1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
4 * policies)
5 */
6
7int sched_rr_timeslice = RR_TIMESLICE;
8/* More than 4 hours if BW_SHIFT equals 20. */
9static const u64 max_rt_runtime = MAX_BW;
10
11static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
12
13struct rt_bandwidth def_rt_bandwidth;
14
15/*
16 * period over which we measure -rt task CPU usage in us.
17 * default: 1s
18 */
19int sysctl_sched_rt_period = 1000000;
20
21/*
22 * part of the period that we allow rt tasks to run in us.
23 * default: 0.95s
24 */
25int sysctl_sched_rt_runtime = 950000;
26
27#ifdef CONFIG_SYSCTL
28static int sysctl_sched_rr_timeslice = (MSEC_PER_SEC * RR_TIMESLICE) / HZ;
29static int sched_rt_handler(struct ctl_table *table, int write, void *buffer,
30 size_t *lenp, loff_t *ppos);
31static int sched_rr_handler(struct ctl_table *table, int write, void *buffer,
32 size_t *lenp, loff_t *ppos);
33static struct ctl_table sched_rt_sysctls[] = {
34 {
35 .procname = "sched_rt_period_us",
36 .data = &sysctl_sched_rt_period,
37 .maxlen = sizeof(int),
38 .mode = 0644,
39 .proc_handler = sched_rt_handler,
40 .extra1 = SYSCTL_ONE,
41 .extra2 = SYSCTL_INT_MAX,
42 },
43 {
44 .procname = "sched_rt_runtime_us",
45 .data = &sysctl_sched_rt_runtime,
46 .maxlen = sizeof(int),
47 .mode = 0644,
48 .proc_handler = sched_rt_handler,
49 .extra1 = SYSCTL_NEG_ONE,
50 .extra2 = (void *)&sysctl_sched_rt_period,
51 },
52 {
53 .procname = "sched_rr_timeslice_ms",
54 .data = &sysctl_sched_rr_timeslice,
55 .maxlen = sizeof(int),
56 .mode = 0644,
57 .proc_handler = sched_rr_handler,
58 },
59 {}
60};
61
62static int __init sched_rt_sysctl_init(void)
63{
64 register_sysctl_init("kernel", sched_rt_sysctls);
65 return 0;
66}
67late_initcall(sched_rt_sysctl_init);
68#endif
69
70static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
71{
72 struct rt_bandwidth *rt_b =
73 container_of(timer, struct rt_bandwidth, rt_period_timer);
74 int idle = 0;
75 int overrun;
76
77 raw_spin_lock(&rt_b->rt_runtime_lock);
78 for (;;) {
79 overrun = hrtimer_forward_now(timer, interval: rt_b->rt_period);
80 if (!overrun)
81 break;
82
83 raw_spin_unlock(&rt_b->rt_runtime_lock);
84 idle = do_sched_rt_period_timer(rt_b, overrun);
85 raw_spin_lock(&rt_b->rt_runtime_lock);
86 }
87 if (idle)
88 rt_b->rt_period_active = 0;
89 raw_spin_unlock(&rt_b->rt_runtime_lock);
90
91 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
92}
93
94void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
95{
96 rt_b->rt_period = ns_to_ktime(ns: period);
97 rt_b->rt_runtime = runtime;
98
99 raw_spin_lock_init(&rt_b->rt_runtime_lock);
100
101 hrtimer_init(timer: &rt_b->rt_period_timer, CLOCK_MONOTONIC,
102 mode: HRTIMER_MODE_REL_HARD);
103 rt_b->rt_period_timer.function = sched_rt_period_timer;
104}
105
106static inline void do_start_rt_bandwidth(struct rt_bandwidth *rt_b)
107{
108 raw_spin_lock(&rt_b->rt_runtime_lock);
109 if (!rt_b->rt_period_active) {
110 rt_b->rt_period_active = 1;
111 /*
112 * SCHED_DEADLINE updates the bandwidth, as a run away
113 * RT task with a DL task could hog a CPU. But DL does
114 * not reset the period. If a deadline task was running
115 * without an RT task running, it can cause RT tasks to
116 * throttle when they start up. Kick the timer right away
117 * to update the period.
118 */
119 hrtimer_forward_now(timer: &rt_b->rt_period_timer, interval: ns_to_ktime(ns: 0));
120 hrtimer_start_expires(timer: &rt_b->rt_period_timer,
121 mode: HRTIMER_MODE_ABS_PINNED_HARD);
122 }
123 raw_spin_unlock(&rt_b->rt_runtime_lock);
124}
125
126static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
127{
128 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
129 return;
130
131 do_start_rt_bandwidth(rt_b);
132}
133
134void init_rt_rq(struct rt_rq *rt_rq)
135{
136 struct rt_prio_array *array;
137 int i;
138
139 array = &rt_rq->active;
140 for (i = 0; i < MAX_RT_PRIO; i++) {
141 INIT_LIST_HEAD(list: array->queue + i);
142 __clear_bit(i, array->bitmap);
143 }
144 /* delimiter for bitsearch: */
145 __set_bit(MAX_RT_PRIO, array->bitmap);
146
147#if defined CONFIG_SMP
148 rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
149 rt_rq->highest_prio.next = MAX_RT_PRIO-1;
150 rt_rq->overloaded = 0;
151 plist_head_init(head: &rt_rq->pushable_tasks);
152#endif /* CONFIG_SMP */
153 /* We start is dequeued state, because no RT tasks are queued */
154 rt_rq->rt_queued = 0;
155
156 rt_rq->rt_time = 0;
157 rt_rq->rt_throttled = 0;
158 rt_rq->rt_runtime = 0;
159 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
160}
161
162#ifdef CONFIG_RT_GROUP_SCHED
163static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
164{
165 hrtimer_cancel(timer: &rt_b->rt_period_timer);
166}
167
168#define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
169
170static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
171{
172#ifdef CONFIG_SCHED_DEBUG
173 WARN_ON_ONCE(!rt_entity_is_task(rt_se));
174#endif
175 return container_of(rt_se, struct task_struct, rt);
176}
177
178static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
179{
180 return rt_rq->rq;
181}
182
183static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
184{
185 return rt_se->rt_rq;
186}
187
188static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
189{
190 struct rt_rq *rt_rq = rt_se->rt_rq;
191
192 return rt_rq->rq;
193}
194
195void unregister_rt_sched_group(struct task_group *tg)
196{
197 if (tg->rt_se)
198 destroy_rt_bandwidth(rt_b: &tg->rt_bandwidth);
199
200}
201
202void free_rt_sched_group(struct task_group *tg)
203{
204 int i;
205
206 for_each_possible_cpu(i) {
207 if (tg->rt_rq)
208 kfree(objp: tg->rt_rq[i]);
209 if (tg->rt_se)
210 kfree(objp: tg->rt_se[i]);
211 }
212
213 kfree(objp: tg->rt_rq);
214 kfree(objp: tg->rt_se);
215}
216
217void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
218 struct sched_rt_entity *rt_se, int cpu,
219 struct sched_rt_entity *parent)
