1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
4 * policies)
5 */
6#include "sched.h"
7
8#include "pelt.h"
9
10int sched_rr_timeslice = RR_TIMESLICE;
11int sysctl_sched_rr_timeslice = (MSEC_PER_SEC / HZ) * RR_TIMESLICE;
12
13static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
14
15struct rt_bandwidth def_rt_bandwidth;
16
17static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
18{
19 struct rt_bandwidth *rt_b =
20 container_of(timer, struct rt_bandwidth, rt_period_timer);
21 int idle = 0;
22 int overrun;
23
24 raw_spin_lock(&rt_b->rt_runtime_lock);
25 for (;;) {
26 overrun = hrtimer_forward_now(timer, rt_b->rt_period);
27 if (!overrun)
28 break;
29
30 raw_spin_unlock(&rt_b->rt_runtime_lock);
31 idle = do_sched_rt_period_timer(rt_b, overrun);
32 raw_spin_lock(&rt_b->rt_runtime_lock);
33 }
34 if (idle)
35 rt_b->rt_period_active = 0;
36 raw_spin_unlock(&rt_b->rt_runtime_lock);
37
38 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
39}
40
41void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
42{
43 rt_b->rt_period = ns_to_ktime(period);
44 rt_b->rt_runtime = runtime;
45
46 raw_spin_lock_init(&rt_b->rt_runtime_lock);
47
48 hrtimer_init(&rt_b->rt_period_timer,
49 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
50 rt_b->rt_period_timer.function = sched_rt_period_timer;
51}
52
53static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
54{
55 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
56 return;
57
58 raw_spin_lock(&rt_b->rt_runtime_lock);
59 if (!rt_b->rt_period_active) {
60 rt_b->rt_period_active = 1;
61 /*
62 * SCHED_DEADLINE updates the bandwidth, as a run away
63 * RT task with a DL task could hog a CPU. But DL does
64 * not reset the period. If a deadline task was running
65 * without an RT task running, it can cause RT tasks to
66 * throttle when they start up. Kick the timer right away
67 * to update the period.
68 */
69 hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0));
70 hrtimer_start_expires(&rt_b->rt_period_timer, HRTIMER_MODE_ABS_PINNED);
71 }
72 raw_spin_unlock(&rt_b->rt_runtime_lock);
73}
74
75void init_rt_rq(struct rt_rq *rt_rq)
76{
77 struct rt_prio_array *array;
78 int i;
79
80 array = &rt_rq->active;
81 for (i = 0; i < MAX_RT_PRIO; i++) {
82 INIT_LIST_HEAD(array->queue + i);
83 __clear_bit(i, array->bitmap);
84 }
85 /* delimiter for bitsearch: */
86 __set_bit(MAX_RT_PRIO, array->bitmap);
87
88#if defined CONFIG_SMP
89 rt_rq->highest_prio.curr = MAX_RT_PRIO;
90 rt_rq->highest_prio.next = MAX_RT_PRIO;
91 rt_rq->rt_nr_migratory = 0;
92 rt_rq->overloaded = 0;
93 plist_head_init(&rt_rq->pushable_tasks);
94#endif /* CONFIG_SMP */
95 /* We start is dequeued state, because no RT tasks are queued */
96 rt_rq->rt_queued = 0;
97
98 rt_rq->rt_time = 0;
99 rt_rq->rt_throttled = 0;
100 rt_rq->rt_runtime = 0;
101 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
102}
103
104#ifdef CONFIG_RT_GROUP_SCHED
105static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
106{
107 hrtimer_cancel(&rt_b->rt_period_timer);
108}
109
110#define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
111
112static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
113{
114#ifdef CONFIG_SCHED_DEBUG
115 WARN_ON_ONCE(!rt_entity_is_task(rt_se));
116#endif
117 return container_of(rt_se, struct task_struct, rt);
118}
119
120static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
121{
122 return rt_rq->rq;
123}
124
125static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
126{
127 return rt_se->rt_rq;
128}
129
130static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
131{
132 struct rt_rq *rt_rq = rt_se->rt_rq;
133
134 return rt_rq->rq;
135}
136
137void free_rt_sched_group(struct task_group *tg)
138{
139 int i;
140
141 if (tg->rt_se)
142 destroy_rt_bandwidth(&tg->rt_bandwidth);
143
144 for_each_possible_cpu(i) {
145 if (tg->rt_rq)
146 kfree(tg->rt_rq[i]);
147 if (tg->rt_se)
148 kfree(tg->rt_se[i]);
149 }
150
151 kfree(tg->rt_rq);
152 kfree(tg->rt_se);
153}
154
155void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
156 struct sched_rt_entity *rt_se, int cpu,
157 struct sched_rt_entity *parent)
158{
159 struct rq *rq = cpu_rq(cpu);
160
161 rt_rq->highest_prio.curr = MAX_RT_PRIO;
162 rt_rq->rt_nr_boosted = 0;
163 rt_rq->rq = rq;
164 rt_rq->tg = tg;
165
166 tg->rt_rq[cpu] = rt_rq;
167 tg->rt_se[cpu] = rt_se;
168
169 if (!rt_se)
170 return;
171
172 if (!parent)
173 rt_se->rt_rq = &rq->rt;
174 else
175 rt_se->rt_rq = parent->my_q;
176
177 rt_se->my_q = rt_rq;
178 rt_se->parent = parent;
179 INIT_LIST_HEAD(&rt_se->run_list);
180}
181
182int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
183{
184 struct rt_rq *rt_rq;
185 struct sched_rt_entity *rt_se;
186 int i;
187
188 tg->rt_rq = kcalloc(nr_cpu_ids, sizeof(rt_rq), GFP_KERNEL);
189 if (!tg->rt_rq)
190 goto err;
191 tg->rt_se = kcalloc(nr_cpu_ids, sizeof(rt_se), GFP_KERNEL);
192 if (!tg->rt_se)
193 goto err;
194
195 init_rt_bandwidth(&tg->rt_bandwidth,
196 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
197
198 for_each_possible_cpu(i) {
199 rt_rq = kzalloc_node(sizeof(struct rt_rq),
200 GFP_KERNEL, cpu_to_node(i));
201 if (!rt_rq)
202 goto err;
203
204 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
205 GFP_KERNEL, cpu_to_node(i));
206 if (!rt_se)
207 goto err_free_rq;
208
209 init_rt_rq(rt_rq);
210 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
211 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
212 }
213
214 return 1;
215
216err_free_rq:
217 kfree(rt_rq);
218err:
219 return 0;
220}
221
222#else /* CONFIG_RT_GROUP_SCHED */
223
224#define rt_entity_is_task(rt_se) (1)
225
226static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
227{
228 return container_of(rt_se, struct task_struct, rt);
229}
230
231static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
232{
233 return container_of(rt_rq, struct rq, rt);
234}
235
236static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
237{
238 struct task_struct *p = rt_task_of(rt_se);
239
240 return task_rq(p);
241}
242
243static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
244{
245 struct rq *rq = rq_of_rt_se(rt_se);
246
247 return &rq->rt;
248}
249
250void free_rt_sched_group(struct task_group *tg) { }
251
252int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
253{
254 return 1;
255}
256#endif /* CONFIG_RT_GROUP_SCHED */
257
258#ifdef CONFIG_SMP
259
260static void pull_rt_task(struct rq *this_rq);
261
262static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
263{
264 /* Try to pull RT tasks here if we lower this rq's prio */
265 return rq->rt.highest_prio.curr > prev->prio;
266}
267
268static inline int rt_overloaded(struct rq *rq)
269{
270 return atomic_read(&rq->rd->rto_count);
271}
272
273static inline void rt_set_overload(struct rq *rq)
274{
275 if (!rq->online)
276 return;
277
278 cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
279 /*
280 * Make sure the mask is visible before we set
281 * the overload count. That is checked to determine
282 * if we should look at the mask. It would be a shame
283 * if we looked at the mask, but the mask was not
284 * updated yet.
285 *
286 * Matched by the barrier in pull_rt_task().
