1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * kernel/sched/core.c
4 *
5 * Core kernel scheduler code and related syscalls
6 *
7 * Copyright (C) 1991-2002 Linus Torvalds
8 */
9#include <linux/highmem.h>
10#include <linux/hrtimer_api.h>
11#include <linux/ktime_api.h>
12#include <linux/sched/signal.h>
13#include <linux/syscalls_api.h>
14#include <linux/debug_locks.h>
15#include <linux/prefetch.h>
16#include <linux/capability.h>
17#include <linux/pgtable_api.h>
18#include <linux/wait_bit.h>
19#include <linux/jiffies.h>
20#include <linux/spinlock_api.h>
21#include <linux/cpumask_api.h>
22#include <linux/lockdep_api.h>
23#include <linux/hardirq.h>
24#include <linux/softirq.h>
25#include <linux/refcount_api.h>
26#include <linux/topology.h>
27#include <linux/sched/clock.h>
28#include <linux/sched/cond_resched.h>
29#include <linux/sched/cputime.h>
30#include <linux/sched/debug.h>
31#include <linux/sched/hotplug.h>
32#include <linux/sched/init.h>
33#include <linux/sched/isolation.h>
34#include <linux/sched/loadavg.h>
35#include <linux/sched/mm.h>
36#include <linux/sched/nohz.h>
37#include <linux/sched/rseq_api.h>
38#include <linux/sched/rt.h>
39
40#include <linux/blkdev.h>
41#include <linux/context_tracking.h>
42#include <linux/cpuset.h>
43#include <linux/delayacct.h>
44#include <linux/init_task.h>
45#include <linux/interrupt.h>
46#include <linux/ioprio.h>
47#include <linux/kallsyms.h>
48#include <linux/kcov.h>
49#include <linux/kprobes.h>
50#include <linux/llist_api.h>
51#include <linux/mmu_context.h>
52#include <linux/mmzone.h>
53#include <linux/mutex_api.h>
54#include <linux/nmi.h>
55#include <linux/nospec.h>
56#include <linux/perf_event_api.h>
57#include <linux/profile.h>
58#include <linux/psi.h>
59#include <linux/rcuwait_api.h>
60#include <linux/sched/wake_q.h>
61#include <linux/scs.h>
62#include <linux/slab.h>
63#include <linux/syscalls.h>
64#include <linux/vtime.h>
65#include <linux/wait_api.h>
66#include <linux/workqueue_api.h>
67
68#ifdef CONFIG_PREEMPT_DYNAMIC
69# ifdef CONFIG_GENERIC_ENTRY
70# include <linux/entry-common.h>
71# endif
72#endif
73
74#include <uapi/linux/sched/types.h>
75
76#include <asm/irq_regs.h>
77#include <asm/switch_to.h>
78#include <asm/tlb.h>
79
80#define CREATE_TRACE_POINTS
81#include <linux/sched/rseq_api.h>
82#include <trace/events/sched.h>
83#include <trace/events/ipi.h>
84#undef CREATE_TRACE_POINTS
85
86#include "sched.h"
87#include "stats.h"
88
89#include "autogroup.h"
90#include "pelt.h"
91#include "smp.h"
92#include "stats.h"
93
94#include "../workqueue_internal.h"
95#include "../../io_uring/io-wq.h"
96#include "../smpboot.h"
97
98EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpu);
99EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpumask);
100
101/*
102 * Export tracepoints that act as a bare tracehook (ie: have no trace event
103 * associated with them) to allow external modules to probe them.
104 */
105EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
106EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
107EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
108EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
109EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
110EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_thermal_tp);
111EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
112EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
113EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
114EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
115EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
116EXPORT_TRACEPOINT_SYMBOL_GPL(sched_compute_energy_tp);
117
118DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
119
120#ifdef CONFIG_SCHED_DEBUG
121/*
122 * Debugging: various feature bits
123 *
124 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
125 * sysctl_sched_features, defined in sched.h, to allow constants propagation
126 * at compile time and compiler optimization based on features default.
127 */
128#define SCHED_FEAT(name, enabled) \
129 (1UL << __SCHED_FEAT_##name) * enabled |
130const_debug unsigned int sysctl_sched_features =
131#include "features.h"
132 0;
133#undef SCHED_FEAT
134
135/*
136 * Print a warning if need_resched is set for the given duration (if
137 * LATENCY_WARN is enabled).
138 *
139 * If sysctl_resched_latency_warn_once is set, only one warning will be shown
140 * per boot.
141 */
142__read_mostly int sysctl_resched_latency_warn_ms = 100;
143__read_mostly int sysctl_resched_latency_warn_once = 1;
144#endif /* CONFIG_SCHED_DEBUG */
145
146/*
147 * Number of tasks to iterate in a single balance run.
148 * Limited because this is done with IRQs disabled.
149 */
150const_debug unsigned int sysctl_sched_nr_migrate = SCHED_NR_MIGRATE_BREAK;
151
152__read_mostly int scheduler_running;
153
154#ifdef CONFIG_SCHED_CORE
155
156DEFINE_STATIC_KEY_FALSE(__sched_core_enabled);
157
158/* kernel prio, less is more */
159static inline int __task_prio(const struct task_struct *p)
160{
161 if (p->sched_class == &stop_sched_class) /* trumps deadline */
162 return -2;
163
164 if (rt_prio(prio: p->prio)) /* includes deadline */
165 return p->prio; /* [-1, 99] */
166
167 if (p->sched_class == &idle_sched_class)
168 return MAX_RT_PRIO + NICE_WIDTH; /* 140 */
169
170 return MAX_RT_PRIO + MAX_NICE; /* 120, squash fair */
171}
172
173/*
174 * l(a,b)
175 * le(a,b) := !l(b,a)
176 * g(a,b) := l(b,a)
177 * ge(a,b) := !l(a,b)
178 */
179
180/* real prio, less is less */
181static inline bool prio_less(const struct task_struct *a,
182 const struct task_struct *b, bool in_fi)
183{
184
185 int pa = __task_prio(p: a), pb = __task_prio(p: b);
186
187 if (-pa < -pb)
188 return true;
189
190 if (-pb < -pa)
191 return false;
192
193 if (pa == -1) /* dl_prio() doesn't work because of stop_class above */
194 return !dl_time_before(a: a->dl.deadline, b: b->dl.deadline);
195
196 if (pa == MAX_RT_PRIO + MAX_NICE) /* fair */
197 return cfs_prio_less(a, b, fi: in_fi);
198
199 return false;
200}
201
202static inline bool __sched_core_less(const struct task_struct *a,
203 const struct task_struct *b)
204{
205 if (a->core_cookie < b->core_cookie)
206 return true;
207
208 if (a->core_cookie > b->core_cookie)
209 return false;
210
211 /* flip prio, so high prio is leftmost */
212 if (prio_less(a: b, b: a, in_fi: !!task_rq(a)->core->core_forceidle_count))
213 return true;
214
215 return false;
216}
217
218#define __node_2_sc(node) rb_entry((node), struct task_struct, core_node)
219
220static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b)
221{
222 return __sched_core_less(__node_2_sc(a), __node_2_sc(b));
223}
224
225static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node)
226{
227 const struct task_struct *p = __node_2_sc(node);
228 unsigned long cookie = (unsigned long)key;
229
230 if (cookie < p->core_cookie)
231 return -1;
232
233 if (cookie > p->core_cookie)
234 return 1;
235
236 return 0;
237}
238
239void sched_core_enqueue(struct rq *rq, struct task_struct *p)
240{
241 rq->core->core_task_seq++;
242
243 if (!p->core_cookie)
244 return;
245
246 rb_add(node: &p->core_node, tree: &rq->core_tree, less: rb_sched_core_less);
247}
248
249void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags)
250{
251 rq->core->core_task_seq++;
252
253 if (sched_core_enqueued(p)) {
254 rb_erase(&p->core_node, &rq->core_tree);
255 RB_CLEAR_NODE(&p->core_node);
256 }
257
258 /*
259 * Migrating the last task off the cpu, with the cpu in forced idle
260 * state. Reschedule to create an accounting edge for forced idle,
261 * and re-examine whether the core is still in forced idle state.
262 */
263 if (!(flags & DEQUEUE_SAVE) && rq->nr_running == 1 &&
264 rq->core->core_forceidle_count && rq->curr == rq->idle)
265 resched_curr(rq);
266}
267
268static int sched_task_is_throttled(struct task_struct *p, int cpu)
269{
270 if (p->sched_class->task_is_throttled)
271 return p->sched_class->task_is_throttled(p, cpu);
272
273 return 0;
274}
275
276static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie)
277{
278 struct rb_node *node = &p->core_node;
279 int cpu = task_cpu(p);
280
281 do {
282 node = rb_next(node);
283 if (!node)
284 return NULL;
285
286 p = __node_2_sc(node);
287 if (p->core_cookie != cookie)
288 return NULL;
289
290 } while (sched_task_is_throttled(p, cpu));
291
292 return p;
293}
294
295/*
296 * Find left-most (aka, highest priority) and unthrottled task matching @cookie.
297 * If no suitable task is found, NULL will be returned.
298 */
299static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie)
300{
301 struct task_struct *p;
302 struct rb_node *node;
303
304 node = rb_find_first(key: (void *)cookie, tree: &rq->core_tree, cmp: rb_sched_core_cmp);
305 if (!node)
306 return NULL;
307
308 p = __node_2_sc(node);
309 if (!sched_task_is_throttled(p, cpu: rq->cpu))
310 return p;
311
312 return sched_core_next(p, cookie);
313}
314
315/*
316 * Magic required such that:
317 *
318 * raw_spin_rq_lock(rq);
319 * ...
320 * raw_spin_rq_unlock(rq);
321 *
322 * ends up locking and unlocking the _same_ lock, and all CPUs
323 * always agree on what rq has what lock.
324 *
325 * XXX entirely possible to selectively enable cores, don't bother for now.
326 */
327
328static DEFINE_MUTEX(sched_core_mutex);
329static atomic_t sched_core_count;
330static struct cpumask sched_core_mask;
331
332static void sched_core_lock(int cpu, unsigned long *flags)
333{
334 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
335 int t, i = 0;
336
337 local_irq_save(*flags);
338 for_each_cpu(t, smt_mask)
339 raw_spin_lock_nested(&cpu_rq(t)->__lock, i++);
340}
341
342static void sched_core_unlock(int cpu, unsigned long *flags)
343{
344 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
345 int t;
346
347 for_each_cpu(t, smt_mask)
348 raw_spin_unlock(&cpu_rq(t)->__lock);
349 local_irq_restore(*flags);
350}
351
352static void __sched_core_flip(bool enabled)
353{
354 unsigned long flags;
355 int cpu, t;
356
357 cpus_read_lock();
358
359 /*
360 * Toggle the online cores, one by one.
361 */
362 cpumask_copy(dstp: &sched_core_mask, cpu_online_mask);
363 for_each_cpu(cpu, &sched_core_mask) {
364 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
365
366 sched_core_lock(cpu, flags: &flags);
367
368 for_each_cpu(t, smt_mask)
369 cpu_rq(t)->core_enabled = enabled;
370
371 cpu_rq(cpu)->core->core_forceidle_start = 0;
372
373 sched_core_unlock(cpu, flags: &flags);
374
375 cpumask_andnot(dstp: &sched_core_mask, src1p: &sched_core_mask, src2p: smt_mask);
376 }
377
378 /*
379 * Toggle the offline CPUs.
380 */
381 for_each_cpu_andnot(cpu, cpu_possible_mask, cpu_online_mask)
382 cpu_rq(cpu)->core_enabled = enabled;
383
384 cpus_read_unlock();
385}
386
387static void sched_core_assert_empty(void)
388{
389 int cpu;
390
391 for_each_possible_cpu(cpu)
392 WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree));
393}
394
395static void __sched_core_enable(void)
396{
397 static_branch_enable(&__sched_core_enabled);
398 /*
399 * Ensure all previous instances of raw_spin_rq_*lock() have finished
400 * and future ones will observe !sched_core_disabled().
401 */
402 synchronize_rcu();
403 __sched_core_flip(enabled: true);
404 sched_core_assert_empty();
405}
406
407static void __sched_core_disable(void)
408{
409 sched_core_assert_empty();
410 __sched_core_flip(enabled: false);
411 static_branch_disable(&__sched_core_enabled);
412}
413
414void sched_core_get(void)
415{
416 if (atomic_inc_not_zero(v: &sched_core_count))
417 return;
418
419 mutex_lock(&sched_core_mutex);
420 if (!atomic_read(v: &sched_core_count))
421 __sched_core_enable();
422
423 smp_mb__before_atomic();
424 atomic_inc(v: &sched_core_count);
425 mutex_unlock(lock: &sched_core_mutex);
426}
427
428static void __sched_core_put(struct work_struct *work)
429{
430 if (atomic_dec_and_mutex_lock(cnt: &sched_core_count, lock: &sched_core_mutex)) {
431 __sched_core_disable();
432 mutex_unlock(lock: &sched_core_mutex);
433 }
434}
435
436void sched_core_put(void)
437{
438 static DECLARE_WORK(_work, __sched_core_put);
439
440 /*
441 * "There can be only one"
442 *
443 * Either this is the last one, or we don't actually need to do any
444 * 'work'. If it is the last *again*, we rely on
445 * WORK_STRUCT_PENDING_BIT.
446 */
447 if (!atomic_add_unless(v: &sched_core_count, a: -1, u: 1))
448 schedule_work(work: &_work);
449}
450
451#else /* !CONFIG_SCHED_CORE */
452
453static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { }
454static inline void
455sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { }
456
457#endif /* CONFIG_SCHED_CORE */
458
459/*
460 * Serialization rules:
461 *
462 * Lock order:
463 *
464 * p->pi_lock
465 * rq->lock
466 * hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
467 *
468 * rq1->lock
469 * rq2->lock where: rq1 < rq2
470 *
471 * Regular state:
472 *
473 * Normal scheduling state is serialized by rq->lock. __schedule() takes the
474 * local CPU's rq->lock, it optionally removes the task from the runqueue and
475 * always looks at the local rq data structures to find the most eligible task
476 * to run next.
477 *
478 * Task enqueue is also under rq->lock, possibly taken from another CPU.
479 * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
480 * the local CPU to avoid bouncing the runqueue state around [ see
481 * ttwu_queue_wakelist() ]
482 *
483 * Task wakeup, specifically wakeups that involve migration, are horribly
484 * complicated to avoid having to take two rq->locks.
485 *
486 * Special state:
487 *
488 * System-calls and anything external will use task_rq_lock() which acquires
489 * both p->pi_lock and rq->lock. As a consequence the state they change is
490 * stable while holding either lock:
491 *
492 * - sched_setaffinity()/
493 * set_cpus_allowed_ptr(): p->cpus_ptr, p->nr_cpus_allowed
494 * - set_user_nice(): p->se.load, p->*prio
495 * - __sched_setscheduler(): p->sched_class, p->policy, p->*prio,
496 * p->se.load, p->rt_priority,
497 * p->dl.dl_{runtime, deadline, period, flags, bw, density}
498 * - sched_setnuma(): p->numa_preferred_nid
499 * - sched_move_task(): p->sched_task_group
500 * - uclamp_update_active() p->uclamp*
501 *
502 * p->state <- TASK_*:
503 *
504 * is changed locklessly using set_current_state(), __set_current_state() or
505 * set_special_state(), see their respective comments, or by
506 * try_to_wake_up(). This latter uses p->pi_lock to serialize against
507 * concurrent self.
508 *
509 * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
510 *
511 * is set by activate_task() and cleared by deactivate_task(), under
512 * rq->lock. Non-zero indicates the task is runnable, the special
513 * ON_RQ_MIGRATING state is used for migration without holding both
514 * rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
515 *
516 * p->on_cpu <- { 0, 1 }:
517 *
518 * is set by prepare_task() and cleared by finish_task() such that it will be
519 * set before p is scheduled-in and cleared after p is scheduled-out, both
520 * under rq->lock. Non-zero indicates the task is running on its CPU.
521 *
522 * [ The astute reader will observe that it is possible for two tasks on one
523 * CPU to have ->on_cpu = 1 at the same time. ]
524 *
525 * task_cpu(p): is changed by set_task_cpu(), the rules are:
526 *
527 * - Don't call set_task_cpu() on a blocked task:
528 *
529 * We don't care what CPU we're not running on, this simplifies hotplug,
530 * the CPU assignment of blocked tasks isn't required to be valid.
531 *
532 * - for try_to_wake_up(), called under p->pi_lock:
533 *
534 * This allows try_to_wake_up() to only take one rq->lock, see its comment.
535 *
536 * - for migration called under rq->lock:
537 * [ see task_on_rq_migrating() in task_rq_lock() ]
538 *
539 * o move_queued_task()
540 * o detach_task()
541 *
542 * - for migration called under double_rq_lock():
543 *
544 * o __migrate_swap_task()
545 * o push_rt_task() / pull_rt_task()
546 * o push_dl_task() / pull_dl_task()
547 * o dl_task_offline_migration()
548 *
549 */
550
551void raw_spin_rq_lock_nested(struct rq *rq, int subclass)
552{
553 raw_spinlock_t *lock;
554
555 /* Matches synchronize_rcu() in __sched_core_enable() */
556 preempt_disable();
557 if (sched_core_disabled()) {
558 raw_spin_lock_nested(&rq->__lock, subclass);
559 /* preempt_count *MUST* be > 1 */
560 preempt_enable_no_resched();
561 return;
562 }
563
564 for (;;) {
565 lock = __rq_lockp(rq);
566 raw_spin_lock_nested(lock, subclass);
567 if (likely(lock == __rq_lockp(rq))) {
568 /* preempt_count *MUST* be > 1 */
569 preempt_enable_no_resched();
570 return;
571 }
572 raw_spin_unlock(lock);
573 }
574}
575
576bool raw_spin_rq_trylock(struct rq *rq)
577{
578 raw_spinlock_t *lock;
579 bool ret;
580
581 /* Matches synchronize_rcu() in __sched_core_enable() */
582 preempt_disable();
583 if (sched_core_disabled()) {
584 ret = raw_spin_trylock(&rq->__lock);
585 preempt_enable();
586 return ret;
587 }
588
589 for (;;) {
590 lock = __rq_lockp(rq);
591 ret = raw_spin_trylock(lock);
592 if (!ret || (likely(lock == __rq_lockp(rq)))) {
593 preempt_enable();
594 return ret;
595 }
596 raw_spin_unlock(lock);
597 }
598}
599
600void raw_spin_rq_unlock(struct rq *rq)
601{
602 raw_spin_unlock(rq_lockp(rq));
603}
604
605#ifdef CONFIG_SMP
606/*
607 * double_rq_lock - safely lock two runqueues
608 */
609void double_rq_lock(struct rq *rq1, struct rq *rq2)
610{
611 lockdep_assert_irqs_disabled();
612
613 if (rq_order_less(rq1: rq2, rq2: rq1))
614 swap(rq1, rq2);
615
616 raw_spin_rq_lock(rq: rq1);
617 if (__rq_lockp(rq: rq1) != __rq_lockp(rq: rq2))
618 raw_spin_rq_lock_nested(rq: rq2, SINGLE_DEPTH_NESTING);
619
620 double_rq_clock_clear_update(rq1, rq2);
621}
622#endif
623
624/*
625 * __task_rq_lock - lock the rq @p resides on.
626 */
627struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
628 __acquires(rq->lock)
629{
630 struct rq *rq;
631
632 lockdep_assert_held(&p->pi_lock);
633
634 for (;;) {
635 rq = task_rq(p);
636 raw_spin_rq_lock(rq);
637 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
638 rq_pin_lock(rq, rf);
639 return rq;
640 }
641 raw_spin_rq_unlock(rq);
642
643 while (unlikely(task_on_rq_migrating(p)))
644 cpu_relax();
645 }
646}
647
648/*
649 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
650 */
651struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
652 __acquires(p->pi_lock)
653 __acquires(rq->lock)
654{
655 struct rq *rq;
656
657 for (;;) {
658 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
659 rq = task_rq(p);
660 raw_spin_rq_lock(rq);
661 /*
662 * move_queued_task() task_rq_lock()
663 *
664 * ACQUIRE (rq->lock)
665 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
666 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
667 * [S] ->cpu = new_cpu [L] task_rq()
668 * [L] ->on_rq
669 * RELEASE (rq->lock)
670 *
671 * If we observe the old CPU in task_rq_lock(), the acquire of
672 * the old rq->lock will fully serialize against the stores.
673 *
674 * If we observe the new CPU in task_rq_lock(), the address
675 * dependency headed by '[L] rq = task_rq()' and the acquire
676 * will pair with the WMB to ensure we then also see migrating.
677 */
678 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
679 rq_pin_lock(rq, rf);
680 return rq;
681 }
682 raw_spin_rq_unlock(rq);
683 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
684
685 while (unlikely(task_on_rq_migrating(p)))
686 cpu_relax();
687 }
688}
689
690/*
691 * RQ-clock updating methods:
692 */
693
694static void update_rq_clock_task(struct rq *rq, s64 delta)
695{
696/*
697 * In theory, the compile should just see 0 here, and optimize out the call
698 * to sched_rt_avg_update. But I don't trust it...
699 */
700 s64 __maybe_unused steal = 0, irq_delta = 0;
701
702#ifdef CONFIG_IRQ_TIME_ACCOUNTING
703 irq_delta = irq_time_read(cpu: cpu_of(rq)) - rq->prev_irq_time;
704
705 /*
706 * Since irq_time is only updated on {soft,}irq_exit, we might run into
707 * this case when a previous update_rq_clock() happened inside a
708 * {soft,}irq region.
709 *
710 * When this happens, we stop ->clock_task and only update the
711 * prev_irq_time stamp to account for the part that fit, so that a next
712 * update will consume the rest. This ensures ->clock_task is
713 * monotonic.
714 *
715 * It does however cause some slight miss-attribution of {soft,}irq
716 * time, a more accurate solution would be to update the irq_time using
717 * the current rq->clock timestamp, except that would require using
718 * atomic ops.
719 */
720 if (irq_delta > delta)
721 irq_delta = delta;
722
723 rq->prev_irq_time += irq_delta;
724 delta -= irq_delta;
725 psi_account_irqtime(task: rq->curr, delta: irq_delta);
726 delayacct_irq(task: rq->curr, delta: irq_delta);
727#endif
728#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
729 if (static_key_false(key: (&paravirt_steal_rq_enabled))) {
730 steal = paravirt_steal_clock(cpu: cpu_of(rq));
731 steal -= rq->prev_steal_time_rq;
732
733 if (unlikely(steal > delta))
734 steal = delta;
735
736 rq->prev_steal_time_rq += steal;
737 delta -= steal;
738 }
739#endif
740
741 rq->clock_task += delta;
742
743#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
744 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
745 update_irq_load_avg(rq, running: irq_delta + steal);
746#endif
747 update_rq_clock_pelt(rq, delta);
748}
749
750void update_rq_clock(struct rq *rq)
751{
752 s64 delta;
753
754 lockdep_assert_rq_held(rq);
755
756 if (rq->clock_update_flags & RQCF_ACT_SKIP)
757 return;
758
759#ifdef CONFIG_SCHED_DEBUG
760 if (sched_feat(WARN_DOUBLE_CLOCK))
761 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
762 rq->clock_update_flags |= RQCF_UPDATED;
763#endif
764
765 delta = sched_clock_cpu(cpu: cpu_of(rq)) - rq->clock;
766 if (delta < 0)
767 return;
768 rq->clock += delta;
769 update_rq_clock_task(rq, delta);
770}
771
772#ifdef CONFIG_SCHED_HRTICK
773/*
774 * Use HR-timers to deliver accurate preemption points.
775 */
776
777static void hrtick_clear(struct rq *rq)
778{
779 if (hrtimer_active(timer: &rq->hrtick_timer))
780 hrtimer_cancel(timer: &rq->hrtick_timer);
781}
782
783/*
784 * High-resolution timer tick.
785 * Runs from hardirq context with interrupts disabled.
786 */
787static enum hrtimer_restart hrtick(struct hrtimer *timer)
788{
789 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
790 struct rq_flags rf;
791
792 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
793
794 rq_lock(rq, rf: &rf);
795 update_rq_clock(rq);
796 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
797 rq_unlock(rq, rf: &rf);
798
799 return HRTIMER_NORESTART;
800}
801
802#ifdef CONFIG_SMP
803
804static void __hrtick_restart(struct rq *rq)
805{
806 struct hrtimer *timer = &rq->hrtick_timer;
807 ktime_t time = rq->hrtick_time;
808
809 hrtimer_start(timer, tim: time, mode: HRTIMER_MODE_ABS_PINNED_HARD);
810}
811
812/*
813 * called from hardirq (IPI) context
814 */
815static void __hrtick_start(void *arg)
816{
817 struct rq *rq = arg;
818 struct rq_flags rf;
819
820 rq_lock(rq, rf: &rf);
821 __hrtick_restart(rq);
822 rq_unlock(rq, rf: &rf);
823}
824
825/*
826 * Called to set the hrtick timer state.
827 *
828 * called with rq->lock held and irqs disabled
829 */
830void hrtick_start(struct rq *rq, u64 delay)
831{
832 struct hrtimer *timer = &rq->hrtick_timer;
833 s64 delta;
834
835 /*
836 * Don't schedule slices shorter than 10000ns, that just
837 * doesn't make sense and can cause timer DoS.
838 */
839 delta = max_t(s64, delay, 10000LL);
840 rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta);
841
842 if (rq == this_rq())
843 __hrtick_restart(rq);
844 else
845 smp_call_function_single_async(cpu: cpu_of(rq), csd: &rq->hrtick_csd);
846}
847
848#else
849/*
850 * Called to set the hrtick timer state.
851 *
852 * called with rq->lock held and irqs disabled
853 */
854void hrtick_start(struct rq *rq, u64 delay)
855{
856 /*
857 * Don't schedule slices shorter than 10000ns, that just
858 * doesn't make sense. Rely on vruntime for fairness.
859 */
860 delay = max_t(u64, delay, 10000LL);
861 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
862 HRTIMER_MODE_REL_PINNED_HARD);
863}
864
865#endif /* CONFIG_SMP */
866
867static void hrtick_rq_init(struct rq *rq)
868{
869#ifdef CONFIG_SMP
870 INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq);
871#endif
872 hrtimer_init(timer: &rq->hrtick_timer, CLOCK_MONOTONIC, mode: HRTIMER_MODE_REL_HARD);
873 rq->hrtick_timer.function = hrtick;
874}
875#else /* CONFIG_SCHED_HRTICK */
876static inline void hrtick_clear(struct rq *rq)
877{
878}
879
880static inline void hrtick_rq_init(struct rq *rq)
881{
882}
883#endif /* CONFIG_SCHED_HRTICK */
884
885/*
886 * cmpxchg based fetch_or, macro so it works for different integer types
887 */
888#define fetch_or(ptr, mask) \
889 ({ \
890 typeof(ptr) _ptr = (ptr); \
891 typeof(mask) _mask = (mask); \
892 typeof(*_ptr) _val = *_ptr; \
893 \
894 do { \
895 } while (!try_cmpxchg(_ptr, &_val, _val | _mask)); \
896 _val; \
897})
898
899#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
900/*
901 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
902 * this avoids any races wrt polling state changes and thereby avoids
903 * spurious IPIs.
904 */
905static inline bool set_nr_and_not_polling(struct task_struct *p)
906{
907 struct thread_info *ti = task_thread_info(p);
908 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
909}
910
911/*
912 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
913 *
914 * If this returns true, then the idle task promises to call
915 * sched_ttwu_pending() and reschedule soon.
916 */
917static bool set_nr_if_polling(struct task_struct *p)
918{
919 struct thread_info *ti = task_thread_info(p);
920 typeof(ti->flags) val = READ_ONCE(ti->flags);
921
922 do {
923 if (!(val & _TIF_POLLING_NRFLAG))
924 return false;
925 if (val & _TIF_NEED_RESCHED)
926 return true;
927 } while (!try_cmpxchg(&ti->flags, &val, val | _TIF_NEED_RESCHED));
928
929 return true;
930}
931
932#else
933static inline bool set_nr_and_not_polling(struct task_struct *p)
934{
935 set_tsk_need_resched(p);
936 return true;
937}
938
939#ifdef CONFIG_SMP
940static inline bool set_nr_if_polling(struct task_struct *p)
941{
942 return false;
943}
944#endif
945#endif
946
947static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
948{
949 struct wake_q_node *node = &task->wake_q;
950
951 /*
952 * Atomically grab the task, if ->wake_q is !nil already it means
953 * it's already queued (either by us or someone else) and will get the
954 * wakeup due to that.
955 *
956 * In order to ensure that a pending wakeup will observe our pending
957 * state, even in the failed case, an explicit smp_mb() must be used.
958 */
959 smp_mb__before_atomic();
960 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
961 return false;
962
963 /*
964 * The head is context local, there can be no concurrency.
965 */
966 *head->lastp = node;
967 head->lastp = &node->next;
968 return true;
969}
970
971/**
972 * wake_q_add() - queue a wakeup for 'later' waking.
973 * @head: the wake_q_head to add @task to
974 * @task: the task to queue for 'later' wakeup
975 *
976 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
977 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
978 * instantly.
979 *
980 * This function must be used as-if it were wake_up_process(); IOW the task
981 * must be ready to be woken at this location.
982 */
983void wake_q_add(struct wake_q_head *head, struct task_struct *task)
984{
985 if (__wake_q_add(head, task))
986 get_task_struct(t: task);
987}
988
989/**
990 * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
991 * @head: the wake_q_head to add @task to
992 * @task: the task to queue for 'later' wakeup
993 *
994 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
995 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
996 * instantly.
997 *
998 * This function must be used as-if it were wake_up_process(); IOW the task
999 * must be ready to be woken at this location.
1000 *
1001 * This function is essentially a task-safe equivalent to wake_q_add(). Callers
1002 * that already hold reference to @task can call the 'safe' version and trust
1003 * wake_q to do the right thing depending whether or not the @task is already
1004 * queued for wakeup.
1005 */
1006void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
1007{
1008 if (!__wake_q_add(head, task))
1009 put_task_struct(t: task);
1010}
1011
1012void wake_up_q(struct wake_q_head *head)
1013{
1014 struct wake_q_node *node = head->first;
1015
1016 while (node != WAKE_Q_TAIL) {
1017 struct task_struct *task;
1018
1019 task = container_of(node, struct task_struct, wake_q);
1020 /* Task can safely be re-inserted now: */
1021 node = node->next;
1022 task->wake_q.next = NULL;
1023
1024 /*
1025 * wake_up_process() executes a full barrier, which pairs with
1026 * the queueing in wake_q_add() so as not to miss wakeups.
1027 */
1028 wake_up_process(tsk: task);
1029 put_task_struct(t: task);
1030 }
1031}
1032
1033/*
1034 * resched_curr - mark rq's current task 'to be rescheduled now'.
1035 *
1036 * On UP this means the setting of the need_resched flag, on SMP it
1037 * might also involve a cross-CPU call to trigger the scheduler on
1038 * the target CPU.
1039 */
1040void resched_curr(struct rq *rq)
1041{
1042 struct task_struct *curr = rq->curr;
1043 int cpu;
1044
1045 lockdep_assert_rq_held(rq);
1046
1047 if (test_tsk_need_resched(tsk: curr))
1048 return;
1049
1050 cpu = cpu_of(rq);
1051
1052 if (cpu == smp_processor_id()) {
1053 set_tsk_need_resched(curr);
1054 set_preempt_need_resched();
1055 return;
1056 }
1057
1058 if (set_nr_and_not_polling(curr))
1059 smp_send_reschedule(cpu);
1060 else
1061 trace_sched_wake_idle_without_ipi(cpu);
1062}
1063
1064void resched_cpu(int cpu)
1065{
1066 struct rq *rq = cpu_rq(cpu);
1067 unsigned long flags;
1068
1069 raw_spin_rq_lock_irqsave(rq, flags);
1070 if (cpu_online(cpu) || cpu == smp_processor_id())
1071 resched_curr(rq);
1072 raw_spin_rq_unlock_irqrestore(rq, flags);
1073}
1074
1075#ifdef CONFIG_SMP
1076#ifdef CONFIG_NO_HZ_COMMON
1077/*
1078 * In the semi idle case, use the nearest busy CPU for migrating timers
1079 * from an idle CPU. This is good for power-savings.
1080 *
1081 * We don't do similar optimization for completely idle system, as
1082 * selecting an idle CPU will add more delays to the timers than intended
1083 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
1084 */
1085int get_nohz_timer_target(void)
1086{
1087 int i, cpu = smp_processor_id(), default_cpu = -1;
1088 struct sched_domain *sd;
1089 const struct cpumask *hk_mask;
1090
1091 if (housekeeping_cpu(cpu, type: HK_TYPE_TIMER)) {
1092 if (!idle_cpu(cpu))
1093 return cpu;
1094 default_cpu = cpu;
1095 }
1096
1097 hk_mask = housekeeping_cpumask(type: HK_TYPE_TIMER);
1098
1099 guard(rcu)();
1100
1101 for_each_domain(cpu, sd) {
1102 for_each_cpu_and(i, sched_domain_span(sd), hk_mask) {
1103 if (cpu == i)
1104 continue;
1105
1106 if (!idle_cpu(cpu: i))
1107 return i;
1108 }
1109 }
1110
1111 if (default_cpu == -1)
1112 default_cpu = housekeeping_any_cpu(type: HK_TYPE_TIMER);
1113
1114 return default_cpu;
1115}
1116
1117/*
1118 * When add_timer_on() enqueues a timer into the timer wheel of an
1119 * idle CPU then this timer might expire before the next timer event
1120 * which is scheduled to wake up that CPU. In case of a completely
1121 * idle system the next event might even be infinite time into the
1122 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1123 * leaves the inner idle loop so the newly added timer is taken into
1124 * account when the CPU goes back to idle and evaluates the timer
1125 * wheel for the next timer event.
1126 */
1127static void wake_up_idle_cpu(int cpu)
1128{
1129 struct rq *rq = cpu_rq(cpu);
1130
1131 if (cpu == smp_processor_id())
1132 return;
1133
1134 if (set_nr_and_not_polling(rq->idle))
1135 smp_send_reschedule(cpu);
1136 else
1137 trace_sched_wake_idle_without_ipi(cpu);
1138}
1139
1140static bool wake_up_full_nohz_cpu(int cpu)
1141{
1142 /*
1143 * We just need the target to call irq_exit() and re-evaluate
1144 * the next tick. The nohz full kick at least implies that.
1145 * If needed we can still optimize that later with an
1146 * empty IRQ.
1147 */
1148 if (cpu_is_offline(cpu))
1149 return true; /* Don't try to wake offline CPUs. */
1150 if (tick_nohz_full_cpu(cpu)) {
1151 if (cpu != smp_processor_id() ||
1152 tick_nohz_tick_stopped())
1153 tick_nohz_full_kick_cpu(cpu);
1154 return true;
1155 }
1156
1157 return false;
1158}
1159
1160/*
1161 * Wake up the specified CPU. If the CPU is going offline, it is the
1162 * caller's responsibility to deal with the lost wakeup, for example,
1163 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
1164 */
1165void wake_up_nohz_cpu(int cpu)
1166{
1167 if (!wake_up_full_nohz_cpu(cpu))
1168 wake_up_idle_cpu(cpu);
1169}
1170
1171static void nohz_csd_func(void *info)
1172{
1173 struct rq *rq = info;
1174 int cpu = cpu_of(rq);
1175 unsigned int flags;
1176
1177 /*
1178 * Release the rq::nohz_csd.
1179 */
1180 flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu));
1181 WARN_ON(!(flags & NOHZ_KICK_MASK));
1182
1183 rq->idle_balance = idle_cpu(cpu);
1184 if (rq->idle_balance && !need_resched()) {
1185 rq->nohz_idle_balance = flags;
1186 raise_softirq_irqoff(nr: SCHED_SOFTIRQ);
1187 }
1188}
1189
1190#endif /* CONFIG_NO_HZ_COMMON */
1191
1192#ifdef CONFIG_NO_HZ_FULL
1193static inline bool __need_bw_check(struct rq *rq, struct task_struct *p)
1194{
1195 if (rq->nr_running != 1)
1196 return false;
1197
1198 if (p->sched_class != &fair_sched_class)
1199 return false;
1200
1201 if (!task_on_rq_queued(p))
1202 return false;
1203
1204 return true;
1205}
1206
1207bool sched_can_stop_tick(struct rq *rq)
1208{
1209 int fifo_nr_running;
1210
1211 /* Deadline tasks, even if single, need the tick */
1212 if (rq->dl.dl_nr_running)
1213 return false;
1214
1215 /*
1216 * If there are more than one RR tasks, we need the tick to affect the
1217 * actual RR behaviour.
1218 */
1219 if (rq->rt.rr_nr_running) {
1220 if (rq->rt.rr_nr_running == 1)
1221 return true;
1222 else
1223 return false;
1224 }
1225
1226 /*
1227 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
1228 * forced preemption between FIFO tasks.
1229 */
1230 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
1231 if (fifo_nr_running)
1232 return true;
1233
1234 /*
1235 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
1236 * if there's more than one we need the tick for involuntary
1237 * preemption.
1238 */
1239 if (rq->nr_running > 1)
1240 return false;
1241
1242 /*
1243 * If there is one task and it has CFS runtime bandwidth constraints
1244 * and it's on the cpu now we don't want to stop the tick.
1245 * This check prevents clearing the bit if a newly enqueued task here is
1246 * dequeued by migrating while the constrained task continues to run.
1247 * E.g. going from 2->1 without going through pick_next_task().
1248 */
1249 if (sched_feat(HZ_BW) && __need_bw_check(rq, rq->curr)) {
1250 if (cfs_task_bw_constrained(rq->curr))
1251 return false;
1252 }
1253
1254 return true;
1255}
1256#endif /* CONFIG_NO_HZ_FULL */
1257#endif /* CONFIG_SMP */
1258
1259#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
1260 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
1261/*
1262 * Iterate task_group tree rooted at *from, calling @down when first entering a
1263 * node and @up when leaving it for the final time.
1264 *
1265 * Caller must hold rcu_lock or sufficient equivalent.
1266 */
1267int walk_tg_tree_from(struct task_group *from,
1268 tg_visitor down, tg_visitor up, void *data)
1269{
1270 struct task_group *parent, *child;
1271 int ret;
1272
1273 parent = from;
1274
1275down:
1276 ret = (*down)(parent, data);
1277 if (ret)
1278 goto out;
1279 list_for_each_entry_rcu(child, &parent->children, siblings) {
1280 parent = child;
1281 goto down;
1282
1283up:
1284 continue;
1285 }
1286 ret = (*up)(parent, data);
1287 if (ret || parent == from)
1288 goto out;
1289
1290 child = parent;
1291 parent = parent->parent;
1292 if (parent)
1293 goto up;
1294out:
1295 return ret;
1296}
1297
1298int tg_nop(struct task_group *tg, void *data)
1299{
1300 return 0;
1301}
1302#endif
1303
1304static void set_load_weight(struct task_struct *p, bool update_load)
1305{
1306 int prio = p->static_prio - MAX_RT_PRIO;
1307 struct load_weight *load = &p->se.load;
1308
1309 /*
1310 * SCHED_IDLE tasks get minimal weight:
1311 */
1312 if (task_has_idle_policy(p)) {
1313 load->weight = scale_load(WEIGHT_IDLEPRIO);
1314 load->inv_weight = WMULT_IDLEPRIO;
1315 return;
1316 }
1317
1318 /*
1319 * SCHED_OTHER tasks have to update their load when changing their
1320 * weight
1321 */
1322 if (update_load && p->sched_class == &fair_sched_class) {
1323 reweight_task(p, prio);
1324 } else {
1325 load->weight = scale_load(sched_prio_to_weight[prio]);
1326 load->inv_weight = sched_prio_to_wmult[prio];
1327 }
1328}
1329
1330#ifdef CONFIG_UCLAMP_TASK
1331/*
1332 * Serializes updates of utilization clamp values
1333 *
1334 * The (slow-path) user-space triggers utilization clamp value updates which
1335 * can require updates on (fast-path) scheduler's data structures used to
1336 * support enqueue/dequeue operations.
1337 * While the per-CPU rq lock protects fast-path update operations, user-space
1338 * requests are serialized using a mutex to reduce the risk of conflicting
1339 * updates or API abuses.
1340 */
1341static DEFINE_MUTEX(uclamp_mutex);
1342
1343/* Max allowed minimum utilization */
1344static unsigned int __maybe_unused sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
1345
1346/* Max allowed maximum utilization */
1347static unsigned int __maybe_unused sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
1348
1349/*
1350 * By default RT tasks run at the maximum performance point/capacity of the
1351 * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
1352 * SCHED_CAPACITY_SCALE.
1353 *
1354 * This knob allows admins to change the default behavior when uclamp is being
1355 * used. In battery powered devices, particularly, running at the maximum
1356 * capacity and frequency will increase energy consumption and shorten the
1357 * battery life.
1358 *
1359 * This knob only affects RT tasks that their uclamp_se->user_defined == false.
1360 *
1361 * This knob will not override the system default sched_util_clamp_min defined
1362 * above.
1363 */
1364static unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
1365
1366/* All clamps are required to be less or equal than these values */
1367static struct uclamp_se uclamp_default[UCLAMP_CNT];
1368
1369/*
1370 * This static key is used to reduce the uclamp overhead in the fast path. It
1371 * primarily disables the call to uclamp_rq_{inc, dec}() in
1372 * enqueue/dequeue_task().
1373 *
1374 * This allows users to continue to enable uclamp in their kernel config with
1375 * minimum uclamp overhead in the fast path.
1376 *
1377 * As soon as userspace modifies any of the uclamp knobs, the static key is
1378 * enabled, since we have an actual users that make use of uclamp
1379 * functionality.
1380 *
1381 * The knobs that would enable this static key are:
1382 *
1383 * * A task modifying its uclamp value with sched_setattr().
1384 * * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
1385 * * An admin modifying the cgroup cpu.uclamp.{min, max}
1386 */
1387DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
1388
1389/* Integer rounded range for each bucket */
1390#define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
1391
1392#define for_each_clamp_id(clamp_id) \
1393 for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
1394
1395static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
1396{
1397 return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1);
1398}
1399
1400static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
1401{
1402 if (clamp_id == UCLAMP_MIN)
1403 return 0;
1404 return SCHED_CAPACITY_SCALE;
1405}
1406
1407static inline void uclamp_se_set(struct uclamp_se *uc_se,
1408 unsigned int value, bool user_defined)
1409{
1410 uc_se->value = value;
1411 uc_se->bucket_id = uclamp_bucket_id(clamp_value: value);
1412 uc_se->user_defined = user_defined;
1413}
1414
1415static inline unsigned int
1416uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
1417 unsigned int clamp_value)
1418{
1419 /*
1420 * Avoid blocked utilization pushing up the frequency when we go
1421 * idle (which drops the max-clamp) by retaining the last known
1422 * max-clamp.
1423 */
1424 if (clamp_id == UCLAMP_MAX) {
1425 rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
1426 return clamp_value;
1427 }
1428
1429 return uclamp_none(clamp_id: UCLAMP_MIN);
1430}
1431
1432static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
1433 unsigned int clamp_value)
1434{
1435 /* Reset max-clamp retention only on idle exit */
1436 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1437 return;
1438
1439 uclamp_rq_set(rq, clamp_id, value: clamp_value);
1440}
1441
1442static inline
1443unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
1444 unsigned int clamp_value)
1445{
1446 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
1447 int bucket_id = UCLAMP_BUCKETS - 1;
1448
1449 /*
1450 * Since both min and max clamps are max aggregated, find the
1451 * top most bucket with tasks in.
1452 */
1453 for ( ; bucket_id >= 0; bucket_id--) {
1454 if (!bucket[bucket_id].tasks)
1455 continue;
1456 return bucket[bucket_id].value;
1457 }
1458
1459 /* No tasks -- default clamp values */
1460 return uclamp_idle_value(rq, clamp_id, clamp_value);
1461}
1462
1463static void __uclamp_update_util_min_rt_default(struct task_struct *p)
1464{
1465 unsigned int default_util_min;
1466 struct uclamp_se *uc_se;
1467
1468 lockdep_assert_held(&p->pi_lock);
1469
1470 uc_se = &p->uclamp_req[UCLAMP_MIN];
1471
1472 /* Only sync if user didn't override the default */
1473 if (uc_se->user_defined)
1474 return;
1475
1476 default_util_min = sysctl_sched_uclamp_util_min_rt_default;
1477 uclamp_se_set(uc_se, value: default_util_min, user_defined: false);
1478}
1479
1480static void uclamp_update_util_min_rt_default(struct task_struct *p)
1481{
1482 if (!rt_task(p))
1483 return;
1484
1485 /* Protect updates to p->uclamp_* */
1486 guard(task_rq_lock)(l: p);
1487 __uclamp_update_util_min_rt_default(p);
1488}
1489
1490static inline struct uclamp_se
1491uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
1492{
1493 /* Copy by value as we could modify it */
1494 struct uclamp_se uc_req = p->uclamp_req[clamp_id];
1495#ifdef CONFIG_UCLAMP_TASK_GROUP
1496 unsigned int tg_min, tg_max, value;
1497
1498 /*
1499 * Tasks in autogroups or root task group will be
1500 * restricted by system defaults.
1501 */
1502 if (task_group_is_autogroup(tg: task_group(p)))
1503 return uc_req;
1504 if (task_group(p) == &root_task_group)
1505 return uc_req;
1506
1507 tg_min = task_group(p)->uclamp[UCLAMP_MIN].value;
1508 tg_max = task_group(p)->uclamp[UCLAMP_MAX].value;
1509 value = uc_req.value;
1510 value = clamp(value, tg_min, tg_max);
1511 uclamp_se_set(uc_se: &uc_req, value, user_defined: false);
1512#endif
1513
1514 return uc_req;
1515}
1516
1517/*
1518 * The effective clamp bucket index of a task depends on, by increasing
1519 * priority:
1520 * - the task specific clamp value, when explicitly requested from userspace
1521 * - the task group effective clamp value, for tasks not either in the root
1522 * group or in an autogroup
1523 * - the system default clamp value, defined by the sysadmin
1524 */
1525static inline struct uclamp_se
1526uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
1527{
1528 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
1529 struct uclamp_se uc_max = uclamp_default[clamp_id];
1530
1531 /* System default restrictions always apply */
1532 if (unlikely(uc_req.value > uc_max.value))
1533 return uc_max;
1534
1535 return uc_req;
1536}
1537
1538unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
1539{
1540 struct uclamp_se uc_eff;
1541
1542 /* Task currently refcounted: use back-annotated (effective) value */
1543 if (p->uclamp[clamp_id].active)
1544 return (unsigned long)p->uclamp[clamp_id].value;
1545
1546 uc_eff = uclamp_eff_get(p, clamp_id);
1547
1548 return (unsigned long)uc_eff.value;
1549}
1550
1551/*
1552 * When a task is enqueued on a rq, the clamp bucket currently defined by the
1553 * task's uclamp::bucket_id is refcounted on that rq. This also immediately
1554 * updates the rq's clamp value if required.
1555 *
1556 * Tasks can have a task-specific value requested from user-space, track
1557 * within each bucket the maximum value for tasks refcounted in it.
1558 * This "local max aggregation" allows to track the exact "requested" value
1559 * for each bucket when all its RUNNABLE tasks require the same clamp.
1560 */
1561static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
1562 enum uclamp_id clamp_id)
1563{
1564 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1565 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1566 struct uclamp_bucket *bucket;
1567
1568 lockdep_assert_rq_held(rq);
1569
1570 /* Update task effective clamp */
1571 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
1572
1573 bucket = &uc_rq->bucket[uc_se->bucket_id];
1574 bucket->tasks++;
1575 uc_se->active = true;
1576
1577 uclamp_idle_reset(rq, clamp_id, clamp_value: uc_se->value);
1578
1579 /*
1580 * Local max aggregation: rq buckets always track the max
1581 * "requested" clamp value of its RUNNABLE tasks.
1582 */
1583 if (bucket->tasks == 1 || uc_se->value > bucket->value)
1584 bucket->value = uc_se->value;
1585
1586 if (uc_se->value > uclamp_rq_get(rq, clamp_id))
1587 uclamp_rq_set(rq, clamp_id, value: uc_se->value);
1588}
1589
1590/*
1591 * When a task is dequeued from a rq, the clamp bucket refcounted by the task
1592 * is released. If this is the last task reference counting the rq's max
1593 * active clamp value, then the rq's clamp value is updated.
1594 *
1595 * Both refcounted tasks and rq's cached clamp values are expected to be
1596 * always valid. If it's detected they are not, as defensive programming,
1597 * enforce the expected state and warn.
1598 */
1599static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
1600 enum uclamp_id clamp_id)
1601{
1602 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1603 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1604 struct uclamp_bucket *bucket;
1605 unsigned int bkt_clamp;
1606 unsigned int rq_clamp;
1607
1608 lockdep_assert_rq_held(rq);
1609
1610 /*
1611 * If sched_uclamp_used was enabled after task @p was enqueued,
1612 * we could end up with unbalanced call to uclamp_rq_dec_id().
1613 *
1614 * In this case the uc_se->active flag should be false since no uclamp
1615 * accounting was performed at enqueue time and we can just return
1616 * here.
