1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Queued spinlock
4 *
5 * (C) Copyright 2013-2015 Hewlett-Packard Development Company, L.P.
6 * (C) Copyright 2013-2014,2018 Red Hat, Inc.
7 * (C) Copyright 2015 Intel Corp.
8 * (C) Copyright 2015 Hewlett-Packard Enterprise Development LP
9 *
10 * Authors: Waiman Long <longman@redhat.com>
11 * Peter Zijlstra <peterz@infradead.org>
12 */
13
14#ifndef _GEN_PV_LOCK_SLOWPATH
15
16#include <linux/smp.h>
17#include <linux/bug.h>
18#include <linux/cpumask.h>
19#include <linux/percpu.h>
20#include <linux/hardirq.h>
21#include <linux/mutex.h>
22#include <linux/prefetch.h>
23#include <asm/byteorder.h>
24#include <asm/qspinlock.h>
25#include <trace/events/lock.h>
26
27/*
28 * Include queued spinlock statistics code
29 */
30#include "qspinlock_stat.h"
31
32/*
33 * The basic principle of a queue-based spinlock can best be understood
34 * by studying a classic queue-based spinlock implementation called the
35 * MCS lock. A copy of the original MCS lock paper ("Algorithms for Scalable
36 * Synchronization on Shared-Memory Multiprocessors by Mellor-Crummey and
37 * Scott") is available at
38 *
39 * https://bugzilla.kernel.org/show_bug.cgi?id=206115
40 *
41 * This queued spinlock implementation is based on the MCS lock, however to
42 * make it fit the 4 bytes we assume spinlock_t to be, and preserve its
43 * existing API, we must modify it somehow.
44 *
45 * In particular; where the traditional MCS lock consists of a tail pointer
46 * (8 bytes) and needs the next pointer (another 8 bytes) of its own node to
47 * unlock the next pending (next->locked), we compress both these: {tail,
48 * next->locked} into a single u32 value.
49 *
50 * Since a spinlock disables recursion of its own context and there is a limit
51 * to the contexts that can nest; namely: task, softirq, hardirq, nmi. As there
52 * are at most 4 nesting levels, it can be encoded by a 2-bit number. Now
53 * we can encode the tail by combining the 2-bit nesting level with the cpu
54 * number. With one byte for the lock value and 3 bytes for the tail, only a
55 * 32-bit word is now needed. Even though we only need 1 bit for the lock,
56 * we extend it to a full byte to achieve better performance for architectures
57 * that support atomic byte write.
58 *
59 * We also change the first spinner to spin on the lock bit instead of its
60 * node; whereby avoiding the need to carry a node from lock to unlock, and
61 * preserving existing lock API. This also makes the unlock code simpler and
62 * faster.
63 *
64 * N.B. The current implementation only supports architectures that allow
65 * atomic operations on smaller 8-bit and 16-bit data types.
66 *
67 */
68
69#include "mcs_spinlock.h"
70#define MAX_NODES 4
71
72/*
73 * On 64-bit architectures, the mcs_spinlock structure will be 16 bytes in
74 * size and four of them will fit nicely in one 64-byte cacheline. For
75 * pvqspinlock, however, we need more space for extra data. To accommodate
76 * that, we insert two more long words to pad it up to 32 bytes. IOW, only
77 * two of them can fit in a cacheline in this case. That is OK as it is rare
78 * to have more than 2 levels of slowpath nesting in actual use. We don't
79 * want to penalize pvqspinlocks to optimize for a rare case in native
80 * qspinlocks.
81 */
82struct qnode {
83 struct mcs_spinlock mcs;
84#ifdef CONFIG_PARAVIRT_SPINLOCKS
85 long reserved[2];
86#endif
87};
88
89/*
90 * The pending bit spinning loop count.
91 * This heuristic is used to limit the number of lockword accesses
92 * made by atomic_cond_read_relaxed when waiting for the lock to
93 * transition out of the "== _Q_PENDING_VAL" state. We don't spin
94 * indefinitely because there's no guarantee that we'll make forward
95 * progress.
96 */
97#ifndef _Q_PENDING_LOOPS
98#define _Q_PENDING_LOOPS 1
99#endif
100
101/*
102 * Per-CPU queue node structures; we can never have more than 4 nested
103 * contexts: task, softirq, hardirq, nmi.