287 */
288 smp_wmb();
289 atomic_inc(&rq->rd->rto_count);
290}
291
292static inline void rt_clear_overload(struct rq *rq)
293{
294 if (!rq->online)
295 return;
296
297 /* the order here really doesn't matter */
298 atomic_dec(&rq->rd->rto_count);
299 cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
300}
301
302static void update_rt_migration(struct rt_rq *rt_rq)
303{
304 if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
305 if (!rt_rq->overloaded) {
306 rt_set_overload(rq_of_rt_rq(rt_rq));
307 rt_rq->overloaded = 1;
308 }
309 } else if (rt_rq->overloaded) {
310 rt_clear_overload(rq_of_rt_rq(rt_rq));
311 rt_rq->overloaded = 0;
312 }
313}
314
315static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
316{
317 struct task_struct *p;
318
319 if (!rt_entity_is_task(rt_se))
320 return;
321
322 p = rt_task_of(rt_se);
323 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
324
325 rt_rq->rt_nr_total++;
326 if (p->nr_cpus_allowed > 1)
327 rt_rq->rt_nr_migratory++;
328
329 update_rt_migration(rt_rq);
330}
331
332static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
333{
334 struct task_struct *p;
335
336 if (!rt_entity_is_task(rt_se))
337 return;
338
339 p = rt_task_of(rt_se);
340 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
341
342 rt_rq->rt_nr_total--;
343 if (p->nr_cpus_allowed > 1)
344 rt_rq->rt_nr_migratory--;
345
346 update_rt_migration(rt_rq);
347}
348
349static inline int has_pushable_tasks(struct rq *rq)
350{
351 return !plist_head_empty(&rq->rt.pushable_tasks);
352}
353
354static DEFINE_PER_CPU(struct callback_head, rt_push_head);
355static DEFINE_PER_CPU(struct callback_head, rt_pull_head);
356
357static void push_rt_tasks(struct rq *);
358static void pull_rt_task(struct rq *);
359
360static inline void rt_queue_push_tasks(struct rq *rq)
361{
362 if (!has_pushable_tasks(rq))
363 return;
364
365 queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks);
366}
367
368static inline void rt_queue_pull_task(struct rq *rq)
369{
370 queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task);
371}
372
373static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
374{
375 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
376 plist_node_init(&p->pushable_tasks, p->prio);
377 plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
378
379 /* Update the highest prio pushable task */
380 if (p->prio < rq->rt.highest_prio.next)
381 rq->rt.highest_prio.next = p->prio;
382}
383
384static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
385{
386 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
387
388 /* Update the new highest prio pushable task */
389 if (has_pushable_tasks(rq)) {
390 p = plist_first_entry(&rq->rt.pushable_tasks,
391 struct task_struct, pushable_tasks);
392 rq->rt.highest_prio.next = p->prio;
393 } else
394 rq->rt.highest_prio.next = MAX_RT_PRIO;
395}
396
397#else
398
399static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
400{
401}
402
403static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
404{
405}
406
407static inline
408void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
409{
410}
411
412static inline
413void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
414{
415}
416
417static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
418{
419 return false;
420}
421
422static inline void pull_rt_task(struct rq *this_rq)
423{
424}
425
426static inline void rt_queue_push_tasks(struct rq *rq)
427{
428}
429#endif /* CONFIG_SMP */
430
431static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
432static void dequeue_top_rt_rq(struct rt_rq *rt_rq);
433
434static inline int on_rt_rq(struct sched_rt_entity *rt_se)
435{
436 return rt_se->on_rq;
437}
438
439#ifdef CONFIG_RT_GROUP_SCHED
440
441static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
442{
443 if (!rt_rq->tg)
444 return RUNTIME_INF;
445
446 return rt_rq->rt_runtime;
447}
448
449static inline u64 sched_rt_period(struct rt_rq *rt_rq)
450{
451 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
452}
453
454typedef struct task_group *rt_rq_iter_t;
455
456static inline struct task_group *next_task_group(struct task_group *tg)
457{
458 do {
459 tg = list_entry_rcu(tg->list.next,
460 typeof(struct task_group), list);
461 } while (&tg->list != &task_groups && task_group_is_autogroup(tg));
462
463 if (&tg->list == &task_groups)
464 tg = NULL;
465
466 return tg;
467}
468
469#define for_each_rt_rq(rt_rq, iter, rq) \
470 for (iter = container_of(&task_groups, typeof(*iter), list); \
471 (iter = next_task_group(iter)) && \
472 (rt_rq = iter->rt_rq[cpu_of(rq)]);)
473
474#define for_each_sched_rt_entity(rt_se) \
475 for (; rt_se; rt_se = rt_se->parent)
476
477static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
478{
479 return rt_se->my_q;
480}
481
482static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
483static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
484
485static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
486{
487 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
488 struct rq *rq = rq_of_rt_rq(rt_rq);
489 struct sched_rt_entity *rt_se;
490
491 int cpu = cpu_of(rq);
492
493 rt_se = rt_rq->tg->rt_se[cpu];
494
495 if (rt_rq->rt_nr_running) {
496 if (!rt_se)
497 enqueue_top_rt_rq(rt_rq);
498 else if (!on_rt_rq(rt_se))
499 enqueue_rt_entity(rt_se, 0);
500
501 if (rt_rq->highest_prio.curr < curr->prio)
502 resched_curr(rq);
503 }
504}
505
506static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
507{
508 struct sched_rt_entity *rt_se;
509 int cpu = cpu_of(rq_of_rt_rq(rt_rq));
510
511 rt_se = rt_rq->tg->rt_se[cpu];
512
513 if (!rt_se) {
514 dequeue_top_rt_rq(rt_rq);
515 /* Kick cpufreq (see the comment in kernel/sched/sched.h). */
516 cpufreq_update_util(rq_of_rt_rq(rt_rq), 0);
517 }
518 else if (on_rt_rq(rt_se))
519 dequeue_rt_entity(rt_se, 0);
520}
521
522static inline int rt_rq_throttled(struct rt_rq *rt_rq)
523{
524 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
525}
526
527static int rt_se_boosted(struct sched_rt_entity *rt_se)
528{
529 struct rt_rq *rt_rq = group_rt_rq(rt_se);
530 struct task_struct *p;
531
532 if (rt_rq)
533 return !!rt_rq->rt_nr_boosted;
534
535 p = rt_task_of(rt_se);
536 return p->prio != p->normal_prio;
537}
538
539#ifdef CONFIG_SMP
540static inline const struct cpumask *sched_rt_period_mask(void)
541{
542 return this_rq()->rd->span;
543}
544#else
545static inline const struct cpumask *sched_rt_period_mask(void)
546{
547 return cpu_online_mask;
548}
549#endif
550
551static inline
552struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
553{
554 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
555}
556
557static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
558{
559 return &rt_rq->tg->rt_bandwidth;
560}
561
562#else /* !CONFIG_RT_GROUP_SCHED */
563
564static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
565{
566 return rt_rq->rt_runtime;
567}
568
569static inline u64 sched_rt_period(struct rt_rq *rt_rq)
570{
571 return ktime_to_ns(def_rt_bandwidth.rt_period);
572}
573
574typedef struct rt_rq *rt_rq_iter_t;
575
576#define for_each_rt_rq(rt_rq, iter, rq) \
577 for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
578
579#define for_each_sched_rt_entity(rt_se) \
580 for (; rt_se; rt_se = NULL)
581
582static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
583{
584 return NULL;
585}
586
587static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
588{
589 struct rq *rq = rq_of_rt_rq(rt_rq);
590
591 if (!rt_rq->rt_nr_running)
592 return;
593
594 enqueue_top_rt_rq(rt_rq);
595 resched_curr(rq);
596}
597
598static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
599{
600 dequeue_top_rt_rq(rt_rq);
601}
602
603static inline int rt_rq_throttled(struct rt_rq *rt_rq)
604{
605 return rt_rq->rt_throttled;
606}
607
608static inline const struct cpumask *sched_rt_period_mask(void)
609{
610 return cpu_online_mask;
611}
612
613static inline
614struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
615{
616 return &cpu_rq(cpu)->rt;
617}
618
619static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
620{
621 return &def_rt_bandwidth;
622}
623
624#endif /* CONFIG_RT_GROUP_SCHED */
625
626bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
627{
628 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
629
630 return (hrtimer_active(&rt_b->rt_period_timer) ||
631 rt_rq->rt_time < rt_b->rt_runtime);
632}
633
634#ifdef CONFIG_SMP
635/*
636 * We ran out of runtime, see if we can borrow some from our neighbours.
637 */
638static void do_balance_runtime(struct rt_rq *rt_rq)
639{
640 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
641 struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
642 int i, weight;
643 u64 rt_period;
644
645 weight = cpumask_weight(rd->span);
646
647 raw_spin_lock(&rt_b->rt_runtime_lock);
648 rt_period = ktime_to_ns(rt_b->rt_period);
649 for_each_cpu(i, rd->span) {
650 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
651 s64 diff;
652
653 if (iter == rt_rq)
654 continue;
655
656 raw_spin_lock(&iter->rt_runtime_lock);
657 /*
658 * Either all rqs have inf runtime and there's nothing to steal
659 * or __disable_runtime() below sets a specific rq to inf to
660 * indicate its been disabled and disalow stealing.
661 */
662 if (iter->rt_runtime == RUNTIME_INF)
663 goto next;
664
665 /*
666 * From runqueues with spare time, take 1/n part of their
667 * spare time, but no more than our period.
668 */
669 diff = iter->rt_runtime - iter->rt_time;
670 if (diff > 0) {
671 diff = div_u64((u64)diff, weight);
672 if (rt_rq->rt_runtime + diff > rt_period)
673 diff = rt_period - rt_rq->rt_runtime;
674 iter->rt_runtime -= diff;
675 rt_rq->rt_runtime += diff;
676 if (rt_rq->rt_runtime == rt_period) {
677 raw_spin_unlock(&iter->rt_runtime_lock);
678 break;
679 }
680 }
681next:
682 raw_spin_unlock(&iter->rt_runtime_lock);
683 }
684 raw_spin_unlock(&rt_b->rt_runtime_lock);
685}
686
687/*
688 * Ensure this RQ takes back all the runtime it lend to its neighbours.
689 */
690static void __disable_runtime(struct rq *rq)
691{
692 struct root_domain *rd = rq->rd;
693 rt_rq_iter_t iter;
694 struct rt_rq *rt_rq;
695
696 if (unlikely(!scheduler_running))
697 return;
698
699 for_each_rt_rq(rt_rq, iter, rq) {
700 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
701 s64 want;
702 int i;
703
704 raw_spin_lock(&rt_b->rt_runtime_lock);
705 raw_spin_lock(&rt_rq->rt_runtime_lock);
706 /*
707 * Either we're all inf and nobody needs to borrow, or we're
708 * already disabled and thus have nothing to do, or we have
709 * exactly the right amount of runtime to take out.
710 */
711 if (rt_rq->rt_runtime == RUNTIME_INF ||
712 rt_rq->rt_runtime == rt_b->rt_runtime)
713 goto balanced;
714 raw_spin_unlock(&rt_rq->rt_runtime_lock);
715
716 /*
717 * Calculate the difference between what we started out with
718 * and what we current have, that's the amount of runtime
719 * we lend and now have to reclaim.
720 */
721 want = rt_b->rt_runtime - rt_rq->rt_runtime;
722
723 /*
724 * Greedy reclaim, take back as much as we can.
725 */
726 for_each_cpu(i, rd->span) {
727 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
728 s64 diff;
729
730 /*
731 * Can't reclaim from ourselves or disabled runqueues.
732 */
733 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
734 continue;
735
736 raw_spin_lock(&iter->rt_runtime_lock);
737 if (want > 0) {
738 diff = min_t(s64, iter->rt_runtime, want);
739 iter->rt_runtime -= diff;
740 want -= diff;
741 } else {
742 iter->rt_runtime -= want;
743 want -= want;
744 }
745 raw_spin_unlock(&iter->rt_runtime_lock);
746
747 if (!want)
748 break;
749 }
750
751 raw_spin_lock(&rt_rq->rt_runtime_lock);
752 /*
753 * We cannot be left wanting - that would mean some runtime
754 * leaked out of the system.