1617 *
1618 * Need to be careful of the following enqueue/dequeue ordering
1619 * problem too
1620 *
1621 * enqueue(taskA)
1622 * // sched_uclamp_used gets enabled
1623 * enqueue(taskB)
1624 * dequeue(taskA)
1625 * // Must not decrement bucket->tasks here
1626 * dequeue(taskB)
1627 *
1628 * where we could end up with stale data in uc_se and
1629 * bucket[uc_se->bucket_id].
1630 *
1631 * The following check here eliminates the possibility of such race.
1632 */
1633 if (unlikely(!uc_se->active))
1634 return;
1635
1636 bucket = &uc_rq->bucket[uc_se->bucket_id];
1637
1638 SCHED_WARN_ON(!bucket->tasks);
1639 if (likely(bucket->tasks))
1640 bucket->tasks--;
1641
1642 uc_se->active = false;
1643
1644 /*
1645 * Keep "local max aggregation" simple and accept to (possibly)
1646 * overboost some RUNNABLE tasks in the same bucket.
1647 * The rq clamp bucket value is reset to its base value whenever
1648 * there are no more RUNNABLE tasks refcounting it.
1649 */
1650 if (likely(bucket->tasks))
1651 return;
1652
1653 rq_clamp = uclamp_rq_get(rq, clamp_id);
1654 /*
1655 * Defensive programming: this should never happen. If it happens,
1656 * e.g. due to future modification, warn and fixup the expected value.
1657 */
1658 SCHED_WARN_ON(bucket->value > rq_clamp);
1659 if (bucket->value >= rq_clamp) {
1660 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, clamp_value: uc_se->value);
1661 uclamp_rq_set(rq, clamp_id, value: bkt_clamp);
1662 }
1663}
1664
1665static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1666{
1667 enum uclamp_id clamp_id;
1668
1669 /*
1670 * Avoid any overhead until uclamp is actually used by the userspace.
1671 *
1672 * The condition is constructed such that a NOP is generated when
1673 * sched_uclamp_used is disabled.
1674 */
1675 if (!static_branch_unlikely(&sched_uclamp_used))
1676 return;
1677
1678 if (unlikely(!p->sched_class->uclamp_enabled))
1679 return;
1680
1681 for_each_clamp_id(clamp_id)
1682 uclamp_rq_inc_id(rq, p, clamp_id);
1683
1684 /* Reset clamp idle holding when there is one RUNNABLE task */
1685 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1686 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1687}
1688
1689static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1690{
1691 enum uclamp_id clamp_id;
1692
1693 /*
1694 * Avoid any overhead until uclamp is actually used by the userspace.
1695 *
1696 * The condition is constructed such that a NOP is generated when
1697 * sched_uclamp_used is disabled.
1698 */
1699 if (!static_branch_unlikely(&sched_uclamp_used))
1700 return;
1701
1702 if (unlikely(!p->sched_class->uclamp_enabled))
1703 return;
1704
1705 for_each_clamp_id(clamp_id)
1706 uclamp_rq_dec_id(rq, p, clamp_id);
1707}
1708
1709static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p,
1710 enum uclamp_id clamp_id)
1711{
1712 if (!p->uclamp[clamp_id].active)
1713 return;
1714
1715 uclamp_rq_dec_id(rq, p, clamp_id);
1716 uclamp_rq_inc_id(rq, p, clamp_id);
1717
1718 /*
1719 * Make sure to clear the idle flag if we've transiently reached 0
1720 * active tasks on rq.
1721 */
1722 if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1723 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1724}
1725
1726static inline void
1727uclamp_update_active(struct task_struct *p)
1728{
1729 enum uclamp_id clamp_id;
1730 struct rq_flags rf;
1731 struct rq *rq;
1732
1733 /*
1734 * Lock the task and the rq where the task is (or was) queued.
1735 *
1736 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1737 * price to pay to safely serialize util_{min,max} updates with
1738 * enqueues, dequeues and migration operations.
1739 * This is the same locking schema used by __set_cpus_allowed_ptr().
1740 */
1741 rq = task_rq_lock(p, rf: &rf);
1742
1743 /*
1744 * Setting the clamp bucket is serialized by task_rq_lock().
1745 * If the task is not yet RUNNABLE and its task_struct is not
1746 * affecting a valid clamp bucket, the next time it's enqueued,
1747 * it will already see the updated clamp bucket value.
1748 */
1749 for_each_clamp_id(clamp_id)
1750 uclamp_rq_reinc_id(rq, p, clamp_id);
1751
1752 task_rq_unlock(rq, p, rf: &rf);
1753}
1754
1755#ifdef CONFIG_UCLAMP_TASK_GROUP
1756static inline void
1757uclamp_update_active_tasks(struct cgroup_subsys_state *css)
1758{
1759 struct css_task_iter it;
1760 struct task_struct *p;
1761
1762 css_task_iter_start(css, flags: 0, it: &it);
1763 while ((p = css_task_iter_next(it: &it)))
1764 uclamp_update_active(p);
1765 css_task_iter_end(it: &it);
1766}
1767
1768static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1769#endif
1770
1771#ifdef CONFIG_SYSCTL
1772#ifdef CONFIG_UCLAMP_TASK
1773#ifdef CONFIG_UCLAMP_TASK_GROUP
1774static void uclamp_update_root_tg(void)
1775{
1776 struct task_group *tg = &root_task_group;
1777
1778 uclamp_se_set(uc_se: &tg->uclamp_req[UCLAMP_MIN],
1779 value: sysctl_sched_uclamp_util_min, user_defined: false);
1780 uclamp_se_set(uc_se: &tg->uclamp_req[UCLAMP_MAX],
1781 value: sysctl_sched_uclamp_util_max, user_defined: false);
1782
1783 guard(rcu)();
1784 cpu_util_update_eff(css: &root_task_group.css);
1785}
1786#else
1787static void uclamp_update_root_tg(void) { }
1788#endif
1789
1790static void uclamp_sync_util_min_rt_default(void)
1791{
1792 struct task_struct *g, *p;
1793
1794 /*
1795 * copy_process() sysctl_uclamp
1796 * uclamp_min_rt = X;
1797 * write_lock(&tasklist_lock) read_lock(&tasklist_lock)
1798 * // link thread smp_mb__after_spinlock()
1799 * write_unlock(&tasklist_lock) read_unlock(&tasklist_lock);
1800 * sched_post_fork() for_each_process_thread()
1801 * __uclamp_sync_rt() __uclamp_sync_rt()
1802 *
1803 * Ensures that either sched_post_fork() will observe the new
1804 * uclamp_min_rt or for_each_process_thread() will observe the new
1805 * task.
1806 */
1807 read_lock(&tasklist_lock);
1808 smp_mb__after_spinlock();
1809 read_unlock(&tasklist_lock);
1810
1811 guard(rcu)();
1812 for_each_process_thread(g, p)
1813 uclamp_update_util_min_rt_default(p);
1814}
1815
1816static int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
1817 void *buffer, size_t *lenp, loff_t *ppos)
1818{
1819 bool update_root_tg = false;
1820 int old_min, old_max, old_min_rt;
1821 int result;
1822
1823 guard(mutex)(T: &uclamp_mutex);
1824
1825 old_min = sysctl_sched_uclamp_util_min;
1826 old_max = sysctl_sched_uclamp_util_max;
1827 old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
1828
1829 result = proc_dointvec(table, write, buffer, lenp, ppos);
1830 if (result)
1831 goto undo;
1832 if (!write)
1833 return 0;
1834
1835 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1836 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE ||
1837 sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
1838
1839 result = -EINVAL;
1840 goto undo;
1841 }
1842
1843 if (old_min != sysctl_sched_uclamp_util_min) {
1844 uclamp_se_set(uc_se: &uclamp_default[UCLAMP_MIN],
1845 value: sysctl_sched_uclamp_util_min, user_defined: false);
1846 update_root_tg = true;
1847 }
1848 if (old_max != sysctl_sched_uclamp_util_max) {
1849 uclamp_se_set(uc_se: &uclamp_default[UCLAMP_MAX],
1850 value: sysctl_sched_uclamp_util_max, user_defined: false);
1851 update_root_tg = true;
1852 }
1853
1854 if (update_root_tg) {
1855 static_branch_enable(&sched_uclamp_used);
1856 uclamp_update_root_tg();
1857 }
1858
1859 if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
1860 static_branch_enable(&sched_uclamp_used);
1861 uclamp_sync_util_min_rt_default();
1862 }
1863
1864 /*
1865 * We update all RUNNABLE tasks only when task groups are in use.
1866 * Otherwise, keep it simple and do just a lazy update at each next
1867 * task enqueue time.
1868 */
1869 return 0;
1870
1871undo:
1872 sysctl_sched_uclamp_util_min = old_min;
1873 sysctl_sched_uclamp_util_max = old_max;
1874 sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
1875 return result;
1876}
1877#endif
1878#endif
1879
1880static int uclamp_validate(struct task_struct *p,
1881 const struct sched_attr *attr)
1882{
1883 int util_min = p->uclamp_req[UCLAMP_MIN].value;
1884 int util_max = p->uclamp_req[UCLAMP_MAX].value;
1885
1886 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1887 util_min = attr->sched_util_min;
1888
1889 if (util_min + 1 > SCHED_CAPACITY_SCALE + 1)
1890 return -EINVAL;
1891 }
1892
1893 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1894 util_max = attr->sched_util_max;
1895
1896 if (util_max + 1 > SCHED_CAPACITY_SCALE + 1)
1897 return -EINVAL;
1898 }
1899
1900 if (util_min != -1 && util_max != -1 && util_min > util_max)
1901 return -EINVAL;
1902
1903 /*
1904 * We have valid uclamp attributes; make sure uclamp is enabled.
1905 *
1906 * We need to do that here, because enabling static branches is a
1907 * blocking operation which obviously cannot be done while holding
1908 * scheduler locks.
1909 */
1910 static_branch_enable(&sched_uclamp_used);
1911
1912 return 0;
1913}
1914
1915static bool uclamp_reset(const struct sched_attr *attr,
1916 enum uclamp_id clamp_id,
1917 struct uclamp_se *uc_se)
1918{
1919 /* Reset on sched class change for a non user-defined clamp value. */
1920 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) &&
1921 !uc_se->user_defined)
1922 return true;
1923
1924 /* Reset on sched_util_{min,max} == -1. */
1925 if (clamp_id == UCLAMP_MIN &&
1926 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1927 attr->sched_util_min == -1) {
1928 return true;
1929 }
1930
1931 if (clamp_id == UCLAMP_MAX &&
1932 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1933 attr->sched_util_max == -1) {
1934 return true;
1935 }
1936
1937 return false;
1938}
1939
1940static void __setscheduler_uclamp(struct task_struct *p,
1941 const struct sched_attr *attr)
1942{
1943 enum uclamp_id clamp_id;
1944
1945 for_each_clamp_id(clamp_id) {
1946 struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
1947 unsigned int value;
1948
1949 if (!uclamp_reset(attr, clamp_id, uc_se))
1950 continue;
1951
1952 /*
1953 * RT by default have a 100% boost value that could be modified
1954 * at runtime.
1955 */
1956 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1957 value = sysctl_sched_uclamp_util_min_rt_default;
1958 else
1959 value = uclamp_none(clamp_id);
1960
1961 uclamp_se_set(uc_se, value, user_defined: false);
1962
1963 }
1964
1965 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1966 return;
1967
1968 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1969 attr->sched_util_min != -1) {
1970 uclamp_se_set(uc_se: &p->uclamp_req[UCLAMP_MIN],
1971 value: attr->sched_util_min, user_defined: true);
1972 }
1973
1974 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1975 attr->sched_util_max != -1) {
1976 uclamp_se_set(uc_se: &p->uclamp_req[UCLAMP_MAX],
1977 value: attr->sched_util_max, user_defined: true);
1978 }
1979}
1980
1981static void uclamp_fork(struct task_struct *p)
1982{
1983 enum uclamp_id clamp_id;
1984
1985 /*
1986 * We don't need to hold task_rq_lock() when updating p->uclamp_* here
1987 * as the task is still at its early fork stages.
1988 */
1989 for_each_clamp_id(clamp_id)
1990 p->uclamp[clamp_id].active = false;
1991
1992 if (likely(!p->sched_reset_on_fork))
1993 return;
1994
1995 for_each_clamp_id(clamp_id) {
1996 uclamp_se_set(uc_se: &p->uclamp_req[clamp_id],
1997 value: uclamp_none(clamp_id), user_defined: false);
1998 }
1999}
2000
2001static void uclamp_post_fork(struct task_struct *p)
2002{
2003 uclamp_update_util_min_rt_default(p);
2004}
2005
2006static void __init init_uclamp_rq(struct rq *rq)
2007{
2008 enum uclamp_id clamp_id;
2009 struct uclamp_rq *uc_rq = rq->uclamp;
2010
2011 for_each_clamp_id(clamp_id) {
2012 uc_rq[clamp_id] = (struct uclamp_rq) {
2013 .value = uclamp_none(clamp_id)
2014 };
2015 }
2016
2017 rq->uclamp_flags = UCLAMP_FLAG_IDLE;
2018}
2019
2020static void __init init_uclamp(void)
2021{
2022 struct uclamp_se uc_max = {};
2023 enum uclamp_id clamp_id;
2024 int cpu;
2025
2026 for_each_possible_cpu(cpu)
2027 init_uclamp_rq(cpu_rq(cpu));
2028
2029 for_each_clamp_id(clamp_id) {
2030 uclamp_se_set(uc_se: &init_task.uclamp_req[clamp_id],
2031 value: uclamp_none(clamp_id), user_defined: false);
2032 }
2033
2034 /* System defaults allow max clamp values for both indexes */
2035 uclamp_se_set(uc_se: &uc_max, value: uclamp_none(clamp_id: UCLAMP_MAX), user_defined: false);
2036 for_each_clamp_id(clamp_id) {
2037 uclamp_default[clamp_id] = uc_max;
2038#ifdef CONFIG_UCLAMP_TASK_GROUP
2039 root_task_group.uclamp_req[clamp_id] = uc_max;
2040 root_task_group.uclamp[clamp_id] = uc_max;
2041#endif
2042 }
2043}
2044
2045#else /* CONFIG_UCLAMP_TASK */
2046static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
2047static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
2048static inline int uclamp_validate(struct task_struct *p,
2049 const struct sched_attr *attr)
2050{
2051 return -EOPNOTSUPP;
2052}
2053static void __setscheduler_uclamp(struct task_struct *p,
2054 const struct sched_attr *attr) { }
2055static inline void uclamp_fork(struct task_struct *p) { }
2056static inline void uclamp_post_fork(struct task_struct *p) { }
2057static inline void init_uclamp(void) { }
2058#endif /* CONFIG_UCLAMP_TASK */
2059
2060bool sched_task_on_rq(struct task_struct *p)
2061{
2062 return task_on_rq_queued(p);
2063}
2064
2065unsigned long get_wchan(struct task_struct *p)
2066{
2067 unsigned long ip = 0;
2068 unsigned int state;
2069
2070 if (!p || p == current)
2071 return 0;
2072
2073 /* Only get wchan if task is blocked and we can keep it that way. */
2074 raw_spin_lock_irq(&p->pi_lock);
2075 state = READ_ONCE(p->__state);
2076 smp_rmb(); /* see try_to_wake_up() */
2077 if (state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq)
2078 ip = __get_wchan(p);
2079 raw_spin_unlock_irq(&p->pi_lock);
2080
2081 return ip;
2082}
2083
2084static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2085{
2086 if (!(flags & ENQUEUE_NOCLOCK))
2087 update_rq_clock(rq);
2088
2089 if (!(flags & ENQUEUE_RESTORE)) {
2090 sched_info_enqueue(rq, t: p);
2091 psi_enqueue(p, wakeup: (flags & ENQUEUE_WAKEUP) && !(flags & ENQUEUE_MIGRATED));
2092 }
2093
2094 uclamp_rq_inc(rq, p);
2095 p->sched_class->enqueue_task(rq, p, flags);
2096
2097 if (sched_core_enabled(rq))
2098 sched_core_enqueue(rq, p);
2099}
2100
2101static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
2102{
2103 if (sched_core_enabled(rq))
2104 sched_core_dequeue(rq, p, flags);
2105
2106 if (!(flags & DEQUEUE_NOCLOCK))
2107 update_rq_clock(rq);
2108
2109 if (!(flags & DEQUEUE_SAVE)) {
2110 sched_info_dequeue(rq, t: p);
2111 psi_dequeue(p, sleep: flags & DEQUEUE_SLEEP);
2112 }
2113
2114 uclamp_rq_dec(rq, p);
2115 p->sched_class->dequeue_task(rq, p, flags);
2116}
2117
2118void activate_task(struct rq *rq, struct task_struct *p, int flags)
2119{
2120 if (task_on_rq_migrating(p))
2121 flags |= ENQUEUE_MIGRATED;
2122 if (flags & ENQUEUE_MIGRATED)
2123 sched_mm_cid_migrate_to(dst_rq: rq, t: p);
2124
2125 enqueue_task(rq, p, flags);
2126
2127 p->on_rq = TASK_ON_RQ_QUEUED;
2128}
2129
2130void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
2131{
2132 p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
2133
2134 dequeue_task(rq, p, flags);
2135}
2136
2137static inline int __normal_prio(int policy, int rt_prio, int nice)
2138{
2139 int prio;
2140
2141 if (dl_policy(policy))
2142 prio = MAX_DL_PRIO - 1;
2143 else if (rt_policy(policy))
2144 prio = MAX_RT_PRIO - 1 - rt_prio;
2145 else
2146 prio = NICE_TO_PRIO(nice);
2147
2148 return prio;
2149}
2150
2151/*
2152 * Calculate the expected normal priority: i.e. priority
2153 * without taking RT-inheritance into account. Might be
2154 * boosted by interactivity modifiers. Changes upon fork,
2155 * setprio syscalls, and whenever the interactivity
2156 * estimator recalculates.
2157 */
2158static inline int normal_prio(struct task_struct *p)
2159{
2160 return __normal_prio(policy: p->policy, rt_prio: p->rt_priority, PRIO_TO_NICE(p->static_prio));
2161}
2162
2163/*
2164 * Calculate the current priority, i.e. the priority
2165 * taken into account by the scheduler. This value might
2166 * be boosted by RT tasks, or might be boosted by
2167 * interactivity modifiers. Will be RT if the task got
2168 * RT-boosted. If not then it returns p->normal_prio.
2169 */
2170static int effective_prio(struct task_struct *p)
2171{
2172 p->normal_prio = normal_prio(p);
2173 /*
2174 * If we are RT tasks or we were boosted to RT priority,
2175 * keep the priority unchanged. Otherwise, update priority
2176 * to the normal priority:
2177 */
2178 if (!rt_prio(prio: p->prio))
2179 return p->normal_prio;
2180 return p->prio;
2181}
2182
2183/**
2184 * task_curr - is this task currently executing on a CPU?
2185 * @p: the task in question.
2186 *
2187 * Return: 1 if the task is currently executing. 0 otherwise.
2188 */
2189inline int task_curr(const struct task_struct *p)
2190{
2191 return cpu_curr(task_cpu(p)) == p;
2192}
2193
2194/*
2195 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
2196 * use the balance_callback list if you want balancing.
2197 *
2198 * this means any call to check_class_changed() must be followed by a call to
2199 * balance_callback().
2200 */
2201static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2202 const struct sched_class *prev_class,
2203 int oldprio)
2204{
2205 if (prev_class != p->sched_class) {
2206 if (prev_class->switched_from)
2207 prev_class->switched_from(rq, p);
2208
2209 p->sched_class->switched_to(rq, p);
2210 } else if (oldprio != p->prio || dl_task(p))
2211 p->sched_class->prio_changed(rq, p, oldprio);
2212}
2213
2214void wakeup_preempt(struct rq *rq, struct task_struct *p, int flags)
2215{
2216 if (p->sched_class == rq->curr->sched_class)
2217 rq->curr->sched_class->wakeup_preempt(rq, p, flags);
2218 else if (sched_class_above(p->sched_class, rq->curr->sched_class))
2219 resched_curr(rq);
2220
2221 /*
2222 * A queue event has occurred, and we're going to schedule. In
2223 * this case, we can save a useless back to back clock update.
2224 */
2225 if (task_on_rq_queued(p: rq->curr) && test_tsk_need_resched(tsk: rq->curr))
2226 rq_clock_skip_update(rq);
2227}
2228
2229static __always_inline
2230int __task_state_match(struct task_struct *p, unsigned int state)
2231{
2232 if (READ_ONCE(p->__state) & state)
2233 return 1;
2234
2235 if (READ_ONCE(p->saved_state) & state)
2236 return -1;
2237
2238 return 0;
2239}
2240
2241static __always_inline
2242int task_state_match(struct task_struct *p, unsigned int state)
2243{
2244 /*
2245 * Serialize against current_save_and_set_rtlock_wait_state(),
2246 * current_restore_rtlock_saved_state(), and __refrigerator().
2247 */
2248 guard(raw_spinlock_irq)(l: &p->pi_lock);
2249 return __task_state_match(p, state);
2250}
2251
2252/*
2253 * wait_task_inactive - wait for a thread to unschedule.
2254 *
2255 * Wait for the thread to block in any of the states set in @match_state.
2256 * If it changes, i.e. @p might have woken up, then return zero. When we
2257 * succeed in waiting for @p to be off its CPU, we return a positive number
2258 * (its total switch count). If a second call a short while later returns the
2259 * same number, the caller can be sure that @p has remained unscheduled the
2260 * whole time.
2261 *
2262 * The caller must ensure that the task *will* unschedule sometime soon,
2263 * else this function might spin for a *long* time. This function can't
2264 * be called with interrupts off, or it may introduce deadlock with
2265 * smp_call_function() if an IPI is sent by the same process we are
2266 * waiting to become inactive.
2267 */
2268unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
2269{
2270 int running, queued, match;
2271 struct rq_flags rf;
2272 unsigned long ncsw;
2273 struct rq *rq;
2274
2275 for (;;) {
2276 /*
2277 * We do the initial early heuristics without holding
2278 * any task-queue locks at all. We'll only try to get
2279 * the runqueue lock when things look like they will
2280 * work out!
2281 */
2282 rq = task_rq(p);
2283
2284 /*
2285 * If the task is actively running on another CPU
2286 * still, just relax and busy-wait without holding
2287 * any locks.
2288 *
2289 * NOTE! Since we don't hold any locks, it's not
2290 * even sure that "rq" stays as the right runqueue!
2291 * But we don't care, since "task_on_cpu()" will
2292 * return false if the runqueue has changed and p
2293 * is actually now running somewhere else!
2294 */
2295 while (task_on_cpu(rq, p)) {
2296 if (!task_state_match(p, state: match_state))
2297 return 0;
2298 cpu_relax();
2299 }
2300
2301 /*
2302 * Ok, time to look more closely! We need the rq
2303 * lock now, to be *sure*. If we're wrong, we'll
2304 * just go back and repeat.
2305 */
2306 rq = task_rq_lock(p, rf: &rf);
2307 trace_sched_wait_task(p);
2308 running = task_on_cpu(rq, p);
2309 queued = task_on_rq_queued(p);
2310 ncsw = 0;
2311 if ((match = __task_state_match(p, state: match_state))) {
2312 /*
2313 * When matching on p->saved_state, consider this task
2314 * still queued so it will wait.
2315 */
2316 if (match < 0)
2317 queued = 1;
2318 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2319 }
2320 task_rq_unlock(rq, p, rf: &rf);
2321
2322 /*
2323 * If it changed from the expected state, bail out now.
2324 */
2325 if (unlikely(!ncsw))
2326 break;
2327
2328 /*
2329 * Was it really running after all now that we
2330 * checked with the proper locks actually held?
2331 *
2332 * Oops. Go back and try again..
2333 */
2334 if (unlikely(running)) {
2335 cpu_relax();
2336 continue;
2337 }
2338
2339 /*
2340 * It's not enough that it's not actively running,
2341 * it must be off the runqueue _entirely_, and not
2342 * preempted!
2343 *
2344 * So if it was still runnable (but just not actively
2345 * running right now), it's preempted, and we should
2346 * yield - it could be a while.
2347 */
2348 if (unlikely(queued)) {
2349 ktime_t to = NSEC_PER_SEC / HZ;
2350
2351 set_current_state(TASK_UNINTERRUPTIBLE);
2352 schedule_hrtimeout(expires: &to, mode: HRTIMER_MODE_REL_HARD);
2353 continue;
2354 }
2355
2356 /*
2357 * Ahh, all good. It wasn't running, and it wasn't
2358 * runnable, which means that it will never become
2359 * running in the future either. We're all done!
2360 */
2361 break;
2362 }
2363
2364 return ncsw;
2365}
2366
2367#ifdef CONFIG_SMP
2368
2369static void
2370__do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx);
2371
2372static int __set_cpus_allowed_ptr(struct task_struct *p,
2373 struct affinity_context *ctx);
2374
2375static void migrate_disable_switch(struct rq *rq, struct task_struct *p)
2376{
2377 struct affinity_context ac = {
2378 .new_mask = cpumask_of(rq->cpu),
2379 .flags = SCA_MIGRATE_DISABLE,
2380 };
2381
2382 if (likely(!p->migration_disabled))
2383 return;
2384
2385 if (p->cpus_ptr != &p->cpus_mask)
2386 return;
2387
2388 /*
2389 * Violates locking rules! see comment in __do_set_cpus_allowed().
2390 */
2391 __do_set_cpus_allowed(p, ctx: &ac);
2392}
2393
2394void migrate_disable(void)
2395{
2396 struct task_struct *p = current;
2397
2398 if (p->migration_disabled) {
2399 p->migration_disabled++;
2400 return;
2401 }
2402
2403 guard(preempt)();
2404 this_rq()->nr_pinned++;
2405 p->migration_disabled = 1;
2406}
2407EXPORT_SYMBOL_GPL(migrate_disable);
2408
2409void migrate_enable(void)
2410{
2411 struct task_struct *p = current;
2412 struct affinity_context ac = {
2413 .new_mask = &p->cpus_mask,
2414 .flags = SCA_MIGRATE_ENABLE,
2415 };
2416
2417 if (p->migration_disabled > 1) {
2418 p->migration_disabled--;
2419 return;
2420 }
2421
2422 if (WARN_ON_ONCE(!p->migration_disabled))
2423 return;
2424
2425 /*
2426 * Ensure stop_task runs either before or after this, and that
2427 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule().
2428 */
2429 guard(preempt)();
2430 if (p->cpus_ptr != &p->cpus_mask)
2431 __set_cpus_allowed_ptr(p, ctx: &ac);
2432 /*
2433 * Mustn't clear migration_disabled() until cpus_ptr points back at the
2434 * regular cpus_mask, otherwise things that race (eg.
2435 * select_fallback_rq) get confused.
2436 */
2437 barrier();
2438 p->migration_disabled = 0;
2439 this_rq()->nr_pinned--;
2440}
2441EXPORT_SYMBOL_GPL(migrate_enable);
2442
2443static inline bool rq_has_pinned_tasks(struct rq *rq)
2444{
2445 return rq->nr_pinned;
2446}
2447
2448/*
2449 * Per-CPU kthreads are allowed to run on !active && online CPUs, see
2450 * __set_cpus_allowed_ptr() and select_fallback_rq().
2451 */
2452static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
2453{
2454 /* When not in the task's cpumask, no point in looking further. */
2455 if (!cpumask_test_cpu(cpu, cpumask: p->cpus_ptr))
2456 return false;
2457
2458 /* migrate_disabled() must be allowed to finish. */
2459 if (is_migration_disabled(p))
2460 return cpu_online(cpu);
2461
2462 /* Non kernel threads are not allowed during either online or offline. */
2463 if (!(p->flags & PF_KTHREAD))
2464 return cpu_active(cpu) && task_cpu_possible(cpu, p);
2465
2466 /* KTHREAD_IS_PER_CPU is always allowed. */
2467 if (kthread_is_per_cpu(k: p))
2468 return cpu_online(cpu);
2469
2470 /* Regular kernel threads don't get to stay during offline. */
2471 if (cpu_dying(cpu))
2472 return false;
2473
2474 /* But are allowed during online. */
2475 return cpu_online(cpu);
2476}
2477
2478/*
2479 * This is how migration works:
2480 *
2481 * 1) we invoke migration_cpu_stop() on the target CPU using
2482 * stop_one_cpu().
2483 * 2) stopper starts to run (implicitly forcing the migrated thread
2484 * off the CPU)
2485 * 3) it checks whether the migrated task is still in the wrong runqueue.
2486 * 4) if it's in the wrong runqueue then the migration thread removes
2487 * it and puts it into the right queue.
2488 * 5) stopper completes and stop_one_cpu() returns and the migration
2489 * is done.
2490 */
2491
2492/*
2493 * move_queued_task - move a queued task to new rq.
2494 *
2495 * Returns (locked) new rq. Old rq's lock is released.
2496 */
2497static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
2498 struct task_struct *p, int new_cpu)
2499{
2500 lockdep_assert_rq_held(rq);
2501
2502 deactivate_task(rq, p, DEQUEUE_NOCLOCK);
2503 set_task_cpu(p, cpu: new_cpu);
2504 rq_unlock(rq, rf);
2505
2506 rq = cpu_rq(new_cpu);
2507
2508 rq_lock(rq, rf);
2509 WARN_ON_ONCE(task_cpu(p) != new_cpu);
2510 activate_task(rq, p, flags: 0);
2511 wakeup_preempt(rq, p, flags: 0);
2512
2513 return rq;
2514}
2515
2516struct migration_arg {
2517 struct task_struct *task;
2518 int dest_cpu;
2519 struct set_affinity_pending *pending;
2520};
2521
2522/*
2523 * @refs: number of wait_for_completion()
2524 * @stop_pending: is @stop_work in use
2525 */
2526struct set_affinity_pending {
2527 refcount_t refs;
2528 unsigned int stop_pending;
2529 struct completion done;
2530 struct cpu_stop_work stop_work;
2531 struct migration_arg arg;
2532};
2533
2534/*
2535 * Move (not current) task off this CPU, onto the destination CPU. We're doing
2536 * this because either it can't run here any more (set_cpus_allowed()
2537 * away from this CPU, or CPU going down), or because we're
2538 * attempting to rebalance this task on exec (sched_exec).
2539 *
2540 * So we race with normal scheduler movements, but that's OK, as long
2541 * as the task is no longer on this CPU.
2542 */
2543static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
2544 struct task_struct *p, int dest_cpu)
2545{
2546 /* Affinity changed (again). */
2547 if (!is_cpu_allowed(p, cpu: dest_cpu))
2548 return rq;
2549
2550 rq = move_queued_task(rq, rf, p, new_cpu: dest_cpu);
2551
2552 return rq;
2553}
2554
2555/*
2556 * migration_cpu_stop - this will be executed by a highprio stopper thread
2557 * and performs thread migration by bumping thread off CPU then
2558 * 'pushing' onto another runqueue.
2559 */
2560static int migration_cpu_stop(void *data)
2561{
2562 struct migration_arg *arg = data;
2563 struct set_affinity_pending *pending = arg->pending;
2564 struct task_struct *p = arg->task;
2565 struct rq *rq = this_rq();
2566 bool complete = false;
2567 struct rq_flags rf;
2568
2569 /*
2570 * The original target CPU might have gone down and we might
2571 * be on another CPU but it doesn't matter.
2572 */
2573 local_irq_save(rf.flags);
2574 /*
2575 * We need to explicitly wake pending tasks before running
2576 * __migrate_task() such that we will not miss enforcing cpus_ptr
2577 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
2578 */
2579 flush_smp_call_function_queue();
2580
2581 raw_spin_lock(&p->pi_lock);
2582 rq_lock(rq, rf: &rf);
2583
2584 /*
2585 * If we were passed a pending, then ->stop_pending was set, thus
2586 * p->migration_pending must have remained stable.
2587 */
2588 WARN_ON_ONCE(pending && pending != p->migration_pending);
2589
2590 /*
2591 * If task_rq(p) != rq, it cannot be migrated here, because we're
2592 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
2593 * we're holding p->pi_lock.
2594 */
2595 if (task_rq(p) == rq) {
2596 if (is_migration_disabled(p))
2597 goto out;
2598
2599 if (pending) {
2600 p->migration_pending = NULL;
2601 complete = true;
2602
2603 if (cpumask_test_cpu(cpu: task_cpu(p), cpumask: &p->cpus_mask))
2604 goto out;
2605 }
2606
2607 if (task_on_rq_queued(p)) {
2608 update_rq_clock(rq);
2609 rq = __migrate_task(rq, rf: &rf, p, dest_cpu: arg->dest_cpu);
2610 } else {
2611 p->wake_cpu = arg->dest_cpu;
2612 }
2613
2614 /*
2615 * XXX __migrate_task() can fail, at which point we might end
2616 * up running on a dodgy CPU, AFAICT this can only happen
2617 * during CPU hotplug, at which point we'll get pushed out
2618 * anyway, so it's probably not a big deal.
2619 */
2620
2621 } else if (pending) {
2622 /*
2623 * This happens when we get migrated between migrate_enable()'s
2624 * preempt_enable() and scheduling the stopper task. At that
2625 * point we're a regular task again and not current anymore.
2626 *
2627 * A !PREEMPT kernel has a giant hole here, which makes it far
2628 * more likely.
2629 */
2630
2631 /*
2632 * The task moved before the stopper got to run. We're holding
2633 * ->pi_lock, so the allowed mask is stable - if it got
2634 * somewhere allowed, we're done.
2635 */
2636 if (cpumask_test_cpu(cpu: task_cpu(p), cpumask: p->cpus_ptr)) {
2637 p->migration_pending = NULL;
2638 complete = true;
2639 goto out;
2640 }
2641
2642 /*
2643 * When migrate_enable() hits a rq mis-match we can't reliably
2644 * determine is_migration_disabled() and so have to chase after
2645 * it.
2646 */
2647 WARN_ON_ONCE(!pending->stop_pending);
2648 preempt_disable();
2649 task_rq_unlock(rq, p, rf: &rf);
2650 stop_one_cpu_nowait(cpu: task_cpu(p), fn: migration_cpu_stop,
2651 arg: &pending->arg, work_buf: &pending->stop_work);
2652 preempt_enable();
2653 return 0;
2654 }
2655out:
2656 if (pending)
2657 pending->stop_pending = false;
2658 task_rq_unlock(rq, p, rf: &rf);
2659
2660 if (complete)
2661 complete_all(&pending->done);
2662
2663 return 0;
2664}
2665
2666int push_cpu_stop(void *arg)
2667{
2668 struct rq *lowest_rq = NULL, *rq = this_rq();
2669 struct task_struct *p = arg;
2670
2671 raw_spin_lock_irq(&p->pi_lock);
2672 raw_spin_rq_lock(rq);
2673
2674 if (task_rq(p) != rq)
2675 goto out_unlock;
2676
2677 if (is_migration_disabled(p)) {
2678 p->migration_flags |= MDF_PUSH;
2679 goto out_unlock;
2680 }
2681
2682 p->migration_flags &= ~MDF_PUSH;
2683
2684 if (p->sched_class->find_lock_rq)
2685 lowest_rq = p->sched_class->find_lock_rq(p, rq);
2686
2687 if (!lowest_rq)
2688 goto out_unlock;
2689
2690 // XXX validate p is still the highest prio task
2691 if (task_rq(p) == rq) {
2692 deactivate_task(rq, p, flags: 0);
2693 set_task_cpu(p, cpu: lowest_rq->cpu);
2694 activate_task(rq: lowest_rq, p, flags: 0);
2695 resched_curr(rq: lowest_rq);
2696 }
2697
2698 double_unlock_balance(this_rq: rq, busiest: lowest_rq);
2699
2700out_unlock:
2701 rq->push_busy = false;
2702 raw_spin_rq_unlock(rq);
2703 raw_spin_unlock_irq(&p->pi_lock);
2704
2705 put_task_struct(t: p);
2706 return 0;
2707}
2708
2709/*
2710 * sched_class::set_cpus_allowed must do the below, but is not required to
2711 * actually call this function.
2712 */
2713void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx)
2714{
2715 if (ctx->flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) {
2716 p->cpus_ptr = ctx->new_mask;
2717 return;
2718 }
2719
2720 cpumask_copy(dstp: &p->cpus_mask, srcp: ctx->new_mask);
2721 p->nr_cpus_allowed = cpumask_weight(srcp: ctx->new_mask);
2722
2723 /*
2724 * Swap in a new user_cpus_ptr if SCA_USER flag set
2725 */
2726 if (ctx->flags & SCA_USER)
2727 swap(p->user_cpus_ptr, ctx->user_mask);
2728}
2729
2730static void
2731__do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx)
2732{
2733 struct rq *rq = task_rq(p);
2734 bool queued, running;
2735
2736 /*
2737 * This here violates the locking rules for affinity, since we're only
2738 * supposed to change these variables while holding both rq->lock and
2739 * p->pi_lock.
2740 *
2741 * HOWEVER, it magically works, because ttwu() is the only code that
2742 * accesses these variables under p->pi_lock and only does so after
2743 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule()
2744 * before finish_task().
2745 *
2746 * XXX do further audits, this smells like something putrid.
2747 */
2748 if (ctx->flags & SCA_MIGRATE_DISABLE)
2749 SCHED_WARN_ON(!p->on_cpu);
2750 else
2751 lockdep_assert_held(&p->pi_lock);
2752
2753 queued = task_on_rq_queued(p);
2754 running = task_current(rq, p);
2755
2756 if (queued) {
2757 /*
2758 * Because __kthread_bind() calls this on blocked tasks without
2759 * holding rq->lock.
2760 */
2761 lockdep_assert_rq_held(rq);
2762 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
2763 }
2764 if (running)
2765 put_prev_task(rq, prev: p);
2766
2767 p->sched_class->set_cpus_allowed(p, ctx);
2768
2769 if (queued)
2770 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
2771 if (running)
2772 set_next_task(rq, next: p);
2773}
2774
2775/*
2776 * Used for kthread_bind() and select_fallback_rq(), in both cases the user
2777 * affinity (if any) should be destroyed too.
2778 */
2779void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
2780{
2781 struct affinity_context ac = {
2782 .new_mask = new_mask,
2783 .user_mask = NULL,
2784 .flags = SCA_USER, /* clear the user requested mask */
2785 };
2786 union cpumask_rcuhead {
2787 cpumask_t cpumask;
2788 struct rcu_head rcu;
2789 };
2790
2791 __do_set_cpus_allowed(p, ctx: &ac);
2792
2793 /*
2794 * Because this is called with p->pi_lock held, it is not possible
2795 * to use kfree() here (when PREEMPT_RT=y), therefore punt to using
2796 * kfree_rcu().
2797 */
2798 kfree_rcu((union cpumask_rcuhead *)ac.user_mask, rcu);
2799}
2800
2801static cpumask_t *alloc_user_cpus_ptr(int node)
2802{
2803 /*
2804 * See do_set_cpus_allowed() above for the rcu_head usage.
2805 */
2806 int size = max_t(int, cpumask_size(), sizeof(struct rcu_head));
2807
2808 return kmalloc_node(size, GFP_KERNEL, node);
2809}
2810
2811int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src,
2812 int node)
2813{
2814 cpumask_t *user_mask;
2815 unsigned long flags;
2816
2817 /*
2818 * Always clear dst->user_cpus_ptr first as their user_cpus_ptr's
2819 * may differ by now due to racing.
2820 */
2821 dst->user_cpus_ptr = NULL;
2822
2823 /*
2824 * This check is racy and losing the race is a valid situation.
2825 * It is not worth the extra overhead of taking the pi_lock on
2826 * every fork/clone.
2827 */
2828 if (data_race(!src->user_cpus_ptr))
2829 return 0;
2830
2831 user_mask = alloc_user_cpus_ptr(node);
2832 if (!user_mask)
2833 return -ENOMEM;
2834
2835 /*
2836 * Use pi_lock to protect content of user_cpus_ptr
2837 *
2838 * Though unlikely, user_cpus_ptr can be reset to NULL by a concurrent
2839 * do_set_cpus_allowed().
2840 */
2841 raw_spin_lock_irqsave(&src->pi_lock, flags);
2842 if (src->user_cpus_ptr) {
2843 swap(dst->user_cpus_ptr, user_mask);
2844 cpumask_copy(dstp: dst->user_cpus_ptr, srcp: src->user_cpus_ptr);
2845 }
2846 raw_spin_unlock_irqrestore(&src->pi_lock, flags);
2847
2848 if (unlikely(user_mask))
2849 kfree(objp: user_mask);
2850
2851 return 0;
2852}
2853
2854static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p)
2855{
2856 struct cpumask *user_mask = NULL;
2857
2858 swap(p->user_cpus_ptr, user_mask);
2859
2860 return user_mask;
2861}
2862
2863void release_user_cpus_ptr(struct task_struct *p)
2864{
2865 kfree(objp: clear_user_cpus_ptr(p));
2866}
2867
2868/*
2869 * This function is wildly self concurrent; here be dragons.
2870 *
2871 *
2872 * When given a valid mask, __set_cpus_allowed_ptr() must block until the
2873 * designated task is enqueued on an allowed CPU. If that task is currently
2874 * running, we have to kick it out using the CPU stopper.
2875 *
2876 * Migrate-Disable comes along and tramples all over our nice sandcastle.
2877 * Consider:
2878 *
2879 * Initial conditions: P0->cpus_mask = [0, 1]
2880 *
2881 * P0@CPU0 P1
2882 *
2883 * migrate_disable();
2884 * <preempted>
2885 * set_cpus_allowed_ptr(P0, [1]);
2886 *
2887 * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes
2888 * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region).
2889 * This means we need the following scheme:
2890 *
2891 * P0@CPU0 P1
2892 *
2893 * migrate_disable();
2894 * <preempted>
2895 * set_cpus_allowed_ptr(P0, [1]);
2896 * <blocks>
2897 * <resumes>
2898 * migrate_enable();
2899 * __set_cpus_allowed_ptr();
2900 * <wakes local stopper>
2901 * `--> <woken on migration completion>
2902 *
2903 * Now the fun stuff: there may be several P1-like tasks, i.e. multiple
2904 * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any
2905 * task p are serialized by p->pi_lock, which we can leverage: the one that
2906 * should come into effect at the end of the Migrate-Disable region is the last
2907 * one. This means we only need to track a single cpumask (i.e. p->cpus_mask),
2908 * but we still need to properly signal those waiting tasks at the appropriate
2909 * moment.
2910 *
2911 * This is implemented using struct set_affinity_pending. The first
2912 * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will
2913 * setup an instance of that struct and install it on the targeted task_struct.
2914 * Any and all further callers will reuse that instance. Those then wait for
2915 * a completion signaled at the tail of the CPU stopper callback (1), triggered
2916 * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()).
2917 *
2918 *
2919 * (1) In the cases covered above. There is one more where the completion is
2920 * signaled within affine_move_task() itself: when a subsequent affinity request
2921 * occurs after the stopper bailed out due to the targeted task still being
2922 * Migrate-Disable. Consider:
2923 *
2924 * Initial conditions: P0->cpus_mask = [0, 1]
2925 *
2926 * CPU0 P1 P2
2927 * <P0>
2928 * migrate_disable();
2929 * <preempted>
2930 * set_cpus_allowed_ptr(P0, [1]);
2931 * <blocks>
2932 * <migration/0>
2933 * migration_cpu_stop()
2934 * is_migration_disabled()
2935 * <bails>
2936 * set_cpus_allowed_ptr(P0, [0, 1]);
2937 * <signal completion>
2938 * <awakes>
2939 *
2940 * Note that the above is safe vs a concurrent migrate_enable(), as any
2941 * pending affinity completion is preceded by an uninstallation of
2942 * p->migration_pending done with p->pi_lock held.
2943 */
2944static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf,
2945 int dest_cpu, unsigned int flags)
2946 __releases(rq->lock)
2947 __releases(p->pi_lock)
2948{
2949 struct set_affinity_pending my_pending = { }, *pending = NULL;
2950 bool stop_pending, complete = false;
2951
2952 /* Can the task run on the task's current CPU? If so, we're done */
2953 if (cpumask_test_cpu(cpu: task_cpu(p), cpumask: &p->cpus_mask)) {
2954 struct task_struct *push_task = NULL;
2955
2956 if ((flags & SCA_MIGRATE_ENABLE) &&
2957 (p->migration_flags & MDF_PUSH) && !rq->push_busy) {
2958 rq->push_busy = true;
2959 push_task = get_task_struct(t: p);
2960 }
2961
2962 /*
2963 * If there are pending waiters, but no pending stop_work,
2964 * then complete now.
2965 */
2966 pending = p->migration_pending;
2967 if (pending && !pending->stop_pending) {
2968 p->migration_pending = NULL;
2969 complete = true;
2970 }
2971
2972 preempt_disable();
2973 task_rq_unlock(rq, p, rf);
2974 if (push_task) {
2975 stop_one_cpu_nowait(cpu: rq->cpu, fn: push_cpu_stop,
2976 arg: p, work_buf: &rq->push_work);
2977 }
2978 preempt_enable();
2979
2980 if (complete)
2981 complete_all(&pending->done);
2982
2983 return 0;
2984 }
2985
2986 if (!(flags & SCA_MIGRATE_ENABLE)) {
2987 /* serialized by p->pi_lock */
2988 if (!p->migration_pending) {
2989 /* Install the request */
2990 refcount_set(r: &my_pending.refs, n: 1);
2991 init_completion(x: &my_pending.done);
2992 my_pending.arg = (struct migration_arg) {
2993 .task = p,
2994 .dest_cpu = dest_cpu,
2995 .pending = &my_pending,
2996 };
2997
2998 p->migration_pending = &my_pending;
2999 } else {
3000 pending = p->migration_pending;
3001 refcount_inc(r: &pending->refs);
3002 /*
3003 * Affinity has changed, but we've already installed a
3004 * pending. migration_cpu_stop() *must* see this, else
3005 * we risk a completion of the pending despite having a
3006 * task on a disallowed CPU.
3007 *
3008 * Serialized by p->pi_lock, so this is safe.
3009 */
3010 pending->arg.dest_cpu = dest_cpu;
3011 }
3012 }
3013 pending = p->migration_pending;
3014 /*
3015 * - !MIGRATE_ENABLE:
3016 * we'll have installed a pending if there wasn't one already.
3017 *
3018 * - MIGRATE_ENABLE:
3019 * we're here because the current CPU isn't matching anymore,
3020 * the only way that can happen is because of a concurrent
3021 * set_cpus_allowed_ptr() call, which should then still be
3022 * pending completion.
3023 *
3024 * Either way, we really should have a @pending here.
3025 */
3026 if (WARN_ON_ONCE(!pending)) {
3027 task_rq_unlock(rq, p, rf);
3028 return -EINVAL;
3029 }
3030
3031 if (task_on_cpu(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) {
3032 /*
3033 * MIGRATE_ENABLE gets here because 'p == current', but for
3034 * anything else we cannot do is_migration_disabled(), punt
3035 * and have the stopper function handle it all race-free.
3036 */
3037 stop_pending = pending->stop_pending;
3038 if (!stop_pending)
3039 pending->stop_pending = true;
3040
3041 if (flags & SCA_MIGRATE_ENABLE)
3042 p->migration_flags &= ~MDF_PUSH;
3043
3044 preempt_disable();
3045 task_rq_unlock(rq, p, rf);
3046 if (!stop_pending) {
3047 stop_one_cpu_nowait(cpu: cpu_of(rq), fn: migration_cpu_stop,
3048 arg: &pending->arg, work_buf: &pending->stop_work);
3049 }
3050 preempt_enable();
3051
3052 if (flags & SCA_MIGRATE_ENABLE)
3053 return 0;
3054 } else {
3055
3056 if (!is_migration_disabled(p)) {
3057 if (task_on_rq_queued(p))
3058 rq = move_queued_task(rq, rf, p, new_cpu: dest_cpu);
3059
3060 if (!pending->stop_pending) {
3061 p->migration_pending = NULL;
3062 complete = true;
3063 }
3064 }
3065 task_rq_unlock(rq, p, rf);
3066
3067 if (complete)
3068 complete_all(&pending->done);
3069 }
3070
3071 wait_for_completion(&pending->done);
3072
3073 if (refcount_dec_and_test(r: &pending->refs))
3074 wake_up_var(var: &pending->refs); /* No UaF, just an address */
3075
3076 /*
3077 * Block the original owner of &pending until all subsequent callers
3078 * have seen the completion and decremented the refcount
3079 */
3080 wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs));
3081
3082 /* ARGH */
3083 WARN_ON_ONCE(my_pending.stop_pending);
3084
3085 return 0;
3086}
3087
3088/*
3089 * Called with both p->pi_lock and rq->lock held; drops both before returning.
3090 */
3091static int __set_cpus_allowed_ptr_locked(struct task_struct *p,
3092 struct affinity_context *ctx,
3093 struct rq *rq,
3094 struct rq_flags *rf)
3095 __releases(rq->lock)
3096 __releases(p->pi_lock)
3097{
3098 const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p);
3099 const struct cpumask *cpu_valid_mask = cpu_active_mask;
3100 bool kthread = p->flags & PF_KTHREAD;
3101 unsigned int dest_cpu;
3102 int ret = 0;
3103
3104 update_rq_clock(rq);
3105
3106 if (kthread || is_migration_disabled(p)) {
3107 /*
3108 * Kernel threads are allowed on online && !active CPUs,
3109 * however, during cpu-hot-unplug, even these might get pushed
3110 * away if not KTHREAD_IS_PER_CPU.
3111 *
3112 * Specifically, migration_disabled() tasks must not fail the
3113 * cpumask_any_and_distribute() pick below, esp. so on
3114 * SCA_MIGRATE_ENABLE, otherwise we'll not call
3115 * set_cpus_allowed_common() and actually reset p->cpus_ptr.
