event(event))
12059 perf_detach_cgroup(event);
12060 if (event->destroy)
12061 event->destroy(event);
12062 module_put(module: pmu->module);
12063err_ns:
12064 if (event->hw.target)
12065 put_task_struct(t: event->hw.target);
12066 call_rcu(head: &event->rcu_head, func: free_event_rcu);
12067
12068 return ERR_PTR(error: err);
12069}
12070
12071static int perf_copy_attr(struct perf_event_attr __user *uattr,
12072 struct perf_event_attr *attr)
12073{
12074 u32 size;
12075 int ret;
12076
12077 /* Zero the full structure, so that a short copy will be nice. */
12078 memset(attr, 0, sizeof(*attr));
12079
12080 ret = get_user(size, &uattr->size);
12081 if (ret)
12082 return ret;
12083
12084 /* ABI compatibility quirk: */
12085 if (!size)
12086 size = PERF_ATTR_SIZE_VER0;
12087 if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
12088 goto err_size;
12089
12090 ret = copy_struct_from_user(dst: attr, ksize: sizeof(*attr), src: uattr, usize: size);
12091 if (ret) {
12092 if (ret == -E2BIG)
12093 goto err_size;
12094 return ret;
12095 }
12096
12097 attr->size = size;
12098
12099 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
12100 return -EINVAL;
12101
12102 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
12103 return -EINVAL;
12104
12105 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
12106 return -EINVAL;
12107
12108 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
12109 u64 mask = attr->branch_sample_type;
12110
12111 /* only using defined bits */
12112 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
12113 return -EINVAL;
12114
12115 /* at least one branch bit must be set */
12116 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
12117 return -EINVAL;
12118
12119 /* propagate priv level, when not set for branch */
12120 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
12121
12122 /* exclude_kernel checked on syscall entry */
12123 if (!attr->exclude_kernel)
12124 mask |= PERF_SAMPLE_BRANCH_KERNEL;
12125
12126 if (!attr->exclude_user)
12127 mask |= PERF_SAMPLE_BRANCH_USER;
12128
12129 if (!attr->exclude_hv)
12130 mask |= PERF_SAMPLE_BRANCH_HV;
12131 /*
12132 * adjust user setting (for HW filter setup)
12133 */
12134 attr->branch_sample_type = mask;
12135 }
12136 /* privileged levels capture (kernel, hv): check permissions */
12137 if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
12138 ret = perf_allow_kernel(attr);
12139 if (ret)
12140 return ret;
12141 }
12142 }
12143
12144 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
12145 ret = perf_reg_validate(mask: attr->sample_regs_user);
12146 if (ret)
12147 return ret;
12148 }
12149
12150 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
12151 if (!arch_perf_have_user_stack_dump())
12152 return -ENOSYS;
12153
12154 /*
12155 * We have __u32 type for the size, but so far
12156 * we can only use __u16 as maximum due to the
12157 * __u16 sample size limit.
12158 */
12159 if (attr->sample_stack_user >= USHRT_MAX)
12160 return -EINVAL;
12161 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
12162 return -EINVAL;
12163 }
12164
12165 if (!attr->sample_max_stack)
12166 attr->sample_max_stack = sysctl_perf_event_max_stack;
12167
12168 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
12169 ret = perf_reg_validate(mask: attr->sample_regs_intr);
12170
12171#ifndef CONFIG_CGROUP_PERF
12172 if (attr->sample_type & PERF_SAMPLE_CGROUP)
12173 return -EINVAL;
12174#endif
12175 if ((attr->sample_type & PERF_SAMPLE_WEIGHT) &&
12176 (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT))
12177 return -EINVAL;
12178
12179 if (!attr->inherit && attr->inherit_thread)
12180 return -EINVAL;
12181
12182 if (attr->remove_on_exec && attr->enable_on_exec)
12183 return -EINVAL;
12184
12185 if (attr->sigtrap && !attr->remove_on_exec)
12186 return -EINVAL;
12187
12188out:
12189 return ret;
12190
12191err_size:
12192 put_user(sizeof(*attr), &uattr->size);
12193 ret = -E2BIG;
12194 goto out;
12195}
12196
12197static void mutex_lock_double(struct mutex *a, struct mutex *b)
12198{
12199 if (b < a)
12200 swap(a, b);
12201
12202 mutex_lock(a);
12203 mutex_lock_nested(lock: b, SINGLE_DEPTH_NESTING);
12204}
12205
12206static int
12207perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
12208{
12209 struct perf_buffer *rb = NULL;
12210 int ret = -EINVAL;
12211
12212 if (!output_event) {
12213 mutex_lock(&event->mmap_mutex);
12214 goto set;
12215 }
12216
12217 /* don't allow circular references */
12218 if (event == output_event)
12219 goto out;
12220
12221 /*
12222 * Don't allow cross-cpu buffers
12223 */
12224 if (output_event->cpu != event->cpu)
12225 goto out;
12226
12227 /*
12228 * If its not a per-cpu rb, it must be the same task.
12229 */
12230 if (output_event->cpu == -1 && output_event->hw.target != event->hw.target)
12231 goto out;
12232
12233 /*
12234 * Mixing clocks in the same buffer is trouble you don't need.
12235 */
12236 if (output_event->clock != event->clock)
12237 goto out;
12238
12239 /*
12240 * Either writing ring buffer from beginning or from end.
12241 * Mixing is not allowed.
12242 */
12243 if (is_write_backward(event: output_event) != is_write_backward(event))
12244 goto out;
12245
12246 /*
12247 * If both events generate aux data, they must be on the same PMU
12248 */
12249 if (has_aux(event) && has_aux(event: output_event) &&
12250 event->pmu != output_event->pmu)
12251 goto out;
12252
12253 /*
12254 * Hold both mmap_mutex to serialize against perf_mmap_close(). Since
12255 * output_event is already on rb->event_list, and the list iteration
12256 * restarts after every removal, it is guaranteed this new event is
12257 * observed *OR* if output_event is already removed, it's guaranteed we
12258 * observe !rb->mmap_count.
12259 */
12260 mutex_lock_double(a: &event->mmap_mutex, b: &output_event->mmap_mutex);
12261set:
12262 /* Can't redirect output if we've got an active mmap() */
12263 if (atomic_read(v: &event->mmap_count))
12264 goto unlock;
12265
12266 if (output_event) {
12267 /* get the rb we want to redirect to */
12268 rb = ring_buffer_get(event: output_event);
12269 if (!rb)
12270 goto unlock;
12271
12272 /* did we race against perf_mmap_close() */
12273 if (!atomic_read(v: &rb->mmap_count)) {
12274 ring_buffer_put(rb);
12275 goto unlock;
12276 }
12277 }
12278
12279 ring_buffer_attach(event, rb);
12280
12281 ret = 0;
12282unlock:
12283 mutex_unlock(lock: &event->mmap_mutex);
12284 if (output_event)
12285 mutex_unlock(lock: &output_event->mmap_mutex);
12286
12287out:
12288 return ret;
12289}
12290
12291static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
12292{
12293 bool nmi_safe = false;
12294
12295 switch (clk_id) {
12296 case CLOCK_MONOTONIC:
12297 event->clock = &ktime_get_mono_fast_ns;
12298 nmi_safe = true;
12299 break;
12300
12301 case CLOCK_MONOTONIC_RAW:
12302 event->clock = &ktime_get_raw_fast_ns;
12303 nmi_safe = true;
12304 break;
12305
12306 case CLOCK_REALTIME:
12307 event->clock = &ktime_get_real_ns;
12308 break;
12309
12310 case CLOCK_BOOTTIME:
12311 event->clock = &ktime_get_boottime_ns;
12312 break;
12313
12314 case CLOCK_TAI:
12315 event->clock = &ktime_get_clocktai_ns;
12316 break;
12317
12318 default:
12319 return -EINVAL;
12320 }
12321
12322 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
12323 return -EINVAL;
12324
12325 return 0;
12326}
12327
12328static bool
12329perf_check_permission(struct perf_event_attr *attr, struct task_struct *task)
12330{
12331 unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS;
12332 bool is_capable = perfmon_capable();
12333
12334 if (attr->sigtrap) {
12335 /*
12336 * perf_event_attr::sigtrap sends signals to the other task.