755 */
756 BUG_ON(want);
757balanced:
758 /*
759 * Disable all the borrow logic by pretending we have inf
760 * runtime - in which case borrowing doesn't make sense.
761 */
762 rt_rq->rt_runtime = RUNTIME_INF;
763 rt_rq->rt_throttled = 0;
764 raw_spin_unlock(&rt_rq->rt_runtime_lock);
765 raw_spin_unlock(&rt_b->rt_runtime_lock);
766
767 /* Make rt_rq available for pick_next_task() */
768 sched_rt_rq_enqueue(rt_rq);
769 }
770}
771
772static void __enable_runtime(struct rq *rq)
773{
774 rt_rq_iter_t iter;
775 struct rt_rq *rt_rq;
776
777 if (unlikely(!scheduler_running))
778 return;
779
780 /*
781 * Reset each runqueue's bandwidth settings
782 */
783 for_each_rt_rq(rt_rq, iter, rq) {
784 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
785
786 raw_spin_lock(&rt_b->rt_runtime_lock);
787 raw_spin_lock(&rt_rq->rt_runtime_lock);
788 rt_rq->rt_runtime = rt_b->rt_runtime;
789 rt_rq->rt_time = 0;
790 rt_rq->rt_throttled = 0;
791 raw_spin_unlock(&rt_rq->rt_runtime_lock);
792 raw_spin_unlock(&rt_b->rt_runtime_lock);
793 }
794}
795
796static void balance_runtime(struct rt_rq *rt_rq)
797{
798 if (!sched_feat(RT_RUNTIME_SHARE))
799 return;
800
801 if (rt_rq->rt_time > rt_rq->rt_runtime) {
802 raw_spin_unlock(&rt_rq->rt_runtime_lock);
803 do_balance_runtime(rt_rq);
804 raw_spin_lock(&rt_rq->rt_runtime_lock);
805 }
806}
807#else /* !CONFIG_SMP */
808static inline void balance_runtime(struct rt_rq *rt_rq) {}
809#endif /* CONFIG_SMP */
810
811static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
812{
813 int i, idle = 1, throttled = 0;
814 const struct cpumask *span;
815
816 span = sched_rt_period_mask();
817#ifdef CONFIG_RT_GROUP_SCHED
818 /*
819 * FIXME: isolated CPUs should really leave the root task group,
820 * whether they are isolcpus or were isolated via cpusets, lest
821 * the timer run on a CPU which does not service all runqueues,
822 * potentially leaving other CPUs indefinitely throttled. If
823 * isolation is really required, the user will turn the throttle
824 * off to kill the perturbations it causes anyway. Meanwhile,
825 * this maintains functionality for boot and/or troubleshooting.
826 */
827 if (rt_b == &root_task_group.rt_bandwidth)
828 span = cpu_online_mask;
829#endif
830 for_each_cpu(i, span) {
831 int enqueue = 0;
832 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
833 struct rq *rq = rq_of_rt_rq(rt_rq);
834 int skip;
835
836 /*
837 * When span == cpu_online_mask, taking each rq->lock
838 * can be time-consuming. Try to avoid it when possible.
839 */
840 raw_spin_lock(&rt_rq->rt_runtime_lock);
841 if (!sched_feat(RT_RUNTIME_SHARE) && rt_rq->rt_runtime != RUNTIME_INF)
842 rt_rq->rt_runtime = rt_b->rt_runtime;
843 skip = !rt_rq->rt_time && !rt_rq->rt_nr_running;
844 raw_spin_unlock(&rt_rq->rt_runtime_lock);
845 if (skip)
846 continue;
847
848 raw_spin_lock(&rq->lock);
849 update_rq_clock(rq);
850
851 if (rt_rq->rt_time) {
852 u64 runtime;
853
854 raw_spin_lock(&rt_rq->rt_runtime_lock);
855 if (rt_rq->rt_throttled)
856 balance_runtime(rt_rq);
857 runtime = rt_rq->rt_runtime;
858 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
859 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
860 rt_rq->rt_throttled = 0;
861 enqueue = 1;
862
863 /*
864 * When we're idle and a woken (rt) task is
865 * throttled check_preempt_curr() will set
866 * skip_update and the time between the wakeup
867 * and this unthrottle will get accounted as
868 * 'runtime'.
869 */
870 if (rt_rq->rt_nr_running && rq->curr == rq->idle)
871 rq_clock_cancel_skipupdate(rq);
872 }
873 if (rt_rq->rt_time || rt_rq->rt_nr_running)
874 idle = 0;
875 raw_spin_unlock(&rt_rq->rt_runtime_lock);
876 } else if (rt_rq->rt_nr_running) {
877 idle = 0;
878 if (!rt_rq_throttled(rt_rq))
879 enqueue = 1;
880 }
881 if (rt_rq->rt_throttled)
882 throttled = 1;
883
884 if (enqueue)
885 sched_rt_rq_enqueue(rt_rq);
886 raw_spin_unlock(&rq->lock);
887 }
888
889 if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
890 return 1;
891
892 return idle;
893}
894
895static inline int rt_se_prio(struct sched_rt_entity *rt_se)
896{
897#ifdef CONFIG_RT_GROUP_SCHED
898 struct rt_rq *rt_rq = group_rt_rq(rt_se);
899
900 if (rt_rq)
901 return rt_rq->highest_prio.curr;
902#endif
903
904 return rt_task_of(rt_se)->prio;
905}
906
907static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
908{
909 u64 runtime = sched_rt_runtime(rt_rq);
910
911 if (rt_rq->rt_throttled)
912 return rt_rq_throttled(rt_rq);
913
914 if (runtime >= sched_rt_period(rt_rq))
915 return 0;
916
917 balance_runtime(rt_rq);
918 runtime = sched_rt_runtime(rt_rq);
919 if (runtime == RUNTIME_INF)
920 return 0;
921
922 if (rt_rq->rt_time > runtime) {
923 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
924
925 /*
926 * Don't actually throttle groups that have no runtime assigned
927 * but accrue some time due to boosting.
928 */
929 if (likely(rt_b->rt_runtime)) {
930 rt_rq->rt_throttled = 1;
931 printk_deferred_once("sched: RT throttling activated\n");
932 } else {
933 /*
934 * In case we did anyway, make it go away,
935 * replenishment is a joke, since it will replenish us
936 * with exactly 0 ns.
937 */
938 rt_rq->rt_time = 0;
939 }
940
941 if (rt_rq_throttled(rt_rq)) {
942 sched_rt_rq_dequeue(rt_rq);
943 return 1;
944 }
945 }
946
947 return 0;
948}
949
950/*
951 * Update the current task's runtime statistics. Skip current tasks that
952 * are not in our scheduling class.
953 */
954static void update_curr_rt(struct rq *rq)
955{
956 struct task_struct *curr = rq->curr;
957 struct sched_rt_entity *rt_se = &curr->rt;
958 u64 delta_exec;
959 u64 now;
960
961 if (curr->sched_class != &rt_sched_class)
962 return;
963
964 now = rq_clock_task(rq);
965 delta_exec = now - curr->se.exec_start;
966 if (unlikely((s64)delta_exec <= 0))
967 return;
968
969 schedstat_set(curr->se.statistics.exec_max,
970 max(curr->se.statistics.exec_max, delta_exec));
971
972 curr->se.sum_exec_runtime += delta_exec;
973 account_group_exec_runtime(curr, delta_exec);
974
975 curr->se.exec_start = now;
976 cgroup_account_cputime(curr, delta_exec);
977
978 if (!rt_bandwidth_enabled())
979 return;
980
981 for_each_sched_rt_entity(rt_se) {
982 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
983
984 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
985 raw_spin_lock(&rt_rq->rt_runtime_lock);
986 rt_rq->rt_time += delta_exec;
987 if (sched_rt_runtime_exceeded(rt_rq))
988 resched_curr(rq);
989 raw_spin_unlock(&rt_rq->rt_runtime_lock);
990 }
991 }
992}
993
994static void
995dequeue_top_rt_rq(struct rt_rq *rt_rq)
996{
997 struct rq *rq = rq_of_rt_rq(rt_rq);
998
999 BUG_ON(&rq->rt != rt_rq);
1000
1001 if (!rt_rq->rt_queued)
1002 return;
1003
1004 BUG_ON(!rq->nr_running);
1005
1006 sub_nr_running(rq, rt_rq->rt_nr_running);
1007 rt_rq->rt_queued = 0;
1008
1009}
1010
1011static void
1012enqueue_top_rt_rq(struct rt_rq *rt_rq)
1013{
1014 struct rq *rq = rq_of_rt_rq(rt_rq);
1015
1016 BUG_ON(&rq->rt != rt_rq);
1017
1018 if (rt_rq->rt_queued)
1019 return;
1020
1021 if (rt_rq_throttled(rt_rq))
1022 return;
1023
1024 if (rt_rq->rt_nr_running) {
1025 add_nr_running(rq, rt_rq->rt_nr_running);
1026 rt_rq->rt_queued = 1;
1027 }
1028
1029 /* Kick cpufreq (see the comment in kernel/sched/sched.h). */
1030 cpufreq_update_util(rq, 0);
1031}
1032
1033#if defined CONFIG_SMP
1034
1035static void
1036inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1037{
1038 struct rq *rq = rq_of_rt_rq(rt_rq);
1039
1040#ifdef CONFIG_RT_GROUP_SCHED
1041 /*
1042 * Change rq's cpupri only if rt_rq is the top queue.
1043 */
1044 if (&rq->rt != rt_rq)
1045 return;
1046#endif
1047 if (rq->online && prio < prev_prio)
1048 cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1049}
1050
1051static void
1052dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1053{
1054 struct rq *rq = rq_of_rt_rq(rt_rq);
1055
1056#ifdef CONFIG_RT_GROUP_SCHED
1057 /*
1058 * Change rq's cpupri only if rt_rq is the top queue.