3116 */
3117 cpu_valid_mask = cpu_online_mask;
3118 }
3119
3120 if (!kthread && !cpumask_subset(src1p: ctx->new_mask, src2p: cpu_allowed_mask)) {
3121 ret = -EINVAL;
3122 goto out;
3123 }
3124
3125 /*
3126 * Must re-check here, to close a race against __kthread_bind(),
3127 * sched_setaffinity() is not guaranteed to observe the flag.
3128 */
3129 if ((ctx->flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) {
3130 ret = -EINVAL;
3131 goto out;
3132 }
3133
3134 if (!(ctx->flags & SCA_MIGRATE_ENABLE)) {
3135 if (cpumask_equal(src1p: &p->cpus_mask, src2p: ctx->new_mask)) {
3136 if (ctx->flags & SCA_USER)
3137 swap(p->user_cpus_ptr, ctx->user_mask);
3138 goto out;
3139 }
3140
3141 if (WARN_ON_ONCE(p == current &&
3142 is_migration_disabled(p) &&
3143 !cpumask_test_cpu(task_cpu(p), ctx->new_mask))) {
3144 ret = -EBUSY;
3145 goto out;
3146 }
3147 }
3148
3149 /*
3150 * Picking a ~random cpu helps in cases where we are changing affinity
3151 * for groups of tasks (ie. cpuset), so that load balancing is not
3152 * immediately required to distribute the tasks within their new mask.
3153 */
3154 dest_cpu = cpumask_any_and_distribute(src1p: cpu_valid_mask, src2p: ctx->new_mask);
3155 if (dest_cpu >= nr_cpu_ids) {
3156 ret = -EINVAL;
3157 goto out;
3158 }
3159
3160 __do_set_cpus_allowed(p, ctx);
3161
3162 return affine_move_task(rq, p, rf, dest_cpu, flags: ctx->flags);
3163
3164out:
3165 task_rq_unlock(rq, p, rf);
3166
3167 return ret;
3168}
3169
3170/*
3171 * Change a given task's CPU affinity. Migrate the thread to a
3172 * proper CPU and schedule it away if the CPU it's executing on
3173 * is removed from the allowed bitmask.
3174 *
3175 * NOTE: the caller must have a valid reference to the task, the
3176 * task must not exit() & deallocate itself prematurely. The
3177 * call is not atomic; no spinlocks may be held.
3178 */
3179static int __set_cpus_allowed_ptr(struct task_struct *p,
3180 struct affinity_context *ctx)
3181{
3182 struct rq_flags rf;
3183 struct rq *rq;
3184
3185 rq = task_rq_lock(p, rf: &rf);
3186 /*
3187 * Masking should be skipped if SCA_USER or any of the SCA_MIGRATE_*
3188 * flags are set.
3189 */
3190 if (p->user_cpus_ptr &&
3191 !(ctx->flags & (SCA_USER | SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) &&
3192 cpumask_and(dstp: rq->scratch_mask, src1p: ctx->new_mask, src2p: p->user_cpus_ptr))
3193 ctx->new_mask = rq->scratch_mask;
3194
3195 return __set_cpus_allowed_ptr_locked(p, ctx, rq, rf: &rf);
3196}
3197
3198int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
3199{
3200 struct affinity_context ac = {
3201 .new_mask = new_mask,
3202 .flags = 0,
3203 };
3204
3205 return __set_cpus_allowed_ptr(p, ctx: &ac);
3206}
3207EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
3208
3209/*
3210 * Change a given task's CPU affinity to the intersection of its current
3211 * affinity mask and @subset_mask, writing the resulting mask to @new_mask.
3212 * If user_cpus_ptr is defined, use it as the basis for restricting CPU
3213 * affinity or use cpu_online_mask instead.
3214 *
3215 * If the resulting mask is empty, leave the affinity unchanged and return
3216 * -EINVAL.
3217 */
3218static int restrict_cpus_allowed_ptr(struct task_struct *p,
3219 struct cpumask *new_mask,
3220 const struct cpumask *subset_mask)
3221{
3222 struct affinity_context ac = {
3223 .new_mask = new_mask,
3224 .flags = 0,
3225 };
3226 struct rq_flags rf;
3227 struct rq *rq;
3228 int err;
3229
3230 rq = task_rq_lock(p, rf: &rf);
3231
3232 /*
3233 * Forcefully restricting the affinity of a deadline task is
3234 * likely to cause problems, so fail and noisily override the
3235 * mask entirely.
3236 */
3237 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
3238 err = -EPERM;
3239 goto err_unlock;
3240 }
3241
3242 if (!cpumask_and(dstp: new_mask, src1p: task_user_cpus(p), src2p: subset_mask)) {
3243 err = -EINVAL;
3244 goto err_unlock;
3245 }
3246
3247 return __set_cpus_allowed_ptr_locked(p, ctx: &ac, rq, rf: &rf);
3248
3249err_unlock:
3250 task_rq_unlock(rq, p, rf: &rf);
3251 return err;
3252}
3253
3254/*
3255 * Restrict the CPU affinity of task @p so that it is a subset of
3256 * task_cpu_possible_mask() and point @p->user_cpus_ptr to a copy of the
3257 * old affinity mask. If the resulting mask is empty, we warn and walk
3258 * up the cpuset hierarchy until we find a suitable mask.
3259 */
3260void force_compatible_cpus_allowed_ptr(struct task_struct *p)
3261{
3262 cpumask_var_t new_mask;
3263 const struct cpumask *override_mask = task_cpu_possible_mask(p);
3264
3265 alloc_cpumask_var(mask: &new_mask, GFP_KERNEL);
3266
3267 /*
3268 * __migrate_task() can fail silently in the face of concurrent
3269 * offlining of the chosen destination CPU, so take the hotplug
3270 * lock to ensure that the migration succeeds.
3271 */
3272 cpus_read_lock();
3273 if (!cpumask_available(mask: new_mask))
3274 goto out_set_mask;
3275
3276 if (!restrict_cpus_allowed_ptr(p, new_mask, subset_mask: override_mask))
3277 goto out_free_mask;
3278
3279 /*
3280 * We failed to find a valid subset of the affinity mask for the
3281 * task, so override it based on its cpuset hierarchy.
3282 */
3283 cpuset_cpus_allowed(p, mask: new_mask);
3284 override_mask = new_mask;
3285
3286out_set_mask:
3287 if (printk_ratelimit()) {
3288 printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n",
3289 task_pid_nr(p), p->comm,
3290 cpumask_pr_args(override_mask));
3291 }
3292
3293 WARN_ON(set_cpus_allowed_ptr(p, override_mask));
3294out_free_mask:
3295 cpus_read_unlock();
3296 free_cpumask_var(mask: new_mask);
3297}
3298
3299static int
3300__sched_setaffinity(struct task_struct *p, struct affinity_context *ctx);
3301
3302/*
3303 * Restore the affinity of a task @p which was previously restricted by a
3304 * call to force_compatible_cpus_allowed_ptr().
3305 *
3306 * It is the caller's responsibility to serialise this with any calls to
3307 * force_compatible_cpus_allowed_ptr(@p).
3308 */
3309void relax_compatible_cpus_allowed_ptr(struct task_struct *p)
3310{
3311 struct affinity_context ac = {
3312 .new_mask = task_user_cpus(p),
3313 .flags = 0,
3314 };
3315 int ret;
3316
3317 /*
3318 * Try to restore the old affinity mask with __sched_setaffinity().
3319 * Cpuset masking will be done there too.
3320 */
3321 ret = __sched_setaffinity(p, ctx: &ac);
3322 WARN_ON_ONCE(ret);
3323}
3324
3325void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
3326{
3327#ifdef CONFIG_SCHED_DEBUG
3328 unsigned int state = READ_ONCE(p->__state);
3329
3330 /*
3331 * We should never call set_task_cpu() on a blocked task,
3332 * ttwu() will sort out the placement.
3333 */
3334 WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq);
3335
3336 /*
3337 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
3338 * because schedstat_wait_{start,end} rebase migrating task's wait_start
3339 * time relying on p->on_rq.
3340 */
3341 WARN_ON_ONCE(state == TASK_RUNNING &&
3342 p->sched_class == &fair_sched_class &&
3343 (p->on_rq && !task_on_rq_migrating(p)));
3344
3345#ifdef CONFIG_LOCKDEP
3346 /*
3347 * The caller should hold either p->pi_lock or rq->lock, when changing
3348 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
3349 *
3350 * sched_move_task() holds both and thus holding either pins the cgroup,
3351 * see task_group().
3352 *
3353 * Furthermore, all task_rq users should acquire both locks, see
3354 * task_rq_lock().
3355 */
3356 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
3357 lockdep_is_held(__rq_lockp(task_rq(p)))));
3358#endif
3359 /*
3360 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
3361 */
3362 WARN_ON_ONCE(!cpu_online(new_cpu));
3363
3364 WARN_ON_ONCE(is_migration_disabled(p));
3365#endif
3366
3367 trace_sched_migrate_task(p, dest_cpu: new_cpu);
3368
3369 if (task_cpu(p) != new_cpu) {
3370 if (p->sched_class->migrate_task_rq)
3371 p->sched_class->migrate_task_rq(p, new_cpu);
3372 p->se.nr_migrations++;
3373 rseq_migrate(t: p);
3374 sched_mm_cid_migrate_from(t: p);
3375 perf_event_task_migrate(task: p);
3376 }
3377
3378 __set_task_cpu(p, cpu: new_cpu);
3379}
3380
3381#ifdef CONFIG_NUMA_BALANCING
3382static void __migrate_swap_task(struct task_struct *p, int cpu)
3383{
3384 if (task_on_rq_queued(p)) {
3385 struct rq *src_rq, *dst_rq;
3386 struct rq_flags srf, drf;
3387
3388 src_rq = task_rq(p);
3389 dst_rq = cpu_rq(cpu);
3390
3391 rq_pin_lock(rq: src_rq, rf: &srf);
3392 rq_pin_lock(rq: dst_rq, rf: &drf);
3393
3394 deactivate_task(rq: src_rq, p, flags: 0);
3395 set_task_cpu(p, new_cpu: cpu);
3396 activate_task(rq: dst_rq, p, flags: 0);
3397 wakeup_preempt(rq: dst_rq, p, flags: 0);
3398
3399 rq_unpin_lock(rq: dst_rq, rf: &drf);
3400 rq_unpin_lock(rq: src_rq, rf: &srf);
3401
3402 } else {
3403 /*
3404 * Task isn't running anymore; make it appear like we migrated
3405 * it before it went to sleep. This means on wakeup we make the
3406 * previous CPU our target instead of where it really is.
3407 */
3408 p->wake_cpu = cpu;
3409 }
3410}
3411
3412struct migration_swap_arg {
3413 struct task_struct *src_task, *dst_task;
3414 int src_cpu, dst_cpu;
3415};
3416
3417static int migrate_swap_stop(void *data)
3418{
3419 struct migration_swap_arg *arg = data;
3420 struct rq *src_rq, *dst_rq;
3421
3422 if (!cpu_active(cpu: arg->src_cpu) || !cpu_active(cpu: arg->dst_cpu))
3423 return -EAGAIN;
3424
3425 src_rq = cpu_rq(arg->src_cpu);
3426 dst_rq = cpu_rq(arg->dst_cpu);
3427
3428 guard(double_raw_spinlock)(lock: &arg->src_task->pi_lock, lock2: &arg->dst_task->pi_lock);
3429 guard(double_rq_lock)(lock: src_rq, lock2: dst_rq);
3430
3431 if (task_cpu(p: arg->dst_task) != arg->dst_cpu)
3432 return -EAGAIN;
3433
3434 if (task_cpu(p: arg->src_task) != arg->src_cpu)
3435 return -EAGAIN;
3436
3437 if (!cpumask_test_cpu(cpu: arg->dst_cpu, cpumask: arg->src_task->cpus_ptr))
3438 return -EAGAIN;
3439
3440 if (!cpumask_test_cpu(cpu: arg->src_cpu, cpumask: arg->dst_task->cpus_ptr))
3441 return -EAGAIN;
3442
3443 __migrate_swap_task(p: arg->src_task, cpu: arg->dst_cpu);
3444 __migrate_swap_task(p: arg->dst_task, cpu: arg->src_cpu);
3445
3446 return 0;
3447}
3448
3449/*
3450 * Cross migrate two tasks
3451 */
3452int migrate_swap(struct task_struct *cur, struct task_struct *p,
3453 int target_cpu, int curr_cpu)
3454{
3455 struct migration_swap_arg arg;
3456 int ret = -EINVAL;
3457
3458 arg = (struct migration_swap_arg){
3459 .src_task = cur,
3460 .src_cpu = curr_cpu,
3461 .dst_task = p,
3462 .dst_cpu = target_cpu,
3463 };
3464
3465 if (arg.src_cpu == arg.dst_cpu)
3466 goto out;
3467
3468 /*
3469 * These three tests are all lockless; this is OK since all of them
3470 * will be re-checked with proper locks held further down the line.
3471 */
3472 if (!cpu_active(cpu: arg.src_cpu) || !cpu_active(cpu: arg.dst_cpu))
3473 goto out;
3474
3475 if (!cpumask_test_cpu(cpu: arg.dst_cpu, cpumask: arg.src_task->cpus_ptr))
3476 goto out;
3477
3478 if (!cpumask_test_cpu(cpu: arg.src_cpu, cpumask: arg.dst_task->cpus_ptr))
3479 goto out;
3480
3481 trace_sched_swap_numa(src_tsk: cur, src_cpu: arg.src_cpu, dst_tsk: p, dst_cpu: arg.dst_cpu);
3482 ret = stop_two_cpus(cpu1: arg.dst_cpu, cpu2: arg.src_cpu, fn: migrate_swap_stop, arg: &arg);
3483
3484out:
3485 return ret;
3486}
3487#endif /* CONFIG_NUMA_BALANCING */
3488
3489/***
3490 * kick_process - kick a running thread to enter/exit the kernel
3491 * @p: the to-be-kicked thread
3492 *
3493 * Cause a process which is running on another CPU to enter
3494 * kernel-mode, without any delay. (to get signals handled.)
3495 *
3496 * NOTE: this function doesn't have to take the runqueue lock,
3497 * because all it wants to ensure is that the remote task enters
3498 * the kernel. If the IPI races and the task has been migrated
3499 * to another CPU then no harm is done and the purpose has been
3500 * achieved as well.
3501 */
3502void kick_process(struct task_struct *p)
3503{
3504 guard(preempt)();
3505 int cpu = task_cpu(p);
3506
3507 if ((cpu != smp_processor_id()) && task_curr(p))
3508 smp_send_reschedule(cpu);
3509}
3510EXPORT_SYMBOL_GPL(kick_process);
3511
3512/*
3513 * ->cpus_ptr is protected by both rq->lock and p->pi_lock
3514 *
3515 * A few notes on cpu_active vs cpu_online:
3516 *
3517 * - cpu_active must be a subset of cpu_online
3518 *
3519 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
3520 * see __set_cpus_allowed_ptr(). At this point the newly online
3521 * CPU isn't yet part of the sched domains, and balancing will not
3522 * see it.
3523 *
3524 * - on CPU-down we clear cpu_active() to mask the sched domains and
3525 * avoid the load balancer to place new tasks on the to be removed
3526 * CPU. Existing tasks will remain running there and will be taken
3527 * off.
3528 *
3529 * This means that fallback selection must not select !active CPUs.
3530 * And can assume that any active CPU must be online. Conversely
3531 * select_task_rq() below may allow selection of !active CPUs in order
3532 * to satisfy the above rules.
3533 */
3534static int select_fallback_rq(int cpu, struct task_struct *p)
3535{
3536 int nid = cpu_to_node(cpu);
3537 const struct cpumask *nodemask = NULL;
3538 enum { cpuset, possible, fail } state = cpuset;
3539 int dest_cpu;
3540
3541 /*
3542 * If the node that the CPU is on has been offlined, cpu_to_node()
3543 * will return -1. There is no CPU on the node, and we should
3544 * select the CPU on the other node.
3545 */
3546 if (nid != -1) {
3547 nodemask = cpumask_of_node(node: nid);
3548
3549 /* Look for allowed, online CPU in same node. */
3550 for_each_cpu(dest_cpu, nodemask) {
3551 if (is_cpu_allowed(p, cpu: dest_cpu))
3552 return dest_cpu;
3553 }
3554 }
3555
3556 for (;;) {
3557 /* Any allowed, online CPU? */
3558 for_each_cpu(dest_cpu, p->cpus_ptr) {
3559 if (!is_cpu_allowed(p, cpu: dest_cpu))
3560 continue;
3561
3562 goto out;
3563 }
3564
3565 /* No more Mr. Nice Guy. */
3566 switch (state) {
3567 case cpuset:
3568 if (cpuset_cpus_allowed_fallback(p)) {
3569 state = possible;
3570 break;
3571 }
3572 fallthrough;
3573 case possible:
3574 /*
3575 * XXX When called from select_task_rq() we only
3576 * hold p->pi_lock and again violate locking order.
3577 *
3578 * More yuck to audit.
3579 */
3580 do_set_cpus_allowed(p, task_cpu_possible_mask(p));
3581 state = fail;
3582 break;
3583 case fail:
3584 BUG();
3585 break;
3586 }
3587 }
3588
3589out:
3590 if (state != cpuset) {
3591 /*
3592 * Don't tell them about moving exiting tasks or
3593 * kernel threads (both mm NULL), since they never
3594 * leave kernel.
3595 */
3596 if (p->mm && printk_ratelimit()) {
3597 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
3598 task_pid_nr(p), p->comm, cpu);
3599 }
3600 }
3601
3602 return dest_cpu;
3603}
3604
3605/*
3606 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
3607 */
3608static inline
3609int select_task_rq(struct task_struct *p, int cpu, int wake_flags)
3610{
3611 lockdep_assert_held(&p->pi_lock);
3612
3613 if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p))
3614 cpu = p->sched_class->select_task_rq(p, cpu, wake_flags);
3615 else
3616 cpu = cpumask_any(p->cpus_ptr);
3617
3618 /*
3619 * In order not to call set_task_cpu() on a blocking task we need
3620 * to rely on ttwu() to place the task on a valid ->cpus_ptr
3621 * CPU.
3622 *
3623 * Since this is common to all placement strategies, this lives here.
3624 *
3625 * [ this allows ->select_task() to simply return task_cpu(p) and
3626 * not worry about this generic constraint ]
3627 */
3628 if (unlikely(!is_cpu_allowed(p, cpu)))
3629 cpu = select_fallback_rq(cpu: task_cpu(p), p);
3630
3631 return cpu;
3632}
3633
3634void sched_set_stop_task(int cpu, struct task_struct *stop)
3635{
3636 static struct lock_class_key stop_pi_lock;
3637 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
3638 struct task_struct *old_stop = cpu_rq(cpu)->stop;
3639
3640 if (stop) {
3641 /*
3642 * Make it appear like a SCHED_FIFO task, its something
3643 * userspace knows about and won't get confused about.
3644 *
3645 * Also, it will make PI more or less work without too
3646 * much confusion -- but then, stop work should not
3647 * rely on PI working anyway.
3648 */
3649 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
3650
3651 stop->sched_class = &stop_sched_class;
3652
3653 /*
3654 * The PI code calls rt_mutex_setprio() with ->pi_lock held to
3655 * adjust the effective priority of a task. As a result,
3656 * rt_mutex_setprio() can trigger (RT) balancing operations,
3657 * which can then trigger wakeups of the stop thread to push
3658 * around the current task.
3659 *
3660 * The stop task itself will never be part of the PI-chain, it
3661 * never blocks, therefore that ->pi_lock recursion is safe.
3662 * Tell lockdep about this by placing the stop->pi_lock in its
3663 * own class.
3664 */
3665 lockdep_set_class(&stop->pi_lock, &stop_pi_lock);
3666 }
3667
3668 cpu_rq(cpu)->stop = stop;
3669
3670 if (old_stop) {
3671 /*
3672 * Reset it back to a normal scheduling class so that
3673 * it can die in pieces.
3674 */
3675 old_stop->sched_class = &rt_sched_class;
3676 }
3677}
3678
3679#else /* CONFIG_SMP */
3680
3681static inline int __set_cpus_allowed_ptr(struct task_struct *p,
3682 struct affinity_context *ctx)
3683{
3684 return set_cpus_allowed_ptr(p, ctx->new_mask);
3685}
3686
3687static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { }
3688
3689static inline bool rq_has_pinned_tasks(struct rq *rq)
3690{
3691 return false;
3692}
3693
3694static inline cpumask_t *alloc_user_cpus_ptr(int node)
3695{
3696 return NULL;
3697}
3698
3699#endif /* !CONFIG_SMP */
3700
3701static void
3702ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
3703{
3704 struct rq *rq;
3705
3706 if (!schedstat_enabled())
3707 return;
3708
3709 rq = this_rq();
3710
3711#ifdef CONFIG_SMP
3712 if (cpu == rq->cpu) {
3713 __schedstat_inc(rq->ttwu_local);
3714 __schedstat_inc(p->stats.nr_wakeups_local);
3715 } else {
3716 struct sched_domain *sd;
3717
3718 __schedstat_inc(p->stats.nr_wakeups_remote);
3719
3720 guard(rcu)();
3721 for_each_domain(rq->cpu, sd) {
3722 if (cpumask_test_cpu(cpu, cpumask: sched_domain_span(sd))) {
3723 __schedstat_inc(sd->ttwu_wake_remote);
3724 break;
3725 }
3726 }
3727 }
3728
3729 if (wake_flags & WF_MIGRATED)
3730 __schedstat_inc(p->stats.nr_wakeups_migrate);
3731#endif /* CONFIG_SMP */
3732
3733 __schedstat_inc(rq->ttwu_count);
3734 __schedstat_inc(p->stats.nr_wakeups);
3735
3736 if (wake_flags & WF_SYNC)
3737 __schedstat_inc(p->stats.nr_wakeups_sync);
3738}
3739
3740/*
3741 * Mark the task runnable.
3742 */
3743static inline void ttwu_do_wakeup(struct task_struct *p)
3744{
3745 WRITE_ONCE(p->__state, TASK_RUNNING);
3746 trace_sched_wakeup(p);
3747}
3748
3749static void
3750ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
3751 struct rq_flags *rf)
3752{
3753 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
3754
3755 lockdep_assert_rq_held(rq);
3756
3757 if (p->sched_contributes_to_load)
3758 rq->nr_uninterruptible--;
3759
3760#ifdef CONFIG_SMP
3761 if (wake_flags & WF_MIGRATED)
3762 en_flags |= ENQUEUE_MIGRATED;
3763 else
3764#endif
3765 if (p->in_iowait) {
3766 delayacct_blkio_end(p);
3767 atomic_dec(v: &task_rq(p)->nr_iowait);
3768 }
3769
3770 activate_task(rq, p, flags: en_flags);
3771 wakeup_preempt(rq, p, flags: wake_flags);
3772
3773 ttwu_do_wakeup(p);
3774
3775#ifdef CONFIG_SMP
3776 if (p->sched_class->task_woken) {
3777 /*
3778 * Our task @p is fully woken up and running; so it's safe to
3779 * drop the rq->lock, hereafter rq is only used for statistics.
3780 */
3781 rq_unpin_lock(rq, rf);
3782 p->sched_class->task_woken(rq, p);
3783 rq_repin_lock(rq, rf);
3784 }
3785
3786 if (rq->idle_stamp) {
3787 u64 delta = rq_clock(rq) - rq->idle_stamp;
3788 u64 max = 2*rq->max_idle_balance_cost;
3789
3790 update_avg(avg: &rq->avg_idle, sample: delta);
3791
3792 if (rq->avg_idle > max)
3793 rq->avg_idle = max;
3794
3795 rq->idle_stamp = 0;
3796 }
3797#endif
3798}
3799
3800/*
3801 * Consider @p being inside a wait loop:
3802 *
3803 * for (;;) {
3804 * set_current_state(TASK_UNINTERRUPTIBLE);
3805 *
3806 * if (CONDITION)
3807 * break;
3808 *
3809 * schedule();
3810 * }
3811 * __set_current_state(TASK_RUNNING);
3812 *
3813 * between set_current_state() and schedule(). In this case @p is still
3814 * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
3815 * an atomic manner.
3816 *
3817 * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
3818 * then schedule() must still happen and p->state can be changed to
3819 * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
3820 * need to do a full wakeup with enqueue.
3821 *
3822 * Returns: %true when the wakeup is done,
3823 * %false otherwise.
3824 */
3825static int ttwu_runnable(struct task_struct *p, int wake_flags)
3826{
3827 struct rq_flags rf;
3828 struct rq *rq;
3829 int ret = 0;
3830
3831 rq = __task_rq_lock(p, rf: &rf);
3832 if (task_on_rq_queued(p)) {
3833 if (!task_on_cpu(rq, p)) {
3834 /*
3835 * When on_rq && !on_cpu the task is preempted, see if
3836 * it should preempt the task that is current now.
3837 */
3838 update_rq_clock(rq);
3839 wakeup_preempt(rq, p, flags: wake_flags);
3840 }
3841 ttwu_do_wakeup(p);
3842 ret = 1;
3843 }
3844 __task_rq_unlock(rq, rf: &rf);
3845
3846 return ret;
3847}
3848
3849#ifdef CONFIG_SMP
3850void sched_ttwu_pending(void *arg)
3851{
3852 struct llist_node *llist = arg;
3853 struct rq *rq = this_rq();
3854 struct task_struct *p, *t;
3855 struct rq_flags rf;
3856
3857 if (!llist)
3858 return;
3859
3860 rq_lock_irqsave(rq, rf: &rf);
3861 update_rq_clock(rq);
3862
3863 llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
3864 if (WARN_ON_ONCE(p->on_cpu))
3865 smp_cond_load_acquire(&p->on_cpu, !VAL);
3866
3867 if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
3868 set_task_cpu(p, new_cpu: cpu_of(rq));
3869
3870 ttwu_do_activate(rq, p, wake_flags: p->sched_remote_wakeup ? WF_MIGRATED : 0, rf: &rf);
3871 }
3872
3873 /*
3874 * Must be after enqueueing at least once task such that
3875 * idle_cpu() does not observe a false-negative -- if it does,
3876 * it is possible for select_idle_siblings() to stack a number
3877 * of tasks on this CPU during that window.
3878 *
3879 * It is ok to clear ttwu_pending when another task pending.
3880 * We will receive IPI after local irq enabled and then enqueue it.
3881 * Since now nr_running > 0, idle_cpu() will always get correct result.
3882 */
3883 WRITE_ONCE(rq->ttwu_pending, 0);
3884 rq_unlock_irqrestore(rq, rf: &rf);
3885}
3886
3887/*
3888 * Prepare the scene for sending an IPI for a remote smp_call
3889 *
3890 * Returns true if the caller can proceed with sending the IPI.
3891 * Returns false otherwise.
3892 */
3893bool call_function_single_prep_ipi(int cpu)
3894{
3895 if (set_nr_if_polling(cpu_rq(cpu)->idle)) {
3896 trace_sched_wake_idle_without_ipi(cpu);
3897 return false;
3898 }
3899
3900 return true;
3901}
3902
3903/*
3904 * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
3905 * necessary. The wakee CPU on receipt of the IPI will queue the task
3906 * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
3907 * of the wakeup instead of the waker.
3908 */
3909static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3910{
3911 struct rq *rq = cpu_rq(cpu);
3912
3913 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
3914
3915 WRITE_ONCE(rq->ttwu_pending, 1);
3916 __smp_call_single_queue(cpu, node: &p->wake_entry.llist);
3917}
3918
3919void wake_up_if_idle(int cpu)
3920{
3921 struct rq *rq = cpu_rq(cpu);
3922
3923 guard(rcu)();
3924 if (is_idle_task(rcu_dereference(rq->curr))) {
3925 guard(rq_lock_irqsave)(l: rq);
3926 if (is_idle_task(p: rq->curr))
3927 resched_curr(rq);
3928 }
3929}
3930
3931bool cpus_share_cache(int this_cpu, int that_cpu)
3932{
3933 if (this_cpu == that_cpu)
3934 return true;
3935
3936 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
3937}
3938
3939/*
3940 * Whether CPUs are share cache resources, which means LLC on non-cluster
3941 * machines and LLC tag or L2 on machines with clusters.
3942 */
3943bool cpus_share_resources(int this_cpu, int that_cpu)
3944{
3945 if (this_cpu == that_cpu)
3946 return true;
3947
3948 return per_cpu(sd_share_id, this_cpu) == per_cpu(sd_share_id, that_cpu);
3949}
3950
3951static inline bool ttwu_queue_cond(struct task_struct *p, int cpu)
3952{
3953 /*
3954 * Do not complicate things with the async wake_list while the CPU is
3955 * in hotplug state.
3956 */
3957 if (!cpu_active(cpu))
3958 return false;
3959
3960 /* Ensure the task will still be allowed to run on the CPU. */
3961 if (!cpumask_test_cpu(cpu, cpumask: p->cpus_ptr))
3962 return false;
3963
3964 /*
3965 * If the CPU does not share cache, then queue the task on the
3966 * remote rqs wakelist to avoid accessing remote data.
3967 */
3968 if (!cpus_share_cache(smp_processor_id(), that_cpu: cpu))
3969 return true;
3970
3971 if (cpu == smp_processor_id())
3972 return false;
3973
3974 /*
3975 * If the wakee cpu is idle, or the task is descheduling and the
3976 * only running task on the CPU, then use the wakelist to offload
3977 * the task activation to the idle (or soon-to-be-idle) CPU as
3978 * the current CPU is likely busy. nr_running is checked to
3979 * avoid unnecessary task stacking.
3980 *
3981 * Note that we can only get here with (wakee) p->on_rq=0,
3982 * p->on_cpu can be whatever, we've done the dequeue, so
3983 * the wakee has been accounted out of ->nr_running.
3984 */
3985 if (!cpu_rq(cpu)->nr_running)
3986 return true;
3987
3988 return false;
3989}
3990
3991static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3992{
3993 if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(p, cpu)) {
3994 sched_clock_cpu(cpu); /* Sync clocks across CPUs */
3995 __ttwu_queue_wakelist(p, cpu, wake_flags);
3996 return true;
3997 }
3998
3999 return false;
4000}
4001
4002#else /* !CONFIG_SMP */
4003
4004static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
4005{
4006 return false;
4007}
4008
4009#endif /* CONFIG_SMP */
4010
4011static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
4012{
4013 struct rq *rq = cpu_rq(cpu);
4014 struct rq_flags rf;
4015
4016 if (ttwu_queue_wakelist(p, cpu, wake_flags))
4017 return;
4018
4019 rq_lock(rq, rf: &rf);
4020 update_rq_clock(rq);
4021 ttwu_do_activate(rq, p, wake_flags, rf: &rf);
4022 rq_unlock(rq, rf: &rf);
4023}
4024
4025/*
4026 * Invoked from try_to_wake_up() to check whether the task can be woken up.
4027 *
4028 * The caller holds p::pi_lock if p != current or has preemption
4029 * disabled when p == current.
4030 *
4031 * The rules of saved_state:
4032 *
4033 * The related locking code always holds p::pi_lock when updating
4034 * p::saved_state, which means the code is fully serialized in both cases.
4035 *
4036 * For PREEMPT_RT, the lock wait and lock wakeups happen via TASK_RTLOCK_WAIT.
4037 * No other bits set. This allows to distinguish all wakeup scenarios.
4038 *
4039 * For FREEZER, the wakeup happens via TASK_FROZEN. No other bits set. This
4040 * allows us to prevent early wakeup of tasks before they can be run on
4041 * asymmetric ISA architectures (eg ARMv9).
4042 */
4043static __always_inline
4044bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success)
4045{
4046 int match;
4047
4048 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) {
4049 WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) &&
4050 state != TASK_RTLOCK_WAIT);
4051 }
4052
4053 *success = !!(match = __task_state_match(p, state));
4054
4055 /*
4056 * Saved state preserves the task state across blocking on
4057 * an RT lock or TASK_FREEZABLE tasks. If the state matches,
4058 * set p::saved_state to TASK_RUNNING, but do not wake the task
4059 * because it waits for a lock wakeup or __thaw_task(). Also
4060 * indicate success because from the regular waker's point of
4061 * view this has succeeded.
4062 *
4063 * After acquiring the lock the task will restore p::__state
4064 * from p::saved_state which ensures that the regular
4065 * wakeup is not lost. The restore will also set
4066 * p::saved_state to TASK_RUNNING so any further tests will
4067 * not result in false positives vs. @success
4068 */
4069 if (match < 0)
4070 p->saved_state = TASK_RUNNING;
4071
4072 return match > 0;
4073}
4074
4075/*
4076 * Notes on Program-Order guarantees on SMP systems.
4077 *
4078 * MIGRATION
4079 *
4080 * The basic program-order guarantee on SMP systems is that when a task [t]
4081 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
4082 * execution on its new CPU [c1].
4083 *
4084 * For migration (of runnable tasks) this is provided by the following means:
4085 *
4086 * A) UNLOCK of the rq(c0)->lock scheduling out task t
4087 * B) migration for t is required to synchronize *both* rq(c0)->lock and
4088 * rq(c1)->lock (if not at the same time, then in that order).
4089 * C) LOCK of the rq(c1)->lock scheduling in task
4090 *
4091 * Release/acquire chaining guarantees that B happens after A and C after B.
4092 * Note: the CPU doing B need not be c0 or c1
4093 *
4094 * Example:
4095 *
4096 * CPU0 CPU1 CPU2
4097 *
4098 * LOCK rq(0)->lock
4099 * sched-out X
4100 * sched-in Y
4101 * UNLOCK rq(0)->lock
4102 *
4103 * LOCK rq(0)->lock // orders against CPU0
4104 * dequeue X
4105 * UNLOCK rq(0)->lock
4106 *
4107 * LOCK rq(1)->lock
4108 * enqueue X
4109 * UNLOCK rq(1)->lock
4110 *
4111 * LOCK rq(1)->lock // orders against CPU2
4112 * sched-out Z
4113 * sched-in X
4114 * UNLOCK rq(1)->lock
4115 *
4116 *
4117 * BLOCKING -- aka. SLEEP + WAKEUP
4118 *
4119 * For blocking we (obviously) need to provide the same guarantee as for
4120 * migration. However the means are completely different as there is no lock
4121 * chain to provide order. Instead we do:
4122 *
4123 * 1) smp_store_release(X->on_cpu, 0) -- finish_task()
4124 * 2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
4125 *
4126 * Example:
4127 *
4128 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
4129 *
4130 * LOCK rq(0)->lock LOCK X->pi_lock
4131 * dequeue X
4132 * sched-out X
4133 * smp_store_release(X->on_cpu, 0);
4134 *
4135 * smp_cond_load_acquire(&X->on_cpu, !VAL);
4136 * X->state = WAKING
4137 * set_task_cpu(X,2)
4138 *
4139 * LOCK rq(2)->lock
4140 * enqueue X
4141 * X->state = RUNNING
4142 * UNLOCK rq(2)->lock
4143 *
4144 * LOCK rq(2)->lock // orders against CPU1
4145 * sched-out Z
4146 * sched-in X
4147 * UNLOCK rq(2)->lock
4148 *
4149 * UNLOCK X->pi_lock
4150 * UNLOCK rq(0)->lock
4151 *
4152 *
4153 * However, for wakeups there is a second guarantee we must provide, namely we
4154 * must ensure that CONDITION=1 done by the caller can not be reordered with
4155 * accesses to the task state; see try_to_wake_up() and set_current_state().
4156 */
4157
4158/**
4159 * try_to_wake_up - wake up a thread
4160 * @p: the thread to be awakened
4161 * @state: the mask of task states that can be woken
4162 * @wake_flags: wake modifier flags (WF_*)
4163 *
4164 * Conceptually does:
4165 *
4166 * If (@state & @p->state) @p->state = TASK_RUNNING.
4167 *
4168 * If the task was not queued/runnable, also place it back on a runqueue.
4169 *
4170 * This function is atomic against schedule() which would dequeue the task.
4171 *
4172 * It issues a full memory barrier before accessing @p->state, see the comment
4173 * with set_current_state().
4174 *
4175 * Uses p->pi_lock to serialize against concurrent wake-ups.
4176 *
4177 * Relies on p->pi_lock stabilizing:
4178 * - p->sched_class
4179 * - p->cpus_ptr
4180 * - p->sched_task_group
4181 * in order to do migration, see its use of select_task_rq()/set_task_cpu().
4182 *
4183 * Tries really hard to only take one task_rq(p)->lock for performance.
4184 * Takes rq->lock in:
4185 * - ttwu_runnable() -- old rq, unavoidable, see comment there;
4186 * - ttwu_queue() -- new rq, for enqueue of the task;
4187 * - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
4188 *
4189 * As a consequence we race really badly with just about everything. See the
4190 * many memory barriers and their comments for details.
4191 *
4192 * Return: %true if @p->state changes (an actual wakeup was done),
4193 * %false otherwise.
4194 */
4195int try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
4196{
4197 guard(preempt)();
4198 int cpu, success = 0;
4199
4200 if (p == current) {
4201 /*
4202 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
4203 * == smp_processor_id()'. Together this means we can special
4204 * case the whole 'p->on_rq && ttwu_runnable()' case below
4205 * without taking any locks.
4206 *
4207 * In particular:
4208 * - we rely on Program-Order guarantees for all the ordering,
4209 * - we're serialized against set_special_state() by virtue of
4210 * it disabling IRQs (this allows not taking ->pi_lock).
4211 */
4212 if (!ttwu_state_match(p, state, success: &success))
4213 goto out;
4214
4215 trace_sched_waking(p);
4216 ttwu_do_wakeup(p);
4217 goto out;
4218 }
4219
4220 /*
4221 * If we are going to wake up a thread waiting for CONDITION we
4222 * need to ensure that CONDITION=1 done by the caller can not be
4223 * reordered with p->state check below. This pairs with smp_store_mb()
4224 * in set_current_state() that the waiting thread does.
4225 */
4226 scoped_guard (raw_spinlock_irqsave, &p->pi_lock) {
4227 smp_mb__after_spinlock();
4228 if (!ttwu_state_match(p, state, success: &success))
4229 break;
4230
4231 trace_sched_waking(p);
4232
4233 /*
4234 * Ensure we load p->on_rq _after_ p->state, otherwise it would
4235 * be possible to, falsely, observe p->on_rq == 0 and get stuck
4236 * in smp_cond_load_acquire() below.
4237 *
4238 * sched_ttwu_pending() try_to_wake_up()
4239 * STORE p->on_rq = 1 LOAD p->state
4240 * UNLOCK rq->lock
4241 *
4242 * __schedule() (switch to task 'p')
4243 * LOCK rq->lock smp_rmb();
4244 * smp_mb__after_spinlock();
4245 * UNLOCK rq->lock
4246 *
4247 * [task p]
4248 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq
4249 *
4250 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4251 * __schedule(). See the comment for smp_mb__after_spinlock().
4252 *
4253 * A similar smp_rmb() lives in __task_needs_rq_lock().
4254 */
4255 smp_rmb();
4256 if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
4257 break;
4258
4259#ifdef CONFIG_SMP
4260 /*
4261 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
4262 * possible to, falsely, observe p->on_cpu == 0.
4263 *
4264 * One must be running (->on_cpu == 1) in order to remove oneself
4265 * from the runqueue.
4266 *
4267 * __schedule() (switch to task 'p') try_to_wake_up()
4268 * STORE p->on_cpu = 1 LOAD p->on_rq
4269 * UNLOCK rq->lock
4270 *
4271 * __schedule() (put 'p' to sleep)
4272 * LOCK rq->lock smp_rmb();
4273 * smp_mb__after_spinlock();
4274 * STORE p->on_rq = 0 LOAD p->on_cpu
4275 *
4276 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4277 * __schedule(). See the comment for smp_mb__after_spinlock().
4278 *
4279 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
4280 * schedule()'s deactivate_task() has 'happened' and p will no longer
4281 * care about it's own p->state. See the comment in __schedule().
4282 */
4283 smp_acquire__after_ctrl_dep();
4284
4285 /*
4286 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
4287 * == 0), which means we need to do an enqueue, change p->state to
4288 * TASK_WAKING such that we can unlock p->pi_lock before doing the
4289 * enqueue, such as ttwu_queue_wakelist().
4290 */
4291 WRITE_ONCE(p->__state, TASK_WAKING);
4292
4293 /*
4294 * If the owning (remote) CPU is still in the middle of schedule() with
4295 * this task as prev, considering queueing p on the remote CPUs wake_list
4296 * which potentially sends an IPI instead of spinning on p->on_cpu to
4297 * let the waker make forward progress. This is safe because IRQs are
4298 * disabled and the IPI will deliver after on_cpu is cleared.
4299 *
4300 * Ensure we load task_cpu(p) after p->on_cpu:
4301 *
4302 * set_task_cpu(p, cpu);
4303 * STORE p->cpu = @cpu
4304 * __schedule() (switch to task 'p')
4305 * LOCK rq->lock
4306 * smp_mb__after_spin_lock() smp_cond_load_acquire(&p->on_cpu)
4307 * STORE p->on_cpu = 1 LOAD p->cpu
4308 *
4309 * to ensure we observe the correct CPU on which the task is currently
4310 * scheduling.
4311 */
4312 if (smp_load_acquire(&p->on_cpu) &&
4313 ttwu_queue_wakelist(p, cpu: task_cpu(p), wake_flags))
4314 break;
4315
4316 /*
4317 * If the owning (remote) CPU is still in the middle of schedule() with
4318 * this task as prev, wait until it's done referencing the task.
4319 *
4320 * Pairs with the smp_store_release() in finish_task().
4321 *
4322 * This ensures that tasks getting woken will be fully ordered against
4323 * their previous state and preserve Program Order.
4324 */
4325 smp_cond_load_acquire(&p->on_cpu, !VAL);
4326
4327 cpu = select_task_rq(p, cpu: p->wake_cpu, wake_flags: wake_flags | WF_TTWU);
4328 if (task_cpu(p) != cpu) {
4329 if (p->in_iowait) {
4330 delayacct_blkio_end(p);
4331 atomic_dec(v: &task_rq(p)->nr_iowait);
4332 }
4333
4334 wake_flags |= WF_MIGRATED;
4335 psi_ttwu_dequeue(p);
4336 set_task_cpu(p, new_cpu: cpu);
4337 }
4338#else
4339 cpu = task_cpu(p);
4340#endif /* CONFIG_SMP */
4341
4342 ttwu_queue(p, cpu, wake_flags);
4343 }
4344out:
4345 if (success)
4346 ttwu_stat(p, cpu: task_cpu(p), wake_flags);
4347
4348 return success;
4349}
4350
4351static bool __task_needs_rq_lock(struct task_struct *p)
4352{
4353 unsigned int state = READ_ONCE(p->__state);
4354
4355 /*
4356 * Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when
4357 * the task is blocked. Make sure to check @state since ttwu() can drop
4358 * locks at the end, see ttwu_queue_wakelist().
4359 */
4360 if (state == TASK_RUNNING || state == TASK_WAKING)
4361 return true;
4362
4363 /*
4364 * Ensure we load p->on_rq after p->__state, otherwise it would be
4365 * possible to, falsely, observe p->on_rq == 0.
4366 *
4367 * See try_to_wake_up() for a longer comment.
4368 */
4369 smp_rmb();
4370 if (p->on_rq)
4371 return true;
4372
4373#ifdef CONFIG_SMP
4374 /*
4375 * Ensure the task has finished __schedule() and will not be referenced
4376 * anymore. Again, see try_to_wake_up() for a longer comment.
4377 */
4378 smp_rmb();
4379 smp_cond_load_acquire(&p->on_cpu, !VAL);
4380#endif
4381
4382 return false;
4383}
4384
4385/**
4386 * task_call_func - Invoke a function on task in fixed state
4387 * @p: Process for which the function is to be invoked, can be @current.
4388 * @func: Function to invoke.
4389 * @arg: Argument to function.
4390 *
4391 * Fix the task in it's current state by avoiding wakeups and or rq operations
4392 * and call @func(@arg) on it. This function can use ->on_rq and task_curr()
4393 * to work out what the state is, if required. Given that @func can be invoked
4394 * with a runqueue lock held, it had better be quite lightweight.
4395 *
4396 * Returns:
4397 * Whatever @func returns
4398 */
4399int task_call_func(struct task_struct *p, task_call_f func, void *arg)
4400{
4401 struct rq *rq = NULL;
4402 struct rq_flags rf;
4403 int ret;
4404
4405 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4406
4407 if (__task_needs_rq_lock(p))
4408 rq = __task_rq_lock(p, rf: &rf);
4409
4410 /*
4411 * At this point the task is pinned; either:
4412 * - blocked and we're holding off wakeups (pi->lock)
4413 * - woken, and we're holding off enqueue (rq->lock)
4414 * - queued, and we're holding off schedule (rq->lock)
4415 * - running, and we're holding off de-schedule (rq->lock)
4416 *
4417 * The called function (@func) can use: task_curr(), p->on_rq and
4418 * p->__state to differentiate between these states.
4419 */
4420 ret = func(p, arg);
4421
4422 if (rq)
4423 rq_unlock(rq, rf: &rf);
4424
4425 raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
4426 return ret;
4427}
4428
4429/**
4430 * cpu_curr_snapshot - Return a snapshot of the currently running task
4431 * @cpu: The CPU on which to snapshot the task.
4432 *
4433 * Returns the task_struct pointer of the task "currently" running on
4434 * the specified CPU. If the same task is running on that CPU throughout,
4435 * the return value will be a pointer to that task's task_struct structure.
4436 * If the CPU did any context switches even vaguely concurrently with the
4437 * execution of this function, the return value will be a pointer to the
4438 * task_struct structure of a randomly chosen task that was running on
4439 * that CPU somewhere around the time that this function was executing.
4440 *
4441 * If the specified CPU was offline, the return value is whatever it
4442 * is, perhaps a pointer to the task_struct structure of that CPU's idle
4443 * task, but there is no guarantee. Callers wishing a useful return
4444 * value must take some action to ensure that the specified CPU remains
4445 * online throughout.
4446 *
4447 * This function executes full memory barriers before and after fetching
4448 * the pointer, which permits the caller to confine this function's fetch
4449 * with respect to the caller's accesses to other shared variables.
4450 */
4451struct task_struct *cpu_curr_snapshot(int cpu)
4452{
4453 struct task_struct *t;
4454
4455 smp_mb(); /* Pairing determined by caller's synchronization design. */
4456 t = rcu_dereference(cpu_curr(cpu));
4457 smp_mb(); /* Pairing determined by caller's synchronization design. */
4458 return t;
4459}
4460
4461/**
4462 * wake_up_process - Wake up a specific process
4463 * @p: The process to be woken up.
4464 *
4465 * Attempt to wake up the nominated process and move it to the set of runnable
4466 * processes.
4467 *
4468 * Return: 1 if the process was woken up, 0 if it was already running.
4469 *
4470 * This function executes a full memory barrier before accessing the task state.
4471 */
4472int wake_up_process(struct task_struct *p)
4473{
4474 return try_to_wake_up(p, TASK_NORMAL, wake_flags: 0);
4475}
4476EXPORT_SYMBOL(wake_up_process);
4477
4478int wake_up_state(struct task_struct *p, unsigned int state)
4479{
4480 return try_to_wake_up(p, state, wake_flags: 0);
4481}
4482
4483/*
4484 * Perform scheduler related setup for a newly forked process p.
4485 * p is forked by current.