12337 * Require the current task to also have CAP_KILL.
12338 */
12339 rcu_read_lock();
12340 is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL);
12341 rcu_read_unlock();
12342
12343 /*
12344 * If the required capabilities aren't available, checks for
12345 * ptrace permissions: upgrade to ATTACH, since sending signals
12346 * can effectively change the target task.
12347 */
12348 ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS;
12349 }
12350
12351 /*
12352 * Preserve ptrace permission check for backwards compatibility. The
12353 * ptrace check also includes checks that the current task and other
12354 * task have matching uids, and is therefore not done here explicitly.
12355 */
12356 return is_capable || ptrace_may_access(task, mode: ptrace_mode);
12357}
12358
12359/**
12360 * sys_perf_event_open - open a performance event, associate it to a task/cpu
12361 *
12362 * @attr_uptr: event_id type attributes for monitoring/sampling
12363 * @pid: target pid
12364 * @cpu: target cpu
12365 * @group_fd: group leader event fd
12366 * @flags: perf event open flags
12367 */
12368SYSCALL_DEFINE5(perf_event_open,
12369 struct perf_event_attr __user *, attr_uptr,
12370 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
12371{
12372 struct perf_event *group_leader = NULL, *output_event = NULL;
12373 struct perf_event_pmu_context *pmu_ctx;
12374 struct perf_event *event, *sibling;
12375 struct perf_event_attr attr;
12376 struct perf_event_context *ctx;
12377 struct file *event_file = NULL;
12378 struct fd group = {NULL, 0};
12379 struct task_struct *task = NULL;
12380 struct pmu *pmu;
12381 int event_fd;
12382 int move_group = 0;
12383 int err;
12384 int f_flags = O_RDWR;
12385 int cgroup_fd = -1;
12386
12387 /* for future expandability... */
12388 if (flags & ~PERF_FLAG_ALL)
12389 return -EINVAL;
12390
12391 err = perf_copy_attr(uattr: attr_uptr, attr: &attr);
12392 if (err)
12393 return err;
12394
12395 /* Do we allow access to perf_event_open(2) ? */
12396 err = security_perf_event_open(attr: &attr, PERF_SECURITY_OPEN);
12397 if (err)
12398 return err;
12399
12400 if (!attr.exclude_kernel) {
12401 err = perf_allow_kernel(attr: &attr);
12402 if (err)
12403 return err;
12404 }
12405
12406 if (attr.namespaces) {
12407 if (!perfmon_capable())
12408 return -EACCES;
12409 }
12410
12411 if (attr.freq) {
12412 if (attr.sample_freq > sysctl_perf_event_sample_rate)
12413 return -EINVAL;
12414 } else {
12415 if (attr.sample_period & (1ULL << 63))
12416 return -EINVAL;
12417 }
12418
12419 /* Only privileged users can get physical addresses */
12420 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
12421 err = perf_allow_kernel(attr: &attr);
12422 if (err)
12423 return err;
12424 }
12425
12426 /* REGS_INTR can leak data, lockdown must prevent this */
12427 if (attr.sample_type & PERF_SAMPLE_REGS_INTR) {
12428 err = security_locked_down(what: LOCKDOWN_PERF);
12429 if (err)
12430 return err;
12431 }
12432
12433 /*
12434 * In cgroup mode, the pid argument is used to pass the fd
12435 * opened to the cgroup directory in cgroupfs. The cpu argument
12436 * designates the cpu on which to monitor threads from that
12437 * cgroup.
12438 */
12439 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
12440 return -EINVAL;
12441
12442 if (flags & PERF_FLAG_FD_CLOEXEC)
12443 f_flags |= O_CLOEXEC;
12444
12445 event_fd = get_unused_fd_flags(flags: f_flags);
12446 if (event_fd < 0)
12447 return event_fd;
12448
12449 if (group_fd != -1) {
12450 err = perf_fget_light(fd: group_fd, p: &group);
12451 if (err)
12452 goto err_fd;
12453 group_leader = group.file->private_data;
12454 if (flags & PERF_FLAG_FD_OUTPUT)
12455 output_event = group_leader;
12456 if (flags & PERF_FLAG_FD_NO_GROUP)
12457 group_leader = NULL;
12458 }
12459
12460 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
12461 task = find_lively_task_by_vpid(vpid: pid);
12462 if (IS_ERR(ptr: task)) {
12463 err = PTR_ERR(ptr: task);
12464 goto err_group_fd;
12465 }
12466 }
12467
12468 if (task && group_leader &&
12469 group_leader->attr.inherit != attr.inherit) {
12470 err = -EINVAL;
12471 goto err_task;
12472 }
12473
12474 if (flags & PERF_FLAG_PID_CGROUP)
12475 cgroup_fd = pid;
12476
12477 event = perf_event_alloc(attr: &attr, cpu, task, group_leader, NULL,
12478 NULL, NULL, cgroup_fd);
12479 if (IS_ERR(ptr: event)) {
12480 err = PTR_ERR(ptr: event);
12481 goto err_task;
12482 }
12483
12484 if (is_sampling_event(event)) {
12485 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
12486 err = -EOPNOTSUPP;
12487 goto err_alloc;
12488 }
12489 }
12490
12491 /*
12492 * Special case software events and allow them to be part of
12493 * any hardware group.
12494 */
12495 pmu = event->pmu;
12496
12497 if (attr.use_clockid) {
12498 err = perf_event_set_clock(event, clk_id: attr.clockid);
12499 if (err)
12500 goto err_alloc;
12501 }
12502
12503 if (pmu->task_ctx_nr == perf_sw_context)
12504 event->event_caps |= PERF_EV_CAP_SOFTWARE;
12505
12506 if (task) {
12507 err = down_read_interruptible(sem: &task->signal->exec_update_lock);
12508 if (err)
12509 goto err_alloc;
12510
12511 /*
12512 * We must hold exec_update_lock across this and any potential
12513 * perf_install_in_context() call for this new event to
12514 * serialize against exec() altering our credentials (and the
12515 * perf_event_exit_task() that could imply).
12516 */
12517 err = -EACCES;
12518 if (!perf_check_permission(attr: &attr, task))
12519 goto err_cred;
12520 }
12521
12522 /*
12523 * Get the target context (task or percpu):
12524 */
12525 ctx = find_get_context(task, event);
12526 if (IS_ERR(ptr: ctx)) {
12527 err = PTR_ERR(ptr: ctx);
12528 goto err_cred;
12529 }
12530
12531 mutex_lock(&ctx->mutex);
12532
12533 if (ctx->task == TASK_TOMBSTONE) {
12534 err = -ESRCH;
12535 goto err_locked;
12536 }
12537
12538 if (!task) {
12539 /*
12540 * Check if the @cpu we're creating an event for is online.