1059 */
1060 if (&rq->rt != rt_rq)
1061 return;
1062#endif
1063 if (rq->online && rt_rq->highest_prio.curr != prev_prio)
1064 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
1065}
1066
1067#else /* CONFIG_SMP */
1068
1069static inline
1070void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1071static inline
1072void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1073
1074#endif /* CONFIG_SMP */
1075
1076#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
1077static void
1078inc_rt_prio(struct rt_rq *rt_rq, int prio)
1079{
1080 int prev_prio = rt_rq->highest_prio.curr;
1081
1082 if (prio < prev_prio)
1083 rt_rq->highest_prio.curr = prio;
1084
1085 inc_rt_prio_smp(rt_rq, prio, prev_prio);
1086}
1087
1088static void
1089dec_rt_prio(struct rt_rq *rt_rq, int prio)
1090{
1091 int prev_prio = rt_rq->highest_prio.curr;
1092
1093 if (rt_rq->rt_nr_running) {
1094
1095 WARN_ON(prio < prev_prio);
1096
1097 /*
1098 * This may have been our highest task, and therefore
1099 * we may have some recomputation to do
1100 */
1101 if (prio == prev_prio) {
1102 struct rt_prio_array *array = &rt_rq->active;
1103
1104 rt_rq->highest_prio.curr =
1105 sched_find_first_bit(array->bitmap);
1106 }
1107
1108 } else
1109 rt_rq->highest_prio.curr = MAX_RT_PRIO;
1110
1111 dec_rt_prio_smp(rt_rq, prio, prev_prio);
1112}
1113
1114#else
1115
1116static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
1117static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1118
1119#endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1120
1121#ifdef CONFIG_RT_GROUP_SCHED
1122
1123static void
1124inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1125{
1126 if (rt_se_boosted(rt_se))
1127 rt_rq->rt_nr_boosted++;
1128
1129 if (rt_rq->tg)
1130 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1131}
1132
1133static void
1134dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1135{
1136 if (rt_se_boosted(rt_se))
1137 rt_rq->rt_nr_boosted--;
1138
1139 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1140}
1141
1142#else /* CONFIG_RT_GROUP_SCHED */
1143
1144static void
1145inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1146{
1147 start_rt_bandwidth(&def_rt_bandwidth);
1148}
1149
1150static inline
1151void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1152
1153#endif /* CONFIG_RT_GROUP_SCHED */
1154
1155static inline
1156unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1157{
1158 struct rt_rq *group_rq = group_rt_rq(rt_se);
1159
1160 if (group_rq)
1161 return group_rq->rt_nr_running;
1162 else
1163 return 1;
1164}
1165
1166static inline
1167unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se)
1168{
1169 struct rt_rq *group_rq = group_rt_rq(rt_se);
1170 struct task_struct *tsk;
1171
1172 if (group_rq)
1173 return group_rq->rr_nr_running;
1174
1175 tsk = rt_task_of(rt_se);
1176
1177 return (tsk->policy == SCHED_RR) ? 1 : 0;
1178}
1179
1180static inline
1181void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1182{
1183 int prio = rt_se_prio(rt_se);
1184
1185 WARN_ON(!rt_prio(prio));
1186 rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
1187 rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se);
1188
1189 inc_rt_prio(rt_rq, prio);
1190 inc_rt_migration(rt_se, rt_rq);
1191 inc_rt_group(rt_se, rt_rq);
1192}
1193
1194static inline
1195void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1196{
1197 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1198 WARN_ON(!rt_rq->rt_nr_running);
1199 rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
1200 rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se);
1201
1202 dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1203 dec_rt_migration(rt_se, rt_rq);
1204 dec_rt_group(rt_se, rt_rq);
1205}
1206
1207/*
1208 * Change rt_se->run_list location unless SAVE && !MOVE
1209 *
1210 * assumes ENQUEUE/DEQUEUE flags match
1211 */
1212static inline bool move_entity(unsigned int flags)
1213{
1214 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
1215 return false;
1216
1217 return true;
1218}
1219
1220static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array)
1221{
1222 list_del_init(&rt_se->run_list);
1223
1224 if (list_empty(array->queue + rt_se_prio(rt_se)))
1225 __clear_bit(rt_se_prio(rt_se), array->bitmap);
1226
1227 rt_se->on_list = 0;
1228}
1229
1230static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1231{
1232 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1233 struct rt_prio_array *array = &rt_rq->active;
1234 struct rt_rq *group_rq = group_rt_rq(rt_se);
1235 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1236
1237 /*
1238 * Don't enqueue the group if its throttled, or when empty.
1239 * The latter is a consequence of the former when a child group
1240 * get throttled and the current group doesn't have any other
1241 * active members.
1242 */
1243 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) {
1244 if (rt_se->on_list)
1245 __delist_rt_entity(rt_se, array);
1246 return;
1247 }
1248
1249 if (move_entity(flags)) {
1250 WARN_ON_ONCE(rt_se->on_list);
1251 if (flags & ENQUEUE_HEAD)
1252 list_add(&rt_se->run_list, queue);
1253 else
1254 list_add_tail(&rt_se->run_list, queue);
1255
1256 __set_bit(rt_se_prio(rt_se), array->bitmap);
1257 rt_se->on_list = 1;
1258 }
1259 rt_se->on_rq = 1;
1260
1261 inc_rt_tasks(rt_se, rt_rq);
1262}
1263
1264static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1265{
1266 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1267 struct rt_prio_array *array = &rt_rq->active;
1268
1269 if (move_entity(flags)) {
1270 WARN_ON_ONCE(!rt_se->on_list);
1271 __delist_rt_entity(rt_se, array);
1272 }
1273 rt_se->on_rq = 0;
1274
1275 dec_rt_tasks(rt_se, rt_rq);
1276}
1277
1278/*
1279 * Because the prio of an upper entry depends on the lower
1280 * entries, we must remove entries top - down.
1281 */
1282static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags)
1283{
1284 struct sched_rt_entity *back = NULL;
1285
1286 for_each_sched_rt_entity(rt_se) {
1287 rt_se->back = back;
1288 back = rt_se;
1289 }
1290
1291 dequeue_top_rt_rq(rt_rq_of_se(back));
1292
1293 for (rt_se = back; rt_se; rt_se = rt_se->back) {
1294 if (on_rt_rq(rt_se))
1295 __dequeue_rt_entity(rt_se, flags);
1296 }
1297}
1298
1299static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1300{
1301 struct rq *rq = rq_of_rt_se(rt_se);
1302
1303 dequeue_rt_stack(rt_se, flags);
1304 for_each_sched_rt_entity(rt_se)
1305 __enqueue_rt_entity(rt_se, flags);
1306 enqueue_top_rt_rq(&rq->rt);
1307}
1308
1309static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1310{
1311 struct rq *rq = rq_of_rt_se(rt_se);
1312
1313 dequeue_rt_stack(rt_se, flags);
1314
1315 for_each_sched_rt_entity(rt_se) {
1316 struct rt_rq *rt_rq = group_rt_rq(rt_se);
1317
1318 if (rt_rq && rt_rq->rt_nr_running)
1319 __enqueue_rt_entity(rt_se, flags);
1320 }
1321 enqueue_top_rt_rq(&rq->rt);
1322}
1323
1324/*
1325 * Adding/removing a task to/from a priority array:
1326 */
1327static void
1328enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1329{
1330 struct sched_rt_entity *rt_se = &p->rt;
1331
1332 if (flags & ENQUEUE_WAKEUP)
1333 rt_se->timeout = 0;
1334
1335 enqueue_rt_entity(rt_se, flags);
1336
1337 if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1338 enqueue_pushable_task(rq, p);
1339}
1340
1341static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1342{
1343 struct sched_rt_entity *rt_se = &p->rt;
1344
1345 update_curr_rt(rq);
1346 dequeue_rt_entity(rt_se, flags);
1347
1348 dequeue_pushable_task(rq, p);
1349}
1350
1351/*
1352 * Put task to the head or the end of the run list without the overhead of
1353 * dequeue followed by enqueue.
1354 */
1355static void
1356requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1357{
1358 if (on_rt_rq(rt_se)) {
1359 struct rt_prio_array *array = &rt_rq->active;
1360 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1361
1362 if (head)
1363 list_move(&rt_se->run_list, queue);
1364 else
1365 list_move_tail(&rt_se->run_list, queue);
1366 }
1367}
1368
1369static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1370{
1371 struct sched_rt_entity *rt_se = &p->rt;
1372 struct rt_rq *rt_rq;
1373
1374 for_each_sched_rt_entity(rt_se) {
1375 rt_rq = rt_rq_of_se(rt_se);
1376 requeue_rt_entity(rt_rq, rt_se, head);
1377 }
1378}
1379
1380static void yield_task_rt(struct rq *rq)
1381{
1382 requeue_task_rt(rq, rq->curr, 0);
1383}
1384
1385#ifdef CONFIG_SMP
1386static int find_lowest_rq(struct task_struct *task);
1387
1388static int
1389select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags)
1390{
1391 struct task_struct *curr;
1392 struct rq *rq;
1393
1394 /* For anything but wake ups, just return the task_cpu */
1395 if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
1396 goto out;
1397
1398 rq = cpu_rq(cpu);
1399
1400 rcu_read_lock();
1401 curr = READ_ONCE(rq->curr); /* unlocked access */
1402
1403 /*
1404 * If the current task on @p's runqueue is an RT task, then
1405 * try to see if we can wake this RT task up on another
1406 * runqueue. Otherwise simply start this RT task
1407 * on its current runqueue.
1408 *
1409 * We want to avoid overloading runqueues. If the woken
1410 * task is a higher priority, then it will stay on this CPU
1411 * and the lower prio task should be moved to another CPU.
1412 * Even though this will probably make the lower prio task
1413 * lose its cache, we do not want to bounce a higher task
1414 * around just because it gave up its CPU, perhaps for a
1415 * lock?
1416 *
1417 * For equal prio tasks, we just let the scheduler sort it out.
1418 *
1419 * Otherwise, just let it ride on the affined RQ and the
1420 * post-schedule router will push the preempted task away
1421 *
1422 * This test is optimistic, if we get it wrong the load-balancer
1423 * will have to sort it out.