220{
221 struct rq *rq = cpu_rq(cpu);
222
223 rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
224 rt_rq->rt_nr_boosted = 0;
225 rt_rq->rq = rq;
226 rt_rq->tg = tg;
227
228 tg->rt_rq[cpu] = rt_rq;
229 tg->rt_se[cpu] = rt_se;
230
231 if (!rt_se)
232 return;
233
234 if (!parent)
235 rt_se->rt_rq = &rq->rt;
236 else
237 rt_se->rt_rq = parent->my_q;
238
239 rt_se->my_q = rt_rq;
240 rt_se->parent = parent;
241 INIT_LIST_HEAD(list: &rt_se->run_list);
242}
243
244int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
245{
246 struct rt_rq *rt_rq;
247 struct sched_rt_entity *rt_se;
248 int i;
249
250 tg->rt_rq = kcalloc(n: nr_cpu_ids, size: sizeof(rt_rq), GFP_KERNEL);
251 if (!tg->rt_rq)
252 goto err;
253 tg->rt_se = kcalloc(n: nr_cpu_ids, size: sizeof(rt_se), GFP_KERNEL);
254 if (!tg->rt_se)
255 goto err;
256
257 init_rt_bandwidth(rt_b: &tg->rt_bandwidth,
258 period: ktime_to_ns(kt: def_rt_bandwidth.rt_period), runtime: 0);
259
260 for_each_possible_cpu(i) {
261 rt_rq = kzalloc_node(size: sizeof(struct rt_rq),
262 GFP_KERNEL, cpu_to_node(cpu: i));
263 if (!rt_rq)
264 goto err;
265
266 rt_se = kzalloc_node(size: sizeof(struct sched_rt_entity),
267 GFP_KERNEL, cpu_to_node(cpu: i));
268 if (!rt_se)
269 goto err_free_rq;
270
271 init_rt_rq(rt_rq);
272 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
273 init_tg_rt_entry(tg, rt_rq, rt_se, cpu: i, parent: parent->rt_se[i]);
274 }
275
276 return 1;
277
278err_free_rq:
279 kfree(objp: rt_rq);
280err:
281 return 0;
282}
283
284#else /* CONFIG_RT_GROUP_SCHED */
285
286#define rt_entity_is_task(rt_se) (1)
287
288static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
289{
290 return container_of(rt_se, struct task_struct, rt);
291}
292
293static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
294{
295 return container_of(rt_rq, struct rq, rt);
296}
297
298static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
299{
300 struct task_struct *p = rt_task_of(rt_se);
301
302 return task_rq(p);
303}
304
305static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
306{
307 struct rq *rq = rq_of_rt_se(rt_se);
308
309 return &rq->rt;
310}
311
312void unregister_rt_sched_group(struct task_group *tg) { }
313
314void free_rt_sched_group(struct task_group *tg) { }
315
316int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
317{
318 return 1;
319}
320#endif /* CONFIG_RT_GROUP_SCHED */
321
322#ifdef CONFIG_SMP
323
324static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
325{
326 /* Try to pull RT tasks here if we lower this rq's prio */
327 return rq->online && rq->rt.highest_prio.curr > prev->prio;
328}
329
330static inline int rt_overloaded(struct rq *rq)
331{
332 return atomic_read(v: &rq->rd->rto_count);
333}
334
335static inline void rt_set_overload(struct rq *rq)
336{
337 if (!rq->online)
338 return;
339
340 cpumask_set_cpu(cpu: rq->cpu, dstp: rq->rd->rto_mask);
341 /*
342 * Make sure the mask is visible before we set
343 * the overload count. That is checked to determine
344 * if we should look at the mask. It would be a shame
345 * if we looked at the mask, but the mask was not
346 * updated yet.
347 *
348 * Matched by the barrier in pull_rt_task().
349 */
350 smp_wmb();
351 atomic_inc(v: &rq->rd->rto_count);
352}
353
354static inline void rt_clear_overload(struct rq *rq)
355{
356 if (!rq->online)
357 return;
358
359 /* the order here really doesn't matter */
360 atomic_dec(v: &rq->rd->rto_count);
361 cpumask_clear_cpu(cpu: rq->cpu, dstp: rq->rd->rto_mask);
362}
363
364static inline int has_pushable_tasks(struct rq *rq)
365{
366 return !plist_head_empty(head: &rq->rt.pushable_tasks);
367}
368
369static DEFINE_PER_CPU(struct balance_callback, rt_push_head);
370static DEFINE_PER_CPU(struct balance_callback, rt_pull_head);
371
372static void push_rt_tasks(struct rq *);
373static void pull_rt_task(struct rq *);
374
375static inline void rt_queue_push_tasks(struct rq *rq)
376{
377 if (!has_pushable_tasks(rq))
378 return;
379
380 queue_balance_callback(rq, head: &per_cpu(rt_push_head, rq->cpu), func: push_rt_tasks);
381}
382
383static inline void rt_queue_pull_task(struct rq *rq)
384{
385 queue_balance_callback(rq, head: &per_cpu(rt_pull_head, rq->cpu), func: pull_rt_task);
386}
387
388static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
389{
390 plist_del(node: &p->pushable_tasks, head: &rq->rt.pushable_tasks);
391 plist_node_init(node: &p->pushable_tasks, prio: p->prio);
392 plist_add(node: &p->pushable_tasks, head: &rq->rt.pushable_tasks);
393
394 /* Update the highest prio pushable task */
395 if (p->prio < rq->rt.highest_prio.next)
396 rq->rt.highest_prio.next = p->prio;
397
398 if (!rq->rt.overloaded) {
399 rt_set_overload(rq);
400 rq->rt.overloaded = 1;
401 }
402}
403
404static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
405{
406 plist_del(node: &p->pushable_tasks, head: &rq->rt.pushable_tasks);
407
408 /* Update the new highest prio pushable task */
409 if (has_pushable_tasks(rq)) {
410 p = plist_first_entry(&rq->rt.pushable_tasks,
411 struct task_struct, pushable_tasks);
412 rq->rt.highest_prio.next = p->prio;
413 } else {
414 rq->rt.highest_prio.next = MAX_RT_PRIO-1;
415
416 if (rq->rt.overloaded) {
417 rt_clear_overload(rq);
418 rq->rt.overloaded = 0;
419 }
420 }
421}
422
423#else
424
425static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
426{
427}
428
429static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
430{
431}
432
433static inline void rt_queue_push_tasks(struct rq *rq)
434{
435}
436#endif /* CONFIG_SMP */
437
438static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
439static void dequeue_top_rt_rq(struct rt_rq *rt_rq, unsigned int count);
440
441static inline int on_rt_rq(struct sched_rt_entity *rt_se)
442{
443 return rt_se->on_rq;
444}
445
446#ifdef CONFIG_UCLAMP_TASK
447/*
448 * Verify the fitness of task @p to run on @cpu taking into account the uclamp
449 * settings.