4486 *
4487 * __sched_fork() is basic setup used by init_idle() too:
4488 */
4489static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
4490{
4491 p->on_rq = 0;
4492
4493 p->se.on_rq = 0;
4494 p->se.exec_start = 0;
4495 p->se.sum_exec_runtime = 0;
4496 p->se.prev_sum_exec_runtime = 0;
4497 p->se.nr_migrations = 0;
4498 p->se.vruntime = 0;
4499 p->se.vlag = 0;
4500 p->se.slice = sysctl_sched_base_slice;
4501 INIT_LIST_HEAD(list: &p->se.group_node);
4502
4503#ifdef CONFIG_FAIR_GROUP_SCHED
4504 p->se.cfs_rq = NULL;
4505#endif
4506
4507#ifdef CONFIG_SCHEDSTATS
4508 /* Even if schedstat is disabled, there should not be garbage */
4509 memset(&p->stats, 0, sizeof(p->stats));
4510#endif
4511
4512 RB_CLEAR_NODE(&p->dl.rb_node);
4513 init_dl_task_timer(dl_se: &p->dl);
4514 init_dl_inactive_task_timer(dl_se: &p->dl);
4515 __dl_clear_params(p);
4516
4517 INIT_LIST_HEAD(list: &p->rt.run_list);
4518 p->rt.timeout = 0;
4519 p->rt.time_slice = sched_rr_timeslice;
4520 p->rt.on_rq = 0;
4521 p->rt.on_list = 0;
4522
4523#ifdef CONFIG_PREEMPT_NOTIFIERS
4524 INIT_HLIST_HEAD(&p->preempt_notifiers);
4525#endif
4526
4527#ifdef CONFIG_COMPACTION
4528 p->capture_control = NULL;
4529#endif
4530 init_numa_balancing(clone_flags, p);
4531#ifdef CONFIG_SMP
4532 p->wake_entry.u_flags = CSD_TYPE_TTWU;
4533 p->migration_pending = NULL;
4534#endif
4535 init_sched_mm_cid(t: p);
4536}
4537
4538DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
4539
4540#ifdef CONFIG_NUMA_BALANCING
4541
4542int sysctl_numa_balancing_mode;
4543
4544static void __set_numabalancing_state(bool enabled)
4545{
4546 if (enabled)
4547 static_branch_enable(&sched_numa_balancing);
4548 else
4549 static_branch_disable(&sched_numa_balancing);
4550}
4551
4552void set_numabalancing_state(bool enabled)
4553{
4554 if (enabled)
4555 sysctl_numa_balancing_mode = NUMA_BALANCING_NORMAL;
4556 else
4557 sysctl_numa_balancing_mode = NUMA_BALANCING_DISABLED;
4558 __set_numabalancing_state(enabled);
4559}
4560
4561#ifdef CONFIG_PROC_SYSCTL
4562static void reset_memory_tiering(void)
4563{
4564 struct pglist_data *pgdat;
4565
4566 for_each_online_pgdat(pgdat) {
4567 pgdat->nbp_threshold = 0;
4568 pgdat->nbp_th_nr_cand = node_page_state(pgdat, item: PGPROMOTE_CANDIDATE);
4569 pgdat->nbp_th_start = jiffies_to_msecs(j: jiffies);
4570 }
4571}
4572
4573static int sysctl_numa_balancing(struct ctl_table *table, int write,
4574 void *buffer, size_t *lenp, loff_t *ppos)
4575{
4576 struct ctl_table t;
4577 int err;
4578 int state = sysctl_numa_balancing_mode;
4579
4580 if (write && !capable(CAP_SYS_ADMIN))
4581 return -EPERM;
4582
4583 t = *table;
4584 t.data = &state;
4585 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4586 if (err < 0)
4587 return err;
4588 if (write) {
4589 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4590 (state & NUMA_BALANCING_MEMORY_TIERING))
4591 reset_memory_tiering();
4592 sysctl_numa_balancing_mode = state;
4593 __set_numabalancing_state(enabled: state);
4594 }
4595 return err;
4596}
4597#endif
4598#endif
4599
4600#ifdef CONFIG_SCHEDSTATS
4601
4602DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4603
4604static void set_schedstats(bool enabled)
4605{
4606 if (enabled)
4607 static_branch_enable(&sched_schedstats);
4608 else
4609 static_branch_disable(&sched_schedstats);
4610}
4611
4612void force_schedstat_enabled(void)
4613{
4614 if (!schedstat_enabled()) {
4615 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
4616 static_branch_enable(&sched_schedstats);
4617 }
4618}
4619
4620static int __init setup_schedstats(char *str)
4621{
4622 int ret = 0;
4623 if (!str)
4624 goto out;
4625
4626 if (!strcmp(str, "enable")) {
4627 set_schedstats(true);
4628 ret = 1;
4629 } else if (!strcmp(str, "disable")) {
4630 set_schedstats(false);
4631 ret = 1;
4632 }
4633out:
4634 if (!ret)
4635 pr_warn("Unable to parse schedstats=\n");
4636
4637 return ret;
4638}
4639__setup("schedstats=", setup_schedstats);
4640
4641#ifdef CONFIG_PROC_SYSCTL
4642static int sysctl_schedstats(struct ctl_table *table, int write, void *buffer,
4643 size_t *lenp, loff_t *ppos)
4644{
4645 struct ctl_table t;
4646 int err;
4647 int state = static_branch_likely(&sched_schedstats);
4648
4649 if (write && !capable(CAP_SYS_ADMIN))
4650 return -EPERM;
4651
4652 t = *table;
4653 t.data = &state;
4654 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4655 if (err < 0)
4656 return err;
4657 if (write)
4658 set_schedstats(state);
4659 return err;
4660}
4661#endif /* CONFIG_PROC_SYSCTL */
4662#endif /* CONFIG_SCHEDSTATS */
4663
4664#ifdef CONFIG_SYSCTL
4665static struct ctl_table sched_core_sysctls[] = {
4666#ifdef CONFIG_SCHEDSTATS
4667 {
4668 .procname = "sched_schedstats",
4669 .data = NULL,
4670 .maxlen = sizeof(unsigned int),
4671 .mode = 0644,
4672 .proc_handler = sysctl_schedstats,
4673 .extra1 = SYSCTL_ZERO,
4674 .extra2 = SYSCTL_ONE,
4675 },
4676#endif /* CONFIG_SCHEDSTATS */
4677#ifdef CONFIG_UCLAMP_TASK
4678 {
4679 .procname = "sched_util_clamp_min",
4680 .data = &sysctl_sched_uclamp_util_min,
4681 .maxlen = sizeof(unsigned int),
4682 .mode = 0644,
4683 .proc_handler = sysctl_sched_uclamp_handler,
4684 },
4685 {
4686 .procname = "sched_util_clamp_max",
4687 .data = &sysctl_sched_uclamp_util_max,
4688 .maxlen = sizeof(unsigned int),
4689 .mode = 0644,
4690 .proc_handler = sysctl_sched_uclamp_handler,
4691 },
4692 {
4693 .procname = "sched_util_clamp_min_rt_default",
4694 .data = &sysctl_sched_uclamp_util_min_rt_default,
4695 .maxlen = sizeof(unsigned int),
4696 .mode = 0644,
4697 .proc_handler = sysctl_sched_uclamp_handler,
4698 },
4699#endif /* CONFIG_UCLAMP_TASK */
4700#ifdef CONFIG_NUMA_BALANCING
4701 {
4702 .procname = "numa_balancing",
4703 .data = NULL, /* filled in by handler */
4704 .maxlen = sizeof(unsigned int),
4705 .mode = 0644,
4706 .proc_handler = sysctl_numa_balancing,
4707 .extra1 = SYSCTL_ZERO,
4708 .extra2 = SYSCTL_FOUR,
4709 },
4710#endif /* CONFIG_NUMA_BALANCING */
4711 {}
4712};
4713static int __init sched_core_sysctl_init(void)
4714{
4715 register_sysctl_init("kernel", sched_core_sysctls);
4716 return 0;
4717}
4718late_initcall(sched_core_sysctl_init);
4719#endif /* CONFIG_SYSCTL */
4720
4721/*
4722 * fork()/clone()-time setup:
4723 */
4724int sched_fork(unsigned long clone_flags, struct task_struct *p)
4725{
4726 __sched_fork(clone_flags, p);
4727 /*
4728 * We mark the process as NEW here. This guarantees that
4729 * nobody will actually run it, and a signal or other external
4730 * event cannot wake it up and insert it on the runqueue either.
4731 */
4732 p->__state = TASK_NEW;
4733
4734 /*
4735 * Make sure we do not leak PI boosting priority to the child.
4736 */
4737 p->prio = current->normal_prio;
4738
4739 uclamp_fork(p);
4740
4741 /*
4742 * Revert to default priority/policy on fork if requested.
4743 */
4744 if (unlikely(p->sched_reset_on_fork)) {
4745 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
4746 p->policy = SCHED_NORMAL;
4747 p->static_prio = NICE_TO_PRIO(0);
4748 p->rt_priority = 0;
4749 } else if (PRIO_TO_NICE(p->static_prio) < 0)
4750 p->static_prio = NICE_TO_PRIO(0);
4751
4752 p->prio = p->normal_prio = p->static_prio;
4753 set_load_weight(p, update_load: false);
4754
4755 /*
4756 * We don't need the reset flag anymore after the fork. It has
4757 * fulfilled its duty:
4758 */
4759 p->sched_reset_on_fork = 0;
4760 }
4761
4762 if (dl_prio(prio: p->prio))
4763 return -EAGAIN;
4764 else if (rt_prio(prio: p->prio))
4765 p->sched_class = &rt_sched_class;
4766 else
4767 p->sched_class = &fair_sched_class;
4768
4769 init_entity_runnable_average(se: &p->se);
4770
4771
4772#ifdef CONFIG_SCHED_INFO
4773 if (likely(sched_info_on()))
4774 memset(&p->sched_info, 0, sizeof(p->sched_info));
4775#endif
4776#if defined(CONFIG_SMP)
4777 p->on_cpu = 0;
4778#endif
4779 init_task_preempt_count(p);
4780#ifdef CONFIG_SMP
4781 plist_node_init(node: &p->pushable_tasks, MAX_PRIO);
4782 RB_CLEAR_NODE(&p->pushable_dl_tasks);
4783#endif
4784 return 0;
4785}
4786
4787void sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs)
4788{
4789 unsigned long flags;
4790
4791 /*
4792 * Because we're not yet on the pid-hash, p->pi_lock isn't strictly
4793 * required yet, but lockdep gets upset if rules are violated.
4794 */
4795 raw_spin_lock_irqsave(&p->pi_lock, flags);
4796#ifdef CONFIG_CGROUP_SCHED
4797 if (1) {
4798 struct task_group *tg;
4799 tg = container_of(kargs->cset->subsys[cpu_cgrp_id],
4800 struct task_group, css);
4801 tg = autogroup_task_group(p, tg);
4802 p->sched_task_group = tg;
4803 }
4804#endif
4805 rseq_migrate(t: p);
4806 /*
4807 * We're setting the CPU for the first time, we don't migrate,
4808 * so use __set_task_cpu().
4809 */
4810 __set_task_cpu(p, smp_processor_id());
4811 if (p->sched_class->task_fork)
4812 p->sched_class->task_fork(p);
4813 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4814}
4815
4816void sched_post_fork(struct task_struct *p)
4817{
4818 uclamp_post_fork(p);
4819}
4820
4821unsigned long to_ratio(u64 period, u64 runtime)
4822{
4823 if (runtime == RUNTIME_INF)
4824 return BW_UNIT;
4825
4826 /*
4827 * Doing this here saves a lot of checks in all
4828 * the calling paths, and returning zero seems
4829 * safe for them anyway.
4830 */
4831 if (period == 0)
4832 return 0;
4833
4834 return div64_u64(dividend: runtime << BW_SHIFT, divisor: period);
4835}
4836
4837/*
4838 * wake_up_new_task - wake up a newly created task for the first time.
4839 *
4840 * This function will do some initial scheduler statistics housekeeping
4841 * that must be done for every newly created context, then puts the task
4842 * on the runqueue and wakes it.
4843 */
4844void wake_up_new_task(struct task_struct *p)
4845{
4846 struct rq_flags rf;
4847 struct rq *rq;
4848
4849 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4850 WRITE_ONCE(p->__state, TASK_RUNNING);
4851#ifdef CONFIG_SMP
4852 /*
4853 * Fork balancing, do it here and not earlier because:
4854 * - cpus_ptr can change in the fork path
4855 * - any previously selected CPU might disappear through hotplug
4856 *
4857 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
4858 * as we're not fully set-up yet.
4859 */
4860 p->recent_used_cpu = task_cpu(p);
4861 rseq_migrate(t: p);
4862 __set_task_cpu(p, cpu: select_task_rq(p, cpu: task_cpu(p), WF_FORK));
4863#endif
4864 rq = __task_rq_lock(p, rf: &rf);
4865 update_rq_clock(rq);
4866 post_init_entity_util_avg(p);
4867
4868 activate_task(rq, p, ENQUEUE_NOCLOCK);
4869 trace_sched_wakeup_new(p);
4870 wakeup_preempt(rq, p, WF_FORK);
4871#ifdef CONFIG_SMP
4872 if (p->sched_class->task_woken) {
4873 /*
4874 * Nothing relies on rq->lock after this, so it's fine to
4875 * drop it.
4876 */
4877 rq_unpin_lock(rq, rf: &rf);
4878 p->sched_class->task_woken(rq, p);
4879 rq_repin_lock(rq, rf: &rf);
4880 }
4881#endif
4882 task_rq_unlock(rq, p, rf: &rf);
4883}
4884
4885#ifdef CONFIG_PREEMPT_NOTIFIERS
4886
4887static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
4888
4889void preempt_notifier_inc(void)
4890{
4891 static_branch_inc(&preempt_notifier_key);
4892}
4893EXPORT_SYMBOL_GPL(preempt_notifier_inc);
4894
4895void preempt_notifier_dec(void)
4896{
4897 static_branch_dec(&preempt_notifier_key);
4898}
4899EXPORT_SYMBOL_GPL(preempt_notifier_dec);
4900
4901/**
4902 * preempt_notifier_register - tell me when current is being preempted & rescheduled
4903 * @notifier: notifier struct to register
4904 */
4905void preempt_notifier_register(struct preempt_notifier *notifier)
4906{
4907 if (!static_branch_unlikely(&preempt_notifier_key))
4908 WARN(1, "registering preempt_notifier while notifiers disabled\n");
4909
4910 hlist_add_head(n: &notifier->link, h: &current->preempt_notifiers);
4911}
4912EXPORT_SYMBOL_GPL(preempt_notifier_register);
4913
4914/**
4915 * preempt_notifier_unregister - no longer interested in preemption notifications
4916 * @notifier: notifier struct to unregister
4917 *
4918 * This is *not* safe to call from within a preemption notifier.
4919 */
4920void preempt_notifier_unregister(struct preempt_notifier *notifier)
4921{
4922 hlist_del(n: &notifier->link);
4923}
4924EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
4925
4926static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
4927{
4928 struct preempt_notifier *notifier;
4929
4930 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4931 notifier->ops->sched_in(notifier, raw_smp_processor_id());
4932}
4933
4934static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4935{
4936 if (static_branch_unlikely(&preempt_notifier_key))
4937 __fire_sched_in_preempt_notifiers(curr);
4938}
4939
4940static void
4941__fire_sched_out_preempt_notifiers(struct task_struct *curr,
4942 struct task_struct *next)
4943{
4944 struct preempt_notifier *notifier;
4945
4946 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4947 notifier->ops->sched_out(notifier, next);
4948}
4949
4950static __always_inline void
4951fire_sched_out_preempt_notifiers(struct task_struct *curr,
4952 struct task_struct *next)
4953{
4954 if (static_branch_unlikely(&preempt_notifier_key))
4955 __fire_sched_out_preempt_notifiers(curr, next);
4956}
4957
4958#else /* !CONFIG_PREEMPT_NOTIFIERS */
4959
4960static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4961{
4962}
4963
4964static inline void
4965fire_sched_out_preempt_notifiers(struct task_struct *curr,
4966 struct task_struct *next)
4967{
4968}
4969
4970#endif /* CONFIG_PREEMPT_NOTIFIERS */
4971
4972static inline void prepare_task(struct task_struct *next)
4973{
4974#ifdef CONFIG_SMP
4975 /*
4976 * Claim the task as running, we do this before switching to it
4977 * such that any running task will have this set.
4978 *
4979 * See the smp_load_acquire(&p->on_cpu) case in ttwu() and
4980 * its ordering comment.
4981 */
4982 WRITE_ONCE(next->on_cpu, 1);
4983#endif
4984}
4985
4986static inline void finish_task(struct task_struct *prev)
4987{
4988#ifdef CONFIG_SMP
4989 /*
4990 * This must be the very last reference to @prev from this CPU. After
4991 * p->on_cpu is cleared, the task can be moved to a different CPU. We
4992 * must ensure this doesn't happen until the switch is completely
4993 * finished.
4994 *
4995 * In particular, the load of prev->state in finish_task_switch() must
4996 * happen before this.
4997 *
4998 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
4999 */
5000 smp_store_release(&prev->on_cpu, 0);
5001#endif
5002}
5003
5004#ifdef CONFIG_SMP
5005
5006static void do_balance_callbacks(struct rq *rq, struct balance_callback *head)
5007{
5008 void (*func)(struct rq *rq);
5009 struct balance_callback *next;
5010
5011 lockdep_assert_rq_held(rq);
5012
5013 while (head) {
5014 func = (void (*)(struct rq *))head->func;
5015 next = head->next;
5016 head->next = NULL;
5017 head = next;
5018
5019 func(rq);
5020 }
5021}
5022
5023static void balance_push(struct rq *rq);
5024
5025/*
5026 * balance_push_callback is a right abuse of the callback interface and plays
5027 * by significantly different rules.
5028 *
5029 * Where the normal balance_callback's purpose is to be ran in the same context
5030 * that queued it (only later, when it's safe to drop rq->lock again),
5031 * balance_push_callback is specifically targeted at __schedule().
5032 *
5033 * This abuse is tolerated because it places all the unlikely/odd cases behind
5034 * a single test, namely: rq->balance_callback == NULL.
5035 */
5036struct balance_callback balance_push_callback = {
5037 .next = NULL,
5038 .func = balance_push,
5039};
5040
5041static inline struct balance_callback *
5042__splice_balance_callbacks(struct rq *rq, bool split)
5043{
5044 struct balance_callback *head = rq->balance_callback;
5045
5046 if (likely(!head))
5047 return NULL;
5048
5049 lockdep_assert_rq_held(rq);
5050 /*
5051 * Must not take balance_push_callback off the list when
5052 * splice_balance_callbacks() and balance_callbacks() are not
5053 * in the same rq->lock section.
5054 *
5055 * In that case it would be possible for __schedule() to interleave
5056 * and observe the list empty.
5057 */
5058 if (split && head == &balance_push_callback)
5059 head = NULL;
5060 else
5061 rq->balance_callback = NULL;
5062
5063 return head;
5064}
5065
5066static inline struct balance_callback *splice_balance_callbacks(struct rq *rq)
5067{
5068 return __splice_balance_callbacks(rq, split: true);
5069}
5070
5071static void __balance_callbacks(struct rq *rq)
5072{
5073 do_balance_callbacks(rq, head: __splice_balance_callbacks(rq, split: false));
5074}
5075
5076static inline void balance_callbacks(struct rq *rq, struct balance_callback *head)
5077{
5078 unsigned long flags;
5079
5080 if (unlikely(head)) {
5081 raw_spin_rq_lock_irqsave(rq, flags);
5082 do_balance_callbacks(rq, head);
5083 raw_spin_rq_unlock_irqrestore(rq, flags);
5084 }
5085}
5086
5087#else
5088
5089static inline void __balance_callbacks(struct rq *rq)
5090{
5091}
5092
5093static inline struct balance_callback *splice_balance_callbacks(struct rq *rq)
5094{
5095 return NULL;
5096}
5097
5098static inline void balance_callbacks(struct rq *rq, struct balance_callback *head)
5099{
5100}
5101
5102#endif
5103
5104static inline void
5105prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
5106{
5107 /*
5108 * Since the runqueue lock will be released by the next
5109 * task (which is an invalid locking op but in the case
5110 * of the scheduler it's an obvious special-case), so we
5111 * do an early lockdep release here:
5112 */
5113 rq_unpin_lock(rq, rf);
5114 spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_);
5115#ifdef CONFIG_DEBUG_SPINLOCK
5116 /* this is a valid case when another task releases the spinlock */
5117 rq_lockp(rq)->owner = next;
5118#endif
5119}
5120
5121static inline void finish_lock_switch(struct rq *rq)
5122{
5123 /*
5124 * If we are tracking spinlock dependencies then we have to
5125 * fix up the runqueue lock - which gets 'carried over' from
5126 * prev into current:
5127 */
5128 spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_);
5129 __balance_callbacks(rq);
5130 raw_spin_rq_unlock_irq(rq);
5131}
5132
5133/*
5134 * NOP if the arch has not defined these:
5135 */
5136
5137#ifndef prepare_arch_switch
5138# define prepare_arch_switch(next) do { } while (0)
5139#endif
5140
5141#ifndef finish_arch_post_lock_switch
5142# define finish_arch_post_lock_switch() do { } while (0)
5143#endif
5144
5145static inline void kmap_local_sched_out(void)
5146{
5147#ifdef CONFIG_KMAP_LOCAL
5148 if (unlikely(current->kmap_ctrl.idx))
5149 __kmap_local_sched_out();
5150#endif
5151}
5152
5153static inline void kmap_local_sched_in(void)
5154{
5155#ifdef CONFIG_KMAP_LOCAL
5156 if (unlikely(current->kmap_ctrl.idx))
5157 __kmap_local_sched_in();
5158#endif
5159}
5160
5161/**
5162 * prepare_task_switch - prepare to switch tasks
5163 * @rq: the runqueue preparing to switch
5164 * @prev: the current task that is being switched out
5165 * @next: the task we are going to switch to.
5166 *
5167 * This is called with the rq lock held and interrupts off. It must
5168 * be paired with a subsequent finish_task_switch after the context
5169 * switch.
5170 *
5171 * prepare_task_switch sets up locking and calls architecture specific
5172 * hooks.
5173 */
5174static inline void
5175prepare_task_switch(struct rq *rq, struct task_struct *prev,
5176 struct task_struct *next)
5177{
5178 kcov_prepare_switch(prev);
5179 sched_info_switch(rq, prev, next);
5180 perf_event_task_sched_out(prev, next);
5181 rseq_preempt(t: prev);
5182 fire_sched_out_preempt_notifiers(curr: prev, next);
5183 kmap_local_sched_out();
5184 prepare_task(next);
5185 prepare_arch_switch(next);
5186}
5187
5188/**
5189 * finish_task_switch - clean up after a task-switch
5190 * @prev: the thread we just switched away from.
5191 *
5192 * finish_task_switch must be called after the context switch, paired
5193 * with a prepare_task_switch call before the context switch.
5194 * finish_task_switch will reconcile locking set up by prepare_task_switch,
5195 * and do any other architecture-specific cleanup actions.
5196 *
5197 * Note that we may have delayed dropping an mm in context_switch(). If
5198 * so, we finish that here outside of the runqueue lock. (Doing it
5199 * with the lock held can cause deadlocks; see schedule() for
5200 * details.)
5201 *
5202 * The context switch have flipped the stack from under us and restored the
5203 * local variables which were saved when this task called schedule() in the
5204 * past. prev == current is still correct but we need to recalculate this_rq
5205 * because prev may have moved to another CPU.
5206 */
5207static struct rq *finish_task_switch(struct task_struct *prev)
5208 __releases(rq->lock)
5209{
5210 struct rq *rq = this_rq();
5211 struct mm_struct *mm = rq->prev_mm;
5212 unsigned int prev_state;
5213
5214 /*
5215 * The previous task will have left us with a preempt_count of 2
5216 * because it left us after:
5217 *
5218 * schedule()
5219 * preempt_disable(); // 1
5220 * __schedule()
5221 * raw_spin_lock_irq(&rq->lock) // 2
5222 *
5223 * Also, see FORK_PREEMPT_COUNT.
5224 */
5225 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
5226 "corrupted preempt_count: %s/%d/0x%x\n",
5227 current->comm, current->pid, preempt_count()))
5228 preempt_count_set(FORK_PREEMPT_COUNT);
5229
5230 rq->prev_mm = NULL;
5231
5232 /*
5233 * A task struct has one reference for the use as "current".
5234 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
5235 * schedule one last time. The schedule call will never return, and
5236 * the scheduled task must drop that reference.
5237 *
5238 * We must observe prev->state before clearing prev->on_cpu (in
5239 * finish_task), otherwise a concurrent wakeup can get prev
5240 * running on another CPU and we could rave with its RUNNING -> DEAD
5241 * transition, resulting in a double drop.
5242 */
5243 prev_state = READ_ONCE(prev->__state);
5244 vtime_task_switch(prev);
5245 perf_event_task_sched_in(prev, current);
5246 finish_task(prev);
5247 tick_nohz_task_switch();
5248 finish_lock_switch(rq);
5249 finish_arch_post_lock_switch();
5250 kcov_finish_switch(current);
5251 /*
5252 * kmap_local_sched_out() is invoked with rq::lock held and
5253 * interrupts disabled. There is no requirement for that, but the
5254 * sched out code does not have an interrupt enabled section.
5255 * Restoring the maps on sched in does not require interrupts being
5256 * disabled either.
5257 */
5258 kmap_local_sched_in();
5259
5260 fire_sched_in_preempt_notifiers(current);
5261 /*
5262 * When switching through a kernel thread, the loop in
5263 * membarrier_{private,global}_expedited() may have observed that
5264 * kernel thread and not issued an IPI. It is therefore possible to
5265 * schedule between user->kernel->user threads without passing though
5266 * switch_mm(). Membarrier requires a barrier after storing to
5267 * rq->curr, before returning to userspace, so provide them here:
5268 *
5269 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
5270 * provided by mmdrop_lazy_tlb(),
5271 * - a sync_core for SYNC_CORE.
5272 */
5273 if (mm) {
5274 membarrier_mm_sync_core_before_usermode(mm);
5275 mmdrop_lazy_tlb_sched(mm);
5276 }
5277
5278 if (unlikely(prev_state == TASK_DEAD)) {
5279 if (prev->sched_class->task_dead)
5280 prev->sched_class->task_dead(prev);
5281
5282 /* Task is done with its stack. */
5283 put_task_stack(tsk: prev);
5284
5285 put_task_struct_rcu_user(task: prev);
5286 }
5287
5288 return rq;
5289}
5290
5291/**
5292 * schedule_tail - first thing a freshly forked thread must call.
5293 * @prev: the thread we just switched away from.
5294 */
5295asmlinkage __visible void schedule_tail(struct task_struct *prev)
5296 __releases(rq->lock)
5297{
5298 /*
5299 * New tasks start with FORK_PREEMPT_COUNT, see there and
5300 * finish_task_switch() for details.
5301 *
5302 * finish_task_switch() will drop rq->lock() and lower preempt_count
5303 * and the preempt_enable() will end up enabling preemption (on
5304 * PREEMPT_COUNT kernels).
5305 */
5306
5307 finish_task_switch(prev);
5308 preempt_enable();
5309
5310 if (current->set_child_tid)
5311 put_user(task_pid_vnr(current), current->set_child_tid);
5312
5313 calculate_sigpending();
5314}
5315
5316/*
5317 * context_switch - switch to the new MM and the new thread's register state.
5318 */
5319static __always_inline struct rq *
5320context_switch(struct rq *rq, struct task_struct *prev,
5321 struct task_struct *next, struct rq_flags *rf)
5322{
5323 prepare_task_switch(rq, prev, next);
5324
5325 /*
5326 * For paravirt, this is coupled with an exit in switch_to to
5327 * combine the page table reload and the switch backend into
5328 * one hypercall.
5329 */
5330 arch_start_context_switch(prev);
5331
5332 /*
5333 * kernel -> kernel lazy + transfer active
5334 * user -> kernel lazy + mmgrab_lazy_tlb() active
5335 *
5336 * kernel -> user switch + mmdrop_lazy_tlb() active
5337 * user -> user switch
5338 *
5339 * switch_mm_cid() needs to be updated if the barriers provided
5340 * by context_switch() are modified.
5341 */
5342 if (!next->mm) { // to kernel
5343 enter_lazy_tlb(mm: prev->active_mm, tsk: next);
5344
5345 next->active_mm = prev->active_mm;
5346 if (prev->mm) // from user
5347 mmgrab_lazy_tlb(mm: prev->active_mm);
5348 else
5349 prev->active_mm = NULL;
5350 } else { // to user
5351 membarrier_switch_mm(rq, prev_mm: prev->active_mm, next_mm: next->mm);
5352 /*
5353 * sys_membarrier() requires an smp_mb() between setting
5354 * rq->curr / membarrier_switch_mm() and returning to userspace.
5355 *
5356 * The below provides this either through switch_mm(), or in
5357 * case 'prev->active_mm == next->mm' through
5358 * finish_task_switch()'s mmdrop().
5359 */
5360 switch_mm_irqs_off(prev: prev->active_mm, next: next->mm, tsk: next);
5361 lru_gen_use_mm(mm: next->mm);
5362
5363 if (!prev->mm) { // from kernel
5364 /* will mmdrop_lazy_tlb() in finish_task_switch(). */
5365 rq->prev_mm = prev->active_mm;
5366 prev->active_mm = NULL;
5367 }
5368 }
5369
5370 /* switch_mm_cid() requires the memory barriers above. */
5371 switch_mm_cid(rq, prev, next);
5372
5373 prepare_lock_switch(rq, next, rf);
5374
5375 /* Here we just switch the register state and the stack. */
5376 switch_to(prev, next, prev);
5377 barrier();
5378
5379 return finish_task_switch(prev);
5380}
5381
5382/*
5383 * nr_running and nr_context_switches:
5384 *
5385 * externally visible scheduler statistics: current number of runnable
5386 * threads, total number of context switches performed since bootup.
5387 */
5388unsigned int nr_running(void)
5389{
5390 unsigned int i, sum = 0;
5391
5392 for_each_online_cpu(i)
5393 sum += cpu_rq(i)->nr_running;
5394
5395 return sum;
5396}
5397
5398/*
5399 * Check if only the current task is running on the CPU.
5400 *
5401 * Caution: this function does not check that the caller has disabled
5402 * preemption, thus the result might have a time-of-check-to-time-of-use
5403 * race. The caller is responsible to use it correctly, for example:
5404 *
5405 * - from a non-preemptible section (of course)
5406 *
5407 * - from a thread that is bound to a single CPU
5408 *
5409 * - in a loop with very short iterations (e.g. a polling loop)
5410 */
5411bool single_task_running(void)
5412{
5413 return raw_rq()->nr_running == 1;
5414}
5415EXPORT_SYMBOL(single_task_running);
5416
5417unsigned long long nr_context_switches_cpu(int cpu)
5418{
5419 return cpu_rq(cpu)->nr_switches;
5420}
5421
5422unsigned long long nr_context_switches(void)
5423{
5424 int i;
5425 unsigned long long sum = 0;
5426
5427 for_each_possible_cpu(i)
5428 sum += cpu_rq(i)->nr_switches;
5429
5430 return sum;
5431}
5432
5433/*
5434 * Consumers of these two interfaces, like for example the cpuidle menu
5435 * governor, are using nonsensical data. Preferring shallow idle state selection
5436 * for a CPU that has IO-wait which might not even end up running the task when
5437 * it does become runnable.
5438 */
5439
5440unsigned int nr_iowait_cpu(int cpu)
5441{
5442 return atomic_read(v: &cpu_rq(cpu)->nr_iowait);
5443}
5444
5445/*
5446 * IO-wait accounting, and how it's mostly bollocks (on SMP).
5447 *
5448 * The idea behind IO-wait account is to account the idle time that we could
5449 * have spend running if it were not for IO. That is, if we were to improve the
5450 * storage performance, we'd have a proportional reduction in IO-wait time.
5451 *
5452 * This all works nicely on UP, where, when a task blocks on IO, we account
5453 * idle time as IO-wait, because if the storage were faster, it could've been
5454 * running and we'd not be idle.
5455 *
5456 * This has been extended to SMP, by doing the same for each CPU. This however
5457 * is broken.
5458 *
5459 * Imagine for instance the case where two tasks block on one CPU, only the one
5460 * CPU will have IO-wait accounted, while the other has regular idle. Even
5461 * though, if the storage were faster, both could've ran at the same time,
5462 * utilising both CPUs.
5463 *
5464 * This means, that when looking globally, the current IO-wait accounting on
5465 * SMP is a lower bound, by reason of under accounting.
5466 *
5467 * Worse, since the numbers are provided per CPU, they are sometimes
5468 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
5469 * associated with any one particular CPU, it can wake to another CPU than it
5470 * blocked on. This means the per CPU IO-wait number is meaningless.
5471 *
5472 * Task CPU affinities can make all that even more 'interesting'.
5473 */
5474
5475unsigned int nr_iowait(void)
5476{
5477 unsigned int i, sum = 0;
5478
5479 for_each_possible_cpu(i)
5480 sum += nr_iowait_cpu(cpu: i);
5481
5482 return sum;
5483}
5484
5485#ifdef CONFIG_SMP
5486
5487/*
5488 * sched_exec - execve() is a valuable balancing opportunity, because at
5489 * this point the task has the smallest effective memory and cache footprint.
5490 */
5491void sched_exec(void)
5492{
5493 struct task_struct *p = current;
5494 struct migration_arg arg;
5495 int dest_cpu;
5496
5497 scoped_guard (raw_spinlock_irqsave, &p->pi_lock) {
5498 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC);
5499 if (dest_cpu == smp_processor_id())
5500 return;
5501
5502 if (unlikely(!cpu_active(dest_cpu)))
5503 return;
5504
5505 arg = (struct migration_arg){ p, dest_cpu };
5506 }
5507 stop_one_cpu(cpu: task_cpu(p), fn: migration_cpu_stop, arg: &arg);
5508}
5509
5510#endif
5511
5512DEFINE_PER_CPU(struct kernel_stat, kstat);
5513DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
5514
5515EXPORT_PER_CPU_SYMBOL(kstat);
5516EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
5517
5518/*
5519 * The function fair_sched_class.update_curr accesses the struct curr
5520 * and its field curr->exec_start; when called from task_sched_runtime(),
5521 * we observe a high rate of cache misses in practice.
5522 * Prefetching this data results in improved performance.
5523 */
5524static inline void prefetch_curr_exec_start(struct task_struct *p)
5525{
5526#ifdef CONFIG_FAIR_GROUP_SCHED
5527 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
5528#else
5529 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
5530#endif
5531 prefetch(curr);
5532 prefetch(&curr->exec_start);
5533}
5534
5535/*
5536 * Return accounted runtime for the task.
5537 * In case the task is currently running, return the runtime plus current's
5538 * pending runtime that have not been accounted yet.
5539 */
5540unsigned long long task_sched_runtime(struct task_struct *p)
5541{
5542 struct rq_flags rf;
5543 struct rq *rq;
5544 u64 ns;
5545
5546#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
5547 /*
5548 * 64-bit doesn't need locks to atomically read a 64-bit value.
5549 * So we have a optimization chance when the task's delta_exec is 0.
5550 * Reading ->on_cpu is racy, but this is ok.
5551 *
5552 * If we race with it leaving CPU, we'll take a lock. So we're correct.
5553 * If we race with it entering CPU, unaccounted time is 0. This is
5554 * indistinguishable from the read occurring a few cycles earlier.
5555 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
5556 * been accounted, so we're correct here as well.
5557 */
5558 if (!p->on_cpu || !task_on_rq_queued(p))
5559 return p->se.sum_exec_runtime;
5560#endif
5561
5562 rq = task_rq_lock(p, rf: &rf);
5563 /*
5564 * Must be ->curr _and_ ->on_rq. If dequeued, we would
5565 * project cycles that may never be accounted to this
5566 * thread, breaking clock_gettime().
5567 */
5568 if (task_current(rq, p) && task_on_rq_queued(p)) {
5569 prefetch_curr_exec_start(p);
5570 update_rq_clock(rq);
5571 p->sched_class->update_curr(rq);
5572 }
5573 ns = p->se.sum_exec_runtime;
5574 task_rq_unlock(rq, p, rf: &rf);
5575
5576 return ns;
5577}
5578
5579#ifdef CONFIG_SCHED_DEBUG
5580static u64 cpu_resched_latency(struct rq *rq)
5581{
5582 int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms);
5583 u64 resched_latency, now = rq_clock(rq);
5584 static bool warned_once;
5585
5586 if (sysctl_resched_latency_warn_once && warned_once)
5587 return 0;
5588
5589 if (!need_resched() || !latency_warn_ms)
5590 return 0;
5591
5592 if (system_state == SYSTEM_BOOTING)
5593 return 0;
5594
5595 if (!rq->last_seen_need_resched_ns) {
5596 rq->last_seen_need_resched_ns = now;
5597 rq->ticks_without_resched = 0;
5598 return 0;
5599 }
5600
5601 rq->ticks_without_resched++;
5602 resched_latency = now - rq->last_seen_need_resched_ns;
5603 if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC)
5604 return 0;
5605
5606 warned_once = true;
5607
5608 return resched_latency;
5609}
5610
5611static int __init setup_resched_latency_warn_ms(char *str)
5612{
5613 long val;
5614
5615 if ((kstrtol(s: str, base: 0, res: &val))) {
5616 pr_warn("Unable to set resched_latency_warn_ms\n");
5617 return 1;
5618 }
5619
5620 sysctl_resched_latency_warn_ms = val;
5621 return 1;
5622}
5623__setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms);
5624#else
5625static inline u64 cpu_resched_latency(struct rq *rq) { return 0; }
5626#endif /* CONFIG_SCHED_DEBUG */
5627
5628/*
5629 * This function gets called by the timer code, with HZ frequency.
5630 * We call it with interrupts disabled.
5631 */
5632void scheduler_tick(void)
5633{
5634 int cpu = smp_processor_id();
5635 struct rq *rq = cpu_rq(cpu);
5636 struct task_struct *curr = rq->curr;
5637 struct rq_flags rf;
5638 unsigned long thermal_pressure;
5639 u64 resched_latency;
5640
5641 if (housekeeping_cpu(cpu, type: HK_TYPE_TICK))
5642 arch_scale_freq_tick();
5643
5644 sched_clock_tick();
5645
5646 rq_lock(rq, rf: &rf);
5647
5648 update_rq_clock(rq);
5649 thermal_pressure = arch_scale_thermal_pressure(cpu: cpu_of(rq));
5650 update_thermal_load_avg(now: rq_clock_thermal(rq), rq, capacity: thermal_pressure);
5651 curr->sched_class->task_tick(rq, curr, 0);
5652 if (sched_feat(LATENCY_WARN))
5653 resched_latency = cpu_resched_latency(rq);
5654 calc_global_load_tick(this_rq: rq);
5655 sched_core_tick(rq);
5656 task_tick_mm_cid(rq, curr);
5657
5658 rq_unlock(rq, rf: &rf);
5659
5660 if (sched_feat(LATENCY_WARN) && resched_latency)
5661 resched_latency_warn(cpu, latency: resched_latency);
5662
5663 perf_event_task_tick();
5664
5665 if (curr->flags & PF_WQ_WORKER)
5666 wq_worker_tick(task: curr);
5667
5668#ifdef CONFIG_SMP
5669 rq->idle_balance = idle_cpu(cpu);
5670 trigger_load_balance(rq);
5671#endif
5672}
5673
5674#ifdef CONFIG_NO_HZ_FULL
5675
5676struct tick_work {
5677 int cpu;
5678 atomic_t state;
5679 struct delayed_work work;
5680};
5681/* Values for ->state, see diagram below. */
5682#define TICK_SCHED_REMOTE_OFFLINE 0
5683#define TICK_SCHED_REMOTE_OFFLINING 1
5684#define TICK_SCHED_REMOTE_RUNNING 2
5685
5686/*
5687 * State diagram for ->state:
5688 *
5689 *
5690 * TICK_SCHED_REMOTE_OFFLINE
5691 * | ^
5692 * | |
5693 * | | sched_tick_remote()
5694 * | |
5695 * | |
5696 * +--TICK_SCHED_REMOTE_OFFLINING
5697 * | ^
5698 * | |
5699 * sched_tick_start() | | sched_tick_stop()
5700 * | |
5701 * V |
5702 * TICK_SCHED_REMOTE_RUNNING
5703 *
5704 *
5705 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
5706 * and sched_tick_start() are happy to leave the state in RUNNING.
5707 */
5708
5709static struct tick_work __percpu *tick_work_cpu;
5710
5711static void sched_tick_remote(struct work_struct *work)
5712{
5713 struct delayed_work *dwork = to_delayed_work(work);
5714 struct tick_work *twork = container_of(dwork, struct tick_work, work);
5715 int cpu = twork->cpu;
5716 struct rq *rq = cpu_rq(cpu);
5717 int os;
5718
5719 /*
5720 * Handle the tick only if it appears the remote CPU is running in full
5721 * dynticks mode. The check is racy by nature, but missing a tick or
5722 * having one too much is no big deal because the scheduler tick updates
5723 * statistics and checks timeslices in a time-independent way, regardless
5724 * of when exactly it is running.
5725 */
5726 if (tick_nohz_tick_stopped_cpu(cpu)) {
5727 guard(rq_lock_irq)(rq);
5728 struct task_struct *curr = rq->curr;
5729
5730 if (cpu_online(cpu)) {
5731 update_rq_clock(rq);
5732
5733 if (!is_idle_task(curr)) {
5734 /*
5735 * Make sure the next tick runs within a
5736 * reasonable amount of time.
5737 */
5738 u64 delta = rq_clock_task(rq) - curr->se.exec_start;
5739 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
5740 }
5741 curr->sched_class->task_tick(rq, curr, 0);
5742
5743 calc_load_nohz_remote(rq);
5744 }
5745 }
5746
5747 /*
5748 * Run the remote tick once per second (1Hz). This arbitrary
5749 * frequency is large enough to avoid overload but short enough
5750 * to keep scheduler internal stats reasonably up to date. But
5751 * first update state to reflect hotplug activity if required.
5752 */
5753 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
5754 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
5755 if (os == TICK_SCHED_REMOTE_RUNNING)
5756 queue_delayed_work(system_unbound_wq, dwork, HZ);
5757}
5758
5759static void sched_tick_start(int cpu)
5760{
5761 int os;
5762 struct tick_work *twork;
5763
5764 if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5765 return;
5766
5767 WARN_ON_ONCE(!tick_work_cpu);
5768
5769 twork = per_cpu_ptr(tick_work_cpu, cpu);
5770 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
5771 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
5772 if (os == TICK_SCHED_REMOTE_OFFLINE) {
5773 twork->cpu = cpu;
5774 INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
5775 queue_delayed_work(system_unbound_wq, &twork->work, HZ);
5776 }
5777}
5778
5779#ifdef CONFIG_HOTPLUG_CPU
5780static void sched_tick_stop(int cpu)
5781{
5782 struct tick_work *twork;
5783 int os;
5784
5785 if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5786 return;
5787
5788 WARN_ON_ONCE(!tick_work_cpu);
5789
5790 twork = per_cpu_ptr(tick_work_cpu, cpu);
5791 /* There cannot be competing actions, but don't rely on stop-machine. */
5792 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
5793 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
5794 /* Don't cancel, as this would mess up the state machine. */
5795}
5796#endif /* CONFIG_HOTPLUG_CPU */
5797
5798int __init sched_tick_offload_init(void)
5799{
5800 tick_work_cpu = alloc_percpu(struct tick_work);
5801 BUG_ON(!tick_work_cpu);
5802 return 0;
5803}
5804
5805#else /* !CONFIG_NO_HZ_FULL */
5806static inline void sched_tick_start(int cpu) { }
5807static inline void sched_tick_stop(int cpu) { }
5808#endif
5809
5810#if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
5811 defined(CONFIG_TRACE_PREEMPT_TOGGLE))
5812/*
5813 * If the value passed in is equal to the current preempt count
5814 * then we just disabled preemption. Start timing the latency.
5815 */
5816static inline void preempt_latency_start(int val)
5817{
5818 if (preempt_count() == val) {
5819 unsigned long ip = get_lock_parent_ip();
5820#ifdef CONFIG_DEBUG_PREEMPT
5821 current->preempt_disable_ip = ip;
5822#endif
5823 trace_preempt_off(CALLER_ADDR0, a1: ip);
5824 }
5825}
5826
5827void preempt_count_add(int val)
5828{
5829#ifdef CONFIG_DEBUG_PREEMPT
5830 /*
5831 * Underflow?
5832 */
5833 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5834 return;
5835#endif
5836 __preempt_count_add(val);
5837#ifdef CONFIG_DEBUG_PREEMPT
5838 /*
5839 * Spinlock count overflowing soon?
5840 */
5841 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5842 PREEMPT_MASK - 10);
5843#endif
5844 preempt_latency_start(val);
5845}
5846EXPORT_SYMBOL(preempt_count_add);
5847NOKPROBE_SYMBOL(preempt_count_add);
5848
5849/*
5850 * If the value passed in equals to the current preempt count
5851 * then we just enabled preemption. Stop timing the latency.
5852 */
5853static inline void preempt_latency_stop(int val)
5854{
5855 if (preempt_count() == val)
5856 trace_preempt_on(CALLER_ADDR0, a1: get_lock_parent_ip());
5857}
5858
5859void preempt_count_sub(int val)
5860{
5861#ifdef CONFIG_DEBUG_PREEMPT
5862 /*
5863 * Underflow?
5864 */
5865 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5866 return;
5867 /*
5868 * Is the spinlock portion underflowing?
5869 */
5870 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5871 !(preempt_count() & PREEMPT_MASK)))
5872 return;
5873#endif
5874
5875 preempt_latency_stop(val);
5876 __preempt_count_sub(val);
5877}
5878EXPORT_SYMBOL(preempt_count_sub);
5879NOKPROBE_SYMBOL(preempt_count_sub);
5880
5881#else
5882static inline void preempt_latency_start(int val) { }
5883static inline void preempt_latency_stop(int val) { }
5884#endif
5885
5886static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
5887{
5888#ifdef CONFIG_DEBUG_PREEMPT
5889 return p->preempt_disable_ip;
5890#else
5891 return 0;
5892#endif
5893}
5894
5895/*
5896 * Print scheduling while atomic bug:
5897 */
5898static noinline void __schedule_bug(struct task_struct *prev)
5899{
5900 /* Save this before calling printk(), since that will clobber it */
5901 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
5902
5903 if (oops_in_progress)
5904 return;
5905
5906 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5907 prev->comm, prev->pid, preempt_count());
5908
5909 debug_show_held_locks(task: prev);
5910 print_modules();
5911 if (irqs_disabled())
5912 print_irqtrace_events(curr: prev);
5913 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) {
5914 pr_err("Preemption disabled at:");
5915 print_ip_sym(KERN_ERR, ip: preempt_disable_ip);
5916 }
5917 check_panic_on_warn(origin: "scheduling while atomic");
5918
5919 dump_stack();
5920 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5921}
5922
5923/*
5924 * Various schedule()-time debugging checks and statistics:
5925 */
5926static inline void schedule_debug(struct task_struct *prev, bool preempt)
5927{
5928#ifdef CONFIG_SCHED_STACK_END_CHECK
5929 if (task_stack_end_corrupted(prev))
5930 panic(fmt: "corrupted stack end detected inside scheduler\n");
5931
5932 if (task_scs_end_corrupted(tsk: prev))
5933 panic(fmt: "corrupted shadow stack detected inside scheduler\n");
5934#endif
5935
5936#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
5937 if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) {
5938 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
5939 prev->comm, prev->pid, prev->non_block_count);
5940 dump_stack();
5941 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5942 }
5943#endif
5944
5945 if (unlikely(in_atomic_preempt_off())) {
5946 __schedule_bug(prev);
5947 preempt_count_set(PREEMPT_DISABLED);
5948 }
5949 rcu_sleep_check();
5950 SCHED_WARN_ON(ct_state() == CONTEXT_USER);
5951
5952 profile_hit(SCHED_PROFILING, ip: __builtin_return_address(0));
5953
5954 schedstat_inc(this_rq()->sched_count);
5955}
5956
5957static void put_prev_task_balance(struct rq *rq, struct task_struct *prev,
5958 struct rq_flags *rf)
5959{
5960#ifdef CONFIG_SMP
5961 const struct sched_class *class;
5962 /*
5963 * We must do the balancing pass before put_prev_task(), such
5964 * that when we release the rq->lock the task is in the same
5965 * state as before we took rq->lock.
5966 *
5967 * We can terminate the balance pass as soon as we know there is
5968 * a runnable task of @class priority or higher.
5969 */
5970 for_class_range(class, prev->sched_class, &idle_sched_class) {
5971 if (class->balance(rq, prev, rf))
5972 break;
5973 }
5974#endif
5975
5976 put_prev_task(rq, prev);
5977}
5978
5979/*
5980 * Pick up the highest-prio task:
5981 */
5982static inline struct task_struct *
5983__pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
5984{
5985 const struct sched_class *class;
5986 struct task_struct *p;
5987
5988 /*
5989 * Optimization: we know that if all tasks are in the fair class we can
5990 * call that function directly, but only if the @prev task wasn't of a
5991 * higher scheduling class, because otherwise those lose the
5992 * opportunity to pull in more work from other CPUs.
5993 */
5994 if (likely(!sched_class_above(prev->sched_class, &fair_sched_class) &&
5995 rq->nr_running == rq->cfs.h_nr_running)) {
5996
5997 p = pick_next_task_fair(rq, prev, rf);
5998 if (unlikely(p == RETRY_TASK))
5999 goto restart;
6000
6001 /* Assume the next prioritized class is idle_sched_class */
6002 if (!p) {
6003 put_prev_task(rq, prev);
6004 p = pick_next_task_idle(rq);
6005 }
6006
6007 return p;
6008 }
6009
6010restart:
6011 put_prev_task_balance(rq, prev, rf);
6012
6013 for_each_class(class) {
6014 p = class->pick_next_task(rq);
6015 if (p)
6016 return p;
6017 }
6018
6019 BUG(); /* The idle class should always have a runnable task. */
6020}
6021
6022#ifdef CONFIG_SCHED_CORE
6023static inline bool is_task_rq_idle(struct task_struct *t)
6024{
6025 return (task_rq(t)->idle == t);
6026}
6027
6028static inline bool cookie_equals(struct task_struct *a, unsigned long cookie)
6029{
6030 return is_task_rq_idle(t: a) || (a->core_cookie == cookie);
6031}
6032
6033static inline bool cookie_match(struct task_struct *a, struct task_struct *b)
6034{
6035 if (is_task_rq_idle(t: a) || is_task_rq_idle(t: b))
6036 return true;
6037
6038 return a->core_cookie == b->core_cookie;
6039}
6040
6041static inline struct task_struct *pick_task(struct rq *rq)
6042{
6043 const struct sched_class *class;
6044 struct task_struct *p;
6045
6046 for_each_class(class) {
6047 p = class->pick_task(rq);
6048 if (p)
6049 return p;
6050 }
6051
6052 BUG(); /* The idle class should always have a runnable task. */
6053}
6054
6055extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi);
6056
6057static void queue_core_balance(struct rq *rq);
6058
6059static struct task_struct *
6060pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6061{
6062 struct task_struct *next, *p, *max = NULL;
6063 const struct cpumask *smt_mask;
6064 bool fi_before = false;
6065 bool core_clock_updated = (rq == rq->core);
6066 unsigned long cookie;
6067 int i, cpu, occ = 0;
6068 struct rq *rq_i;
6069 bool need_sync;
6070
6071 if (!sched_core_enabled(rq))
6072 return __pick_next_task(rq, prev, rf);
6073
6074 cpu = cpu_of(rq);
6075
6076 /* Stopper task is switching into idle, no need core-wide selection. */
6077 if (cpu_is_offline(cpu)) {
6078 /*
6079 * Reset core_pick so that we don't enter the fastpath when
6080 * coming online. core_pick would already be migrated to
6081 * another cpu during offline.