1424 */
1425 if (curr && unlikely(rt_task(curr)) &&
1426 (curr->nr_cpus_allowed < 2 ||
1427 curr->prio <= p->prio)) {
1428 int target = find_lowest_rq(p);
1429
1430 /*
1431 * Don't bother moving it if the destination CPU is
1432 * not running a lower priority task.
1433 */
1434 if (target != -1 &&
1435 p->prio < cpu_rq(target)->rt.highest_prio.curr)
1436 cpu = target;
1437 }
1438 rcu_read_unlock();
1439
1440out:
1441 return cpu;
1442}
1443
1444static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1445{
1446 /*
1447 * Current can't be migrated, useless to reschedule,
1448 * let's hope p can move out.
1449 */
1450 if (rq->curr->nr_cpus_allowed == 1 ||
1451 !cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1452 return;
1453
1454 /*
1455 * p is migratable, so let's not schedule it and
1456 * see if it is pushed or pulled somewhere else.
1457 */
1458 if (p->nr_cpus_allowed != 1
1459 && cpupri_find(&rq->rd->cpupri, p, NULL))
1460 return;
1461
1462 /*
1463 * There appear to be other CPUs that can accept
1464 * the current task but none can run 'p', so lets reschedule
1465 * to try and push the current task away:
1466 */
1467 requeue_task_rt(rq, p, 1);
1468 resched_curr(rq);
1469}
1470
1471#endif /* CONFIG_SMP */
1472
1473/*
1474 * Preempt the current task with a newly woken task if needed:
1475 */
1476static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1477{
1478 if (p->prio < rq->curr->prio) {
1479 resched_curr(rq);
1480 return;
1481 }
1482
1483#ifdef CONFIG_SMP
1484 /*
1485 * If:
1486 *
1487 * - the newly woken task is of equal priority to the current task
1488 * - the newly woken task is non-migratable while current is migratable
1489 * - current will be preempted on the next reschedule
1490 *
1491 * we should check to see if current can readily move to a different
1492 * cpu. If so, we will reschedule to allow the push logic to try
1493 * to move current somewhere else, making room for our non-migratable
1494 * task.
1495 */
1496 if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1497 check_preempt_equal_prio(rq, p);
1498#endif
1499}
1500
1501static inline void set_next_task(struct rq *rq, struct task_struct *p)
1502{
1503 p->se.exec_start = rq_clock_task(rq);
1504
1505 /* The running task is never eligible for pushing */
1506 dequeue_pushable_task(rq, p);
1507}
1508
1509static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1510 struct rt_rq *rt_rq)
1511{
1512 struct rt_prio_array *array = &rt_rq->active;
1513 struct sched_rt_entity *next = NULL;
1514 struct list_head *queue;
1515 int idx;
1516
1517 idx = sched_find_first_bit(array->bitmap);
1518 BUG_ON(idx >= MAX_RT_PRIO);
1519
1520 queue = array->queue + idx;
1521 next = list_entry(queue->next, struct sched_rt_entity, run_list);
1522
1523 return next;
1524}
1525
1526static struct task_struct *_pick_next_task_rt(struct rq *rq)
1527{
1528 struct sched_rt_entity *rt_se;
1529 struct rt_rq *rt_rq = &rq->rt;
1530
1531 do {
1532 rt_se = pick_next_rt_entity(rq, rt_rq);
1533 BUG_ON(!rt_se);
1534 rt_rq = group_rt_rq(rt_se);
1535 } while (rt_rq);
1536
1537 return rt_task_of(rt_se);
1538}
1539
1540static struct task_struct *
1541pick_next_task_rt(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
1542{
1543 struct task_struct *p;
1544 struct rt_rq *rt_rq = &rq->rt;
1545
1546 if (need_pull_rt_task(rq, prev)) {
1547 /*
1548 * This is OK, because current is on_cpu, which avoids it being
1549 * picked for load-balance and preemption/IRQs are still
1550 * disabled avoiding further scheduler activity on it and we're
1551 * being very careful to re-start the picking loop.
1552 */
1553 rq_unpin_lock(rq, rf);
1554 pull_rt_task(rq);
1555 rq_repin_lock(rq, rf);
1556 /*
1557 * pull_rt_task() can drop (and re-acquire) rq->lock; this
1558 * means a dl or stop task can slip in, in which case we need
1559 * to re-start task selection.
1560 */
1561 if (unlikely((rq->stop && task_on_rq_queued(rq->stop)) ||
1562 rq->dl.dl_nr_running))
1563 return RETRY_TASK;
1564 }
1565
1566 /*
1567 * We may dequeue prev's rt_rq in put_prev_task().
1568 * So, we update time before rt_queued check.
1569 */
1570 if (prev->sched_class == &rt_sched_class)
1571 update_curr_rt(rq);
1572
1573 if (!rt_rq->rt_queued)
1574 return NULL;
1575
1576 put_prev_task(rq, prev);
1577
1578 p = _pick_next_task_rt(rq);
1579
1580 set_next_task(rq, p);
1581
1582 rt_queue_push_tasks(rq);
1583
1584 /*
1585 * If prev task was rt, put_prev_task() has already updated the
1586 * utilization. We only care of the case where we start to schedule a
1587 * rt task
1588 */
1589 if (rq->curr->sched_class != &rt_sched_class)
1590 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0);
1591
1592 return p;
1593}
1594
1595static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1596{
1597 update_curr_rt(rq);
1598
1599 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
1600
1601 /*
1602 * The previous task needs to be made eligible for pushing
1603 * if it is still active
1604 */
1605 if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1606 enqueue_pushable_task(rq, p);
1607}
1608
1609#ifdef CONFIG_SMP
1610
1611/* Only try algorithms three times */
1612#define RT_MAX_TRIES 3
1613
1614static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1615{
1616 if (!task_running(rq, p) &&
1617 cpumask_test_cpu(cpu, &p->cpus_allowed))
1618 return 1;
1619
1620 return 0;
1621}
1622
1623/*
1624 * Return the highest pushable rq's task, which is suitable to be executed
1625 * on the CPU, NULL otherwise
1626 */
1627static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
1628{
1629 struct plist_head *head = &rq->rt.pushable_tasks;
1630 struct task_struct *p;
1631
1632 if (!has_pushable_tasks(rq))
1633 return NULL;
1634
1635 plist_for_each_entry(p, head, pushable_tasks) {
1636 if (pick_rt_task(rq, p, cpu))
1637 return p;
1638 }
1639
1640 return NULL;
1641}
1642
1643static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1644
1645static int find_lowest_rq(struct task_struct *task)
1646{
1647 struct sched_domain *sd;
1648 struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
1649 int this_cpu = smp_processor_id();
1650 int cpu = task_cpu(task);
1651
1652 /* Make sure the mask is initialized first */
1653 if (unlikely(!lowest_mask))
1654 return -1;
1655
1656 if (task->nr_cpus_allowed == 1)
1657 return -1; /* No other targets possible */
1658
1659 if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
1660 return -1; /* No targets found */
1661
1662 /*
1663 * At this point we have built a mask of CPUs representing the
1664 * lowest priority tasks in the system. Now we want to elect
1665 * the best one based on our affinity and topology.
1666 *
1667 * We prioritize the last CPU that the task executed on since
1668 * it is most likely cache-hot in that location.
1669 */
1670 if (cpumask_test_cpu(cpu, lowest_mask))
1671 return cpu;
1672
1673 /*
1674 * Otherwise, we consult the sched_domains span maps to figure
1675 * out which CPU is logically closest to our hot cache data.
1676 */
1677 if (!cpumask_test_cpu(this_cpu, lowest_mask))
1678 this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1679
1680 rcu_read_lock();
1681 for_each_domain(cpu, sd) {
1682 if (sd->flags & SD_WAKE_AFFINE) {
1683 int best_cpu;
1684
1685 /*
1686 * "this_cpu" is cheaper to preempt than a
1687 * remote processor.
1688 */
1689 if (this_cpu != -1 &&
1690 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1691 rcu_read_unlock();
1692 return this_cpu;
1693 }
1694
1695 best_cpu = cpumask_first_and(lowest_mask,
1696 sched_domain_span(sd));
1697 if (best_cpu < nr_cpu_ids) {
1698 rcu_read_unlock();
1699 return best_cpu;
1700 }
1701 }
1702 }
1703 rcu_read_unlock();
1704
1705 /*
1706 * And finally, if there were no matches within the domains
1707 * just give the caller *something* to work with from the compatible
1708 * locations.
1709 */
1710 if (this_cpu != -1)
1711 return this_cpu;
1712
1713 cpu = cpumask_any(lowest_mask);
1714 if (cpu < nr_cpu_ids)
1715 return cpu;
1716
1717 return -1;
1718}
1719
1720/* Will lock the rq it finds */
1721static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1722{
1723 struct rq *lowest_rq = NULL;
1724 int tries;
1725 int cpu;
1726
1727 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1728 cpu = find_lowest_rq(task);
1729
1730 if ((cpu == -1) || (cpu == rq->cpu))
1731 break;
1732
1733 lowest_rq = cpu_rq(cpu);
1734
1735 if (lowest_rq->rt.highest_prio.curr <= task->prio) {
1736 /*
1737 * Target rq has tasks of equal or higher priority,
1738 * retrying does not release any lock and is unlikely
1739 * to yield a different result.
1740 */
1741 lowest_rq = NULL;
1742 break;
1743 }
1744
1745 /* if the prio of this runqueue changed, try again */
1746 if (double_lock_balance(rq, lowest_rq)) {
1747 /*
1748 * We had to unlock the run queue. In
1749 * the mean time, task could have
1750 * migrated already or had its affinity changed.
1751 * Also make sure that it wasn't scheduled on its rq.