450 *
451 * This check is only important for heterogeneous systems where uclamp_min value
452 * is higher than the capacity of a @cpu. For non-heterogeneous system this
453 * function will always return true.
454 *
455 * The function will return true if the capacity of the @cpu is >= the
456 * uclamp_min and false otherwise.
457 *
458 * Note that uclamp_min will be clamped to uclamp_max if uclamp_min
459 * > uclamp_max.
460 */
461static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
462{
463 unsigned int min_cap;
464 unsigned int max_cap;
465 unsigned int cpu_cap;
466
467 /* Only heterogeneous systems can benefit from this check */
468 if (!sched_asym_cpucap_active())
469 return true;
470
471 min_cap = uclamp_eff_value(p, clamp_id: UCLAMP_MIN);
472 max_cap = uclamp_eff_value(p, clamp_id: UCLAMP_MAX);
473
474 cpu_cap = arch_scale_cpu_capacity(cpu);
475
476 return cpu_cap >= min(min_cap, max_cap);
477}
478#else
479static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
480{
481 return true;
482}
483#endif
484
485#ifdef CONFIG_RT_GROUP_SCHED
486
487static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
488{
489 if (!rt_rq->tg)
490 return RUNTIME_INF;
491
492 return rt_rq->rt_runtime;
493}
494
495static inline u64 sched_rt_period(struct rt_rq *rt_rq)
496{
497 return ktime_to_ns(kt: rt_rq->tg->rt_bandwidth.rt_period);
498}
499
500typedef struct task_group *rt_rq_iter_t;
501
502static inline struct task_group *next_task_group(struct task_group *tg)
503{
504 do {
505 tg = list_entry_rcu(tg->list.next,
506 typeof(struct task_group), list);
507 } while (&tg->list != &task_groups && task_group_is_autogroup(tg));
508
509 if (&tg->list == &task_groups)
510 tg = NULL;
511
512 return tg;
513}
514
515#define for_each_rt_rq(rt_rq, iter, rq) \
516 for (iter = container_of(&task_groups, typeof(*iter), list); \
517 (iter = next_task_group(iter)) && \
518 (rt_rq = iter->rt_rq[cpu_of(rq)]);)
519
520#define for_each_sched_rt_entity(rt_se) \
521 for (; rt_se; rt_se = rt_se->parent)
522
523static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
524{
525 return rt_se->my_q;
526}
527
528static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
529static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
530
531static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
532{
533 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
534 struct rq *rq = rq_of_rt_rq(rt_rq);
535 struct sched_rt_entity *rt_se;
536
537 int cpu = cpu_of(rq);
538
539 rt_se = rt_rq->tg->rt_se[cpu];
540
541 if (rt_rq->rt_nr_running) {
542 if (!rt_se)
543 enqueue_top_rt_rq(rt_rq);
544 else if (!on_rt_rq(rt_se))
545 enqueue_rt_entity(rt_se, flags: 0);
546
547 if (rt_rq->highest_prio.curr < curr->prio)
548 resched_curr(rq);
549 }
550}
551
552static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
553{
554 struct sched_rt_entity *rt_se;
555 int cpu = cpu_of(rq: rq_of_rt_rq(rt_rq));
556
557 rt_se = rt_rq->tg->rt_se[cpu];
558
559 if (!rt_se) {
560 dequeue_top_rt_rq(rt_rq, count: rt_rq->rt_nr_running);
561 /* Kick cpufreq (see the comment in kernel/sched/sched.h). */
562 cpufreq_update_util(rq: rq_of_rt_rq(rt_rq), flags: 0);
563 }
564 else if (on_rt_rq(rt_se))
565 dequeue_rt_entity(rt_se, flags: 0);
566}
567
568static inline int rt_rq_throttled(struct rt_rq *rt_rq)
569{
570 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
571}
572
573static int rt_se_boosted(struct sched_rt_entity *rt_se)
574{
575 struct rt_rq *rt_rq = group_rt_rq(rt_se);
576 struct task_struct *p;
577
578 if (rt_rq)
579 return !!rt_rq->rt_nr_boosted;
580
581 p = rt_task_of(rt_se);
582 return p->prio != p->normal_prio;
583}
584
585#ifdef CONFIG_SMP
586static inline const struct cpumask *sched_rt_period_mask(void)
587{
588 return this_rq()->rd->span;
589}
590#else
591static inline const struct cpumask *sched_rt_period_mask(void)
592{
593 return cpu_online_mask;
594}
595#endif
596
597static inline
598struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
599{
600 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
601}
602
603static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
604{
605 return &rt_rq->tg->rt_bandwidth;
606}
607
608#else /* !CONFIG_RT_GROUP_SCHED */
609
610static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
611{
612 return rt_rq->rt_runtime;
613}
614
615static inline u64 sched_rt_period(struct rt_rq *rt_rq)
616{
617 return ktime_to_ns(def_rt_bandwidth.rt_period);
618}
619
620typedef struct rt_rq *rt_rq_iter_t;
621
622#define for_each_rt_rq(rt_rq, iter, rq) \
623 for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
624
625#define for_each_sched_rt_entity(rt_se) \
626 for (; rt_se; rt_se = NULL)
627
628static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
629{
630 return NULL;
631}
632
633static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
634{
635 struct rq *rq = rq_of_rt_rq(rt_rq);
636
637 if (!rt_rq->rt_nr_running)
638 return;
639
640 enqueue_top_rt_rq(rt_rq);
641 resched_curr(rq);
642}
643
644static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
645{
646 dequeue_top_rt_rq(rt_rq, rt_rq->rt_nr_running);
647}
648
649static inline int rt_rq_throttled(struct rt_rq *rt_rq)
650{
651 return rt_rq->rt_throttled;
652}
653
654static inline const struct cpumask *sched_rt_period_mask(void)
655{
656 return cpu_online_mask;
657}
658
659static inline
660struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
661{
662 return &cpu_rq(cpu)->rt;
663}
664
665static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
666{
667 return &def_rt_bandwidth;
668}
669
670#endif /* CONFIG_RT_GROUP_SCHED */
671
672bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
673{
674 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
675
676 return (hrtimer_active(timer: &rt_b->rt_period_timer) ||
677 rt_rq->rt_time < rt_b->rt_runtime);
678}
679
680#ifdef CONFIG_SMP
681/*
682 * We ran out of runtime, see if we can borrow some from our neighbours.