12541 *
12542 * We use the perf_cpu_context::ctx::mutex to serialize against
12543 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12544 */
12545 struct perf_cpu_context *cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu);
12546
12547 if (!cpuctx->online) {
12548 err = -ENODEV;
12549 goto err_locked;
12550 }
12551 }
12552
12553 if (group_leader) {
12554 err = -EINVAL;
12555
12556 /*
12557 * Do not allow a recursive hierarchy (this new sibling
12558 * becoming part of another group-sibling):
12559 */
12560 if (group_leader->group_leader != group_leader)
12561 goto err_locked;
12562
12563 /* All events in a group should have the same clock */
12564 if (group_leader->clock != event->clock)
12565 goto err_locked;
12566
12567 /*
12568 * Make sure we're both events for the same CPU;
12569 * grouping events for different CPUs is broken; since
12570 * you can never concurrently schedule them anyhow.
12571 */
12572 if (group_leader->cpu != event->cpu)
12573 goto err_locked;
12574
12575 /*
12576 * Make sure we're both on the same context; either task or cpu.
12577 */
12578 if (group_leader->ctx != ctx)
12579 goto err_locked;
12580
12581 /*
12582 * Only a group leader can be exclusive or pinned
12583 */
12584 if (attr.exclusive || attr.pinned)
12585 goto err_locked;
12586
12587 if (is_software_event(event) &&
12588 !in_software_context(event: group_leader)) {
12589 /*
12590 * If the event is a sw event, but the group_leader
12591 * is on hw context.
12592 *
12593 * Allow the addition of software events to hw
12594 * groups, this is safe because software events
12595 * never fail to schedule.
12596 *
12597 * Note the comment that goes with struct
12598 * perf_event_pmu_context.
12599 */
12600 pmu = group_leader->pmu_ctx->pmu;
12601 } else if (!is_software_event(event)) {
12602 if (is_software_event(event: group_leader) &&
12603 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
12604 /*
12605 * In case the group is a pure software group, and we
12606 * try to add a hardware event, move the whole group to
12607 * the hardware context.
12608 */
12609 move_group = 1;
12610 }
12611
12612 /* Don't allow group of multiple hw events from different pmus */
12613 if (!in_software_context(event: group_leader) &&
12614 group_leader->pmu_ctx->pmu != pmu)
12615 goto err_locked;
12616 }
12617 }
12618
12619 /*
12620 * Now that we're certain of the pmu; find the pmu_ctx.
12621 */
12622 pmu_ctx = find_get_pmu_context(pmu, ctx, event);
12623 if (IS_ERR(ptr: pmu_ctx)) {
12624 err = PTR_ERR(ptr: pmu_ctx);
12625 goto err_locked;
12626 }
12627 event->pmu_ctx = pmu_ctx;
12628
12629 if (output_event) {
12630 err = perf_event_set_output(event, output_event);
12631 if (err)
12632 goto err_context;
12633 }
12634
12635 if (!perf_event_validate_size(event)) {
12636 err = -E2BIG;
12637 goto err_context;
12638 }
12639
12640 if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
12641 err = -EINVAL;
12642 goto err_context;
12643 }
12644
12645 /*
12646 * Must be under the same ctx::mutex as perf_install_in_context(),
12647 * because we need to serialize with concurrent event creation.
12648 */
12649 if (!exclusive_event_installable(event, ctx)) {
12650 err = -EBUSY;
12651 goto err_context;
12652 }
12653
12654 WARN_ON_ONCE(ctx->parent_ctx);
12655
12656 event_file = anon_inode_getfile(name: "[perf_event]", fops: &perf_fops, priv: event, flags: f_flags);
12657 if (IS_ERR(ptr: event_file)) {
12658 err = PTR_ERR(ptr: event_file);
12659 event_file = NULL;
12660 goto err_context;
12661 }
12662
12663 /*
12664 * This is the point on no return; we cannot fail hereafter. This is
12665 * where we start modifying current state.
12666 */
12667
12668 if (move_group) {
12669 perf_remove_from_context(event: group_leader, flags: 0);
12670 put_pmu_ctx(epc: group_leader->pmu_ctx);
12671
12672 for_each_sibling_event(sibling, group_leader) {
12673 perf_remove_from_context(event: sibling, flags: 0);
12674 put_pmu_ctx(epc: sibling->pmu_ctx);
12675 }
12676
12677 /*
12678 * Install the group siblings before the group leader.
12679 *
12680 * Because a group leader will try and install the entire group
12681 * (through the sibling list, which is still in-tact), we can
12682 * end up with siblings installed in the wrong context.
12683 *
12684 * By installing siblings first we NO-OP because they're not
12685 * reachable through the group lists.
12686 */
12687 for_each_sibling_event(sibling, group_leader) {
12688 sibling->pmu_ctx = pmu_ctx;
12689 get_pmu_ctx(epc: pmu_ctx);
12690 perf_event__state_init(event: sibling);
12691 perf_install_in_context(ctx, event: sibling, cpu: sibling->cpu);
12692 }
12693
12694 /*
12695 * Removing from the context ends up with disabled
12696 * event. What we want here is event in the initial
12697 * startup state, ready to be add into new context.
12698 */
12699 group_leader->pmu_ctx = pmu_ctx;
12700 get_pmu_ctx(epc: pmu_ctx);
12701 perf_event__state_init(event: group_leader);
12702 perf_install_in_context(ctx, event: group_leader, cpu: group_leader->cpu);
12703 }
12704
12705 /*
12706 * Precalculate sample_data sizes; do while holding ctx::mutex such
12707 * that we're serialized against further additions and before
12708 * perf_install_in_context() which is the point the event is active and
12709 * can use these values.
12710 */
12711 perf_event__header_size(event);
12712 perf_event__id_header_size(event);
12713
12714 event->owner = current;
12715
12716 perf_install_in_context(ctx, event, cpu: event->cpu);
12717 perf_unpin_context(ctx);
12718
12719 mutex_unlock(lock: &ctx->mutex);
12720
12721 if (task) {
12722 up_read(sem: &task->signal->exec_update_lock);
12723 put_task_struct(t: task);
12724 }
12725
12726 mutex_lock(&current->perf_event_mutex);
12727 list_add_tail(new: &event->owner_entry, head: &current->perf_event_list);
12728 mutex_unlock(lock: &current->perf_event_mutex);
12729
12730 /*
12731 * Drop the reference on the group_event after placing the
12732 * new event on the sibling_list. This ensures destruction
12733 * of the group leader will find the pointer to itself in
12734 * perf_group_detach().
