1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
4 *
5 * Copyright IBM Corporation, 2008
6 *
7 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
8 * Manfred Spraul <manfred@colorfullife.com>
9 * Paul E. McKenney <paulmck@linux.ibm.com>
10 *
11 * Based on the original work by Paul McKenney <paulmck@linux.ibm.com>
12 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
13 *
14 * For detailed explanation of Read-Copy Update mechanism see -
15 * Documentation/RCU
16 */
17
18#define pr_fmt(fmt) "rcu: " fmt
19
20#include <linux/types.h>
21#include <linux/kernel.h>
22#include <linux/init.h>
23#include <linux/spinlock.h>
24#include <linux/smp.h>
25#include <linux/rcupdate_wait.h>
26#include <linux/interrupt.h>
27#include <linux/sched.h>
28#include <linux/sched/debug.h>
29#include <linux/nmi.h>
30#include <linux/atomic.h>
31#include <linux/bitops.h>
32#include <linux/export.h>
33#include <linux/completion.h>
34#include <linux/kmemleak.h>
35#include <linux/moduleparam.h>
36#include <linux/panic.h>
37#include <linux/panic_notifier.h>
38#include <linux/percpu.h>
39#include <linux/notifier.h>
40#include <linux/cpu.h>
41#include <linux/mutex.h>
42#include <linux/time.h>
43#include <linux/kernel_stat.h>
44#include <linux/wait.h>
45#include <linux/kthread.h>
46#include <uapi/linux/sched/types.h>
47#include <linux/prefetch.h>
48#include <linux/delay.h>
49#include <linux/random.h>
50#include <linux/trace_events.h>
51#include <linux/suspend.h>
52#include <linux/ftrace.h>
53#include <linux/tick.h>
54#include <linux/sysrq.h>
55#include <linux/kprobes.h>
56#include <linux/gfp.h>
57#include <linux/oom.h>
58#include <linux/smpboot.h>
59#include <linux/jiffies.h>
60#include <linux/slab.h>
61#include <linux/sched/isolation.h>
62#include <linux/sched/clock.h>
63#include <linux/vmalloc.h>
64#include <linux/mm.h>
65#include <linux/kasan.h>
66#include <linux/context_tracking.h>
67#include "../time/tick-internal.h"
68
69#include "tree.h"
70#include "rcu.h"
71
72#ifdef MODULE_PARAM_PREFIX
73#undef MODULE_PARAM_PREFIX
74#endif
75#define MODULE_PARAM_PREFIX "rcutree."
76
77/* Data structures. */
78
79static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = {
80 .gpwrap = true,
81#ifdef CONFIG_RCU_NOCB_CPU
82 .cblist.flags = SEGCBLIST_RCU_CORE,
83#endif
84};
85static struct rcu_state rcu_state = {
86 .level = { &rcu_state.node[0] },
87 .gp_state = RCU_GP_IDLE,
88 .gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT,
89 .barrier_mutex = __MUTEX_INITIALIZER(rcu_state.barrier_mutex),
90 .barrier_lock = __RAW_SPIN_LOCK_UNLOCKED(rcu_state.barrier_lock),
91 .name = RCU_NAME,
92 .abbr = RCU_ABBR,
93 .exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex),
94 .exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex),
95 .ofl_lock = __ARCH_SPIN_LOCK_UNLOCKED,
96};
97
98/* Dump rcu_node combining tree at boot to verify correct setup. */
99static bool dump_tree;
100module_param(dump_tree, bool, 0444);
101/* By default, use RCU_SOFTIRQ instead of rcuc kthreads. */
102static bool use_softirq = !IS_ENABLED(CONFIG_PREEMPT_RT);
103#ifndef CONFIG_PREEMPT_RT
104module_param(use_softirq, bool, 0444);
105#endif
106/* Control rcu_node-tree auto-balancing at boot time. */
107static bool rcu_fanout_exact;
108module_param(rcu_fanout_exact, bool, 0444);
109/* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
110static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
111module_param(rcu_fanout_leaf, int, 0444);
112int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
113/* Number of rcu_nodes at specified level. */
114int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
115int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
116
117/*
118 * The rcu_scheduler_active variable is initialized to the value
119 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
120 * first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE,
121 * RCU can assume that there is but one task, allowing RCU to (for example)
122 * optimize synchronize_rcu() to a simple barrier(). When this variable
123 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
124 * to detect real grace periods. This variable is also used to suppress
125 * boot-time false positives from lockdep-RCU error checking. Finally, it
126 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
127 * is fully initialized, including all of its kthreads having been spawned.
128 */
129int rcu_scheduler_active __read_mostly;
130EXPORT_SYMBOL_GPL(rcu_scheduler_active);
131
132/*
133 * The rcu_scheduler_fully_active variable transitions from zero to one
134 * during the early_initcall() processing, which is after the scheduler
135 * is capable of creating new tasks. So RCU processing (for example,
136 * creating tasks for RCU priority boosting) must be delayed until after
137 * rcu_scheduler_fully_active transitions from zero to one. We also
138 * currently delay invocation of any RCU callbacks until after this point.
139 *
140 * It might later prove better for people registering RCU callbacks during
141 * early boot to take responsibility for these callbacks, but one step at
142 * a time.
143 */
144static int rcu_scheduler_fully_active __read_mostly;
145
146static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
147 unsigned long gps, unsigned long flags);
148static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
149static void invoke_rcu_core(void);
150static void rcu_report_exp_rdp(struct rcu_data *rdp);
151static void sync_sched_exp_online_cleanup(int cpu);
152static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp);
153static bool rcu_rdp_is_offloaded(struct rcu_data *rdp);
154static bool rcu_rdp_cpu_online(struct rcu_data *rdp);
155static bool rcu_init_invoked(void);
156static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
157static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
158
159/*
160 * rcuc/rcub/rcuop kthread realtime priority. The "rcuop"
161 * real-time priority(enabling/disabling) is controlled by
162 * the extra CONFIG_RCU_NOCB_CPU_CB_BOOST configuration.
163 */
164static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
165module_param(kthread_prio, int, 0444);
166
167/* Delay in jiffies for grace-period initialization delays, debug only. */
168
169static int gp_preinit_delay;
170module_param(gp_preinit_delay, int, 0444);
171static int gp_init_delay;
172module_param(gp_init_delay, int, 0444);
173static int gp_cleanup_delay;
174module_param(gp_cleanup_delay, int, 0444);
175
176// Add delay to rcu_read_unlock() for strict grace periods.
177static int rcu_unlock_delay;
178#ifdef CONFIG_RCU_STRICT_GRACE_PERIOD
179module_param(rcu_unlock_delay, int, 0444);
180#endif
181
182/*
183 * This rcu parameter is runtime-read-only. It reflects
184 * a minimum allowed number of objects which can be cached
185 * per-CPU. Object size is equal to one page. This value
186 * can be changed at boot time.
187 */
188static int rcu_min_cached_objs = 5;
189module_param(rcu_min_cached_objs, int, 0444);
190
191// A page shrinker can ask for pages to be freed to make them
192// available for other parts of the system. This usually happens
193// under low memory conditions, and in that case we should also
194// defer page-cache filling for a short time period.
195//
196// The default value is 5 seconds, which is long enough to reduce
197// interference with the shrinker while it asks other systems to
198// drain their caches.
199static int rcu_delay_page_cache_fill_msec = 5000;
200module_param(rcu_delay_page_cache_fill_msec, int, 0444);
201
202/* Retrieve RCU kthreads priority for rcutorture */
203int rcu_get_gp_kthreads_prio(void)
204{
205 return kthread_prio;
206}
207EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio);
208
209/*
210 * Number of grace periods between delays, normalized by the duration of
211 * the delay. The longer the delay, the more the grace periods between
212 * each delay. The reason for this normalization is that it means that,
213 * for non-zero delays, the overall slowdown of grace periods is constant
214 * regardless of the duration of the delay. This arrangement balances
215 * the need for long delays to increase some race probabilities with the
216 * need for fast grace periods to increase other race probabilities.
217 */
218#define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays for debugging. */
219
220/*
221 * Return true if an RCU grace period is in progress. The READ_ONCE()s
222 * permit this function to be invoked without holding the root rcu_node
223 * structure's ->lock, but of course results can be subject to change.
224 */
225static int rcu_gp_in_progress(void)
226{
227 return rcu_seq_state(s: rcu_seq_current(sp: &rcu_state.gp_seq));
228}
229
230/*
231 * Return the number of callbacks queued on the specified CPU.
232 * Handles both the nocbs and normal cases.
233 */
234static long rcu_get_n_cbs_cpu(int cpu)
235{
236 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
237
238 if (rcu_segcblist_is_enabled(rsclp: &rdp->cblist))
239 return rcu_segcblist_n_cbs(rsclp: &rdp->cblist);
240 return 0;
241}
242
243void rcu_softirq_qs(void)
244{
245 rcu_qs();
246 rcu_preempt_deferred_qs(current);
247 rcu_tasks_qs(current, false);
248}
249
250/*
251 * Reset the current CPU's ->dynticks counter to indicate that the
252 * newly onlined CPU is no longer in an extended quiescent state.
253 * This will either leave the counter unchanged, or increment it
254 * to the next non-quiescent value.
255 *
256 * The non-atomic test/increment sequence works because the upper bits
257 * of the ->dynticks counter are manipulated only by the corresponding CPU,
258 * or when the corresponding CPU is offline.
259 */
260static void rcu_dynticks_eqs_online(void)
261{
262 if (ct_dynticks() & RCU_DYNTICKS_IDX)
263 return;
264 ct_state_inc(RCU_DYNTICKS_IDX);
265}
266
267/*
268 * Snapshot the ->dynticks counter with full ordering so as to allow
269 * stable comparison of this counter with past and future snapshots.
270 */
271static int rcu_dynticks_snap(int cpu)
272{
273 smp_mb(); // Fundamental RCU ordering guarantee.
274 return ct_dynticks_cpu_acquire(cpu);
275}
276
277/*
278 * Return true if the snapshot returned from rcu_dynticks_snap()
279 * indicates that RCU is in an extended quiescent state.
280 */
281static bool rcu_dynticks_in_eqs(int snap)
282{
283 return !(snap & RCU_DYNTICKS_IDX);
284}
285
286/*
287 * Return true if the CPU corresponding to the specified rcu_data
288 * structure has spent some time in an extended quiescent state since
289 * rcu_dynticks_snap() returned the specified snapshot.
290 */
291static bool rcu_dynticks_in_eqs_since(struct rcu_data *rdp, int snap)
292{
293 return snap != rcu_dynticks_snap(cpu: rdp->cpu);
294}
295
296/*
297 * Return true if the referenced integer is zero while the specified
298 * CPU remains within a single extended quiescent state.
299 */
300bool rcu_dynticks_zero_in_eqs(int cpu, int *vp)
301{
302 int snap;
303
304 // If not quiescent, force back to earlier extended quiescent state.
305 snap = ct_dynticks_cpu(cpu) & ~RCU_DYNTICKS_IDX;
306 smp_rmb(); // Order ->dynticks and *vp reads.
307 if (READ_ONCE(*vp))
308 return false; // Non-zero, so report failure;
309 smp_rmb(); // Order *vp read and ->dynticks re-read.
310
311 // If still in the same extended quiescent state, we are good!
312 return snap == ct_dynticks_cpu(cpu);
313}
314
315/*
316 * Let the RCU core know that this CPU has gone through the scheduler,
317 * which is a quiescent state. This is called when the need for a
318 * quiescent state is urgent, so we burn an atomic operation and full
319 * memory barriers to let the RCU core know about it, regardless of what
320 * this CPU might (or might not) do in the near future.
321 *
322 * We inform the RCU core by emulating a zero-duration dyntick-idle period.
323 *
324 * The caller must have disabled interrupts and must not be idle.
325 */
326notrace void rcu_momentary_dyntick_idle(void)
327{
328 int seq;
329
330 raw_cpu_write(rcu_data.rcu_need_heavy_qs, false);
331 seq = ct_state_inc(incby: 2 * RCU_DYNTICKS_IDX);
332 /* It is illegal to call this from idle state. */
333 WARN_ON_ONCE(!(seq & RCU_DYNTICKS_IDX));
334 rcu_preempt_deferred_qs(current);
335}
336EXPORT_SYMBOL_GPL(rcu_momentary_dyntick_idle);
337
338/**
339 * rcu_is_cpu_rrupt_from_idle - see if 'interrupted' from idle
340 *
341 * If the current CPU is idle and running at a first-level (not nested)
342 * interrupt, or directly, from idle, return true.
343 *
344 * The caller must have at least disabled IRQs.
345 */
346static int rcu_is_cpu_rrupt_from_idle(void)
347{
348 long nesting;
349
350 /*
351 * Usually called from the tick; but also used from smp_function_call()
352 * for expedited grace periods. This latter can result in running from
353 * the idle task, instead of an actual IPI.
354 */
355 lockdep_assert_irqs_disabled();
356
357 /* Check for counter underflows */
358 RCU_LOCKDEP_WARN(ct_dynticks_nesting() < 0,
359 "RCU dynticks_nesting counter underflow!");
360 RCU_LOCKDEP_WARN(ct_dynticks_nmi_nesting() <= 0,
361 "RCU dynticks_nmi_nesting counter underflow/zero!");
362
363 /* Are we at first interrupt nesting level? */
364 nesting = ct_dynticks_nmi_nesting();
365 if (nesting > 1)
366 return false;
367
368 /*
369 * If we're not in an interrupt, we must be in the idle task!
370 */
371 WARN_ON_ONCE(!nesting && !is_idle_task(current));
372
373 /* Does CPU appear to be idle from an RCU standpoint? */
374 return ct_dynticks_nesting() == 0;
375}
376
377#define DEFAULT_RCU_BLIMIT (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 1000 : 10)
378 // Maximum callbacks per rcu_do_batch ...
379#define DEFAULT_MAX_RCU_BLIMIT 10000 // ... even during callback flood.
380static long blimit = DEFAULT_RCU_BLIMIT;
381#define DEFAULT_RCU_QHIMARK 10000 // If this many pending, ignore blimit.
382static long qhimark = DEFAULT_RCU_QHIMARK;
383#define DEFAULT_RCU_QLOMARK 100 // Once only this many pending, use blimit.
384static long qlowmark = DEFAULT_RCU_QLOMARK;
385#define DEFAULT_RCU_QOVLD_MULT 2
386#define DEFAULT_RCU_QOVLD (DEFAULT_RCU_QOVLD_MULT * DEFAULT_RCU_QHIMARK)
387static long qovld = DEFAULT_RCU_QOVLD; // If this many pending, hammer QS.
388static long qovld_calc = -1; // No pre-initialization lock acquisitions!
389
390module_param(blimit, long, 0444);
391module_param(qhimark, long, 0444);
392module_param(qlowmark, long, 0444);
393module_param(qovld, long, 0444);
394
395static ulong jiffies_till_first_fqs = IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 0 : ULONG_MAX;
396static ulong jiffies_till_next_fqs = ULONG_MAX;
397static bool rcu_kick_kthreads;
398static int rcu_divisor = 7;
399module_param(rcu_divisor, int, 0644);
400
401/* Force an exit from rcu_do_batch() after 3 milliseconds. */
402static long rcu_resched_ns = 3 * NSEC_PER_MSEC;
403module_param(rcu_resched_ns, long, 0644);
404
405/*
406 * How long the grace period must be before we start recruiting
407 * quiescent-state help from rcu_note_context_switch().
408 */
409static ulong jiffies_till_sched_qs = ULONG_MAX;
410module_param(jiffies_till_sched_qs, ulong, 0444);
411static ulong jiffies_to_sched_qs; /* See adjust_jiffies_till_sched_qs(). */
412module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */
413
414/*
415 * Make sure that we give the grace-period kthread time to detect any
416 * idle CPUs before taking active measures to force quiescent states.
417 * However, don't go below 100 milliseconds, adjusted upwards for really
418 * large systems.
419 */
420static void adjust_jiffies_till_sched_qs(void)
421{
422 unsigned long j;
423
424 /* If jiffies_till_sched_qs was specified, respect the request. */
425 if (jiffies_till_sched_qs != ULONG_MAX) {
426 WRITE_ONCE(jiffies_to_sched_qs, jiffies_till_sched_qs);
427 return;
428 }
429 /* Otherwise, set to third fqs scan, but bound below on large system. */
430 j = READ_ONCE(jiffies_till_first_fqs) +
431 2 * READ_ONCE(jiffies_till_next_fqs);
432 if (j < HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV)
433 j = HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
434 pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j);
435 WRITE_ONCE(jiffies_to_sched_qs, j);
436}
437
438static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp)
439{
440 ulong j;
441 int ret = kstrtoul(s: val, base: 0, res: &j);
442
443 if (!ret) {
444 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j);
445 adjust_jiffies_till_sched_qs();
446 }
447 return ret;
448}
449
450static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp)
451{
452 ulong j;
453 int ret = kstrtoul(s: val, base: 0, res: &j);
454
455 if (!ret) {
456 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1));
457 adjust_jiffies_till_sched_qs();
458 }
459 return ret;
460}
461
462static const struct kernel_param_ops first_fqs_jiffies_ops = {
463 .set = param_set_first_fqs_jiffies,
464 .get = param_get_ulong,
465};
466
467static const struct kernel_param_ops next_fqs_jiffies_ops = {
468 .set = param_set_next_fqs_jiffies,
469 .get = param_get_ulong,
470};
471
472module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644);
473module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644);
474module_param(rcu_kick_kthreads, bool, 0644);
475
476static void force_qs_rnp(int (*f)(struct rcu_data *rdp));
477static int rcu_pending(int user);
478
479/*
480 * Return the number of RCU GPs completed thus far for debug & stats.
481 */
482unsigned long rcu_get_gp_seq(void)
483{
484 return READ_ONCE(rcu_state.gp_seq);
485}
486EXPORT_SYMBOL_GPL(rcu_get_gp_seq);
487
488/*
489 * Return the number of RCU expedited batches completed thus far for
490 * debug & stats. Odd numbers mean that a batch is in progress, even
491 * numbers mean idle. The value returned will thus be roughly double
492 * the cumulative batches since boot.
493 */
494unsigned long rcu_exp_batches_completed(void)
495{
496 return rcu_state.expedited_sequence;
497}
498EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
499
500/*
501 * Return the root node of the rcu_state structure.
502 */
503static struct rcu_node *rcu_get_root(void)
504{
505 return &rcu_state.node[0];
506}
507
508/*
509 * Send along grace-period-related data for rcutorture diagnostics.
510 */
511void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
512 unsigned long *gp_seq)
513{
514 switch (test_type) {
515 case RCU_FLAVOR:
516 *flags = READ_ONCE(rcu_state.gp_flags);
517 *gp_seq = rcu_seq_current(sp: &rcu_state.gp_seq);
518 break;
519 default:
520 break;
521 }
522}
523EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
524
525#if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK))
526/*
527 * An empty function that will trigger a reschedule on
528 * IRQ tail once IRQs get re-enabled on userspace/guest resume.
529 */
530static void late_wakeup_func(struct irq_work *work)
531{
532}
533
534static DEFINE_PER_CPU(struct irq_work, late_wakeup_work) =
535 IRQ_WORK_INIT(late_wakeup_func);
536
537/*
538 * If either:
539 *
540 * 1) the task is about to enter in guest mode and $ARCH doesn't support KVM generic work
541 * 2) the task is about to enter in user mode and $ARCH doesn't support generic entry.
542 *
543 * In these cases the late RCU wake ups aren't supported in the resched loops and our
544 * last resort is to fire a local irq_work that will trigger a reschedule once IRQs
545 * get re-enabled again.
546 */
547noinstr void rcu_irq_work_resched(void)
548{
549 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
550
551 if (IS_ENABLED(CONFIG_GENERIC_ENTRY) && !(current->flags & PF_VCPU))
552 return;
553
554 if (IS_ENABLED(CONFIG_KVM_XFER_TO_GUEST_WORK) && (current->flags & PF_VCPU))
555 return;
556
557 instrumentation_begin();
558 if (do_nocb_deferred_wakeup(rdp) && need_resched()) {
559 irq_work_queue(this_cpu_ptr(&late_wakeup_work));
560 }
561 instrumentation_end();
562}
563#endif /* #if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK)) */
564
565#ifdef CONFIG_PROVE_RCU
566/**
567 * rcu_irq_exit_check_preempt - Validate that scheduling is possible
568 */
569void rcu_irq_exit_check_preempt(void)
570{
571 lockdep_assert_irqs_disabled();
572
573 RCU_LOCKDEP_WARN(ct_dynticks_nesting() <= 0,
574 "RCU dynticks_nesting counter underflow/zero!");
575 RCU_LOCKDEP_WARN(ct_dynticks_nmi_nesting() !=
576 DYNTICK_IRQ_NONIDLE,
577 "Bad RCU dynticks_nmi_nesting counter\n");
578 RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(),
579 "RCU in extended quiescent state!");
580}
581#endif /* #ifdef CONFIG_PROVE_RCU */
582
583#ifdef CONFIG_NO_HZ_FULL
584/**
585 * __rcu_irq_enter_check_tick - Enable scheduler tick on CPU if RCU needs it.
586 *
587 * The scheduler tick is not normally enabled when CPUs enter the kernel
588 * from nohz_full userspace execution. After all, nohz_full userspace
589 * execution is an RCU quiescent state and the time executing in the kernel
590 * is quite short. Except of course when it isn't. And it is not hard to
591 * cause a large system to spend tens of seconds or even minutes looping
592 * in the kernel, which can cause a number of problems, include RCU CPU
593 * stall warnings.
594 *
595 * Therefore, if a nohz_full CPU fails to report a quiescent state
596 * in a timely manner, the RCU grace-period kthread sets that CPU's
597 * ->rcu_urgent_qs flag with the expectation that the next interrupt or
598 * exception will invoke this function, which will turn on the scheduler
599 * tick, which will enable RCU to detect that CPU's quiescent states,
600 * for example, due to cond_resched() calls in CONFIG_PREEMPT=n kernels.
601 * The tick will be disabled once a quiescent state is reported for
602 * this CPU.
603 *
604 * Of course, in carefully tuned systems, there might never be an
605 * interrupt or exception. In that case, the RCU grace-period kthread
606 * will eventually cause one to happen. However, in less carefully
607 * controlled environments, this function allows RCU to get what it
608 * needs without creating otherwise useless interruptions.
609 */
610void __rcu_irq_enter_check_tick(void)
611{
612 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
613
614 // If we're here from NMI there's nothing to do.
615 if (in_nmi())
616 return;
617
618 RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(),
619 "Illegal rcu_irq_enter_check_tick() from extended quiescent state");
620
621 if (!tick_nohz_full_cpu(rdp->cpu) ||
622 !READ_ONCE(rdp->rcu_urgent_qs) ||
623 READ_ONCE(rdp->rcu_forced_tick)) {
624 // RCU doesn't need nohz_full help from this CPU, or it is
625 // already getting that help.
626 return;
627 }
628
629 // We get here only when not in an extended quiescent state and
630 // from interrupts (as opposed to NMIs). Therefore, (1) RCU is
631 // already watching and (2) The fact that we are in an interrupt
632 // handler and that the rcu_node lock is an irq-disabled lock
633 // prevents self-deadlock. So we can safely recheck under the lock.
634 // Note that the nohz_full state currently cannot change.
635 raw_spin_lock_rcu_node(rdp->mynode);
636 if (READ_ONCE(rdp->rcu_urgent_qs) && !rdp->rcu_forced_tick) {
637 // A nohz_full CPU is in the kernel and RCU needs a
638 // quiescent state. Turn on the tick!
639 WRITE_ONCE(rdp->rcu_forced_tick, true);
640 tick_dep_set_cpu(rdp->cpu, TICK_DEP_BIT_RCU);
641 }
642 raw_spin_unlock_rcu_node(rdp->mynode);
643}
644NOKPROBE_SYMBOL(__rcu_irq_enter_check_tick);
645#endif /* CONFIG_NO_HZ_FULL */
646
647/*
648 * Check to see if any future non-offloaded RCU-related work will need
649 * to be done by the current CPU, even if none need be done immediately,
650 * returning 1 if so. This function is part of the RCU implementation;
651 * it is -not- an exported member of the RCU API. This is used by
652 * the idle-entry code to figure out whether it is safe to disable the
653 * scheduler-clock interrupt.
654 *
655 * Just check whether or not this CPU has non-offloaded RCU callbacks
656 * queued.
657 */
658int rcu_needs_cpu(void)
659{
660 return !rcu_segcblist_empty(rsclp: &this_cpu_ptr(&rcu_data)->cblist) &&
661 !rcu_rdp_is_offloaded(this_cpu_ptr(&rcu_data));
662}
663
664/*
665 * If any sort of urgency was applied to the current CPU (for example,
666 * the scheduler-clock interrupt was enabled on a nohz_full CPU) in order
667 * to get to a quiescent state, disable it.
668 */
669static void rcu_disable_urgency_upon_qs(struct rcu_data *rdp)
670{
671 raw_lockdep_assert_held_rcu_node(rdp->mynode);
672 WRITE_ONCE(rdp->rcu_urgent_qs, false);
673 WRITE_ONCE(rdp->rcu_need_heavy_qs, false);
674 if (tick_nohz_full_cpu(cpu: rdp->cpu) && rdp->rcu_forced_tick) {
675 tick_dep_clear_cpu(cpu: rdp->cpu, bit: TICK_DEP_BIT_RCU);
676 WRITE_ONCE(rdp->rcu_forced_tick, false);
677 }
678}
679
680/**
681 * rcu_is_watching - RCU read-side critical sections permitted on current CPU?
682 *
683 * Return @true if RCU is watching the running CPU and @false otherwise.
684 * An @true return means that this CPU can safely enter RCU read-side
685 * critical sections.
686 *
687 * Although calls to rcu_is_watching() from most parts of the kernel
688 * will return @true, there are important exceptions. For example, if the
689 * current CPU is deep within its idle loop, in kernel entry/exit code,
690 * or offline, rcu_is_watching() will return @false.
691 *
692 * Make notrace because it can be called by the internal functions of
693 * ftrace, and making this notrace removes unnecessary recursion calls.
694 */
695notrace bool rcu_is_watching(void)
696{
697 bool ret;
698
699 preempt_disable_notrace();
700 ret = !rcu_dynticks_curr_cpu_in_eqs();
701 preempt_enable_notrace();
702 return ret;
703}
704EXPORT_SYMBOL_GPL(rcu_is_watching);
705
706/*
707 * If a holdout task is actually running, request an urgent quiescent
708 * state from its CPU. This is unsynchronized, so migrations can cause
709 * the request to go to the wrong CPU. Which is OK, all that will happen
710 * is that the CPU's next context switch will be a bit slower and next
711 * time around this task will generate another request.