104 *
105 * Exactly fits one 64-byte cacheline on a 64-bit architecture.
106 *
107 * PV doubles the storage and uses the second cacheline for PV state.
108 */
109static DEFINE_PER_CPU_ALIGNED(struct qnode, qnodes[MAX_NODES]);
110
111/*
112 * We must be able to distinguish between no-tail and the tail at 0:0,
113 * therefore increment the cpu number by one.
114 */
115
116static inline __pure u32 encode_tail(int cpu, int idx)
117{
118 u32 tail;
119
120 tail = (cpu + 1) << _Q_TAIL_CPU_OFFSET;
121 tail |= idx << _Q_TAIL_IDX_OFFSET; /* assume < 4 */
122
123 return tail;
124}
125
126static inline __pure struct mcs_spinlock *decode_tail(u32 tail)
127{
128 int cpu = (tail >> _Q_TAIL_CPU_OFFSET) - 1;
129 int idx = (tail & _Q_TAIL_IDX_MASK) >> _Q_TAIL_IDX_OFFSET;
130
131 return per_cpu_ptr(&qnodes[idx].mcs, cpu);
132}
133
134static inline __pure
135struct mcs_spinlock *grab_mcs_node(struct mcs_spinlock *base, int idx)
136{
137 return &((struct qnode *)base + idx)->mcs;
138}
139
140#define _Q_LOCKED_PENDING_MASK (_Q_LOCKED_MASK | _Q_PENDING_MASK)
141
142#if _Q_PENDING_BITS == 8
143/**
144 * clear_pending - clear the pending bit.
145 * @lock: Pointer to queued spinlock structure
146 *
147 * *,1,* -> *,0,*
148 */
149static __always_inline void clear_pending(struct qspinlock *lock)
150{
151 WRITE_ONCE(lock->pending, 0);
152}
153
154/**
155 * clear_pending_set_locked - take ownership and clear the pending bit.
156 * @lock: Pointer to queued spinlock structure
157 *
158 * *,1,0 -> *,0,1
159 *
160 * Lock stealing is not allowed if this function is used.
161 */
162static __always_inline void clear_pending_set_locked(struct qspinlock *lock)
163{
164 WRITE_ONCE(lock->locked_pending, _Q_LOCKED_VAL);
165}
166
167/*
168 * xchg_tail - Put in the new queue tail code word & retrieve previous one
169 * @lock : Pointer to queued spinlock structure
170 * @tail : The new queue tail code word
171 * Return: The previous queue tail code word
172 *
173 * xchg(lock, tail), which heads an address dependency
174 *
175 * p,*,* -> n,*,* ; prev = xchg(lock, node)
176 */
177static __always_inline u32 xchg_tail(struct qspinlock *lock, u32 tail)
178{
179 /*
180 * We can use relaxed semantics since the caller ensures that the
181 * MCS node is properly initialized before updating the tail.
182 */
183 return (u32)xchg_relaxed(&lock->tail,
184 tail >> _Q_TAIL_OFFSET) << _Q_TAIL_OFFSET;
185}
186
187#else /* _Q_PENDING_BITS == 8 */
188
189/**
190 * clear_pending - clear the pending bit.
191 * @lock: Pointer to queued spinlock structure
192 *
193 * *,1,* -> *,0,*
194 */
195static __always_inline void clear_pending(struct qspinlock *lock)
196{
197 atomic_andnot(_Q_PENDING_VAL, &lock->val);
198}
199
200/**
201 * clear_pending_set_locked - take ownership and clear the pending bit.
202 * @lock: Pointer to queued spinlock structure
203 *
204 * *,1,0 -> *,0,1
205 */
206static __always_inline void clear_pending_set_locked(struct qspinlock *lock)
207{
208 atomic_add(-_Q_PENDING_VAL + _Q_LOCKED_VAL, &lock->val);
209}
210
211/**
212 * xchg_tail - Put in the new queue tail code word & retrieve previous one
213 * @lock : Pointer to queued spinlock structure
214 * @tail : The new queue tail code word
215 * Return: The previous queue tail code word
216 *
217 * xchg(lock, tail)
218 *
219 * p,*,* -> n,*,* ; prev = xchg(lock, node)
220 */
221static __always_inline u32 xchg_tail(struct qspinlock *lock, u32 tail)
222{
223 u32 old, new, val = atomic_read(&lock->val);
224
225 for (;;) {
226 new = (val & _Q_LOCKED_PENDING_MASK) | tail;
227 /*
228 * We can use relaxed semantics since the caller ensures that
229 * the MCS node is properly initialized before updating the
230 * tail.