12735 */
12736 fdput(fd: group);
12737 fd_install(fd: event_fd, file: event_file);
12738 return event_fd;
12739
12740err_context:
12741 put_pmu_ctx(epc: event->pmu_ctx);
12742 event->pmu_ctx = NULL; /* _free_event() */
12743err_locked:
12744 mutex_unlock(lock: &ctx->mutex);
12745 perf_unpin_context(ctx);
12746 put_ctx(ctx);
12747err_cred:
12748 if (task)
12749 up_read(sem: &task->signal->exec_update_lock);
12750err_alloc:
12751 free_event(event);
12752err_task:
12753 if (task)
12754 put_task_struct(t: task);
12755err_group_fd:
12756 fdput(fd: group);
12757err_fd:
12758 put_unused_fd(fd: event_fd);
12759 return err;
12760}
12761
12762/**
12763 * perf_event_create_kernel_counter
12764 *
12765 * @attr: attributes of the counter to create
12766 * @cpu: cpu in which the counter is bound
12767 * @task: task to profile (NULL for percpu)
12768 * @overflow_handler: callback to trigger when we hit the event
12769 * @context: context data could be used in overflow_handler callback
12770 */
12771struct perf_event *
12772perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
12773 struct task_struct *task,
12774 perf_overflow_handler_t overflow_handler,
12775 void *context)
12776{
12777 struct perf_event_pmu_context *pmu_ctx;
12778 struct perf_event_context *ctx;
12779 struct perf_event *event;
12780 struct pmu *pmu;
12781 int err;
12782
12783 /*
12784 * Grouping is not supported for kernel events, neither is 'AUX',
12785 * make sure the caller's intentions are adjusted.
12786 */
12787 if (attr->aux_output)
12788 return ERR_PTR(error: -EINVAL);
12789
12790 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
12791 overflow_handler, context, cgroup_fd: -1);
12792 if (IS_ERR(ptr: event)) {
12793 err = PTR_ERR(ptr: event);
12794 goto err;
12795 }
12796
12797 /* Mark owner so we could distinguish it from user events. */
12798 event->owner = TASK_TOMBSTONE;
12799 pmu = event->pmu;
12800
12801 if (pmu->task_ctx_nr == perf_sw_context)
12802 event->event_caps |= PERF_EV_CAP_SOFTWARE;
12803
12804 /*
12805 * Get the target context (task or percpu):
12806 */
12807 ctx = find_get_context(task, event);
12808 if (IS_ERR(ptr: ctx)) {
12809 err = PTR_ERR(ptr: ctx);
12810 goto err_alloc;
12811 }
12812
12813 WARN_ON_ONCE(ctx->parent_ctx);
12814 mutex_lock(&ctx->mutex);
12815 if (ctx->task == TASK_TOMBSTONE) {
12816 err = -ESRCH;
12817 goto err_unlock;
12818 }
12819
12820 pmu_ctx = find_get_pmu_context(pmu, ctx, event);
12821 if (IS_ERR(ptr: pmu_ctx)) {
12822 err = PTR_ERR(ptr: pmu_ctx);
12823 goto err_unlock;
12824 }
12825 event->pmu_ctx = pmu_ctx;
12826
12827 if (!task) {
12828 /*
12829 * Check if the @cpu we're creating an event for is online.
12830 *
12831 * We use the perf_cpu_context::ctx::mutex to serialize against
12832 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12833 */
12834 struct perf_cpu_context *cpuctx =
12835 container_of(ctx, struct perf_cpu_context, ctx);
12836 if (!cpuctx->online) {
12837 err = -ENODEV;
12838 goto err_pmu_ctx;
12839 }
12840 }
12841
12842 if (!exclusive_event_installable(event, ctx)) {
12843 err = -EBUSY;
12844 goto err_pmu_ctx;
12845 }
12846
12847 perf_install_in_context(ctx, event, cpu: event->cpu);
12848 perf_unpin_context(ctx);
12849 mutex_unlock(lock: &ctx->mutex);
12850
12851 return event;
12852
12853err_pmu_ctx:
12854 put_pmu_ctx(epc: pmu_ctx);
12855 event->pmu_ctx = NULL; /* _free_event() */
12856err_unlock:
12857 mutex_unlock(lock: &ctx->mutex);
12858 perf_unpin_context(ctx);
12859 put_ctx(ctx);
12860err_alloc:
12861 free_event(event);
12862err:
12863 return ERR_PTR(error: err);
12864}
12865EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
12866
12867static void __perf_pmu_remove(struct perf_event_context *ctx,
12868 int cpu, struct pmu *pmu,
12869 struct perf_event_groups *groups,
12870 struct list_head *events)
12871{
12872 struct perf_event *event, *sibling;
12873
12874 perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) {
12875 perf_remove_from_context(event, flags: 0);
12876 put_pmu_ctx(epc: event->pmu_ctx);
12877 list_add(new: &event->migrate_entry, head: events);
12878
12879 for_each_sibling_event(sibling, event) {
12880 perf_remove_from_context(event: sibling, flags: 0);
12881 put_pmu_ctx(epc: sibling->pmu_ctx);
12882 list_add(new: &sibling->migrate_entry, head: events);
12883 }
12884 }
12885}
12886
12887static void __perf_pmu_install_event(struct pmu *pmu,
12888 struct perf_event_context *ctx,
12889 int cpu, struct perf_event *event)
12890{
12891 struct perf_event_pmu_context *epc;
12892
12893 event->cpu = cpu;
12894 epc = find_get_pmu_context(pmu, ctx, event);
12895 event->pmu_ctx = epc;
12896
12897 if (event->state >= PERF_EVENT_STATE_OFF)
12898 event->state = PERF_EVENT_STATE_INACTIVE;
12899 perf_install_in_context(ctx, event, cpu);
12900}
12901
12902static void __perf_pmu_install(struct perf_event_context *ctx,
12903 int cpu, struct pmu *pmu, struct list_head *events)
12904{
12905 struct perf_event *event, *tmp;
12906
12907 /*
12908 * Re-instate events in 2 passes.
12909 *
12910 * Skip over group leaders and only install siblings on this first
12911 * pass, siblings will not get enabled without a leader, however a
12912 * leader will enable its siblings, even if those are still on the old
12913 * context.
12914 */
12915 list_for_each_entry_safe(event, tmp, events, migrate_entry) {
12916 if (event->group_leader == event)
12917 continue;
12918
12919 list_del(entry: &event->migrate_entry);
12920 __perf_pmu_install_event(pmu, ctx, cpu, event);
12921 }
12922
12923 /*
12924 * Once all the siblings are setup properly, install the group leaders
12925 * to make it go.
12926 */
12927 list_for_each_entry_safe(event, tmp, events, migrate_entry) {
12928 list_del(entry: &event->migrate_entry);
12929 __perf_pmu_install_event(pmu, ctx, cpu, event);
12930 }
12931}
12932
12933void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
12934{
12935 struct perf_event_context *src_ctx, *dst_ctx;
12936 LIST_HEAD(events);
12937
12938 src_ctx = &per_cpu_ptr(&perf_cpu_context, src_cpu)->ctx;
12939 dst_ctx = &per_cpu_ptr(&perf_cpu_context, dst_cpu)->ctx;
12940
12941 /*
12942 * See perf_event_ctx_lock() for comments on the details
12943 * of swizzling perf_event::ctx.
12944 */
12945 mutex_lock_double(a: &src_ctx->mutex, b: &dst_ctx->mutex);
12946
12947 __perf_pmu_remove(ctx: src_ctx, cpu: src_cpu, pmu, groups: &src_ctx->pinned_groups, events: &events);
12948 __perf_pmu_remove(ctx: src_ctx, cpu: src_cpu, pmu, groups: &src_ctx->flexible_groups, events: &events);
12949
12950 if (!list_empty(head: &events)) {
12951 /*
12952 * Wait for the events to quiesce before re-instating them.