712 */
713void rcu_request_urgent_qs_task(struct task_struct *t)
714{
715 int cpu;
716
717 barrier();
718 cpu = task_cpu(p: t);
719 if (!task_curr(p: t))
720 return; /* This task is not running on that CPU. */
721 smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true);
722}
723
724/*
725 * When trying to report a quiescent state on behalf of some other CPU,
726 * it is our responsibility to check for and handle potential overflow
727 * of the rcu_node ->gp_seq counter with respect to the rcu_data counters.
728 * After all, the CPU might be in deep idle state, and thus executing no
729 * code whatsoever.
730 */
731static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp)
732{
733 raw_lockdep_assert_held_rcu_node(rnp);
734 if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4,
735 rnp->gp_seq))
736 WRITE_ONCE(rdp->gpwrap, true);
737 if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq))
738 rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4;
739}
740
741/*
742 * Snapshot the specified CPU's dynticks counter so that we can later
743 * credit them with an implicit quiescent state. Return 1 if this CPU
744 * is in dynticks idle mode, which is an extended quiescent state.
745 */
746static int dyntick_save_progress_counter(struct rcu_data *rdp)
747{
748 rdp->dynticks_snap = rcu_dynticks_snap(cpu: rdp->cpu);
749 if (rcu_dynticks_in_eqs(snap: rdp->dynticks_snap)) {
750 trace_rcu_fqs(rcuname: rcu_state.name, gp_seq: rdp->gp_seq, cpu: rdp->cpu, TPS("dti"));
751 rcu_gpnum_ovf(rnp: rdp->mynode, rdp);
752 return 1;
753 }
754 return 0;
755}
756
757/*
758 * Returns positive if the specified CPU has passed through a quiescent state
759 * by virtue of being in or having passed through an dynticks idle state since
760 * the last call to dyntick_save_progress_counter() for this same CPU, or by
761 * virtue of having been offline.
762 *
763 * Returns negative if the specified CPU needs a force resched.
764 *
765 * Returns zero otherwise.
766 */
767static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
768{
769 unsigned long jtsq;
770 int ret = 0;
771 struct rcu_node *rnp = rdp->mynode;
772
773 /*
774 * If the CPU passed through or entered a dynticks idle phase with
775 * no active irq/NMI handlers, then we can safely pretend that the CPU
776 * already acknowledged the request to pass through a quiescent
777 * state. Either way, that CPU cannot possibly be in an RCU
778 * read-side critical section that started before the beginning
779 * of the current RCU grace period.
780 */
781 if (rcu_dynticks_in_eqs_since(rdp, snap: rdp->dynticks_snap)) {
782 trace_rcu_fqs(rcuname: rcu_state.name, gp_seq: rdp->gp_seq, cpu: rdp->cpu, TPS("dti"));
783 rcu_gpnum_ovf(rnp, rdp);
784 return 1;
785 }
786
787 /*
788 * Complain if a CPU that is considered to be offline from RCU's
789 * perspective has not yet reported a quiescent state. After all,
790 * the offline CPU should have reported a quiescent state during
791 * the CPU-offline process, or, failing that, by rcu_gp_init()
792 * if it ran concurrently with either the CPU going offline or the
793 * last task on a leaf rcu_node structure exiting its RCU read-side
794 * critical section while all CPUs corresponding to that structure
795 * are offline. This added warning detects bugs in any of these
796 * code paths.
797 *
798 * The rcu_node structure's ->lock is held here, which excludes
799 * the relevant portions the CPU-hotplug code, the grace-period
800 * initialization code, and the rcu_read_unlock() code paths.
801 *
802 * For more detail, please refer to the "Hotplug CPU" section
803 * of RCU's Requirements documentation.
804 */
805 if (WARN_ON_ONCE(!rcu_rdp_cpu_online(rdp))) {
806 struct rcu_node *rnp1;
807
808 pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
809 __func__, rnp->grplo, rnp->grphi, rnp->level,
810 (long)rnp->gp_seq, (long)rnp->completedqs);
811 for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
812 pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n",
813 __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask);
814 pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n",
815 __func__, rdp->cpu, ".o"[rcu_rdp_cpu_online(rdp)],
816 (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
817 (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
818 return 1; /* Break things loose after complaining. */
819 }
820
821 /*
822 * A CPU running for an extended time within the kernel can
823 * delay RCU grace periods: (1) At age jiffies_to_sched_qs,
824 * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set
825 * both .rcu_need_heavy_qs and .rcu_urgent_qs. Note that the
826 * unsynchronized assignments to the per-CPU rcu_need_heavy_qs
827 * variable are safe because the assignments are repeated if this
828 * CPU failed to pass through a quiescent state. This code
829 * also checks .jiffies_resched in case jiffies_to_sched_qs
830 * is set way high.
831 */
832 jtsq = READ_ONCE(jiffies_to_sched_qs);
833 if (!READ_ONCE(rdp->rcu_need_heavy_qs) &&
834 (time_after(jiffies, rcu_state.gp_start + jtsq * 2) ||
835 time_after(jiffies, rcu_state.jiffies_resched) ||
836 rcu_state.cbovld)) {
837 WRITE_ONCE(rdp->rcu_need_heavy_qs, true);
838 /* Store rcu_need_heavy_qs before rcu_urgent_qs. */
839 smp_store_release(&rdp->rcu_urgent_qs, true);
840 } else if (time_after(jiffies, rcu_state.gp_start + jtsq)) {
841 WRITE_ONCE(rdp->rcu_urgent_qs, true);
842 }
843
844 /*
845 * NO_HZ_FULL CPUs can run in-kernel without rcu_sched_clock_irq!
846 * The above code handles this, but only for straight cond_resched().
847 * And some in-kernel loops check need_resched() before calling
848 * cond_resched(), which defeats the above code for CPUs that are
849 * running in-kernel with scheduling-clock interrupts disabled.
850 * So hit them over the head with the resched_cpu() hammer!
851 */
852 if (tick_nohz_full_cpu(cpu: rdp->cpu) &&
853 (time_after(jiffies, READ_ONCE(rdp->last_fqs_resched) + jtsq * 3) ||
854 rcu_state.cbovld)) {
855 WRITE_ONCE(rdp->rcu_urgent_qs, true);
856 WRITE_ONCE(rdp->last_fqs_resched, jiffies);
857 ret = -1;
858 }
859
860 /*
861 * If more than halfway to RCU CPU stall-warning time, invoke
862 * resched_cpu() more frequently to try to loosen things up a bit.
863 * Also check to see if the CPU is getting hammered with interrupts,
864 * but only once per grace period, just to keep the IPIs down to
865 * a dull roar.
866 */
867 if (time_after(jiffies, rcu_state.jiffies_resched)) {
868 if (time_after(jiffies,
869 READ_ONCE(rdp->last_fqs_resched) + jtsq)) {
870 WRITE_ONCE(rdp->last_fqs_resched, jiffies);
871 ret = -1;
872 }
873 if (IS_ENABLED(CONFIG_IRQ_WORK) &&
874 !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq &&
875 (rnp->ffmask & rdp->grpmask)) {
876 rdp->rcu_iw_pending = true;
877 rdp->rcu_iw_gp_seq = rnp->gp_seq;
878 irq_work_queue_on(work: &rdp->rcu_iw, cpu: rdp->cpu);
879 }
880
881 if (rcu_cpu_stall_cputime && rdp->snap_record.gp_seq != rdp->gp_seq) {
882 int cpu = rdp->cpu;
883 struct rcu_snap_record *rsrp;
884 struct kernel_cpustat *kcsp;
885
886 kcsp = &kcpustat_cpu(cpu);
887
888 rsrp = &rdp->snap_record;
889 rsrp->cputime_irq = kcpustat_field(kcpustat: kcsp, usage: CPUTIME_IRQ, cpu);
890 rsrp->cputime_softirq = kcpustat_field(kcpustat: kcsp, usage: CPUTIME_SOFTIRQ, cpu);
891 rsrp->cputime_system = kcpustat_field(kcpustat: kcsp, usage: CPUTIME_SYSTEM, cpu);
892 rsrp->nr_hardirqs = kstat_cpu_irqs_sum(cpu: rdp->cpu);
893 rsrp->nr_softirqs = kstat_cpu_softirqs_sum(cpu: rdp->cpu);
894 rsrp->nr_csw = nr_context_switches_cpu(cpu: rdp->cpu);
895 rsrp->jiffies = jiffies;
896 rsrp->gp_seq = rdp->gp_seq;
897 }
898 }
899
900 return ret;
901}
902
903/* Trace-event wrapper function for trace_rcu_future_grace_period. */
904static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp,
905 unsigned long gp_seq_req, const char *s)
906{
907 trace_rcu_future_grace_period(rcuname: rcu_state.name, READ_ONCE(rnp->gp_seq),
908 gp_seq_req, level: rnp->level,
909 grplo: rnp->grplo, grphi: rnp->grphi, gpevent: s);
910}
911
912/*
913 * rcu_start_this_gp - Request the start of a particular grace period
914 * @rnp_start: The leaf node of the CPU from which to start.
915 * @rdp: The rcu_data corresponding to the CPU from which to start.
916 * @gp_seq_req: The gp_seq of the grace period to start.
917 *
918 * Start the specified grace period, as needed to handle newly arrived
919 * callbacks. The required future grace periods are recorded in each
920 * rcu_node structure's ->gp_seq_needed field. Returns true if there
921 * is reason to awaken the grace-period kthread.
922 *
923 * The caller must hold the specified rcu_node structure's ->lock, which
924 * is why the caller is responsible for waking the grace-period kthread.
925 *
926 * Returns true if the GP thread needs to be awakened else false.
927 */
928static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp,
929 unsigned long gp_seq_req)
930{
931 bool ret = false;
932 struct rcu_node *rnp;
933
934 /*
935 * Use funnel locking to either acquire the root rcu_node
936 * structure's lock or bail out if the need for this grace period
937 * has already been recorded -- or if that grace period has in
938 * fact already started. If there is already a grace period in
939 * progress in a non-leaf node, no recording is needed because the
940 * end of the grace period will scan the leaf rcu_node structures.
941 * Note that rnp_start->lock must not be released.
942 */
943 raw_lockdep_assert_held_rcu_node(rnp_start);
944 trace_rcu_this_gp(rnp: rnp_start, rdp, gp_seq_req, TPS("Startleaf"));
945 for (rnp = rnp_start; 1; rnp = rnp->parent) {
946 if (rnp != rnp_start)
947 raw_spin_lock_rcu_node(rnp);
948 if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) ||
949 rcu_seq_started(sp: &rnp->gp_seq, s: gp_seq_req) ||
950 (rnp != rnp_start &&
951 rcu_seq_state(s: rcu_seq_current(sp: &rnp->gp_seq)))) {
952 trace_rcu_this_gp(rnp, rdp, gp_seq_req,
953 TPS("Prestarted"));
954 goto unlock_out;
955 }
956 WRITE_ONCE(rnp->gp_seq_needed, gp_seq_req);
957 if (rcu_seq_state(s: rcu_seq_current(sp: &rnp->gp_seq))) {
958 /*
959 * We just marked the leaf or internal node, and a
960 * grace period is in progress, which means that
961 * rcu_gp_cleanup() will see the marking. Bail to
962 * reduce contention.
963 */
964 trace_rcu_this_gp(rnp: rnp_start, rdp, gp_seq_req,
965 TPS("Startedleaf"));
966 goto unlock_out;
967 }
968 if (rnp != rnp_start && rnp->parent != NULL)
969 raw_spin_unlock_rcu_node(rnp);
970 if (!rnp->parent)
971 break; /* At root, and perhaps also leaf. */
972 }
973
974 /* If GP already in progress, just leave, otherwise start one. */
975 if (rcu_gp_in_progress()) {
976 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot"));
977 goto unlock_out;
978 }
979 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot"));
980 WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_INIT);
981 WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
982 if (!READ_ONCE(rcu_state.gp_kthread)) {
983 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread"));
984 goto unlock_out;
985 }
986 trace_rcu_grace_period(rcuname: rcu_state.name, data_race(rcu_state.gp_seq), TPS("newreq"));
987 ret = true; /* Caller must wake GP kthread. */
988unlock_out:
989 /* Push furthest requested GP to leaf node and rcu_data structure. */
990 if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) {
991 WRITE_ONCE(rnp_start->gp_seq_needed, rnp->gp_seq_needed);
992 WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed);
993 }
994 if (rnp != rnp_start)
995 raw_spin_unlock_rcu_node(rnp);
996 return ret;
997}
998
999/*
1000 * Clean up any old requests for the just-ended grace period. Also return
1001 * whether any additional grace periods have been requested.
1002 */
1003static bool rcu_future_gp_cleanup(struct rcu_node *rnp)
1004{
1005 bool needmore;
1006 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1007
1008 needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed);
1009 if (!needmore)
1010 rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */
1011 trace_rcu_this_gp(rnp, rdp, gp_seq_req: rnp->gp_seq,
1012 s: needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1013 return needmore;
1014}
1015
1016/*
1017 * Awaken the grace-period kthread. Don't do a self-awaken (unless in an
1018 * interrupt or softirq handler, in which case we just might immediately
1019 * sleep upon return, resulting in a grace-period hang), and don't bother
1020 * awakening when there is nothing for the grace-period kthread to do
1021 * (as in several CPUs raced to awaken, we lost), and finally don't try
1022 * to awaken a kthread that has not yet been created. If all those checks
1023 * are passed, track some debug information and awaken.
1024 *
1025 * So why do the self-wakeup when in an interrupt or softirq handler
1026 * in the grace-period kthread's context? Because the kthread might have
1027 * been interrupted just as it was going to sleep, and just after the final
1028 * pre-sleep check of the awaken condition. In this case, a wakeup really
1029 * is required, and is therefore supplied.
1030 */
1031static void rcu_gp_kthread_wake(void)
1032{
1033 struct task_struct *t = READ_ONCE(rcu_state.gp_kthread);
1034
1035 if ((current == t && !in_hardirq() && !in_serving_softirq()) ||
1036 !READ_ONCE(rcu_state.gp_flags) || !t)
1037 return;
1038 WRITE_ONCE(rcu_state.gp_wake_time, jiffies);
1039 WRITE_ONCE(rcu_state.gp_wake_seq, READ_ONCE(rcu_state.gp_seq));
1040 swake_up_one(q: &rcu_state.gp_wq);
1041}
1042
1043/*
1044 * If there is room, assign a ->gp_seq number to any callbacks on this
1045 * CPU that have not already been assigned. Also accelerate any callbacks
1046 * that were previously assigned a ->gp_seq number that has since proven
1047 * to be too conservative, which can happen if callbacks get assigned a
1048 * ->gp_seq number while RCU is idle, but with reference to a non-root
1049 * rcu_node structure. This function is idempotent, so it does not hurt
1050 * to call it repeatedly. Returns an flag saying that we should awaken
1051 * the RCU grace-period kthread.
1052 *
1053 * The caller must hold rnp->lock with interrupts disabled.
1054 */
1055static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1056{
1057 unsigned long gp_seq_req;
1058 bool ret = false;
1059
1060 rcu_lockdep_assert_cblist_protected(rdp);
1061 raw_lockdep_assert_held_rcu_node(rnp);
1062
1063 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1064 if (!rcu_segcblist_pend_cbs(rsclp: &rdp->cblist))
1065 return false;
1066
1067 trace_rcu_segcb_stats(rs: &rdp->cblist, TPS("SegCbPreAcc"));
1068
1069 /*
1070 * Callbacks are often registered with incomplete grace-period
1071 * information. Something about the fact that getting exact
1072 * information requires acquiring a global lock... RCU therefore
1073 * makes a conservative estimate of the grace period number at which
1074 * a given callback will become ready to invoke. The following
1075 * code checks this estimate and improves it when possible, thus
1076 * accelerating callback invocation to an earlier grace-period
1077 * number.
1078 */
1079 gp_seq_req = rcu_seq_snap(sp: &rcu_state.gp_seq);
1080 if (rcu_segcblist_accelerate(rsclp: &rdp->cblist, seq: gp_seq_req))
1081 ret = rcu_start_this_gp(rnp_start: rnp, rdp, gp_seq_req);
1082
1083 /* Trace depending on how much we were able to accelerate. */
1084 if (rcu_segcblist_restempty(rsclp: &rdp->cblist, RCU_WAIT_TAIL))
1085 trace_rcu_grace_period(rcuname: rcu_state.name, gp_seq: gp_seq_req, TPS("AccWaitCB"));
1086 else
1087 trace_rcu_grace_period(rcuname: rcu_state.name, gp_seq: gp_seq_req, TPS("AccReadyCB"));
1088
1089 trace_rcu_segcb_stats(rs: &rdp->cblist, TPS("SegCbPostAcc"));
1090
1091 return ret;
1092}
1093
1094/*
1095 * Similar to rcu_accelerate_cbs(), but does not require that the leaf
1096 * rcu_node structure's ->lock be held. It consults the cached value
1097 * of ->gp_seq_needed in the rcu_data structure, and if that indicates
1098 * that a new grace-period request be made, invokes rcu_accelerate_cbs()
1099 * while holding the leaf rcu_node structure's ->lock.
1100 */
1101static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp,
1102 struct rcu_data *rdp)
1103{
1104 unsigned long c;
1105 bool needwake;
1106
1107 rcu_lockdep_assert_cblist_protected(rdp);
1108 c = rcu_seq_snap(sp: &rcu_state.gp_seq);
1109 if (!READ_ONCE(rdp->gpwrap) && ULONG_CMP_GE(rdp->gp_seq_needed, c)) {
1110 /* Old request still live, so mark recent callbacks. */
1111 (void)rcu_segcblist_accelerate(rsclp: &rdp->cblist, seq: c);
1112 return;
1113 }
1114 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1115 needwake = rcu_accelerate_cbs(rnp, rdp);
1116 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1117 if (needwake)
1118 rcu_gp_kthread_wake();
1119}
1120
1121/*
1122 * Move any callbacks whose grace period has completed to the
1123 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1124 * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL
1125 * sublist. This function is idempotent, so it does not hurt to
1126 * invoke it repeatedly. As long as it is not invoked -too- often...
1127 * Returns true if the RCU grace-period kthread needs to be awakened.
1128 *
1129 * The caller must hold rnp->lock with interrupts disabled.
1130 */
1131static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1132{
1133 rcu_lockdep_assert_cblist_protected(rdp);
1134 raw_lockdep_assert_held_rcu_node(rnp);
1135
1136 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1137 if (!rcu_segcblist_pend_cbs(rsclp: &rdp->cblist))
1138 return false;
1139
1140 /*
1141 * Find all callbacks whose ->gp_seq numbers indicate that they
1142 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1143 */
1144 rcu_segcblist_advance(rsclp: &rdp->cblist, seq: rnp->gp_seq);
1145
1146 /* Classify any remaining callbacks. */
1147 return rcu_accelerate_cbs(rnp, rdp);
1148}
1149
1150/*
1151 * Move and classify callbacks, but only if doing so won't require
1152 * that the RCU grace-period kthread be awakened.
1153 */
1154static void __maybe_unused rcu_advance_cbs_nowake(struct rcu_node *rnp,
1155 struct rcu_data *rdp)
1156{
1157 rcu_lockdep_assert_cblist_protected(rdp);
1158 if (!rcu_seq_state(s: rcu_seq_current(sp: &rnp->gp_seq)) || !raw_spin_trylock_rcu_node(rnp))
1159 return;
1160 // The grace period cannot end while we hold the rcu_node lock.
1161 if (rcu_seq_state(s: rcu_seq_current(sp: &rnp->gp_seq)))
1162 WARN_ON_ONCE(rcu_advance_cbs(rnp, rdp));
1163 raw_spin_unlock_rcu_node(rnp);
1164}
1165
1166/*
1167 * In CONFIG_RCU_STRICT_GRACE_PERIOD=y kernels, attempt to generate a
1168 * quiescent state. This is intended to be invoked when the CPU notices
1169 * a new grace period.
1170 */
1171static void rcu_strict_gp_check_qs(void)
1172{
1173 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) {
1174 rcu_read_lock();
1175 rcu_read_unlock();
1176 }
1177}
1178
1179/*
1180 * Update CPU-local rcu_data state to record the beginnings and ends of
1181 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1182 * structure corresponding to the current CPU, and must have irqs disabled.
1183 * Returns true if the grace-period kthread needs to be awakened.
1184 */
1185static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp)
1186{
1187 bool ret = false;
1188 bool need_qs;
1189 const bool offloaded = rcu_rdp_is_offloaded(rdp);
1190
1191 raw_lockdep_assert_held_rcu_node(rnp);
1192
1193 if (rdp->gp_seq == rnp->gp_seq)
1194 return false; /* Nothing to do. */
1195
1196 /* Handle the ends of any preceding grace periods first. */
1197 if (rcu_seq_completed_gp(old: rdp->gp_seq, new: rnp->gp_seq) ||
1198 unlikely(READ_ONCE(rdp->gpwrap))) {
1199 if (!offloaded)
1200 ret = rcu_advance_cbs(rnp, rdp); /* Advance CBs. */
1201 rdp->core_needs_qs = false;
1202 trace_rcu_grace_period(rcuname: rcu_state.name, gp_seq: rdp->gp_seq, TPS("cpuend"));
1203 } else {
1204 if (!offloaded)
1205 ret = rcu_accelerate_cbs(rnp, rdp); /* Recent CBs. */
1206 if (rdp->core_needs_qs)
1207 rdp->core_needs_qs = !!(rnp->qsmask & rdp->grpmask);
1208 }
1209
1210 /* Now handle the beginnings of any new-to-this-CPU grace periods. */
1211 if (rcu_seq_new_gp(old: rdp->gp_seq, new: rnp->gp_seq) ||
1212 unlikely(READ_ONCE(rdp->gpwrap))) {
1213 /*
1214 * If the current grace period is waiting for this CPU,
1215 * set up to detect a quiescent state, otherwise don't
1216 * go looking for one.
1217 */
1218 trace_rcu_grace_period(rcuname: rcu_state.name, gp_seq: rnp->gp_seq, TPS("cpustart"));
1219 need_qs = !!(rnp->qsmask & rdp->grpmask);
1220 rdp->cpu_no_qs.b.norm = need_qs;
1221 rdp->core_needs_qs = need_qs;
1222 zero_cpu_stall_ticks(rdp);
1223 }
1224 rdp->gp_seq = rnp->gp_seq; /* Remember new grace-period state. */
1225 if (ULONG_CMP_LT(rdp->gp_seq_needed, rnp->gp_seq_needed) || rdp->gpwrap)
1226 WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed);
1227 if (IS_ENABLED(CONFIG_PROVE_RCU) && READ_ONCE(rdp->gpwrap))
1228 WRITE_ONCE(rdp->last_sched_clock, jiffies);
1229 WRITE_ONCE(rdp->gpwrap, false);
1230 rcu_gpnum_ovf(rnp, rdp);
1231 return ret;
1232}
1233
1234static void note_gp_changes(struct rcu_data *rdp)
1235{
1236 unsigned long flags;
1237 bool needwake;
1238 struct rcu_node *rnp;
1239
1240 local_irq_save(flags);
1241 rnp = rdp->mynode;
1242 if ((rdp->gp_seq == rcu_seq_current(sp: &rnp->gp_seq) &&
1243 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1244 !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1245 local_irq_restore(flags);
1246 return;
1247 }
1248 needwake = __note_gp_changes(rnp, rdp);
1249 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1250 rcu_strict_gp_check_qs();
1251 if (needwake)
1252 rcu_gp_kthread_wake();
1253}
1254
1255static atomic_t *rcu_gp_slow_suppress;
1256
1257/* Register a counter to suppress debugging grace-period delays. */
1258void rcu_gp_slow_register(atomic_t *rgssp)
1259{
1260 WARN_ON_ONCE(rcu_gp_slow_suppress);
1261
1262 WRITE_ONCE(rcu_gp_slow_suppress, rgssp);
1263}
1264EXPORT_SYMBOL_GPL(rcu_gp_slow_register);
1265
1266/* Unregister a counter, with NULL for not caring which. */
1267void rcu_gp_slow_unregister(atomic_t *rgssp)
1268{
1269 WARN_ON_ONCE(rgssp && rgssp != rcu_gp_slow_suppress && rcu_gp_slow_suppress != NULL);
1270
1271 WRITE_ONCE(rcu_gp_slow_suppress, NULL);
1272}
1273EXPORT_SYMBOL_GPL(rcu_gp_slow_unregister);
1274
1275static bool rcu_gp_slow_is_suppressed(void)
1276{
1277 atomic_t *rgssp = READ_ONCE(rcu_gp_slow_suppress);
1278
1279 return rgssp && atomic_read(v: rgssp);
1280}
1281
1282static void rcu_gp_slow(int delay)
1283{
1284 if (!rcu_gp_slow_is_suppressed() && delay > 0 &&
1285 !(rcu_seq_ctr(s: rcu_state.gp_seq) % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1286 schedule_timeout_idle(timeout: delay);
1287}
1288
1289static unsigned long sleep_duration;
1290
1291/* Allow rcutorture to stall the grace-period kthread. */
1292void rcu_gp_set_torture_wait(int duration)
1293{
1294 if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST) && duration > 0)
1295 WRITE_ONCE(sleep_duration, duration);
1296}
1297EXPORT_SYMBOL_GPL(rcu_gp_set_torture_wait);
1298
1299/* Actually implement the aforementioned wait. */
1300static void rcu_gp_torture_wait(void)
1301{
1302 unsigned long duration;
1303
1304 if (!IS_ENABLED(CONFIG_RCU_TORTURE_TEST))
1305 return;
1306 duration = xchg(&sleep_duration, 0UL);
1307 if (duration > 0) {
1308 pr_alert("%s: Waiting %lu jiffies\n", __func__, duration);
1309 schedule_timeout_idle(timeout: duration);
1310 pr_alert("%s: Wait complete\n", __func__);
1311 }
1312}
1313
1314/*
1315 * Handler for on_each_cpu() to invoke the target CPU's RCU core
1316 * processing.
1317 */
1318static void rcu_strict_gp_boundary(void *unused)
1319{
1320 invoke_rcu_core();
1321}
1322
1323// Make the polled API aware of the beginning of a grace period.
1324static void rcu_poll_gp_seq_start(unsigned long *snap)
1325{
1326 struct rcu_node *rnp = rcu_get_root();
1327
1328 if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE)
1329 raw_lockdep_assert_held_rcu_node(rnp);
1330
1331 // If RCU was idle, note beginning of GP.