6082 */
6083 rq->core_pick = NULL;
6084 return __pick_next_task(rq, prev, rf);
6085 }
6086
6087 /*
6088 * If there were no {en,de}queues since we picked (IOW, the task
6089 * pointers are all still valid), and we haven't scheduled the last
6090 * pick yet, do so now.
6091 *
6092 * rq->core_pick can be NULL if no selection was made for a CPU because
6093 * it was either offline or went offline during a sibling's core-wide
6094 * selection. In this case, do a core-wide selection.
6095 */
6096 if (rq->core->core_pick_seq == rq->core->core_task_seq &&
6097 rq->core->core_pick_seq != rq->core_sched_seq &&
6098 rq->core_pick) {
6099 WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq);
6100
6101 next = rq->core_pick;
6102 if (next != prev) {
6103 put_prev_task(rq, prev);
6104 set_next_task(rq, next);
6105 }
6106
6107 rq->core_pick = NULL;
6108 goto out;
6109 }
6110
6111 put_prev_task_balance(rq, prev, rf);
6112
6113 smt_mask = cpu_smt_mask(cpu);
6114 need_sync = !!rq->core->core_cookie;
6115
6116 /* reset state */
6117 rq->core->core_cookie = 0UL;
6118 if (rq->core->core_forceidle_count) {
6119 if (!core_clock_updated) {
6120 update_rq_clock(rq: rq->core);
6121 core_clock_updated = true;
6122 }
6123 sched_core_account_forceidle(rq);
6124 /* reset after accounting force idle */
6125 rq->core->core_forceidle_start = 0;
6126 rq->core->core_forceidle_count = 0;
6127 rq->core->core_forceidle_occupation = 0;
6128 need_sync = true;
6129 fi_before = true;
6130 }
6131
6132 /*
6133 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq
6134 *
6135 * @task_seq guards the task state ({en,de}queues)
6136 * @pick_seq is the @task_seq we did a selection on
6137 * @sched_seq is the @pick_seq we scheduled
6138 *
6139 * However, preemptions can cause multiple picks on the same task set.
6140 * 'Fix' this by also increasing @task_seq for every pick.
6141 */
6142 rq->core->core_task_seq++;
6143
6144 /*
6145 * Optimize for common case where this CPU has no cookies
6146 * and there are no cookied tasks running on siblings.
6147 */
6148 if (!need_sync) {
6149 next = pick_task(rq);
6150 if (!next->core_cookie) {
6151 rq->core_pick = NULL;
6152 /*
6153 * For robustness, update the min_vruntime_fi for
6154 * unconstrained picks as well.
6155 */
6156 WARN_ON_ONCE(fi_before);
6157 task_vruntime_update(rq, p: next, in_fi: false);
6158 goto out_set_next;
6159 }
6160 }
6161
6162 /*
6163 * For each thread: do the regular task pick and find the max prio task
6164 * amongst them.
6165 *
6166 * Tie-break prio towards the current CPU
6167 */
6168 for_each_cpu_wrap(i, smt_mask, cpu) {
6169 rq_i = cpu_rq(i);
6170
6171 /*
6172 * Current cpu always has its clock updated on entrance to
6173 * pick_next_task(). If the current cpu is not the core,
6174 * the core may also have been updated above.
6175 */
6176 if (i != cpu && (rq_i != rq->core || !core_clock_updated))
6177 update_rq_clock(rq: rq_i);
6178
6179 p = rq_i->core_pick = pick_task(rq: rq_i);
6180 if (!max || prio_less(a: max, b: p, in_fi: fi_before))
6181 max = p;
6182 }
6183
6184 cookie = rq->core->core_cookie = max->core_cookie;
6185
6186 /*
6187 * For each thread: try and find a runnable task that matches @max or
6188 * force idle.
6189 */
6190 for_each_cpu(i, smt_mask) {
6191 rq_i = cpu_rq(i);
6192 p = rq_i->core_pick;
6193
6194 if (!cookie_equals(a: p, cookie)) {
6195 p = NULL;
6196 if (cookie)
6197 p = sched_core_find(rq: rq_i, cookie);
6198 if (!p)
6199 p = idle_sched_class.pick_task(rq_i);
6200 }
6201
6202 rq_i->core_pick = p;
6203
6204 if (p == rq_i->idle) {
6205 if (rq_i->nr_running) {
6206 rq->core->core_forceidle_count++;
6207 if (!fi_before)
6208 rq->core->core_forceidle_seq++;
6209 }
6210 } else {
6211 occ++;
6212 }
6213 }
6214
6215 if (schedstat_enabled() && rq->core->core_forceidle_count) {
6216 rq->core->core_forceidle_start = rq_clock(rq: rq->core);
6217 rq->core->core_forceidle_occupation = occ;
6218 }
6219
6220 rq->core->core_pick_seq = rq->core->core_task_seq;
6221 next = rq->core_pick;
6222 rq->core_sched_seq = rq->core->core_pick_seq;
6223
6224 /* Something should have been selected for current CPU */
6225 WARN_ON_ONCE(!next);
6226
6227 /*
6228 * Reschedule siblings
6229 *
6230 * NOTE: L1TF -- at this point we're no longer running the old task and
6231 * sending an IPI (below) ensures the sibling will no longer be running
6232 * their task. This ensures there is no inter-sibling overlap between
6233 * non-matching user state.
6234 */
6235 for_each_cpu(i, smt_mask) {
6236 rq_i = cpu_rq(i);
6237
6238 /*
6239 * An online sibling might have gone offline before a task
6240 * could be picked for it, or it might be offline but later
6241 * happen to come online, but its too late and nothing was
6242 * picked for it. That's Ok - it will pick tasks for itself,
6243 * so ignore it.
6244 */
6245 if (!rq_i->core_pick)
6246 continue;
6247
6248 /*
6249 * Update for new !FI->FI transitions, or if continuing to be in !FI:
6250 * fi_before fi update?
6251 * 0 0 1
6252 * 0 1 1
6253 * 1 0 1
6254 * 1 1 0
6255 */
6256 if (!(fi_before && rq->core->core_forceidle_count))
6257 task_vruntime_update(rq: rq_i, p: rq_i->core_pick, in_fi: !!rq->core->core_forceidle_count);
6258
6259 rq_i->core_pick->core_occupation = occ;
6260
6261 if (i == cpu) {
6262 rq_i->core_pick = NULL;
6263 continue;
6264 }
6265
6266 /* Did we break L1TF mitigation requirements? */
6267 WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick));
6268
6269 if (rq_i->curr == rq_i->core_pick) {
6270 rq_i->core_pick = NULL;
6271 continue;
6272 }
6273
6274 resched_curr(rq: rq_i);
6275 }
6276
6277out_set_next:
6278 set_next_task(rq, next);
6279out:
6280 if (rq->core->core_forceidle_count && next == rq->idle)
6281 queue_core_balance(rq);
6282
6283 return next;
6284}
6285
6286static bool try_steal_cookie(int this, int that)
6287{
6288 struct rq *dst = cpu_rq(this), *src = cpu_rq(that);
6289 struct task_struct *p;
6290 unsigned long cookie;
6291 bool success = false;
6292
6293 guard(irq)();
6294 guard(double_rq_lock)(lock: dst, lock2: src);
6295
6296 cookie = dst->core->core_cookie;
6297 if (!cookie)
6298 return false;
6299
6300 if (dst->curr != dst->idle)
6301 return false;
6302
6303 p = sched_core_find(rq: src, cookie);
6304 if (!p)
6305 return false;
6306
6307 do {
6308 if (p == src->core_pick || p == src->curr)
6309 goto next;
6310
6311 if (!is_cpu_allowed(p, cpu: this))
6312 goto next;
6313
6314 if (p->core_occupation > dst->idle->core_occupation)
6315 goto next;
6316 /*
6317 * sched_core_find() and sched_core_next() will ensure
6318 * that task @p is not throttled now, we also need to
6319 * check whether the runqueue of the destination CPU is
6320 * being throttled.
6321 */
6322 if (sched_task_is_throttled(p, cpu: this))
6323 goto next;
6324
6325 deactivate_task(rq: src, p, flags: 0);
6326 set_task_cpu(p, new_cpu: this);
6327 activate_task(rq: dst, p, flags: 0);
6328
6329 resched_curr(rq: dst);
6330
6331 success = true;
6332 break;
6333
6334next:
6335 p = sched_core_next(p, cookie);
6336 } while (p);
6337
6338 return success;
6339}
6340
6341static bool steal_cookie_task(int cpu, struct sched_domain *sd)
6342{
6343 int i;
6344
6345 for_each_cpu_wrap(i, sched_domain_span(sd), cpu + 1) {
6346 if (i == cpu)
6347 continue;
6348
6349 if (need_resched())
6350 break;
6351
6352 if (try_steal_cookie(this: cpu, that: i))
6353 return true;
6354 }
6355
6356 return false;
6357}
6358
6359static void sched_core_balance(struct rq *rq)
6360{
6361 struct sched_domain *sd;
6362 int cpu = cpu_of(rq);
6363
6364 guard(preempt)();
6365 guard(rcu)();
6366
6367 raw_spin_rq_unlock_irq(rq);
6368 for_each_domain(cpu, sd) {
6369 if (need_resched())
6370 break;
6371
6372 if (steal_cookie_task(cpu, sd))
6373 break;
6374 }
6375 raw_spin_rq_lock_irq(rq);
6376}
6377
6378static DEFINE_PER_CPU(struct balance_callback, core_balance_head);
6379
6380static void queue_core_balance(struct rq *rq)
6381{
6382 if (!sched_core_enabled(rq))
6383 return;
6384
6385 if (!rq->core->core_cookie)
6386 return;
6387
6388 if (!rq->nr_running) /* not forced idle */
6389 return;
6390
6391 queue_balance_callback(rq, head: &per_cpu(core_balance_head, rq->cpu), func: sched_core_balance);
6392}
6393
6394DEFINE_LOCK_GUARD_1(core_lock, int,
6395 sched_core_lock(*_T->lock, &_T->flags),
6396 sched_core_unlock(*_T->lock, &_T->flags),
6397 unsigned long flags)
6398
6399static void sched_core_cpu_starting(unsigned int cpu)
6400{
6401 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6402 struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6403 int t;
6404
6405 guard(core_lock)(l: &cpu);
6406
6407 WARN_ON_ONCE(rq->core != rq);
6408
6409 /* if we're the first, we'll be our own leader */
6410 if (cpumask_weight(srcp: smt_mask) == 1)
6411 return;
6412
6413 /* find the leader */
6414 for_each_cpu(t, smt_mask) {
6415 if (t == cpu)
6416 continue;
6417 rq = cpu_rq(t);
6418 if (rq->core == rq) {
6419 core_rq = rq;
6420 break;
6421 }
6422 }
6423
6424 if (WARN_ON_ONCE(!core_rq)) /* whoopsie */
6425 return;
6426
6427 /* install and validate core_rq */
6428 for_each_cpu(t, smt_mask) {
6429 rq = cpu_rq(t);
6430
6431 if (t == cpu)
6432 rq->core = core_rq;
6433
6434 WARN_ON_ONCE(rq->core != core_rq);
6435 }
6436}
6437
6438static void sched_core_cpu_deactivate(unsigned int cpu)
6439{
6440 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6441 struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6442 int t;
6443
6444 guard(core_lock)(l: &cpu);
6445
6446 /* if we're the last man standing, nothing to do */
6447 if (cpumask_weight(srcp: smt_mask) == 1) {
6448 WARN_ON_ONCE(rq->core != rq);
6449 return;
6450 }
6451
6452 /* if we're not the leader, nothing to do */
6453 if (rq->core != rq)
6454 return;
6455
6456 /* find a new leader */
6457 for_each_cpu(t, smt_mask) {
6458 if (t == cpu)
6459 continue;
6460 core_rq = cpu_rq(t);
6461 break;
6462 }
6463
6464 if (WARN_ON_ONCE(!core_rq)) /* impossible */
6465 return;
6466
6467 /* copy the shared state to the new leader */
6468 core_rq->core_task_seq = rq->core_task_seq;
6469 core_rq->core_pick_seq = rq->core_pick_seq;
6470 core_rq->core_cookie = rq->core_cookie;
6471 core_rq->core_forceidle_count = rq->core_forceidle_count;
6472 core_rq->core_forceidle_seq = rq->core_forceidle_seq;
6473 core_rq->core_forceidle_occupation = rq->core_forceidle_occupation;
6474
6475 /*
6476 * Accounting edge for forced idle is handled in pick_next_task().
6477 * Don't need another one here, since the hotplug thread shouldn't
6478 * have a cookie.
6479 */
6480 core_rq->core_forceidle_start = 0;
6481
6482 /* install new leader */
6483 for_each_cpu(t, smt_mask) {
6484 rq = cpu_rq(t);
6485 rq->core = core_rq;
6486 }
6487}
6488
6489static inline void sched_core_cpu_dying(unsigned int cpu)
6490{
6491 struct rq *rq = cpu_rq(cpu);
6492
6493 if (rq->core != rq)
6494 rq->core = rq;
6495}
6496
6497#else /* !CONFIG_SCHED_CORE */
6498
6499static inline void sched_core_cpu_starting(unsigned int cpu) {}
6500static inline void sched_core_cpu_deactivate(unsigned int cpu) {}
6501static inline void sched_core_cpu_dying(unsigned int cpu) {}
6502
6503static struct task_struct *
6504pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6505{
6506 return __pick_next_task(rq, prev, rf);
6507}
6508
6509#endif /* CONFIG_SCHED_CORE */
6510
6511/*
6512 * Constants for the sched_mode argument of __schedule().
6513 *
6514 * The mode argument allows RT enabled kernels to differentiate a
6515 * preemption from blocking on an 'sleeping' spin/rwlock. Note that
6516 * SM_MASK_PREEMPT for !RT has all bits set, which allows the compiler to
6517 * optimize the AND operation out and just check for zero.
6518 */
6519#define SM_NONE 0x0
6520#define SM_PREEMPT 0x1
6521#define SM_RTLOCK_WAIT 0x2
6522
6523#ifndef CONFIG_PREEMPT_RT
6524# define SM_MASK_PREEMPT (~0U)
6525#else
6526# define SM_MASK_PREEMPT SM_PREEMPT
6527#endif
6528
6529/*
6530 * __schedule() is the main scheduler function.
6531 *
6532 * The main means of driving the scheduler and thus entering this function are:
6533 *
6534 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
6535 *
6536 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
6537 * paths. For example, see arch/x86/entry_64.S.
6538 *
6539 * To drive preemption between tasks, the scheduler sets the flag in timer
6540 * interrupt handler scheduler_tick().
6541 *
6542 * 3. Wakeups don't really cause entry into schedule(). They add a
6543 * task to the run-queue and that's it.
6544 *
6545 * Now, if the new task added to the run-queue preempts the current
6546 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
6547 * called on the nearest possible occasion:
6548 *
6549 * - If the kernel is preemptible (CONFIG_PREEMPTION=y):
6550 *
6551 * - in syscall or exception context, at the next outmost
6552 * preempt_enable(). (this might be as soon as the wake_up()'s
6553 * spin_unlock()!)
6554 *
6555 * - in IRQ context, return from interrupt-handler to
6556 * preemptible context
6557 *
6558 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
6559 * then at the next:
6560 *
6561 * - cond_resched() call
6562 * - explicit schedule() call
6563 * - return from syscall or exception to user-space
6564 * - return from interrupt-handler to user-space
6565 *
6566 * WARNING: must be called with preemption disabled!
6567 */
6568static void __sched notrace __schedule(unsigned int sched_mode)
6569{
6570 struct task_struct *prev, *next;
6571 unsigned long *switch_count;
6572 unsigned long prev_state;
6573 struct rq_flags rf;
6574 struct rq *rq;
6575 int cpu;
6576
6577 cpu = smp_processor_id();
6578 rq = cpu_rq(cpu);
6579 prev = rq->curr;
6580
6581 schedule_debug(prev, preempt: !!sched_mode);
6582
6583 if (sched_feat(HRTICK) || sched_feat(HRTICK_DL))
6584 hrtick_clear(rq);
6585
6586 local_irq_disable();
6587 rcu_note_context_switch(preempt: !!sched_mode);
6588
6589 /*
6590 * Make sure that signal_pending_state()->signal_pending() below
6591 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
6592 * done by the caller to avoid the race with signal_wake_up():
6593 *
6594 * __set_current_state(@state) signal_wake_up()
6595 * schedule() set_tsk_thread_flag(p, TIF_SIGPENDING)
6596 * wake_up_state(p, state)
6597 * LOCK rq->lock LOCK p->pi_state
6598 * smp_mb__after_spinlock() smp_mb__after_spinlock()
6599 * if (signal_pending_state()) if (p->state & @state)
6600 *
6601 * Also, the membarrier system call requires a full memory barrier
6602 * after coming from user-space, before storing to rq->curr.
6603 */
6604 rq_lock(rq, rf: &rf);
6605 smp_mb__after_spinlock();
6606
6607 /* Promote REQ to ACT */
6608 rq->clock_update_flags <<= 1;
6609 update_rq_clock(rq);
6610 rq->clock_update_flags = RQCF_UPDATED;
6611
6612 switch_count = &prev->nivcsw;
6613
6614 /*
6615 * We must load prev->state once (task_struct::state is volatile), such
6616 * that we form a control dependency vs deactivate_task() below.
6617 */
6618 prev_state = READ_ONCE(prev->__state);
6619 if (!(sched_mode & SM_MASK_PREEMPT) && prev_state) {
6620 if (signal_pending_state(state: prev_state, p: prev)) {
6621 WRITE_ONCE(prev->__state, TASK_RUNNING);
6622 } else {
6623 prev->sched_contributes_to_load =
6624 (prev_state & TASK_UNINTERRUPTIBLE) &&
6625 !(prev_state & TASK_NOLOAD) &&
6626 !(prev_state & TASK_FROZEN);
6627
6628 if (prev->sched_contributes_to_load)
6629 rq->nr_uninterruptible++;
6630
6631 /*
6632 * __schedule() ttwu()
6633 * prev_state = prev->state; if (p->on_rq && ...)
6634 * if (prev_state) goto out;
6635 * p->on_rq = 0; smp_acquire__after_ctrl_dep();
6636 * p->state = TASK_WAKING
6637 *
6638 * Where __schedule() and ttwu() have matching control dependencies.
6639 *
6640 * After this, schedule() must not care about p->state any more.
6641 */
6642 deactivate_task(rq, p: prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
6643
6644 if (prev->in_iowait) {
6645 atomic_inc(v: &rq->nr_iowait);
6646 delayacct_blkio_start();
6647 }
6648 }
6649 switch_count = &prev->nvcsw;
6650 }
6651
6652 next = pick_next_task(rq, prev, rf: &rf);
6653 clear_tsk_need_resched(tsk: prev);
6654 clear_preempt_need_resched();
6655#ifdef CONFIG_SCHED_DEBUG
6656 rq->last_seen_need_resched_ns = 0;
6657#endif
6658
6659 if (likely(prev != next)) {
6660 rq->nr_switches++;
6661 /*
6662 * RCU users of rcu_dereference(rq->curr) may not see
6663 * changes to task_struct made by pick_next_task().
6664 */
6665 RCU_INIT_POINTER(rq->curr, next);
6666 /*
6667 * The membarrier system call requires each architecture
6668 * to have a full memory barrier after updating
6669 * rq->curr, before returning to user-space.
6670 *
6671 * Here are the schemes providing that barrier on the
6672 * various architectures:
6673 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
6674 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
6675 * - finish_lock_switch() for weakly-ordered
6676 * architectures where spin_unlock is a full barrier,
6677 * - switch_to() for arm64 (weakly-ordered, spin_unlock
6678 * is a RELEASE barrier),
6679 */
6680 ++*switch_count;
6681
6682 migrate_disable_switch(rq, p: prev);
6683 psi_sched_switch(prev, next, sleep: !task_on_rq_queued(p: prev));
6684
6685 trace_sched_switch(preempt: sched_mode & SM_MASK_PREEMPT, prev, next, prev_state);
6686
6687 /* Also unlocks the rq: */
6688 rq = context_switch(rq, prev, next, rf: &rf);
6689 } else {
6690 rq_unpin_lock(rq, rf: &rf);
6691 __balance_callbacks(rq);
6692 raw_spin_rq_unlock_irq(rq);
6693 }
6694}
6695
6696void __noreturn do_task_dead(void)
6697{
6698 /* Causes final put_task_struct in finish_task_switch(): */
6699 set_special_state(TASK_DEAD);
6700
6701 /* Tell freezer to ignore us: */
6702 current->flags |= PF_NOFREEZE;
6703
6704 __schedule(SM_NONE);
6705 BUG();
6706
6707 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
6708 for (;;)
6709 cpu_relax();
6710}
6711
6712static inline void sched_submit_work(struct task_struct *tsk)
6713{
6714 static DEFINE_WAIT_OVERRIDE_MAP(sched_map, LD_WAIT_CONFIG);
6715 unsigned int task_flags;
6716
6717 /*
6718 * Establish LD_WAIT_CONFIG context to ensure none of the code called
6719 * will use a blocking primitive -- which would lead to recursion.
6720 */
6721 lock_map_acquire_try(&sched_map);
6722
6723 task_flags = tsk->flags;
6724 /*
6725 * If a worker goes to sleep, notify and ask workqueue whether it
6726 * wants to wake up a task to maintain concurrency.
6727 */
6728 if (task_flags & PF_WQ_WORKER)
6729 wq_worker_sleeping(task: tsk);
6730 else if (task_flags & PF_IO_WORKER)
6731 io_wq_worker_sleeping(tsk);
6732
6733 /*
6734 * spinlock and rwlock must not flush block requests. This will
6735 * deadlock if the callback attempts to acquire a lock which is
6736 * already acquired.
6737 */
6738 SCHED_WARN_ON(current->__state & TASK_RTLOCK_WAIT);
6739
6740 /*
6741 * If we are going to sleep and we have plugged IO queued,
6742 * make sure to submit it to avoid deadlocks.
6743 */
6744 blk_flush_plug(plug: tsk->plug, async: true);
6745
6746 lock_map_release(&sched_map);
6747}
6748
6749static void sched_update_worker(struct task_struct *tsk)
6750{
6751 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
6752 if (tsk->flags & PF_WQ_WORKER)
6753 wq_worker_running(task: tsk);
6754 else
6755 io_wq_worker_running(tsk);
6756 }
6757}
6758
6759static __always_inline void __schedule_loop(unsigned int sched_mode)
6760{
6761 do {
6762 preempt_disable();
6763 __schedule(sched_mode);
6764 sched_preempt_enable_no_resched();
6765 } while (need_resched());
6766}
6767
6768asmlinkage __visible void __sched schedule(void)
6769{
6770 struct task_struct *tsk = current;
6771
6772#ifdef CONFIG_RT_MUTEXES
6773 lockdep_assert(!tsk->sched_rt_mutex);
6774#endif
6775
6776 if (!task_is_running(tsk))
6777 sched_submit_work(tsk);
6778 __schedule_loop(SM_NONE);
6779 sched_update_worker(tsk);
6780}
6781EXPORT_SYMBOL(schedule);
6782
6783/*
6784 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
6785 * state (have scheduled out non-voluntarily) by making sure that all
6786 * tasks have either left the run queue or have gone into user space.
6787 * As idle tasks do not do either, they must not ever be preempted
6788 * (schedule out non-voluntarily).
6789 *
6790 * schedule_idle() is similar to schedule_preempt_disable() except that it
6791 * never enables preemption because it does not call sched_submit_work().
6792 */
6793void __sched schedule_idle(void)
6794{
6795 /*
6796 * As this skips calling sched_submit_work(), which the idle task does
6797 * regardless because that function is a nop when the task is in a
6798 * TASK_RUNNING state, make sure this isn't used someplace that the
6799 * current task can be in any other state. Note, idle is always in the
6800 * TASK_RUNNING state.
6801 */
6802 WARN_ON_ONCE(current->__state);
6803 do {
6804 __schedule(SM_NONE);
6805 } while (need_resched());
6806}
6807
6808#if defined(CONFIG_CONTEXT_TRACKING_USER) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_USER_OFFSTACK)
6809asmlinkage __visible void __sched schedule_user(void)
6810{
6811 /*
6812 * If we come here after a random call to set_need_resched(),
6813 * or we have been woken up remotely but the IPI has not yet arrived,
6814 * we haven't yet exited the RCU idle mode. Do it here manually until
6815 * we find a better solution.
6816 *
6817 * NB: There are buggy callers of this function. Ideally we
6818 * should warn if prev_state != CONTEXT_USER, but that will trigger
6819 * too frequently to make sense yet.
6820 */
6821 enum ctx_state prev_state = exception_enter();
6822 schedule();
6823 exception_exit(prev_state);
6824}
6825#endif
6826
6827/**
6828 * schedule_preempt_disabled - called with preemption disabled
6829 *
6830 * Returns with preemption disabled. Note: preempt_count must be 1
6831 */
6832void __sched schedule_preempt_disabled(void)
6833{
6834 sched_preempt_enable_no_resched();
6835 schedule();
6836 preempt_disable();
6837}
6838
6839#ifdef CONFIG_PREEMPT_RT
6840void __sched notrace schedule_rtlock(void)
6841{
6842 __schedule_loop(SM_RTLOCK_WAIT);
6843}
6844NOKPROBE_SYMBOL(schedule_rtlock);
6845#endif
6846
6847static void __sched notrace preempt_schedule_common(void)
6848{
6849 do {
6850 /*
6851 * Because the function tracer can trace preempt_count_sub()
6852 * and it also uses preempt_enable/disable_notrace(), if
6853 * NEED_RESCHED is set, the preempt_enable_notrace() called
6854 * by the function tracer will call this function again and
6855 * cause infinite recursion.
6856 *
6857 * Preemption must be disabled here before the function
6858 * tracer can trace. Break up preempt_disable() into two
6859 * calls. One to disable preemption without fear of being
6860 * traced. The other to still record the preemption latency,
6861 * which can also be traced by the function tracer.
6862 */
6863 preempt_disable_notrace();
6864 preempt_latency_start(val: 1);
6865 __schedule(SM_PREEMPT);
6866 preempt_latency_stop(val: 1);
6867 preempt_enable_no_resched_notrace();
6868
6869 /*
6870 * Check again in case we missed a preemption opportunity
6871 * between schedule and now.
6872 */
6873 } while (need_resched());
6874}
6875
6876#ifdef CONFIG_PREEMPTION
6877/*
6878 * This is the entry point to schedule() from in-kernel preemption
6879 * off of preempt_enable.
6880 */
6881asmlinkage __visible void __sched notrace preempt_schedule(void)
6882{
6883 /*
6884 * If there is a non-zero preempt_count or interrupts are disabled,
6885 * we do not want to preempt the current task. Just return..
6886 */
6887 if (likely(!preemptible()))
6888 return;
6889 preempt_schedule_common();
6890}
6891NOKPROBE_SYMBOL(preempt_schedule);
6892EXPORT_SYMBOL(preempt_schedule);
6893
6894#ifdef CONFIG_PREEMPT_DYNAMIC
6895#if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
6896#ifndef preempt_schedule_dynamic_enabled
6897#define preempt_schedule_dynamic_enabled preempt_schedule
6898#define preempt_schedule_dynamic_disabled NULL
6899#endif
6900DEFINE_STATIC_CALL(preempt_schedule, preempt_schedule_dynamic_enabled);
6901EXPORT_STATIC_CALL_TRAMP(preempt_schedule);
6902#elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
6903static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule);
6904void __sched notrace dynamic_preempt_schedule(void)
6905{
6906 if (!static_branch_unlikely(&sk_dynamic_preempt_schedule))
6907 return;
6908 preempt_schedule();
6909}
6910NOKPROBE_SYMBOL(dynamic_preempt_schedule);
6911EXPORT_SYMBOL(dynamic_preempt_schedule);
6912#endif
6913#endif
6914
6915/**
6916 * preempt_schedule_notrace - preempt_schedule called by tracing
6917 *
6918 * The tracing infrastructure uses preempt_enable_notrace to prevent
6919 * recursion and tracing preempt enabling caused by the tracing
6920 * infrastructure itself. But as tracing can happen in areas coming
6921 * from userspace or just about to enter userspace, a preempt enable
6922 * can occur before user_exit() is called. This will cause the scheduler
6923 * to be called when the system is still in usermode.
6924 *
6925 * To prevent this, the preempt_enable_notrace will use this function
6926 * instead of preempt_schedule() to exit user context if needed before
6927 * calling the scheduler.
6928 */
6929asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
6930{
6931 enum ctx_state prev_ctx;
6932
6933 if (likely(!preemptible()))
6934 return;
6935
6936 do {
6937 /*
6938 * Because the function tracer can trace preempt_count_sub()
6939 * and it also uses preempt_enable/disable_notrace(), if
6940 * NEED_RESCHED is set, the preempt_enable_notrace() called
6941 * by the function tracer will call this function again and
6942 * cause infinite recursion.
6943 *
6944 * Preemption must be disabled here before the function
6945 * tracer can trace. Break up preempt_disable() into two
6946 * calls. One to disable preemption without fear of being
6947 * traced. The other to still record the preemption latency,
6948 * which can also be traced by the function tracer.
6949 */
6950 preempt_disable_notrace();
6951 preempt_latency_start(val: 1);
6952 /*
6953 * Needs preempt disabled in case user_exit() is traced
6954 * and the tracer calls preempt_enable_notrace() causing
6955 * an infinite recursion.
6956 */
6957 prev_ctx = exception_enter();
6958 __schedule(SM_PREEMPT);
6959 exception_exit(prev_ctx);
6960
6961 preempt_latency_stop(val: 1);
6962 preempt_enable_no_resched_notrace();
6963 } while (need_resched());
6964}
6965EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
6966
6967#ifdef CONFIG_PREEMPT_DYNAMIC
6968#if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
6969#ifndef preempt_schedule_notrace_dynamic_enabled
6970#define preempt_schedule_notrace_dynamic_enabled preempt_schedule_notrace
6971#define preempt_schedule_notrace_dynamic_disabled NULL
6972#endif
6973DEFINE_STATIC_CALL(preempt_schedule_notrace, preempt_schedule_notrace_dynamic_enabled);
6974EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace);
6975#elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
6976static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule_notrace);
6977void __sched notrace dynamic_preempt_schedule_notrace(void)
6978{
6979 if (!static_branch_unlikely(&sk_dynamic_preempt_schedule_notrace))
6980 return;
6981 preempt_schedule_notrace();
6982}
6983NOKPROBE_SYMBOL(dynamic_preempt_schedule_notrace);
6984EXPORT_SYMBOL(dynamic_preempt_schedule_notrace);
6985#endif
6986#endif
6987
6988#endif /* CONFIG_PREEMPTION */
6989
6990/*
6991 * This is the entry point to schedule() from kernel preemption
6992 * off of irq context.
6993 * Note, that this is called and return with irqs disabled. This will
6994 * protect us against recursive calling from irq.
6995 */
6996asmlinkage __visible void __sched preempt_schedule_irq(void)
6997{
6998 enum ctx_state prev_state;
6999
7000 /* Catch callers which need to be fixed */
7001 BUG_ON(preempt_count() || !irqs_disabled());
7002
7003 prev_state = exception_enter();
7004
7005 do {
7006 preempt_disable();
7007 local_irq_enable();
7008 __schedule(SM_PREEMPT);
7009 local_irq_disable();
7010 sched_preempt_enable_no_resched();
7011 } while (need_resched());
7012
7013 exception_exit(prev_ctx: prev_state);
7014}
7015
7016int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
7017 void *key)
7018{
7019 WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~(WF_SYNC|WF_CURRENT_CPU));
7020 return try_to_wake_up(p: curr->private, state: mode, wake_flags);
7021}
7022EXPORT_SYMBOL(default_wake_function);
7023
7024static void __setscheduler_prio(struct task_struct *p, int prio)
7025{
7026 if (dl_prio(prio))
7027 p->sched_class = &dl_sched_class;
7028 else if (rt_prio(prio))
7029 p->sched_class = &rt_sched_class;
7030 else
7031 p->sched_class = &fair_sched_class;
7032
7033 p->prio = prio;
7034}
7035
7036#ifdef CONFIG_RT_MUTEXES
7037
7038/*
7039 * Would be more useful with typeof()/auto_type but they don't mix with
7040 * bit-fields. Since it's a local thing, use int. Keep the generic sounding
7041 * name such that if someone were to implement this function we get to compare
7042 * notes.
7043 */
7044#define fetch_and_set(x, v) ({ int _x = (x); (x) = (v); _x; })
7045
7046void rt_mutex_pre_schedule(void)
7047{
7048 lockdep_assert(!fetch_and_set(current->sched_rt_mutex, 1));
7049 sched_submit_work(current);
7050}
7051
7052void rt_mutex_schedule(void)
7053{
7054 lockdep_assert(current->sched_rt_mutex);
7055 __schedule_loop(SM_NONE);
7056}
7057
7058void rt_mutex_post_schedule(void)
7059{
7060 sched_update_worker(current);
7061 lockdep_assert(fetch_and_set(current->sched_rt_mutex, 0));
7062}
7063
7064static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
7065{
7066 if (pi_task)
7067 prio = min(prio, pi_task->prio);
7068
7069 return prio;
7070}
7071
7072static inline int rt_effective_prio(struct task_struct *p, int prio)
7073{
7074 struct task_struct *pi_task = rt_mutex_get_top_task(p);
7075
7076 return __rt_effective_prio(pi_task, prio);
7077}
7078
7079/*
7080 * rt_mutex_setprio - set the current priority of a task
7081 * @p: task to boost
7082 * @pi_task: donor task
7083 *
7084 * This function changes the 'effective' priority of a task. It does
7085 * not touch ->normal_prio like __setscheduler().
7086 *
7087 * Used by the rt_mutex code to implement priority inheritance
7088 * logic. Call site only calls if the priority of the task changed.
7089 */
7090void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
7091{
7092 int prio, oldprio, queued, running, queue_flag =
7093 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7094 const struct sched_class *prev_class;
7095 struct rq_flags rf;
7096 struct rq *rq;
7097
7098 /* XXX used to be waiter->prio, not waiter->task->prio */
7099 prio = __rt_effective_prio(pi_task, prio: p->normal_prio);
7100
7101 /*
7102 * If nothing changed; bail early.
7103 */
7104 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
7105 return;
7106
7107 rq = __task_rq_lock(p, rf: &rf);
7108 update_rq_clock(rq);
7109 /*
7110 * Set under pi_lock && rq->lock, such that the value can be used under
7111 * either lock.
7112 *
7113 * Note that there is loads of tricky to make this pointer cache work
7114 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
7115 * ensure a task is de-boosted (pi_task is set to NULL) before the
7116 * task is allowed to run again (and can exit). This ensures the pointer
7117 * points to a blocked task -- which guarantees the task is present.
7118 */
7119 p->pi_top_task = pi_task;
7120
7121 /*
7122 * For FIFO/RR we only need to set prio, if that matches we're done.
7123 */
7124 if (prio == p->prio && !dl_prio(prio))
7125 goto out_unlock;
7126
7127 /*
7128 * Idle task boosting is a nono in general. There is one
7129 * exception, when PREEMPT_RT and NOHZ is active:
7130 *
7131 * The idle task calls get_next_timer_interrupt() and holds
7132 * the timer wheel base->lock on the CPU and another CPU wants
7133 * to access the timer (probably to cancel it). We can safely
7134 * ignore the boosting request, as the idle CPU runs this code
7135 * with interrupts disabled and will complete the lock
7136 * protected section without being interrupted. So there is no
7137 * real need to boost.
7138 */
7139 if (unlikely(p == rq->idle)) {
7140 WARN_ON(p != rq->curr);
7141 WARN_ON(p->pi_blocked_on);
7142 goto out_unlock;
7143 }
7144
7145 trace_sched_pi_setprio(tsk: p, pi_task);
7146 oldprio = p->prio;
7147
7148 if (oldprio == prio)
7149 queue_flag &= ~DEQUEUE_MOVE;
7150
7151 prev_class = p->sched_class;
7152 queued = task_on_rq_queued(p);
7153 running = task_current(rq, p);
7154 if (queued)
7155 dequeue_task(rq, p, flags: queue_flag);
7156 if (running)
7157 put_prev_task(rq, prev: p);
7158
7159 /*
7160 * Boosting condition are:
7161 * 1. -rt task is running and holds mutex A
7162 * --> -dl task blocks on mutex A
7163 *
7164 * 2. -dl task is running and holds mutex A
7165 * --> -dl task blocks on mutex A and could preempt the
7166 * running task
7167 */
7168 if (dl_prio(prio)) {
7169 if (!dl_prio(prio: p->normal_prio) ||
7170 (pi_task && dl_prio(prio: pi_task->prio) &&
7171 dl_entity_preempt(a: &pi_task->dl, b: &p->dl))) {
7172 p->dl.pi_se = pi_task->dl.pi_se;
7173 queue_flag |= ENQUEUE_REPLENISH;
7174 } else {
7175 p->dl.pi_se = &p->dl;
7176 }
7177 } else if (rt_prio(prio)) {
7178 if (dl_prio(prio: oldprio))
7179 p->dl.pi_se = &p->dl;
7180 if (oldprio < prio)
7181 queue_flag |= ENQUEUE_HEAD;
7182 } else {
7183 if (dl_prio(prio: oldprio))
7184 p->dl.pi_se = &p->dl;
7185 if (rt_prio(prio: oldprio))
7186 p->rt.timeout = 0;
7187 }
7188
7189 __setscheduler_prio(p, prio);
7190
7191 if (queued)
7192 enqueue_task(rq, p, flags: queue_flag);
7193 if (running)
7194 set_next_task(rq, next: p);
7195
7196 check_class_changed(rq, p, prev_class, oldprio);
7197out_unlock:
7198 /* Avoid rq from going away on us: */
7199 preempt_disable();
7200
7201 rq_unpin_lock(rq, rf: &rf);
7202 __balance_callbacks(rq);
7203 raw_spin_rq_unlock(rq);
7204
7205 preempt_enable();
7206}
7207#else
7208static inline int rt_effective_prio(struct task_struct *p, int prio)
7209{
7210 return prio;
7211}
7212#endif
7213
7214void set_user_nice(struct task_struct *p, long nice)
7215{
7216 bool queued, running;
7217 struct rq *rq;
7218 int old_prio;
7219
7220 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
7221 return;
7222 /*
7223 * We have to be careful, if called from sys_setpriority(),
7224 * the task might be in the middle of scheduling on another CPU.
7225 */
7226 CLASS(task_rq_lock, rq_guard)(l: p);
7227 rq = rq_guard.rq;
7228
7229 update_rq_clock(rq);
7230
7231 /*
7232 * The RT priorities are set via sched_setscheduler(), but we still
7233 * allow the 'normal' nice value to be set - but as expected
7234 * it won't have any effect on scheduling until the task is
7235 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
7236 */
7237 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
7238 p->static_prio = NICE_TO_PRIO(nice);
7239 return;
7240 }
7241
7242 queued = task_on_rq_queued(p);
7243 running = task_current(rq, p);
7244 if (queued)
7245 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
7246 if (running)
7247 put_prev_task(rq, prev: p);
7248
7249 p->static_prio = NICE_TO_PRIO(nice);
7250 set_load_weight(p, update_load: true);
7251 old_prio = p->prio;
7252 p->prio = effective_prio(p);
7253
7254 if (queued)
7255 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
7256 if (running)
7257 set_next_task(rq, next: p);
7258
7259 /*
7260 * If the task increased its priority or is running and
7261 * lowered its priority, then reschedule its CPU:
7262 */
7263 p->sched_class->prio_changed(rq, p, old_prio);
7264}
7265EXPORT_SYMBOL(set_user_nice);
7266
7267/*
7268 * is_nice_reduction - check if nice value is an actual reduction
7269 *
7270 * Similar to can_nice() but does not perform a capability check.
7271 *
7272 * @p: task
7273 * @nice: nice value
7274 */
7275static bool is_nice_reduction(const struct task_struct *p, const int nice)
7276{
7277 /* Convert nice value [19,-20] to rlimit style value [1,40]: */
7278 int nice_rlim = nice_to_rlimit(nice);
7279
7280 return (nice_rlim <= task_rlimit(task: p, RLIMIT_NICE));
7281}
7282
7283/*
7284 * can_nice - check if a task can reduce its nice value
7285 * @p: task
7286 * @nice: nice value
7287 */
7288int can_nice(const struct task_struct *p, const int nice)
7289{
7290 return is_nice_reduction(p, nice) || capable(CAP_SYS_NICE);
7291}
7292
7293#ifdef __ARCH_WANT_SYS_NICE
7294
7295/*
7296 * sys_nice - change the priority of the current process.
7297 * @increment: priority increment
7298 *
7299 * sys_setpriority is a more generic, but much slower function that
7300 * does similar things.
7301 */
7302SYSCALL_DEFINE1(nice, int, increment)
7303{
7304 long nice, retval;
7305
7306 /*
7307 * Setpriority might change our priority at the same moment.
7308 * We don't have to worry. Conceptually one call occurs first
7309 * and we have a single winner.
7310 */
7311 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
7312 nice = task_nice(current) + increment;
7313
7314 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
7315 if (increment < 0 && !can_nice(current, nice))
7316 return -EPERM;
7317
7318 retval = security_task_setnice(current, nice);
7319 if (retval)
7320 return retval;
7321
7322 set_user_nice(current, nice);
7323 return 0;
7324}
7325
7326#endif
7327
7328/**
7329 * task_prio - return the priority value of a given task.
7330 * @p: the task in question.
7331 *
7332 * Return: The priority value as seen by users in /proc.
7333 *
7334 * sched policy return value kernel prio user prio/nice
7335 *
7336 * normal, batch, idle [0 ... 39] [100 ... 139] 0/[-20 ... 19]
7337 * fifo, rr [-2 ... -100] [98 ... 0] [1 ... 99]
7338 * deadline -101 -1 0
7339 */
7340int task_prio(const struct task_struct *p)
7341{
7342 return p->prio - MAX_RT_PRIO;
7343}
7344
7345/**
7346 * idle_cpu - is a given CPU idle currently?
7347 * @cpu: the processor in question.
7348 *
7349 * Return: 1 if the CPU is currently idle. 0 otherwise.
7350 */
7351int idle_cpu(int cpu)
7352{
7353 struct rq *rq = cpu_rq(cpu);
7354
7355 if (rq->curr != rq->idle)
7356 return 0;
7357
7358 if (rq->nr_running)
7359 return 0;
7360
7361#ifdef CONFIG_SMP
7362 if (rq->ttwu_pending)
7363 return 0;
7364#endif
7365
7366 return 1;
7367}
7368
7369/**
7370 * available_idle_cpu - is a given CPU idle for enqueuing work.
7371 * @cpu: the CPU in question.
7372 *
7373 * Return: 1 if the CPU is currently idle. 0 otherwise.
7374 */
7375int available_idle_cpu(int cpu)
7376{
7377 if (!idle_cpu(cpu))
7378 return 0;
7379
7380 if (vcpu_is_preempted(cpu))
7381 return 0;
7382
7383 return 1;
7384}
7385
7386/**
7387 * idle_task - return the idle task for a given CPU.
7388 * @cpu: the processor in question.
7389 *
7390 * Return: The idle task for the CPU @cpu.
7391 */
7392struct task_struct *idle_task(int cpu)
7393{
7394 return cpu_rq(cpu)->idle;
7395}
7396
7397#ifdef CONFIG_SCHED_CORE
7398int sched_core_idle_cpu(int cpu)
7399{
7400 struct rq *rq = cpu_rq(cpu);
7401
7402 if (sched_core_enabled(rq) && rq->curr == rq->idle)
7403 return 1;
7404
7405 return idle_cpu(cpu);
7406}
7407
7408#endif
7409
7410#ifdef CONFIG_SMP
7411/*
7412 * This function computes an effective utilization for the given CPU, to be
7413 * used for frequency selection given the linear relation: f = u * f_max.
7414 *
7415 * The scheduler tracks the following metrics:
7416 *
7417 * cpu_util_{cfs,rt,dl,irq}()
7418 * cpu_bw_dl()
7419 *
7420 * Where the cfs,rt and dl util numbers are tracked with the same metric and
7421 * synchronized windows and are thus directly comparable.
7422 *
7423 * The cfs,rt,dl utilization are the running times measured with rq->clock_task
7424 * which excludes things like IRQ and steal-time. These latter are then accrued
7425 * in the irq utilization.
7426 *
7427 * The DL bandwidth number otoh is not a measured metric but a value computed
7428 * based on the task model parameters and gives the minimal utilization
7429 * required to meet deadlines.
7430 */
7431unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
7432 enum cpu_util_type type,
7433 struct task_struct *p)
7434{
7435 unsigned long dl_util, util, irq, max;
7436 struct rq *rq = cpu_rq(cpu);
7437
7438 max = arch_scale_cpu_capacity(cpu);
7439
7440 if (!uclamp_is_used() &&
7441 type == FREQUENCY_UTIL && rt_rq_is_runnable(rt_rq: &rq->rt)) {
7442 return max;
7443 }
7444
7445 /*
7446 * Early check to see if IRQ/steal time saturates the CPU, can be
7447 * because of inaccuracies in how we track these -- see
7448 * update_irq_load_avg().
7449 */
7450 irq = cpu_util_irq(rq);
7451 if (unlikely(irq >= max))
7452 return max;
7453
7454 /*
7455 * Because the time spend on RT/DL tasks is visible as 'lost' time to
7456 * CFS tasks and we use the same metric to track the effective
7457 * utilization (PELT windows are synchronized) we can directly add them
7458 * to obtain the CPU's actual utilization.
7459 *
7460 * CFS and RT utilization can be boosted or capped, depending on
7461 * utilization clamp constraints requested by currently RUNNABLE
7462 * tasks.
7463 * When there are no CFS RUNNABLE tasks, clamps are released and
7464 * frequency will be gracefully reduced with the utilization decay.
7465 */
7466 util = util_cfs + cpu_util_rt(rq);
7467 if (type == FREQUENCY_UTIL)
7468 util = uclamp_rq_util_with(rq, util, p);
7469
7470 dl_util = cpu_util_dl(rq);
7471
7472 /*
7473 * For frequency selection we do not make cpu_util_dl() a permanent part
7474 * of this sum because we want to use cpu_bw_dl() later on, but we need
7475 * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such
7476 * that we select f_max when there is no idle time.
7477 *
7478 * NOTE: numerical errors or stop class might cause us to not quite hit
7479 * saturation when we should -- something for later.
7480 */
7481 if (util + dl_util >= max)
7482 return max;
7483
7484 /*
7485 * OTOH, for energy computation we need the estimated running time, so
7486 * include util_dl and ignore dl_bw.
7487 */
7488 if (type == ENERGY_UTIL)
7489 util += dl_util;
7490
7491 /*
7492 * There is still idle time; further improve the number by using the
7493 * irq metric. Because IRQ/steal time is hidden from the task clock we
7494 * need to scale the task numbers:
7495 *
7496 * max - irq
7497 * U' = irq + --------- * U
7498 * max
7499 */
7500 util = scale_irq_capacity(util, irq, max);
7501 util += irq;
7502
7503 /*
7504 * Bandwidth required by DEADLINE must always be granted while, for
7505 * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism
7506 * to gracefully reduce the frequency when no tasks show up for longer
7507 * periods of time.
7508 *
7509 * Ideally we would like to set bw_dl as min/guaranteed freq and util +
7510 * bw_dl as requested freq. However, cpufreq is not yet ready for such
7511 * an interface. So, we only do the latter for now.
7512 */
7513 if (type == FREQUENCY_UTIL)
7514 util += cpu_bw_dl(rq);
7515
7516 return min(max, util);
7517}
7518
7519unsigned long sched_cpu_util(int cpu)
7520{
7521 return effective_cpu_util(cpu, util_cfs: cpu_util_cfs(cpu), type: ENERGY_UTIL, NULL);
7522}
7523#endif /* CONFIG_SMP */
7524
7525/**
7526 * find_process_by_pid - find a process with a matching PID value.
7527 * @pid: the pid in question.
7528 *
7529 * The task of @pid, if found. %NULL otherwise.
7530 */
7531static struct task_struct *find_process_by_pid(pid_t pid)
7532{
7533 return pid ? find_task_by_vpid(nr: pid) : current;
7534}
7535
7536static struct task_struct *find_get_task(pid_t pid)
7537{
7538 struct task_struct *p;
7539 guard(rcu)();
7540
7541 p = find_process_by_pid(pid);
7542 if (likely(p))
7543 get_task_struct(t: p);
7544
7545 return p;
7546}
7547
7548DEFINE_CLASS(find_get_task, struct task_struct *, if (_T) put_task_struct(_T),
7549 find_get_task(pid), pid_t pid)
7550
7551/*
7552 * sched_setparam() passes in -1 for its policy, to let the functions
7553 * it calls know not to change it.