12953 */
12954 synchronize_rcu();
12955
12956 __perf_pmu_install(ctx: dst_ctx, cpu: dst_cpu, pmu, events: &events);
12957 }
12958
12959 mutex_unlock(lock: &dst_ctx->mutex);
12960 mutex_unlock(lock: &src_ctx->mutex);
12961}
12962EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
12963
12964static void sync_child_event(struct perf_event *child_event)
12965{
12966 struct perf_event *parent_event = child_event->parent;
12967 u64 child_val;
12968
12969 if (child_event->attr.inherit_stat) {
12970 struct task_struct *task = child_event->ctx->task;
12971
12972 if (task && task != TASK_TOMBSTONE)
12973 perf_event_read_event(event: child_event, task);
12974 }
12975
12976 child_val = perf_event_count(event: child_event);
12977
12978 /*
12979 * Add back the child's count to the parent's count:
12980 */
12981 atomic64_add(i: child_val, v: &parent_event->child_count);
12982 atomic64_add(i: child_event->total_time_enabled,
12983 v: &parent_event->child_total_time_enabled);
12984 atomic64_add(i: child_event->total_time_running,
12985 v: &parent_event->child_total_time_running);
12986}
12987
12988static void
12989perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx)
12990{
12991 struct perf_event *parent_event = event->parent;
12992 unsigned long detach_flags = 0;
12993
12994 if (parent_event) {
12995 /*
12996 * Do not destroy the 'original' grouping; because of the
12997 * context switch optimization the original events could've
12998 * ended up in a random child task.
12999 *
13000 * If we were to destroy the original group, all group related
13001 * operations would cease to function properly after this
13002 * random child dies.
13003 *
13004 * Do destroy all inherited groups, we don't care about those
13005 * and being thorough is better.
13006 */
13007 detach_flags = DETACH_GROUP | DETACH_CHILD;
13008 mutex_lock(&parent_event->child_mutex);
13009 }
13010
13011 perf_remove_from_context(event, flags: detach_flags);
13012
13013 raw_spin_lock_irq(&ctx->lock);
13014 if (event->state > PERF_EVENT_STATE_EXIT)
13015 perf_event_set_state(event, state: PERF_EVENT_STATE_EXIT);
13016 raw_spin_unlock_irq(&ctx->lock);
13017
13018 /*
13019 * Child events can be freed.
13020 */
13021 if (parent_event) {
13022 mutex_unlock(lock: &parent_event->child_mutex);
13023 /*
13024 * Kick perf_poll() for is_event_hup();
13025 */
13026 perf_event_wakeup(event: parent_event);
13027 free_event(event);
13028 put_event(event: parent_event);
13029 return;
13030 }
13031
13032 /*
13033 * Parent events are governed by their filedesc, retain them.
13034 */
13035 perf_event_wakeup(event);
13036}
13037
13038static void perf_event_exit_task_context(struct task_struct *child)
13039{
13040 struct perf_event_context *child_ctx, *clone_ctx = NULL;
13041 struct perf_event *child_event, *next;
13042
13043 WARN_ON_ONCE(child != current);
13044
13045 child_ctx = perf_pin_task_context(task: child);
13046 if (!child_ctx)
13047 return;
13048
13049 /*
13050 * In order to reduce the amount of tricky in ctx tear-down, we hold
13051 * ctx::mutex over the entire thing. This serializes against almost
13052 * everything that wants to access the ctx.
13053 *
13054 * The exception is sys_perf_event_open() /
13055 * perf_event_create_kernel_count() which does find_get_context()
13056 * without ctx::mutex (it cannot because of the move_group double mutex
13057 * lock thing). See the comments in perf_install_in_context().
13058 */
13059 mutex_lock(&child_ctx->mutex);
13060
13061 /*
13062 * In a single ctx::lock section, de-schedule the events and detach the
13063 * context from the task such that we cannot ever get it scheduled back
13064 * in.
13065 */
13066 raw_spin_lock_irq(&child_ctx->lock);
13067 task_ctx_sched_out(ctx: child_ctx, event_type: EVENT_ALL);
13068
13069 /*
13070 * Now that the context is inactive, destroy the task <-> ctx relation
13071 * and mark the context dead.
13072 */
13073 RCU_INIT_POINTER(child->perf_event_ctxp, NULL);
13074 put_ctx(ctx: child_ctx); /* cannot be last */
13075 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
13076 put_task_struct(current); /* cannot be last */
13077
13078 clone_ctx = unclone_ctx(ctx: child_ctx);
13079 raw_spin_unlock_irq(&child_ctx->lock);
13080
13081 if (clone_ctx)
13082 put_ctx(ctx: clone_ctx);
13083
13084 /*
13085 * Report the task dead after unscheduling the events so that we
13086 * won't get any samples after PERF_RECORD_EXIT. We can however still
13087 * get a few PERF_RECORD_READ events.
13088 */
13089 perf_event_task(task: child, task_ctx: child_ctx, new: 0);
13090
13091 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
13092 perf_event_exit_event(event: child_event, ctx: child_ctx);
13093
13094 mutex_unlock(lock: &child_ctx->mutex);
13095
13096 put_ctx(ctx: child_ctx);
13097}
13098
13099/*
13100 * When a child task exits, feed back event values to parent events.
13101 *
13102 * Can be called with exec_update_lock held when called from
13103 * setup_new_exec().
13104 */
13105void perf_event_exit_task(struct task_struct *child)
13106{
13107 struct perf_event *event, *tmp;
13108
13109 mutex_lock(&child->perf_event_mutex);
13110 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
13111 owner_entry) {
13112 list_del_init(entry: &event->owner_entry);
13113
13114 /*
13115 * Ensure the list deletion is visible before we clear
13116 * the owner, closes a race against perf_release() where
13117 * we need to serialize on the owner->perf_event_mutex.
13118 */
13119 smp_store_release(&event->owner, NULL);
13120 }
13121 mutex_unlock(lock: &child->perf_event_mutex);
13122
13123 perf_event_exit_task_context(child);
13124
13125 /*
13126 * The perf_event_exit_task_context calls perf_event_task
13127 * with child's task_ctx, which generates EXIT events for
13128 * child contexts and sets child->perf_event_ctxp[] to NULL.
13129 * At this point we need to send EXIT events to cpu contexts.
13130 */
13131 perf_event_task(task: child, NULL, new: 0);
13132}
13133
13134static void perf_free_event(struct perf_event *event,
13135 struct perf_event_context *ctx)
13136{
13137 struct perf_event *parent = event->parent;
13138
13139 if (WARN_ON_ONCE(!parent))
13140 return;
13141
13142 mutex_lock(&parent->child_mutex);
13143 list_del_init(entry: &event->child_list);
13144 mutex_unlock(lock: &parent->child_mutex);
13145
13146 put_event(event: parent);
13147
13148 raw_spin_lock_irq(&ctx->lock);
13149 perf_group_detach(event);
13150 list_del_event(event, ctx);
13151 raw_spin_unlock_irq(&ctx->lock);
13152 free_event(event);
13153}
13154
13155/*
13156 * Free a context as created by inheritance by perf_event_init_task() below,
13157 * used by fork() in case of fail.
13158 *
13159 * Even though the task has never lived, the context and events have been
13160 * exposed through the child_list, so we must take care tearing it all down.