1332 if (!rcu_seq_state(s: rcu_state.gp_seq_polled))
1333 rcu_seq_start(sp: &rcu_state.gp_seq_polled);
1334
1335 // Either way, record current state.
1336 *snap = rcu_state.gp_seq_polled;
1337}
1338
1339// Make the polled API aware of the end of a grace period.
1340static void rcu_poll_gp_seq_end(unsigned long *snap)
1341{
1342 struct rcu_node *rnp = rcu_get_root();
1343
1344 if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE)
1345 raw_lockdep_assert_held_rcu_node(rnp);
1346
1347 // If the previously noted GP is still in effect, record the
1348 // end of that GP. Either way, zero counter to avoid counter-wrap
1349 // problems.
1350 if (*snap && *snap == rcu_state.gp_seq_polled) {
1351 rcu_seq_end(sp: &rcu_state.gp_seq_polled);
1352 rcu_state.gp_seq_polled_snap = 0;
1353 rcu_state.gp_seq_polled_exp_snap = 0;
1354 } else {
1355 *snap = 0;
1356 }
1357}
1358
1359// Make the polled API aware of the beginning of a grace period, but
1360// where caller does not hold the root rcu_node structure's lock.
1361static void rcu_poll_gp_seq_start_unlocked(unsigned long *snap)
1362{
1363 unsigned long flags;
1364 struct rcu_node *rnp = rcu_get_root();
1365
1366 if (rcu_init_invoked()) {
1367 if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE)
1368 lockdep_assert_irqs_enabled();
1369 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1370 }
1371 rcu_poll_gp_seq_start(snap);
1372 if (rcu_init_invoked())
1373 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1374}
1375
1376// Make the polled API aware of the end of a grace period, but where
1377// caller does not hold the root rcu_node structure's lock.
1378static void rcu_poll_gp_seq_end_unlocked(unsigned long *snap)
1379{
1380 unsigned long flags;
1381 struct rcu_node *rnp = rcu_get_root();
1382
1383 if (rcu_init_invoked()) {
1384 if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE)
1385 lockdep_assert_irqs_enabled();
1386 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1387 }
1388 rcu_poll_gp_seq_end(snap);
1389 if (rcu_init_invoked())
1390 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1391}
1392
1393/*
1394 * Initialize a new grace period. Return false if no grace period required.
1395 */
1396static noinline_for_stack bool rcu_gp_init(void)
1397{
1398 unsigned long flags;
1399 unsigned long oldmask;
1400 unsigned long mask;
1401 struct rcu_data *rdp;
1402 struct rcu_node *rnp = rcu_get_root();
1403
1404 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1405 raw_spin_lock_irq_rcu_node(rnp);
1406 if (!READ_ONCE(rcu_state.gp_flags)) {
1407 /* Spurious wakeup, tell caller to go back to sleep. */
1408 raw_spin_unlock_irq_rcu_node(rnp);
1409 return false;
1410 }
1411 WRITE_ONCE(rcu_state.gp_flags, 0); /* Clear all flags: New GP. */
1412
1413 if (WARN_ON_ONCE(rcu_gp_in_progress())) {
1414 /*
1415 * Grace period already in progress, don't start another.
1416 * Not supposed to be able to happen.
1417 */
1418 raw_spin_unlock_irq_rcu_node(rnp);
1419 return false;
1420 }
1421
1422 /* Advance to a new grace period and initialize state. */
1423 record_gp_stall_check_time();
1424 /* Record GP times before starting GP, hence rcu_seq_start(). */
1425 rcu_seq_start(sp: &rcu_state.gp_seq);
1426 ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq);
1427 trace_rcu_grace_period(rcuname: rcu_state.name, gp_seq: rcu_state.gp_seq, TPS("start"));
1428 rcu_poll_gp_seq_start(snap: &rcu_state.gp_seq_polled_snap);
1429 raw_spin_unlock_irq_rcu_node(rnp);
1430
1431 /*
1432 * Apply per-leaf buffered online and offline operations to
1433 * the rcu_node tree. Note that this new grace period need not
1434 * wait for subsequent online CPUs, and that RCU hooks in the CPU
1435 * offlining path, when combined with checks in this function,
1436 * will handle CPUs that are currently going offline or that will
1437 * go offline later. Please also refer to "Hotplug CPU" section
1438 * of RCU's Requirements documentation.
1439 */
1440 WRITE_ONCE(rcu_state.gp_state, RCU_GP_ONOFF);
1441 /* Exclude CPU hotplug operations. */
1442 rcu_for_each_leaf_node(rnp) {
1443 local_irq_save(flags);
1444 arch_spin_lock(&rcu_state.ofl_lock);
1445 raw_spin_lock_rcu_node(rnp);
1446 if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1447 !rnp->wait_blkd_tasks) {
1448 /* Nothing to do on this leaf rcu_node structure. */
1449 raw_spin_unlock_rcu_node(rnp);
1450 arch_spin_unlock(&rcu_state.ofl_lock);
1451 local_irq_restore(flags);
1452 continue;
1453 }
1454
1455 /* Record old state, apply changes to ->qsmaskinit field. */
1456 oldmask = rnp->qsmaskinit;
1457 rnp->qsmaskinit = rnp->qsmaskinitnext;
1458
1459 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1460 if (!oldmask != !rnp->qsmaskinit) {
1461 if (!oldmask) { /* First online CPU for rcu_node. */
1462 if (!rnp->wait_blkd_tasks) /* Ever offline? */
1463 rcu_init_new_rnp(rnp_leaf: rnp);
1464 } else if (rcu_preempt_has_tasks(rnp)) {
1465 rnp->wait_blkd_tasks = true; /* blocked tasks */
1466 } else { /* Last offline CPU and can propagate. */
1467 rcu_cleanup_dead_rnp(rnp_leaf: rnp);
1468 }
1469 }
1470
1471 /*
1472 * If all waited-on tasks from prior grace period are
1473 * done, and if all this rcu_node structure's CPUs are
1474 * still offline, propagate up the rcu_node tree and
1475 * clear ->wait_blkd_tasks. Otherwise, if one of this
1476 * rcu_node structure's CPUs has since come back online,
1477 * simply clear ->wait_blkd_tasks.
1478 */
1479 if (rnp->wait_blkd_tasks &&
1480 (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) {
1481 rnp->wait_blkd_tasks = false;
1482 if (!rnp->qsmaskinit)
1483 rcu_cleanup_dead_rnp(rnp_leaf: rnp);
1484 }
1485
1486 raw_spin_unlock_rcu_node(rnp);
1487 arch_spin_unlock(&rcu_state.ofl_lock);
1488 local_irq_restore(flags);
1489 }
1490 rcu_gp_slow(delay: gp_preinit_delay); /* Races with CPU hotplug. */
1491
1492 /*
1493 * Set the quiescent-state-needed bits in all the rcu_node
1494 * structures for all currently online CPUs in breadth-first
1495 * order, starting from the root rcu_node structure, relying on the
1496 * layout of the tree within the rcu_state.node[] array. Note that
1497 * other CPUs will access only the leaves of the hierarchy, thus
1498 * seeing that no grace period is in progress, at least until the
1499 * corresponding leaf node has been initialized.
1500 *
1501 * The grace period cannot complete until the initialization
1502 * process finishes, because this kthread handles both.
1503 */
1504 WRITE_ONCE(rcu_state.gp_state, RCU_GP_INIT);
1505 rcu_for_each_node_breadth_first(rnp) {
1506 rcu_gp_slow(delay: gp_init_delay);
1507 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1508 rdp = this_cpu_ptr(&rcu_data);
1509 rcu_preempt_check_blocked_tasks(rnp);
1510 rnp->qsmask = rnp->qsmaskinit;
1511 WRITE_ONCE(rnp->gp_seq, rcu_state.gp_seq);
1512 if (rnp == rdp->mynode)
1513 (void)__note_gp_changes(rnp, rdp);
1514 rcu_preempt_boost_start_gp(rnp);
1515 trace_rcu_grace_period_init(rcuname: rcu_state.name, gp_seq: rnp->gp_seq,
1516 level: rnp->level, grplo: rnp->grplo,
1517 grphi: rnp->grphi, qsmask: rnp->qsmask);
1518 /* Quiescent states for tasks on any now-offline CPUs. */
1519 mask = rnp->qsmask & ~rnp->qsmaskinitnext;
1520 rnp->rcu_gp_init_mask = mask;
1521 if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp))
1522 rcu_report_qs_rnp(mask, rnp, gps: rnp->gp_seq, flags);
1523 else
1524 raw_spin_unlock_irq_rcu_node(rnp);
1525 cond_resched_tasks_rcu_qs();
1526 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1527 }
1528
1529 // If strict, make all CPUs aware of new grace period.
1530 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
1531 on_each_cpu(func: rcu_strict_gp_boundary, NULL, wait: 0);
1532
1533 return true;
1534}
1535
1536/*
1537 * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state
1538 * time.
1539 */
1540static bool rcu_gp_fqs_check_wake(int *gfp)
1541{
1542 struct rcu_node *rnp = rcu_get_root();
1543
1544 // If under overload conditions, force an immediate FQS scan.
1545 if (*gfp & RCU_GP_FLAG_OVLD)
1546 return true;
1547
1548 // Someone like call_rcu() requested a force-quiescent-state scan.
1549 *gfp = READ_ONCE(rcu_state.gp_flags);
1550 if (*gfp & RCU_GP_FLAG_FQS)
1551 return true;
1552
1553 // The current grace period has completed.
1554 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
1555 return true;
1556
1557 return false;
1558}
1559
1560/*
1561 * Do one round of quiescent-state forcing.
1562 */
1563static void rcu_gp_fqs(bool first_time)
1564{
1565 int nr_fqs = READ_ONCE(rcu_state.nr_fqs_jiffies_stall);
1566 struct rcu_node *rnp = rcu_get_root();
1567
1568 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1569 WRITE_ONCE(rcu_state.n_force_qs, rcu_state.n_force_qs + 1);
1570
1571 WARN_ON_ONCE(nr_fqs > 3);
1572 /* Only countdown nr_fqs for stall purposes if jiffies moves. */
1573 if (nr_fqs) {
1574 if (nr_fqs == 1) {
1575 WRITE_ONCE(rcu_state.jiffies_stall,
1576 jiffies + rcu_jiffies_till_stall_check());
1577 }
1578 WRITE_ONCE(rcu_state.nr_fqs_jiffies_stall, --nr_fqs);
1579 }
1580
1581 if (first_time) {
1582 /* Collect dyntick-idle snapshots. */
1583 force_qs_rnp(f: dyntick_save_progress_counter);
1584 } else {
1585 /* Handle dyntick-idle and offline CPUs. */
1586 force_qs_rnp(f: rcu_implicit_dynticks_qs);
1587 }
1588 /* Clear flag to prevent immediate re-entry. */
1589 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
1590 raw_spin_lock_irq_rcu_node(rnp);
1591 WRITE_ONCE(rcu_state.gp_flags,
1592 READ_ONCE(rcu_state.gp_flags) & ~RCU_GP_FLAG_FQS);
1593 raw_spin_unlock_irq_rcu_node(rnp);
1594 }
1595}
1596
1597/*
1598 * Loop doing repeated quiescent-state forcing until the grace period ends.
1599 */
1600static noinline_for_stack void rcu_gp_fqs_loop(void)
1601{
1602 bool first_gp_fqs = true;
1603 int gf = 0;
1604 unsigned long j;
1605 int ret;
1606 struct rcu_node *rnp = rcu_get_root();
1607
1608 j = READ_ONCE(jiffies_till_first_fqs);
1609 if (rcu_state.cbovld)
1610 gf = RCU_GP_FLAG_OVLD;
1611 ret = 0;
1612 for (;;) {
1613 if (rcu_state.cbovld) {
1614 j = (j + 2) / 3;
1615 if (j <= 0)
1616 j = 1;
1617 }
1618 if (!ret || time_before(jiffies + j, rcu_state.jiffies_force_qs)) {
1619 WRITE_ONCE(rcu_state.jiffies_force_qs, jiffies + j);
1620 /*
1621 * jiffies_force_qs before RCU_GP_WAIT_FQS state
1622 * update; required for stall checks.
1623 */
1624 smp_wmb();
1625 WRITE_ONCE(rcu_state.jiffies_kick_kthreads,
1626 jiffies + (j ? 3 * j : 2));
1627 }
1628 trace_rcu_grace_period(rcuname: rcu_state.name, gp_seq: rcu_state.gp_seq,
1629 TPS("fqswait"));
1630 WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_FQS);
1631 (void)swait_event_idle_timeout_exclusive(rcu_state.gp_wq,
1632 rcu_gp_fqs_check_wake(&gf), j);
1633 rcu_gp_torture_wait();
1634 WRITE_ONCE(rcu_state.gp_state, RCU_GP_DOING_FQS);
1635 /* Locking provides needed memory barriers. */
1636 /*
1637 * Exit the loop if the root rcu_node structure indicates that the grace period
1638 * has ended, leave the loop. The rcu_preempt_blocked_readers_cgp(rnp) check
1639 * is required only for single-node rcu_node trees because readers blocking
1640 * the current grace period are queued only on leaf rcu_node structures.
1641 * For multi-node trees, checking the root node's ->qsmask suffices, because a
1642 * given root node's ->qsmask bit is cleared only when all CPUs and tasks from
1643 * the corresponding leaf nodes have passed through their quiescent state.
1644 */
1645 if (!READ_ONCE(rnp->qsmask) &&
1646 !rcu_preempt_blocked_readers_cgp(rnp))
1647 break;
1648 /* If time for quiescent-state forcing, do it. */
1649 if (!time_after(rcu_state.jiffies_force_qs, jiffies) ||
1650 (gf & (RCU_GP_FLAG_FQS | RCU_GP_FLAG_OVLD))) {
1651 trace_rcu_grace_period(rcuname: rcu_state.name, gp_seq: rcu_state.gp_seq,
1652 TPS("fqsstart"));
1653 rcu_gp_fqs(first_time: first_gp_fqs);
1654 gf = 0;
1655 if (first_gp_fqs) {
1656 first_gp_fqs = false;
1657 gf = rcu_state.cbovld ? RCU_GP_FLAG_OVLD : 0;
1658 }
1659 trace_rcu_grace_period(rcuname: rcu_state.name, gp_seq: rcu_state.gp_seq,
1660 TPS("fqsend"));
1661 cond_resched_tasks_rcu_qs();
1662 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1663 ret = 0; /* Force full wait till next FQS. */
1664 j = READ_ONCE(jiffies_till_next_fqs);
1665 } else {
1666 /* Deal with stray signal. */
1667 cond_resched_tasks_rcu_qs();
1668 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1669 WARN_ON(signal_pending(current));
1670 trace_rcu_grace_period(rcuname: rcu_state.name, gp_seq: rcu_state.gp_seq,
1671 TPS("fqswaitsig"));
1672 ret = 1; /* Keep old FQS timing. */
1673 j = jiffies;
1674 if (time_after(jiffies, rcu_state.jiffies_force_qs))
1675 j = 1;
1676 else
1677 j = rcu_state.jiffies_force_qs - j;
1678 gf = 0;
1679 }
1680 }
1681}
1682
1683/*
1684 * Clean up after the old grace period.
1685 */
1686static noinline void rcu_gp_cleanup(void)
1687{
1688 int cpu;
1689 bool needgp = false;
1690 unsigned long gp_duration;
1691 unsigned long new_gp_seq;
1692 bool offloaded;
1693 struct rcu_data *rdp;
1694 struct rcu_node *rnp = rcu_get_root();
1695 struct swait_queue_head *sq;
1696
1697 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1698 raw_spin_lock_irq_rcu_node(rnp);
1699 rcu_state.gp_end = jiffies;
1700 gp_duration = rcu_state.gp_end - rcu_state.gp_start;
1701 if (gp_duration > rcu_state.gp_max)
1702 rcu_state.gp_max = gp_duration;
1703
1704 /*
1705 * We know the grace period is complete, but to everyone else
1706 * it appears to still be ongoing. But it is also the case
1707 * that to everyone else it looks like there is nothing that
1708 * they can do to advance the grace period. It is therefore
1709 * safe for us to drop the lock in order to mark the grace
1710 * period as completed in all of the rcu_node structures.
1711 */
1712 rcu_poll_gp_seq_end(snap: &rcu_state.gp_seq_polled_snap);
1713 raw_spin_unlock_irq_rcu_node(rnp);
1714
1715 /*
1716 * Propagate new ->gp_seq value to rcu_node structures so that
1717 * other CPUs don't have to wait until the start of the next grace
1718 * period to process their callbacks. This also avoids some nasty
1719 * RCU grace-period initialization races by forcing the end of
1720 * the current grace period to be completely recorded in all of
1721 * the rcu_node structures before the beginning of the next grace
1722 * period is recorded in any of the rcu_node structures.
1723 */
1724 new_gp_seq = rcu_state.gp_seq;
1725 rcu_seq_end(sp: &new_gp_seq);
1726 rcu_for_each_node_breadth_first(rnp) {
1727 raw_spin_lock_irq_rcu_node(rnp);
1728 if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
1729 dump_blkd_tasks(rnp, ncheck: 10);
1730 WARN_ON_ONCE(rnp->qsmask);
1731 WRITE_ONCE(rnp->gp_seq, new_gp_seq);
1732 if (!rnp->parent)
1733 smp_mb(); // Order against failing poll_state_synchronize_rcu_full().
1734 rdp = this_cpu_ptr(&rcu_data);
1735 if (rnp == rdp->mynode)
1736 needgp = __note_gp_changes(rnp, rdp) || needgp;
1737 /* smp_mb() provided by prior unlock-lock pair. */
1738 needgp = rcu_future_gp_cleanup(rnp) || needgp;
1739 // Reset overload indication for CPUs no longer overloaded
1740 if (rcu_is_leaf_node(rnp))
1741 for_each_leaf_node_cpu_mask(rnp, cpu, rnp->cbovldmask) {
1742 rdp = per_cpu_ptr(&rcu_data, cpu);
1743 check_cb_ovld_locked(rdp, rnp);
1744 }
1745 sq = rcu_nocb_gp_get(rnp);
1746 raw_spin_unlock_irq_rcu_node(rnp);
1747 rcu_nocb_gp_cleanup(sq);
1748 cond_resched_tasks_rcu_qs();
1749 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1750 rcu_gp_slow(delay: gp_cleanup_delay);
1751 }
1752 rnp = rcu_get_root();
1753 raw_spin_lock_irq_rcu_node(rnp); /* GP before ->gp_seq update. */
1754
1755 /* Declare grace period done, trace first to use old GP number. */
1756 trace_rcu_grace_period(rcuname: rcu_state.name, gp_seq: rcu_state.gp_seq, TPS("end"));
1757 rcu_seq_end(sp: &rcu_state.gp_seq);
1758 ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq);
1759 WRITE_ONCE(rcu_state.gp_state, RCU_GP_IDLE);
1760 /* Check for GP requests since above loop. */
1761 rdp = this_cpu_ptr(&rcu_data);
1762 if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) {
1763 trace_rcu_this_gp(rnp, rdp, gp_seq_req: rnp->gp_seq_needed,
1764 TPS("CleanupMore"));
1765 needgp = true;
1766 }
1767 /* Advance CBs to reduce false positives below. */
1768 offloaded = rcu_rdp_is_offloaded(rdp);
1769 if ((offloaded || !rcu_accelerate_cbs(rnp, rdp)) && needgp) {
1770
1771 // We get here if a grace period was needed (“needgp”)
1772 // and the above call to rcu_accelerate_cbs() did not set
1773 // the RCU_GP_FLAG_INIT bit in ->gp_state (which records
1774 // the need for another grace period).  The purpose
1775 // of the “offloaded” check is to avoid invoking
1776 // rcu_accelerate_cbs() on an offloaded CPU because we do not
1777 // hold the ->nocb_lock needed to safely access an offloaded
1778 // ->cblist.  We do not want to acquire that lock because
1779 // it can be heavily contended during callback floods.
1780
1781 WRITE_ONCE(rcu_state.gp_flags, RCU_GP_FLAG_INIT);
1782 WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
1783 trace_rcu_grace_period(rcuname: rcu_state.name, gp_seq: rcu_state.gp_seq, TPS("newreq"));
1784 } else {
1785
1786 // We get here either if there is no need for an
1787 // additional grace period or if rcu_accelerate_cbs() has
1788 // already set the RCU_GP_FLAG_INIT bit in ->gp_flags. 
1789 // So all we need to do is to clear all of the other
1790 // ->gp_flags bits.
1791
1792 WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags & RCU_GP_FLAG_INIT);
1793 }
1794 raw_spin_unlock_irq_rcu_node(rnp);
1795
1796 // If strict, make all CPUs aware of the end of the old grace period.
1797 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
1798 on_each_cpu(func: rcu_strict_gp_boundary, NULL, wait: 0);
1799}
1800
1801/*
1802 * Body of kthread that handles grace periods.
1803 */
1804static int __noreturn rcu_gp_kthread(void *unused)
1805{
1806 rcu_bind_gp_kthread();
1807 for (;;) {
1808
1809 /* Handle grace-period start. */
1810 for (;;) {
1811 trace_rcu_grace_period(rcuname: rcu_state.name, gp_seq: rcu_state.gp_seq,
1812 TPS("reqwait"));
1813 WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_GPS);
1814 swait_event_idle_exclusive(rcu_state.gp_wq,
1815 READ_ONCE(rcu_state.gp_flags) &
1816 RCU_GP_FLAG_INIT);
1817 rcu_gp_torture_wait();
1818 WRITE_ONCE(rcu_state.gp_state, RCU_GP_DONE_GPS);
1819 /* Locking provides needed memory barrier. */
1820 if (rcu_gp_init())
1821 break;
1822 cond_resched_tasks_rcu_qs();
1823 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1824 WARN_ON(signal_pending(current));
1825 trace_rcu_grace_period(rcuname: rcu_state.name, gp_seq: rcu_state.gp_seq,
1826 TPS("reqwaitsig"));
1827 }
1828
1829 /* Handle quiescent-state forcing. */
1830 rcu_gp_fqs_loop();
1831
1832 /* Handle grace-period end. */
1833 WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANUP);
1834 rcu_gp_cleanup();
1835 WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANED);
1836 }
1837}
1838
1839/*
1840 * Report a full set of quiescent states to the rcu_state data structure.
1841 * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if
1842 * another grace period is required. Whether we wake the grace-period
1843 * kthread or it awakens itself for the next round of quiescent-state
1844 * forcing, that kthread will clean up after the just-completed grace
1845 * period. Note that the caller must hold rnp->lock, which is released
1846 * before return.
1847 */
1848static void rcu_report_qs_rsp(unsigned long flags)
1849 __releases(rcu_get_root()->lock)
1850{
1851 raw_lockdep_assert_held_rcu_node(rcu_get_root());
1852 WARN_ON_ONCE(!rcu_gp_in_progress());
1853 WRITE_ONCE(rcu_state.gp_flags,
1854 READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
1855 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags);
1856 rcu_gp_kthread_wake();
1857}
1858
1859/*
1860 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1861 * Allows quiescent states for a group of CPUs to be reported at one go
1862 * to the specified rcu_node structure, though all the CPUs in the group
1863 * must be represented by the same rcu_node structure (which need not be a
1864 * leaf rcu_node structure, though it often will be). The gps parameter
1865 * is the grace-period snapshot, which means that the quiescent states
1866 * are valid only if rnp->gp_seq is equal to gps. That structure's lock
1867 * must be held upon entry, and it is released before return.
1868 *
1869 * As a special case, if mask is zero, the bit-already-cleared check is
1870 * disabled. This allows propagating quiescent state due to resumed tasks
1871 * during grace-period initialization.
1872 */
1873static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
1874 unsigned long gps, unsigned long flags)
1875 __releases(rnp->lock)
1876{
1877 unsigned long oldmask = 0;
1878 struct rcu_node *rnp_c;
1879
1880 raw_lockdep_assert_held_rcu_node(rnp);
1881
1882 /* Walk up the rcu_node hierarchy. */
1883 for (;;) {
1884 if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) {
1885
1886 /*
1887 * Our bit has already been cleared, or the
1888 * relevant grace period is already over, so done.
1889 */
1890 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1891 return;
1892 }
1893 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
1894 WARN_ON_ONCE(!rcu_is_leaf_node(rnp) &&
1895 rcu_preempt_blocked_readers_cgp(rnp));
1896 WRITE_ONCE(rnp->qsmask, rnp->qsmask & ~mask);
1897 trace_rcu_quiescent_state_report(rcuname: rcu_state.name, gp_seq: rnp->gp_seq,
1898 mask, qsmask: rnp->qsmask, level: rnp->level,
1899 grplo: rnp->grplo, grphi: rnp->grphi,
1900 gp_tasks: !!rnp->gp_tasks);
1901 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1902
1903 /* Other bits still set at this level, so done. */
1904 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1905 return;
1906 }
1907 rnp->completedqs = rnp->gp_seq;
1908 mask = rnp->grpmask;
1909 if (rnp->parent == NULL) {
1910
1911 /* No more levels. Exit loop holding root lock. */
1912
1913 break;
1914 }
1915 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1916 rnp_c = rnp;
1917 rnp = rnp->parent;
1918 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1919 oldmask = READ_ONCE(rnp_c->qsmask);
1920 }
1921
1922 /*
1923 * Get here if we are the last CPU to pass through a quiescent
1924 * state for this grace period. Invoke rcu_report_qs_rsp()
1925 * to clean up and start the next grace period if one is needed.
1926 */
1927 rcu_report_qs_rsp(flags); /* releases rnp->lock. */
1928}
1929
1930/*
1931 * Record a quiescent state for all tasks that were previously queued
1932 * on the specified rcu_node structure and that were blocking the current
1933 * RCU grace period. The caller must hold the corresponding rnp->lock with
1934 * irqs disabled, and this lock is released upon return, but irqs remain
1935 * disabled.
1936 */
1937static void __maybe_unused
1938rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
1939 __releases(rnp->lock)
1940{
1941 unsigned long gps;
1942 unsigned long mask;
1943 struct rcu_node *rnp_p;
1944
1945 raw_lockdep_assert_held_rcu_node(rnp);
1946 if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT_RCU)) ||
1947 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) ||
1948 rnp->qsmask != 0) {
1949 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1950 return; /* Still need more quiescent states! */
1951 }
1952
1953 rnp->completedqs = rnp->gp_seq;
1954 rnp_p = rnp->parent;
1955 if (rnp_p == NULL) {
1956 /*
1957 * Only one rcu_node structure in the tree, so don't
1958 * try to report up to its nonexistent parent!