683 */
684static void do_balance_runtime(struct rt_rq *rt_rq)
685{
686 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
687 struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
688 int i, weight;
689 u64 rt_period;
690
691 weight = cpumask_weight(srcp: rd->span);
692
693 raw_spin_lock(&rt_b->rt_runtime_lock);
694 rt_period = ktime_to_ns(kt: rt_b->rt_period);
695 for_each_cpu(i, rd->span) {
696 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, cpu: i);
697 s64 diff;
698
699 if (iter == rt_rq)
700 continue;
701
702 raw_spin_lock(&iter->rt_runtime_lock);
703 /*
704 * Either all rqs have inf runtime and there's nothing to steal
705 * or __disable_runtime() below sets a specific rq to inf to
706 * indicate its been disabled and disallow stealing.
707 */
708 if (iter->rt_runtime == RUNTIME_INF)
709 goto next;
710
711 /*
712 * From runqueues with spare time, take 1/n part of their
713 * spare time, but no more than our period.
714 */
715 diff = iter->rt_runtime - iter->rt_time;
716 if (diff > 0) {
717 diff = div_u64(dividend: (u64)diff, divisor: weight);
718 if (rt_rq->rt_runtime + diff > rt_period)
719 diff = rt_period - rt_rq->rt_runtime;
720 iter->rt_runtime -= diff;
721 rt_rq->rt_runtime += diff;
722 if (rt_rq->rt_runtime == rt_period) {
723 raw_spin_unlock(&iter->rt_runtime_lock);
724 break;
725 }
726 }
727next:
728 raw_spin_unlock(&iter->rt_runtime_lock);
729 }
730 raw_spin_unlock(&rt_b->rt_runtime_lock);
731}
732
733/*
734 * Ensure this RQ takes back all the runtime it lend to its neighbours.
735 */
736static void __disable_runtime(struct rq *rq)
737{
738 struct root_domain *rd = rq->rd;
739 rt_rq_iter_t iter;
740 struct rt_rq *rt_rq;
741
742 if (unlikely(!scheduler_running))
743 return;
744
745 for_each_rt_rq(rt_rq, iter, rq) {
746 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
747 s64 want;
748 int i;
749
750 raw_spin_lock(&rt_b->rt_runtime_lock);
751 raw_spin_lock(&rt_rq->rt_runtime_lock);
752 /*
753 * Either we're all inf and nobody needs to borrow, or we're
754 * already disabled and thus have nothing to do, or we have
755 * exactly the right amount of runtime to take out.
756 */
757 if (rt_rq->rt_runtime == RUNTIME_INF ||
758 rt_rq->rt_runtime == rt_b->rt_runtime)
759 goto balanced;
760 raw_spin_unlock(&rt_rq->rt_runtime_lock);
761
762 /*
763 * Calculate the difference between what we started out with
764 * and what we current have, that's the amount of runtime
765 * we lend and now have to reclaim.
766 */
767 want = rt_b->rt_runtime - rt_rq->rt_runtime;
768
769 /*
770 * Greedy reclaim, take back as much as we can.
771 */
772 for_each_cpu(i, rd->span) {
773 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, cpu: i);
774 s64 diff;
775
776 /*
777 * Can't reclaim from ourselves or disabled runqueues.
778 */
779 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
780 continue;
781
782 raw_spin_lock(&iter->rt_runtime_lock);
783 if (want > 0) {
784 diff = min_t(s64, iter->rt_runtime, want);
785 iter->rt_runtime -= diff;
786 want -= diff;
787 } else {
788 iter->rt_runtime -= want;
789 want -= want;
790 }
791 raw_spin_unlock(&iter->rt_runtime_lock);
792
793 if (!want)
794 break;
795 }
796
797 raw_spin_lock(&rt_rq->rt_runtime_lock);
798 /*
799 * We cannot be left wanting - that would mean some runtime
800 * leaked out of the system.
801 */
802 WARN_ON_ONCE(want);
803balanced:
804 /*
805 * Disable all the borrow logic by pretending we have inf
806 * runtime - in which case borrowing doesn't make sense.