7554 */
7555#define SETPARAM_POLICY -1
7556
7557static void __setscheduler_params(struct task_struct *p,
7558 const struct sched_attr *attr)
7559{
7560 int policy = attr->sched_policy;
7561
7562 if (policy == SETPARAM_POLICY)
7563 policy = p->policy;
7564
7565 p->policy = policy;
7566
7567 if (dl_policy(policy))
7568 __setparam_dl(p, attr);
7569 else if (fair_policy(policy))
7570 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
7571
7572 /*
7573 * __sched_setscheduler() ensures attr->sched_priority == 0 when
7574 * !rt_policy. Always setting this ensures that things like
7575 * getparam()/getattr() don't report silly values for !rt tasks.
7576 */
7577 p->rt_priority = attr->sched_priority;
7578 p->normal_prio = normal_prio(p);
7579 set_load_weight(p, update_load: true);
7580}
7581
7582/*
7583 * Check the target process has a UID that matches the current process's:
7584 */
7585static bool check_same_owner(struct task_struct *p)
7586{
7587 const struct cred *cred = current_cred(), *pcred;
7588 guard(rcu)();
7589
7590 pcred = __task_cred(p);
7591 return (uid_eq(left: cred->euid, right: pcred->euid) ||
7592 uid_eq(left: cred->euid, right: pcred->uid));
7593}
7594
7595/*
7596 * Allow unprivileged RT tasks to decrease priority.
7597 * Only issue a capable test if needed and only once to avoid an audit
7598 * event on permitted non-privileged operations:
7599 */
7600static int user_check_sched_setscheduler(struct task_struct *p,
7601 const struct sched_attr *attr,
7602 int policy, int reset_on_fork)
7603{
7604 if (fair_policy(policy)) {
7605 if (attr->sched_nice < task_nice(p) &&
7606 !is_nice_reduction(p, nice: attr->sched_nice))
7607 goto req_priv;
7608 }
7609
7610 if (rt_policy(policy)) {
7611 unsigned long rlim_rtprio = task_rlimit(task: p, RLIMIT_RTPRIO);
7612
7613 /* Can't set/change the rt policy: */
7614 if (policy != p->policy && !rlim_rtprio)
7615 goto req_priv;
7616
7617 /* Can't increase priority: */
7618 if (attr->sched_priority > p->rt_priority &&
7619 attr->sched_priority > rlim_rtprio)
7620 goto req_priv;
7621 }
7622
7623 /*
7624 * Can't set/change SCHED_DEADLINE policy at all for now
7625 * (safest behavior); in the future we would like to allow
7626 * unprivileged DL tasks to increase their relative deadline
7627 * or reduce their runtime (both ways reducing utilization)
7628 */
7629 if (dl_policy(policy))
7630 goto req_priv;
7631
7632 /*
7633 * Treat SCHED_IDLE as nice 20. Only allow a switch to
7634 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
7635 */
7636 if (task_has_idle_policy(p) && !idle_policy(policy)) {
7637 if (!is_nice_reduction(p, nice: task_nice(p)))
7638 goto req_priv;
7639 }
7640
7641 /* Can't change other user's priorities: */
7642 if (!check_same_owner(p))
7643 goto req_priv;
7644
7645 /* Normal users shall not reset the sched_reset_on_fork flag: */
7646 if (p->sched_reset_on_fork && !reset_on_fork)
7647 goto req_priv;
7648
7649 return 0;
7650
7651req_priv:
7652 if (!capable(CAP_SYS_NICE))
7653 return -EPERM;
7654
7655 return 0;
7656}
7657
7658static int __sched_setscheduler(struct task_struct *p,
7659 const struct sched_attr *attr,
7660 bool user, bool pi)
7661{
7662 int oldpolicy = -1, policy = attr->sched_policy;
7663 int retval, oldprio, newprio, queued, running;
7664 const struct sched_class *prev_class;
7665 struct balance_callback *head;
7666 struct rq_flags rf;
7667 int reset_on_fork;
7668 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7669 struct rq *rq;
7670 bool cpuset_locked = false;
7671
7672 /* The pi code expects interrupts enabled */
7673 BUG_ON(pi && in_interrupt());
7674recheck:
7675 /* Double check policy once rq lock held: */
7676 if (policy < 0) {
7677 reset_on_fork = p->sched_reset_on_fork;
7678 policy = oldpolicy = p->policy;
7679 } else {
7680 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
7681
7682 if (!valid_policy(policy))
7683 return -EINVAL;
7684 }
7685
7686 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
7687 return -EINVAL;
7688
7689 /*
7690 * Valid priorities for SCHED_FIFO and SCHED_RR are
7691 * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL,
7692 * SCHED_BATCH and SCHED_IDLE is 0.
7693 */
7694 if (attr->sched_priority > MAX_RT_PRIO-1)
7695 return -EINVAL;
7696 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
7697 (rt_policy(policy) != (attr->sched_priority != 0)))
7698 return -EINVAL;
7699
7700 if (user) {
7701 retval = user_check_sched_setscheduler(p, attr, policy, reset_on_fork);
7702 if (retval)
7703 return retval;
7704
7705 if (attr->sched_flags & SCHED_FLAG_SUGOV)
7706 return -EINVAL;
7707
7708 retval = security_task_setscheduler(p);
7709 if (retval)
7710 return retval;
7711 }
7712
7713 /* Update task specific "requested" clamps */
7714 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
7715 retval = uclamp_validate(p, attr);
7716 if (retval)
7717 return retval;
7718 }
7719
7720 /*
7721 * SCHED_DEADLINE bandwidth accounting relies on stable cpusets
7722 * information.
7723 */
7724 if (dl_policy(policy) || dl_policy(policy: p->policy)) {
7725 cpuset_locked = true;
7726 cpuset_lock();
7727 }
7728
7729 /*
7730 * Make sure no PI-waiters arrive (or leave) while we are
7731 * changing the priority of the task:
7732 *
7733 * To be able to change p->policy safely, the appropriate
7734 * runqueue lock must be held.
7735 */
7736 rq = task_rq_lock(p, rf: &rf);
7737 update_rq_clock(rq);
7738
7739 /*
7740 * Changing the policy of the stop threads its a very bad idea:
7741 */
7742 if (p == rq->stop) {
7743 retval = -EINVAL;
7744 goto unlock;
7745 }
7746
7747 /*
7748 * If not changing anything there's no need to proceed further,
7749 * but store a possible modification of reset_on_fork.
7750 */
7751 if (unlikely(policy == p->policy)) {
7752 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
7753 goto change;
7754 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
7755 goto change;
7756 if (dl_policy(policy) && dl_param_changed(p, attr))
7757 goto change;
7758 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
7759 goto change;
7760
7761 p->sched_reset_on_fork = reset_on_fork;
7762 retval = 0;
7763 goto unlock;
7764 }
7765change:
7766
7767 if (user) {
7768#ifdef CONFIG_RT_GROUP_SCHED
7769 /*
7770 * Do not allow realtime tasks into groups that have no runtime
7771 * assigned.
7772 */
7773 if (rt_bandwidth_enabled() && rt_policy(policy) &&
7774 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
7775 !task_group_is_autogroup(tg: task_group(p))) {
7776 retval = -EPERM;
7777 goto unlock;
7778 }
7779#endif
7780#ifdef CONFIG_SMP
7781 if (dl_bandwidth_enabled() && dl_policy(policy) &&
7782 !(attr->sched_flags & SCHED_FLAG_SUGOV)) {
7783 cpumask_t *span = rq->rd->span;
7784
7785 /*
7786 * Don't allow tasks with an affinity mask smaller than
7787 * the entire root_domain to become SCHED_DEADLINE. We
7788 * will also fail if there's no bandwidth available.
7789 */
7790 if (!cpumask_subset(src1p: span, src2p: p->cpus_ptr) ||
7791 rq->rd->dl_bw.bw == 0) {
7792 retval = -EPERM;
7793 goto unlock;
7794 }
7795 }
7796#endif
7797 }
7798
7799 /* Re-check policy now with rq lock held: */
7800 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
7801 policy = oldpolicy = -1;
7802 task_rq_unlock(rq, p, rf: &rf);
7803 if (cpuset_locked)
7804 cpuset_unlock();
7805 goto recheck;
7806 }
7807
7808 /*
7809 * If setscheduling to SCHED_DEADLINE (or changing the parameters
7810 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
7811 * is available.
7812 */
7813 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
7814 retval = -EBUSY;
7815 goto unlock;
7816 }
7817
7818 p->sched_reset_on_fork = reset_on_fork;
7819 oldprio = p->prio;
7820
7821 newprio = __normal_prio(policy, rt_prio: attr->sched_priority, nice: attr->sched_nice);
7822 if (pi) {
7823 /*
7824 * Take priority boosted tasks into account. If the new
7825 * effective priority is unchanged, we just store the new
7826 * normal parameters and do not touch the scheduler class and
7827 * the runqueue. This will be done when the task deboost
7828 * itself.
7829 */
7830 newprio = rt_effective_prio(p, prio: newprio);
7831 if (newprio == oldprio)
7832 queue_flags &= ~DEQUEUE_MOVE;
7833 }
7834
7835 queued = task_on_rq_queued(p);
7836 running = task_current(rq, p);
7837 if (queued)
7838 dequeue_task(rq, p, flags: queue_flags);
7839 if (running)
7840 put_prev_task(rq, prev: p);
7841
7842 prev_class = p->sched_class;
7843
7844 if (!(attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)) {
7845 __setscheduler_params(p, attr);
7846 __setscheduler_prio(p, prio: newprio);
7847 }
7848 __setscheduler_uclamp(p, attr);
7849
7850 if (queued) {
7851 /*
7852 * We enqueue to tail when the priority of a task is
7853 * increased (user space view).
7854 */
7855 if (oldprio < p->prio)
7856 queue_flags |= ENQUEUE_HEAD;
7857
7858 enqueue_task(rq, p, flags: queue_flags);
7859 }
7860 if (running)
7861 set_next_task(rq, next: p);
7862
7863 check_class_changed(rq, p, prev_class, oldprio);
7864
7865 /* Avoid rq from going away on us: */
7866 preempt_disable();
7867 head = splice_balance_callbacks(rq);
7868 task_rq_unlock(rq, p, rf: &rf);
7869
7870 if (pi) {
7871 if (cpuset_locked)
7872 cpuset_unlock();
7873 rt_mutex_adjust_pi(p);
7874 }
7875
7876 /* Run balance callbacks after we've adjusted the PI chain: */
7877 balance_callbacks(rq, head);
7878 preempt_enable();
7879
7880 return 0;
7881
7882unlock:
7883 task_rq_unlock(rq, p, rf: &rf);
7884 if (cpuset_locked)
7885 cpuset_unlock();
7886 return retval;
7887}
7888
7889static int _sched_setscheduler(struct task_struct *p, int policy,
7890 const struct sched_param *param, bool check)
7891{
7892 struct sched_attr attr = {
7893 .sched_policy = policy,
7894 .sched_priority = param->sched_priority,
7895 .sched_nice = PRIO_TO_NICE(p->static_prio),
7896 };
7897
7898 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
7899 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7900 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
7901 policy &= ~SCHED_RESET_ON_FORK;
7902 attr.sched_policy = policy;
7903 }
7904
7905 return __sched_setscheduler(p, attr: &attr, user: check, pi: true);
7906}
7907/**
7908 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
7909 * @p: the task in question.
7910 * @policy: new policy.
7911 * @param: structure containing the new RT priority.
7912 *
7913 * Use sched_set_fifo(), read its comment.
7914 *
7915 * Return: 0 on success. An error code otherwise.
7916 *
7917 * NOTE that the task may be already dead.
7918 */
7919int sched_setscheduler(struct task_struct *p, int policy,
7920 const struct sched_param *param)
7921{
7922 return _sched_setscheduler(p, policy, param, check: true);
7923}
7924
7925int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
7926{
7927 return __sched_setscheduler(p, attr, user: true, pi: true);
7928}
7929
7930int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
7931{
7932 return __sched_setscheduler(p, attr, user: false, pi: true);
7933}
7934EXPORT_SYMBOL_GPL(sched_setattr_nocheck);
7935
7936/**
7937 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
7938 * @p: the task in question.
7939 * @policy: new policy.
7940 * @param: structure containing the new RT priority.
7941 *
7942 * Just like sched_setscheduler, only don't bother checking if the
7943 * current context has permission. For example, this is needed in
7944 * stop_machine(): we create temporary high priority worker threads,
7945 * but our caller might not have that capability.
7946 *
7947 * Return: 0 on success. An error code otherwise.
7948 */
7949int sched_setscheduler_nocheck(struct task_struct *p, int policy,
7950 const struct sched_param *param)
7951{
7952 return _sched_setscheduler(p, policy, param, check: false);
7953}
7954
7955/*
7956 * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally
7957 * incapable of resource management, which is the one thing an OS really should
7958 * be doing.
7959 *
7960 * This is of course the reason it is limited to privileged users only.
7961 *
7962 * Worse still; it is fundamentally impossible to compose static priority
7963 * workloads. You cannot take two correctly working static prio workloads
7964 * and smash them together and still expect them to work.
7965 *
7966 * For this reason 'all' FIFO tasks the kernel creates are basically at:
7967 *
7968 * MAX_RT_PRIO / 2
7969 *
7970 * The administrator _MUST_ configure the system, the kernel simply doesn't
7971 * know enough information to make a sensible choice.
7972 */
7973void sched_set_fifo(struct task_struct *p)
7974{
7975 struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 };
7976 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
7977}
7978EXPORT_SYMBOL_GPL(sched_set_fifo);
7979
7980/*
7981 * For when you don't much care about FIFO, but want to be above SCHED_NORMAL.
7982 */
7983void sched_set_fifo_low(struct task_struct *p)
7984{
7985 struct sched_param sp = { .sched_priority = 1 };
7986 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
7987}
7988EXPORT_SYMBOL_GPL(sched_set_fifo_low);
7989
7990void sched_set_normal(struct task_struct *p, int nice)
7991{
7992 struct sched_attr attr = {
7993 .sched_policy = SCHED_NORMAL,
7994 .sched_nice = nice,
7995 };
7996 WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0);
7997}
7998EXPORT_SYMBOL_GPL(sched_set_normal);
7999
8000static int
8001do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
8002{
8003 struct sched_param lparam;
8004
8005 if (!param || pid < 0)
8006 return -EINVAL;
8007 if (copy_from_user(to: &lparam, from: param, n: sizeof(struct sched_param)))
8008 return -EFAULT;
8009
8010 CLASS(find_get_task, p)(pid);
8011 if (!p)
8012 return -ESRCH;
8013
8014 return sched_setscheduler(p, policy, param: &lparam);
8015}
8016
8017/*
8018 * Mimics kernel/events/core.c perf_copy_attr().
8019 */
8020static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
8021{
8022 u32 size;
8023 int ret;
8024
8025 /* Zero the full structure, so that a short copy will be nice: */
8026 memset(attr, 0, sizeof(*attr));
8027
8028 ret = get_user(size, &uattr->size);
8029 if (ret)
8030 return ret;
8031
8032 /* ABI compatibility quirk: */
8033 if (!size)
8034 size = SCHED_ATTR_SIZE_VER0;
8035 if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
8036 goto err_size;
8037
8038 ret = copy_struct_from_user(dst: attr, ksize: sizeof(*attr), src: uattr, usize: size);
8039 if (ret) {
8040 if (ret == -E2BIG)
8041 goto err_size;
8042 return ret;
8043 }
8044
8045 if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
8046 size < SCHED_ATTR_SIZE_VER1)
8047 return -EINVAL;
8048
8049 /*
8050 * XXX: Do we want to be lenient like existing syscalls; or do we want
8051 * to be strict and return an error on out-of-bounds values?
8052 */
8053 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
8054
8055 return 0;
8056
8057err_size:
8058 put_user(sizeof(*attr), &uattr->size);
8059 return -E2BIG;
8060}
8061
8062static void get_params(struct task_struct *p, struct sched_attr *attr)
8063{
8064 if (task_has_dl_policy(p))
8065 __getparam_dl(p, attr);
8066 else if (task_has_rt_policy(p))
8067 attr->sched_priority = p->rt_priority;
8068 else
8069 attr->sched_nice = task_nice(p);
8070}
8071
8072/**
8073 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
8074 * @pid: the pid in question.
8075 * @policy: new policy.
8076 * @param: structure containing the new RT priority.
8077 *
8078 * Return: 0 on success. An error code otherwise.
8079 */
8080SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
8081{
8082 if (policy < 0)
8083 return -EINVAL;
8084
8085 return do_sched_setscheduler(pid, policy, param);
8086}
8087
8088/**
8089 * sys_sched_setparam - set/change the RT priority of a thread
8090 * @pid: the pid in question.
8091 * @param: structure containing the new RT priority.
8092 *
8093 * Return: 0 on success. An error code otherwise.
8094 */
8095SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
8096{
8097 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
8098}
8099
8100/**
8101 * sys_sched_setattr - same as above, but with extended sched_attr
8102 * @pid: the pid in question.
8103 * @uattr: structure containing the extended parameters.
8104 * @flags: for future extension.
8105 */
8106SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
8107 unsigned int, flags)
8108{
8109 struct sched_attr attr;
8110 int retval;
8111
8112 if (!uattr || pid < 0 || flags)
8113 return -EINVAL;
8114
8115 retval = sched_copy_attr(uattr, attr: &attr);
8116 if (retval)
8117 return retval;
8118
8119 if ((int)attr.sched_policy < 0)
8120 return -EINVAL;
8121 if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
8122 attr.sched_policy = SETPARAM_POLICY;
8123
8124 CLASS(find_get_task, p)(pid);
8125 if (!p)
8126 return -ESRCH;
8127
8128 if (attr.sched_flags & SCHED_FLAG_KEEP_PARAMS)
8129 get_params(p, attr: &attr);
8130
8131 return sched_setattr(p, attr: &attr);
8132}
8133
8134/**
8135 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
8136 * @pid: the pid in question.
8137 *
8138 * Return: On success, the policy of the thread. Otherwise, a negative error
8139 * code.
8140 */
8141SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
8142{
8143 struct task_struct *p;
8144 int retval;
8145
8146 if (pid < 0)
8147 return -EINVAL;
8148
8149 guard(rcu)();
8150 p = find_process_by_pid(pid);
8151 if (!p)
8152 return -ESRCH;
8153
8154 retval = security_task_getscheduler(p);
8155 if (!retval) {
8156 retval = p->policy;
8157 if (p->sched_reset_on_fork)
8158 retval |= SCHED_RESET_ON_FORK;
8159 }
8160 return retval;
8161}
8162
8163/**
8164 * sys_sched_getparam - get the RT priority of a thread
8165 * @pid: the pid in question.
8166 * @param: structure containing the RT priority.
8167 *
8168 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
8169 * code.
8170 */
8171SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
8172{
8173 struct sched_param lp = { .sched_priority = 0 };
8174 struct task_struct *p;
8175 int retval;
8176
8177 if (!param || pid < 0)
8178 return -EINVAL;
8179
8180 scoped_guard (rcu) {
8181 p = find_process_by_pid(pid);
8182 if (!p)
8183 return -ESRCH;
8184
8185 retval = security_task_getscheduler(p);
8186 if (retval)
8187 return retval;
8188
8189 if (task_has_rt_policy(p))
8190 lp.sched_priority = p->rt_priority;
8191 }
8192
8193 /*
8194 * This one might sleep, we cannot do it with a spinlock held ...
8195 */
8196 return copy_to_user(to: param, from: &lp, n: sizeof(*param)) ? -EFAULT : 0;
8197}
8198
8199/*
8200 * Copy the kernel size attribute structure (which might be larger
8201 * than what user-space knows about) to user-space.
8202 *
8203 * Note that all cases are valid: user-space buffer can be larger or
8204 * smaller than the kernel-space buffer. The usual case is that both
8205 * have the same size.
8206 */
8207static int
8208sched_attr_copy_to_user(struct sched_attr __user *uattr,
8209 struct sched_attr *kattr,
8210 unsigned int usize)
8211{
8212 unsigned int ksize = sizeof(*kattr);
8213
8214 if (!access_ok(uattr, usize))
8215 return -EFAULT;
8216
8217 /*
8218 * sched_getattr() ABI forwards and backwards compatibility:
8219 *
8220 * If usize == ksize then we just copy everything to user-space and all is good.
8221 *
8222 * If usize < ksize then we only copy as much as user-space has space for,
8223 * this keeps ABI compatibility as well. We skip the rest.
8224 *
8225 * If usize > ksize then user-space is using a newer version of the ABI,
8226 * which part the kernel doesn't know about. Just ignore it - tooling can
8227 * detect the kernel's knowledge of attributes from the attr->size value
8228 * which is set to ksize in this case.
8229 */
8230 kattr->size = min(usize, ksize);
8231
8232 if (copy_to_user(to: uattr, from: kattr, n: kattr->size))
8233 return -EFAULT;
8234
8235 return 0;
8236}
8237
8238/**
8239 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
8240 * @pid: the pid in question.
8241 * @uattr: structure containing the extended parameters.
8242 * @usize: sizeof(attr) for fwd/bwd comp.
8243 * @flags: for future extension.
8244 */
8245SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
8246 unsigned int, usize, unsigned int, flags)
8247{
8248 struct sched_attr kattr = { };
8249 struct task_struct *p;
8250 int retval;
8251
8252 if (!uattr || pid < 0 || usize > PAGE_SIZE ||
8253 usize < SCHED_ATTR_SIZE_VER0 || flags)
8254 return -EINVAL;
8255
8256 scoped_guard (rcu) {
8257 p = find_process_by_pid(pid);
8258 if (!p)
8259 return -ESRCH;
8260
8261 retval = security_task_getscheduler(p);
8262 if (retval)
8263 return retval;
8264
8265 kattr.sched_policy = p->policy;
8266 if (p->sched_reset_on_fork)
8267 kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
8268 get_params(p, attr: &kattr);
8269 kattr.sched_flags &= SCHED_FLAG_ALL;
8270
8271#ifdef CONFIG_UCLAMP_TASK
8272 /*
8273 * This could race with another potential updater, but this is fine
8274 * because it'll correctly read the old or the new value. We don't need
8275 * to guarantee who wins the race as long as it doesn't return garbage.
8276 */
8277 kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
8278 kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
8279#endif
8280 }
8281
8282 return sched_attr_copy_to_user(uattr, kattr: &kattr, usize);
8283}
8284
8285#ifdef CONFIG_SMP
8286int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
8287{
8288 /*
8289 * If the task isn't a deadline task or admission control is
8290 * disabled then we don't care about affinity changes.
8291 */
8292 if (!task_has_dl_policy(p) || !dl_bandwidth_enabled())
8293 return 0;
8294
8295 /*
8296 * Since bandwidth control happens on root_domain basis,
8297 * if admission test is enabled, we only admit -deadline
8298 * tasks allowed to run on all the CPUs in the task's
8299 * root_domain.
8300 */
8301 guard(rcu)();
8302 if (!cpumask_subset(task_rq(p)->rd->span, src2p: mask))
8303 return -EBUSY;
8304
8305 return 0;
8306}
8307#endif
8308
8309static int
8310__sched_setaffinity(struct task_struct *p, struct affinity_context *ctx)
8311{
8312 int retval;
8313 cpumask_var_t cpus_allowed, new_mask;
8314
8315 if (!alloc_cpumask_var(mask: &cpus_allowed, GFP_KERNEL))
8316 return -ENOMEM;
8317
8318 if (!alloc_cpumask_var(mask: &new_mask, GFP_KERNEL)) {
8319 retval = -ENOMEM;
8320 goto out_free_cpus_allowed;
8321 }
8322
8323 cpuset_cpus_allowed(p, mask: cpus_allowed);
8324 cpumask_and(dstp: new_mask, src1p: ctx->new_mask, src2p: cpus_allowed);
8325
8326 ctx->new_mask = new_mask;
8327 ctx->flags |= SCA_CHECK;
8328
8329 retval = dl_task_check_affinity(p, mask: new_mask);
8330 if (retval)
8331 goto out_free_new_mask;
8332
8333 retval = __set_cpus_allowed_ptr(p, ctx);
8334 if (retval)
8335 goto out_free_new_mask;
8336
8337 cpuset_cpus_allowed(p, mask: cpus_allowed);
8338 if (!cpumask_subset(src1p: new_mask, src2p: cpus_allowed)) {
8339 /*
8340 * We must have raced with a concurrent cpuset update.
8341 * Just reset the cpumask to the cpuset's cpus_allowed.
8342 */
8343 cpumask_copy(dstp: new_mask, srcp: cpus_allowed);
8344
8345 /*
8346 * If SCA_USER is set, a 2nd call to __set_cpus_allowed_ptr()
8347 * will restore the previous user_cpus_ptr value.
8348 *
8349 * In the unlikely event a previous user_cpus_ptr exists,
8350 * we need to further restrict the mask to what is allowed
8351 * by that old user_cpus_ptr.
8352 */
8353 if (unlikely((ctx->flags & SCA_USER) && ctx->user_mask)) {
8354 bool empty = !cpumask_and(dstp: new_mask, src1p: new_mask,
8355 src2p: ctx->user_mask);
8356
8357 if (WARN_ON_ONCE(empty))
8358 cpumask_copy(dstp: new_mask, srcp: cpus_allowed);
8359 }
8360 __set_cpus_allowed_ptr(p, ctx);
8361 retval = -EINVAL;
8362 }
8363
8364out_free_new_mask:
8365 free_cpumask_var(mask: new_mask);
8366out_free_cpus_allowed:
8367 free_cpumask_var(mask: cpus_allowed);
8368 return retval;
8369}
8370
8371long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
8372{
8373 struct affinity_context ac;
8374 struct cpumask *user_mask;
8375 int retval;
8376
8377 CLASS(find_get_task, p)(pid);
8378 if (!p)
8379 return -ESRCH;
8380
8381 if (p->flags & PF_NO_SETAFFINITY)
8382 return -EINVAL;
8383
8384 if (!check_same_owner(p)) {
8385 guard(rcu)();
8386 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE))
8387 return -EPERM;
8388 }
8389
8390 retval = security_task_setscheduler(p);
8391 if (retval)
8392 return retval;
8393
8394 /*
8395 * With non-SMP configs, user_cpus_ptr/user_mask isn't used and
8396 * alloc_user_cpus_ptr() returns NULL.
8397 */
8398 user_mask = alloc_user_cpus_ptr(NUMA_NO_NODE);
8399 if (user_mask) {
8400 cpumask_copy(dstp: user_mask, srcp: in_mask);
8401 } else if (IS_ENABLED(CONFIG_SMP)) {
8402 return -ENOMEM;
8403 }
8404
8405 ac = (struct affinity_context){
8406 .new_mask = in_mask,
8407 .user_mask = user_mask,
8408 .flags = SCA_USER,
8409 };
8410
8411 retval = __sched_setaffinity(p, ctx: &ac);
8412 kfree(objp: ac.user_mask);
8413
8414 return retval;
8415}
8416
8417static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
8418 struct cpumask *new_mask)
8419{
8420 if (len < cpumask_size())
8421 cpumask_clear(dstp: new_mask);
8422 else if (len > cpumask_size())
8423 len = cpumask_size();
8424
8425 return copy_from_user(to: new_mask, from: user_mask_ptr, n: len) ? -EFAULT : 0;
8426}
8427
8428/**
8429 * sys_sched_setaffinity - set the CPU affinity of a process
8430 * @pid: pid of the process
8431 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
8432 * @user_mask_ptr: user-space pointer to the new CPU mask
8433 *
8434 * Return: 0 on success. An error code otherwise.
8435 */
8436SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
8437 unsigned long __user *, user_mask_ptr)
8438{
8439 cpumask_var_t new_mask;
8440 int retval;
8441
8442 if (!alloc_cpumask_var(mask: &new_mask, GFP_KERNEL))
8443 return -ENOMEM;
8444
8445 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
8446 if (retval == 0)
8447 retval = sched_setaffinity(pid, in_mask: new_mask);
8448 free_cpumask_var(mask: new_mask);
8449 return retval;
8450}
8451
8452long sched_getaffinity(pid_t pid, struct cpumask *mask)
8453{
8454 struct task_struct *p;
8455 int retval;
8456
8457 guard(rcu)();
8458 p = find_process_by_pid(pid);
8459 if (!p)
8460 return -ESRCH;
8461
8462 retval = security_task_getscheduler(p);
8463 if (retval)
8464 return retval;
8465
8466 guard(raw_spinlock_irqsave)(l: &p->pi_lock);
8467 cpumask_and(dstp: mask, src1p: &p->cpus_mask, cpu_active_mask);
8468
8469 return 0;
8470}
8471
8472/**
8473 * sys_sched_getaffinity - get the CPU affinity of a process
8474 * @pid: pid of the process
8475 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
8476 * @user_mask_ptr: user-space pointer to hold the current CPU mask
8477 *
8478 * Return: size of CPU mask copied to user_mask_ptr on success. An
8479 * error code otherwise.
8480 */
8481SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
8482 unsigned long __user *, user_mask_ptr)
8483{
8484 int ret;
8485 cpumask_var_t mask;
8486
8487 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
8488 return -EINVAL;
8489 if (len & (sizeof(unsigned long)-1))
8490 return -EINVAL;
8491
8492 if (!zalloc_cpumask_var(mask: &mask, GFP_KERNEL))
8493 return -ENOMEM;
8494
8495 ret = sched_getaffinity(pid, mask);
8496 if (ret == 0) {
8497 unsigned int retlen = min(len, cpumask_size());
8498
8499 if (copy_to_user(to: user_mask_ptr, cpumask_bits(mask), n: retlen))
8500 ret = -EFAULT;
8501 else
8502 ret = retlen;
8503 }
8504 free_cpumask_var(mask);
8505
8506 return ret;
8507}
8508
8509static void do_sched_yield(void)
8510{
8511 struct rq_flags rf;
8512 struct rq *rq;
8513
8514 rq = this_rq_lock_irq(rf: &rf);
8515
8516 schedstat_inc(rq->yld_count);
8517 current->sched_class->yield_task(rq);
8518
8519 preempt_disable();
8520 rq_unlock_irq(rq, rf: &rf);
8521 sched_preempt_enable_no_resched();
8522
8523 schedule();
8524}
8525
8526/**
8527 * sys_sched_yield - yield the current processor to other threads.
8528 *
8529 * This function yields the current CPU to other tasks. If there are no
8530 * other threads running on this CPU then this function will return.
8531 *
8532 * Return: 0.
8533 */
8534SYSCALL_DEFINE0(sched_yield)
8535{
8536 do_sched_yield();
8537 return 0;
8538}
8539
8540#if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
8541int __sched __cond_resched(void)
8542{
8543 if (should_resched(preempt_offset: 0)) {
8544 preempt_schedule_common();
8545 return 1;
8546 }
8547 /*
8548 * In preemptible kernels, ->rcu_read_lock_nesting tells the tick
8549 * whether the current CPU is in an RCU read-side critical section,
8550 * so the tick can report quiescent states even for CPUs looping
8551 * in kernel context. In contrast, in non-preemptible kernels,
8552 * RCU readers leave no in-memory hints, which means that CPU-bound
8553 * processes executing in kernel context might never report an
8554 * RCU quiescent state. Therefore, the following code causes
8555 * cond_resched() to report a quiescent state, but only when RCU
8556 * is in urgent need of one.
8557 */
8558#ifndef CONFIG_PREEMPT_RCU
8559 rcu_all_qs();
8560#endif
8561 return 0;
8562}
8563EXPORT_SYMBOL(__cond_resched);
8564#endif
8565
8566#ifdef CONFIG_PREEMPT_DYNAMIC
8567#if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
8568#define cond_resched_dynamic_enabled __cond_resched
8569#define cond_resched_dynamic_disabled ((void *)&__static_call_return0)
8570DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched);
8571EXPORT_STATIC_CALL_TRAMP(cond_resched);
8572
8573#define might_resched_dynamic_enabled __cond_resched
8574#define might_resched_dynamic_disabled ((void *)&__static_call_return0)
8575DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched);
8576EXPORT_STATIC_CALL_TRAMP(might_resched);
8577#elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
8578static DEFINE_STATIC_KEY_FALSE(sk_dynamic_cond_resched);
8579int __sched dynamic_cond_resched(void)
8580{
8581 klp_sched_try_switch();
8582 if (!static_branch_unlikely(&sk_dynamic_cond_resched))
8583 return 0;
8584 return __cond_resched();
8585}
8586EXPORT_SYMBOL(dynamic_cond_resched);
8587
8588static DEFINE_STATIC_KEY_FALSE(sk_dynamic_might_resched);
8589int __sched dynamic_might_resched(void)
8590{
8591 if (!static_branch_unlikely(&sk_dynamic_might_resched))
8592 return 0;
8593 return __cond_resched();
8594}
8595EXPORT_SYMBOL(dynamic_might_resched);
8596#endif
8597#endif
8598
8599/*
8600 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
8601 * call schedule, and on return reacquire the lock.
8602 *
8603 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
8604 * operations here to prevent schedule() from being called twice (once via
8605 * spin_unlock(), once by hand).
8606 */
8607int __cond_resched_lock(spinlock_t *lock)
8608{
8609 int resched = should_resched(PREEMPT_LOCK_OFFSET);
8610 int ret = 0;
8611
8612 lockdep_assert_held(lock);
8613
8614 if (spin_needbreak(lock) || resched) {
8615 spin_unlock(lock);
8616 if (!_cond_resched())
8617 cpu_relax();
8618 ret = 1;
8619 spin_lock(lock);
8620 }
8621 return ret;
8622}
8623EXPORT_SYMBOL(__cond_resched_lock);
8624
8625int __cond_resched_rwlock_read(rwlock_t *lock)
8626{
8627 int resched = should_resched(PREEMPT_LOCK_OFFSET);
8628 int ret = 0;
8629
8630 lockdep_assert_held_read(lock);
8631
8632 if (rwlock_needbreak(lock) || resched) {
8633 read_unlock(lock);
8634 if (!_cond_resched())
8635 cpu_relax();
8636 ret = 1;
8637 read_lock(lock);
8638 }
8639 return ret;
8640}
8641EXPORT_SYMBOL(__cond_resched_rwlock_read);
8642
8643int __cond_resched_rwlock_write(rwlock_t *lock)
8644{
8645 int resched = should_resched(PREEMPT_LOCK_OFFSET);
8646 int ret = 0;
8647
8648 lockdep_assert_held_write(lock);
8649
8650 if (rwlock_needbreak(lock) || resched) {
8651 write_unlock(lock);
8652 if (!_cond_resched())
8653 cpu_relax();
8654 ret = 1;
8655 write_lock(lock);
8656 }
8657 return ret;
8658}
8659EXPORT_SYMBOL(__cond_resched_rwlock_write);
8660
8661#ifdef CONFIG_PREEMPT_DYNAMIC
8662
8663#ifdef CONFIG_GENERIC_ENTRY
8664#include <linux/entry-common.h>
8665#endif
8666
8667/*
8668 * SC:cond_resched
8669 * SC:might_resched
8670 * SC:preempt_schedule
8671 * SC:preempt_schedule_notrace
8672 * SC:irqentry_exit_cond_resched
8673 *
8674 *
8675 * NONE:
8676 * cond_resched <- __cond_resched
8677 * might_resched <- RET0
8678 * preempt_schedule <- NOP
8679 * preempt_schedule_notrace <- NOP
8680 * irqentry_exit_cond_resched <- NOP
8681 *
8682 * VOLUNTARY:
8683 * cond_resched <- __cond_resched
8684 * might_resched <- __cond_resched
8685 * preempt_schedule <- NOP
8686 * preempt_schedule_notrace <- NOP
8687 * irqentry_exit_cond_resched <- NOP
8688 *
8689 * FULL:
8690 * cond_resched <- RET0
8691 * might_resched <- RET0
8692 * preempt_schedule <- preempt_schedule
8693 * preempt_schedule_notrace <- preempt_schedule_notrace
8694 * irqentry_exit_cond_resched <- irqentry_exit_cond_resched
8695 */
8696
8697enum {
8698 preempt_dynamic_undefined = -1,
8699 preempt_dynamic_none,
8700 preempt_dynamic_voluntary,
8701 preempt_dynamic_full,
8702};
8703
8704int preempt_dynamic_mode = preempt_dynamic_undefined;
8705
8706int sched_dynamic_mode(const char *str)
8707{
8708 if (!strcmp(str, "none"))
8709 return preempt_dynamic_none;
8710
8711 if (!strcmp(str, "voluntary"))
8712 return preempt_dynamic_voluntary;
8713
8714 if (!strcmp(str, "full"))
8715 return preempt_dynamic_full;
8716
8717 return -EINVAL;
8718}
8719
8720#if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
8721#define preempt_dynamic_enable(f) static_call_update(f, f##_dynamic_enabled)
8722#define preempt_dynamic_disable(f) static_call_update(f, f##_dynamic_disabled)
8723#elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
8724#define preempt_dynamic_enable(f) static_key_enable(&sk_dynamic_##f.key)
8725#define preempt_dynamic_disable(f) static_key_disable(&sk_dynamic_##f.key)
8726#else
8727#error "Unsupported PREEMPT_DYNAMIC mechanism"
8728#endif
8729
8730static DEFINE_MUTEX(sched_dynamic_mutex);
8731static bool klp_override;
8732
8733static void __sched_dynamic_update(int mode)
8734{
8735 /*
8736 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in
8737 * the ZERO state, which is invalid.
8738 */
8739 if (!klp_override)
8740 preempt_dynamic_enable(cond_resched);
8741 preempt_dynamic_enable(might_resched);
8742 preempt_dynamic_enable(preempt_schedule);
8743 preempt_dynamic_enable(preempt_schedule_notrace);
8744 preempt_dynamic_enable(irqentry_exit_cond_resched);
8745
8746 switch (mode) {
8747 case preempt_dynamic_none:
8748 if (!klp_override)
8749 preempt_dynamic_enable(cond_resched);
8750 preempt_dynamic_disable(might_resched);
8751 preempt_dynamic_disable(preempt_schedule);
8752 preempt_dynamic_disable(preempt_schedule_notrace);
8753 preempt_dynamic_disable(irqentry_exit_cond_resched);
8754 if (mode != preempt_dynamic_mode)
8755 pr_info("Dynamic Preempt: none\n");
8756 break;
8757
8758 case preempt_dynamic_voluntary:
8759 if (!klp_override)
8760 preempt_dynamic_enable(cond_resched);
8761 preempt_dynamic_enable(might_resched);
8762 preempt_dynamic_disable(preempt_schedule);
8763 preempt_dynamic_disable(preempt_schedule_notrace);
8764 preempt_dynamic_disable(irqentry_exit_cond_resched);
8765 if (mode != preempt_dynamic_mode)
8766 pr_info("Dynamic Preempt: voluntary\n");
8767 break;
8768
8769 case preempt_dynamic_full:
8770 if (!klp_override)
8771 preempt_dynamic_disable(cond_resched);
8772 preempt_dynamic_disable(might_resched);
8773 preempt_dynamic_enable(preempt_schedule);
8774 preempt_dynamic_enable(preempt_schedule_notrace);
8775 preempt_dynamic_enable(irqentry_exit_cond_resched);
8776 if (mode != preempt_dynamic_mode)
8777 pr_info("Dynamic Preempt: full\n");
8778 break;
8779 }
8780
8781 preempt_dynamic_mode = mode;
8782}
8783
8784void sched_dynamic_update(int mode)
8785{
8786 mutex_lock(&sched_dynamic_mutex);
8787 __sched_dynamic_update(mode);
8788 mutex_unlock(lock: &sched_dynamic_mutex);
8789}
8790
8791#ifdef CONFIG_HAVE_PREEMPT_DYNAMIC_CALL
8792
8793static int klp_cond_resched(void)
8794{
8795 __klp_sched_try_switch();
8796 return __cond_resched();
8797}
8798
8799void sched_dynamic_klp_enable(void)
8800{
8801 mutex_lock(&sched_dynamic_mutex);
8802
8803 klp_override = true;
8804 static_call_update(cond_resched, klp_cond_resched);
8805
8806 mutex_unlock(lock: &sched_dynamic_mutex);
8807}
8808
8809void sched_dynamic_klp_disable(void)
8810{
8811 mutex_lock(&sched_dynamic_mutex);
8812
8813 klp_override = false;
8814 __sched_dynamic_update(mode: preempt_dynamic_mode);
8815
8816 mutex_unlock(lock: &sched_dynamic_mutex);
8817}
8818
8819#endif /* CONFIG_HAVE_PREEMPT_DYNAMIC_CALL */
8820
8821static int __init setup_preempt_mode(char *str)
8822{
8823 int mode = sched_dynamic_mode(str);
8824 if (mode < 0) {
8825 pr_warn("Dynamic Preempt: unsupported mode: %s\n", str);
8826 return 0;
8827 }
8828
8829 sched_dynamic_update(mode);
8830 return 1;
8831}
8832__setup("preempt=", setup_preempt_mode);
8833
8834static void __init preempt_dynamic_init(void)
8835{
8836 if (preempt_dynamic_mode == preempt_dynamic_undefined) {
8837 if (IS_ENABLED(CONFIG_PREEMPT_NONE)) {
8838 sched_dynamic_update(mode: preempt_dynamic_none);
8839 } else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) {
8840 sched_dynamic_update(mode: preempt_dynamic_voluntary);
8841 } else {
8842 /* Default static call setting, nothing to do */
8843 WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT));
8844 preempt_dynamic_mode = preempt_dynamic_full;
8845 pr_info("Dynamic Preempt: full\n");
8846 }
8847 }
8848}
8849
8850#define PREEMPT_MODEL_ACCESSOR(mode) \
8851 bool preempt_model_##mode(void) \
8852 { \
8853 WARN_ON_ONCE(preempt_dynamic_mode == preempt_dynamic_undefined); \
8854 return preempt_dynamic_mode == preempt_dynamic_##mode; \
8855 } \
8856 EXPORT_SYMBOL_GPL(preempt_model_##mode)
8857
8858PREEMPT_MODEL_ACCESSOR(none);
8859PREEMPT_MODEL_ACCESSOR(voluntary);
8860PREEMPT_MODEL_ACCESSOR(full);
8861
8862#else /* !CONFIG_PREEMPT_DYNAMIC */
8863
8864static inline void preempt_dynamic_init(void) { }
8865
8866#endif /* #ifdef CONFIG_PREEMPT_DYNAMIC */
8867
8868/**
8869 * yield - yield the current processor to other threads.
8870 *
8871 * Do not ever use this function, there's a 99% chance you're doing it wrong.
8872 *
8873 * The scheduler is at all times free to pick the calling task as the most
8874 * eligible task to run, if removing the yield() call from your code breaks
8875 * it, it's already broken.
8876 *
8877 * Typical broken usage is:
8878 *
8879 * while (!event)
8880 * yield();
8881 *
8882 * where one assumes that yield() will let 'the other' process run that will
8883 * make event true. If the current task is a SCHED_FIFO task that will never
8884 * happen. Never use yield() as a progress guarantee!!
8885 *
8886 * If you want to use yield() to wait for something, use wait_event().
8887 * If you want to use yield() to be 'nice' for others, use cond_resched().
8888 * If you still want to use yield(), do not!
8889 */
8890void __sched yield(void)
8891{
8892 set_current_state(TASK_RUNNING);
8893 do_sched_yield();
8894}
8895EXPORT_SYMBOL(yield);
8896
8897/**
8898 * yield_to - yield the current processor to another thread in
8899 * your thread group, or accelerate that thread toward the
8900 * processor it's on.
8901 * @p: target task
8902 * @preempt: whether task preemption is allowed or not
8903 *
8904 * It's the caller's job to ensure that the target task struct
8905 * can't go away on us before we can do any checks.
8906 *
8907 * Return:
8908 * true (>0) if we indeed boosted the target task.
8909 * false (0) if we failed to boost the target.
8910 * -ESRCH if there's no task to yield to.
8911 */
8912int __sched yield_to(struct task_struct *p, bool preempt)
8913{
8914 struct task_struct *curr = current;
8915 struct rq *rq, *p_rq;
8916 int yielded = 0;
8917
8918 scoped_guard (irqsave) {
8919 rq = this_rq();
8920
8921again:
8922 p_rq = task_rq(p);
8923 /*
8924 * If we're the only runnable task on the rq and target rq also
8925 * has only one task, there's absolutely no point in yielding.
8926 */
8927 if (rq->nr_running == 1 && p_rq->nr_running == 1)
8928 return -ESRCH;
8929
8930 guard(double_rq_lock)(lock: rq, lock2: p_rq);
8931 if (task_rq(p) != p_rq)
8932 goto again;
8933
8934 if (!curr->sched_class->yield_to_task)
8935 return 0;
8936
8937 if (curr->sched_class != p->sched_class)
8938 return 0;
8939
8940 if (task_on_cpu(rq: p_rq, p) || !task_is_running(p))
8941 return 0;
8942
8943 yielded = curr->sched_class->yield_to_task(rq, p);
8944 if (yielded) {
8945 schedstat_inc(rq->yld_count);
8946 /*
8947 * Make p's CPU reschedule; pick_next_entity
8948 * takes care of fairness.
8949 */
8950 if (preempt && rq != p_rq)
8951 resched_curr(rq: p_rq);
8952 }
8953 }
8954
8955 if (yielded)
8956 schedule();
8957
8958 return yielded;
8959}
8960EXPORT_SYMBOL_GPL(yield_to);
8961
8962int io_schedule_prepare(void)
8963{
8964 int old_iowait = current->in_iowait;
8965
8966 current->in_iowait = 1;
8967 blk_flush_plug(current->plug, async: true);
8968 return old_iowait;
8969}
8970
8971void io_schedule_finish(int token)
8972{
8973 current->in_iowait = token;
8974}
8975
8976/*
8977 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
8978 * that process accounting knows that this is a task in IO wait state.
8979 */
8980long __sched io_schedule_timeout(long timeout)
8981{
8982 int token;
8983 long ret;
8984
8985 token = io_schedule_prepare();
8986 ret = schedule_timeout(timeout);
8987 io_schedule_finish(token);
8988
8989 return ret;
8990}
8991EXPORT_SYMBOL(io_schedule_timeout);
8992
8993void __sched io_schedule(void)
8994{
8995 int token;
8996
8997 token = io_schedule_prepare();
8998 schedule();
8999 io_schedule_finish(token);
9000}
9001EXPORT_SYMBOL(io_schedule);
9002
9003/**
9004 * sys_sched_get_priority_max - return maximum RT priority.
9005 * @policy: scheduling class.
9006 *
9007 * Return: On success, this syscall returns the maximum
9008 * rt_priority that can be used by a given scheduling class.
9009 * On failure, a negative error code is returned.
9010 */
9011SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
9012{
9013 int ret = -EINVAL;
9014
9015 switch (policy) {
9016 case SCHED_FIFO:
9017 case SCHED_RR:
9018 ret = MAX_RT_PRIO-1;
9019 break;
9020 case SCHED_DEADLINE:
9021 case SCHED_NORMAL:
9022 case SCHED_BATCH:
9023 case SCHED_IDLE:
9024 ret = 0;
9025 break;
9026 }
9027 return ret;
9028}
9029
9030/**
9031 * sys_sched_get_priority_min - return minimum RT priority.
9032 * @policy: scheduling class.
9033 *
9034 * Return: On success, this syscall returns the minimum
9035 * rt_priority that can be used by a given scheduling class.
9036 * On failure, a negative error code is returned.
9037 */
9038SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
9039{
9040 int ret = -EINVAL;
9041
9042 switch (policy) {
9043 case SCHED_FIFO:
9044 case SCHED_RR:
9045 ret = 1;
9046 break;
9047 case SCHED_DEADLINE:
9048 case SCHED_NORMAL:
9049 case SCHED_BATCH:
9050 case SCHED_IDLE:
9051 ret = 0;
9052 }
9053 return ret;
9054}
9055
9056static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
9057{
9058 unsigned int time_slice = 0;
9059 int retval;
9060
9061 if (pid < 0)
9062 return -EINVAL;
9063
9064 scoped_guard (rcu) {
9065 struct task_struct *p = find_process_by_pid(pid);
9066 if (!p)
9067 return -ESRCH;
9068
9069 retval = security_task_getscheduler(p);
9070 if (retval)
9071 return retval;
9072
9073 scoped_guard (task_rq_lock, p) {
9074 struct rq *rq = scope.rq;
9075 if (p->sched_class->get_rr_interval)
9076 time_slice = p->sched_class->get_rr_interval(rq, p);
9077 }
9078 }
9079
9080 jiffies_to_timespec64(jiffies: time_slice, value: t);
9081 return 0;
9082}
9083
9084/**
9085 * sys_sched_rr_get_interval - return the default timeslice of a process.
9086 * @pid: pid of the process.
9087 * @interval: userspace pointer to the timeslice value.
9088 *
9089 * this syscall writes the default timeslice value of a given process
9090 * into the user-space timespec buffer. A value of '0' means infinity.
9091 *
9092 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
9093 * an error code.