1959 */
1960 rcu_report_qs_rsp(flags);
1961 return;
1962 }
1963
1964 /* Report up the rest of the hierarchy, tracking current ->gp_seq. */
1965 gps = rnp->gp_seq;
1966 mask = rnp->grpmask;
1967 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1968 raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */
1969 rcu_report_qs_rnp(mask, rnp: rnp_p, gps, flags);
1970}
1971
1972/*
1973 * Record a quiescent state for the specified CPU to that CPU's rcu_data
1974 * structure. This must be called from the specified CPU.
1975 */
1976static void
1977rcu_report_qs_rdp(struct rcu_data *rdp)
1978{
1979 unsigned long flags;
1980 unsigned long mask;
1981 bool needacc = false;
1982 struct rcu_node *rnp;
1983
1984 WARN_ON_ONCE(rdp->cpu != smp_processor_id());
1985 rnp = rdp->mynode;
1986 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1987 if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq ||
1988 rdp->gpwrap) {
1989
1990 /*
1991 * The grace period in which this quiescent state was
1992 * recorded has ended, so don't report it upwards.
1993 * We will instead need a new quiescent state that lies
1994 * within the current grace period.
1995 */
1996 rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */
1997 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1998 return;
1999 }
2000 mask = rdp->grpmask;
2001 rdp->core_needs_qs = false;
2002 if ((rnp->qsmask & mask) == 0) {
2003 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2004 } else {
2005 /*
2006 * This GP can't end until cpu checks in, so all of our
2007 * callbacks can be processed during the next GP.
2008 *
2009 * NOCB kthreads have their own way to deal with that...
2010 */
2011 if (!rcu_rdp_is_offloaded(rdp)) {
2012 /*
2013 * The current GP has not yet ended, so it
2014 * should not be possible for rcu_accelerate_cbs()
2015 * to return true. So complain, but don't awaken.
2016 */
2017 WARN_ON_ONCE(rcu_accelerate_cbs(rnp, rdp));
2018 } else if (!rcu_segcblist_completely_offloaded(rsclp: &rdp->cblist)) {
2019 /*
2020 * ...but NOCB kthreads may miss or delay callbacks acceleration
2021 * if in the middle of a (de-)offloading process.
2022 */
2023 needacc = true;
2024 }
2025
2026 rcu_disable_urgency_upon_qs(rdp);
2027 rcu_report_qs_rnp(mask, rnp, gps: rnp->gp_seq, flags);
2028 /* ^^^ Released rnp->lock */
2029
2030 if (needacc) {
2031 rcu_nocb_lock_irqsave(rdp, flags);
2032 rcu_accelerate_cbs_unlocked(rnp, rdp);
2033 rcu_nocb_unlock_irqrestore(rdp, flags);
2034 }
2035 }
2036}
2037
2038/*
2039 * Check to see if there is a new grace period of which this CPU
2040 * is not yet aware, and if so, set up local rcu_data state for it.
2041 * Otherwise, see if this CPU has just passed through its first
2042 * quiescent state for this grace period, and record that fact if so.
2043 */
2044static void
2045rcu_check_quiescent_state(struct rcu_data *rdp)
2046{
2047 /* Check for grace-period ends and beginnings. */
2048 note_gp_changes(rdp);
2049
2050 /*
2051 * Does this CPU still need to do its part for current grace period?
2052 * If no, return and let the other CPUs do their part as well.
2053 */
2054 if (!rdp->core_needs_qs)
2055 return;
2056
2057 /*
2058 * Was there a quiescent state since the beginning of the grace
2059 * period? If no, then exit and wait for the next call.
2060 */
2061 if (rdp->cpu_no_qs.b.norm)
2062 return;
2063
2064 /*
2065 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2066 * judge of that).
2067 */
2068 rcu_report_qs_rdp(rdp);
2069}
2070
2071/* Return true if callback-invocation time limit exceeded. */
2072static bool rcu_do_batch_check_time(long count, long tlimit,
2073 bool jlimit_check, unsigned long jlimit)
2074{
2075 // Invoke local_clock() only once per 32 consecutive callbacks.
2076 return unlikely(tlimit) &&
2077 (!likely(count & 31) ||
2078 (IS_ENABLED(CONFIG_RCU_DOUBLE_CHECK_CB_TIME) &&
2079 jlimit_check && time_after(jiffies, jlimit))) &&
2080 local_clock() >= tlimit;
2081}
2082
2083/*
2084 * Invoke any RCU callbacks that have made it to the end of their grace
2085 * period. Throttle as specified by rdp->blimit.
2086 */
2087static void rcu_do_batch(struct rcu_data *rdp)
2088{
2089 long bl;
2090 long count = 0;
2091 int div;
2092 bool __maybe_unused empty;
2093 unsigned long flags;
2094 unsigned long jlimit;
2095 bool jlimit_check = false;
2096 long pending;
2097 struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
2098 struct rcu_head *rhp;
2099 long tlimit = 0;
2100
2101 /* If no callbacks are ready, just return. */
2102 if (!rcu_segcblist_ready_cbs(rsclp: &rdp->cblist)) {
2103 trace_rcu_batch_start(rcuname: rcu_state.name,
2104 qlen: rcu_segcblist_n_cbs(rsclp: &rdp->cblist), blimit: 0);
2105 trace_rcu_batch_end(rcuname: rcu_state.name, callbacks_invoked: 0,
2106 cb: !rcu_segcblist_empty(rsclp: &rdp->cblist),
2107 nr: need_resched(), iit: is_idle_task(current),
2108 risk: rcu_is_callbacks_kthread(rdp));
2109 return;
2110 }
2111
2112 /*
2113 * Extract the list of ready callbacks, disabling IRQs to prevent
2114 * races with call_rcu() from interrupt handlers. Leave the
2115 * callback counts, as rcu_barrier() needs to be conservative.
2116 */
2117 rcu_nocb_lock_irqsave(rdp, flags);
2118 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2119 pending = rcu_segcblist_get_seglen(rsclp: &rdp->cblist, RCU_DONE_TAIL);
2120 div = READ_ONCE(rcu_divisor);
2121 div = div < 0 ? 7 : div > sizeof(long) * 8 - 2 ? sizeof(long) * 8 - 2 : div;
2122 bl = max(rdp->blimit, pending >> div);
2123 if ((in_serving_softirq() || rdp->rcu_cpu_kthread_status == RCU_KTHREAD_RUNNING) &&
2124 (IS_ENABLED(CONFIG_RCU_DOUBLE_CHECK_CB_TIME) || unlikely(bl > 100))) {
2125 const long npj = NSEC_PER_SEC / HZ;
2126 long rrn = READ_ONCE(rcu_resched_ns);
2127
2128 rrn = rrn < NSEC_PER_MSEC ? NSEC_PER_MSEC : rrn > NSEC_PER_SEC ? NSEC_PER_SEC : rrn;
2129 tlimit = local_clock() + rrn;
2130 jlimit = jiffies + (rrn + npj + 1) / npj;
2131 jlimit_check = true;
2132 }
2133 trace_rcu_batch_start(rcuname: rcu_state.name,
2134 qlen: rcu_segcblist_n_cbs(rsclp: &rdp->cblist), blimit: bl);
2135 rcu_segcblist_extract_done_cbs(rsclp: &rdp->cblist, rclp: &rcl);
2136 if (rcu_rdp_is_offloaded(rdp))
2137 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(rsclp: &rdp->cblist);
2138
2139 trace_rcu_segcb_stats(rs: &rdp->cblist, TPS("SegCbDequeued"));
2140 rcu_nocb_unlock_irqrestore(rdp, flags);
2141
2142 /* Invoke callbacks. */
2143 tick_dep_set_task(current, bit: TICK_DEP_BIT_RCU);
2144 rhp = rcu_cblist_dequeue(rclp: &rcl);
2145
2146 for (; rhp; rhp = rcu_cblist_dequeue(rclp: &rcl)) {
2147 rcu_callback_t f;
2148
2149 count++;
2150 debug_rcu_head_unqueue(head: rhp);
2151
2152 rcu_lock_acquire(map: &rcu_callback_map);
2153 trace_rcu_invoke_callback(rcuname: rcu_state.name, rhp);
2154
2155 f = rhp->func;
2156 debug_rcu_head_callback(rhp);
2157 WRITE_ONCE(rhp->func, (rcu_callback_t)0L);
2158 f(rhp);
2159
2160 rcu_lock_release(map: &rcu_callback_map);
2161
2162 /*
2163 * Stop only if limit reached and CPU has something to do.
2164 */
2165 if (in_serving_softirq()) {
2166 if (count >= bl && (need_resched() || !is_idle_task(current)))
2167 break;
2168 /*
2169 * Make sure we don't spend too much time here and deprive other
2170 * softirq vectors of CPU cycles.
2171 */
2172 if (rcu_do_batch_check_time(count, tlimit, jlimit_check, jlimit))
2173 break;
2174 } else {
2175 // In rcuc/rcuoc context, so no worries about
2176 // depriving other softirq vectors of CPU cycles.
2177 local_bh_enable();
2178 lockdep_assert_irqs_enabled();
2179 cond_resched_tasks_rcu_qs();
2180 lockdep_assert_irqs_enabled();
2181 local_bh_disable();
2182 // But rcuc kthreads can delay quiescent-state
2183 // reporting, so check time limits for them.
2184 if (rdp->rcu_cpu_kthread_status == RCU_KTHREAD_RUNNING &&
2185 rcu_do_batch_check_time(count, tlimit, jlimit_check, jlimit)) {
2186 rdp->rcu_cpu_has_work = 1;
2187 break;
2188 }
2189 }
2190 }
2191
2192 rcu_nocb_lock_irqsave(rdp, flags);
2193 rdp->n_cbs_invoked += count;
2194 trace_rcu_batch_end(rcuname: rcu_state.name, callbacks_invoked: count, cb: !!rcl.head, nr: need_resched(),
2195 iit: is_idle_task(current), risk: rcu_is_callbacks_kthread(rdp));
2196
2197 /* Update counts and requeue any remaining callbacks. */
2198 rcu_segcblist_insert_done_cbs(rsclp: &rdp->cblist, rclp: &rcl);
2199 rcu_segcblist_add_len(rsclp: &rdp->cblist, v: -count);
2200
2201 /* Reinstate batch limit if we have worked down the excess. */
2202 count = rcu_segcblist_n_cbs(rsclp: &rdp->cblist);
2203 if (rdp->blimit >= DEFAULT_MAX_RCU_BLIMIT && count <= qlowmark)
2204 rdp->blimit = blimit;
2205
2206 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2207 if (count == 0 && rdp->qlen_last_fqs_check != 0) {
2208 rdp->qlen_last_fqs_check = 0;
2209 rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs);
2210 } else if (count < rdp->qlen_last_fqs_check - qhimark)
2211 rdp->qlen_last_fqs_check = count;
2212
2213 /*
2214 * The following usually indicates a double call_rcu(). To track
2215 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y.
2216 */
2217 empty = rcu_segcblist_empty(rsclp: &rdp->cblist);
2218 WARN_ON_ONCE(count == 0 && !empty);
2219 WARN_ON_ONCE(!IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2220 count != 0 && empty);
2221 WARN_ON_ONCE(count == 0 && rcu_segcblist_n_segment_cbs(&rdp->cblist) != 0);
2222 WARN_ON_ONCE(!empty && rcu_segcblist_n_segment_cbs(&rdp->cblist) == 0);
2223
2224 rcu_nocb_unlock_irqrestore(rdp, flags);
2225
2226 tick_dep_clear_task(current, bit: TICK_DEP_BIT_RCU);
2227}
2228
2229/*
2230 * This function is invoked from each scheduling-clock interrupt,
2231 * and checks to see if this CPU is in a non-context-switch quiescent
2232 * state, for example, user mode or idle loop. It also schedules RCU
2233 * core processing. If the current grace period has gone on too long,
2234 * it will ask the scheduler to manufacture a context switch for the sole
2235 * purpose of providing the needed quiescent state.
2236 */
2237void rcu_sched_clock_irq(int user)
2238{
2239 unsigned long j;
2240
2241 if (IS_ENABLED(CONFIG_PROVE_RCU)) {
2242 j = jiffies;
2243 WARN_ON_ONCE(time_before(j, __this_cpu_read(rcu_data.last_sched_clock)));
2244 __this_cpu_write(rcu_data.last_sched_clock, j);
2245 }
2246 trace_rcu_utilization(TPS("Start scheduler-tick"));
2247 lockdep_assert_irqs_disabled();
2248 raw_cpu_inc(rcu_data.ticks_this_gp);
2249 /* The load-acquire pairs with the store-release setting to true. */
2250 if (smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
2251 /* Idle and userspace execution already are quiescent states. */
2252 if (!rcu_is_cpu_rrupt_from_idle() && !user) {
2253 set_tsk_need_resched(current);
2254 set_preempt_need_resched();
2255 }
2256 __this_cpu_write(rcu_data.rcu_urgent_qs, false);
2257 }
2258 rcu_flavor_sched_clock_irq(user);
2259 if (rcu_pending(user))
2260 invoke_rcu_core();
2261 if (user || rcu_is_cpu_rrupt_from_idle())
2262 rcu_note_voluntary_context_switch(current);
2263 lockdep_assert_irqs_disabled();
2264
2265 trace_rcu_utilization(TPS("End scheduler-tick"));
2266}
2267
2268/*
2269 * Scan the leaf rcu_node structures. For each structure on which all
2270 * CPUs have reported a quiescent state and on which there are tasks
2271 * blocking the current grace period, initiate RCU priority boosting.
2272 * Otherwise, invoke the specified function to check dyntick state for
2273 * each CPU that has not yet reported a quiescent state.
2274 */
2275static void force_qs_rnp(int (*f)(struct rcu_data *rdp))
2276{
2277 int cpu;
2278 unsigned long flags;
2279 struct rcu_node *rnp;
2280
2281 rcu_state.cbovld = rcu_state.cbovldnext;
2282 rcu_state.cbovldnext = false;
2283 rcu_for_each_leaf_node(rnp) {
2284 unsigned long mask = 0;
2285 unsigned long rsmask = 0;
2286
2287 cond_resched_tasks_rcu_qs();
2288 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2289 rcu_state.cbovldnext |= !!rnp->cbovldmask;
2290 if (rnp->qsmask == 0) {
2291 if (rcu_preempt_blocked_readers_cgp(rnp)) {
2292 /*
2293 * No point in scanning bits because they
2294 * are all zero. But we might need to
2295 * priority-boost blocked readers.
2296 */
2297 rcu_initiate_boost(rnp, flags);
2298 /* rcu_initiate_boost() releases rnp->lock */
2299 continue;
2300 }
2301 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2302 continue;
2303 }
2304 for_each_leaf_node_cpu_mask(rnp, cpu, rnp->qsmask) {
2305 struct rcu_data *rdp;
2306 int ret;
2307
2308 rdp = per_cpu_ptr(&rcu_data, cpu);
2309 ret = f(rdp);
2310 if (ret > 0) {
2311 mask |= rdp->grpmask;
2312 rcu_disable_urgency_upon_qs(rdp);
2313 }
2314 if (ret < 0)
2315 rsmask |= rdp->grpmask;
2316 }
2317 if (mask != 0) {
2318 /* Idle/offline CPUs, report (releases rnp->lock). */
2319 rcu_report_qs_rnp(mask, rnp, gps: rnp->gp_seq, flags);
2320 } else {
2321 /* Nothing to do here, so just drop the lock. */
2322 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2323 }
2324
2325 for_each_leaf_node_cpu_mask(rnp, cpu, rsmask)
2326 resched_cpu(cpu);
2327 }
2328}
2329
2330/*
2331 * Force quiescent states on reluctant CPUs, and also detect which
2332 * CPUs are in dyntick-idle mode.
2333 */
2334void rcu_force_quiescent_state(void)
2335{
2336 unsigned long flags;
2337 bool ret;
2338 struct rcu_node *rnp;
2339 struct rcu_node *rnp_old = NULL;
2340
2341 /* Funnel through hierarchy to reduce memory contention. */
2342 rnp = raw_cpu_read(rcu_data.mynode);
2343 for (; rnp != NULL; rnp = rnp->parent) {
2344 ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) ||
2345 !raw_spin_trylock(&rnp->fqslock);
2346 if (rnp_old != NULL)
2347 raw_spin_unlock(&rnp_old->fqslock);
2348 if (ret)
2349 return;
2350 rnp_old = rnp;
2351 }
2352 /* rnp_old == rcu_get_root(), rnp == NULL. */
2353
2354 /* Reached the root of the rcu_node tree, acquire lock. */
2355 raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
2356 raw_spin_unlock(&rnp_old->fqslock);
2357 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
2358 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2359 return; /* Someone beat us to it. */
2360 }
2361 WRITE_ONCE(rcu_state.gp_flags,
2362 READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
2363 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2364 rcu_gp_kthread_wake();
2365}
2366EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
2367
2368// Workqueue handler for an RCU reader for kernels enforcing struct RCU
2369// grace periods.
2370static void strict_work_handler(struct work_struct *work)
2371{
2372 rcu_read_lock();
2373 rcu_read_unlock();
2374}
2375
2376/* Perform RCU core processing work for the current CPU. */
2377static __latent_entropy void rcu_core(void)
2378{
2379 unsigned long flags;
2380 struct rcu_data *rdp = raw_cpu_ptr(&rcu_data);
2381 struct rcu_node *rnp = rdp->mynode;
2382 /*
2383 * On RT rcu_core() can be preempted when IRQs aren't disabled.
2384 * Therefore this function can race with concurrent NOCB (de-)offloading
2385 * on this CPU and the below condition must be considered volatile.
2386 * However if we race with:
2387 *
2388 * _ Offloading: In the worst case we accelerate or process callbacks
2389 * concurrently with NOCB kthreads. We are guaranteed to
2390 * call rcu_nocb_lock() if that happens.
2391 *
2392 * _ Deoffloading: In the worst case we miss callbacks acceleration or
2393 * processing. This is fine because the early stage
2394 * of deoffloading invokes rcu_core() after setting
2395 * SEGCBLIST_RCU_CORE. So we guarantee that we'll process
2396 * what could have been dismissed without the need to wait
2397 * for the next rcu_pending() check in the next jiffy.
2398 */
2399 const bool do_batch = !rcu_segcblist_completely_offloaded(rsclp: &rdp->cblist);
2400
2401 if (cpu_is_offline(smp_processor_id()))
2402 return;
2403 trace_rcu_utilization(TPS("Start RCU core"));
2404 WARN_ON_ONCE(!rdp->beenonline);
2405
2406 /* Report any deferred quiescent states if preemption enabled. */
2407 if (IS_ENABLED(CONFIG_PREEMPT_COUNT) && (!(preempt_count() & PREEMPT_MASK))) {
2408 rcu_preempt_deferred_qs(current);
2409 } else if (rcu_preempt_need_deferred_qs(current)) {
2410 set_tsk_need_resched(current);
2411 set_preempt_need_resched();
2412 }
2413
2414 /* Update RCU state based on any recent quiescent states. */
2415 rcu_check_quiescent_state(rdp);
2416
2417 /* No grace period and unregistered callbacks? */
2418 if (!rcu_gp_in_progress() &&
2419 rcu_segcblist_is_enabled(rsclp: &rdp->cblist) && do_batch) {
2420 rcu_nocb_lock_irqsave(rdp, flags);
2421 if (!rcu_segcblist_restempty(rsclp: &rdp->cblist, RCU_NEXT_READY_TAIL))
2422 rcu_accelerate_cbs_unlocked(rnp, rdp);
2423 rcu_nocb_unlock_irqrestore(rdp, flags);
2424 }
2425
2426 rcu_check_gp_start_stall(rnp, rdp, gpssdelay: rcu_jiffies_till_stall_check());
2427
2428 /* If there are callbacks ready, invoke them. */
2429 if (do_batch && rcu_segcblist_ready_cbs(rsclp: &rdp->cblist) &&
2430 likely(READ_ONCE(rcu_scheduler_fully_active))) {
2431 rcu_do_batch(rdp);
2432 /* Re-invoke RCU core processing if there are callbacks remaining. */
2433 if (rcu_segcblist_ready_cbs(rsclp: &rdp->cblist))
2434 invoke_rcu_core();
2435 }
2436
2437 /* Do any needed deferred wakeups of rcuo kthreads. */
2438 do_nocb_deferred_wakeup(rdp);
2439 trace_rcu_utilization(TPS("End RCU core"));
2440
2441 // If strict GPs, schedule an RCU reader in a clean environment.
2442 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
2443 queue_work_on(cpu: rdp->cpu, wq: rcu_gp_wq, work: &rdp->strict_work);
2444}
2445
2446static void rcu_core_si(struct softirq_action *h)
2447{
2448 rcu_core();
2449}
2450
2451static void rcu_wake_cond(struct task_struct *t, int status)
2452{
2453 /*
2454 * If the thread is yielding, only wake it when this
2455 * is invoked from idle
2456 */
2457 if (t && (status != RCU_KTHREAD_YIELDING || is_idle_task(current)))
2458 wake_up_process(tsk: t);
2459}
2460
2461static void invoke_rcu_core_kthread(void)
2462{
2463 struct task_struct *t;
2464 unsigned long flags;
2465
2466 local_irq_save(flags);
2467 __this_cpu_write(rcu_data.rcu_cpu_has_work, 1);
2468 t = __this_cpu_read(rcu_data.rcu_cpu_kthread_task);
2469 if (t != NULL && t != current)
2470 rcu_wake_cond(t, __this_cpu_read(rcu_data.rcu_cpu_kthread_status));
2471 local_irq_restore(flags);
2472}
2473
2474/*
2475 * Wake up this CPU's rcuc kthread to do RCU core processing.
2476 */
2477static void invoke_rcu_core(void)
2478{
2479 if (!cpu_online(smp_processor_id()))
2480 return;
2481 if (use_softirq)
2482 raise_softirq(nr: RCU_SOFTIRQ);
2483 else
2484 invoke_rcu_core_kthread();
2485}
2486
2487static void rcu_cpu_kthread_park(unsigned int cpu)
2488{
2489 per_cpu(rcu_data.rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
2490}
2491
2492static int rcu_cpu_kthread_should_run(unsigned int cpu)
2493{
2494 return __this_cpu_read(rcu_data.rcu_cpu_has_work);
2495}
2496
2497/*
2498 * Per-CPU kernel thread that invokes RCU callbacks. This replaces
2499 * the RCU softirq used in configurations of RCU that do not support RCU
2500 * priority boosting.
2501 */
2502static void rcu_cpu_kthread(unsigned int cpu)
2503{
2504 unsigned int *statusp = this_cpu_ptr(&rcu_data.rcu_cpu_kthread_status);
2505 char work, *workp = this_cpu_ptr(&rcu_data.rcu_cpu_has_work);
2506 unsigned long *j = this_cpu_ptr(&rcu_data.rcuc_activity);
2507 int spincnt;
2508
2509 trace_rcu_utilization(TPS("Start CPU kthread@rcu_run"));
2510 for (spincnt = 0; spincnt < 10; spincnt++) {
2511 WRITE_ONCE(*j, jiffies);
2512 local_bh_disable();
2513 *statusp = RCU_KTHREAD_RUNNING;
2514 local_irq_disable();
2515 work = *workp;
2516 WRITE_ONCE(*workp, 0);
2517 local_irq_enable();
2518 if (work)
2519 rcu_core();
2520 local_bh_enable();
2521 if (!READ_ONCE(*workp)) {
2522 trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
2523 *statusp = RCU_KTHREAD_WAITING;
2524 return;
2525 }
2526 }
2527 *statusp = RCU_KTHREAD_YIELDING;
2528 trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
2529 schedule_timeout_idle(timeout: 2);
2530 trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
2531 *statusp = RCU_KTHREAD_WAITING;
2532 WRITE_ONCE(*j, jiffies);
2533}
2534
2535static struct smp_hotplug_thread rcu_cpu_thread_spec = {
2536 .store = &rcu_data.rcu_cpu_kthread_task,
2537 .thread_should_run = rcu_cpu_kthread_should_run,
2538 .thread_fn = rcu_cpu_kthread,
2539 .thread_comm = "rcuc/%u",
2540 .setup = rcu_cpu_kthread_setup,
2541 .park = rcu_cpu_kthread_park,
2542};
2543
2544/*
2545 * Spawn per-CPU RCU core processing kthreads.
2546 */
2547static int __init rcu_spawn_core_kthreads(void)
2548{
2549 int cpu;
2550
2551 for_each_possible_cpu(cpu)
2552 per_cpu(rcu_data.rcu_cpu_has_work, cpu) = 0;
2553 if (use_softirq)
2554 return 0;
2555 WARN_ONCE(smpboot_register_percpu_thread(&rcu_cpu_thread_spec),
2556 "%s: Could not start rcuc kthread, OOM is now expected behavior\n", __func__);
2557 return 0;
2558}
2559
2560/*
2561 * Handle any core-RCU processing required by a call_rcu() invocation.
2562 */
2563static void __call_rcu_core(struct rcu_data *rdp, struct rcu_head *head,
2564 unsigned long flags)
2565{
2566 /*
2567 * If called from an extended quiescent state, invoke the RCU
2568 * core in order to force a re-evaluation of RCU's idleness.
2569 */
2570 if (!rcu_is_watching())
2571 invoke_rcu_core();
2572
2573 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2574 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2575 return;
2576
2577 /*
2578 * Force the grace period if too many callbacks or too long waiting.
2579 * Enforce hysteresis, and don't invoke rcu_force_quiescent_state()
2580 * if some other CPU has recently done so. Also, don't bother
2581 * invoking rcu_force_quiescent_state() if the newly enqueued callback
2582 * is the only one waiting for a grace period to complete.
2583 */
2584 if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
2585 rdp->qlen_last_fqs_check + qhimark)) {
2586
2587 /* Are we ignoring a completed grace period? */
2588 note_gp_changes(rdp);
2589
2590 /* Start a new grace period if one not already started. */
2591 if (!rcu_gp_in_progress()) {
2592 rcu_accelerate_cbs_unlocked(rnp: rdp->mynode, rdp);
2593 } else {
2594 /* Give the grace period a kick. */
2595 rdp->blimit = DEFAULT_MAX_RCU_BLIMIT;
2596 if (READ_ONCE(rcu_state.n_force_qs) == rdp->n_force_qs_snap &&
2597 rcu_segcblist_first_pend_cb(rsclp: &rdp->cblist) != head)
2598 rcu_force_quiescent_state();
2599 rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs);
2600 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(rsclp: &rdp->cblist);
2601 }
2602 }
2603}
2604
2605/*
2606 * RCU callback function to leak a callback.