807 */
808 rt_rq->rt_runtime = RUNTIME_INF;
809 rt_rq->rt_throttled = 0;
810 raw_spin_unlock(&rt_rq->rt_runtime_lock);
811 raw_spin_unlock(&rt_b->rt_runtime_lock);
812
813 /* Make rt_rq available for pick_next_task() */
814 sched_rt_rq_enqueue(rt_rq);
815 }
816}
817
818static void __enable_runtime(struct rq *rq)
819{
820 rt_rq_iter_t iter;
821 struct rt_rq *rt_rq;
822
823 if (unlikely(!scheduler_running))
824 return;
825
826 /*
827 * Reset each runqueue's bandwidth settings
828 */
829 for_each_rt_rq(rt_rq, iter, rq) {
830 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
831
832 raw_spin_lock(&rt_b->rt_runtime_lock);
833 raw_spin_lock(&rt_rq->rt_runtime_lock);
834 rt_rq->rt_runtime = rt_b->rt_runtime;
835 rt_rq->rt_time = 0;
836 rt_rq->rt_throttled = 0;
837 raw_spin_unlock(&rt_rq->rt_runtime_lock);
838 raw_spin_unlock(&rt_b->rt_runtime_lock);
839 }
840}
841
842static void balance_runtime(struct rt_rq *rt_rq)
843{
844 if (!sched_feat(RT_RUNTIME_SHARE))
845 return;
846
847 if (rt_rq->rt_time > rt_rq->rt_runtime) {
848 raw_spin_unlock(&rt_rq->rt_runtime_lock);
849 do_balance_runtime(rt_rq);
850 raw_spin_lock(&rt_rq->rt_runtime_lock);
851 }
852}
853#else /* !CONFIG_SMP */
854static inline void balance_runtime(struct rt_rq *rt_rq) {}
855#endif /* CONFIG_SMP */
856
857static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
858{
859 int i, idle = 1, throttled = 0;
860 const struct cpumask *span;
861
862 span = sched_rt_period_mask();
863#ifdef CONFIG_RT_GROUP_SCHED
864 /*
865 * FIXME: isolated CPUs should really leave the root task group,
866 * whether they are isolcpus or were isolated via cpusets, lest
867 * the timer run on a CPU which does not service all runqueues,
868 * potentially leaving other CPUs indefinitely throttled. If
869 * isolation is really required, the user will turn the throttle
870 * off to kill the perturbations it causes anyway. Meanwhile,
871 * this maintains functionality for boot and/or troubleshooting.
872 */
873 if (rt_b == &root_task_group.rt_bandwidth)
874 span = cpu_online_mask;
875#endif
876 for_each_cpu(i, span) {
877 int enqueue = 0;
878 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, cpu: i);
879 struct rq *rq = rq_of_rt_rq(rt_rq);
880 struct rq_flags rf;
881 int skip;
882
883 /*
884 * When span == cpu_online_mask, taking each rq->lock
885 * can be time-consuming. Try to avoid it when possible.
886 */
887 raw_spin_lock(&rt_rq->rt_runtime_lock);
888 if (!sched_feat(RT_RUNTIME_SHARE) && rt_rq->rt_runtime != RUNTIME_INF)
889 rt_rq->rt_runtime = rt_b->rt_runtime;
890 skip = !rt_rq->rt_time && !rt_rq->rt_nr_running;
891 raw_spin_unlock(&rt_rq->rt_runtime_lock);
892 if (skip)
893 continue;
894
895 rq_lock(rq, rf: &rf);
896 update_rq_clock(rq);
897
898 if (rt_rq->rt_time) {
899 u64 runtime;
900
901 raw_spin_lock(&rt_rq->rt_runtime_lock);
902 if (rt_rq->rt_throttled)
903 balance_runtime(rt_rq);
904 runtime = rt_rq->rt_runtime;
905 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
906 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
907 rt_rq->rt_throttled = 0;
908 enqueue = 1;
909
910 /*
911 * When we're idle and a woken (rt) task is
912 * throttled wakeup_preempt() will set
913 * skip_update and the time between the wakeup
914 * and this unthrottle will get accounted as
915 * 'runtime'.
916 */
917 if (rt_rq->rt_nr_running && rq->curr == rq->idle)
918 rq_clock_cancel_skipupdate(rq);
919 }
920 if (rt_rq->rt_time || rt_rq->rt_nr_running)
921 idle = 0;
922 raw_spin_unlock(&rt_rq->rt_runtime_lock);
923 } else if (rt_rq->rt_nr_running) {
924 idle = 0;
925 if (!rt_rq_throttled(rt_rq))
926 enqueue = 1;
927 }
928 if (rt_rq->rt_throttled)
929 throttled = 1;
930
931 if (enqueue)
932 sched_rt_rq_enqueue(rt_rq);
933 rq_unlock(rq, rf: &rf);
934 }
935
936 if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
937 return 1;
938
939 return idle;
940}
941
942static inline int rt_se_prio(struct sched_rt_entity *rt_se)
943{
944#ifdef CONFIG_RT_GROUP_SCHED
945 struct rt_rq *rt_rq = group_rt_rq(rt_se);
946
947 if (rt_rq)
948 return rt_rq->highest_prio.curr;
949#endif
950
951 return rt_task_of(rt_se)->prio;
952}
953
954static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
955{
956 u64 runtime = sched_rt_runtime(rt_rq);
957
958 if (rt_rq->rt_throttled)
959 return rt_rq_throttled(rt_rq);
960
961 if (runtime >= sched_rt_period(rt_rq))
962 return 0;
963
964 balance_runtime(rt_rq);
965 runtime = sched_rt_runtime(rt_rq);
966 if (runtime == RUNTIME_INF)
967 return 0;
968
969 if (rt_rq->rt_time > runtime) {
970 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
971
972 /*
973 * Don't actually throttle groups that have no runtime assigned
974 * but accrue some time due to boosting.
975 */
976 if (likely(rt_b->rt_runtime)) {
977 rt_rq->rt_throttled = 1;
978 printk_deferred_once("sched: RT throttling activated\n");
979 } else {
980 /*
981 * In case we did anyway, make it go away,
982 * replenishment is a joke, since it will replenish us
983 * with exactly 0 ns.
984 */
985 rt_rq->rt_time = 0;
986 }
987
988 if (rt_rq_throttled(rt_rq)) {
989 sched_rt_rq_dequeue(rt_rq);
990 return 1;
991 }
992 }
993
994 return 0;
995}
996
997/*
998 * Update the current task's runtime statistics. Skip current tasks that
999 * are not in our scheduling class.