13161 */
13162void perf_event_free_task(struct task_struct *task)
13163{
13164 struct perf_event_context *ctx;
13165 struct perf_event *event, *tmp;
13166
13167 ctx = rcu_access_pointer(task->perf_event_ctxp);
13168 if (!ctx)
13169 return;
13170
13171 mutex_lock(&ctx->mutex);
13172 raw_spin_lock_irq(&ctx->lock);
13173 /*
13174 * Destroy the task <-> ctx relation and mark the context dead.
13175 *
13176 * This is important because even though the task hasn't been
13177 * exposed yet the context has been (through child_list).
13178 */
13179 RCU_INIT_POINTER(task->perf_event_ctxp, NULL);
13180 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
13181 put_task_struct(t: task); /* cannot be last */
13182 raw_spin_unlock_irq(&ctx->lock);
13183
13184
13185 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
13186 perf_free_event(event, ctx);
13187
13188 mutex_unlock(lock: &ctx->mutex);
13189
13190 /*
13191 * perf_event_release_kernel() could've stolen some of our
13192 * child events and still have them on its free_list. In that
13193 * case we must wait for these events to have been freed (in
13194 * particular all their references to this task must've been
13195 * dropped).
13196 *
13197 * Without this copy_process() will unconditionally free this
13198 * task (irrespective of its reference count) and
13199 * _free_event()'s put_task_struct(event->hw.target) will be a
13200 * use-after-free.
13201 *
13202 * Wait for all events to drop their context reference.
13203 */
13204 wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
13205 put_ctx(ctx); /* must be last */
13206}
13207
13208void perf_event_delayed_put(struct task_struct *task)
13209{
13210 WARN_ON_ONCE(task->perf_event_ctxp);
13211}
13212
13213struct file *perf_event_get(unsigned int fd)
13214{
13215 struct file *file = fget(fd);
13216 if (!file)
13217 return ERR_PTR(error: -EBADF);
13218
13219 if (file->f_op != &perf_fops) {
13220 fput(file);
13221 return ERR_PTR(error: -EBADF);
13222 }
13223
13224 return file;
13225}
13226
13227const struct perf_event *perf_get_event(struct file *file)
13228{
13229 if (file->f_op != &perf_fops)
13230 return ERR_PTR(error: -EINVAL);
13231
13232 return file->private_data;
13233}
13234
13235const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
13236{
13237 if (!event)
13238 return ERR_PTR(error: -EINVAL);
13239
13240 return &event->attr;
13241}
13242
13243/*
13244 * Inherit an event from parent task to child task.
13245 *
13246 * Returns:
13247 * - valid pointer on success
13248 * - NULL for orphaned events
13249 * - IS_ERR() on error
13250 */
13251static struct perf_event *
13252inherit_event(struct perf_event *parent_event,
13253 struct task_struct *parent,
13254 struct perf_event_context *parent_ctx,
13255 struct task_struct *child,
13256 struct perf_event *group_leader,
13257 struct perf_event_context *child_ctx)
13258{
13259 enum perf_event_state parent_state = parent_event->state;
13260 struct perf_event_pmu_context *pmu_ctx;
13261 struct perf_event *child_event;
13262 unsigned long flags;
13263
13264 /*
13265 * Instead of creating recursive hierarchies of events,
13266 * we link inherited events back to the original parent,
13267 * which has a filp for sure, which we use as the reference
13268 * count:
13269 */
13270 if (parent_event->parent)
13271 parent_event = parent_event->parent;
13272
13273 child_event = perf_event_alloc(attr: &parent_event->attr,
13274 cpu: parent_event->cpu,
13275 task: child,
13276 group_leader, parent_event,
13277 NULL, NULL, cgroup_fd: -1);
13278 if (IS_ERR(ptr: child_event))
13279 return child_event;
13280
13281 pmu_ctx = find_get_pmu_context(pmu: child_event->pmu, ctx: child_ctx, event: child_event);
13282 if (IS_ERR(ptr: pmu_ctx)) {
13283 free_event(event: child_event);
13284 return ERR_CAST(ptr: pmu_ctx);
13285 }
13286 child_event->pmu_ctx = pmu_ctx;
13287
13288 /*
13289 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
13290 * must be under the same lock in order to serialize against
13291 * perf_event_release_kernel(), such that either we must observe
13292 * is_orphaned_event() or they will observe us on the child_list.
13293 */
13294 mutex_lock(&parent_event->child_mutex);
13295 if (is_orphaned_event(event: parent_event) ||
13296 !atomic_long_inc_not_zero(v: &parent_event->refcount)) {
13297 mutex_unlock(lock: &parent_event->child_mutex);
13298 /* task_ctx_data is freed with child_ctx */
13299 free_event(event: child_event);
13300 return NULL;
13301 }
13302
13303 get_ctx(ctx: child_ctx);
13304
13305 /*
13306 * Make the child state follow the state of the parent event,
13307 * not its attr.disabled bit. We hold the parent's mutex,
13308 * so we won't race with perf_event_{en, dis}able_family.
13309 */
13310 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
13311 child_event->state = PERF_EVENT_STATE_INACTIVE;
13312 else
13313 child_event->state = PERF_EVENT_STATE_OFF;
13314
13315 if (parent_event->attr.freq) {
13316 u64 sample_period = parent_event->hw.sample_period;
13317 struct hw_perf_event *hwc = &child_event->hw;
13318
13319 hwc->sample_period = sample_period;
13320 hwc->last_period = sample_period;
13321
13322 local64_set(&hwc->period_left, sample_period);
13323 }
13324
13325 child_event->ctx = child_ctx;
13326 child_event->overflow_handler = parent_event->overflow_handler;
13327 child_event->overflow_handler_context
13328 = parent_event->overflow_handler_context;
13329
13330 /*
13331 * Precalculate sample_data sizes
13332 */
13333 perf_event__header_size(event: child_event);
13334 perf_event__id_header_size(event: child_event);
13335
13336 /*
13337 * Link it up in the child's context:
13338 */
13339 raw_spin_lock_irqsave(&child_ctx->lock, flags);
13340 add_event_to_ctx(event: child_event, ctx: child_ctx);
13341 child_event->attach_state |= PERF_ATTACH_CHILD;
13342 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
13343
13344 /*
13345 * Link this into the parent event's child list
13346 */
13347 list_add_tail(new: &child_event->child_list, head: &parent_event->child_list);
13348 mutex_unlock(lock: &parent_event->child_mutex);
13349
13350 return child_event;
13351}
13352
13353/*
13354 * Inherits an event group.
13355 *
13356 * This will quietly suppress orphaned events; !inherit_event() is not an error.
13357 * This matches with perf_event_release_kernel() removing all child events.
13358 *
13359 * Returns:
13360 * - 0 on success
13361 * - <0 on error
13362 */
13363static int inherit_group(struct perf_event *parent_event,
13364 struct task_struct *parent,
13365 struct perf_event_context *parent_ctx,
13366 struct task_struct *child,
13367 struct perf_event_context *child_ctx)
13368{
13369 struct perf_event *leader;
13370 struct perf_event *sub;
13371 struct perf_event *child_ctr;
13372
13373 leader = inherit_event(parent_event, parent, parent_ctx,
13374 child, NULL, child_ctx);
13375 if (IS_ERR(ptr: leader))
13376 return PTR_ERR(ptr: leader);
13377 /*
13378 * @leader can be NULL here because of is_orphaned_event(). In this
13379 * case inherit_event() will create individual events, similar to what
13380 * perf_group_detach() would do anyway.