2607 */
2608static void rcu_leak_callback(struct rcu_head *rhp)
2609{
2610}
2611
2612/*
2613 * Check and if necessary update the leaf rcu_node structure's
2614 * ->cbovldmask bit corresponding to the current CPU based on that CPU's
2615 * number of queued RCU callbacks. The caller must hold the leaf rcu_node
2616 * structure's ->lock.
2617 */
2618static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp)
2619{
2620 raw_lockdep_assert_held_rcu_node(rnp);
2621 if (qovld_calc <= 0)
2622 return; // Early boot and wildcard value set.
2623 if (rcu_segcblist_n_cbs(rsclp: &rdp->cblist) >= qovld_calc)
2624 WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask | rdp->grpmask);
2625 else
2626 WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask & ~rdp->grpmask);
2627}
2628
2629/*
2630 * Check and if necessary update the leaf rcu_node structure's
2631 * ->cbovldmask bit corresponding to the current CPU based on that CPU's
2632 * number of queued RCU callbacks. No locks need be held, but the
2633 * caller must have disabled interrupts.
2634 *
2635 * Note that this function ignores the possibility that there are a lot
2636 * of callbacks all of which have already seen the end of their respective
2637 * grace periods. This omission is due to the need for no-CBs CPUs to
2638 * be holding ->nocb_lock to do this check, which is too heavy for a
2639 * common-case operation.
2640 */
2641static void check_cb_ovld(struct rcu_data *rdp)
2642{
2643 struct rcu_node *const rnp = rdp->mynode;
2644
2645 if (qovld_calc <= 0 ||
2646 ((rcu_segcblist_n_cbs(rsclp: &rdp->cblist) >= qovld_calc) ==
2647 !!(READ_ONCE(rnp->cbovldmask) & rdp->grpmask)))
2648 return; // Early boot wildcard value or already set correctly.
2649 raw_spin_lock_rcu_node(rnp);
2650 check_cb_ovld_locked(rdp, rnp);
2651 raw_spin_unlock_rcu_node(rnp);
2652}
2653
2654static void
2655__call_rcu_common(struct rcu_head *head, rcu_callback_t func, bool lazy_in)
2656{
2657 static atomic_t doublefrees;
2658 unsigned long flags;
2659 bool lazy;
2660 struct rcu_data *rdp;
2661 bool was_alldone;
2662
2663 /* Misaligned rcu_head! */
2664 WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
2665
2666 if (debug_rcu_head_queue(head)) {
2667 /*
2668 * Probable double call_rcu(), so leak the callback.
2669 * Use rcu:rcu_callback trace event to find the previous
2670 * time callback was passed to call_rcu().
2671 */
2672 if (atomic_inc_return(v: &doublefrees) < 4) {
2673 pr_err("%s(): Double-freed CB %p->%pS()!!! ", __func__, head, head->func);
2674 mem_dump_obj(object: head);
2675 }
2676 WRITE_ONCE(head->func, rcu_leak_callback);
2677 return;
2678 }
2679 head->func = func;
2680 head->next = NULL;
2681 kasan_record_aux_stack_noalloc(ptr: head);
2682 local_irq_save(flags);
2683 rdp = this_cpu_ptr(&rcu_data);
2684 lazy = lazy_in && !rcu_async_should_hurry();
2685
2686 /* Add the callback to our list. */
2687 if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist))) {
2688 // This can trigger due to call_rcu() from offline CPU:
2689 WARN_ON_ONCE(rcu_scheduler_active != RCU_SCHEDULER_INACTIVE);
2690 WARN_ON_ONCE(!rcu_is_watching());
2691 // Very early boot, before rcu_init(). Initialize if needed
2692 // and then drop through to queue the callback.
2693 if (rcu_segcblist_empty(rsclp: &rdp->cblist))
2694 rcu_segcblist_init(rsclp: &rdp->cblist);
2695 }
2696
2697 check_cb_ovld(rdp);
2698 if (rcu_nocb_try_bypass(rdp, rhp: head, was_alldone: &was_alldone, flags, lazy))
2699 return; // Enqueued onto ->nocb_bypass, so just leave.
2700 // If no-CBs CPU gets here, rcu_nocb_try_bypass() acquired ->nocb_lock.
2701 rcu_segcblist_enqueue(rsclp: &rdp->cblist, rhp: head);
2702 if (__is_kvfree_rcu_offset((unsigned long)func))
2703 trace_rcu_kvfree_callback(rcuname: rcu_state.name, rhp: head,
2704 offset: (unsigned long)func,
2705 qlen: rcu_segcblist_n_cbs(rsclp: &rdp->cblist));
2706 else
2707 trace_rcu_callback(rcuname: rcu_state.name, rhp: head,
2708 qlen: rcu_segcblist_n_cbs(rsclp: &rdp->cblist));
2709
2710 trace_rcu_segcb_stats(rs: &rdp->cblist, TPS("SegCBQueued"));
2711
2712 /* Go handle any RCU core processing required. */
2713 if (unlikely(rcu_rdp_is_offloaded(rdp))) {
2714 __call_rcu_nocb_wake(rdp, was_empty: was_alldone, flags); /* unlocks */
2715 } else {
2716 __call_rcu_core(rdp, head, flags);
2717 local_irq_restore(flags);
2718 }
2719}
2720
2721#ifdef CONFIG_RCU_LAZY
2722/**
2723 * call_rcu_hurry() - Queue RCU callback for invocation after grace period, and
2724 * flush all lazy callbacks (including the new one) to the main ->cblist while
2725 * doing so.
2726 *
2727 * @head: structure to be used for queueing the RCU updates.
2728 * @func: actual callback function to be invoked after the grace period
2729 *
2730 * The callback function will be invoked some time after a full grace
2731 * period elapses, in other words after all pre-existing RCU read-side
2732 * critical sections have completed.
2733 *
2734 * Use this API instead of call_rcu() if you don't want the callback to be
2735 * invoked after very long periods of time, which can happen on systems without
2736 * memory pressure and on systems which are lightly loaded or mostly idle.
2737 * This function will cause callbacks to be invoked sooner than later at the
2738 * expense of extra power. Other than that, this function is identical to, and
2739 * reuses call_rcu()'s logic. Refer to call_rcu() for more details about memory
2740 * ordering and other functionality.
2741 */
2742void call_rcu_hurry(struct rcu_head *head, rcu_callback_t func)
2743{
2744 __call_rcu_common(head, func, lazy_in: false);
2745}
2746EXPORT_SYMBOL_GPL(call_rcu_hurry);
2747#endif
2748
2749/**
2750 * call_rcu() - Queue an RCU callback for invocation after a grace period.
2751 * By default the callbacks are 'lazy' and are kept hidden from the main
2752 * ->cblist to prevent starting of grace periods too soon.
2753 * If you desire grace periods to start very soon, use call_rcu_hurry().
2754 *
2755 * @head: structure to be used for queueing the RCU updates.
2756 * @func: actual callback function to be invoked after the grace period
2757 *
2758 * The callback function will be invoked some time after a full grace
2759 * period elapses, in other words after all pre-existing RCU read-side
2760 * critical sections have completed. However, the callback function
2761 * might well execute concurrently with RCU read-side critical sections
2762 * that started after call_rcu() was invoked.
2763 *
2764 * RCU read-side critical sections are delimited by rcu_read_lock()
2765 * and rcu_read_unlock(), and may be nested. In addition, but only in
2766 * v5.0 and later, regions of code across which interrupts, preemption,
2767 * or softirqs have been disabled also serve as RCU read-side critical
2768 * sections. This includes hardware interrupt handlers, softirq handlers,
2769 * and NMI handlers.
2770 *
2771 * Note that all CPUs must agree that the grace period extended beyond
2772 * all pre-existing RCU read-side critical section. On systems with more
2773 * than one CPU, this means that when "func()" is invoked, each CPU is
2774 * guaranteed to have executed a full memory barrier since the end of its
2775 * last RCU read-side critical section whose beginning preceded the call
2776 * to call_rcu(). It also means that each CPU executing an RCU read-side
2777 * critical section that continues beyond the start of "func()" must have
2778 * executed a memory barrier after the call_rcu() but before the beginning
2779 * of that RCU read-side critical section. Note that these guarantees
2780 * include CPUs that are offline, idle, or executing in user mode, as
2781 * well as CPUs that are executing in the kernel.
2782 *
2783 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
2784 * resulting RCU callback function "func()", then both CPU A and CPU B are
2785 * guaranteed to execute a full memory barrier during the time interval
2786 * between the call to call_rcu() and the invocation of "func()" -- even
2787 * if CPU A and CPU B are the same CPU (but again only if the system has
2788 * more than one CPU).
2789 *
2790 * Implementation of these memory-ordering guarantees is described here:
2791 * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst.
2792 */
2793void call_rcu(struct rcu_head *head, rcu_callback_t func)
2794{
2795 __call_rcu_common(head, func, IS_ENABLED(CONFIG_RCU_LAZY));
2796}
2797EXPORT_SYMBOL_GPL(call_rcu);
2798
2799/* Maximum number of jiffies to wait before draining a batch. */
2800#define KFREE_DRAIN_JIFFIES (5 * HZ)
2801#define KFREE_N_BATCHES 2
2802#define FREE_N_CHANNELS 2
2803
2804/**
2805 * struct kvfree_rcu_bulk_data - single block to store kvfree_rcu() pointers
2806 * @list: List node. All blocks are linked between each other
2807 * @gp_snap: Snapshot of RCU state for objects placed to this bulk
2808 * @nr_records: Number of active pointers in the array
2809 * @records: Array of the kvfree_rcu() pointers
2810 */
2811struct kvfree_rcu_bulk_data {
2812 struct list_head list;
2813 struct rcu_gp_oldstate gp_snap;
2814 unsigned long nr_records;
2815 void *records[];
2816};
2817
2818/*
2819 * This macro defines how many entries the "records" array
2820 * will contain. It is based on the fact that the size of
2821 * kvfree_rcu_bulk_data structure becomes exactly one page.
2822 */
2823#define KVFREE_BULK_MAX_ENTR \
2824 ((PAGE_SIZE - sizeof(struct kvfree_rcu_bulk_data)) / sizeof(void *))
2825
2826/**
2827 * struct kfree_rcu_cpu_work - single batch of kfree_rcu() requests
2828 * @rcu_work: Let queue_rcu_work() invoke workqueue handler after grace period
2829 * @head_free: List of kfree_rcu() objects waiting for a grace period
2830 * @head_free_gp_snap: Grace-period snapshot to check for attempted premature frees.
2831 * @bulk_head_free: Bulk-List of kvfree_rcu() objects waiting for a grace period
2832 * @krcp: Pointer to @kfree_rcu_cpu structure
2833 */
2834
2835struct kfree_rcu_cpu_work {
2836 struct rcu_work rcu_work;
2837 struct rcu_head *head_free;
2838 struct rcu_gp_oldstate head_free_gp_snap;
2839 struct list_head bulk_head_free[FREE_N_CHANNELS];
2840 struct kfree_rcu_cpu *krcp;
2841};
2842
2843/**
2844 * struct kfree_rcu_cpu - batch up kfree_rcu() requests for RCU grace period
2845 * @head: List of kfree_rcu() objects not yet waiting for a grace period
2846 * @head_gp_snap: Snapshot of RCU state for objects placed to "@head"
2847 * @bulk_head: Bulk-List of kvfree_rcu() objects not yet waiting for a grace period
2848 * @krw_arr: Array of batches of kfree_rcu() objects waiting for a grace period
2849 * @lock: Synchronize access to this structure
2850 * @monitor_work: Promote @head to @head_free after KFREE_DRAIN_JIFFIES
2851 * @initialized: The @rcu_work fields have been initialized
2852 * @head_count: Number of objects in rcu_head singular list
2853 * @bulk_count: Number of objects in bulk-list
2854 * @bkvcache:
2855 * A simple cache list that contains objects for reuse purpose.
2856 * In order to save some per-cpu space the list is singular.
2857 * Even though it is lockless an access has to be protected by the
2858 * per-cpu lock.
2859 * @page_cache_work: A work to refill the cache when it is empty
2860 * @backoff_page_cache_fill: Delay cache refills
2861 * @work_in_progress: Indicates that page_cache_work is running
2862 * @hrtimer: A hrtimer for scheduling a page_cache_work
2863 * @nr_bkv_objs: number of allocated objects at @bkvcache.
2864 *
2865 * This is a per-CPU structure. The reason that it is not included in
2866 * the rcu_data structure is to permit this code to be extracted from
2867 * the RCU files. Such extraction could allow further optimization of
2868 * the interactions with the slab allocators.
2869 */
2870struct kfree_rcu_cpu {
2871 // Objects queued on a linked list
2872 // through their rcu_head structures.
2873 struct rcu_head *head;
2874 unsigned long head_gp_snap;
2875 atomic_t head_count;
2876
2877 // Objects queued on a bulk-list.
2878 struct list_head bulk_head[FREE_N_CHANNELS];
2879 atomic_t bulk_count[FREE_N_CHANNELS];
2880
2881 struct kfree_rcu_cpu_work krw_arr[KFREE_N_BATCHES];
2882 raw_spinlock_t lock;
2883 struct delayed_work monitor_work;
2884 bool initialized;
2885
2886 struct delayed_work page_cache_work;
2887 atomic_t backoff_page_cache_fill;
2888 atomic_t work_in_progress;
2889 struct hrtimer hrtimer;
2890
2891 struct llist_head bkvcache;
2892 int nr_bkv_objs;
2893};
2894
2895static DEFINE_PER_CPU(struct kfree_rcu_cpu, krc) = {
2896 .lock = __RAW_SPIN_LOCK_UNLOCKED(krc.lock),
2897};
2898
2899static __always_inline void
2900debug_rcu_bhead_unqueue(struct kvfree_rcu_bulk_data *bhead)
2901{
2902#ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
2903 int i;
2904
2905 for (i = 0; i < bhead->nr_records; i++)
2906 debug_rcu_head_unqueue(head: (struct rcu_head *)(bhead->records[i]));
2907#endif
2908}
2909
2910static inline struct kfree_rcu_cpu *
2911krc_this_cpu_lock(unsigned long *flags)
2912{
2913 struct kfree_rcu_cpu *krcp;
2914
2915 local_irq_save(*flags); // For safely calling this_cpu_ptr().
2916 krcp = this_cpu_ptr(&krc);
2917 raw_spin_lock(&krcp->lock);
2918
2919 return krcp;
2920}
2921
2922static inline void
2923krc_this_cpu_unlock(struct kfree_rcu_cpu *krcp, unsigned long flags)
2924{
2925 raw_spin_unlock_irqrestore(&krcp->lock, flags);
2926}
2927
2928static inline struct kvfree_rcu_bulk_data *
2929get_cached_bnode(struct kfree_rcu_cpu *krcp)
2930{
2931 if (!krcp->nr_bkv_objs)
2932 return NULL;
2933
2934 WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs - 1);
2935 return (struct kvfree_rcu_bulk_data *)
2936 llist_del_first(head: &krcp->bkvcache);
2937}
2938
2939static inline bool
2940put_cached_bnode(struct kfree_rcu_cpu *krcp,
2941 struct kvfree_rcu_bulk_data *bnode)
2942{
2943 // Check the limit.
2944 if (krcp->nr_bkv_objs >= rcu_min_cached_objs)
2945 return false;
2946
2947 llist_add(new: (struct llist_node *) bnode, head: &krcp->bkvcache);
2948 WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs + 1);
2949 return true;
2950}
2951
2952static int
2953drain_page_cache(struct kfree_rcu_cpu *krcp)
2954{
2955 unsigned long flags;
2956 struct llist_node *page_list, *pos, *n;
2957 int freed = 0;
2958
2959 if (!rcu_min_cached_objs)
2960 return 0;
2961
2962 raw_spin_lock_irqsave(&krcp->lock, flags);
2963 page_list = llist_del_all(head: &krcp->bkvcache);
2964 WRITE_ONCE(krcp->nr_bkv_objs, 0);
2965 raw_spin_unlock_irqrestore(&krcp->lock, flags);
2966
2967 llist_for_each_safe(pos, n, page_list) {
2968 free_page((unsigned long)pos);
2969 freed++;
2970 }
2971
2972 return freed;
2973}
2974
2975static void
2976kvfree_rcu_bulk(struct kfree_rcu_cpu *krcp,
2977 struct kvfree_rcu_bulk_data *bnode, int idx)
2978{
2979 unsigned long flags;
2980 int i;
2981
2982 if (!WARN_ON_ONCE(!poll_state_synchronize_rcu_full(&bnode->gp_snap))) {
2983 debug_rcu_bhead_unqueue(bhead: bnode);
2984 rcu_lock_acquire(map: &rcu_callback_map);
2985 if (idx == 0) { // kmalloc() / kfree().
2986 trace_rcu_invoke_kfree_bulk_callback(
2987 rcuname: rcu_state.name, nr_records: bnode->nr_records,
2988 p: bnode->records);
2989
2990 kfree_bulk(size: bnode->nr_records, p: bnode->records);
2991 } else { // vmalloc() / vfree().
2992 for (i = 0; i < bnode->nr_records; i++) {
2993 trace_rcu_invoke_kvfree_callback(
2994 rcuname: rcu_state.name, rhp: bnode->records[i], offset: 0);
2995
2996 vfree(addr: bnode->records[i]);
2997 }
2998 }
2999 rcu_lock_release(map: &rcu_callback_map);
3000 }
3001
3002 raw_spin_lock_irqsave(&krcp->lock, flags);
3003 if (put_cached_bnode(krcp, bnode))
3004 bnode = NULL;
3005 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3006
3007 if (bnode)
3008 free_page((unsigned long) bnode);
3009
3010 cond_resched_tasks_rcu_qs();
3011}
3012
3013static void
3014kvfree_rcu_list(struct rcu_head *head)
3015{
3016 struct rcu_head *next;
3017
3018 for (; head; head = next) {
3019 void *ptr = (void *) head->func;
3020 unsigned long offset = (void *) head - ptr;
3021
3022 next = head->next;
3023 debug_rcu_head_unqueue(head: (struct rcu_head *)ptr);
3024 rcu_lock_acquire(map: &rcu_callback_map);
3025 trace_rcu_invoke_kvfree_callback(rcuname: rcu_state.name, rhp: head, offset);
3026
3027 if (!WARN_ON_ONCE(!__is_kvfree_rcu_offset(offset)))
3028 kvfree(addr: ptr);
3029
3030 rcu_lock_release(map: &rcu_callback_map);
3031 cond_resched_tasks_rcu_qs();
3032 }
3033}
3034
3035/*
3036 * This function is invoked in workqueue context after a grace period.
3037 * It frees all the objects queued on ->bulk_head_free or ->head_free.
3038 */
3039static void kfree_rcu_work(struct work_struct *work)
3040{
3041 unsigned long flags;
3042 struct kvfree_rcu_bulk_data *bnode, *n;
3043 struct list_head bulk_head[FREE_N_CHANNELS];
3044 struct rcu_head *head;
3045 struct kfree_rcu_cpu *krcp;
3046 struct kfree_rcu_cpu_work *krwp;
3047 struct rcu_gp_oldstate head_gp_snap;
3048 int i;
3049
3050 krwp = container_of(to_rcu_work(work),
3051 struct kfree_rcu_cpu_work, rcu_work);
3052 krcp = krwp->krcp;
3053
3054 raw_spin_lock_irqsave(&krcp->lock, flags);
3055 // Channels 1 and 2.
3056 for (i = 0; i < FREE_N_CHANNELS; i++)
3057 list_replace_init(old: &krwp->bulk_head_free[i], new: &bulk_head[i]);
3058
3059 // Channel 3.
3060 head = krwp->head_free;
3061 krwp->head_free = NULL;
3062 head_gp_snap = krwp->head_free_gp_snap;
3063 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3064
3065 // Handle the first two channels.
3066 for (i = 0; i < FREE_N_CHANNELS; i++) {
3067 // Start from the tail page, so a GP is likely passed for it.
3068 list_for_each_entry_safe(bnode, n, &bulk_head[i], list)
3069 kvfree_rcu_bulk(krcp, bnode, idx: i);
3070 }
3071
3072 /*
3073 * This is used when the "bulk" path can not be used for the
3074 * double-argument of kvfree_rcu(). This happens when the
3075 * page-cache is empty, which means that objects are instead
3076 * queued on a linked list through their rcu_head structures.
3077 * This list is named "Channel 3".
3078 */
3079 if (head && !WARN_ON_ONCE(!poll_state_synchronize_rcu_full(&head_gp_snap)))
3080 kvfree_rcu_list(head);
3081}
3082
3083static bool
3084need_offload_krc(struct kfree_rcu_cpu *krcp)
3085{
3086 int i;
3087
3088 for (i = 0; i < FREE_N_CHANNELS; i++)
3089 if (!list_empty(head: &krcp->bulk_head[i]))
3090 return true;
3091
3092 return !!READ_ONCE(krcp->head);
3093}
3094
3095static bool
3096need_wait_for_krwp_work(struct kfree_rcu_cpu_work *krwp)
3097{
3098 int i;
3099
3100 for (i = 0; i < FREE_N_CHANNELS; i++)
3101 if (!list_empty(head: &krwp->bulk_head_free[i]))
3102 return true;
3103
3104 return !!krwp->head_free;
3105}
3106
3107static int krc_count(struct kfree_rcu_cpu *krcp)
3108{
3109 int sum = atomic_read(v: &krcp->head_count);
3110 int i;
3111
3112 for (i = 0; i < FREE_N_CHANNELS; i++)
3113 sum += atomic_read(v: &krcp->bulk_count[i]);
3114
3115 return sum;
3116}
3117
3118static void
3119schedule_delayed_monitor_work(struct kfree_rcu_cpu *krcp)
3120{
3121 long delay, delay_left;
3122
3123 delay = krc_count(krcp) >= KVFREE_BULK_MAX_ENTR ? 1:KFREE_DRAIN_JIFFIES;
3124 if (delayed_work_pending(&krcp->monitor_work)) {
3125 delay_left = krcp->monitor_work.timer.expires - jiffies;
3126 if (delay < delay_left)
3127 mod_delayed_work(wq: system_wq, dwork: &krcp->monitor_work, delay);
3128 return;
3129 }
3130 queue_delayed_work(wq: system_wq, dwork: &krcp->monitor_work, delay);
3131}
3132
3133static void
3134kvfree_rcu_drain_ready(struct kfree_rcu_cpu *krcp)
3135{
3136 struct list_head bulk_ready[FREE_N_CHANNELS];
3137 struct kvfree_rcu_bulk_data *bnode, *n;
3138 struct rcu_head *head_ready = NULL;
3139 unsigned long flags;
3140 int i;
3141
3142 raw_spin_lock_irqsave(&krcp->lock, flags);
3143 for (i = 0; i < FREE_N_CHANNELS; i++) {
3144 INIT_LIST_HEAD(list: &bulk_ready[i]);
3145
3146 list_for_each_entry_safe_reverse(bnode, n, &krcp->bulk_head[i], list) {
3147 if (!poll_state_synchronize_rcu_full(rgosp: &bnode->gp_snap))
3148 break;
3149
3150 atomic_sub(i: bnode->nr_records, v: &krcp->bulk_count[i]);
3151 list_move(list: &bnode->list, head: &bulk_ready[i]);
3152 }
3153 }
3154
3155 if (krcp->head && poll_state_synchronize_rcu(oldstate: krcp->head_gp_snap)) {
3156 head_ready = krcp->head;
3157 atomic_set(v: &krcp->head_count, i: 0);
3158 WRITE_ONCE(krcp->head, NULL);
3159 }
3160 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3161
3162 for (i = 0; i < FREE_N_CHANNELS; i++) {
3163 list_for_each_entry_safe(bnode, n, &bulk_ready[i], list)
3164 kvfree_rcu_bulk(krcp, bnode, idx: i);
3165 }
3166
3167 if (head_ready)
3168 kvfree_rcu_list(head: head_ready);
3169}
3170
3171/*
3172 * This function is invoked after the KFREE_DRAIN_JIFFIES timeout.
3173 */
3174static void kfree_rcu_monitor(struct work_struct *work)
3175{
3176 struct kfree_rcu_cpu *krcp = container_of(work,
3177 struct kfree_rcu_cpu, monitor_work.work);
3178 unsigned long flags;
3179 int i, j;
3180
3181 // Drain ready for reclaim.
3182 kvfree_rcu_drain_ready(krcp);
3183
3184 raw_spin_lock_irqsave(&krcp->lock, flags);
3185
3186 // Attempt to start a new batch.
3187 for (i = 0; i < KFREE_N_BATCHES; i++) {
3188 struct kfree_rcu_cpu_work *krwp = &(krcp->krw_arr[i]);
3189
3190 // Try to detach bulk_head or head and attach it, only when
3191 // all channels are free. Any channel is not free means at krwp
3192 // there is on-going rcu work to handle krwp's free business.
3193 if (need_wait_for_krwp_work(krwp))
3194 continue;
3195
3196 // kvfree_rcu_drain_ready() might handle this krcp, if so give up.
3197 if (need_offload_krc(krcp)) {
3198 // Channel 1 corresponds to the SLAB-pointer bulk path.
3199 // Channel 2 corresponds to vmalloc-pointer bulk path.
3200 for (j = 0; j < FREE_N_CHANNELS; j++) {
3201 if (list_empty(head: &krwp->bulk_head_free[j])) {
3202 atomic_set(v: &krcp->bulk_count[j], i: 0);
3203 list_replace_init(old: &krcp->bulk_head[j],
3204 new: &krwp->bulk_head_free[j]);
3205 }
3206 }
3207
3208 // Channel 3 corresponds to both SLAB and vmalloc
3209 // objects queued on the linked list.
3210 if (!krwp->head_free) {
3211 krwp->head_free = krcp->head;
3212 get_state_synchronize_rcu_full(rgosp: &krwp->head_free_gp_snap);
3213 atomic_set(v: &krcp->head_count, i: 0);
3214 WRITE_ONCE(krcp->head, NULL);
3215 }
3216
3217 // One work is per one batch, so there are three
3218 // "free channels", the batch can handle. It can
3219 // be that the work is in the pending state when
3220 // channels have been detached following by each
3221 // other.
3222 queue_rcu_work(wq: system_wq, rwork: &krwp->rcu_work);
3223 }
3224 }
3225
3226 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3227
3228 // If there is nothing to detach, it means that our job is
3229 // successfully done here. In case of having at least one
3230 // of the channels that is still busy we should rearm the
3231 // work to repeat an attempt. Because previous batches are
3232 // still in progress.