1000 */
1001static void update_curr_rt(struct rq *rq)
1002{
1003 struct task_struct *curr = rq->curr;
1004 struct sched_rt_entity *rt_se = &curr->rt;
1005 u64 delta_exec;
1006 u64 now;
1007
1008 if (curr->sched_class != &rt_sched_class)
1009 return;
1010
1011 now = rq_clock_task(rq);
1012 delta_exec = now - curr->se.exec_start;
1013 if (unlikely((s64)delta_exec <= 0))
1014 return;
1015
1016 schedstat_set(curr->stats.exec_max,
1017 max(curr->stats.exec_max, delta_exec));
1018
1019 trace_sched_stat_runtime(tsk: curr, runtime: delta_exec, vruntime: 0);
1020
1021 update_current_exec_runtime(curr, now, delta_exec);
1022
1023 if (!rt_bandwidth_enabled())
1024 return;
1025
1026 for_each_sched_rt_entity(rt_se) {
1027 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1028 int exceeded;
1029
1030 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
1031 raw_spin_lock(&rt_rq->rt_runtime_lock);
1032 rt_rq->rt_time += delta_exec;
1033 exceeded = sched_rt_runtime_exceeded(rt_rq);
1034 if (exceeded)
1035 resched_curr(rq);
1036 raw_spin_unlock(&rt_rq->rt_runtime_lock);
1037 if (exceeded)
1038 do_start_rt_bandwidth(rt_b: sched_rt_bandwidth(rt_rq));
1039 }
1040 }
1041}
1042
1043static void
1044dequeue_top_rt_rq(struct rt_rq *rt_rq, unsigned int count)
1045{
1046 struct rq *rq = rq_of_rt_rq(rt_rq);
1047
1048 BUG_ON(&rq->rt != rt_rq);
1049
1050 if (!rt_rq->rt_queued)
1051 return;
1052
1053 BUG_ON(!rq->nr_running);
1054
1055 sub_nr_running(rq, count);
1056 rt_rq->rt_queued = 0;
1057
1058}
1059
1060static void
1061enqueue_top_rt_rq(struct rt_rq *rt_rq)
1062{
1063 struct rq *rq = rq_of_rt_rq(rt_rq);
1064
1065 BUG_ON(&rq->rt != rt_rq);
1066
1067 if (rt_rq->rt_queued)
1068 return;
1069
1070 if (rt_rq_throttled(rt_rq))
1071 return;
1072
1073 if (rt_rq->rt_nr_running) {
1074 add_nr_running(rq, count: rt_rq->rt_nr_running);
1075 rt_rq->rt_queued = 1;
1076 }
1077
1078 /* Kick cpufreq (see the comment in kernel/sched/sched.h). */
1079 cpufreq_update_util(rq, flags: 0);
1080}
1081
1082#if defined CONFIG_SMP
1083
1084static void
1085inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1086{
1087 struct rq *rq = rq_of_rt_rq(rt_rq);
1088
1089#ifdef CONFIG_RT_GROUP_SCHED
1090 /*
1091 * Change rq's cpupri only if rt_rq is the top queue.
1092 */
1093 if (&rq->rt != rt_rq)
1094 return;
1095#endif
1096 if (rq->online && prio < prev_prio)
1097 cpupri_set(cp: &rq->rd->cpupri, cpu: rq->cpu, pri: prio);
1098}
1099
1100static void
1101dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1102{
1103 struct rq *rq = rq_of_rt_rq(rt_rq);
1104
1105#ifdef CONFIG_RT_GROUP_SCHED
1106 /*
1107 * Change rq's cpupri only if rt_rq is the top queue.
1108 */
1109 if (&rq->rt != rt_rq)
1110 return;
1111#endif
1112 if (rq->online && rt_rq->highest_prio.curr != prev_prio)
1113 cpupri_set(cp: &rq->rd->cpupri, cpu: rq->cpu, pri: rt_rq->highest_prio.curr);
1114}
1115
1116#else /* CONFIG_SMP */
1117
1118static inline
1119void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1120static inline
1121void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1122
1123#endif /* CONFIG_SMP */
1124
1125#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
1126static void
1127inc_rt_prio(struct rt_rq *rt_rq, int prio)
1128{
1129 int prev_prio = rt_rq->highest_prio.curr;
1130
1131 if (prio < prev_prio)
1132 rt_rq->highest_prio.curr = prio;
1133
1134 inc_rt_prio_smp(rt_rq, prio, prev_prio);
1135}
1136
1137static void
1138dec_rt_prio(struct rt_rq *rt_rq, int prio)
1139{
1140 int prev_prio = rt_rq->highest_prio.curr;
1141
1142 if (rt_rq->rt_nr_running) {
1143
1144 WARN_ON(prio < prev_prio);
1145
1146 /*
1147 * This may have been our highest task, and therefore
1148 * we may have some recomputation to do
1149 */
1150 if (prio == prev_prio) {
1151 struct rt_prio_array *array = &rt_rq->active;
1152
1153 rt_rq->highest_prio.curr =
1154 sched_find_first_bit(b: array->bitmap);
1155 }
1156
1157 } else {
1158 rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
1159 }
1160
1161 dec_rt_prio_smp(rt_rq, prio, prev_prio);
1162}
1163
1164#else
1165
1166static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
1167static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1168
1169#endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1170
1171#ifdef CONFIG_RT_GROUP_SCHED
1172
1173static void
1174inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1175{
1176 if (rt_se_boosted(rt_se))
1177 rt_rq->rt_nr_boosted++;
1178
1179 if (rt_rq->tg)
1180 start_rt_bandwidth(rt_b: &rt_rq->tg->rt_bandwidth);
1181}
1182
1183static void
1184dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1185{
1186 if (rt_se_boosted(rt_se))
1187 rt_rq->rt_nr_boosted--;
1188
1189 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1190}
1191
1192#else /* CONFIG_RT_GROUP_SCHED */
1193
1194static void
1195inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1196{
1197 start_rt_bandwidth(&def_rt_bandwidth);
1198}
1199
1200static inline
1201void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1202
1203#endif /* CONFIG_RT_GROUP_SCHED */
1204
1205static inline
1206unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1207{
1208 struct rt_rq *group_rq = group_rt_rq(rt_se);
1209
1210 if (group_rq)
1211 return group_rq->rt_nr_running;
1212 else
1213 return 1;
1214}
1215
1216static inline
1217unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se)
1218{
1219 struct rt_rq *group_rq = group_rt_rq(rt_se);
1220 struct task_struct *tsk;
1221
1222 if (group_rq)
1223 return group_rq->rr_nr_running;
1224
1225 tsk = rt_task_of(rt_se);
1226
1227 return (tsk->policy == SCHED_RR) ? 1 : 0;