13381 */
13382 for_each_sibling_event(sub, parent_event) {
13383 child_ctr = inherit_event(parent_event: sub, parent, parent_ctx,
13384 child, group_leader: leader, child_ctx);
13385 if (IS_ERR(ptr: child_ctr))
13386 return PTR_ERR(ptr: child_ctr);
13387
13388 if (sub->aux_event == parent_event && child_ctr &&
13389 !perf_get_aux_event(event: child_ctr, group_leader: leader))
13390 return -EINVAL;
13391 }
13392 if (leader)
13393 leader->group_generation = parent_event->group_generation;
13394 return 0;
13395}
13396
13397/*
13398 * Creates the child task context and tries to inherit the event-group.
13399 *
13400 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
13401 * inherited_all set when we 'fail' to inherit an orphaned event; this is
13402 * consistent with perf_event_release_kernel() removing all child events.
13403 *
13404 * Returns:
13405 * - 0 on success
13406 * - <0 on error
13407 */
13408static int
13409inherit_task_group(struct perf_event *event, struct task_struct *parent,
13410 struct perf_event_context *parent_ctx,
13411 struct task_struct *child,
13412 u64 clone_flags, int *inherited_all)
13413{
13414 struct perf_event_context *child_ctx;
13415 int ret;
13416
13417 if (!event->attr.inherit ||
13418 (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) ||
13419 /* Do not inherit if sigtrap and signal handlers were cleared. */
13420 (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) {
13421 *inherited_all = 0;
13422 return 0;
13423 }
13424
13425 child_ctx = child->perf_event_ctxp;
13426 if (!child_ctx) {
13427 /*
13428 * This is executed from the parent task context, so
13429 * inherit events that have been marked for cloning.
13430 * First allocate and initialize a context for the
13431 * child.
13432 */
13433 child_ctx = alloc_perf_context(task: child);
13434 if (!child_ctx)
13435 return -ENOMEM;
13436
13437 child->perf_event_ctxp = child_ctx;
13438 }
13439
13440 ret = inherit_group(parent_event: event, parent, parent_ctx, child, child_ctx);
13441 if (ret)
13442 *inherited_all = 0;
13443
13444 return ret;
13445}
13446
13447/*
13448 * Initialize the perf_event context in task_struct
13449 */
13450static int perf_event_init_context(struct task_struct *child, u64 clone_flags)
13451{
13452 struct perf_event_context *child_ctx, *parent_ctx;
13453 struct perf_event_context *cloned_ctx;
13454 struct perf_event *event;
13455 struct task_struct *parent = current;
13456 int inherited_all = 1;
13457 unsigned long flags;
13458 int ret = 0;
13459
13460 if (likely(!parent->perf_event_ctxp))
13461 return 0;
13462
13463 /*
13464 * If the parent's context is a clone, pin it so it won't get
13465 * swapped under us.
13466 */
13467 parent_ctx = perf_pin_task_context(task: parent);
13468 if (!parent_ctx)
13469 return 0;
13470
13471 /*
13472 * No need to check if parent_ctx != NULL here; since we saw
13473 * it non-NULL earlier, the only reason for it to become NULL
13474 * is if we exit, and since we're currently in the middle of
13475 * a fork we can't be exiting at the same time.
13476 */
13477
13478 /*
13479 * Lock the parent list. No need to lock the child - not PID
13480 * hashed yet and not running, so nobody can access it.
13481 */
13482 mutex_lock(&parent_ctx->mutex);
13483
13484 /*
13485 * We dont have to disable NMIs - we are only looking at
13486 * the list, not manipulating it:
13487 */
13488 perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
13489 ret = inherit_task_group(event, parent, parent_ctx,
13490 child, clone_flags, inherited_all: &inherited_all);
13491 if (ret)
13492 goto out_unlock;
13493 }
13494
13495 /*
13496 * We can't hold ctx->lock when iterating the ->flexible_group list due
13497 * to allocations, but we need to prevent rotation because
13498 * rotate_ctx() will change the list from interrupt context.
13499 */
13500 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13501 parent_ctx->rotate_disable = 1;
13502 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13503
13504 perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
13505 ret = inherit_task_group(event, parent, parent_ctx,
13506 child, clone_flags, inherited_all: &inherited_all);
13507 if (ret)
13508 goto out_unlock;
13509 }
13510
13511 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13512 parent_ctx->rotate_disable = 0;
13513
13514 child_ctx = child->perf_event_ctxp;
13515
13516 if (child_ctx && inherited_all) {
13517 /*
13518 * Mark the child context as a clone of the parent
13519 * context, or of whatever the parent is a clone of.
13520 *
13521 * Note that if the parent is a clone, the holding of
13522 * parent_ctx->lock avoids it from being uncloned.
13523 */
13524 cloned_ctx = parent_ctx->parent_ctx;
13525 if (cloned_ctx) {
13526 child_ctx->parent_ctx = cloned_ctx;
13527 child_ctx->parent_gen = parent_ctx->parent_gen;
13528 } else {
13529 child_ctx->parent_ctx = parent_ctx;
13530 child_ctx->parent_gen = parent_ctx->generation;
13531 }
13532 get_ctx(ctx: child_ctx->parent_ctx);
13533 }
13534
13535 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13536out_unlock:
13537 mutex_unlock(lock: &parent_ctx->mutex);
13538
13539 perf_unpin_context(ctx: parent_ctx);
13540 put_ctx(ctx: parent_ctx);
13541
13542 return ret;
13543}
13544
13545/*
13546 * Initialize the perf_event context in task_struct
13547 */
13548int perf_event_init_task(struct task_struct *child, u64 clone_flags)
13549{
13550 int ret;
13551
13552 child->perf_event_ctxp = NULL;
13553 mutex_init(&child->perf_event_mutex);
13554 INIT_LIST_HEAD(list: &child->perf_event_list);
13555
13556 ret = perf_event_init_context(child, clone_flags);
13557 if (ret) {
13558 perf_event_free_task(task: child);
13559 return ret;
13560 }
13561
13562 return 0;
13563}
13564
13565static void __init perf_event_init_all_cpus(void)
13566{
13567 struct swevent_htable *swhash;
13568 struct perf_cpu_context *cpuctx;
13569 int cpu;
13570
13571 zalloc_cpumask_var(mask: &perf_online_mask, GFP_KERNEL);
13572
13573 for_each_possible_cpu(cpu) {
13574 swhash = &per_cpu(swevent_htable, cpu);
13575 mutex_init(&swhash->hlist_mutex);
13576
13577 INIT_LIST_HEAD(list: &per_cpu(pmu_sb_events.list, cpu));
13578 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
13579
13580 INIT_LIST_HEAD(list: &per_cpu(sched_cb_list, cpu));
13581
13582 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
13583 __perf_event_init_context(ctx: &cpuctx->ctx);
13584 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
13585 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
13586 cpuctx->online = cpumask_test_cpu(cpu, cpumask: perf_online_mask);
13587 cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default);
13588 cpuctx->heap = cpuctx->heap_default;
13589 }
13590}
13591
13592static void perf_swevent_init_cpu(unsigned int cpu)