3233 if (need_offload_krc(krcp))
3234 schedule_delayed_monitor_work(krcp);
3235}
3236
3237static enum hrtimer_restart
3238schedule_page_work_fn(struct hrtimer *t)
3239{
3240 struct kfree_rcu_cpu *krcp =
3241 container_of(t, struct kfree_rcu_cpu, hrtimer);
3242
3243 queue_delayed_work(wq: system_highpri_wq, dwork: &krcp->page_cache_work, delay: 0);
3244 return HRTIMER_NORESTART;
3245}
3246
3247static void fill_page_cache_func(struct work_struct *work)
3248{
3249 struct kvfree_rcu_bulk_data *bnode;
3250 struct kfree_rcu_cpu *krcp =
3251 container_of(work, struct kfree_rcu_cpu,
3252 page_cache_work.work);
3253 unsigned long flags;
3254 int nr_pages;
3255 bool pushed;
3256 int i;
3257
3258 nr_pages = atomic_read(v: &krcp->backoff_page_cache_fill) ?
3259 1 : rcu_min_cached_objs;
3260
3261 for (i = READ_ONCE(krcp->nr_bkv_objs); i < nr_pages; i++) {
3262 bnode = (struct kvfree_rcu_bulk_data *)
3263 __get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
3264
3265 if (!bnode)
3266 break;
3267
3268 raw_spin_lock_irqsave(&krcp->lock, flags);
3269 pushed = put_cached_bnode(krcp, bnode);
3270 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3271
3272 if (!pushed) {
3273 free_page((unsigned long) bnode);
3274 break;
3275 }
3276 }
3277
3278 atomic_set(v: &krcp->work_in_progress, i: 0);
3279 atomic_set(v: &krcp->backoff_page_cache_fill, i: 0);
3280}
3281
3282static void
3283run_page_cache_worker(struct kfree_rcu_cpu *krcp)
3284{
3285 // If cache disabled, bail out.
3286 if (!rcu_min_cached_objs)
3287 return;
3288
3289 if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING &&
3290 !atomic_xchg(v: &krcp->work_in_progress, new: 1)) {
3291 if (atomic_read(v: &krcp->backoff_page_cache_fill)) {
3292 queue_delayed_work(wq: system_wq,
3293 dwork: &krcp->page_cache_work,
3294 delay: msecs_to_jiffies(m: rcu_delay_page_cache_fill_msec));
3295 } else {
3296 hrtimer_init(timer: &krcp->hrtimer, CLOCK_MONOTONIC, mode: HRTIMER_MODE_REL);
3297 krcp->hrtimer.function = schedule_page_work_fn;
3298 hrtimer_start(timer: &krcp->hrtimer, tim: 0, mode: HRTIMER_MODE_REL);
3299 }
3300 }
3301}
3302
3303// Record ptr in a page managed by krcp, with the pre-krc_this_cpu_lock()
3304// state specified by flags. If can_alloc is true, the caller must
3305// be schedulable and not be holding any locks or mutexes that might be
3306// acquired by the memory allocator or anything that it might invoke.
3307// Returns true if ptr was successfully recorded, else the caller must
3308// use a fallback.
3309static inline bool
3310add_ptr_to_bulk_krc_lock(struct kfree_rcu_cpu **krcp,
3311 unsigned long *flags, void *ptr, bool can_alloc)
3312{
3313 struct kvfree_rcu_bulk_data *bnode;
3314 int idx;
3315
3316 *krcp = krc_this_cpu_lock(flags);
3317 if (unlikely(!(*krcp)->initialized))
3318 return false;
3319
3320 idx = !!is_vmalloc_addr(x: ptr);
3321 bnode = list_first_entry_or_null(&(*krcp)->bulk_head[idx],
3322 struct kvfree_rcu_bulk_data, list);
3323
3324 /* Check if a new block is required. */
3325 if (!bnode || bnode->nr_records == KVFREE_BULK_MAX_ENTR) {
3326 bnode = get_cached_bnode(krcp: *krcp);
3327 if (!bnode && can_alloc) {
3328 krc_this_cpu_unlock(krcp: *krcp, flags: *flags);
3329
3330 // __GFP_NORETRY - allows a light-weight direct reclaim
3331 // what is OK from minimizing of fallback hitting point of
3332 // view. Apart of that it forbids any OOM invoking what is
3333 // also beneficial since we are about to release memory soon.
3334 //
3335 // __GFP_NOMEMALLOC - prevents from consuming of all the
3336 // memory reserves. Please note we have a fallback path.
3337 //
3338 // __GFP_NOWARN - it is supposed that an allocation can
3339 // be failed under low memory or high memory pressure
3340 // scenarios.
3341 bnode = (struct kvfree_rcu_bulk_data *)
3342 __get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
3343 raw_spin_lock_irqsave(&(*krcp)->lock, *flags);
3344 }
3345
3346 if (!bnode)
3347 return false;
3348
3349 // Initialize the new block and attach it.
3350 bnode->nr_records = 0;
3351 list_add(new: &bnode->list, head: &(*krcp)->bulk_head[idx]);
3352 }
3353
3354 // Finally insert and update the GP for this page.
3355 bnode->records[bnode->nr_records++] = ptr;
3356 get_state_synchronize_rcu_full(rgosp: &bnode->gp_snap);
3357 atomic_inc(v: &(*krcp)->bulk_count[idx]);
3358
3359 return true;
3360}
3361
3362/*
3363 * Queue a request for lazy invocation of the appropriate free routine
3364 * after a grace period. Please note that three paths are maintained,
3365 * two for the common case using arrays of pointers and a third one that
3366 * is used only when the main paths cannot be used, for example, due to
3367 * memory pressure.
3368 *
3369 * Each kvfree_call_rcu() request is added to a batch. The batch will be drained
3370 * every KFREE_DRAIN_JIFFIES number of jiffies. All the objects in the batch will
3371 * be free'd in workqueue context. This allows us to: batch requests together to
3372 * reduce the number of grace periods during heavy kfree_rcu()/kvfree_rcu() load.
3373 */
3374void kvfree_call_rcu(struct rcu_head *head, void *ptr)
3375{
3376 unsigned long flags;
3377 struct kfree_rcu_cpu *krcp;
3378 bool success;
3379
3380 /*
3381 * Please note there is a limitation for the head-less
3382 * variant, that is why there is a clear rule for such
3383 * objects: it can be used from might_sleep() context
3384 * only. For other places please embed an rcu_head to
3385 * your data.
3386 */
3387 if (!head)
3388 might_sleep();
3389
3390 // Queue the object but don't yet schedule the batch.
3391 if (debug_rcu_head_queue(head: ptr)) {
3392 // Probable double kfree_rcu(), just leak.
3393 WARN_ONCE(1, "%s(): Double-freed call. rcu_head %p\n",
3394 __func__, head);
3395
3396 // Mark as success and leave.
3397 return;
3398 }
3399
3400 kasan_record_aux_stack_noalloc(ptr);
3401 success = add_ptr_to_bulk_krc_lock(krcp: &krcp, flags: &flags, ptr, can_alloc: !head);
3402 if (!success) {
3403 run_page_cache_worker(krcp);
3404
3405 if (head == NULL)
3406 // Inline if kvfree_rcu(one_arg) call.
3407 goto unlock_return;
3408
3409 head->func = ptr;
3410 head->next = krcp->head;
3411 WRITE_ONCE(krcp->head, head);
3412 atomic_inc(v: &krcp->head_count);
3413
3414 // Take a snapshot for this krcp.
3415 krcp->head_gp_snap = get_state_synchronize_rcu();
3416 success = true;
3417 }
3418
3419 /*
3420 * The kvfree_rcu() caller considers the pointer freed at this point
3421 * and likely removes any references to it. Since the actual slab
3422 * freeing (and kmemleak_free()) is deferred, tell kmemleak to ignore
3423 * this object (no scanning or false positives reporting).
3424 */
3425 kmemleak_ignore(ptr);
3426
3427 // Set timer to drain after KFREE_DRAIN_JIFFIES.
3428 if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING)
3429 schedule_delayed_monitor_work(krcp);
3430
3431unlock_return:
3432 krc_this_cpu_unlock(krcp, flags);
3433
3434 /*
3435 * Inline kvfree() after synchronize_rcu(). We can do
3436 * it from might_sleep() context only, so the current
3437 * CPU can pass the QS state.
3438 */
3439 if (!success) {
3440 debug_rcu_head_unqueue(head: (struct rcu_head *) ptr);
3441 synchronize_rcu();
3442 kvfree(addr: ptr);
3443 }
3444}
3445EXPORT_SYMBOL_GPL(kvfree_call_rcu);
3446
3447static unsigned long
3448kfree_rcu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
3449{
3450 int cpu;
3451 unsigned long count = 0;
3452
3453 /* Snapshot count of all CPUs */
3454 for_each_possible_cpu(cpu) {
3455 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3456
3457 count += krc_count(krcp);
3458 count += READ_ONCE(krcp->nr_bkv_objs);
3459 atomic_set(v: &krcp->backoff_page_cache_fill, i: 1);
3460 }
3461
3462 return count == 0 ? SHRINK_EMPTY : count;
3463}
3464
3465static unsigned long
3466kfree_rcu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
3467{
3468 int cpu, freed = 0;
3469
3470 for_each_possible_cpu(cpu) {
3471 int count;
3472 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3473
3474 count = krc_count(krcp);
3475 count += drain_page_cache(krcp);
3476 kfree_rcu_monitor(work: &krcp->monitor_work.work);
3477
3478 sc->nr_to_scan -= count;
3479 freed += count;
3480
3481 if (sc->nr_to_scan <= 0)
3482 break;
3483 }
3484
3485 return freed == 0 ? SHRINK_STOP : freed;
3486}
3487
3488void __init kfree_rcu_scheduler_running(void)
3489{
3490 int cpu;
3491
3492 for_each_possible_cpu(cpu) {
3493 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3494
3495 if (need_offload_krc(krcp))
3496 schedule_delayed_monitor_work(krcp);
3497 }
3498}
3499
3500/*
3501 * During early boot, any blocking grace-period wait automatically
3502 * implies a grace period.
3503 *
3504 * Later on, this could in theory be the case for kernels built with
3505 * CONFIG_SMP=y && CONFIG_PREEMPTION=y running on a single CPU, but this
3506 * is not a common case. Furthermore, this optimization would cause
3507 * the rcu_gp_oldstate structure to expand by 50%, so this potential
3508 * grace-period optimization is ignored once the scheduler is running.
3509 */
3510static int rcu_blocking_is_gp(void)
3511{
3512 if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE) {
3513 might_sleep();
3514 return false;
3515 }
3516 return true;
3517}
3518
3519/**
3520 * synchronize_rcu - wait until a grace period has elapsed.
3521 *
3522 * Control will return to the caller some time after a full grace
3523 * period has elapsed, in other words after all currently executing RCU
3524 * read-side critical sections have completed. Note, however, that
3525 * upon return from synchronize_rcu(), the caller might well be executing
3526 * concurrently with new RCU read-side critical sections that began while
3527 * synchronize_rcu() was waiting.
3528 *
3529 * RCU read-side critical sections are delimited by rcu_read_lock()
3530 * and rcu_read_unlock(), and may be nested. In addition, but only in
3531 * v5.0 and later, regions of code across which interrupts, preemption,
3532 * or softirqs have been disabled also serve as RCU read-side critical
3533 * sections. This includes hardware interrupt handlers, softirq handlers,
3534 * and NMI handlers.
3535 *
3536 * Note that this guarantee implies further memory-ordering guarantees.
3537 * On systems with more than one CPU, when synchronize_rcu() returns,
3538 * each CPU is guaranteed to have executed a full memory barrier since
3539 * the end of its last RCU read-side critical section whose beginning
3540 * preceded the call to synchronize_rcu(). In addition, each CPU having
3541 * an RCU read-side critical section that extends beyond the return from
3542 * synchronize_rcu() is guaranteed to have executed a full memory barrier
3543 * after the beginning of synchronize_rcu() and before the beginning of
3544 * that RCU read-side critical section. Note that these guarantees include
3545 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3546 * that are executing in the kernel.
3547 *
3548 * Furthermore, if CPU A invoked synchronize_rcu(), which returned
3549 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3550 * to have executed a full memory barrier during the execution of
3551 * synchronize_rcu() -- even if CPU A and CPU B are the same CPU (but
3552 * again only if the system has more than one CPU).
3553 *
3554 * Implementation of these memory-ordering guarantees is described here:
3555 * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst.
3556 */
3557void synchronize_rcu(void)
3558{
3559 unsigned long flags;
3560 struct rcu_node *rnp;
3561
3562 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3563 lock_is_held(&rcu_lock_map) ||
3564 lock_is_held(&rcu_sched_lock_map),
3565 "Illegal synchronize_rcu() in RCU read-side critical section");
3566 if (!rcu_blocking_is_gp()) {
3567 if (rcu_gp_is_expedited())
3568 synchronize_rcu_expedited();
3569 else
3570 wait_rcu_gp(call_rcu_hurry);
3571 return;
3572 }
3573
3574 // Context allows vacuous grace periods.
3575 // Note well that this code runs with !PREEMPT && !SMP.
3576 // In addition, all code that advances grace periods runs at
3577 // process level. Therefore, this normal GP overlaps with other
3578 // normal GPs only by being fully nested within them, which allows
3579 // reuse of ->gp_seq_polled_snap.
3580 rcu_poll_gp_seq_start_unlocked(snap: &rcu_state.gp_seq_polled_snap);
3581 rcu_poll_gp_seq_end_unlocked(snap: &rcu_state.gp_seq_polled_snap);
3582
3583 // Update the normal grace-period counters to record
3584 // this grace period, but only those used by the boot CPU.
3585 // The rcu_scheduler_starting() will take care of the rest of
3586 // these counters.
3587 local_irq_save(flags);
3588 WARN_ON_ONCE(num_online_cpus() > 1);
3589 rcu_state.gp_seq += (1 << RCU_SEQ_CTR_SHIFT);
3590 for (rnp = this_cpu_ptr(&rcu_data)->mynode; rnp; rnp = rnp->parent)
3591 rnp->gp_seq_needed = rnp->gp_seq = rcu_state.gp_seq;
3592 local_irq_restore(flags);
3593}
3594EXPORT_SYMBOL_GPL(synchronize_rcu);
3595
3596/**
3597 * get_completed_synchronize_rcu_full - Return a full pre-completed polled state cookie
3598 * @rgosp: Place to put state cookie
3599 *
3600 * Stores into @rgosp a value that will always be treated by functions
3601 * like poll_state_synchronize_rcu_full() as a cookie whose grace period
3602 * has already completed.
3603 */
3604void get_completed_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
3605{
3606 rgosp->rgos_norm = RCU_GET_STATE_COMPLETED;
3607 rgosp->rgos_exp = RCU_GET_STATE_COMPLETED;
3608}
3609EXPORT_SYMBOL_GPL(get_completed_synchronize_rcu_full);
3610
3611/**
3612 * get_state_synchronize_rcu - Snapshot current RCU state
3613 *
3614 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3615 * or poll_state_synchronize_rcu() to determine whether or not a full
3616 * grace period has elapsed in the meantime.
3617 */
3618unsigned long get_state_synchronize_rcu(void)
3619{
3620 /*
3621 * Any prior manipulation of RCU-protected data must happen
3622 * before the load from ->gp_seq.
3623 */
3624 smp_mb(); /* ^^^ */
3625 return rcu_seq_snap(sp: &rcu_state.gp_seq_polled);
3626}
3627EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3628
3629/**
3630 * get_state_synchronize_rcu_full - Snapshot RCU state, both normal and expedited
3631 * @rgosp: location to place combined normal/expedited grace-period state
3632 *
3633 * Places the normal and expedited grace-period states in @rgosp. This
3634 * state value can be passed to a later call to cond_synchronize_rcu_full()
3635 * or poll_state_synchronize_rcu_full() to determine whether or not a
3636 * grace period (whether normal or expedited) has elapsed in the meantime.
3637 * The rcu_gp_oldstate structure takes up twice the memory of an unsigned
3638 * long, but is guaranteed to see all grace periods. In contrast, the
3639 * combined state occupies less memory, but can sometimes fail to take
3640 * grace periods into account.
3641 *
3642 * This does not guarantee that the needed grace period will actually
3643 * start.
3644 */
3645void get_state_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
3646{
3647 struct rcu_node *rnp = rcu_get_root();
3648
3649 /*
3650 * Any prior manipulation of RCU-protected data must happen
3651 * before the loads from ->gp_seq and ->expedited_sequence.
3652 */
3653 smp_mb(); /* ^^^ */
3654 rgosp->rgos_norm = rcu_seq_snap(sp: &rnp->gp_seq);
3655 rgosp->rgos_exp = rcu_seq_snap(sp: &rcu_state.expedited_sequence);
3656}
3657EXPORT_SYMBOL_GPL(get_state_synchronize_rcu_full);
3658
3659/*
3660 * Helper function for start_poll_synchronize_rcu() and
3661 * start_poll_synchronize_rcu_full().
3662 */
3663static void start_poll_synchronize_rcu_common(void)
3664{
3665 unsigned long flags;
3666 bool needwake;
3667 struct rcu_data *rdp;
3668 struct rcu_node *rnp;
3669
3670 lockdep_assert_irqs_enabled();
3671 local_irq_save(flags);
3672 rdp = this_cpu_ptr(&rcu_data);
3673 rnp = rdp->mynode;
3674 raw_spin_lock_rcu_node(rnp); // irqs already disabled.
3675 // Note it is possible for a grace period to have elapsed between
3676 // the above call to get_state_synchronize_rcu() and the below call
3677 // to rcu_seq_snap. This is OK, the worst that happens is that we
3678 // get a grace period that no one needed. These accesses are ordered
3679 // by smp_mb(), and we are accessing them in the opposite order
3680 // from which they are updated at grace-period start, as required.
3681 needwake = rcu_start_this_gp(rnp_start: rnp, rdp, gp_seq_req: rcu_seq_snap(sp: &rcu_state.gp_seq));
3682 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3683 if (needwake)
3684 rcu_gp_kthread_wake();
3685}
3686
3687/**
3688 * start_poll_synchronize_rcu - Snapshot and start RCU grace period
3689 *
3690 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3691 * or poll_state_synchronize_rcu() to determine whether or not a full
3692 * grace period has elapsed in the meantime. If the needed grace period
3693 * is not already slated to start, notifies RCU core of the need for that
3694 * grace period.
3695 *
3696 * Interrupts must be enabled for the case where it is necessary to awaken
3697 * the grace-period kthread.
3698 */
3699unsigned long start_poll_synchronize_rcu(void)
3700{
3701 unsigned long gp_seq = get_state_synchronize_rcu();
3702
3703 start_poll_synchronize_rcu_common();
3704 return gp_seq;
3705}
3706EXPORT_SYMBOL_GPL(start_poll_synchronize_rcu);
3707
3708/**
3709 * start_poll_synchronize_rcu_full - Take a full snapshot and start RCU grace period
3710 * @rgosp: value from get_state_synchronize_rcu_full() or start_poll_synchronize_rcu_full()
3711 *
3712 * Places the normal and expedited grace-period states in *@rgos. This
3713 * state value can be passed to a later call to cond_synchronize_rcu_full()
3714 * or poll_state_synchronize_rcu_full() to determine whether or not a
3715 * grace period (whether normal or expedited) has elapsed in the meantime.
3716 * If the needed grace period is not already slated to start, notifies
3717 * RCU core of the need for that grace period.
3718 *
3719 * Interrupts must be enabled for the case where it is necessary to awaken
3720 * the grace-period kthread.
3721 */
3722void start_poll_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
3723{
3724 get_state_synchronize_rcu_full(rgosp);
3725
3726 start_poll_synchronize_rcu_common();
3727}
3728EXPORT_SYMBOL_GPL(start_poll_synchronize_rcu_full);
3729
3730/**
3731 * poll_state_synchronize_rcu - Has the specified RCU grace period completed?
3732 * @oldstate: value from get_state_synchronize_rcu() or start_poll_synchronize_rcu()
3733 *
3734 * If a full RCU grace period has elapsed since the earlier call from
3735 * which @oldstate was obtained, return @true, otherwise return @false.
3736 * If @false is returned, it is the caller's responsibility to invoke this
3737 * function later on until it does return @true. Alternatively, the caller
3738 * can explicitly wait for a grace period, for example, by passing @oldstate
3739 * to either cond_synchronize_rcu() or cond_synchronize_rcu_expedited()
3740 * on the one hand or by directly invoking either synchronize_rcu() or
3741 * synchronize_rcu_expedited() on the other.
3742 *
3743 * Yes, this function does not take counter wrap into account.
3744 * But counter wrap is harmless. If the counter wraps, we have waited for
3745 * more than a billion grace periods (and way more on a 64-bit system!).
3746 * Those needing to keep old state values for very long time periods
3747 * (many hours even on 32-bit systems) should check them occasionally and
3748 * either refresh them or set a flag indicating that the grace period has
3749 * completed. Alternatively, they can use get_completed_synchronize_rcu()
3750 * to get a guaranteed-completed grace-period state.
3751 *
3752 * In addition, because oldstate compresses the grace-period state for
3753 * both normal and expedited grace periods into a single unsigned long,
3754 * it can miss a grace period when synchronize_rcu() runs concurrently
3755 * with synchronize_rcu_expedited(). If this is unacceptable, please
3756 * instead use the _full() variant of these polling APIs.
3757 *
3758 * This function provides the same memory-ordering guarantees that
3759 * would be provided by a synchronize_rcu() that was invoked at the call
3760 * to the function that provided @oldstate, and that returned at the end
3761 * of this function.
3762 */
3763bool poll_state_synchronize_rcu(unsigned long oldstate)
3764{
3765 if (oldstate == RCU_GET_STATE_COMPLETED ||
3766 rcu_seq_done_exact(sp: &rcu_state.gp_seq_polled, s: oldstate)) {
3767 smp_mb(); /* Ensure GP ends before subsequent accesses. */
3768 return true;
3769 }
3770 return false;
3771}
3772EXPORT_SYMBOL_GPL(poll_state_synchronize_rcu);
3773
3774/**
3775 * poll_state_synchronize_rcu_full - Has the specified RCU grace period completed?
3776 * @rgosp: value from get_state_synchronize_rcu_full() or start_poll_synchronize_rcu_full()
3777 *
3778 * If a full RCU grace period has elapsed since the earlier call from
3779 * which *rgosp was obtained, return @true, otherwise return @false.
3780 * If @false is returned, it is the caller's responsibility to invoke this
3781 * function later on until it does return @true. Alternatively, the caller
3782 * can explicitly wait for a grace period, for example, by passing @rgosp
3783 * to cond_synchronize_rcu() or by directly invoking synchronize_rcu().
3784 *
3785 * Yes, this function does not take counter wrap into account.
3786 * But counter wrap is harmless. If the counter wraps, we have waited
3787 * for more than a billion grace periods (and way more on a 64-bit
3788 * system!). Those needing to keep rcu_gp_oldstate values for very
3789 * long time periods (many hours even on 32-bit systems) should check
3790 * them occasionally and either refresh them or set a flag indicating
3791 * that the grace period has completed. Alternatively, they can use
3792 * get_completed_synchronize_rcu_full() to get a guaranteed-completed
3793 * grace-period state.
3794 *
3795 * This function provides the same memory-ordering guarantees that would
3796 * be provided by a synchronize_rcu() that was invoked at the call to
3797 * the function that provided @rgosp, and that returned at the end of this
3798 * function. And this guarantee requires that the root rcu_node structure's
3799 * ->gp_seq field be checked instead of that of the rcu_state structure.
3800 * The problem is that the just-ending grace-period's callbacks can be
3801 * invoked between the time that the root rcu_node structure's ->gp_seq
3802 * field is updated and the time that the rcu_state structure's ->gp_seq
3803 * field is updated. Therefore, if a single synchronize_rcu() is to
3804 * cause a subsequent poll_state_synchronize_rcu_full() to return @true,
3805 * then the root rcu_node structure is the one that needs to be polled.
3806 */
3807bool poll_state_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
3808{
3809 struct rcu_node *rnp = rcu_get_root();
3810
3811 smp_mb(); // Order against root rcu_node structure grace-period cleanup.
3812 if (rgosp->rgos_norm == RCU_GET_STATE_COMPLETED ||
3813 rcu_seq_done_exact(sp: &rnp->gp_seq, s: rgosp->rgos_norm) ||
3814 rgosp->rgos_exp == RCU_GET_STATE_COMPLETED ||
3815 rcu_seq_done_exact(sp: &rcu_state.expedited_sequence, s: rgosp->rgos_exp)) {
3816 smp_mb(); /* Ensure GP ends before subsequent accesses. */
3817 return true;
3818 }
3819 return false;
3820}
3821EXPORT_SYMBOL_GPL(poll_state_synchronize_rcu_full);
3822
3823/**
3824 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3825 * @oldstate: value from get_state_synchronize_rcu(), start_poll_synchronize_rcu(), or start_poll_synchronize_rcu_expedited()
3826 *
3827 * If a full RCU grace period has elapsed since the earlier call to
3828 * get_state_synchronize_rcu() or start_poll_synchronize_rcu(), just return.
3829 * Otherwise, invoke synchronize_rcu() to wait for a full grace period.
3830 *
3831 * Yes, this function does not take counter wrap into account.
3832 * But counter wrap is harmless. If the counter wraps, we have waited for
3833 * more than 2 billion grace periods (and way more on a 64-bit system!),
3834 * so waiting for a couple of additional grace periods should be just fine.
3835 *
3836 * This function provides the same memory-ordering guarantees that
3837 * would be provided by a synchronize_rcu() that was invoked at the call
3838 * to the function that provided @oldstate and that returned at the end
3839 * of this function.
3840 */
3841void cond_synchronize_rcu(unsigned long oldstate)
3842{
3843 if (!poll_state_synchronize_rcu(oldstate))
3844 synchronize_rcu();
3845}
3846EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3847
3848/**
3849 * cond_synchronize_rcu_full - Conditionally wait for an RCU grace period
3850 * @rgosp: value from get_state_synchronize_rcu_full(), start_poll_synchronize_rcu_full(), or start_poll_synchronize_rcu_expedited_full()
3851 *
3852 * If a full RCU grace period has elapsed since the call to
3853 * get_state_synchronize_rcu_full(), start_poll_synchronize_rcu_full(),
3854 * or start_poll_synchronize_rcu_expedited_full() from which @rgosp was
3855 * obtained, just return. Otherwise, invoke synchronize_rcu() to wait
3856 * for a full grace period.
3857 *
3858 * Yes, this function does not take counter wrap into account.
3859 * But counter wrap is harmless. If the counter wraps, we have waited for
3860 * more than 2 billion grace periods (and way more on a 64-bit system!),
3861 * so waiting for a couple of additional grace periods should be just fine.