1752 */
1753 if (unlikely(task_rq(task) != rq ||
1754 !cpumask_test_cpu(lowest_rq->cpu, &task->cpus_allowed) ||
1755 task_running(rq, task) ||
1756 !rt_task(task) ||
1757 !task_on_rq_queued(task))) {
1758
1759 double_unlock_balance(rq, lowest_rq);
1760 lowest_rq = NULL;
1761 break;
1762 }
1763 }
1764
1765 /* If this rq is still suitable use it. */
1766 if (lowest_rq->rt.highest_prio.curr > task->prio)
1767 break;
1768
1769 /* try again */
1770 double_unlock_balance(rq, lowest_rq);
1771 lowest_rq = NULL;
1772 }
1773
1774 return lowest_rq;
1775}
1776
1777static struct task_struct *pick_next_pushable_task(struct rq *rq)
1778{
1779 struct task_struct *p;
1780
1781 if (!has_pushable_tasks(rq))
1782 return NULL;
1783
1784 p = plist_first_entry(&rq->rt.pushable_tasks,
1785 struct task_struct, pushable_tasks);
1786
1787 BUG_ON(rq->cpu != task_cpu(p));
1788 BUG_ON(task_current(rq, p));
1789 BUG_ON(p->nr_cpus_allowed <= 1);
1790
1791 BUG_ON(!task_on_rq_queued(p));
1792 BUG_ON(!rt_task(p));
1793
1794 return p;
1795}
1796
1797/*
1798 * If the current CPU has more than one RT task, see if the non
1799 * running task can migrate over to a CPU that is running a task
1800 * of lesser priority.
1801 */
1802static int push_rt_task(struct rq *rq)
1803{
1804 struct task_struct *next_task;
1805 struct rq *lowest_rq;
1806 int ret = 0;
1807
1808 if (!rq->rt.overloaded)
1809 return 0;
1810
1811 next_task = pick_next_pushable_task(rq);
1812 if (!next_task)
1813 return 0;
1814
1815retry:
1816 if (WARN_ON(next_task == rq->curr))
1817 return 0;
1818
1819 /*
1820 * It's possible that the next_task slipped in of
1821 * higher priority than current. If that's the case
1822 * just reschedule current.
1823 */
1824 if (unlikely(next_task->prio < rq->curr->prio)) {
1825 resched_curr(rq);
1826 return 0;
1827 }
1828
1829 /* We might release rq lock */
1830 get_task_struct(next_task);
1831
1832 /* find_lock_lowest_rq locks the rq if found */
1833 lowest_rq = find_lock_lowest_rq(next_task, rq);
1834 if (!lowest_rq) {
1835 struct task_struct *task;
1836 /*
1837 * find_lock_lowest_rq releases rq->lock
1838 * so it is possible that next_task has migrated.
1839 *
1840 * We need to make sure that the task is still on the same
1841 * run-queue and is also still the next task eligible for
1842 * pushing.
1843 */
1844 task = pick_next_pushable_task(rq);
1845 if (task == next_task) {
1846 /*
1847 * The task hasn't migrated, and is still the next
1848 * eligible task, but we failed to find a run-queue
1849 * to push it to. Do not retry in this case, since
1850 * other CPUs will pull from us when ready.
1851 */
1852 goto out;
1853 }
1854
1855 if (!task)
1856 /* No more tasks, just exit */
1857 goto out;
1858
1859 /*
1860 * Something has shifted, try again.
1861 */
1862 put_task_struct(next_task);
1863 next_task = task;
1864 goto retry;
1865 }
1866
1867 deactivate_task(rq, next_task, 0);
1868 set_task_cpu(next_task, lowest_rq->cpu);
1869 activate_task(lowest_rq, next_task, 0);
1870 ret = 1;
1871
1872 resched_curr(lowest_rq);
1873
1874 double_unlock_balance(rq, lowest_rq);
1875
1876out:
1877 put_task_struct(next_task);
1878
1879 return ret;
1880}
1881
1882static void push_rt_tasks(struct rq *rq)
1883{
1884 /* push_rt_task will return true if it moved an RT */
1885 while (push_rt_task(rq))
1886 ;
1887}
1888
1889#ifdef HAVE_RT_PUSH_IPI
1890
1891/*
1892 * When a high priority task schedules out from a CPU and a lower priority
1893 * task is scheduled in, a check is made to see if there's any RT tasks
1894 * on other CPUs that are waiting to run because a higher priority RT task
1895 * is currently running on its CPU. In this case, the CPU with multiple RT
1896 * tasks queued on it (overloaded) needs to be notified that a CPU has opened
1897 * up that may be able to run one of its non-running queued RT tasks.
1898 *
1899 * All CPUs with overloaded RT tasks need to be notified as there is currently
1900 * no way to know which of these CPUs have the highest priority task waiting
1901 * to run. Instead of trying to take a spinlock on each of these CPUs,
1902 * which has shown to cause large latency when done on machines with many
1903 * CPUs, sending an IPI to the CPUs to have them push off the overloaded
1904 * RT tasks waiting to run.
1905 *
1906 * Just sending an IPI to each of the CPUs is also an issue, as on large
1907 * count CPU machines, this can cause an IPI storm on a CPU, especially
1908 * if its the only CPU with multiple RT tasks queued, and a large number
1909 * of CPUs scheduling a lower priority task at the same time.
1910 *
1911 * Each root domain has its own irq work function that can iterate over
1912 * all CPUs with RT overloaded tasks. Since all CPUs with overloaded RT
1913 * tassk must be checked if there's one or many CPUs that are lowering
1914 * their priority, there's a single irq work iterator that will try to
1915 * push off RT tasks that are waiting to run.
1916 *
1917 * When a CPU schedules a lower priority task, it will kick off the
1918 * irq work iterator that will jump to each CPU with overloaded RT tasks.
1919 * As it only takes the first CPU that schedules a lower priority task
1920 * to start the process, the rto_start variable is incremented and if
1921 * the atomic result is one, then that CPU will try to take the rto_lock.
1922 * This prevents high contention on the lock as the process handles all
1923 * CPUs scheduling lower priority tasks.
1924 *
1925 * All CPUs that are scheduling a lower priority task will increment the
1926 * rt_loop_next variable. This will make sure that the irq work iterator
1927 * checks all RT overloaded CPUs whenever a CPU schedules a new lower
1928 * priority task, even if the iterator is in the middle of a scan. Incrementing
1929 * the rt_loop_next will cause the iterator to perform another scan.
1930 *
1931 */
1932static int rto_next_cpu(struct root_domain *rd)
1933{
1934 int next;
1935 int cpu;
1936
1937 /*
1938 * When starting the IPI RT pushing, the rto_cpu is set to -1,
1939 * rt_next_cpu() will simply return the first CPU found in
1940 * the rto_mask.
1941 *
1942 * If rto_next_cpu() is called with rto_cpu is a valid CPU, it
1943 * will return the next CPU found in the rto_mask.
1944 *
1945 * If there are no more CPUs left in the rto_mask, then a check is made
1946 * against rto_loop and rto_loop_next. rto_loop is only updated with
1947 * the rto_lock held, but any CPU may increment the rto_loop_next
1948 * without any locking.
1949 */
1950 for (;;) {
1951
1952 /* When rto_cpu is -1 this acts like cpumask_first() */
1953 cpu = cpumask_next(rd->rto_cpu, rd->rto_mask);
1954
1955 rd->rto_cpu = cpu;
1956
1957 if (cpu < nr_cpu_ids)
1958 return cpu;
1959
1960 rd->rto_cpu = -1;
1961
1962 /*
1963 * ACQUIRE ensures we see the @rto_mask changes
1964 * made prior to the @next value observed.
1965 *
1966 * Matches WMB in rt_set_overload().
1967 */
1968 next = atomic_read_acquire(&rd->rto_loop_next);
1969
1970 if (rd->rto_loop == next)
1971 break;
1972
1973 rd->rto_loop = next;
1974 }
1975
1976 return -1;
1977}
1978
1979static inline bool rto_start_trylock(atomic_t *v)
1980{
1981 return !atomic_cmpxchg_acquire(v, 0, 1);
1982}
1983
1984static inline void rto_start_unlock(atomic_t *v)
1985{
1986 atomic_set_release(v, 0);
1987}
1988
1989static void tell_cpu_to_push(struct rq *rq)
1990{
1991 int cpu = -1;
1992
1993 /* Keep the loop going if the IPI is currently active */
1994 atomic_inc(&rq->rd->rto_loop_next);
1995
1996 /* Only one CPU can initiate a loop at a time */
1997 if (!rto_start_trylock(&rq->rd->rto_loop_start))
1998 return;
1999
2000 raw_spin_lock(&rq->rd->rto_lock);
2001
2002 /*
2003 * The rto_cpu is updated under the lock, if it has a valid CPU
2004 * then the IPI is still running and will continue due to the
2005 * update to loop_next, and nothing needs to be done here.
2006 * Otherwise it is finishing up and an ipi needs to be sent.
2007 */
2008 if (rq->rd->rto_cpu < 0)
2009 cpu = rto_next_cpu(rq->rd);
2010
2011 raw_spin_unlock(&rq->rd->rto_lock);
2012
2013 rto_start_unlock(&rq->rd->rto_loop_start);
2014
2015 if (cpu >= 0) {
2016 /* Make sure the rd does not get freed while pushing */
2017 sched_get_rd(rq->rd);
2018 irq_work_queue_on(&rq->rd->rto_push_work, cpu);
2019 }
2020}
2021
2022/* Called from hardirq context */
2023void rto_push_irq_work_func(struct irq_work *work)
2024{
2025 struct root_domain *rd =
2026 container_of(work, struct root_domain, rto_push_work);
2027 struct rq *rq;
2028 int cpu;
2029
2030 rq = this_rq();
2031
2032 /*
2033 * We do not need to grab the lock to check for has_pushable_tasks.
2034 * When it gets updated, a check is made if a push is possible.