13593{
13594 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
13595
13596 mutex_lock(&swhash->hlist_mutex);
13597 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
13598 struct swevent_hlist *hlist;
13599
13600 hlist = kzalloc_node(size: sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
13601 WARN_ON(!hlist);
13602 rcu_assign_pointer(swhash->swevent_hlist, hlist);
13603 }
13604 mutex_unlock(lock: &swhash->hlist_mutex);
13605}
13606
13607#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
13608static void __perf_event_exit_context(void *__info)
13609{
13610 struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
13611 struct perf_event_context *ctx = __info;
13612 struct perf_event *event;
13613
13614 raw_spin_lock(&ctx->lock);
13615 ctx_sched_out(ctx, event_type: EVENT_TIME);
13616 list_for_each_entry(event, &ctx->event_list, event_entry)
13617 __perf_remove_from_context(event, cpuctx, ctx, info: (void *)DETACH_GROUP);
13618 raw_spin_unlock(&ctx->lock);
13619}
13620
13621static void perf_event_exit_cpu_context(int cpu)
13622{
13623 struct perf_cpu_context *cpuctx;
13624 struct perf_event_context *ctx;
13625
13626 // XXX simplify cpuctx->online
13627 mutex_lock(&pmus_lock);
13628 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
13629 ctx = &cpuctx->ctx;
13630
13631 mutex_lock(&ctx->mutex);
13632 smp_call_function_single(cpuid: cpu, func: __perf_event_exit_context, info: ctx, wait: 1);
13633 cpuctx->online = 0;
13634 mutex_unlock(lock: &ctx->mutex);
13635 cpumask_clear_cpu(cpu, dstp: perf_online_mask);
13636 mutex_unlock(lock: &pmus_lock);
13637}
13638#else
13639
13640static void perf_event_exit_cpu_context(int cpu) { }
13641
13642#endif
13643
13644int perf_event_init_cpu(unsigned int cpu)
13645{
13646 struct perf_cpu_context *cpuctx;
13647 struct perf_event_context *ctx;
13648
13649 perf_swevent_init_cpu(cpu);
13650
13651 mutex_lock(&pmus_lock);
13652 cpumask_set_cpu(cpu, dstp: perf_online_mask);
13653 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
13654 ctx = &cpuctx->ctx;
13655
13656 mutex_lock(&ctx->mutex);
13657 cpuctx->online = 1;
13658 mutex_unlock(lock: &ctx->mutex);
13659 mutex_unlock(lock: &pmus_lock);
13660
13661 return 0;
13662}
13663
13664int perf_event_exit_cpu(unsigned int cpu)
13665{
13666 perf_event_exit_cpu_context(cpu);
13667 return 0;
13668}
13669
13670static int
13671perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
13672{
13673 int cpu;
13674
13675 for_each_online_cpu(cpu)
13676 perf_event_exit_cpu(cpu);
13677
13678 return NOTIFY_OK;
13679}
13680
13681/*
13682 * Run the perf reboot notifier at the very last possible moment so that
13683 * the generic watchdog code runs as long as possible.
13684 */
13685static struct notifier_block perf_reboot_notifier = {
13686 .notifier_call = perf_reboot,
13687 .priority = INT_MIN,
13688};
13689
13690void __init perf_event_init(void)
13691{
13692 int ret;
13693
13694 idr_init(idr: &pmu_idr);
13695
13696 perf_event_init_all_cpus();
13697 init_srcu_struct(&pmus_srcu);
13698 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
13699 perf_pmu_register(&perf_cpu_clock, "cpu_clock", -1);
13700 perf_pmu_register(&perf_task_clock, "task_clock", -1);
13701 perf_tp_register();
13702 perf_event_init_cpu(smp_processor_id());
13703 register_reboot_notifier(&perf_reboot_notifier);
13704
13705 ret = init_hw_breakpoint();
13706 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
13707
13708 perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC);
13709
13710 /*
13711 * Build time assertion that we keep the data_head at the intended
13712 * location. IOW, validation we got the __reserved[] size right.
13713 */
13714 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
13715 != 1024);
13716}
13717
13718ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
13719 char *page)
13720{
13721 struct perf_pmu_events_attr *pmu_attr =
13722 container_of(attr, struct perf_pmu_events_attr, attr);
13723
13724 if (pmu_attr->event_str)
13725 return sprintf(buf: page, fmt: "%s\n", pmu_attr->event_str);
13726
13727 return 0;
13728}
13729EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
13730
13731static int __init perf_event_sysfs_init(void)
13732{
13733 struct pmu *pmu;
13734 int ret;
13735
13736 mutex_lock(&pmus_lock);
13737
13738 ret = bus_register(bus: &pmu_bus);
13739 if (ret)
13740 goto unlock;
13741
13742 list_for_each_entry(pmu, &pmus, entry) {
13743 if (pmu->dev)
13744 continue;
13745
13746 ret = pmu_dev_alloc(pmu);
13747 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
13748 }
13749 pmu_bus_running = 1;
13750 ret = 0;
13751
13752unlock:
13753 mutex_unlock(lock: &pmus_lock);
13754
13755 return ret;
13756}
13757device_initcall(perf_event_sysfs_init);
13758
13759#ifdef CONFIG_CGROUP_PERF
13760static struct cgroup_subsys_state *
13761perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
13762{
13763 struct perf_cgroup *jc;
13764
13765 jc = kzalloc(size: sizeof(*jc), GFP_KERNEL);
13766 if (!jc)
13767 return ERR_PTR(error: -ENOMEM);
13768
13769 jc->info = alloc_percpu(struct perf_cgroup_info);
13770 if (!jc->info) {
13771 kfree(objp: jc);
13772 return ERR_PTR(error: -ENOMEM);
13773 }
13774
13775 return &jc->css;
13776}
13777
13778static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
13779{
13780 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
13781
13782 free_percpu(pdata: jc->info);
13783 kfree(objp: jc);
13784}
13785
13786static int perf_cgroup_css_online(struct cgroup_subsys_state *css)
13787{
13788 perf_event_cgroup(cgrp: css->cgroup);
13789 return 0;
13790}
13791
13792static int __perf_cgroup_move(void *info)
13793{
13794 struct task_struct *task = info;
13795
13796 preempt_disable();
13797 perf_cgroup_switch(task);
13798 preempt_enable();
13799
13800 return 0;
13801}
13802
13803static void perf_cgroup_attach(struct cgroup_taskset *tset)
13804{
13805 struct task_struct *task;
13806 struct cgroup_subsys_state *css;
13807
13808 cgroup_taskset_for_each(task, css, tset)
13809 task_function_call(p: task, func: __perf_cgroup_move, info: task);
13810}
13811
13812struct cgroup_subsys perf_event_cgrp_subsys = {
13813 .css_alloc = perf_cgroup_css_alloc,
13814 .css_free = perf_cgroup_css_free,
13815 .css_online = perf_cgroup_css_online,
13816 .attach = perf_cgroup_attach,
13817 /*
13818 * Implicitly enable on dfl hierarchy so that perf events can
13819 * always be filtered by cgroup2 path as long as perf_event
13820 * controller is not mounted on a legacy hierarchy.
13821 */
13822 .implicit_on_dfl = true,
13823 .threaded = true,
13824};
13825#endif /* CONFIG_CGROUP_PERF */
13826
13827DEFINE_STATIC_CALL_RET0(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t);
13828

source code of linux/kernel/events/core.c