231 */
232 old = atomic_cmpxchg_relaxed(&lock->val, val, new);
233 if (old == val)
234 break;
235
236 val = old;
237 }
238 return old;
239}
240#endif /* _Q_PENDING_BITS == 8 */
241
242/**
243 * queued_fetch_set_pending_acquire - fetch the whole lock value and set pending
244 * @lock : Pointer to queued spinlock structure
245 * Return: The previous lock value
246 *
247 * *,*,* -> *,1,*
248 */
249#ifndef queued_fetch_set_pending_acquire
250static __always_inline u32 queued_fetch_set_pending_acquire(struct qspinlock *lock)
251{
252 return atomic_fetch_or_acquire(_Q_PENDING_VAL, &lock->val);
253}
254#endif
255
256/**
257 * set_locked - Set the lock bit and own the lock
258 * @lock: Pointer to queued spinlock structure
259 *
260 * *,*,0 -> *,0,1
261 */
262static __always_inline void set_locked(struct qspinlock *lock)
263{
264 WRITE_ONCE(lock->locked, _Q_LOCKED_VAL);
265}
266
267
268/*
269 * Generate the native code for queued_spin_unlock_slowpath(); provide NOPs for
270 * all the PV callbacks.
271 */
272
273static __always_inline void __pv_init_node(struct mcs_spinlock *node) { }
274static __always_inline void __pv_wait_node(struct mcs_spinlock *node,
275 struct mcs_spinlock *prev) { }
276static __always_inline void __pv_kick_node(struct qspinlock *lock,
277 struct mcs_spinlock *node) { }
278static __always_inline u32 __pv_wait_head_or_lock(struct qspinlock *lock,
279 struct mcs_spinlock *node)
280 { return 0; }
281
282#define pv_enabled() false
283
284#define pv_init_node __pv_init_node
285#define pv_wait_node __pv_wait_node
286#define pv_kick_node __pv_kick_node
287#define pv_wait_head_or_lock __pv_wait_head_or_lock
288
289#ifdef CONFIG_PARAVIRT_SPINLOCKS
290#define queued_spin_lock_slowpath native_queued_spin_lock_slowpath
291#endif
292
293#endif /* _GEN_PV_LOCK_SLOWPATH */
294
295/**
296 * queued_spin_lock_slowpath - acquire the queued spinlock
297 * @lock: Pointer to queued spinlock structure
298 * @val: Current value of the queued spinlock 32-bit word
299 *
300 * (queue tail, pending bit, lock value)
301 *
302 * fast : slow : unlock
303 * : :
304 * uncontended (0,0,0) -:--> (0,0,1) ------------------------------:--> (*,*,0)
305 * : | ^--------.------. / :
306 * : v \ \ | :
307 * pending : (0,1,1) +--> (0,1,0) \ | :
308 * : | ^--' | | :
309 * : v | | :
310 * uncontended : (n,x,y) +--> (n,0,0) --' | :
311 * queue : | ^--' | :
312 * : v | :
313 * contended : (*,x,y) +--> (*,0,0) ---> (*,0,1) -' :
314 * queue : ^--' :
315 */
316void __lockfunc queued_spin_lock_slowpath(struct qspinlock *lock, u32 val)
317{
318 struct mcs_spinlock *prev, *next, *node;
319 u32 old, tail;
320 int idx;
321
322 BUILD_BUG_ON(CONFIG_NR_CPUS >= (1U << _Q_TAIL_CPU_BITS));
323
324 if (pv_enabled())
325 goto pv_queue;
326
327 if (virt_spin_lock(lock))
328 return;
329
330 /*
331 * Wait for in-progress pending->locked hand-overs with a bounded
332 * number of spins so that we guarantee forward progress.
333 *
334 * 0,1,0 -> 0,0,1
335 */
336 if (val == _Q_PENDING_VAL) {
337 int cnt = _Q_PENDING_LOOPS;
338 val = atomic_cond_read_relaxed(&lock->val,
339 (VAL != _Q_PENDING_VAL) || !cnt--);
340 }
341
342 /*
343 * If we observe any contention; queue.