2035 */
2036 if (has_pushable_tasks(rq)) {
2037 raw_spin_lock(&rq->lock);
2038 push_rt_tasks(rq);
2039 raw_spin_unlock(&rq->lock);
2040 }
2041
2042 raw_spin_lock(&rd->rto_lock);
2043
2044 /* Pass the IPI to the next rt overloaded queue */
2045 cpu = rto_next_cpu(rd);
2046
2047 raw_spin_unlock(&rd->rto_lock);
2048
2049 if (cpu < 0) {
2050 sched_put_rd(rd);
2051 return;
2052 }
2053
2054 /* Try the next RT overloaded CPU */
2055 irq_work_queue_on(&rd->rto_push_work, cpu);
2056}
2057#endif /* HAVE_RT_PUSH_IPI */
2058
2059static void pull_rt_task(struct rq *this_rq)
2060{
2061 int this_cpu = this_rq->cpu, cpu;
2062 bool resched = false;
2063 struct task_struct *p;
2064 struct rq *src_rq;
2065 int rt_overload_count = rt_overloaded(this_rq);
2066
2067 if (likely(!rt_overload_count))
2068 return;
2069
2070 /*
2071 * Match the barrier from rt_set_overloaded; this guarantees that if we
2072 * see overloaded we must also see the rto_mask bit.
2073 */
2074 smp_rmb();
2075
2076 /* If we are the only overloaded CPU do nothing */
2077 if (rt_overload_count == 1 &&
2078 cpumask_test_cpu(this_rq->cpu, this_rq->rd->rto_mask))
2079 return;
2080
2081#ifdef HAVE_RT_PUSH_IPI
2082 if (sched_feat(RT_PUSH_IPI)) {
2083 tell_cpu_to_push(this_rq);
2084 return;
2085 }
2086#endif
2087
2088 for_each_cpu(cpu, this_rq->rd->rto_mask) {
2089 if (this_cpu == cpu)
2090 continue;
2091
2092 src_rq = cpu_rq(cpu);
2093
2094 /*
2095 * Don't bother taking the src_rq->lock if the next highest
2096 * task is known to be lower-priority than our current task.
2097 * This may look racy, but if this value is about to go
2098 * logically higher, the src_rq will push this task away.
2099 * And if its going logically lower, we do not care
2100 */
2101 if (src_rq->rt.highest_prio.next >=
2102 this_rq->rt.highest_prio.curr)
2103 continue;
2104
2105 /*
2106 * We can potentially drop this_rq's lock in
2107 * double_lock_balance, and another CPU could
2108 * alter this_rq
2109 */
2110 double_lock_balance(this_rq, src_rq);
2111
2112 /*
2113 * We can pull only a task, which is pushable
2114 * on its rq, and no others.
2115 */
2116 p = pick_highest_pushable_task(src_rq, this_cpu);
2117
2118 /*
2119 * Do we have an RT task that preempts
2120 * the to-be-scheduled task?
2121 */
2122 if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
2123 WARN_ON(p == src_rq->curr);
2124 WARN_ON(!task_on_rq_queued(p));
2125
2126 /*
2127 * There's a chance that p is higher in priority
2128 * than what's currently running on its CPU.
2129 * This is just that p is wakeing up and hasn't
2130 * had a chance to schedule. We only pull
2131 * p if it is lower in priority than the
2132 * current task on the run queue
2133 */
2134 if (p->prio < src_rq->curr->prio)
2135 goto skip;
2136
2137 resched = true;
2138
2139 deactivate_task(src_rq, p, 0);
2140 set_task_cpu(p, this_cpu);
2141 activate_task(this_rq, p, 0);
2142 /*
2143 * We continue with the search, just in
2144 * case there's an even higher prio task
2145 * in another runqueue. (low likelihood
2146 * but possible)
2147 */
2148 }
2149skip:
2150 double_unlock_balance(this_rq, src_rq);
2151 }
2152
2153 if (resched)
2154 resched_curr(this_rq);
2155}
2156
2157/*
2158 * If we are not running and we are not going to reschedule soon, we should
2159 * try to push tasks away now
2160 */
2161static void task_woken_rt(struct rq *rq, struct task_struct *p)
2162{
2163 if (!task_running(rq, p) &&
2164 !test_tsk_need_resched(rq->curr) &&
2165 p->nr_cpus_allowed > 1 &&
2166 (dl_task(rq->curr) || rt_task(rq->curr)) &&
2167 (rq->curr->nr_cpus_allowed < 2 ||
2168 rq->curr->prio <= p->prio))
2169 push_rt_tasks(rq);
2170}
2171
2172/* Assumes rq->lock is held */
2173static void rq_online_rt(struct rq *rq)
2174{
2175 if (rq->rt.overloaded)
2176 rt_set_overload(rq);
2177
2178 __enable_runtime(rq);
2179
2180 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
2181}
2182
2183/* Assumes rq->lock is held */
2184static void rq_offline_rt(struct rq *rq)
2185{
2186 if (rq->rt.overloaded)
2187 rt_clear_overload(rq);
2188
2189 __disable_runtime(rq);
2190
2191 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
2192}
2193
2194/*
2195 * When switch from the rt queue, we bring ourselves to a position
2196 * that we might want to pull RT tasks from other runqueues.
2197 */
2198static void switched_from_rt(struct rq *rq, struct task_struct *p)
2199{
2200 /*
2201 * If there are other RT tasks then we will reschedule
2202 * and the scheduling of the other RT tasks will handle
2203 * the balancing. But if we are the last RT task
2204 * we may need to handle the pulling of RT tasks
2205 * now.
2206 */
2207 if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
2208 return;
2209
2210 rt_queue_pull_task(rq);
2211}
2212
2213void __init init_sched_rt_class(void)
2214{
2215 unsigned int i;
2216
2217 for_each_possible_cpu(i) {
2218 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
2219 GFP_KERNEL, cpu_to_node(i));
2220 }
2221}
2222#endif /* CONFIG_SMP */
2223
2224/*
2225 * When switching a task to RT, we may overload the runqueue
2226 * with RT tasks. In this case we try to push them off to
2227 * other runqueues.
2228 */
2229static void switched_to_rt(struct rq *rq, struct task_struct *p)
2230{
2231 /*
2232 * If we are already running, then there's nothing
2233 * that needs to be done. But if we are not running
2234 * we may need to preempt the current running task.
2235 * If that current running task is also an RT task
2236 * then see if we can move to another run queue.
2237 */
2238 if (task_on_rq_queued(p) && rq->curr != p) {
2239#ifdef CONFIG_SMP
2240 if (p->nr_cpus_allowed > 1 && rq->rt.overloaded)
2241 rt_queue_push_tasks(rq);
2242#endif /* CONFIG_SMP */
2243 if (p->prio < rq->curr->prio && cpu_online(cpu_of(rq)))
2244 resched_curr(rq);
2245 }
2246}
2247
2248/*
2249 * Priority of the task has changed. This may cause
2250 * us to initiate a push or pull.
2251 */
2252static void
2253prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
2254{
2255 if (!task_on_rq_queued(p))
2256 return;
2257
2258 if (rq->curr == p) {
2259#ifdef CONFIG_SMP
2260 /*
2261 * If our priority decreases while running, we
2262 * may need to pull tasks to this runqueue.
2263 */
2264 if (oldprio < p->prio)
2265 rt_queue_pull_task(rq);
2266
2267 /*
2268 * If there's a higher priority task waiting to run
2269 * then reschedule.
2270 */
2271 if (p->prio > rq->rt.highest_prio.curr)
2272 resched_curr(rq);
2273#else
2274 /* For UP simply resched on drop of prio */
2275 if (oldprio < p->prio)
2276 resched_curr(rq);
2277#endif /* CONFIG_SMP */
2278 } else {
2279 /*
2280 * This task is not running, but if it is
2281 * greater than the current running task
2282 * then reschedule.
2283 */
2284 if (p->prio < rq->curr->prio)
2285 resched_curr(rq);
2286 }
2287}
2288
2289#ifdef CONFIG_POSIX_TIMERS
2290static void watchdog(struct rq *rq, struct task_struct *p)
2291{
2292 unsigned long soft, hard;
2293
2294 /* max may change after cur was read, this will be fixed next tick */
2295 soft = task_rlimit(p, RLIMIT_RTTIME);
2296 hard = task_rlimit_max(p, RLIMIT_RTTIME);
2297
2298 if (soft != RLIM_INFINITY) {
2299 unsigned long next;
2300
2301 if (p->rt.watchdog_stamp != jiffies) {
2302 p->rt.timeout++;
2303 p->rt.watchdog_stamp = jiffies;
2304 }
2305
2306 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
2307 if (p->rt.timeout > next)
2308 p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
2309 }
2310}
2311#else
2312static inline void watchdog(struct rq *rq, struct task_struct *p) { }
2313#endif
2314
2315/*
2316 * scheduler tick hitting a task of our scheduling class.
2317 *
2318 * NOTE: This function can be called remotely by the tick offload that
2319 * goes along full dynticks. Therefore no local assumption can be made
2320 * and everything must be accessed through the @rq and @curr passed in
2321 * parameters.
2322 */
2323static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
2324{
2325 struct sched_rt_entity *rt_se = &p->rt;
2326
2327 update_curr_rt(rq);
2328 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2329
2330 watchdog(rq, p);
2331
2332 /*
2333 * RR tasks need a special form of timeslice management.
2334 * FIFO tasks have no timeslices.
2335 */
2336 if (p->policy != SCHED_RR)
2337 return;
2338
2339 if (--p->rt.time_slice)
2340 return;
2341
2342 p->rt.time_slice = sched_rr_timeslice;
2343
2344 /*
2345 * Requeue to the end of queue if we (and all of our ancestors) are not
2346 * the only element on the queue
2347 */
2348 for_each_sched_rt_entity(rt_se) {
2349 if (rt_se->run_list.prev != rt_se->run_list.next) {
2350 requeue_task_rt(rq, p, 0);
2351 resched_curr(rq);
2352 return;
2353 }
2354 }
2355}
2356
2357static void set_curr_task_rt(struct rq *rq)
2358{
2359 set_next_task(rq, rq->curr);
2360}
2361
2362static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2363{
2364 /*
2365 * Time slice is 0 for SCHED_FIFO tasks
2366 */
2367 if (task->policy == SCHED_RR)
2368 return sched_rr_timeslice;
2369 else
2370 return 0;
2371}
2372
2373const struct sched_class rt_sched_class = {
2374 .next = &fair_sched_class,
2375 .enqueue_task = enqueue_task_rt,
2376 .dequeue_task = dequeue_task_rt,
2377 .yield_task = yield_task_rt,
2378
2379 .check_preempt_curr = check_preempt_curr_rt,
2380
2381 .pick_next_task = pick_next_task_rt,
2382 .put_prev_task = put_prev_task_rt,
2383
2384#ifdef CONFIG_SMP
2385 .select_task_rq = select_task_rq_rt,
2386
2387 .set_cpus_allowed = set_cpus_allowed_common,
2388 .rq_online = rq_online_rt,
2389 .rq_offline = rq_offline_rt,
2390 .task_woken = task_woken_rt,
2391 .switched_from = switched_from_rt,
2392#endif
2393
2394 .set_curr_task = set_curr_task_rt,
2395 .task_tick = task_tick_rt,
2396
2397 .get_rr_interval = get_rr_interval_rt,
2398
2399 .prio_changed = prio_changed_rt,
2400 .switched_to = switched_to_rt,
2401
2402 .update_curr = update_curr_rt,
2403};
2404
2405#ifdef CONFIG_RT_GROUP_SCHED
2406/*
2407 * Ensure that the real time constraints are schedulable.