3862 *
3863 * This function provides the same memory-ordering guarantees that
3864 * would be provided by a synchronize_rcu() that was invoked at the call
3865 * to the function that provided @rgosp and that returned at the end of
3866 * this function.
3867 */
3868void cond_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
3869{
3870 if (!poll_state_synchronize_rcu_full(rgosp))
3871 synchronize_rcu();
3872}
3873EXPORT_SYMBOL_GPL(cond_synchronize_rcu_full);
3874
3875/*
3876 * Check to see if there is any immediate RCU-related work to be done by
3877 * the current CPU, returning 1 if so and zero otherwise. The checks are
3878 * in order of increasing expense: checks that can be carried out against
3879 * CPU-local state are performed first. However, we must check for CPU
3880 * stalls first, else we might not get a chance.
3881 */
3882static int rcu_pending(int user)
3883{
3884 bool gp_in_progress;
3885 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
3886 struct rcu_node *rnp = rdp->mynode;
3887
3888 lockdep_assert_irqs_disabled();
3889
3890 /* Check for CPU stalls, if enabled. */
3891 check_cpu_stall(rdp);
3892
3893 /* Does this CPU need a deferred NOCB wakeup? */
3894 if (rcu_nocb_need_deferred_wakeup(rdp, RCU_NOCB_WAKE))
3895 return 1;
3896
3897 /* Is this a nohz_full CPU in userspace or idle? (Ignore RCU if so.) */
3898 if ((user || rcu_is_cpu_rrupt_from_idle()) && rcu_nohz_full_cpu())
3899 return 0;
3900
3901 /* Is the RCU core waiting for a quiescent state from this CPU? */
3902 gp_in_progress = rcu_gp_in_progress();
3903 if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm && gp_in_progress)
3904 return 1;
3905
3906 /* Does this CPU have callbacks ready to invoke? */
3907 if (!rcu_rdp_is_offloaded(rdp) &&
3908 rcu_segcblist_ready_cbs(rsclp: &rdp->cblist))
3909 return 1;
3910
3911 /* Has RCU gone idle with this CPU needing another grace period? */
3912 if (!gp_in_progress && rcu_segcblist_is_enabled(rsclp: &rdp->cblist) &&
3913 !rcu_rdp_is_offloaded(rdp) &&
3914 !rcu_segcblist_restempty(rsclp: &rdp->cblist, RCU_NEXT_READY_TAIL))
3915 return 1;
3916
3917 /* Have RCU grace period completed or started? */
3918 if (rcu_seq_current(sp: &rnp->gp_seq) != rdp->gp_seq ||
3919 unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */
3920 return 1;
3921
3922 /* nothing to do */
3923 return 0;
3924}
3925
3926/*
3927 * Helper function for rcu_barrier() tracing. If tracing is disabled,
3928 * the compiler is expected to optimize this away.
3929 */
3930static void rcu_barrier_trace(const char *s, int cpu, unsigned long done)
3931{
3932 trace_rcu_barrier(rcuname: rcu_state.name, s, cpu,
3933 cnt: atomic_read(v: &rcu_state.barrier_cpu_count), done);
3934}
3935
3936/*
3937 * RCU callback function for rcu_barrier(). If we are last, wake
3938 * up the task executing rcu_barrier().
3939 *
3940 * Note that the value of rcu_state.barrier_sequence must be captured
3941 * before the atomic_dec_and_test(). Otherwise, if this CPU is not last,
3942 * other CPUs might count the value down to zero before this CPU gets
3943 * around to invoking rcu_barrier_trace(), which might result in bogus
3944 * data from the next instance of rcu_barrier().
3945 */
3946static void rcu_barrier_callback(struct rcu_head *rhp)
3947{
3948 unsigned long __maybe_unused s = rcu_state.barrier_sequence;
3949
3950 if (atomic_dec_and_test(v: &rcu_state.barrier_cpu_count)) {
3951 rcu_barrier_trace(TPS("LastCB"), cpu: -1, done: s);
3952 complete(&rcu_state.barrier_completion);
3953 } else {
3954 rcu_barrier_trace(TPS("CB"), cpu: -1, done: s);
3955 }
3956}
3957
3958/*
3959 * If needed, entrain an rcu_barrier() callback on rdp->cblist.
3960 */
3961static void rcu_barrier_entrain(struct rcu_data *rdp)
3962{
3963 unsigned long gseq = READ_ONCE(rcu_state.barrier_sequence);
3964 unsigned long lseq = READ_ONCE(rdp->barrier_seq_snap);
3965 bool wake_nocb = false;
3966 bool was_alldone = false;
3967
3968 lockdep_assert_held(&rcu_state.barrier_lock);
3969 if (rcu_seq_state(s: lseq) || !rcu_seq_state(s: gseq) || rcu_seq_ctr(s: lseq) != rcu_seq_ctr(s: gseq))
3970 return;
3971 rcu_barrier_trace(TPS("IRQ"), cpu: -1, done: rcu_state.barrier_sequence);
3972 rdp->barrier_head.func = rcu_barrier_callback;
3973 debug_rcu_head_queue(head: &rdp->barrier_head);
3974 rcu_nocb_lock(rdp);
3975 /*
3976 * Flush bypass and wakeup rcuog if we add callbacks to an empty regular
3977 * queue. This way we don't wait for bypass timer that can reach seconds
3978 * if it's fully lazy.
3979 */
3980 was_alldone = rcu_rdp_is_offloaded(rdp) && !rcu_segcblist_pend_cbs(rsclp: &rdp->cblist);
3981 WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies, false));
3982 wake_nocb = was_alldone && rcu_segcblist_pend_cbs(rsclp: &rdp->cblist);
3983 if (rcu_segcblist_entrain(rsclp: &rdp->cblist, rhp: &rdp->barrier_head)) {
3984 atomic_inc(v: &rcu_state.barrier_cpu_count);
3985 } else {
3986 debug_rcu_head_unqueue(head: &rdp->barrier_head);
3987 rcu_barrier_trace(TPS("IRQNQ"), cpu: -1, done: rcu_state.barrier_sequence);
3988 }
3989 rcu_nocb_unlock(rdp);
3990 if (wake_nocb)
3991 wake_nocb_gp(rdp, force: false);
3992 smp_store_release(&rdp->barrier_seq_snap, gseq);
3993}
3994
3995/*
3996 * Called with preemption disabled, and from cross-cpu IRQ context.
3997 */
3998static void rcu_barrier_handler(void *cpu_in)
3999{
4000 uintptr_t cpu = (uintptr_t)cpu_in;
4001 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4002
4003 lockdep_assert_irqs_disabled();
4004 WARN_ON_ONCE(cpu != rdp->cpu);
4005 WARN_ON_ONCE(cpu != smp_processor_id());
4006 raw_spin_lock(&rcu_state.barrier_lock);
4007 rcu_barrier_entrain(rdp);
4008 raw_spin_unlock(&rcu_state.barrier_lock);
4009}
4010
4011/**
4012 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
4013 *
4014 * Note that this primitive does not necessarily wait for an RCU grace period
4015 * to complete. For example, if there are no RCU callbacks queued anywhere
4016 * in the system, then rcu_barrier() is within its rights to return
4017 * immediately, without waiting for anything, much less an RCU grace period.
4018 */
4019void rcu_barrier(void)
4020{
4021 uintptr_t cpu;
4022 unsigned long flags;
4023 unsigned long gseq;
4024 struct rcu_data *rdp;
4025 unsigned long s = rcu_seq_snap(sp: &rcu_state.barrier_sequence);
4026
4027 rcu_barrier_trace(TPS("Begin"), cpu: -1, done: s);
4028
4029 /* Take mutex to serialize concurrent rcu_barrier() requests. */
4030 mutex_lock(&rcu_state.barrier_mutex);
4031
4032 /* Did someone else do our work for us? */
4033 if (rcu_seq_done(sp: &rcu_state.barrier_sequence, s)) {
4034 rcu_barrier_trace(TPS("EarlyExit"), cpu: -1, done: rcu_state.barrier_sequence);
4035 smp_mb(); /* caller's subsequent code after above check. */
4036 mutex_unlock(lock: &rcu_state.barrier_mutex);
4037 return;
4038 }
4039
4040 /* Mark the start of the barrier operation. */
4041 raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags);
4042 rcu_seq_start(sp: &rcu_state.barrier_sequence);
4043 gseq = rcu_state.barrier_sequence;
4044 rcu_barrier_trace(TPS("Inc1"), cpu: -1, done: rcu_state.barrier_sequence);
4045
4046 /*
4047 * Initialize the count to two rather than to zero in order
4048 * to avoid a too-soon return to zero in case of an immediate
4049 * invocation of the just-enqueued callback (or preemption of
4050 * this task). Exclude CPU-hotplug operations to ensure that no
4051 * offline non-offloaded CPU has callbacks queued.
4052 */
4053 init_completion(x: &rcu_state.barrier_completion);
4054 atomic_set(v: &rcu_state.barrier_cpu_count, i: 2);
4055 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
4056
4057 /*
4058 * Force each CPU with callbacks to register a new callback.
4059 * When that callback is invoked, we will know that all of the
4060 * corresponding CPU's preceding callbacks have been invoked.
4061 */
4062 for_each_possible_cpu(cpu) {
4063 rdp = per_cpu_ptr(&rcu_data, cpu);
4064retry:
4065 if (smp_load_acquire(&rdp->barrier_seq_snap) == gseq)
4066 continue;
4067 raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags);
4068 if (!rcu_segcblist_n_cbs(rsclp: &rdp->cblist)) {
4069 WRITE_ONCE(rdp->barrier_seq_snap, gseq);
4070 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
4071 rcu_barrier_trace(TPS("NQ"), cpu, done: rcu_state.barrier_sequence);
4072 continue;
4073 }
4074 if (!rcu_rdp_cpu_online(rdp)) {
4075 rcu_barrier_entrain(rdp);
4076 WARN_ON_ONCE(READ_ONCE(rdp->barrier_seq_snap) != gseq);
4077 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
4078 rcu_barrier_trace(TPS("OfflineNoCBQ"), cpu, done: rcu_state.barrier_sequence);
4079 continue;
4080 }
4081 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
4082 if (smp_call_function_single(cpuid: cpu, func: rcu_barrier_handler, info: (void *)cpu, wait: 1)) {
4083 schedule_timeout_uninterruptible(timeout: 1);
4084 goto retry;
4085 }
4086 WARN_ON_ONCE(READ_ONCE(rdp->barrier_seq_snap) != gseq);
4087 rcu_barrier_trace(TPS("OnlineQ"), cpu, done: rcu_state.barrier_sequence);
4088 }
4089
4090 /*
4091 * Now that we have an rcu_barrier_callback() callback on each
4092 * CPU, and thus each counted, remove the initial count.
4093 */
4094 if (atomic_sub_and_test(i: 2, v: &rcu_state.barrier_cpu_count))
4095 complete(&rcu_state.barrier_completion);
4096
4097 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
4098 wait_for_completion(&rcu_state.barrier_completion);
4099
4100 /* Mark the end of the barrier operation. */
4101 rcu_barrier_trace(TPS("Inc2"), cpu: -1, done: rcu_state.barrier_sequence);
4102 rcu_seq_end(sp: &rcu_state.barrier_sequence);
4103 gseq = rcu_state.barrier_sequence;
4104 for_each_possible_cpu(cpu) {
4105 rdp = per_cpu_ptr(&rcu_data, cpu);
4106
4107 WRITE_ONCE(rdp->barrier_seq_snap, gseq);
4108 }
4109
4110 /* Other rcu_barrier() invocations can now safely proceed. */
4111 mutex_unlock(lock: &rcu_state.barrier_mutex);
4112}
4113EXPORT_SYMBOL_GPL(rcu_barrier);
4114
4115static unsigned long rcu_barrier_last_throttle;
4116
4117/**
4118 * rcu_barrier_throttled - Do rcu_barrier(), but limit to one per second
4119 *
4120 * This can be thought of as guard rails around rcu_barrier() that
4121 * permits unrestricted userspace use, at least assuming the hardware's
4122 * try_cmpxchg() is robust. There will be at most one call per second to
4123 * rcu_barrier() system-wide from use of this function, which means that
4124 * callers might needlessly wait a second or three.
4125 *
4126 * This is intended for use by test suites to avoid OOM by flushing RCU
4127 * callbacks from the previous test before starting the next. See the
4128 * rcutree.do_rcu_barrier module parameter for more information.
4129 *
4130 * Why not simply make rcu_barrier() more scalable? That might be
4131 * the eventual endpoint, but let's keep it simple for the time being.
4132 * Note that the module parameter infrastructure serializes calls to a
4133 * given .set() function, but should concurrent .set() invocation ever be
4134 * possible, we are ready!
4135 */
4136static void rcu_barrier_throttled(void)
4137{
4138 unsigned long j = jiffies;
4139 unsigned long old = READ_ONCE(rcu_barrier_last_throttle);
4140 unsigned long s = rcu_seq_snap(sp: &rcu_state.barrier_sequence);
4141
4142 while (time_in_range(j, old, old + HZ / 16) ||
4143 !try_cmpxchg(&rcu_barrier_last_throttle, &old, j)) {
4144 schedule_timeout_idle(HZ / 16);
4145 if (rcu_seq_done(sp: &rcu_state.barrier_sequence, s)) {
4146 smp_mb(); /* caller's subsequent code after above check. */
4147 return;
4148 }
4149 j = jiffies;
4150 old = READ_ONCE(rcu_barrier_last_throttle);
4151 }
4152 rcu_barrier();
4153}
4154
4155/*
4156 * Invoke rcu_barrier_throttled() when a rcutree.do_rcu_barrier
4157 * request arrives. We insist on a true value to allow for possible
4158 * future expansion.
4159 */
4160static int param_set_do_rcu_barrier(const char *val, const struct kernel_param *kp)
4161{
4162 bool b;
4163 int ret;
4164
4165 if (rcu_scheduler_active != RCU_SCHEDULER_RUNNING)
4166 return -EAGAIN;
4167 ret = kstrtobool(s: val, res: &b);
4168 if (!ret && b) {
4169 atomic_inc(v: (atomic_t *)kp->arg);
4170 rcu_barrier_throttled();
4171 atomic_dec(v: (atomic_t *)kp->arg);
4172 }
4173 return ret;
4174}
4175
4176/*
4177 * Output the number of outstanding rcutree.do_rcu_barrier requests.
4178 */
4179static int param_get_do_rcu_barrier(char *buffer, const struct kernel_param *kp)
4180{
4181 return sprintf(buf: buffer, fmt: "%d\n", atomic_read(v: (atomic_t *)kp->arg));
4182}
4183
4184static const struct kernel_param_ops do_rcu_barrier_ops = {
4185 .set = param_set_do_rcu_barrier,
4186 .get = param_get_do_rcu_barrier,
4187};
4188static atomic_t do_rcu_barrier;
4189module_param_cb(do_rcu_barrier, &do_rcu_barrier_ops, &do_rcu_barrier, 0644);
4190
4191/*
4192 * Compute the mask of online CPUs for the specified rcu_node structure.
4193 * This will not be stable unless the rcu_node structure's ->lock is
4194 * held, but the bit corresponding to the current CPU will be stable
4195 * in most contexts.
4196 */
4197static unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
4198{
4199 return READ_ONCE(rnp->qsmaskinitnext);
4200}
4201
4202/*
4203 * Is the CPU corresponding to the specified rcu_data structure online
4204 * from RCU's perspective? This perspective is given by that structure's
4205 * ->qsmaskinitnext field rather than by the global cpu_online_mask.
4206 */
4207static bool rcu_rdp_cpu_online(struct rcu_data *rdp)
4208{
4209 return !!(rdp->grpmask & rcu_rnp_online_cpus(rnp: rdp->mynode));
4210}
4211
4212bool rcu_cpu_online(int cpu)
4213{
4214 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4215
4216 return rcu_rdp_cpu_online(rdp);
4217}
4218
4219#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
4220
4221/*
4222 * Is the current CPU online as far as RCU is concerned?
4223 *
4224 * Disable preemption to avoid false positives that could otherwise
4225 * happen due to the current CPU number being sampled, this task being
4226 * preempted, its old CPU being taken offline, resuming on some other CPU,
4227 * then determining that its old CPU is now offline.
4228 *
4229 * Disable checking if in an NMI handler because we cannot safely
4230 * report errors from NMI handlers anyway. In addition, it is OK to use
4231 * RCU on an offline processor during initial boot, hence the check for
4232 * rcu_scheduler_fully_active.
4233 */
4234bool rcu_lockdep_current_cpu_online(void)
4235{
4236 struct rcu_data *rdp;
4237 bool ret = false;
4238
4239 if (in_nmi() || !rcu_scheduler_fully_active)
4240 return true;
4241 preempt_disable_notrace();
4242 rdp = this_cpu_ptr(&rcu_data);
4243 /*
4244 * Strictly, we care here about the case where the current CPU is
4245 * in rcutree_report_cpu_starting() and thus has an excuse for rdp->grpmask
4246 * not being up to date. So arch_spin_is_locked() might have a
4247 * false positive if it's held by some *other* CPU, but that's
4248 * OK because that just means a false *negative* on the warning.
4249 */
4250 if (rcu_rdp_cpu_online(rdp) || arch_spin_is_locked(&rcu_state.ofl_lock))
4251 ret = true;
4252 preempt_enable_notrace();
4253 return ret;
4254}
4255EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
4256
4257#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
4258
4259// Has rcu_init() been invoked? This is used (for example) to determine
4260// whether spinlocks may be acquired safely.
4261static bool rcu_init_invoked(void)
4262{
4263 return !!rcu_state.n_online_cpus;
4264}
4265
4266/*
4267 * All CPUs for the specified rcu_node structure have gone offline,
4268 * and all tasks that were preempted within an RCU read-side critical
4269 * section while running on one of those CPUs have since exited their RCU
4270 * read-side critical section. Some other CPU is reporting this fact with
4271 * the specified rcu_node structure's ->lock held and interrupts disabled.
4272 * This function therefore goes up the tree of rcu_node structures,
4273 * clearing the corresponding bits in the ->qsmaskinit fields. Note that
4274 * the leaf rcu_node structure's ->qsmaskinit field has already been
4275 * updated.
4276 *
4277 * This function does check that the specified rcu_node structure has
4278 * all CPUs offline and no blocked tasks, so it is OK to invoke it
4279 * prematurely. That said, invoking it after the fact will cost you
4280 * a needless lock acquisition. So once it has done its work, don't
4281 * invoke it again.
4282 */
4283static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
4284{
4285 long mask;
4286 struct rcu_node *rnp = rnp_leaf;
4287
4288 raw_lockdep_assert_held_rcu_node(rnp_leaf);
4289 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
4290 WARN_ON_ONCE(rnp_leaf->qsmaskinit) ||
4291 WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf)))
4292 return;
4293 for (;;) {
4294 mask = rnp->grpmask;
4295 rnp = rnp->parent;
4296 if (!rnp)
4297 break;
4298 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
4299 rnp->qsmaskinit &= ~mask;
4300 /* Between grace periods, so better already be zero! */
4301 WARN_ON_ONCE(rnp->qsmask);
4302 if (rnp->qsmaskinit) {
4303 raw_spin_unlock_rcu_node(rnp);
4304 /* irqs remain disabled. */
4305 return;
4306 }
4307 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
4308 }
4309}
4310
4311/*
4312 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
4313 * first CPU in a given leaf rcu_node structure coming online. The caller
4314 * must hold the corresponding leaf rcu_node ->lock with interrupts
4315 * disabled.
4316 */
4317static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
4318{
4319 long mask;
4320 long oldmask;
4321 struct rcu_node *rnp = rnp_leaf;
4322
4323 raw_lockdep_assert_held_rcu_node(rnp_leaf);
4324 WARN_ON_ONCE(rnp->wait_blkd_tasks);
4325 for (;;) {
4326 mask = rnp->grpmask;
4327 rnp = rnp->parent;
4328 if (rnp == NULL)
4329 return;
4330 raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
4331 oldmask = rnp->qsmaskinit;
4332 rnp->qsmaskinit |= mask;
4333 raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
4334 if (oldmask)
4335 return;
4336 }
4337}
4338
4339/*
4340 * Do boot-time initialization of a CPU's per-CPU RCU data.
4341 */
4342static void __init
4343rcu_boot_init_percpu_data(int cpu)
4344{
4345 struct context_tracking *ct = this_cpu_ptr(&context_tracking);
4346 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4347
4348 /* Set up local state, ensuring consistent view of global state. */
4349 rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
4350 INIT_WORK(&rdp->strict_work, strict_work_handler);
4351 WARN_ON_ONCE(ct->dynticks_nesting != 1);
4352 WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(cpu)));
4353 rdp->barrier_seq_snap = rcu_state.barrier_sequence;
4354 rdp->rcu_ofl_gp_seq = rcu_state.gp_seq;
4355 rdp->rcu_ofl_gp_flags = RCU_GP_CLEANED;
4356 rdp->rcu_onl_gp_seq = rcu_state.gp_seq;
4357 rdp->rcu_onl_gp_flags = RCU_GP_CLEANED;
4358 rdp->last_sched_clock = jiffies;
4359 rdp->cpu = cpu;
4360 rcu_boot_init_nocb_percpu_data(rdp);
4361}
4362
4363/*
4364 * Invoked early in the CPU-online process, when pretty much all services
4365 * are available. The incoming CPU is not present.
4366 *
4367 * Initializes a CPU's per-CPU RCU data. Note that only one online or
4368 * offline event can be happening at a given time. Note also that we can
4369 * accept some slop in the rsp->gp_seq access due to the fact that this
4370 * CPU cannot possibly have any non-offloaded RCU callbacks in flight yet.
4371 * And any offloaded callbacks are being numbered elsewhere.
4372 */
4373int rcutree_prepare_cpu(unsigned int cpu)
4374{
4375 unsigned long flags;
4376 struct context_tracking *ct = per_cpu_ptr(&context_tracking, cpu);
4377 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4378 struct rcu_node *rnp = rcu_get_root();
4379
4380 /* Set up local state, ensuring consistent view of global state. */
4381 raw_spin_lock_irqsave_rcu_node(rnp, flags);
4382 rdp->qlen_last_fqs_check = 0;
4383 rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs);
4384 rdp->blimit = blimit;
4385 ct->dynticks_nesting = 1; /* CPU not up, no tearing. */
4386 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
4387
4388 /*
4389 * Only non-NOCB CPUs that didn't have early-boot callbacks need to be
4390 * (re-)initialized.
4391 */
4392 if (!rcu_segcblist_is_enabled(rsclp: &rdp->cblist))
4393 rcu_segcblist_init(rsclp: &rdp->cblist); /* Re-enable callbacks. */
4394
4395 /*
4396 * Add CPU to leaf rcu_node pending-online bitmask. Any needed
4397 * propagation up the rcu_node tree will happen at the beginning
4398 * of the next grace period.
4399 */
4400 rnp = rdp->mynode;
4401 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
4402 rdp->gp_seq = READ_ONCE(rnp->gp_seq);
4403 rdp->gp_seq_needed = rdp->gp_seq;
4404 rdp->cpu_no_qs.b.norm = true;
4405 rdp->core_needs_qs = false;
4406 rdp->rcu_iw_pending = false;
4407 rdp->rcu_iw = IRQ_WORK_INIT_HARD(rcu_iw_handler);
4408 rdp->rcu_iw_gp_seq = rdp->gp_seq - 1;
4409 trace_rcu_grace_period(rcuname: rcu_state.name, gp_seq: rdp->gp_seq, TPS("cpuonl"));
4410 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4411 rcu_spawn_one_boost_kthread(rnp);
4412 rcu_spawn_cpu_nocb_kthread(cpu);
4413 WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus + 1);
4414
4415 return 0;
4416}
4417
4418/*
4419 * Update RCU priority boot kthread affinity for CPU-hotplug changes.
4420 */
4421static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
4422{
4423 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4424
4425 rcu_boost_kthread_setaffinity(rnp: rdp->mynode, outgoingcpu: outgoing);
4426}
4427
4428/*
4429 * Has the specified (known valid) CPU ever been fully online?
4430 */
4431bool rcu_cpu_beenfullyonline(int cpu)
4432{
4433 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4434
4435 return smp_load_acquire(&rdp->beenonline);
4436}
4437
4438/*
4439 * Near the end of the CPU-online process. Pretty much all services
4440 * enabled, and the CPU is now very much alive.
4441 */
4442int rcutree_online_cpu(unsigned int cpu)
4443{
4444 unsigned long flags;
4445 struct rcu_data *rdp;
4446 struct rcu_node *rnp;
4447
4448 rdp = per_cpu_ptr(&rcu_data, cpu);
4449 rnp = rdp->mynode;
4450 raw_spin_lock_irqsave_rcu_node(rnp, flags);
4451 rnp->ffmask |= rdp->grpmask;
4452 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4453 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
4454 return 0; /* Too early in boot for scheduler work. */
4455 sync_sched_exp_online_cleanup(cpu);
4456 rcutree_affinity_setting(cpu, outgoing: -1);
4457
4458 // Stop-machine done, so allow nohz_full to disable tick.
4459 tick_dep_clear(bit: TICK_DEP_BIT_RCU);
4460 return 0;
4461}
4462
4463/*
4464 * Mark the specified CPU as being online so that subsequent grace periods
4465 * (both expedited and normal) will wait on it. Note that this means that
4466 * incoming CPUs are not allowed to use RCU read-side critical sections
4467 * until this function is called. Failing to observe this restriction
4468 * will result in lockdep splats.
4469 *
4470 * Note that this function is special in that it is invoked directly
4471 * from the incoming CPU rather than from the cpuhp_step mechanism.
4472 * This is because this function must be invoked at a precise location.
4473 * This incoming CPU must not have enabled interrupts yet.
4474 *
4475 * This mirrors the effects of rcutree_report_cpu_dead().