1228}
1229
1230static inline
1231void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1232{
1233 int prio = rt_se_prio(rt_se);
1234
1235 WARN_ON(!rt_prio(prio));
1236 rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
1237 rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se);
1238
1239 inc_rt_prio(rt_rq, prio);
1240 inc_rt_group(rt_se, rt_rq);
1241}
1242
1243static inline
1244void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1245{
1246 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1247 WARN_ON(!rt_rq->rt_nr_running);
1248 rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
1249 rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se);
1250
1251 dec_rt_prio(rt_rq, prio: rt_se_prio(rt_se));
1252 dec_rt_group(rt_se, rt_rq);
1253}
1254
1255/*
1256 * Change rt_se->run_list location unless SAVE && !MOVE
1257 *
1258 * assumes ENQUEUE/DEQUEUE flags match
1259 */
1260static inline bool move_entity(unsigned int flags)
1261{
1262 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
1263 return false;
1264
1265 return true;
1266}
1267
1268static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array)
1269{
1270 list_del_init(entry: &rt_se->run_list);
1271
1272 if (list_empty(head: array->queue + rt_se_prio(rt_se)))
1273 __clear_bit(rt_se_prio(rt_se), array->bitmap);
1274
1275 rt_se->on_list = 0;
1276}
1277
1278static inline struct sched_statistics *
1279__schedstats_from_rt_se(struct sched_rt_entity *rt_se)
1280{
1281#ifdef CONFIG_RT_GROUP_SCHED
1282 /* schedstats is not supported for rt group. */
1283 if (!rt_entity_is_task(rt_se))
1284 return NULL;
1285#endif
1286
1287 return &rt_task_of(rt_se)->stats;
1288}
1289
1290static inline void
1291update_stats_wait_start_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
1292{
1293 struct sched_statistics *stats;
1294 struct task_struct *p = NULL;
1295
1296 if (!schedstat_enabled())
1297 return;
1298
1299 if (rt_entity_is_task(rt_se))
1300 p = rt_task_of(rt_se);
1301
1302 stats = __schedstats_from_rt_se(rt_se);
1303 if (!stats)
1304 return;
1305
1306 __update_stats_wait_start(rq: rq_of_rt_rq(rt_rq), p, stats);
1307}
1308
1309static inline void
1310update_stats_enqueue_sleeper_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
1311{
1312 struct sched_statistics *stats;
1313 struct task_struct *p = NULL;
1314
1315 if (!schedstat_enabled())
1316 return;
1317
1318 if (rt_entity_is_task(rt_se))
1319 p = rt_task_of(rt_se);
1320
1321 stats = __schedstats_from_rt_se(rt_se);
1322 if (!stats)
1323 return;
1324
1325 __update_stats_enqueue_sleeper(rq: rq_of_rt_rq(rt_rq), p, stats);
1326}
1327
1328static inline void
1329update_stats_enqueue_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
1330 int flags)
1331{
1332 if (!schedstat_enabled())
1333 return;
1334
1335 if (flags & ENQUEUE_WAKEUP)
1336 update_stats_enqueue_sleeper_rt(rt_rq, rt_se);
1337}
1338
1339static inline void
1340update_stats_wait_end_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
1341{
1342 struct sched_statistics *stats;
1343 struct task_struct *p = NULL;
1344
1345 if (!schedstat_enabled())
1346 return;
1347
1348 if (rt_entity_is_task(rt_se))
1349 p = rt_task_of(rt_se);
1350
1351 stats = __schedstats_from_rt_se(rt_se);
1352 if (!stats)
1353 return;
1354
1355 __update_stats_wait_end(rq: rq_of_rt_rq(rt_rq), p, stats);
1356}
1357
1358static inline void
1359update_stats_dequeue_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
1360 int flags)
1361{
1362 struct task_struct *p = NULL;
1363
1364 if (!schedstat_enabled())
1365 return;
1366
1367 if (rt_entity_is_task(rt_se))
1368 p = rt_task_of(rt_se);
1369
1370 if ((flags & DEQUEUE_SLEEP) && p) {
1371 unsigned int state;
1372
1373 state = READ_ONCE(p->__state);
1374 if (state & TASK_INTERRUPTIBLE)
1375 __schedstat_set(p->stats.sleep_start,
1376 rq_clock(rq_of_rt_rq(rt_rq)));
1377
1378 if (state & TASK_UNINTERRUPTIBLE)
1379 __schedstat_set(p->stats.block_start,
1380 rq_clock(rq_of_rt_rq(rt_rq)));
1381 }
1382}
1383
1384static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1385{
1386 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1387 struct rt_prio_array *array = &rt_rq->active;
1388 struct rt_rq *group_rq = group_rt_rq(rt_se);
1389 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1390
1391 /*
1392 * Don't enqueue the group if its throttled, or when empty.
1393 * The latter is a consequence of the former when a child group
1394 * get throttled and the current group doesn't have any other
1395 * active members.
1396 */
1397 if (group_rq && (rt_rq_throttled(rt_rq: group_rq) || !group_rq->rt_nr_running)) {
1398 if (rt_se->on_list)
1399 __delist_rt_entity(rt_se, array);
1400 return;
1401 }
1402
1403 if (move_entity(flags)) {
1404 WARN_ON_ONCE(rt_se->on_list);
1405 if (flags & ENQUEUE_HEAD)
1406 list_add(new: &rt_se->run_list, head: queue);
1407 else
1408 list_add_tail(new: &rt_se->run_list, head: queue);
1409
1410 __set_bit(rt_se_prio(rt_se), array->bitmap);
1411 rt_se->on_list = 1;
1412 }
1413 rt_se->on_rq = 1;
1414
1415 inc_rt_tasks(rt_se, rt_rq);
1416}
1417
1418static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1419{
1420 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1421 struct rt_prio_array *array = &rt_rq->active;
1422
1423 if (move_entity(flags)) {
1424 WARN_ON_ONCE(!rt_se->on_list);
1425 __delist_rt_entity(rt_se, array);
1426 }
1427 rt_se->on_rq = 0;
1428
1429 dec_rt_tasks(rt_se, rt_rq);
1430}
1431
1432/*
1433 * Because the prio of an upper entry depends on the lower
1434 * entries, we must remove entries top - down.