2408 */
2409static DEFINE_MUTEX(rt_constraints_mutex);
2410
2411/* Must be called with tasklist_lock held */
2412static inline int tg_has_rt_tasks(struct task_group *tg)
2413{
2414 struct task_struct *g, *p;
2415
2416 /*
2417 * Autogroups do not have RT tasks; see autogroup_create().
2418 */
2419 if (task_group_is_autogroup(tg))
2420 return 0;
2421
2422 for_each_process_thread(g, p) {
2423 if (rt_task(p) && task_group(p) == tg)
2424 return 1;
2425 }
2426
2427 return 0;
2428}
2429
2430struct rt_schedulable_data {
2431 struct task_group *tg;
2432 u64 rt_period;
2433 u64 rt_runtime;
2434};
2435
2436static int tg_rt_schedulable(struct task_group *tg, void *data)
2437{
2438 struct rt_schedulable_data *d = data;
2439 struct task_group *child;
2440 unsigned long total, sum = 0;
2441 u64 period, runtime;
2442
2443 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2444 runtime = tg->rt_bandwidth.rt_runtime;
2445
2446 if (tg == d->tg) {
2447 period = d->rt_period;
2448 runtime = d->rt_runtime;
2449 }
2450
2451 /*
2452 * Cannot have more runtime than the period.
2453 */
2454 if (runtime > period && runtime != RUNTIME_INF)
2455 return -EINVAL;
2456
2457 /*
2458 * Ensure we don't starve existing RT tasks.
2459 */
2460 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
2461 return -EBUSY;
2462
2463 total = to_ratio(period, runtime);
2464
2465 /*
2466 * Nobody can have more than the global setting allows.
2467 */
2468 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
2469 return -EINVAL;
2470
2471 /*
2472 * The sum of our children's runtime should not exceed our own.
2473 */
2474 list_for_each_entry_rcu(child, &tg->children, siblings) {
2475 period = ktime_to_ns(child->rt_bandwidth.rt_period);
2476 runtime = child->rt_bandwidth.rt_runtime;
2477
2478 if (child == d->tg) {
2479 period = d->rt_period;
2480 runtime = d->rt_runtime;
2481 }
2482
2483 sum += to_ratio(period, runtime);
2484 }
2485
2486 if (sum > total)
2487 return -EINVAL;
2488
2489 return 0;
2490}
2491
2492static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
2493{
2494 int ret;
2495
2496 struct rt_schedulable_data data = {
2497 .tg = tg,
2498 .rt_period = period,
2499 .rt_runtime = runtime,
2500 };
2501
2502 rcu_read_lock();
2503 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
2504 rcu_read_unlock();
2505
2506 return ret;
2507}
2508
2509static int tg_set_rt_bandwidth(struct task_group *tg,
2510 u64 rt_period, u64 rt_runtime)
2511{
2512 int i, err = 0;
2513
2514 /*
2515 * Disallowing the root group RT runtime is BAD, it would disallow the
2516 * kernel creating (and or operating) RT threads.
2517 */
2518 if (tg == &root_task_group && rt_runtime == 0)
2519 return -EINVAL;
2520
2521 /* No period doesn't make any sense. */
2522 if (rt_period == 0)
2523 return -EINVAL;
2524
2525 mutex_lock(&rt_constraints_mutex);
2526 read_lock(&tasklist_lock);
2527 err = __rt_schedulable(tg, rt_period, rt_runtime);
2528 if (err)
2529 goto unlock;
2530
2531 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2532 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
2533 tg->rt_bandwidth.rt_runtime = rt_runtime;
2534
2535 for_each_possible_cpu(i) {
2536 struct rt_rq *rt_rq = tg->rt_rq[i];
2537
2538 raw_spin_lock(&rt_rq->rt_runtime_lock);
2539 rt_rq->rt_runtime = rt_runtime;
2540 raw_spin_unlock(&rt_rq->rt_runtime_lock);
2541 }
2542 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2543unlock:
2544 read_unlock(&tasklist_lock);
2545 mutex_unlock(&rt_constraints_mutex);
2546
2547 return err;
2548}
2549
2550int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
2551{
2552 u64 rt_runtime, rt_period;
2553
2554 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2555 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
2556 if (rt_runtime_us < 0)
2557 rt_runtime = RUNTIME_INF;
2558
2559 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2560}
2561
2562long sched_group_rt_runtime(struct task_group *tg)
2563{
2564 u64 rt_runtime_us;
2565
2566 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
2567 return -1;
2568
2569 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
2570 do_div(rt_runtime_us, NSEC_PER_USEC);
2571 return rt_runtime_us;
2572}
2573
2574int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
2575{
2576 u64 rt_runtime, rt_period;
2577
2578 rt_period = rt_period_us * NSEC_PER_USEC;
2579 rt_runtime = tg->rt_bandwidth.rt_runtime;
2580
2581 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2582}
2583
2584long sched_group_rt_period(struct task_group *tg)
2585{
2586 u64 rt_period_us;
2587
2588 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
2589 do_div(rt_period_us, NSEC_PER_USEC);
2590 return rt_period_us;
2591}
2592
2593static int sched_rt_global_constraints(void)
2594{
2595 int ret = 0;
2596
2597 mutex_lock(&rt_constraints_mutex);
2598 read_lock(&tasklist_lock);
2599 ret = __rt_schedulable(NULL, 0, 0);
2600 read_unlock(&tasklist_lock);
2601 mutex_unlock(&rt_constraints_mutex);
2602
2603 return ret;
2604}
2605
2606int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
2607{
2608 /* Don't accept realtime tasks when there is no way for them to run */
2609 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
2610 return 0;
2611
2612 return 1;
2613}
2614
2615#else /* !CONFIG_RT_GROUP_SCHED */
2616static int sched_rt_global_constraints(void)
2617{
2618 unsigned long flags;
2619 int i;
2620
2621 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
2622 for_each_possible_cpu(i) {
2623 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
2624
2625 raw_spin_lock(&rt_rq->rt_runtime_lock);
2626 rt_rq->rt_runtime = global_rt_runtime();
2627 raw_spin_unlock(&rt_rq->rt_runtime_lock);
2628 }
2629 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
2630
2631 return 0;
2632}
2633#endif /* CONFIG_RT_GROUP_SCHED */
2634
2635static int sched_rt_global_validate(void)
2636{
2637 if (sysctl_sched_rt_period <= 0)
2638 return -EINVAL;
2639
2640 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
2641 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
2642 return -EINVAL;
2643
2644 return 0;
2645}
2646
2647static void sched_rt_do_global(void)
2648{
2649 def_rt_bandwidth.rt_runtime = global_rt_runtime();
2650 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
2651}
2652
2653int sched_rt_handler(struct ctl_table *table, int write,
2654 void __user *buffer, size_t *lenp,
2655 loff_t *ppos)
2656{
2657 int old_period, old_runtime;
2658 static DEFINE_MUTEX(mutex);
2659 int ret;
2660
2661 mutex_lock(&mutex);
2662 old_period = sysctl_sched_rt_period;
2663 old_runtime = sysctl_sched_rt_runtime;
2664
2665 ret = proc_dointvec(table, write, buffer, lenp, ppos);
2666
2667 if (!ret && write) {
2668 ret = sched_rt_global_validate();
2669 if (ret)
2670 goto undo;
2671
2672 ret = sched_dl_global_validate();
2673 if (ret)
2674 goto undo;
2675
2676 ret = sched_rt_global_constraints();
2677 if (ret)
2678 goto undo;
2679
2680 sched_rt_do_global();
2681 sched_dl_do_global();
2682 }
2683 if (0) {
2684undo:
2685 sysctl_sched_rt_period = old_period;
2686 sysctl_sched_rt_runtime = old_runtime;
2687 }
2688 mutex_unlock(&mutex);
2689
2690 return ret;
2691}
2692
2693int sched_rr_handler(struct ctl_table *table, int write,
2694 void __user *buffer, size_t *lenp,
2695 loff_t *ppos)
2696{
2697 int ret;
2698 static DEFINE_MUTEX(mutex);
2699
2700 mutex_lock(&mutex);
2701 ret = proc_dointvec(table, write, buffer, lenp, ppos);
2702 /*
2703 * Make sure that internally we keep jiffies.
2704 * Also, writing zero resets the timeslice to default:
2705 */
2706 if (!ret && write) {
2707 sched_rr_timeslice =
2708 sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE :
2709 msecs_to_jiffies(sysctl_sched_rr_timeslice);
2710 }
2711 mutex_unlock(&mutex);
2712
2713 return ret;
2714}
2715
2716#ifdef CONFIG_SCHED_DEBUG
2717void print_rt_stats(struct seq_file *m, int cpu)
2718{
2719 rt_rq_iter_t iter;
2720 struct rt_rq *rt_rq;
2721
2722 rcu_read_lock();
2723 for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
2724 print_rt_rq(m, cpu, rt_rq);
2725 rcu_read_unlock();
2726}
2727#endif /* CONFIG_SCHED_DEBUG */
2728