4476 */
4477void rcutree_report_cpu_starting(unsigned int cpu)
4478{
4479 unsigned long mask;
4480 struct rcu_data *rdp;
4481 struct rcu_node *rnp;
4482 bool newcpu;
4483
4484 lockdep_assert_irqs_disabled();
4485 rdp = per_cpu_ptr(&rcu_data, cpu);
4486 if (rdp->cpu_started)
4487 return;
4488 rdp->cpu_started = true;
4489
4490 rnp = rdp->mynode;
4491 mask = rdp->grpmask;
4492 arch_spin_lock(&rcu_state.ofl_lock);
4493 rcu_dynticks_eqs_online();
4494 raw_spin_lock(&rcu_state.barrier_lock);
4495 raw_spin_lock_rcu_node(rnp);
4496 WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext | mask);
4497 raw_spin_unlock(&rcu_state.barrier_lock);
4498 newcpu = !(rnp->expmaskinitnext & mask);
4499 rnp->expmaskinitnext |= mask;
4500 /* Allow lockless access for expedited grace periods. */
4501 smp_store_release(&rcu_state.ncpus, rcu_state.ncpus + newcpu); /* ^^^ */
4502 ASSERT_EXCLUSIVE_WRITER(rcu_state.ncpus);
4503 rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */
4504 rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq);
4505 rdp->rcu_onl_gp_flags = READ_ONCE(rcu_state.gp_flags);
4506
4507 /* An incoming CPU should never be blocking a grace period. */
4508 if (WARN_ON_ONCE(rnp->qsmask & mask)) { /* RCU waiting on incoming CPU? */
4509 /* rcu_report_qs_rnp() *really* wants some flags to restore */
4510 unsigned long flags;
4511
4512 local_irq_save(flags);
4513 rcu_disable_urgency_upon_qs(rdp);
4514 /* Report QS -after- changing ->qsmaskinitnext! */
4515 rcu_report_qs_rnp(mask, rnp, gps: rnp->gp_seq, flags);
4516 } else {
4517 raw_spin_unlock_rcu_node(rnp);
4518 }
4519 arch_spin_unlock(&rcu_state.ofl_lock);
4520 smp_store_release(&rdp->beenonline, true);
4521 smp_mb(); /* Ensure RCU read-side usage follows above initialization. */
4522}
4523
4524/*
4525 * The outgoing function has no further need of RCU, so remove it from
4526 * the rcu_node tree's ->qsmaskinitnext bit masks.
4527 *
4528 * Note that this function is special in that it is invoked directly
4529 * from the outgoing CPU rather than from the cpuhp_step mechanism.
4530 * This is because this function must be invoked at a precise location.
4531 *
4532 * This mirrors the effect of rcutree_report_cpu_starting().
4533 */
4534void rcutree_report_cpu_dead(void)
4535{
4536 unsigned long flags;
4537 unsigned long mask;
4538 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
4539 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
4540
4541 /*
4542 * IRQS must be disabled from now on and until the CPU dies, or an interrupt
4543 * may introduce a new READ-side while it is actually off the QS masks.
4544 */
4545 lockdep_assert_irqs_disabled();
4546 // Do any dangling deferred wakeups.
4547 do_nocb_deferred_wakeup(rdp);
4548
4549 rcu_preempt_deferred_qs(current);
4550
4551 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */
4552 mask = rdp->grpmask;
4553 arch_spin_lock(&rcu_state.ofl_lock);
4554 raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
4555 rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq);
4556 rdp->rcu_ofl_gp_flags = READ_ONCE(rcu_state.gp_flags);
4557 if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */
4558 /* Report quiescent state -before- changing ->qsmaskinitnext! */
4559 rcu_disable_urgency_upon_qs(rdp);
4560 rcu_report_qs_rnp(mask, rnp, gps: rnp->gp_seq, flags);
4561 raw_spin_lock_irqsave_rcu_node(rnp, flags);
4562 }
4563 WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext & ~mask);
4564 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4565 arch_spin_unlock(&rcu_state.ofl_lock);
4566 rdp->cpu_started = false;
4567}
4568
4569#ifdef CONFIG_HOTPLUG_CPU
4570/*
4571 * The outgoing CPU has just passed through the dying-idle state, and we
4572 * are being invoked from the CPU that was IPIed to continue the offline
4573 * operation. Migrate the outgoing CPU's callbacks to the current CPU.
4574 */
4575void rcutree_migrate_callbacks(int cpu)
4576{
4577 unsigned long flags;
4578 struct rcu_data *my_rdp;
4579 struct rcu_node *my_rnp;
4580 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4581 bool needwake;
4582
4583 if (rcu_rdp_is_offloaded(rdp) ||
4584 rcu_segcblist_empty(rsclp: &rdp->cblist))
4585 return; /* No callbacks to migrate. */
4586
4587 raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags);
4588 WARN_ON_ONCE(rcu_rdp_cpu_online(rdp));
4589 rcu_barrier_entrain(rdp);
4590 my_rdp = this_cpu_ptr(&rcu_data);
4591 my_rnp = my_rdp->mynode;
4592 rcu_nocb_lock(rdp: my_rdp); /* irqs already disabled. */
4593 WARN_ON_ONCE(!rcu_nocb_flush_bypass(my_rdp, NULL, jiffies, false));
4594 raw_spin_lock_rcu_node(my_rnp); /* irqs already disabled. */
4595 /* Leverage recent GPs and set GP for new callbacks. */
4596 needwake = rcu_advance_cbs(rnp: my_rnp, rdp) ||
4597 rcu_advance_cbs(rnp: my_rnp, rdp: my_rdp);
4598 rcu_segcblist_merge(dst_rsclp: &my_rdp->cblist, src_rsclp: &rdp->cblist);
4599 raw_spin_unlock(&rcu_state.barrier_lock); /* irqs remain disabled. */
4600 needwake = needwake || rcu_advance_cbs(rnp: my_rnp, rdp: my_rdp);
4601 rcu_segcblist_disable(rsclp: &rdp->cblist);
4602 WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) != !rcu_segcblist_n_cbs(&my_rdp->cblist));
4603 check_cb_ovld_locked(rdp: my_rdp, rnp: my_rnp);
4604 if (rcu_rdp_is_offloaded(rdp: my_rdp)) {
4605 raw_spin_unlock_rcu_node(my_rnp); /* irqs remain disabled. */
4606 __call_rcu_nocb_wake(rdp: my_rdp, was_empty: true, flags);
4607 } else {
4608 rcu_nocb_unlock(rdp: my_rdp); /* irqs remain disabled. */
4609 raw_spin_unlock_irqrestore_rcu_node(my_rnp, flags);
4610 }
4611 if (needwake)
4612 rcu_gp_kthread_wake();
4613 lockdep_assert_irqs_enabled();
4614 WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
4615 !rcu_segcblist_empty(&rdp->cblist),
4616 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
4617 cpu, rcu_segcblist_n_cbs(&rdp->cblist),
4618 rcu_segcblist_first_cb(&rdp->cblist));
4619}
4620
4621/*
4622 * The CPU has been completely removed, and some other CPU is reporting
4623 * this fact from process context. Do the remainder of the cleanup.
4624 * There can only be one CPU hotplug operation at a time, so no need for
4625 * explicit locking.
4626 */
4627int rcutree_dead_cpu(unsigned int cpu)
4628{
4629 WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus - 1);
4630 // Stop-machine done, so allow nohz_full to disable tick.
4631 tick_dep_clear(bit: TICK_DEP_BIT_RCU);
4632 return 0;
4633}
4634
4635/*
4636 * Near the end of the offline process. Trace the fact that this CPU
4637 * is going offline.
4638 */
4639int rcutree_dying_cpu(unsigned int cpu)
4640{
4641 bool blkd;
4642 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4643 struct rcu_node *rnp = rdp->mynode;
4644
4645 blkd = !!(READ_ONCE(rnp->qsmask) & rdp->grpmask);
4646 trace_rcu_grace_period(rcuname: rcu_state.name, READ_ONCE(rnp->gp_seq),
4647 gpevent: blkd ? TPS("cpuofl-bgp") : TPS("cpuofl"));
4648 return 0;
4649}
4650
4651/*
4652 * Near the beginning of the process. The CPU is still very much alive
4653 * with pretty much all services enabled.
4654 */
4655int rcutree_offline_cpu(unsigned int cpu)
4656{
4657 unsigned long flags;
4658 struct rcu_data *rdp;
4659 struct rcu_node *rnp;
4660
4661 rdp = per_cpu_ptr(&rcu_data, cpu);
4662 rnp = rdp->mynode;
4663 raw_spin_lock_irqsave_rcu_node(rnp, flags);
4664 rnp->ffmask &= ~rdp->grpmask;
4665 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4666
4667 rcutree_affinity_setting(cpu, outgoing: cpu);
4668
4669 // nohz_full CPUs need the tick for stop-machine to work quickly
4670 tick_dep_set(bit: TICK_DEP_BIT_RCU);
4671 return 0;
4672}
4673#endif /* #ifdef CONFIG_HOTPLUG_CPU */
4674
4675/*
4676 * On non-huge systems, use expedited RCU grace periods to make suspend
4677 * and hibernation run faster.
4678 */
4679static int rcu_pm_notify(struct notifier_block *self,
4680 unsigned long action, void *hcpu)
4681{
4682 switch (action) {
4683 case PM_HIBERNATION_PREPARE:
4684 case PM_SUSPEND_PREPARE:
4685 rcu_async_hurry();
4686 rcu_expedite_gp();
4687 break;
4688 case PM_POST_HIBERNATION:
4689 case PM_POST_SUSPEND:
4690 rcu_unexpedite_gp();
4691 rcu_async_relax();
4692 break;
4693 default:
4694 break;
4695 }
4696 return NOTIFY_OK;
4697}
4698
4699#ifdef CONFIG_RCU_EXP_KTHREAD
4700struct kthread_worker *rcu_exp_gp_kworker;
4701struct kthread_worker *rcu_exp_par_gp_kworker;
4702
4703static void __init rcu_start_exp_gp_kworkers(void)
4704{
4705 const char *par_gp_kworker_name = "rcu_exp_par_gp_kthread_worker";
4706 const char *gp_kworker_name = "rcu_exp_gp_kthread_worker";
4707 struct sched_param param = { .sched_priority = kthread_prio };
4708
4709 rcu_exp_gp_kworker = kthread_create_worker(flags: 0, namefmt: gp_kworker_name);
4710 if (IS_ERR_OR_NULL(ptr: rcu_exp_gp_kworker)) {
4711 pr_err("Failed to create %s!\n", gp_kworker_name);
4712 return;
4713 }
4714
4715 rcu_exp_par_gp_kworker = kthread_create_worker(flags: 0, namefmt: par_gp_kworker_name);
4716 if (IS_ERR_OR_NULL(ptr: rcu_exp_par_gp_kworker)) {
4717 pr_err("Failed to create %s!\n", par_gp_kworker_name);
4718 kthread_destroy_worker(worker: rcu_exp_gp_kworker);
4719 return;
4720 }
4721
4722 sched_setscheduler_nocheck(rcu_exp_gp_kworker->task, SCHED_FIFO, &param);
4723 sched_setscheduler_nocheck(rcu_exp_par_gp_kworker->task, SCHED_FIFO,
4724 &param);
4725}
4726
4727static inline void rcu_alloc_par_gp_wq(void)
4728{
4729}
4730#else /* !CONFIG_RCU_EXP_KTHREAD */
4731struct workqueue_struct *rcu_par_gp_wq;
4732
4733static void __init rcu_start_exp_gp_kworkers(void)
4734{
4735}
4736
4737static inline void rcu_alloc_par_gp_wq(void)
4738{
4739 rcu_par_gp_wq = alloc_workqueue("rcu_par_gp", WQ_MEM_RECLAIM, 0);
4740 WARN_ON(!rcu_par_gp_wq);
4741}
4742#endif /* CONFIG_RCU_EXP_KTHREAD */
4743
4744/*
4745 * Spawn the kthreads that handle RCU's grace periods.
4746 */
4747static int __init rcu_spawn_gp_kthread(void)
4748{
4749 unsigned long flags;
4750 struct rcu_node *rnp;
4751 struct sched_param sp;
4752 struct task_struct *t;
4753 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
4754
4755 rcu_scheduler_fully_active = 1;
4756 t = kthread_create(rcu_gp_kthread, NULL, "%s", rcu_state.name);
4757 if (WARN_ONCE(IS_ERR(t), "%s: Could not start grace-period kthread, OOM is now expected behavior\n", __func__))
4758 return 0;
4759 if (kthread_prio) {
4760 sp.sched_priority = kthread_prio;
4761 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
4762 }
4763 rnp = rcu_get_root();
4764 raw_spin_lock_irqsave_rcu_node(rnp, flags);
4765 WRITE_ONCE(rcu_state.gp_activity, jiffies);
4766 WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
4767 // Reset .gp_activity and .gp_req_activity before setting .gp_kthread.
4768 smp_store_release(&rcu_state.gp_kthread, t); /* ^^^ */
4769 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4770 wake_up_process(tsk: t);
4771 /* This is a pre-SMP initcall, we expect a single CPU */
4772 WARN_ON(num_online_cpus() > 1);
4773 /*
4774 * Those kthreads couldn't be created on rcu_init() -> rcutree_prepare_cpu()
4775 * due to rcu_scheduler_fully_active.
4776 */
4777 rcu_spawn_cpu_nocb_kthread(smp_processor_id());
4778 rcu_spawn_one_boost_kthread(rnp: rdp->mynode);
4779 rcu_spawn_core_kthreads();
4780 /* Create kthread worker for expedited GPs */
4781 rcu_start_exp_gp_kworkers();
4782 return 0;
4783}
4784early_initcall(rcu_spawn_gp_kthread);
4785
4786/*
4787 * This function is invoked towards the end of the scheduler's
4788 * initialization process. Before this is called, the idle task might
4789 * contain synchronous grace-period primitives (during which time, this idle
4790 * task is booting the system, and such primitives are no-ops). After this
4791 * function is called, any synchronous grace-period primitives are run as
4792 * expedited, with the requesting task driving the grace period forward.
4793 * A later core_initcall() rcu_set_runtime_mode() will switch to full
4794 * runtime RCU functionality.
4795 */
4796void rcu_scheduler_starting(void)
4797{
4798 unsigned long flags;
4799 struct rcu_node *rnp;
4800
4801 WARN_ON(num_online_cpus() != 1);
4802 WARN_ON(nr_context_switches() > 0);
4803 rcu_test_sync_prims();
4804
4805 // Fix up the ->gp_seq counters.
4806 local_irq_save(flags);
4807 rcu_for_each_node_breadth_first(rnp)
4808 rnp->gp_seq_needed = rnp->gp_seq = rcu_state.gp_seq;
4809 local_irq_restore(flags);
4810
4811 // Switch out of early boot mode.
4812 rcu_scheduler_active = RCU_SCHEDULER_INIT;
4813 rcu_test_sync_prims();
4814}
4815
4816/*
4817 * Helper function for rcu_init() that initializes the rcu_state structure.
4818 */
4819static void __init rcu_init_one(void)
4820{
4821 static const char * const buf[] = RCU_NODE_NAME_INIT;
4822 static const char * const fqs[] = RCU_FQS_NAME_INIT;
4823 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
4824 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
4825
4826 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */
4827 int cpustride = 1;
4828 int i;
4829 int j;
4830 struct rcu_node *rnp;
4831
4832 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
4833
4834 /* Silence gcc 4.8 false positive about array index out of range. */
4835 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
4836 panic(fmt: "rcu_init_one: rcu_num_lvls out of range");
4837
4838 /* Initialize the level-tracking arrays. */
4839
4840 for (i = 1; i < rcu_num_lvls; i++)
4841 rcu_state.level[i] =
4842 rcu_state.level[i - 1] + num_rcu_lvl[i - 1];
4843 rcu_init_levelspread(levelspread, levelcnt: num_rcu_lvl);
4844
4845 /* Initialize the elements themselves, starting from the leaves. */
4846
4847 for (i = rcu_num_lvls - 1; i >= 0; i--) {
4848 cpustride *= levelspread[i];
4849 rnp = rcu_state.level[i];
4850 for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
4851 raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
4852 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
4853 &rcu_node_class[i], buf[i]);
4854 raw_spin_lock_init(&rnp->fqslock);
4855 lockdep_set_class_and_name(&rnp->fqslock,
4856 &rcu_fqs_class[i], fqs[i]);
4857 rnp->gp_seq = rcu_state.gp_seq;
4858 rnp->gp_seq_needed = rcu_state.gp_seq;
4859 rnp->completedqs = rcu_state.gp_seq;
4860 rnp->qsmask = 0;
4861 rnp->qsmaskinit = 0;
4862 rnp->grplo = j * cpustride;
4863 rnp->grphi = (j + 1) * cpustride - 1;
4864 if (rnp->grphi >= nr_cpu_ids)
4865 rnp->grphi = nr_cpu_ids - 1;
4866 if (i == 0) {
4867 rnp->grpnum = 0;
4868 rnp->grpmask = 0;
4869 rnp->parent = NULL;
4870 } else {
4871 rnp->grpnum = j % levelspread[i - 1];
4872 rnp->grpmask = BIT(rnp->grpnum);
4873 rnp->parent = rcu_state.level[i - 1] +
4874 j / levelspread[i - 1];
4875 }
4876 rnp->level = i;
4877 INIT_LIST_HEAD(list: &rnp->blkd_tasks);
4878 rcu_init_one_nocb(rnp);
4879 init_waitqueue_head(&rnp->exp_wq[0]);
4880 init_waitqueue_head(&rnp->exp_wq[1]);
4881 init_waitqueue_head(&rnp->exp_wq[2]);
4882 init_waitqueue_head(&rnp->exp_wq[3]);
4883 spin_lock_init(&rnp->exp_lock);
4884 mutex_init(&rnp->boost_kthread_mutex);
4885 raw_spin_lock_init(&rnp->exp_poll_lock);
4886 rnp->exp_seq_poll_rq = RCU_GET_STATE_COMPLETED;
4887 INIT_WORK(&rnp->exp_poll_wq, sync_rcu_do_polled_gp);
4888 }
4889 }
4890
4891 init_swait_queue_head(&rcu_state.gp_wq);
4892 init_swait_queue_head(&rcu_state.expedited_wq);
4893 rnp = rcu_first_leaf_node();
4894 for_each_possible_cpu(i) {
4895 while (i > rnp->grphi)
4896 rnp++;
4897 per_cpu_ptr(&rcu_data, i)->mynode = rnp;
4898 rcu_boot_init_percpu_data(cpu: i);
4899 }
4900}
4901
4902/*
4903 * Force priority from the kernel command-line into range.
4904 */
4905static void __init sanitize_kthread_prio(void)
4906{
4907 int kthread_prio_in = kthread_prio;
4908
4909 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2
4910 && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST))
4911 kthread_prio = 2;
4912 else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
4913 kthread_prio = 1;
4914 else if (kthread_prio < 0)
4915 kthread_prio = 0;
4916 else if (kthread_prio > 99)
4917 kthread_prio = 99;
4918
4919 if (kthread_prio != kthread_prio_in)
4920 pr_alert("%s: Limited prio to %d from %d\n",
4921 __func__, kthread_prio, kthread_prio_in);
4922}
4923
4924/*
4925 * Compute the rcu_node tree geometry from kernel parameters. This cannot
4926 * replace the definitions in tree.h because those are needed to size
4927 * the ->node array in the rcu_state structure.
4928 */
4929void rcu_init_geometry(void)
4930{
4931 ulong d;
4932 int i;
4933 static unsigned long old_nr_cpu_ids;
4934 int rcu_capacity[RCU_NUM_LVLS];
4935 static bool initialized;
4936
4937 if (initialized) {
4938 /*
4939 * Warn if setup_nr_cpu_ids() had not yet been invoked,
4940 * unless nr_cpus_ids == NR_CPUS, in which case who cares?
4941 */
4942 WARN_ON_ONCE(old_nr_cpu_ids != nr_cpu_ids);
4943 return;
4944 }
4945
4946 old_nr_cpu_ids = nr_cpu_ids;
4947 initialized = true;
4948
4949 /*
4950 * Initialize any unspecified boot parameters.
4951 * The default values of jiffies_till_first_fqs and
4952 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4953 * value, which is a function of HZ, then adding one for each
4954 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4955 */
4956 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4957 if (jiffies_till_first_fqs == ULONG_MAX)
4958 jiffies_till_first_fqs = d;
4959 if (jiffies_till_next_fqs == ULONG_MAX)
4960 jiffies_till_next_fqs = d;
4961 adjust_jiffies_till_sched_qs();
4962
4963 /* If the compile-time values are accurate, just leave. */
4964 if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
4965 nr_cpu_ids == NR_CPUS)
4966 return;
4967 pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n",
4968 rcu_fanout_leaf, nr_cpu_ids);
4969
4970 /*
4971 * The boot-time rcu_fanout_leaf parameter must be at least two
4972 * and cannot exceed the number of bits in the rcu_node masks.
4973 * Complain and fall back to the compile-time values if this
4974 * limit is exceeded.
4975 */
4976 if (rcu_fanout_leaf < 2 ||
4977 rcu_fanout_leaf > sizeof(unsigned long) * 8) {
4978 rcu_fanout_leaf = RCU_FANOUT_LEAF;
4979 WARN_ON(1);
4980 return;
4981 }
4982
4983 /*
4984 * Compute number of nodes that can be handled an rcu_node tree
4985 * with the given number of levels.
4986 */
4987 rcu_capacity[0] = rcu_fanout_leaf;
4988 for (i = 1; i < RCU_NUM_LVLS; i++)
4989 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
4990
4991 /*
4992 * The tree must be able to accommodate the configured number of CPUs.
4993 * If this limit is exceeded, fall back to the compile-time values.
4994 */
4995 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
4996 rcu_fanout_leaf = RCU_FANOUT_LEAF;
4997 WARN_ON(1);
4998 return;
4999 }
5000
5001 /* Calculate the number of levels in the tree. */
5002 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
5003 }
5004 rcu_num_lvls = i + 1;
5005
5006 /* Calculate the number of rcu_nodes at each level of the tree. */
5007 for (i = 0; i < rcu_num_lvls; i++) {
5008 int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
5009 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
5010 }
5011
5012 /* Calculate the total number of rcu_node structures. */
5013 rcu_num_nodes = 0;
5014 for (i = 0; i < rcu_num_lvls; i++)
5015 rcu_num_nodes += num_rcu_lvl[i];
5016}
5017
5018/*
5019 * Dump out the structure of the rcu_node combining tree associated
5020 * with the rcu_state structure.
5021 */
5022static void __init rcu_dump_rcu_node_tree(void)
5023{
5024 int level = 0;
5025 struct rcu_node *rnp;
5026
5027 pr_info("rcu_node tree layout dump\n");
5028 pr_info(" ");
5029 rcu_for_each_node_breadth_first(rnp) {
5030 if (rnp->level != level) {
5031 pr_cont("\n");
5032 pr_info(" ");
5033 level = rnp->level;
5034 }
5035 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum);
5036 }
5037 pr_cont("\n");
5038}
5039
5040struct workqueue_struct *rcu_gp_wq;
5041
5042static void __init kfree_rcu_batch_init(void)
5043{
5044 int cpu;
5045 int i, j;
5046 struct shrinker *kfree_rcu_shrinker;
5047
5048 /* Clamp it to [0:100] seconds interval. */
5049 if (rcu_delay_page_cache_fill_msec < 0 ||
5050 rcu_delay_page_cache_fill_msec > 100 * MSEC_PER_SEC) {
5051
5052 rcu_delay_page_cache_fill_msec =
5053 clamp(rcu_delay_page_cache_fill_msec, 0,
5054 (int) (100 * MSEC_PER_SEC));
5055
5056 pr_info("Adjusting rcutree.rcu_delay_page_cache_fill_msec to %d ms.\n",
5057 rcu_delay_page_cache_fill_msec);
5058 }
5059
5060 for_each_possible_cpu(cpu) {
5061 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
5062
5063 for (i = 0; i < KFREE_N_BATCHES; i++) {
5064 INIT_RCU_WORK(&krcp->krw_arr[i].rcu_work, kfree_rcu_work);
5065 krcp->krw_arr[i].krcp = krcp;
5066
5067 for (j = 0; j < FREE_N_CHANNELS; j++)
5068 INIT_LIST_HEAD(list: &krcp->krw_arr[i].bulk_head_free[j]);
5069 }
5070
5071 for (i = 0; i < FREE_N_CHANNELS; i++)
5072 INIT_LIST_HEAD(list: &krcp->bulk_head[i]);
5073
5074 INIT_DELAYED_WORK(&krcp->monitor_work, kfree_rcu_monitor);
5075 INIT_DELAYED_WORK(&krcp->page_cache_work, fill_page_cache_func);
5076 krcp->initialized = true;
5077 }
5078
5079 kfree_rcu_shrinker = shrinker_alloc(flags: 0, fmt: "rcu-kfree");
5080 if (!kfree_rcu_shrinker) {
5081 pr_err("Failed to allocate kfree_rcu() shrinker!\n");
5082 return;
5083 }
5084
5085 kfree_rcu_shrinker->count_objects = kfree_rcu_shrink_count;
5086 kfree_rcu_shrinker->scan_objects = kfree_rcu_shrink_scan;
5087
5088 shrinker_register(shrinker: kfree_rcu_shrinker);
5089}
5090
5091void __init rcu_init(void)
5092{
5093 int cpu = smp_processor_id();
5094
5095 rcu_early_boot_tests();
5096
5097 kfree_rcu_batch_init();
5098 rcu_bootup_announce();
5099 sanitize_kthread_prio();
5100 rcu_init_geometry();
5101 rcu_init_one();
5102 if (dump_tree)
5103 rcu_dump_rcu_node_tree();
5104 if (use_softirq)
5105 open_softirq(nr: RCU_SOFTIRQ, action: rcu_core_si);
5106
5107 /*
5108 * We don't need protection against CPU-hotplug here because
5109 * this is called early in boot, before either interrupts
5110 * or the scheduler are operational.
5111 */
5112 pm_notifier(rcu_pm_notify, 0);
5113 WARN_ON(num_online_cpus() > 1); // Only one CPU this early in boot.
5114 rcutree_prepare_cpu(cpu);
5115 rcutree_report_cpu_starting(cpu);
5116 rcutree_online_cpu(cpu);
5117
5118 /* Create workqueue for Tree SRCU and for expedited GPs. */
5119 rcu_gp_wq = alloc_workqueue(fmt: "rcu_gp", flags: WQ_MEM_RECLAIM, max_active: 0);
5120 WARN_ON(!rcu_gp_wq);
5121 rcu_alloc_par_gp_wq();
5122
5123 /* Fill in default value for rcutree.qovld boot parameter. */
5124 /* -After- the rcu_node ->lock fields are initialized! */
5125 if (qovld < 0)
5126 qovld_calc = DEFAULT_RCU_QOVLD_MULT * qhimark;
5127 else
5128 qovld_calc = qovld;
5129
5130 // Kick-start in case any polled grace periods started early.
5131 (void)start_poll_synchronize_rcu_expedited();
5132
5133 rcu_test_sync_prims();
5134}
5135
5136#include "tree_stall.h"
5137#include "tree_exp.h"
5138#include "tree_nocb.h"
5139#include "tree_plugin.h"
5140

source code of linux/kernel/rcu/tree.c