344 */
345 if (val & ~_Q_LOCKED_MASK)
346 goto queue;
347
348 /*
349 * trylock || pending
350 *
351 * 0,0,* -> 0,1,* -> 0,0,1 pending, trylock
352 */
353 val = queued_fetch_set_pending_acquire(lock);
354
355 /*
356 * If we observe contention, there is a concurrent locker.
357 *
358 * Undo and queue; our setting of PENDING might have made the
359 * n,0,0 -> 0,0,0 transition fail and it will now be waiting
360 * on @next to become !NULL.
361 */
362 if (unlikely(val & ~_Q_LOCKED_MASK)) {
363
364 /* Undo PENDING if we set it. */
365 if (!(val & _Q_PENDING_MASK))
366 clear_pending(lock);
367
368 goto queue;
369 }
370
371 /*
372 * We're pending, wait for the owner to go away.
373 *
374 * 0,1,1 -> *,1,0
375 *
376 * this wait loop must be a load-acquire such that we match the
377 * store-release that clears the locked bit and create lock
378 * sequentiality; this is because not all
379 * clear_pending_set_locked() implementations imply full
380 * barriers.
381 */
382 if (val & _Q_LOCKED_MASK)
383 smp_cond_load_acquire(&lock->locked, !VAL);
384
385 /*
386 * take ownership and clear the pending bit.
387 *
388 * 0,1,0 -> 0,0,1
389 */
390 clear_pending_set_locked(lock);
391 lockevent_inc(lock_pending);
392 return;
393
394 /*
395 * End of pending bit optimistic spinning and beginning of MCS
396 * queuing.
397 */
398queue:
399 lockevent_inc(lock_slowpath);
400pv_queue:
401 node = this_cpu_ptr(&qnodes[0].mcs);
402 idx = node->count++;
403 tail = encode_tail(smp_processor_id(), idx);
404
405 trace_contention_begin(lock, LCB_F_SPIN);
406
407 /*
408 * 4 nodes are allocated based on the assumption that there will
409 * not be nested NMIs taking spinlocks. That may not be true in
410 * some architectures even though the chance of needing more than
411 * 4 nodes will still be extremely unlikely. When that happens,
412 * we fall back to spinning on the lock directly without using
413 * any MCS node. This is not the most elegant solution, but is
414 * simple enough.
415 */
416 if (unlikely(idx >= MAX_NODES)) {
417 lockevent_inc(lock_no_node);
418 while (!queued_spin_trylock(lock))
419 cpu_relax();
420 goto release;
421 }
422
423 node = grab_mcs_node(base: node, idx);
424
425 /*
426 * Keep counts of non-zero index values:
427 */
428 lockevent_cond_inc(lock_use_node2 + idx - 1, idx);
429
430 /*
431 * Ensure that we increment the head node->count before initialising
432 * the actual node. If the compiler is kind enough to reorder these
433 * stores, then an IRQ could overwrite our assignments.
434 */
435 barrier();
436
437 node->locked = 0;
438 node->next = NULL;
439 pv_init_node(node);
440
441 /*
442 * We touched a (possibly) cold cacheline in the per-cpu queue node;
443 * attempt the trylock once more in the hope someone let go while we
444 * weren't watching.
445 */
446 if (queued_spin_trylock(lock))
447 goto release;
448
449 /*
450 * Ensure that the initialisation of @node is complete before we
451 * publish the updated tail via xchg_tail() and potentially link
452 * @node into the waitqueue via WRITE_ONCE(prev->next, node) below.
453 */
454 smp_wmb();
455
456 /*
457 * Publish the updated tail.
458 * We have already touched the queueing cacheline; don't bother with
459 * pending stuff.
460 *
461 * p,*,* -> n,*,*
462 */
463 old = xchg_tail(lock, tail);
464 next = NULL;
465
466 /*
467 * if there was a previous node; link it and wait until reaching the
468 * head of the waitqueue.