9094 */
9095SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
9096 struct __kernel_timespec __user *, interval)
9097{
9098 struct timespec64 t;
9099 int retval = sched_rr_get_interval(pid, t: &t);
9100
9101 if (retval == 0)
9102 retval = put_timespec64(ts: &t, uts: interval);
9103
9104 return retval;
9105}
9106
9107#ifdef CONFIG_COMPAT_32BIT_TIME
9108SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
9109 struct old_timespec32 __user *, interval)
9110{
9111 struct timespec64 t;
9112 int retval = sched_rr_get_interval(pid, t: &t);
9113
9114 if (retval == 0)
9115 retval = put_old_timespec32(&t, interval);
9116 return retval;
9117}
9118#endif
9119
9120void sched_show_task(struct task_struct *p)
9121{
9122 unsigned long free = 0;
9123 int ppid;
9124
9125 if (!try_get_task_stack(tsk: p))
9126 return;
9127
9128 pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
9129
9130 if (task_is_running(p))
9131 pr_cont(" running task ");
9132#ifdef CONFIG_DEBUG_STACK_USAGE
9133 free = stack_not_used(p);
9134#endif
9135 ppid = 0;
9136 rcu_read_lock();
9137 if (pid_alive(p))
9138 ppid = task_pid_nr(rcu_dereference(p->real_parent));
9139 rcu_read_unlock();
9140 pr_cont(" stack:%-5lu pid:%-5d tgid:%-5d ppid:%-6d flags:0x%08lx\n",
9141 free, task_pid_nr(p), task_tgid_nr(p),
9142 ppid, read_task_thread_flags(p));
9143
9144 print_worker_info(KERN_INFO, task: p);
9145 print_stop_info(KERN_INFO, task: p);
9146 show_stack(task: p, NULL, KERN_INFO);
9147 put_task_stack(tsk: p);
9148}
9149EXPORT_SYMBOL_GPL(sched_show_task);
9150
9151static inline bool
9152state_filter_match(unsigned long state_filter, struct task_struct *p)
9153{
9154 unsigned int state = READ_ONCE(p->__state);
9155
9156 /* no filter, everything matches */
9157 if (!state_filter)
9158 return true;
9159
9160 /* filter, but doesn't match */
9161 if (!(state & state_filter))
9162 return false;
9163
9164 /*
9165 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
9166 * TASK_KILLABLE).
9167 */
9168 if (state_filter == TASK_UNINTERRUPTIBLE && (state & TASK_NOLOAD))
9169 return false;
9170
9171 return true;
9172}
9173
9174
9175void show_state_filter(unsigned int state_filter)
9176{
9177 struct task_struct *g, *p;
9178
9179 rcu_read_lock();
9180 for_each_process_thread(g, p) {
9181 /*
9182 * reset the NMI-timeout, listing all files on a slow
9183 * console might take a lot of time:
9184 * Also, reset softlockup watchdogs on all CPUs, because
9185 * another CPU might be blocked waiting for us to process
9186 * an IPI.
9187 */
9188 touch_nmi_watchdog();
9189 touch_all_softlockup_watchdogs();
9190 if (state_filter_match(state_filter, p))
9191 sched_show_task(p);
9192 }
9193
9194#ifdef CONFIG_SCHED_DEBUG
9195 if (!state_filter)
9196 sysrq_sched_debug_show();
9197#endif
9198 rcu_read_unlock();
9199 /*
9200 * Only show locks if all tasks are dumped:
9201 */
9202 if (!state_filter)
9203 debug_show_all_locks();
9204}
9205
9206/**
9207 * init_idle - set up an idle thread for a given CPU
9208 * @idle: task in question
9209 * @cpu: CPU the idle task belongs to
9210 *
9211 * NOTE: this function does not set the idle thread's NEED_RESCHED
9212 * flag, to make booting more robust.
9213 */
9214void __init init_idle(struct task_struct *idle, int cpu)
9215{
9216#ifdef CONFIG_SMP
9217 struct affinity_context ac = (struct affinity_context) {
9218 .new_mask = cpumask_of(cpu),
9219 .flags = 0,
9220 };
9221#endif
9222 struct rq *rq = cpu_rq(cpu);
9223 unsigned long flags;
9224
9225 __sched_fork(clone_flags: 0, p: idle);
9226
9227 raw_spin_lock_irqsave(&idle->pi_lock, flags);
9228 raw_spin_rq_lock(rq);
9229
9230 idle->__state = TASK_RUNNING;
9231 idle->se.exec_start = sched_clock();
9232 /*
9233 * PF_KTHREAD should already be set at this point; regardless, make it
9234 * look like a proper per-CPU kthread.
9235 */
9236 idle->flags |= PF_KTHREAD | PF_NO_SETAFFINITY;
9237 kthread_set_per_cpu(k: idle, cpu);
9238
9239#ifdef CONFIG_SMP
9240 /*
9241 * It's possible that init_idle() gets called multiple times on a task,
9242 * in that case do_set_cpus_allowed() will not do the right thing.
9243 *
9244 * And since this is boot we can forgo the serialization.
9245 */
9246 set_cpus_allowed_common(p: idle, ctx: &ac);
9247#endif
9248 /*
9249 * We're having a chicken and egg problem, even though we are
9250 * holding rq->lock, the CPU isn't yet set to this CPU so the
9251 * lockdep check in task_group() will fail.
9252 *
9253 * Similar case to sched_fork(). / Alternatively we could
9254 * use task_rq_lock() here and obtain the other rq->lock.
9255 *
9256 * Silence PROVE_RCU
9257 */
9258 rcu_read_lock();
9259 __set_task_cpu(p: idle, cpu);
9260 rcu_read_unlock();
9261
9262 rq->idle = idle;
9263 rcu_assign_pointer(rq->curr, idle);
9264 idle->on_rq = TASK_ON_RQ_QUEUED;
9265#ifdef CONFIG_SMP
9266 idle->on_cpu = 1;
9267#endif
9268 raw_spin_rq_unlock(rq);
9269 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
9270
9271 /* Set the preempt count _outside_ the spinlocks! */
9272 init_idle_preempt_count(idle, cpu);
9273
9274 /*
9275 * The idle tasks have their own, simple scheduling class:
9276 */
9277 idle->sched_class = &idle_sched_class;
9278 ftrace_graph_init_idle_task(t: idle, cpu);
9279 vtime_init_idle(tsk: idle, cpu);
9280#ifdef CONFIG_SMP
9281 sprintf(buf: idle->comm, fmt: "%s/%d", INIT_TASK_COMM, cpu);
9282#endif
9283}
9284
9285#ifdef CONFIG_SMP
9286
9287int cpuset_cpumask_can_shrink(const struct cpumask *cur,
9288 const struct cpumask *trial)
9289{
9290 int ret = 1;
9291
9292 if (cpumask_empty(srcp: cur))
9293 return ret;
9294
9295 ret = dl_cpuset_cpumask_can_shrink(cur, trial);
9296
9297 return ret;
9298}
9299
9300int task_can_attach(struct task_struct *p)
9301{
9302 int ret = 0;
9303
9304 /*
9305 * Kthreads which disallow setaffinity shouldn't be moved
9306 * to a new cpuset; we don't want to change their CPU
9307 * affinity and isolating such threads by their set of
9308 * allowed nodes is unnecessary. Thus, cpusets are not
9309 * applicable for such threads. This prevents checking for
9310 * success of set_cpus_allowed_ptr() on all attached tasks
9311 * before cpus_mask may be changed.
9312 */
9313 if (p->flags & PF_NO_SETAFFINITY)
9314 ret = -EINVAL;
9315
9316 return ret;
9317}
9318
9319bool sched_smp_initialized __read_mostly;
9320
9321#ifdef CONFIG_NUMA_BALANCING
9322/* Migrate current task p to target_cpu */
9323int migrate_task_to(struct task_struct *p, int target_cpu)
9324{
9325 struct migration_arg arg = { p, target_cpu };
9326 int curr_cpu = task_cpu(p);
9327
9328 if (curr_cpu == target_cpu)
9329 return 0;
9330
9331 if (!cpumask_test_cpu(cpu: target_cpu, cpumask: p->cpus_ptr))
9332 return -EINVAL;
9333
9334 /* TODO: This is not properly updating schedstats */
9335
9336 trace_sched_move_numa(tsk: p, src_cpu: curr_cpu, dst_cpu: target_cpu);
9337 return stop_one_cpu(cpu: curr_cpu, fn: migration_cpu_stop, arg: &arg);
9338}
9339
9340/*
9341 * Requeue a task on a given node and accurately track the number of NUMA
9342 * tasks on the runqueues
9343 */
9344void sched_setnuma(struct task_struct *p, int nid)
9345{
9346 bool queued, running;
9347 struct rq_flags rf;
9348 struct rq *rq;
9349
9350 rq = task_rq_lock(p, rf: &rf);
9351 queued = task_on_rq_queued(p);
9352 running = task_current(rq, p);
9353
9354 if (queued)
9355 dequeue_task(rq, p, DEQUEUE_SAVE);
9356 if (running)
9357 put_prev_task(rq, prev: p);
9358
9359 p->numa_preferred_nid = nid;
9360
9361 if (queued)
9362 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
9363 if (running)
9364 set_next_task(rq, next: p);
9365 task_rq_unlock(rq, p, rf: &rf);
9366}
9367#endif /* CONFIG_NUMA_BALANCING */
9368
9369#ifdef CONFIG_HOTPLUG_CPU
9370/*
9371 * Ensure that the idle task is using init_mm right before its CPU goes
9372 * offline.
9373 */
9374void idle_task_exit(void)
9375{
9376 struct mm_struct *mm = current->active_mm;
9377
9378 BUG_ON(cpu_online(smp_processor_id()));
9379 BUG_ON(current != this_rq()->idle);
9380
9381 if (mm != &init_mm) {
9382 switch_mm(prev: mm, next: &init_mm, current);
9383 finish_arch_post_lock_switch();
9384 }
9385
9386 /* finish_cpu(), as ran on the BP, will clean up the active_mm state */
9387}
9388
9389static int __balance_push_cpu_stop(void *arg)
9390{
9391 struct task_struct *p = arg;
9392 struct rq *rq = this_rq();
9393 struct rq_flags rf;
9394 int cpu;
9395
9396 raw_spin_lock_irq(&p->pi_lock);
9397 rq_lock(rq, rf: &rf);
9398
9399 update_rq_clock(rq);
9400
9401 if (task_rq(p) == rq && task_on_rq_queued(p)) {
9402 cpu = select_fallback_rq(cpu: rq->cpu, p);
9403 rq = __migrate_task(rq, rf: &rf, p, dest_cpu: cpu);
9404 }
9405
9406 rq_unlock(rq, rf: &rf);
9407 raw_spin_unlock_irq(&p->pi_lock);
9408
9409 put_task_struct(t: p);
9410
9411 return 0;
9412}
9413
9414static DEFINE_PER_CPU(struct cpu_stop_work, push_work);
9415
9416/*
9417 * Ensure we only run per-cpu kthreads once the CPU goes !active.
9418 *
9419 * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only
9420 * effective when the hotplug motion is down.
9421 */
9422static void balance_push(struct rq *rq)
9423{
9424 struct task_struct *push_task = rq->curr;
9425
9426 lockdep_assert_rq_held(rq);
9427
9428 /*
9429 * Ensure the thing is persistent until balance_push_set(.on = false);
9430 */
9431 rq->balance_callback = &balance_push_callback;
9432
9433 /*
9434 * Only active while going offline and when invoked on the outgoing
9435 * CPU.
9436 */
9437 if (!cpu_dying(cpu: rq->cpu) || rq != this_rq())
9438 return;
9439
9440 /*
9441 * Both the cpu-hotplug and stop task are in this case and are
9442 * required to complete the hotplug process.
9443 */
9444 if (kthread_is_per_cpu(k: push_task) ||
9445 is_migration_disabled(p: push_task)) {
9446
9447 /*
9448 * If this is the idle task on the outgoing CPU try to wake
9449 * up the hotplug control thread which might wait for the
9450 * last task to vanish. The rcuwait_active() check is
9451 * accurate here because the waiter is pinned on this CPU
9452 * and can't obviously be running in parallel.
9453 *
9454 * On RT kernels this also has to check whether there are
9455 * pinned and scheduled out tasks on the runqueue. They
9456 * need to leave the migrate disabled section first.
9457 */
9458 if (!rq->nr_running && !rq_has_pinned_tasks(rq) &&
9459 rcuwait_active(w: &rq->hotplug_wait)) {
9460 raw_spin_rq_unlock(rq);
9461 rcuwait_wake_up(w: &rq->hotplug_wait);
9462 raw_spin_rq_lock(rq);
9463 }
9464 return;
9465 }
9466
9467 get_task_struct(t: push_task);
9468 /*
9469 * Temporarily drop rq->lock such that we can wake-up the stop task.
9470 * Both preemption and IRQs are still disabled.
9471 */
9472 preempt_disable();
9473 raw_spin_rq_unlock(rq);
9474 stop_one_cpu_nowait(cpu: rq->cpu, fn: __balance_push_cpu_stop, arg: push_task,
9475 this_cpu_ptr(&push_work));
9476 preempt_enable();
9477 /*
9478 * At this point need_resched() is true and we'll take the loop in
9479 * schedule(). The next pick is obviously going to be the stop task
9480 * which kthread_is_per_cpu() and will push this task away.
9481 */
9482 raw_spin_rq_lock(rq);
9483}
9484
9485static void balance_push_set(int cpu, bool on)
9486{
9487 struct rq *rq = cpu_rq(cpu);
9488 struct rq_flags rf;
9489
9490 rq_lock_irqsave(rq, rf: &rf);
9491 if (on) {
9492 WARN_ON_ONCE(rq->balance_callback);
9493 rq->balance_callback = &balance_push_callback;
9494 } else if (rq->balance_callback == &balance_push_callback) {
9495 rq->balance_callback = NULL;
9496 }
9497 rq_unlock_irqrestore(rq, rf: &rf);
9498}
9499
9500/*
9501 * Invoked from a CPUs hotplug control thread after the CPU has been marked
9502 * inactive. All tasks which are not per CPU kernel threads are either
9503 * pushed off this CPU now via balance_push() or placed on a different CPU
9504 * during wakeup. Wait until the CPU is quiescent.
9505 */
9506static void balance_hotplug_wait(void)
9507{
9508 struct rq *rq = this_rq();
9509
9510 rcuwait_wait_event(&rq->hotplug_wait,
9511 rq->nr_running == 1 && !rq_has_pinned_tasks(rq),
9512 TASK_UNINTERRUPTIBLE);
9513}
9514
9515#else
9516
9517static inline void balance_push(struct rq *rq)
9518{
9519}
9520
9521static inline void balance_push_set(int cpu, bool on)
9522{
9523}
9524
9525static inline void balance_hotplug_wait(void)
9526{
9527}
9528
9529#endif /* CONFIG_HOTPLUG_CPU */
9530
9531void set_rq_online(struct rq *rq)
9532{
9533 if (!rq->online) {
9534 const struct sched_class *class;
9535
9536 cpumask_set_cpu(cpu: rq->cpu, dstp: rq->rd->online);
9537 rq->online = 1;
9538
9539 for_each_class(class) {
9540 if (class->rq_online)
9541 class->rq_online(rq);
9542 }
9543 }
9544}
9545
9546void set_rq_offline(struct rq *rq)
9547{
9548 if (rq->online) {
9549 const struct sched_class *class;
9550
9551 update_rq_clock(rq);
9552 for_each_class(class) {
9553 if (class->rq_offline)
9554 class->rq_offline(rq);
9555 }
9556
9557 cpumask_clear_cpu(cpu: rq->cpu, dstp: rq->rd->online);
9558 rq->online = 0;
9559 }
9560}
9561
9562/*
9563 * used to mark begin/end of suspend/resume:
9564 */
9565static int num_cpus_frozen;
9566
9567/*
9568 * Update cpusets according to cpu_active mask. If cpusets are
9569 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
9570 * around partition_sched_domains().
9571 *
9572 * If we come here as part of a suspend/resume, don't touch cpusets because we
9573 * want to restore it back to its original state upon resume anyway.
9574 */
9575static void cpuset_cpu_active(void)
9576{
9577 if (cpuhp_tasks_frozen) {
9578 /*
9579 * num_cpus_frozen tracks how many CPUs are involved in suspend
9580 * resume sequence. As long as this is not the last online
9581 * operation in the resume sequence, just build a single sched
9582 * domain, ignoring cpusets.
9583 */
9584 partition_sched_domains(ndoms_new: 1, NULL, NULL);
9585 if (--num_cpus_frozen)
9586 return;
9587 /*
9588 * This is the last CPU online operation. So fall through and
9589 * restore the original sched domains by considering the
9590 * cpuset configurations.
9591 */
9592 cpuset_force_rebuild();
9593 }
9594 cpuset_update_active_cpus();
9595}
9596
9597static int cpuset_cpu_inactive(unsigned int cpu)
9598{
9599 if (!cpuhp_tasks_frozen) {
9600 int ret = dl_bw_check_overflow(cpu);
9601
9602 if (ret)
9603 return ret;
9604 cpuset_update_active_cpus();
9605 } else {
9606 num_cpus_frozen++;
9607 partition_sched_domains(ndoms_new: 1, NULL, NULL);
9608 }
9609 return 0;
9610}
9611
9612int sched_cpu_activate(unsigned int cpu)
9613{
9614 struct rq *rq = cpu_rq(cpu);
9615 struct rq_flags rf;
9616
9617 /*
9618 * Clear the balance_push callback and prepare to schedule
9619 * regular tasks.
9620 */
9621 balance_push_set(cpu, on: false);
9622
9623#ifdef CONFIG_SCHED_SMT
9624 /*
9625 * When going up, increment the number of cores with SMT present.
9626 */
9627 if (cpumask_weight(srcp: cpu_smt_mask(cpu)) == 2)
9628 static_branch_inc_cpuslocked(&sched_smt_present);
9629#endif
9630 set_cpu_active(cpu, active: true);
9631
9632 if (sched_smp_initialized) {
9633 sched_update_numa(cpu, online: true);
9634 sched_domains_numa_masks_set(cpu);
9635 cpuset_cpu_active();
9636 }
9637
9638 /*
9639 * Put the rq online, if not already. This happens:
9640 *
9641 * 1) In the early boot process, because we build the real domains
9642 * after all CPUs have been brought up.
9643 *
9644 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
9645 * domains.
9646 */
9647 rq_lock_irqsave(rq, rf: &rf);
9648 if (rq->rd) {
9649 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
9650 set_rq_online(rq);
9651 }
9652 rq_unlock_irqrestore(rq, rf: &rf);
9653
9654 return 0;
9655}
9656
9657int sched_cpu_deactivate(unsigned int cpu)
9658{
9659 struct rq *rq = cpu_rq(cpu);
9660 struct rq_flags rf;
9661 int ret;
9662
9663 /*
9664 * Remove CPU from nohz.idle_cpus_mask to prevent participating in
9665 * load balancing when not active
9666 */
9667 nohz_balance_exit_idle(rq);
9668
9669 set_cpu_active(cpu, active: false);
9670
9671 /*
9672 * From this point forward, this CPU will refuse to run any task that
9673 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively
9674 * push those tasks away until this gets cleared, see
9675 * sched_cpu_dying().
9676 */
9677 balance_push_set(cpu, on: true);
9678
9679 /*
9680 * We've cleared cpu_active_mask / set balance_push, wait for all
9681 * preempt-disabled and RCU users of this state to go away such that
9682 * all new such users will observe it.
9683 *
9684 * Specifically, we rely on ttwu to no longer target this CPU, see
9685 * ttwu_queue_cond() and is_cpu_allowed().
9686 *
9687 * Do sync before park smpboot threads to take care the rcu boost case.
9688 */
9689 synchronize_rcu();
9690
9691 rq_lock_irqsave(rq, rf: &rf);
9692 if (rq->rd) {
9693 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
9694 set_rq_offline(rq);
9695 }
9696 rq_unlock_irqrestore(rq, rf: &rf);
9697
9698#ifdef CONFIG_SCHED_SMT
9699 /*
9700 * When going down, decrement the number of cores with SMT present.
9701 */
9702 if (cpumask_weight(srcp: cpu_smt_mask(cpu)) == 2)
9703 static_branch_dec_cpuslocked(&sched_smt_present);
9704
9705 sched_core_cpu_deactivate(cpu);
9706#endif
9707
9708 if (!sched_smp_initialized)
9709 return 0;
9710
9711 sched_update_numa(cpu, online: false);
9712 ret = cpuset_cpu_inactive(cpu);
9713 if (ret) {
9714 balance_push_set(cpu, on: false);
9715 set_cpu_active(cpu, active: true);
9716 sched_update_numa(cpu, online: true);
9717 return ret;
9718 }
9719 sched_domains_numa_masks_clear(cpu);
9720 return 0;
9721}
9722
9723static void sched_rq_cpu_starting(unsigned int cpu)
9724{
9725 struct rq *rq = cpu_rq(cpu);
9726
9727 rq->calc_load_update = calc_load_update;
9728 update_max_interval();
9729}
9730
9731int sched_cpu_starting(unsigned int cpu)
9732{
9733 sched_core_cpu_starting(cpu);
9734 sched_rq_cpu_starting(cpu);
9735 sched_tick_start(cpu);
9736 return 0;
9737}
9738
9739#ifdef CONFIG_HOTPLUG_CPU
9740
9741/*
9742 * Invoked immediately before the stopper thread is invoked to bring the
9743 * CPU down completely. At this point all per CPU kthreads except the
9744 * hotplug thread (current) and the stopper thread (inactive) have been
9745 * either parked or have been unbound from the outgoing CPU. Ensure that
9746 * any of those which might be on the way out are gone.
9747 *
9748 * If after this point a bound task is being woken on this CPU then the
9749 * responsible hotplug callback has failed to do it's job.
9750 * sched_cpu_dying() will catch it with the appropriate fireworks.
9751 */
9752int sched_cpu_wait_empty(unsigned int cpu)
9753{
9754 balance_hotplug_wait();
9755 return 0;
9756}
9757
9758/*
9759 * Since this CPU is going 'away' for a while, fold any nr_active delta we
9760 * might have. Called from the CPU stopper task after ensuring that the
9761 * stopper is the last running task on the CPU, so nr_active count is
9762 * stable. We need to take the teardown thread which is calling this into
9763 * account, so we hand in adjust = 1 to the load calculation.
9764 *
9765 * Also see the comment "Global load-average calculations".
9766 */
9767static void calc_load_migrate(struct rq *rq)
9768{
9769 long delta = calc_load_fold_active(this_rq: rq, adjust: 1);
9770
9771 if (delta)
9772 atomic_long_add(i: delta, v: &calc_load_tasks);
9773}
9774
9775static void dump_rq_tasks(struct rq *rq, const char *loglvl)
9776{
9777 struct task_struct *g, *p;
9778 int cpu = cpu_of(rq);
9779
9780 lockdep_assert_rq_held(rq);
9781
9782 printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running);
9783 for_each_process_thread(g, p) {
9784 if (task_cpu(p) != cpu)
9785 continue;
9786
9787 if (!task_on_rq_queued(p))
9788 continue;
9789
9790 printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm);
9791 }
9792}
9793
9794int sched_cpu_dying(unsigned int cpu)
9795{
9796 struct rq *rq = cpu_rq(cpu);
9797 struct rq_flags rf;
9798
9799 /* Handle pending wakeups and then migrate everything off */
9800 sched_tick_stop(cpu);
9801
9802 rq_lock_irqsave(rq, rf: &rf);
9803 if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) {
9804 WARN(true, "Dying CPU not properly vacated!");
9805 dump_rq_tasks(rq, KERN_WARNING);
9806 }
9807 rq_unlock_irqrestore(rq, rf: &rf);
9808
9809 calc_load_migrate(rq);
9810 update_max_interval();
9811 hrtick_clear(rq);
9812 sched_core_cpu_dying(cpu);
9813 return 0;
9814}
9815#endif
9816
9817void __init sched_init_smp(void)
9818{
9819 sched_init_numa(NUMA_NO_NODE);
9820
9821 /*
9822 * There's no userspace yet to cause hotplug operations; hence all the
9823 * CPU masks are stable and all blatant races in the below code cannot
9824 * happen.
9825 */
9826 mutex_lock(&sched_domains_mutex);
9827 sched_init_domains(cpu_active_mask);
9828 mutex_unlock(lock: &sched_domains_mutex);
9829
9830 /* Move init over to a non-isolated CPU */
9831 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(type: HK_TYPE_DOMAIN)) < 0)
9832 BUG();
9833 current->flags &= ~PF_NO_SETAFFINITY;
9834 sched_init_granularity();
9835
9836 init_sched_rt_class();
9837 init_sched_dl_class();
9838
9839 sched_smp_initialized = true;
9840}
9841
9842static int __init migration_init(void)
9843{
9844 sched_cpu_starting(smp_processor_id());
9845 return 0;
9846}
9847early_initcall(migration_init);
9848
9849#else
9850void __init sched_init_smp(void)
9851{
9852 sched_init_granularity();
9853}
9854#endif /* CONFIG_SMP */
9855
9856int in_sched_functions(unsigned long addr)
9857{
9858 return in_lock_functions(addr) ||
9859 (addr >= (unsigned long)__sched_text_start
9860 && addr < (unsigned long)__sched_text_end);
9861}
9862
9863#ifdef CONFIG_CGROUP_SCHED
9864/*
9865 * Default task group.
9866 * Every task in system belongs to this group at bootup.
9867 */
9868struct task_group root_task_group;
9869LIST_HEAD(task_groups);
9870
9871/* Cacheline aligned slab cache for task_group */
9872static struct kmem_cache *task_group_cache __ro_after_init;
9873#endif
9874
9875void __init sched_init(void)
9876{
9877 unsigned long ptr = 0;
9878 int i;
9879
9880 /* Make sure the linker didn't screw up */
9881 BUG_ON(&idle_sched_class != &fair_sched_class + 1 ||
9882 &fair_sched_class != &rt_sched_class + 1 ||
9883 &rt_sched_class != &dl_sched_class + 1);
9884#ifdef CONFIG_SMP
9885 BUG_ON(&dl_sched_class != &stop_sched_class + 1);
9886#endif
9887
9888 wait_bit_init();
9889
9890#ifdef CONFIG_FAIR_GROUP_SCHED
9891 ptr += 2 * nr_cpu_ids * sizeof(void **);
9892#endif
9893#ifdef CONFIG_RT_GROUP_SCHED
9894 ptr += 2 * nr_cpu_ids * sizeof(void **);
9895#endif
9896 if (ptr) {
9897 ptr = (unsigned long)kzalloc(size: ptr, GFP_NOWAIT);
9898
9899#ifdef CONFIG_FAIR_GROUP_SCHED
9900 root_task_group.se = (struct sched_entity **)ptr;
9901 ptr += nr_cpu_ids * sizeof(void **);
9902
9903 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9904 ptr += nr_cpu_ids * sizeof(void **);
9905
9906 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
9907 init_cfs_bandwidth(cfs_b: &root_task_group.cfs_bandwidth, NULL);
9908#endif /* CONFIG_FAIR_GROUP_SCHED */
9909#ifdef CONFIG_RT_GROUP_SCHED
9910 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9911 ptr += nr_cpu_ids * sizeof(void **);
9912
9913 root_task_group.rt_rq = (struct rt_rq **)ptr;
9914 ptr += nr_cpu_ids * sizeof(void **);
9915
9916#endif /* CONFIG_RT_GROUP_SCHED */
9917 }
9918
9919 init_rt_bandwidth(rt_b: &def_rt_bandwidth, period: global_rt_period(), runtime: global_rt_runtime());
9920
9921#ifdef CONFIG_SMP
9922 init_defrootdomain();
9923#endif
9924
9925#ifdef CONFIG_RT_GROUP_SCHED
9926 init_rt_bandwidth(rt_b: &root_task_group.rt_bandwidth,
9927 period: global_rt_period(), runtime: global_rt_runtime());
9928#endif /* CONFIG_RT_GROUP_SCHED */
9929
9930#ifdef CONFIG_CGROUP_SCHED
9931 task_group_cache = KMEM_CACHE(task_group, 0);
9932
9933 list_add(new: &root_task_group.list, head: &task_groups);
9934 INIT_LIST_HEAD(list: &root_task_group.children);
9935 INIT_LIST_HEAD(list: &root_task_group.siblings);
9936 autogroup_init(init_task: &init_task);
9937#endif /* CONFIG_CGROUP_SCHED */
9938
9939 for_each_possible_cpu(i) {
9940 struct rq *rq;
9941
9942 rq = cpu_rq(i);
9943 raw_spin_lock_init(&rq->__lock);
9944 rq->nr_running = 0;
9945 rq->calc_load_active = 0;
9946 rq->calc_load_update = jiffies + LOAD_FREQ;
9947 init_cfs_rq(cfs_rq: &rq->cfs);
9948 init_rt_rq(rt_rq: &rq->rt);
9949 init_dl_rq(dl_rq: &rq->dl);
9950#ifdef CONFIG_FAIR_GROUP_SCHED
9951 INIT_LIST_HEAD(list: &rq->leaf_cfs_rq_list);
9952 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
9953 /*
9954 * How much CPU bandwidth does root_task_group get?
9955 *
9956 * In case of task-groups formed thr' the cgroup filesystem, it
9957 * gets 100% of the CPU resources in the system. This overall
9958 * system CPU resource is divided among the tasks of
9959 * root_task_group and its child task-groups in a fair manner,
9960 * based on each entity's (task or task-group's) weight
9961 * (se->load.weight).
9962 *
9963 * In other words, if root_task_group has 10 tasks of weight
9964 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9965 * then A0's share of the CPU resource is:
9966 *
9967 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
9968 *
9969 * We achieve this by letting root_task_group's tasks sit
9970 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
9971 */
9972 init_tg_cfs_entry(tg: &root_task_group, cfs_rq: &rq->cfs, NULL, cpu: i, NULL);
9973#endif /* CONFIG_FAIR_GROUP_SCHED */
9974
9975 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
9976#ifdef CONFIG_RT_GROUP_SCHED
9977 init_tg_rt_entry(tg: &root_task_group, rt_rq: &rq->rt, NULL, cpu: i, NULL);
9978#endif
9979#ifdef CONFIG_SMP
9980 rq->sd = NULL;
9981 rq->rd = NULL;
9982 rq->cpu_capacity = SCHED_CAPACITY_SCALE;
9983 rq->balance_callback = &balance_push_callback;
9984 rq->active_balance = 0;
9985 rq->next_balance = jiffies;
9986 rq->push_cpu = 0;
9987 rq->cpu = i;
9988 rq->online = 0;
9989 rq->idle_stamp = 0;
9990 rq->avg_idle = 2*sysctl_sched_migration_cost;
9991 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
9992
9993 INIT_LIST_HEAD(list: &rq->cfs_tasks);
9994
9995 rq_attach_root(rq, rd: &def_root_domain);
9996#ifdef CONFIG_NO_HZ_COMMON
9997 rq->last_blocked_load_update_tick = jiffies;
9998 atomic_set(v: &rq->nohz_flags, i: 0);
9999
10000 INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq);
10001#endif
10002#ifdef CONFIG_HOTPLUG_CPU
10003 rcuwait_init(w: &rq->hotplug_wait);
10004#endif
10005#endif /* CONFIG_SMP */
10006 hrtick_rq_init(rq);
10007 atomic_set(v: &rq->nr_iowait, i: 0);
10008
10009#ifdef CONFIG_SCHED_CORE
10010 rq->core = rq;
10011 rq->core_pick = NULL;
10012 rq->core_enabled = 0;
10013 rq->core_tree = RB_ROOT;
10014 rq->core_forceidle_count = 0;
10015 rq->core_forceidle_occupation = 0;
10016 rq->core_forceidle_start = 0;
10017
10018 rq->core_cookie = 0UL;
10019#endif
10020 zalloc_cpumask_var_node(mask: &rq->scratch_mask, GFP_KERNEL, cpu_to_node(cpu: i));
10021 }
10022
10023 set_load_weight(p: &init_task, update_load: false);
10024
10025 /*
10026 * The boot idle thread does lazy MMU switching as well:
10027 */
10028 mmgrab_lazy_tlb(mm: &init_mm);
10029 enter_lazy_tlb(mm: &init_mm, current);
10030
10031 /*
10032 * The idle task doesn't need the kthread struct to function, but it
10033 * is dressed up as a per-CPU kthread and thus needs to play the part
10034 * if we want to avoid special-casing it in code that deals with per-CPU
10035 * kthreads.
10036 */
10037 WARN_ON(!set_kthread_struct(current));
10038
10039 /*
10040 * Make us the idle thread. Technically, schedule() should not be
10041 * called from this thread, however somewhere below it might be,
10042 * but because we are the idle thread, we just pick up running again
10043 * when this runqueue becomes "idle".
10044 */
10045 init_idle(current, smp_processor_id());
10046
10047 calc_load_update = jiffies + LOAD_FREQ;
10048
10049#ifdef CONFIG_SMP
10050 idle_thread_set_boot_cpu();
10051 balance_push_set(smp_processor_id(), on: false);
10052#endif
10053 init_sched_fair_class();
10054
10055 psi_init();
10056
10057 init_uclamp();
10058
10059 preempt_dynamic_init();
10060
10061 scheduler_running = 1;
10062}
10063
10064#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
10065
10066void __might_sleep(const char *file, int line)
10067{
10068 unsigned int state = get_current_state();
10069 /*
10070 * Blocking primitives will set (and therefore destroy) current->state,
10071 * since we will exit with TASK_RUNNING make sure we enter with it,
10072 * otherwise we will destroy state.
10073 */
10074 WARN_ONCE(state != TASK_RUNNING && current->task_state_change,
10075 "do not call blocking ops when !TASK_RUNNING; "
10076 "state=%x set at [<%p>] %pS\n", state,
10077 (void *)current->task_state_change,
10078 (void *)current->task_state_change);
10079
10080 __might_resched(file, line, offsets: 0);
10081}
10082EXPORT_SYMBOL(__might_sleep);
10083
10084static void print_preempt_disable_ip(int preempt_offset, unsigned long ip)
10085{
10086 if (!IS_ENABLED(CONFIG_DEBUG_PREEMPT))
10087 return;
10088
10089 if (preempt_count() == preempt_offset)
10090 return;
10091
10092 pr_err("Preemption disabled at:");
10093 print_ip_sym(KERN_ERR, ip);
10094}
10095
10096static inline bool resched_offsets_ok(unsigned int offsets)
10097{
10098 unsigned int nested = preempt_count();
10099
10100 nested += rcu_preempt_depth() << MIGHT_RESCHED_RCU_SHIFT;
10101
10102 return nested == offsets;
10103}
10104
10105void __might_resched(const char *file, int line, unsigned int offsets)
10106{
10107 /* Ratelimiting timestamp: */
10108 static unsigned long prev_jiffy;
10109
10110 unsigned long preempt_disable_ip;
10111
10112 /* WARN_ON_ONCE() by default, no rate limit required: */
10113 rcu_sleep_check();
10114
10115 if ((resched_offsets_ok(offsets) && !irqs_disabled() &&
10116 !is_idle_task(current) && !current->non_block_count) ||
10117 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
10118 oops_in_progress)
10119 return;
10120
10121 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
10122 return;
10123 prev_jiffy = jiffies;
10124
10125 /* Save this before calling printk(), since that will clobber it: */
10126 preempt_disable_ip = get_preempt_disable_ip(current);
10127
10128 pr_err("BUG: sleeping function called from invalid context at %s:%d\n",
10129 file, line);
10130 pr_err("in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
10131 in_atomic(), irqs_disabled(), current->non_block_count,
10132 current->pid, current->comm);
10133 pr_err("preempt_count: %x, expected: %x\n", preempt_count(),
10134 offsets & MIGHT_RESCHED_PREEMPT_MASK);
10135
10136 if (IS_ENABLED(CONFIG_PREEMPT_RCU)) {
10137 pr_err("RCU nest depth: %d, expected: %u\n",
10138 rcu_preempt_depth(), offsets >> MIGHT_RESCHED_RCU_SHIFT);
10139 }
10140
10141 if (task_stack_end_corrupted(current))
10142 pr_emerg("Thread overran stack, or stack corrupted\n");
10143
10144 debug_show_held_locks(current);
10145 if (irqs_disabled())
10146 print_irqtrace_events(current);
10147
10148 print_preempt_disable_ip(preempt_offset: offsets & MIGHT_RESCHED_PREEMPT_MASK,
10149 ip: preempt_disable_ip);
10150
10151 dump_stack();
10152 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
10153}
10154EXPORT_SYMBOL(__might_resched);
10155
10156void __cant_sleep(const char *file, int line, int preempt_offset)
10157{
10158 static unsigned long prev_jiffy;
10159
10160 if (irqs_disabled())
10161 return;
10162
10163 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
10164 return;
10165
10166 if (preempt_count() > preempt_offset)
10167 return;
10168
10169 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
10170 return;
10171 prev_jiffy = jiffies;
10172
10173 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
10174 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
10175 in_atomic(), irqs_disabled(),
10176 current->pid, current->comm);
10177
10178 debug_show_held_locks(current);
10179 dump_stack();
10180 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
10181}
10182EXPORT_SYMBOL_GPL(__cant_sleep);
10183
10184#ifdef CONFIG_SMP
10185void __cant_migrate(const char *file, int line)
10186{
10187 static unsigned long prev_jiffy;
10188
10189 if (irqs_disabled())
10190 return;
10191
10192 if (is_migration_disabled(current))
10193 return;
10194
10195 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
10196 return;
10197
10198 if (preempt_count() > 0)
10199 return;
10200
10201 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
10202 return;
10203 prev_jiffy = jiffies;
10204
10205 pr_err("BUG: assuming non migratable context at %s:%d\n", file, line);
10206 pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n",
10207 in_atomic(), irqs_disabled(), is_migration_disabled(current),
10208 current->pid, current->comm);
10209
10210 debug_show_held_locks(current);
10211 dump_stack();
10212 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
10213}
10214EXPORT_SYMBOL_GPL(__cant_migrate);
10215#endif
10216#endif
10217
10218#ifdef CONFIG_MAGIC_SYSRQ
10219void normalize_rt_tasks(void)
10220{
10221 struct task_struct *g, *p;
10222 struct sched_attr attr = {
10223 .sched_policy = SCHED_NORMAL,
10224 };
10225
10226 read_lock(&tasklist_lock);
10227 for_each_process_thread(g, p) {
10228 /*
10229 * Only normalize user tasks:
10230 */
10231 if (p->flags & PF_KTHREAD)
10232 continue;
10233
10234 p->se.exec_start = 0;
10235 schedstat_set(p->stats.wait_start, 0);
10236 schedstat_set(p->stats.sleep_start, 0);
10237 schedstat_set(p->stats.block_start, 0);
10238
10239 if (!dl_task(p) && !rt_task(p)) {
10240 /*
10241 * Renice negative nice level userspace
10242 * tasks back to 0:
10243 */
10244 if (task_nice(p) < 0)
10245 set_user_nice(p, 0);
10246 continue;
10247 }
10248
10249 __sched_setscheduler(p, attr: &attr, user: false, pi: false);
10250 }
10251 read_unlock(&tasklist_lock);
10252}
10253
10254#endif /* CONFIG_MAGIC_SYSRQ */
10255
10256#if defined(CONFIG_KGDB_KDB)
10257/*
10258 * These functions are only useful for kdb.
10259 *
10260 * They can only be called when the whole system has been
10261 * stopped - every CPU needs to be quiescent, and no scheduling
10262 * activity can take place. Using them for anything else would
10263 * be a serious bug, and as a result, they aren't even visible
10264 * under any other configuration.
10265 */
10266
10267/**
10268 * curr_task - return the current task for a given CPU.
10269 * @cpu: the processor in question.
10270 *
10271 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
10272 *
10273 * Return: The current task for @cpu.
10274 */
10275struct task_struct *curr_task(int cpu)
10276{
10277 return cpu_curr(cpu);
10278}
10279
10280#endif /* defined(CONFIG_KGDB_KDB) */
10281
10282#ifdef CONFIG_CGROUP_SCHED
10283/* task_group_lock serializes the addition/removal of task groups */
10284static DEFINE_SPINLOCK(task_group_lock);
10285
10286static inline void alloc_uclamp_sched_group(struct task_group *tg,
10287 struct task_group *parent)
10288{
10289#ifdef CONFIG_UCLAMP_TASK_GROUP
10290 enum uclamp_id clamp_id;
10291
10292 for_each_clamp_id(clamp_id) {
10293 uclamp_se_set(uc_se: &tg->uclamp_req[clamp_id],
10294 value: uclamp_none(clamp_id), user_defined: false);
10295 tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
10296 }
10297#endif
10298}
10299
10300static void sched_free_group(struct task_group *tg)
10301{
10302 free_fair_sched_group(tg);
10303 free_rt_sched_group(tg);
10304 autogroup_free(tg);
10305 kmem_cache_free(s: task_group_cache, objp: tg);
10306}
10307
10308static void sched_free_group_rcu(struct rcu_head *rcu)
10309{
10310 sched_free_group(container_of(rcu, struct task_group, rcu));
10311}
10312
10313static void sched_unregister_group(struct task_group *tg)
10314{
10315 unregister_fair_sched_group(tg);
10316 unregister_rt_sched_group(tg);
10317 /*
10318 * We have to wait for yet another RCU grace period to expire, as
10319 * print_cfs_stats() might run concurrently.
10320 */
10321 call_rcu(head: &tg->rcu, func: sched_free_group_rcu);
10322}
10323
10324/* allocate runqueue etc for a new task group */
10325struct task_group *sched_create_group(struct task_group *parent)
10326{
10327 struct task_group *tg;
10328
10329 tg = kmem_cache_alloc(cachep: task_group_cache, GFP_KERNEL | __GFP_ZERO);
10330 if (!tg)
10331 return ERR_PTR(error: -ENOMEM);
10332
10333 if (!alloc_fair_sched_group(tg, parent))
10334 goto err;
10335
10336 if (!alloc_rt_sched_group(tg, parent))
10337 goto err;
10338
10339 alloc_uclamp_sched_group(tg, parent);
10340
10341 return tg;
10342
10343err:
10344 sched_free_group(tg);
10345 return ERR_PTR(error: -ENOMEM);
10346}
10347
10348void sched_online_group(struct task_group *tg, struct task_group *parent)
10349{
10350 unsigned long flags;
10351
10352 spin_lock_irqsave(&task_group_lock, flags);
10353 list_add_rcu(new: &tg->list, head: &task_groups);
10354
10355 /* Root should already exist: */
10356 WARN_ON(!parent);
10357
10358 tg->parent = parent;
10359 INIT_LIST_HEAD(list: &tg->children);
10360 list_add_rcu(new: &tg->siblings, head: &parent->children);
10361 spin_unlock_irqrestore(lock: &task_group_lock, flags);
10362
10363 online_fair_sched_group(tg);
10364}
10365
10366/* rcu callback to free various structures associated with a task group */
10367static void sched_unregister_group_rcu(struct rcu_head *rhp)
10368{
10369 /* Now it should be safe to free those cfs_rqs: */
10370 sched_unregister_group(container_of(rhp, struct task_group, rcu));
10371}
10372
10373void sched_destroy_group(struct task_group *tg)
10374{
10375 /* Wait for possible concurrent references to cfs_rqs complete: */
10376 call_rcu(head: &tg->rcu, func: sched_unregister_group_rcu);
10377}
10378
10379void sched_release_group(struct task_group *tg)
10380{
10381 unsigned long flags;
10382
10383 /*
10384 * Unlink first, to avoid walk_tg_tree_from() from finding us (via
10385 * sched_cfs_period_timer()).
10386 *
10387 * For this to be effective, we have to wait for all pending users of
10388 * this task group to leave their RCU critical section to ensure no new
10389 * user will see our dying task group any more. Specifically ensure
10390 * that tg_unthrottle_up() won't add decayed cfs_rq's to it.
10391 *
10392 * We therefore defer calling unregister_fair_sched_group() to
10393 * sched_unregister_group() which is guarantied to get called only after the
10394 * current RCU grace period has expired.
10395 */
10396 spin_lock_irqsave(&task_group_lock, flags);
10397 list_del_rcu(entry: &tg->list);
10398 list_del_rcu(entry: &tg->siblings);
10399 spin_unlock_irqrestore(lock: &task_group_lock, flags);
10400}
10401
10402static struct task_group *sched_get_task_group(struct task_struct *tsk)
10403{
10404 struct task_group *tg;
10405
10406 /*
10407 * All callers are synchronized by task_rq_lock(); we do not use RCU
10408 * which is pointless here. Thus, we pass "true" to task_css_check()
10409 * to prevent lockdep warnings.
10410 */
10411 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
10412 struct task_group, css);
10413 tg = autogroup_task_group(p: tsk, tg);
10414
10415 return tg;
10416}
10417
10418static void sched_change_group(struct task_struct *tsk, struct task_group *group)
10419{
10420 tsk->sched_task_group = group;
10421
10422#ifdef CONFIG_FAIR_GROUP_SCHED
10423 if (tsk->sched_class->task_change_group)
10424 tsk->sched_class->task_change_group(tsk);
10425 else
10426#endif
10427 set_task_rq(p: tsk, cpu: task_cpu(p: tsk));
10428}
10429
10430/*
10431 * Change task's runqueue when it moves between groups.
10432 *
10433 * The caller of this function should have put the task in its new group by
10434 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
10435 * its new group.
10436 */
10437void sched_move_task(struct task_struct *tsk)
10438{
10439 int queued, running, queue_flags =
10440 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
10441 struct task_group *group;
10442 struct rq *rq;
10443
10444 CLASS(task_rq_lock, rq_guard)(l: tsk);
10445 rq = rq_guard.rq;
10446
10447 /*
10448 * Esp. with SCHED_AUTOGROUP enabled it is possible to get superfluous
10449 * group changes.
10450 */
10451 group = sched_get_task_group(tsk);
10452 if (group == tsk->sched_task_group)
10453 return;
10454
10455 update_rq_clock(rq);
10456
10457 running = task_current(rq, p: tsk);
10458 queued = task_on_rq_queued(p: tsk);
10459
10460 if (queued)
10461 dequeue_task(rq, p: tsk, flags: queue_flags);
10462 if (running)
10463 put_prev_task(rq, prev: tsk);
10464
10465 sched_change_group(tsk, group);
10466
10467 if (queued)
10468 enqueue_task(rq, p: tsk, flags: queue_flags);
10469 if (running) {
10470 set_next_task(rq, next: tsk);
10471 /*
10472 * After changing group, the running task may have joined a
10473 * throttled one but it's still the running task. Trigger a
10474 * resched to make sure that task can still run.
10475 */
10476 resched_curr(rq);
10477 }
10478}
10479
10480static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
10481{
10482 return css ? container_of(css, struct task_group, css) : NULL;
10483}
10484
10485static struct cgroup_subsys_state *
10486cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
10487{
10488 struct task_group *parent = css_tg(css: parent_css);
10489 struct task_group *tg;
10490
10491 if (!parent) {
10492 /* This is early initialization for the top cgroup */
10493 return &root_task_group.css;
10494 }
10495
10496 tg = sched_create_group(parent);
10497 if (IS_ERR(ptr: tg))
10498 return ERR_PTR(error: -ENOMEM);
10499
10500 return &tg->css;
10501}
10502
10503/* Expose task group only after completing cgroup initialization */
10504static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
10505{
10506 struct task_group *tg = css_tg(css);
10507 struct task_group *parent = css_tg(css: css->parent);
10508
10509 if (parent)
10510 sched_online_group(tg, parent);
10511
10512#ifdef CONFIG_UCLAMP_TASK_GROUP
10513 /* Propagate the effective uclamp value for the new group */
10514 guard(mutex)(T: &uclamp_mutex);
10515 guard(rcu)();
10516 cpu_util_update_eff(css);
10517#endif
10518
10519 return 0;
10520}
10521
10522static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
10523{
10524 struct task_group *tg = css_tg(css);
10525
10526 sched_release_group(tg);
10527}
10528
10529static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
10530{
10531 struct task_group *tg = css_tg(css);
10532
10533 /*
10534 * Relies on the RCU grace period between css_released() and this.
10535 */
10536 sched_unregister_group(tg);
10537}
10538
10539#ifdef CONFIG_RT_GROUP_SCHED
10540static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
10541{
10542 struct task_struct *task;
10543 struct cgroup_subsys_state *css;
10544
10545 cgroup_taskset_for_each(task, css, tset) {
10546 if (!sched_rt_can_attach(tg: css_tg(css), tsk: task))
10547 return -EINVAL;
10548 }
10549 return 0;
10550}
10551#endif
10552
10553static void cpu_cgroup_attach(struct cgroup_taskset *tset)
10554{
10555 struct task_struct *task;
10556 struct cgroup_subsys_state *css;
10557
10558 cgroup_taskset_for_each(task, css, tset)
10559 sched_move_task(tsk: task);
10560}
10561
10562#ifdef CONFIG_UCLAMP_TASK_GROUP
10563static void cpu_util_update_eff(struct cgroup_subsys_state *css)
10564{
10565 struct cgroup_subsys_state *top_css = css;
10566 struct uclamp_se *uc_parent = NULL;
10567 struct uclamp_se *uc_se = NULL;
10568 unsigned int eff[UCLAMP_CNT];
10569 enum uclamp_id clamp_id;
10570 unsigned int clamps;
10571
10572 lockdep_assert_held(&uclamp_mutex);
10573 SCHED_WARN_ON(!rcu_read_lock_held());
10574
10575 css_for_each_descendant_pre(css, top_css) {
10576 uc_parent = css_tg(css)->parent
10577 ? css_tg(css)->parent->uclamp : NULL;
10578
10579 for_each_clamp_id(clamp_id) {
10580 /* Assume effective clamps matches requested clamps */
10581 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
10582 /* Cap effective clamps with parent's effective clamps */
10583 if (uc_parent &&
10584 eff[clamp_id] > uc_parent[clamp_id].value) {
10585 eff[clamp_id] = uc_parent[clamp_id].value;
10586 }
10587 }
10588 /* Ensure protection is always capped by limit */
10589 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
10590
10591 /* Propagate most restrictive effective clamps */
10592 clamps = 0x0;
10593 uc_se = css_tg(css)->uclamp;
10594 for_each_clamp_id(clamp_id) {
10595 if (eff[clamp_id] == uc_se[clamp_id].value)
10596 continue;
10597 uc_se[clamp_id].value = eff[clamp_id];
10598 uc_se[clamp_id].bucket_id = uclamp_bucket_id(clamp_value: eff[clamp_id]);
10599 clamps |= (0x1 << clamp_id);
10600 }
10601 if (!clamps) {
10602 css = css_rightmost_descendant(pos: css);
10603 continue;
10604 }
10605
10606 /* Immediately update descendants RUNNABLE tasks */
10607 uclamp_update_active_tasks(css);
10608 }
10609}
10610
10611/*
10612 * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
10613 * C expression. Since there is no way to convert a macro argument (N) into a
10614 * character constant, use two levels of macros.