469 */
470 if (old & _Q_TAIL_MASK) {
471 prev = decode_tail(tail: old);
472
473 /* Link @node into the waitqueue. */
474 WRITE_ONCE(prev->next, node);
475
476 pv_wait_node(node, prev);
477 arch_mcs_spin_lock_contended(&node->locked);
478
479 /*
480 * While waiting for the MCS lock, the next pointer may have
481 * been set by another lock waiter. We optimistically load
482 * the next pointer & prefetch the cacheline for writing
483 * to reduce latency in the upcoming MCS unlock operation.
484 */
485 next = READ_ONCE(node->next);
486 if (next)
487 prefetchw(x: next);
488 }
489
490 /*
491 * we're at the head of the waitqueue, wait for the owner & pending to
492 * go away.
493 *
494 * *,x,y -> *,0,0
495 *
496 * this wait loop must use a load-acquire such that we match the
497 * store-release that clears the locked bit and create lock
498 * sequentiality; this is because the set_locked() function below
499 * does not imply a full barrier.
500 *
501 * The PV pv_wait_head_or_lock function, if active, will acquire
502 * the lock and return a non-zero value. So we have to skip the
503 * atomic_cond_read_acquire() call. As the next PV queue head hasn't
504 * been designated yet, there is no way for the locked value to become
505 * _Q_SLOW_VAL. So both the set_locked() and the
506 * atomic_cmpxchg_relaxed() calls will be safe.
507 *
508 * If PV isn't active, 0 will be returned instead.
509 *
510 */
511 if ((val = pv_wait_head_or_lock(lock, node)))
512 goto locked;
513
514 val = atomic_cond_read_acquire(&lock->val, !(VAL & _Q_LOCKED_PENDING_MASK));
515
516locked:
517 /*
518 * claim the lock:
519 *
520 * n,0,0 -> 0,0,1 : lock, uncontended
521 * *,*,0 -> *,*,1 : lock, contended
522 *
523 * If the queue head is the only one in the queue (lock value == tail)
524 * and nobody is pending, clear the tail code and grab the lock.
525 * Otherwise, we only need to grab the lock.
526 */
527
528 /*
529 * In the PV case we might already have _Q_LOCKED_VAL set, because
530 * of lock stealing; therefore we must also allow:
531 *
532 * n,0,1 -> 0,0,1
533 *
534 * Note: at this point: (val & _Q_PENDING_MASK) == 0, because of the
535 * above wait condition, therefore any concurrent setting of
536 * PENDING will make the uncontended transition fail.
537 */
538 if ((val & _Q_TAIL_MASK) == tail) {
539 if (atomic_try_cmpxchg_relaxed(v: &lock->val, old: &val, _Q_LOCKED_VAL))
540 goto release; /* No contention */
541 }
542
543 /*
544 * Either somebody is queued behind us or _Q_PENDING_VAL got set
545 * which will then detect the remaining tail and queue behind us
546 * ensuring we'll see a @next.
547 */
548 set_locked(lock);
549
550 /*
551 * contended path; wait for next if not observed yet, release.
552 */
553 if (!next)
554 next = smp_cond_load_relaxed(&node->next, (VAL));
555
556 arch_mcs_spin_unlock_contended(&next->locked);
557 pv_kick_node(lock, node: next);
558
559release:
560 trace_contention_end(lock, ret: 0);
561
562 /*
563 * release the node
564 */
565 __this_cpu_dec(qnodes[0].mcs.count);
566}
567EXPORT_SYMBOL(queued_spin_lock_slowpath);
568
569/*
570 * Generate the paravirt code for queued_spin_unlock_slowpath().
571 */
572#if !defined(_GEN_PV_LOCK_SLOWPATH) && defined(CONFIG_PARAVIRT_SPINLOCKS)
573#define _GEN_PV_LOCK_SLOWPATH
574
575#undef pv_enabled
576#define pv_enabled() true
577
578#undef pv_init_node
579#undef pv_wait_node
580#undef pv_kick_node
581#undef pv_wait_head_or_lock
582
583#undef queued_spin_lock_slowpath
584#define queued_spin_lock_slowpath __pv_queued_spin_lock_slowpath
585
586#include "qspinlock_paravirt.h"
587#include "qspinlock.c"
588
589bool nopvspin __initdata;
590static __init int parse_nopvspin(char *arg)
591{
592 nopvspin = true;
593 return 0;
594}
595early_param("nopvspin", parse_nopvspin);
596#endif
597

source code of linux/kernel/locking/qspinlock.c