10615 */
10616#define _POW10(exp) ((unsigned int)1e##exp)
10617#define POW10(exp) _POW10(exp)
10618
10619struct uclamp_request {
10620#define UCLAMP_PERCENT_SHIFT 2
10621#define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT))
10622 s64 percent;
10623 u64 util;
10624 int ret;
10625};
10626
10627static inline struct uclamp_request
10628capacity_from_percent(char *buf)
10629{
10630 struct uclamp_request req = {
10631 .percent = UCLAMP_PERCENT_SCALE,
10632 .util = SCHED_CAPACITY_SCALE,
10633 .ret = 0,
10634 };
10635
10636 buf = strim(buf);
10637 if (strcmp(buf, "max")) {
10638 req.ret = cgroup_parse_float(input: buf, UCLAMP_PERCENT_SHIFT,
10639 v: &req.percent);
10640 if (req.ret)
10641 return req;
10642 if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
10643 req.ret = -ERANGE;
10644 return req;
10645 }
10646
10647 req.util = req.percent << SCHED_CAPACITY_SHIFT;
10648 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
10649 }
10650
10651 return req;
10652}
10653
10654static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
10655 size_t nbytes, loff_t off,
10656 enum uclamp_id clamp_id)
10657{
10658 struct uclamp_request req;
10659 struct task_group *tg;
10660
10661 req = capacity_from_percent(buf);
10662 if (req.ret)
10663 return req.ret;
10664
10665 static_branch_enable(&sched_uclamp_used);
10666
10667 guard(mutex)(T: &uclamp_mutex);
10668 guard(rcu)();
10669
10670 tg = css_tg(css: of_css(of));
10671 if (tg->uclamp_req[clamp_id].value != req.util)
10672 uclamp_se_set(uc_se: &tg->uclamp_req[clamp_id], value: req.util, user_defined: false);
10673
10674 /*
10675 * Because of not recoverable conversion rounding we keep track of the
10676 * exact requested value
10677 */
10678 tg->uclamp_pct[clamp_id] = req.percent;
10679
10680 /* Update effective clamps to track the most restrictive value */
10681 cpu_util_update_eff(css: of_css(of));
10682
10683 return nbytes;
10684}
10685
10686static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
10687 char *buf, size_t nbytes,
10688 loff_t off)
10689{
10690 return cpu_uclamp_write(of, buf, nbytes, off, clamp_id: UCLAMP_MIN);
10691}
10692
10693static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
10694 char *buf, size_t nbytes,
10695 loff_t off)
10696{
10697 return cpu_uclamp_write(of, buf, nbytes, off, clamp_id: UCLAMP_MAX);
10698}
10699
10700static inline void cpu_uclamp_print(struct seq_file *sf,
10701 enum uclamp_id clamp_id)
10702{
10703 struct task_group *tg;
10704 u64 util_clamp;
10705 u64 percent;
10706 u32 rem;
10707
10708 scoped_guard (rcu) {
10709 tg = css_tg(css: seq_css(seq: sf));
10710 util_clamp = tg->uclamp_req[clamp_id].value;
10711 }
10712
10713 if (util_clamp == SCHED_CAPACITY_SCALE) {
10714 seq_puts(m: sf, s: "max\n");
10715 return;
10716 }
10717
10718 percent = tg->uclamp_pct[clamp_id];
10719 percent = div_u64_rem(dividend: percent, POW10(UCLAMP_PERCENT_SHIFT), remainder: &rem);
10720 seq_printf(m: sf, fmt: "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
10721}
10722
10723static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
10724{
10725 cpu_uclamp_print(sf, clamp_id: UCLAMP_MIN);
10726 return 0;
10727}
10728
10729static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
10730{
10731 cpu_uclamp_print(sf, clamp_id: UCLAMP_MAX);
10732 return 0;
10733}
10734#endif /* CONFIG_UCLAMP_TASK_GROUP */
10735
10736#ifdef CONFIG_FAIR_GROUP_SCHED
10737static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
10738 struct cftype *cftype, u64 shareval)
10739{
10740 if (shareval > scale_load_down(ULONG_MAX))
10741 shareval = MAX_SHARES;
10742 return sched_group_set_shares(tg: css_tg(css), scale_load(shareval));
10743}
10744
10745static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
10746 struct cftype *cft)
10747{
10748 struct task_group *tg = css_tg(css);
10749
10750 return (u64) scale_load_down(tg->shares);
10751}
10752
10753#ifdef CONFIG_CFS_BANDWIDTH
10754static DEFINE_MUTEX(cfs_constraints_mutex);
10755
10756const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
10757static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
10758/* More than 203 days if BW_SHIFT equals 20. */
10759static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
10760
10761static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
10762
10763static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota,
10764 u64 burst)
10765{
10766 int i, ret = 0, runtime_enabled, runtime_was_enabled;
10767 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10768
10769 if (tg == &root_task_group)
10770 return -EINVAL;
10771
10772 /*
10773 * Ensure we have at some amount of bandwidth every period. This is
10774 * to prevent reaching a state of large arrears when throttled via
10775 * entity_tick() resulting in prolonged exit starvation.
10776 */
10777 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
10778 return -EINVAL;
10779
10780 /*
10781 * Likewise, bound things on the other side by preventing insane quota
10782 * periods. This also allows us to normalize in computing quota
10783 * feasibility.
10784 */
10785 if (period > max_cfs_quota_period)
10786 return -EINVAL;
10787
10788 /*
10789 * Bound quota to defend quota against overflow during bandwidth shift.
10790 */
10791 if (quota != RUNTIME_INF && quota > max_cfs_runtime)
10792 return -EINVAL;
10793
10794 if (quota != RUNTIME_INF && (burst > quota ||
10795 burst + quota > max_cfs_runtime))
10796 return -EINVAL;
10797
10798 /*
10799 * Prevent race between setting of cfs_rq->runtime_enabled and
10800 * unthrottle_offline_cfs_rqs().
10801 */
10802 guard(cpus_read_lock)();
10803 guard(mutex)(T: &cfs_constraints_mutex);
10804
10805 ret = __cfs_schedulable(tg, period, runtime: quota);
10806 if (ret)
10807 return ret;
10808
10809 runtime_enabled = quota != RUNTIME_INF;
10810 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
10811 /*
10812 * If we need to toggle cfs_bandwidth_used, off->on must occur
10813 * before making related changes, and on->off must occur afterwards
10814 */
10815 if (runtime_enabled && !runtime_was_enabled)
10816 cfs_bandwidth_usage_inc();
10817
10818 scoped_guard (raw_spinlock_irq, &cfs_b->lock) {
10819 cfs_b->period = ns_to_ktime(ns: period);
10820 cfs_b->quota = quota;
10821 cfs_b->burst = burst;
10822
10823 __refill_cfs_bandwidth_runtime(cfs_b);
10824
10825 /*
10826 * Restart the period timer (if active) to handle new
10827 * period expiry:
10828 */
10829 if (runtime_enabled)
10830 start_cfs_bandwidth(cfs_b);
10831 }
10832
10833 for_each_online_cpu(i) {
10834 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
10835 struct rq *rq = cfs_rq->rq;
10836
10837 guard(rq_lock_irq)(l: rq);
10838 cfs_rq->runtime_enabled = runtime_enabled;
10839 cfs_rq->runtime_remaining = 0;
10840
10841 if (cfs_rq->throttled)
10842 unthrottle_cfs_rq(cfs_rq);
10843 }
10844
10845 if (runtime_was_enabled && !runtime_enabled)
10846 cfs_bandwidth_usage_dec();
10847
10848 return 0;
10849}
10850
10851static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
10852{
10853 u64 quota, period, burst;
10854
10855 period = ktime_to_ns(kt: tg->cfs_bandwidth.period);
10856 burst = tg->cfs_bandwidth.burst;
10857 if (cfs_quota_us < 0)
10858 quota = RUNTIME_INF;
10859 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
10860 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
10861 else
10862 return -EINVAL;
10863
10864 return tg_set_cfs_bandwidth(tg, period, quota, burst);
10865}
10866
10867static long tg_get_cfs_quota(struct task_group *tg)
10868{
10869 u64 quota_us;
10870
10871 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
10872 return -1;
10873
10874 quota_us = tg->cfs_bandwidth.quota;
10875 do_div(quota_us, NSEC_PER_USEC);
10876
10877 return quota_us;
10878}
10879
10880static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
10881{
10882 u64 quota, period, burst;
10883
10884 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
10885 return -EINVAL;
10886
10887 period = (u64)cfs_period_us * NSEC_PER_USEC;
10888 quota = tg->cfs_bandwidth.quota;
10889 burst = tg->cfs_bandwidth.burst;
10890
10891 return tg_set_cfs_bandwidth(tg, period, quota, burst);
10892}
10893
10894static long tg_get_cfs_period(struct task_group *tg)
10895{
10896 u64 cfs_period_us;
10897
10898 cfs_period_us = ktime_to_ns(kt: tg->cfs_bandwidth.period);
10899 do_div(cfs_period_us, NSEC_PER_USEC);
10900
10901 return cfs_period_us;
10902}
10903
10904static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us)
10905{
10906 u64 quota, period, burst;
10907
10908 if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC)
10909 return -EINVAL;
10910
10911 burst = (u64)cfs_burst_us * NSEC_PER_USEC;
10912 period = ktime_to_ns(kt: tg->cfs_bandwidth.period);
10913 quota = tg->cfs_bandwidth.quota;
10914
10915 return tg_set_cfs_bandwidth(tg, period, quota, burst);
10916}
10917
10918static long tg_get_cfs_burst(struct task_group *tg)
10919{
10920 u64 burst_us;
10921
10922 burst_us = tg->cfs_bandwidth.burst;
10923 do_div(burst_us, NSEC_PER_USEC);
10924
10925 return burst_us;
10926}
10927
10928static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
10929 struct cftype *cft)
10930{
10931 return tg_get_cfs_quota(tg: css_tg(css));
10932}
10933
10934static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
10935 struct cftype *cftype, s64 cfs_quota_us)
10936{
10937 return tg_set_cfs_quota(tg: css_tg(css), cfs_quota_us);
10938}
10939
10940static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
10941 struct cftype *cft)
10942{
10943 return tg_get_cfs_period(tg: css_tg(css));
10944}
10945
10946static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
10947 struct cftype *cftype, u64 cfs_period_us)
10948{
10949 return tg_set_cfs_period(tg: css_tg(css), cfs_period_us);
10950}
10951
10952static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css,
10953 struct cftype *cft)
10954{
10955 return tg_get_cfs_burst(tg: css_tg(css));
10956}
10957
10958static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css,
10959 struct cftype *cftype, u64 cfs_burst_us)
10960{
10961 return tg_set_cfs_burst(tg: css_tg(css), cfs_burst_us);
10962}
10963
10964struct cfs_schedulable_data {
10965 struct task_group *tg;
10966 u64 period, quota;
10967};
10968
10969/*
10970 * normalize group quota/period to be quota/max_period
10971 * note: units are usecs
10972 */
10973static u64 normalize_cfs_quota(struct task_group *tg,
10974 struct cfs_schedulable_data *d)
10975{
10976 u64 quota, period;
10977
10978 if (tg == d->tg) {
10979 period = d->period;
10980 quota = d->quota;
10981 } else {
10982 period = tg_get_cfs_period(tg);
10983 quota = tg_get_cfs_quota(tg);
10984 }
10985
10986 /* note: these should typically be equivalent */
10987 if (quota == RUNTIME_INF || quota == -1)
10988 return RUNTIME_INF;
10989
10990 return to_ratio(period, runtime: quota);
10991}
10992
10993static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
10994{
10995 struct cfs_schedulable_data *d = data;
10996 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10997 s64 quota = 0, parent_quota = -1;
10998
10999 if (!tg->parent) {
11000 quota = RUNTIME_INF;
11001 } else {
11002 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
11003
11004 quota = normalize_cfs_quota(tg, d);
11005 parent_quota = parent_b->hierarchical_quota;
11006
11007 /*
11008 * Ensure max(child_quota) <= parent_quota. On cgroup2,
11009 * always take the non-RUNTIME_INF min. On cgroup1, only
11010 * inherit when no limit is set. In both cases this is used
11011 * by the scheduler to determine if a given CFS task has a
11012 * bandwidth constraint at some higher level.
11013 */
11014 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
11015 if (quota == RUNTIME_INF)
11016 quota = parent_quota;
11017 else if (parent_quota != RUNTIME_INF)
11018 quota = min(quota, parent_quota);
11019 } else {
11020 if (quota == RUNTIME_INF)
11021 quota = parent_quota;
11022 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
11023 return -EINVAL;
11024 }
11025 }
11026 cfs_b->hierarchical_quota = quota;
11027
11028 return 0;
11029}
11030
11031static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
11032{
11033 struct cfs_schedulable_data data = {
11034 .tg = tg,
11035 .period = period,
11036 .quota = quota,
11037 };
11038
11039 if (quota != RUNTIME_INF) {
11040 do_div(data.period, NSEC_PER_USEC);
11041 do_div(data.quota, NSEC_PER_USEC);
11042 }
11043
11044 guard(rcu)();
11045 return walk_tg_tree(down: tg_cfs_schedulable_down, up: tg_nop, data: &data);
11046}
11047
11048static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
11049{
11050 struct task_group *tg = css_tg(css: seq_css(seq: sf));
11051 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
11052
11053 seq_printf(m: sf, fmt: "nr_periods %d\n", cfs_b->nr_periods);
11054 seq_printf(m: sf, fmt: "nr_throttled %d\n", cfs_b->nr_throttled);
11055 seq_printf(m: sf, fmt: "throttled_time %llu\n", cfs_b->throttled_time);
11056
11057 if (schedstat_enabled() && tg != &root_task_group) {
11058 struct sched_statistics *stats;
11059 u64 ws = 0;
11060 int i;
11061
11062 for_each_possible_cpu(i) {
11063 stats = __schedstats_from_se(se: tg->se[i]);
11064 ws += schedstat_val(stats->wait_sum);
11065 }
11066
11067 seq_printf(m: sf, fmt: "wait_sum %llu\n", ws);
11068 }
11069
11070 seq_printf(m: sf, fmt: "nr_bursts %d\n", cfs_b->nr_burst);
11071 seq_printf(m: sf, fmt: "burst_time %llu\n", cfs_b->burst_time);
11072
11073 return 0;
11074}
11075
11076static u64 throttled_time_self(struct task_group *tg)
11077{
11078 int i;
11079 u64 total = 0;
11080
11081 for_each_possible_cpu(i) {
11082 total += READ_ONCE(tg->cfs_rq[i]->throttled_clock_self_time);
11083 }
11084
11085 return total;
11086}
11087
11088static int cpu_cfs_local_stat_show(struct seq_file *sf, void *v)
11089{
11090 struct task_group *tg = css_tg(css: seq_css(seq: sf));
11091
11092 seq_printf(m: sf, fmt: "throttled_time %llu\n", throttled_time_self(tg));
11093
11094 return 0;
11095}
11096#endif /* CONFIG_CFS_BANDWIDTH */
11097#endif /* CONFIG_FAIR_GROUP_SCHED */
11098
11099#ifdef CONFIG_RT_GROUP_SCHED
11100static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
11101 struct cftype *cft, s64 val)
11102{
11103 return sched_group_set_rt_runtime(tg: css_tg(css), rt_runtime_us: val);
11104}
11105
11106static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
11107 struct cftype *cft)
11108{
11109 return sched_group_rt_runtime(tg: css_tg(css));
11110}
11111
11112static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
11113 struct cftype *cftype, u64 rt_period_us)
11114{
11115 return sched_group_set_rt_period(tg: css_tg(css), rt_period_us);
11116}
11117
11118static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
11119 struct cftype *cft)
11120{
11121 return sched_group_rt_period(tg: css_tg(css));
11122}
11123#endif /* CONFIG_RT_GROUP_SCHED */
11124
11125#ifdef CONFIG_FAIR_GROUP_SCHED
11126static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css,
11127 struct cftype *cft)
11128{
11129 return css_tg(css)->idle;
11130}
11131
11132static int cpu_idle_write_s64(struct cgroup_subsys_state *css,
11133 struct cftype *cft, s64 idle)
11134{
11135 return sched_group_set_idle(tg: css_tg(css), idle);
11136}
11137#endif
11138
11139static struct cftype cpu_legacy_files[] = {
11140#ifdef CONFIG_FAIR_GROUP_SCHED
11141 {
11142 .name = "shares",
11143 .read_u64 = cpu_shares_read_u64,
11144 .write_u64 = cpu_shares_write_u64,
11145 },
11146 {
11147 .name = "idle",
11148 .read_s64 = cpu_idle_read_s64,
11149 .write_s64 = cpu_idle_write_s64,
11150 },
11151#endif
11152#ifdef CONFIG_CFS_BANDWIDTH
11153 {
11154 .name = "cfs_quota_us",
11155 .read_s64 = cpu_cfs_quota_read_s64,
11156 .write_s64 = cpu_cfs_quota_write_s64,
11157 },
11158 {
11159 .name = "cfs_period_us",
11160 .read_u64 = cpu_cfs_period_read_u64,
11161 .write_u64 = cpu_cfs_period_write_u64,
11162 },
11163 {
11164 .name = "cfs_burst_us",
11165 .read_u64 = cpu_cfs_burst_read_u64,
11166 .write_u64 = cpu_cfs_burst_write_u64,
11167 },
11168 {
11169 .name = "stat",
11170 .seq_show = cpu_cfs_stat_show,
11171 },
11172 {
11173 .name = "stat.local",
11174 .seq_show = cpu_cfs_local_stat_show,
11175 },
11176#endif
11177#ifdef CONFIG_RT_GROUP_SCHED
11178 {
11179 .name = "rt_runtime_us",
11180 .read_s64 = cpu_rt_runtime_read,
11181 .write_s64 = cpu_rt_runtime_write,
11182 },
11183 {
11184 .name = "rt_period_us",
11185 .read_u64 = cpu_rt_period_read_uint,
11186 .write_u64 = cpu_rt_period_write_uint,
11187 },
11188#endif
11189#ifdef CONFIG_UCLAMP_TASK_GROUP
11190 {
11191 .name = "uclamp.min",
11192 .flags = CFTYPE_NOT_ON_ROOT,
11193 .seq_show = cpu_uclamp_min_show,
11194 .write = cpu_uclamp_min_write,
11195 },
11196 {
11197 .name = "uclamp.max",
11198 .flags = CFTYPE_NOT_ON_ROOT,
11199 .seq_show = cpu_uclamp_max_show,
11200 .write = cpu_uclamp_max_write,
11201 },
11202#endif
11203 { } /* Terminate */
11204};
11205
11206static int cpu_extra_stat_show(struct seq_file *sf,
11207 struct cgroup_subsys_state *css)
11208{
11209#ifdef CONFIG_CFS_BANDWIDTH
11210 {
11211 struct task_group *tg = css_tg(css);
11212 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
11213 u64 throttled_usec, burst_usec;
11214
11215 throttled_usec = cfs_b->throttled_time;
11216 do_div(throttled_usec, NSEC_PER_USEC);
11217 burst_usec = cfs_b->burst_time;
11218 do_div(burst_usec, NSEC_PER_USEC);
11219
11220 seq_printf(m: sf, fmt: "nr_periods %d\n"
11221 "nr_throttled %d\n"
11222 "throttled_usec %llu\n"
11223 "nr_bursts %d\n"
11224 "burst_usec %llu\n",
11225 cfs_b->nr_periods, cfs_b->nr_throttled,
11226 throttled_usec, cfs_b->nr_burst, burst_usec);
11227 }
11228#endif
11229 return 0;
11230}
11231
11232static int cpu_local_stat_show(struct seq_file *sf,
11233 struct cgroup_subsys_state *css)
11234{
11235#ifdef CONFIG_CFS_BANDWIDTH
11236 {
11237 struct task_group *tg = css_tg(css);
11238 u64 throttled_self_usec;
11239
11240 throttled_self_usec = throttled_time_self(tg);
11241 do_div(throttled_self_usec, NSEC_PER_USEC);
11242
11243 seq_printf(m: sf, fmt: "throttled_usec %llu\n",
11244 throttled_self_usec);
11245 }
11246#endif
11247 return 0;
11248}
11249
11250#ifdef CONFIG_FAIR_GROUP_SCHED
11251static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
11252 struct cftype *cft)
11253{
11254 struct task_group *tg = css_tg(css);
11255 u64 weight = scale_load_down(tg->shares);
11256
11257 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
11258}
11259
11260static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
11261 struct cftype *cft, u64 weight)
11262{
11263 /*
11264 * cgroup weight knobs should use the common MIN, DFL and MAX
11265 * values which are 1, 100 and 10000 respectively. While it loses
11266 * a bit of range on both ends, it maps pretty well onto the shares
11267 * value used by scheduler and the round-trip conversions preserve
11268 * the original value over the entire range.
11269 */
11270 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
11271 return -ERANGE;
11272
11273 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
11274
11275 return sched_group_set_shares(tg: css_tg(css), scale_load(weight));
11276}
11277
11278static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
11279 struct cftype *cft)
11280{
11281 unsigned long weight = scale_load_down(css_tg(css)->shares);
11282 int last_delta = INT_MAX;
11283 int prio, delta;
11284
11285 /* find the closest nice value to the current weight */
11286 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
11287 delta = abs(sched_prio_to_weight[prio] - weight);
11288 if (delta >= last_delta)
11289 break;
11290 last_delta = delta;
11291 }
11292
11293 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
11294}
11295
11296static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
11297 struct cftype *cft, s64 nice)
11298{
11299 unsigned long weight;
11300 int idx;
11301
11302 if (nice < MIN_NICE || nice > MAX_NICE)
11303 return -ERANGE;
11304
11305 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
11306 idx = array_index_nospec(idx, 40);
11307 weight = sched_prio_to_weight[idx];
11308
11309 return sched_group_set_shares(tg: css_tg(css), scale_load(weight));
11310}
11311#endif
11312
11313static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
11314 long period, long quota)
11315{
11316 if (quota < 0)
11317 seq_puts(m: sf, s: "max");
11318 else
11319 seq_printf(m: sf, fmt: "%ld", quota);
11320
11321 seq_printf(m: sf, fmt: " %ld\n", period);
11322}
11323
11324/* caller should put the current value in *@periodp before calling */
11325static int __maybe_unused cpu_period_quota_parse(char *buf,
11326 u64 *periodp, u64 *quotap)
11327{
11328 char tok[21]; /* U64_MAX */
11329
11330 if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
11331 return -EINVAL;
11332
11333 *periodp *= NSEC_PER_USEC;
11334
11335 if (sscanf(tok, "%llu", quotap))
11336 *quotap *= NSEC_PER_USEC;
11337 else if (!strcmp(tok, "max"))
11338 *quotap = RUNTIME_INF;
11339 else
11340 return -EINVAL;
11341
11342 return 0;
11343}
11344
11345#ifdef CONFIG_CFS_BANDWIDTH
11346static int cpu_max_show(struct seq_file *sf, void *v)
11347{
11348 struct task_group *tg = css_tg(css: seq_css(seq: sf));
11349
11350 cpu_period_quota_print(sf, period: tg_get_cfs_period(tg), quota: tg_get_cfs_quota(tg));
11351 return 0;
11352}
11353
11354static ssize_t cpu_max_write(struct kernfs_open_file *of,
11355 char *buf, size_t nbytes, loff_t off)
11356{
11357 struct task_group *tg = css_tg(css: of_css(of));
11358 u64 period = tg_get_cfs_period(tg);
11359 u64 burst = tg_get_cfs_burst(tg);
11360 u64 quota;
11361 int ret;
11362
11363 ret = cpu_period_quota_parse(buf, periodp: &period, quotap: &quota);
11364 if (!ret)
11365 ret = tg_set_cfs_bandwidth(tg, period, quota, burst);
11366 return ret ?: nbytes;
11367}
11368#endif
11369
11370static struct cftype cpu_files[] = {
11371#ifdef CONFIG_FAIR_GROUP_SCHED
11372 {
11373 .name = "weight",
11374 .flags = CFTYPE_NOT_ON_ROOT,
11375 .read_u64 = cpu_weight_read_u64,
11376 .write_u64 = cpu_weight_write_u64,
11377 },
11378 {
11379 .name = "weight.nice",
11380 .flags = CFTYPE_NOT_ON_ROOT,
11381 .read_s64 = cpu_weight_nice_read_s64,
11382 .write_s64 = cpu_weight_nice_write_s64,
11383 },
11384 {
11385 .name = "idle",
11386 .flags = CFTYPE_NOT_ON_ROOT,
11387 .read_s64 = cpu_idle_read_s64,
11388 .write_s64 = cpu_idle_write_s64,
11389 },
11390#endif
11391#ifdef CONFIG_CFS_BANDWIDTH
11392 {
11393 .name = "max",
11394 .flags = CFTYPE_NOT_ON_ROOT,
11395 .seq_show = cpu_max_show,
11396 .write = cpu_max_write,
11397 },
11398 {
11399 .name = "max.burst",
11400 .flags = CFTYPE_NOT_ON_ROOT,
11401 .read_u64 = cpu_cfs_burst_read_u64,
11402 .write_u64 = cpu_cfs_burst_write_u64,
11403 },
11404#endif
11405#ifdef CONFIG_UCLAMP_TASK_GROUP
11406 {
11407 .name = "uclamp.min",
11408 .flags = CFTYPE_NOT_ON_ROOT,
11409 .seq_show = cpu_uclamp_min_show,
11410 .write = cpu_uclamp_min_write,
11411 },
11412 {
11413 .name = "uclamp.max",
11414 .flags = CFTYPE_NOT_ON_ROOT,
11415 .seq_show = cpu_uclamp_max_show,
11416 .write = cpu_uclamp_max_write,
11417 },
11418#endif
11419 { } /* terminate */
11420};
11421
11422struct cgroup_subsys cpu_cgrp_subsys = {
11423 .css_alloc = cpu_cgroup_css_alloc,
11424 .css_online = cpu_cgroup_css_online,
11425 .css_released = cpu_cgroup_css_released,
11426 .css_free = cpu_cgroup_css_free,
11427 .css_extra_stat_show = cpu_extra_stat_show,
11428 .css_local_stat_show = cpu_local_stat_show,
11429#ifdef CONFIG_RT_GROUP_SCHED
11430 .can_attach = cpu_cgroup_can_attach,
11431#endif
11432 .attach = cpu_cgroup_attach,
11433 .legacy_cftypes = cpu_legacy_files,
11434 .dfl_cftypes = cpu_files,
11435 .early_init = true,
11436 .threaded = true,
11437};
11438
11439#endif /* CONFIG_CGROUP_SCHED */
11440
11441void dump_cpu_task(int cpu)
11442{
11443 if (cpu == smp_processor_id() && in_hardirq()) {
11444 struct pt_regs *regs;
11445
11446 regs = get_irq_regs();
11447 if (regs) {
11448 show_regs(regs);
11449 return;
11450 }
11451 }
11452
11453 if (trigger_single_cpu_backtrace(cpu))
11454 return;
11455
11456 pr_info("Task dump for CPU %d:\n", cpu);
11457 sched_show_task(cpu_curr(cpu));
11458}
11459
11460/*
11461 * Nice levels are multiplicative, with a gentle 10% change for every
11462 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
11463 * nice 1, it will get ~10% less CPU time than another CPU-bound task
11464 * that remained on nice 0.
11465 *
11466 * The "10% effect" is relative and cumulative: from _any_ nice level,
11467 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
11468 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
11469 * If a task goes up by ~10% and another task goes down by ~10% then
11470 * the relative distance between them is ~25%.)
11471 */
11472const int sched_prio_to_weight[40] = {
11473 /* -20 */ 88761, 71755, 56483, 46273, 36291,
11474 /* -15 */ 29154, 23254, 18705, 14949, 11916,
11475 /* -10 */ 9548, 7620, 6100, 4904, 3906,
11476 /* -5 */ 3121, 2501, 1991, 1586, 1277,
11477 /* 0 */ 1024, 820, 655, 526, 423,
11478 /* 5 */ 335, 272, 215, 172, 137,
11479 /* 10 */ 110, 87, 70, 56, 45,
11480 /* 15 */ 36, 29, 23, 18, 15,
11481};
11482
11483/*
11484 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
11485 *
11486 * In cases where the weight does not change often, we can use the
11487 * precalculated inverse to speed up arithmetics by turning divisions
11488 * into multiplications:
11489 */
11490const u32 sched_prio_to_wmult[40] = {
11491 /* -20 */ 48388, 59856, 76040, 92818, 118348,
11492 /* -15 */ 147320, 184698, 229616, 287308, 360437,
11493 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
11494 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
11495 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
11496 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
11497 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
11498 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
11499};
11500
11501void call_trace_sched_update_nr_running(struct rq *rq, int count)
11502{
11503 trace_sched_update_nr_running_tp(rq, change: count);
11504}
11505
11506#ifdef CONFIG_SCHED_MM_CID
11507
11508/*
11509 * @cid_lock: Guarantee forward-progress of cid allocation.
11510 *
11511 * Concurrency ID allocation within a bitmap is mostly lock-free. The cid_lock
11512 * is only used when contention is detected by the lock-free allocation so
11513 * forward progress can be guaranteed.
11514 */
11515DEFINE_RAW_SPINLOCK(cid_lock);
11516
11517/*
11518 * @use_cid_lock: Select cid allocation behavior: lock-free vs spinlock.
11519 *
11520 * When @use_cid_lock is 0, the cid allocation is lock-free. When contention is
11521 * detected, it is set to 1 to ensure that all newly coming allocations are
11522 * serialized by @cid_lock until the allocation which detected contention
11523 * completes and sets @use_cid_lock back to 0. This guarantees forward progress
11524 * of a cid allocation.
11525 */
11526int use_cid_lock;
11527
11528/*
11529 * mm_cid remote-clear implements a lock-free algorithm to clear per-mm/cpu cid
11530 * concurrently with respect to the execution of the source runqueue context
11531 * switch.
11532 *
11533 * There is one basic properties we want to guarantee here:
11534 *
11535 * (1) Remote-clear should _never_ mark a per-cpu cid UNSET when it is actively
11536 * used by a task. That would lead to concurrent allocation of the cid and
11537 * userspace corruption.
11538 *
11539 * Provide this guarantee by introducing a Dekker memory ordering to guarantee
11540 * that a pair of loads observe at least one of a pair of stores, which can be
11541 * shown as:
11542 *
11543 * X = Y = 0
11544 *
11545 * w[X]=1 w[Y]=1
11546 * MB MB
11547 * r[Y]=y r[X]=x
11548 *
11549 * Which guarantees that x==0 && y==0 is impossible. But rather than using
11550 * values 0 and 1, this algorithm cares about specific state transitions of the
11551 * runqueue current task (as updated by the scheduler context switch), and the
11552 * per-mm/cpu cid value.
11553 *
11554 * Let's introduce task (Y) which has task->mm == mm and task (N) which has
11555 * task->mm != mm for the rest of the discussion. There are two scheduler state
11556 * transitions on context switch we care about:
11557 *
11558 * (TSA) Store to rq->curr with transition from (N) to (Y)
11559 *
11560 * (TSB) Store to rq->curr with transition from (Y) to (N)
11561 *
11562 * On the remote-clear side, there is one transition we care about:
11563 *
11564 * (TMA) cmpxchg to *pcpu_cid to set the LAZY flag
11565 *
11566 * There is also a transition to UNSET state which can be performed from all
11567 * sides (scheduler, remote-clear). It is always performed with a cmpxchg which
11568 * guarantees that only a single thread will succeed:
11569 *
11570 * (TMB) cmpxchg to *pcpu_cid to mark UNSET
11571 *
11572 * Just to be clear, what we do _not_ want to happen is a transition to UNSET
11573 * when a thread is actively using the cid (property (1)).
11574 *
11575 * Let's looks at the relevant combinations of TSA/TSB, and TMA transitions.
11576 *
11577 * Scenario A) (TSA)+(TMA) (from next task perspective)
11578 *
11579 * CPU0 CPU1
11580 *
11581 * Context switch CS-1 Remote-clear
11582 * - store to rq->curr: (N)->(Y) (TSA) - cmpxchg to *pcpu_id to LAZY (TMA)
11583 * (implied barrier after cmpxchg)
11584 * - switch_mm_cid()
11585 * - memory barrier (see switch_mm_cid()
11586 * comment explaining how this barrier
11587 * is combined with other scheduler
11588 * barriers)
11589 * - mm_cid_get (next)
11590 * - READ_ONCE(*pcpu_cid) - rcu_dereference(src_rq->curr)
11591 *
11592 * This Dekker ensures that either task (Y) is observed by the
11593 * rcu_dereference() or the LAZY flag is observed by READ_ONCE(), or both are
11594 * observed.
11595 *
11596 * If task (Y) store is observed by rcu_dereference(), it means that there is
11597 * still an active task on the cpu. Remote-clear will therefore not transition
11598 * to UNSET, which fulfills property (1).
11599 *
11600 * If task (Y) is not observed, but the lazy flag is observed by READ_ONCE(),
11601 * it will move its state to UNSET, which clears the percpu cid perhaps
11602 * uselessly (which is not an issue for correctness). Because task (Y) is not
11603 * observed, CPU1 can move ahead to set the state to UNSET. Because moving
11604 * state to UNSET is done with a cmpxchg expecting that the old state has the
11605 * LAZY flag set, only one thread will successfully UNSET.
11606 *
11607 * If both states (LAZY flag and task (Y)) are observed, the thread on CPU0
11608 * will observe the LAZY flag and transition to UNSET (perhaps uselessly), and
11609 * CPU1 will observe task (Y) and do nothing more, which is fine.
11610 *
11611 * What we are effectively preventing with this Dekker is a scenario where
11612 * neither LAZY flag nor store (Y) are observed, which would fail property (1)
11613 * because this would UNSET a cid which is actively used.
11614 */
11615
11616void sched_mm_cid_migrate_from(struct task_struct *t)
11617{
11618 t->migrate_from_cpu = task_cpu(p: t);
11619}
11620
11621static
11622int __sched_mm_cid_migrate_from_fetch_cid(struct rq *src_rq,
11623 struct task_struct *t,
11624 struct mm_cid *src_pcpu_cid)
11625{
11626 struct mm_struct *mm = t->mm;
11627 struct task_struct *src_task;
11628 int src_cid, last_mm_cid;
11629
11630 if (!mm)
11631 return -1;
11632
11633 last_mm_cid = t->last_mm_cid;
11634 /*
11635 * If the migrated task has no last cid, or if the current
11636 * task on src rq uses the cid, it means the source cid does not need
11637 * to be moved to the destination cpu.
11638 */
11639 if (last_mm_cid == -1)
11640 return -1;
11641 src_cid = READ_ONCE(src_pcpu_cid->cid);
11642 if (!mm_cid_is_valid(cid: src_cid) || last_mm_cid != src_cid)
11643 return -1;
11644
11645 /*
11646 * If we observe an active task using the mm on this rq, it means we
11647 * are not the last task to be migrated from this cpu for this mm, so
11648 * there is no need to move src_cid to the destination cpu.
11649 */
11650 guard(rcu)();
11651 src_task = rcu_dereference(src_rq->curr);
11652 if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) {
11653 t->last_mm_cid = -1;
11654 return -1;
11655 }
11656
11657 return src_cid;
11658}
11659
11660static
11661int __sched_mm_cid_migrate_from_try_steal_cid(struct rq *src_rq,
11662 struct task_struct *t,
11663 struct mm_cid *src_pcpu_cid,
11664 int src_cid)
11665{
11666 struct task_struct *src_task;
11667 struct mm_struct *mm = t->mm;
11668 int lazy_cid;
11669
11670 if (src_cid == -1)
11671 return -1;
11672
11673 /*
11674 * Attempt to clear the source cpu cid to move it to the destination
11675 * cpu.
11676 */
11677 lazy_cid = mm_cid_set_lazy_put(cid: src_cid);
11678 if (!try_cmpxchg(&src_pcpu_cid->cid, &src_cid, lazy_cid))
11679 return -1;
11680
11681 /*
11682 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
11683 * rq->curr->mm matches the scheduler barrier in context_switch()
11684 * between store to rq->curr and load of prev and next task's
11685 * per-mm/cpu cid.
11686 *
11687 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
11688 * rq->curr->mm_cid_active matches the barrier in
11689 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and
11690 * sched_mm_cid_after_execve() between store to t->mm_cid_active and
11691 * load of per-mm/cpu cid.
11692 */
11693
11694 /*
11695 * If we observe an active task using the mm on this rq after setting
11696 * the lazy-put flag, this task will be responsible for transitioning
11697 * from lazy-put flag set to MM_CID_UNSET.
11698 */
11699 scoped_guard (rcu) {
11700 src_task = rcu_dereference(src_rq->curr);
11701 if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) {
11702 /*
11703 * We observed an active task for this mm, there is therefore
11704 * no point in moving this cid to the destination cpu.
11705 */
11706 t->last_mm_cid = -1;
11707 return -1;
11708 }
11709 }
11710
11711 /*
11712 * The src_cid is unused, so it can be unset.
11713 */
11714 if (!try_cmpxchg(&src_pcpu_cid->cid, &lazy_cid, MM_CID_UNSET))
11715 return -1;
11716 return src_cid;
11717}
11718
11719/*
11720 * Migration to dst cpu. Called with dst_rq lock held.
11721 * Interrupts are disabled, which keeps the window of cid ownership without the
11722 * source rq lock held small.
11723 */
11724void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t)
11725{
11726 struct mm_cid *src_pcpu_cid, *dst_pcpu_cid;
11727 struct mm_struct *mm = t->mm;
11728 int src_cid, dst_cid, src_cpu;
11729 struct rq *src_rq;
11730
11731 lockdep_assert_rq_held(rq: dst_rq);
11732
11733 if (!mm)
11734 return;
11735 src_cpu = t->migrate_from_cpu;
11736 if (src_cpu == -1) {
11737 t->last_mm_cid = -1;
11738 return;
11739 }
11740 /*
11741 * Move the src cid if the dst cid is unset. This keeps id
11742 * allocation closest to 0 in cases where few threads migrate around
11743 * many cpus.
11744 *
11745 * If destination cid is already set, we may have to just clear
11746 * the src cid to ensure compactness in frequent migrations
11747 * scenarios.
11748 *
11749 * It is not useful to clear the src cid when the number of threads is
11750 * greater or equal to the number of allowed cpus, because user-space
11751 * can expect that the number of allowed cids can reach the number of
11752 * allowed cpus.
11753 */
11754 dst_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(dst_rq));
11755 dst_cid = READ_ONCE(dst_pcpu_cid->cid);
11756 if (!mm_cid_is_unset(cid: dst_cid) &&
11757 atomic_read(v: &mm->mm_users) >= t->nr_cpus_allowed)
11758 return;
11759 src_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, src_cpu);
11760 src_rq = cpu_rq(src_cpu);
11761 src_cid = __sched_mm_cid_migrate_from_fetch_cid(src_rq, t, src_pcpu_cid);
11762 if (src_cid == -1)
11763 return;
11764 src_cid = __sched_mm_cid_migrate_from_try_steal_cid(src_rq, t, src_pcpu_cid,
11765 src_cid);
11766 if (src_cid == -1)
11767 return;
11768 if (!mm_cid_is_unset(cid: dst_cid)) {
11769 __mm_cid_put(mm, cid: src_cid);
11770 return;
11771 }
11772 /* Move src_cid to dst cpu. */
11773 mm_cid_snapshot_time(rq: dst_rq, mm);
11774 WRITE_ONCE(dst_pcpu_cid->cid, src_cid);
11775}
11776
11777static void sched_mm_cid_remote_clear(struct mm_struct *mm, struct mm_cid *pcpu_cid,
11778 int cpu)
11779{
11780 struct rq *rq = cpu_rq(cpu);
11781 struct task_struct *t;
11782 int cid, lazy_cid;
11783
11784 cid = READ_ONCE(pcpu_cid->cid);
11785 if (!mm_cid_is_valid(cid))
11786 return;
11787
11788 /*
11789 * Clear the cpu cid if it is set to keep cid allocation compact. If
11790 * there happens to be other tasks left on the source cpu using this
11791 * mm, the next task using this mm will reallocate its cid on context
11792 * switch.
11793 */
11794 lazy_cid = mm_cid_set_lazy_put(cid);
11795 if (!try_cmpxchg(&pcpu_cid->cid, &cid, lazy_cid))
11796 return;
11797
11798 /*
11799 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
11800 * rq->curr->mm matches the scheduler barrier in context_switch()
11801 * between store to rq->curr and load of prev and next task's
11802 * per-mm/cpu cid.
11803 *
11804 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
11805 * rq->curr->mm_cid_active matches the barrier in
11806 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and
11807 * sched_mm_cid_after_execve() between store to t->mm_cid_active and
11808 * load of per-mm/cpu cid.
11809 */
11810
11811 /*
11812 * If we observe an active task using the mm on this rq after setting
11813 * the lazy-put flag, that task will be responsible for transitioning
11814 * from lazy-put flag set to MM_CID_UNSET.
11815 */
11816 scoped_guard (rcu) {
11817 t = rcu_dereference(rq->curr);
11818 if (READ_ONCE(t->mm_cid_active) && t->mm == mm)
11819 return;
11820 }
11821
11822 /*
11823 * The cid is unused, so it can be unset.
11824 * Disable interrupts to keep the window of cid ownership without rq
11825 * lock small.
11826 */
11827 scoped_guard (irqsave) {
11828 if (try_cmpxchg(&pcpu_cid->cid, &lazy_cid, MM_CID_UNSET))
11829 __mm_cid_put(mm, cid);
11830 }
11831}
11832
11833static void sched_mm_cid_remote_clear_old(struct mm_struct *mm, int cpu)
11834{
11835 struct rq *rq = cpu_rq(cpu);
11836 struct mm_cid *pcpu_cid;
11837 struct task_struct *curr;
11838 u64 rq_clock;
11839
11840 /*
11841 * rq->clock load is racy on 32-bit but one spurious clear once in a
11842 * while is irrelevant.
11843 */
11844 rq_clock = READ_ONCE(rq->clock);
11845 pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu);
11846
11847 /*
11848 * In order to take care of infrequently scheduled tasks, bump the time
11849 * snapshot associated with this cid if an active task using the mm is
11850 * observed on this rq.
11851 */
11852 scoped_guard (rcu) {
11853 curr = rcu_dereference(rq->curr);
11854 if (READ_ONCE(curr->mm_cid_active) && curr->mm == mm) {
11855 WRITE_ONCE(pcpu_cid->time, rq_clock);
11856 return;
11857 }
11858 }
11859
11860 if (rq_clock < pcpu_cid->time + SCHED_MM_CID_PERIOD_NS)
11861 return;
11862 sched_mm_cid_remote_clear(mm, pcpu_cid, cpu);
11863}
11864
11865static void sched_mm_cid_remote_clear_weight(struct mm_struct *mm, int cpu,
11866 int weight)
11867{
11868 struct mm_cid *pcpu_cid;
11869 int cid;
11870
11871 pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu);
11872 cid = READ_ONCE(pcpu_cid->cid);
11873 if (!mm_cid_is_valid(cid) || cid < weight)
11874 return;
11875 sched_mm_cid_remote_clear(mm, pcpu_cid, cpu);
11876}
11877
11878static void task_mm_cid_work(struct callback_head *work)
11879{
11880 unsigned long now = jiffies, old_scan, next_scan;
11881 struct task_struct *t = current;
11882 struct cpumask *cidmask;
11883 struct mm_struct *mm;
11884 int weight, cpu;
11885
11886 SCHED_WARN_ON(t != container_of(work, struct task_struct, cid_work));
11887
11888 work->next = work; /* Prevent double-add */
11889 if (t->flags & PF_EXITING)
11890 return;
11891 mm = t->mm;
11892 if (!mm)
11893 return;
11894 old_scan = READ_ONCE(mm->mm_cid_next_scan);
11895 next_scan = now + msecs_to_jiffies(MM_CID_SCAN_DELAY);
11896 if (!old_scan) {
11897 unsigned long res;
11898
11899 res = cmpxchg(&mm->mm_cid_next_scan, old_scan, next_scan);
11900 if (res != old_scan)
11901 old_scan = res;
11902 else
11903 old_scan = next_scan;
11904 }
11905 if (time_before(now, old_scan))
11906 return;
11907 if (!try_cmpxchg(&mm->mm_cid_next_scan, &old_scan, next_scan))
11908 return;
11909 cidmask = mm_cidmask(mm);
11910 /* Clear cids that were not recently used. */
11911 for_each_possible_cpu(cpu)
11912 sched_mm_cid_remote_clear_old(mm, cpu);
11913 weight = cpumask_weight(srcp: cidmask);
11914 /*
11915 * Clear cids that are greater or equal to the cidmask weight to
11916 * recompact it.
11917 */
11918 for_each_possible_cpu(cpu)
11919 sched_mm_cid_remote_clear_weight(mm, cpu, weight);
11920}
11921
11922void init_sched_mm_cid(struct task_struct *t)
11923{
11924 struct mm_struct *mm = t->mm;
11925 int mm_users = 0;
11926
11927 if (mm) {
11928 mm_users = atomic_read(v: &mm->mm_users);
11929 if (mm_users == 1)
11930 mm->mm_cid_next_scan = jiffies + msecs_to_jiffies(MM_CID_SCAN_DELAY);
11931 }
11932 t->cid_work.next = &t->cid_work; /* Protect against double add */
11933 init_task_work(twork: &t->cid_work, func: task_mm_cid_work);
11934}
11935
11936void task_tick_mm_cid(struct rq *rq, struct task_struct *curr)
11937{
11938 struct callback_head *work = &curr->cid_work;
11939 unsigned long now = jiffies;
11940
11941 if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) ||
11942 work->next != work)
11943 return;
11944 if (time_before(now, READ_ONCE(curr->mm->mm_cid_next_scan)))
11945 return;
11946 task_work_add(task: curr, twork: work, mode: TWA_RESUME);
11947}
11948
11949void sched_mm_cid_exit_signals(struct task_struct *t)
11950{
11951 struct mm_struct *mm = t->mm;
11952 struct rq *rq;
11953
11954 if (!mm)
11955 return;
11956
11957 preempt_disable();
11958 rq = this_rq();
11959 guard(rq_lock_irqsave)(l: rq);
11960 preempt_enable_no_resched(); /* holding spinlock */
11961 WRITE_ONCE(t->mm_cid_active, 0);
11962 /*
11963 * Store t->mm_cid_active before loading per-mm/cpu cid.
11964 * Matches barrier in sched_mm_cid_remote_clear_old().
11965 */
11966 smp_mb();
11967 mm_cid_put(mm);
11968 t->last_mm_cid = t->mm_cid = -1;
11969}
11970
11971void sched_mm_cid_before_execve(struct task_struct *t)
11972{
11973 struct mm_struct *mm = t->mm;
11974 struct rq *rq;
11975
11976 if (!mm)
11977 return;
11978
11979 preempt_disable();
11980 rq = this_rq();
11981 guard(rq_lock_irqsave)(l: rq);
11982 preempt_enable_no_resched(); /* holding spinlock */
11983 WRITE_ONCE(t->mm_cid_active, 0);
11984 /*
11985 * Store t->mm_cid_active before loading per-mm/cpu cid.
11986 * Matches barrier in sched_mm_cid_remote_clear_old().
11987 */
11988 smp_mb();
11989 mm_cid_put(mm);
11990 t->last_mm_cid = t->mm_cid = -1;
11991}
11992
11993void sched_mm_cid_after_execve(struct task_struct *t)
11994{
11995 struct mm_struct *mm = t->mm;
11996 struct rq *rq;
11997
11998 if (!mm)
11999 return;
12000
12001 preempt_disable();
12002 rq = this_rq();
12003 scoped_guard (rq_lock_irqsave, rq) {
12004 preempt_enable_no_resched(); /* holding spinlock */
12005 WRITE_ONCE(t->mm_cid_active, 1);
12006 /*
12007 * Store t->mm_cid_active before loading per-mm/cpu cid.
12008 * Matches barrier in sched_mm_cid_remote_clear_old().
12009 */
12010 smp_mb();
12011 t->last_mm_cid = t->mm_cid = mm_cid_get(rq, mm);
12012 }
12013 rseq_set_notify_resume(t);
12014}
12015
12016void sched_mm_cid_fork(struct task_struct *t)
12017{
12018 WARN_ON_ONCE(!t->mm || t->mm_cid != -1);
12019 t->mm_cid_active = 1;
12020}
12021#endif
12022

source code of linux/kernel/sched/core.c