1435 */
1436static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags)
1437{
1438 struct sched_rt_entity *back = NULL;
1439 unsigned int rt_nr_running;
1440
1441 for_each_sched_rt_entity(rt_se) {
1442 rt_se->back = back;
1443 back = rt_se;
1444 }
1445
1446 rt_nr_running = rt_rq_of_se(rt_se: back)->rt_nr_running;
1447
1448 for (rt_se = back; rt_se; rt_se = rt_se->back) {
1449 if (on_rt_rq(rt_se))
1450 __dequeue_rt_entity(rt_se, flags);
1451 }
1452
1453 dequeue_top_rt_rq(rt_rq: rt_rq_of_se(rt_se: back), count: rt_nr_running);
1454}
1455
1456static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1457{
1458 struct rq *rq = rq_of_rt_se(rt_se);
1459
1460 update_stats_enqueue_rt(rt_rq: rt_rq_of_se(rt_se), rt_se, flags);
1461
1462 dequeue_rt_stack(rt_se, flags);
1463 for_each_sched_rt_entity(rt_se)
1464 __enqueue_rt_entity(rt_se, flags);
1465 enqueue_top_rt_rq(rt_rq: &rq->rt);
1466}
1467
1468static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1469{
1470 struct rq *rq = rq_of_rt_se(rt_se);
1471
1472 update_stats_dequeue_rt(rt_rq: rt_rq_of_se(rt_se), rt_se, flags);
1473
1474 dequeue_rt_stack(rt_se, flags);
1475
1476 for_each_sched_rt_entity(rt_se) {
1477 struct rt_rq *rt_rq = group_rt_rq(rt_se);
1478
1479 if (rt_rq && rt_rq->rt_nr_running)
1480 __enqueue_rt_entity(rt_se, flags);
1481 }
1482 enqueue_top_rt_rq(rt_rq: &rq->rt);
1483}
1484
1485/*
1486 * Adding/removing a task to/from a priority array:
1487 */
1488static void
1489enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1490{
1491 struct sched_rt_entity *rt_se = &p->rt;
1492
1493 if (flags & ENQUEUE_WAKEUP)
1494 rt_se->timeout = 0;
1495
1496 check_schedstat_required();
1497 update_stats_wait_start_rt(rt_rq: rt_rq_of_se(rt_se), rt_se);
1498
1499 enqueue_rt_entity(rt_se, flags);
1500
1501 if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1502 enqueue_pushable_task(rq, p);
1503}
1504
1505static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1506{
1507 struct sched_rt_entity *rt_se = &p->rt;
1508
1509 update_curr_rt(rq);
1510 dequeue_rt_entity(rt_se, flags);
1511
1512 dequeue_pushable_task(rq, p);
1513}
1514
1515/*
1516 * Put task to the head or the end of the run list without the overhead of
1517 * dequeue followed by enqueue.
1518 */
1519static void
1520requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1521{
1522 if (on_rt_rq(rt_se)) {
1523 struct rt_prio_array *array = &rt_rq->active;
1524 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1525
1526 if (head)
1527 list_move(list: &rt_se->run_list, head: queue);
1528 else
1529 list_move_tail(list: &rt_se->run_list, head: queue);
1530 }
1531}
1532
1533static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1534{
1535 struct sched_rt_entity *rt_se = &p->rt;
1536 struct rt_rq *rt_rq;
1537
1538 for_each_sched_rt_entity(rt_se) {
1539 rt_rq = rt_rq_of_se(rt_se);
1540 requeue_rt_entity(rt_rq, rt_se, head);
1541 }
1542}
1543
1544static void yield_task_rt(struct rq *rq)
1545{
1546 requeue_task_rt(rq, p: rq->curr, head: 0);
1547}
1548
1549#ifdef CONFIG_SMP
1550static int find_lowest_rq(struct task_struct *task);
1551
1552static int
1553select_task_rq_rt(struct task_struct *p, int cpu, int flags)
1554{
1555 struct task_struct *curr;
1556 struct rq *rq;
1557 bool test;
1558
1559 /* For anything but wake ups, just return the task_cpu */
1560 if (!(flags & (WF_TTWU | WF_FORK)))
1561 goto out;
1562
1563 rq = cpu_rq(cpu);
1564
1565 rcu_read_lock();
1566 curr = READ_ONCE(rq->curr); /* unlocked access */
1567
1568 /*
1569 * If the current task on @p's runqueue is an RT task, then
1570 * try to see if we can wake this RT task up on another
1571 * runqueue. Otherwise simply start this RT task
1572 * on its current runqueue.
1573 *
1574 * We want to avoid overloading runqueues. If the woken
1575 * task is a higher priority, then it will stay on this CPU
1576 * and the lower prio task should be moved to another CPU.
1577 * Even though this will probably make the lower prio task
1578 * lose its cache, we do not want to bounce a higher task
1579 * around just because it gave up its CPU, perhaps for a
1580 * lock?
1581 *
1582 * For equal prio tasks, we just let the scheduler sort it out.
1583 *
1584 * Otherwise, just let it ride on the affined RQ and the
1585 * post-schedule router will push the preempted task away
1586 *
1587 * This test is optimistic, if we get it wrong the load-balancer
1588 * will have to sort it out.
1589 *
1590 * We take into account the capacity of the CPU to ensure it fits the
1591 * requirement of the task - which is only important on heterogeneous
1592 * systems like big.LITTLE.
1593 */
1594 test = curr &&
1595 unlikely(rt_task(curr)) &&
1596 (curr->nr_cpus_allowed < 2 || curr->prio <= p->prio);
1597
1598 if (test || !rt_task_fits_capacity(p, cpu)) {
1599 int target = find_lowest_rq(task: p);
1600
1601 /*
1602 * Bail out if we were forcing a migration to find a better
1603 * fitting CPU but our search failed.
1604 */
1605 if (!test && target != -1 && !rt_task_fits_capacity(p, cpu: target))
1606 goto out_unlock;
1607
1608 /*
1609 * Don't bother moving it if the destination CPU is
1610 * not running a lower priority task.
1611 */
1612 if (target != -1 &&
1613 p->prio < cpu_rq(target)->rt.highest_prio.curr)
1614 cpu = target;
1615 }
1616
1617out_unlock:
1618 rcu_read_unlock();
1619
1620out:
1621 return cpu;
1622}
1623
1624static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1625{
1626 /*
1627 * Current can't be migrated, useless to reschedule,
1628 * let's hope p can move out.
1629 */
1630 if (rq->curr->nr_cpus_allowed == 1 ||
1631 !cpupri_find(cp: &rq->rd->cpupri, p: rq->curr, NULL))
1632 return;
1633
1634 /*
1635 * p is migratable, so let's not schedule it and
1636 * see if it is pushed or pulled somewhere else.
1637 */
1638 if (p->nr_cpus_allowed != 1 &&
1639 cpupri_find(cp: &rq->rd->cpupri, p, NULL))
1640 return;
1641
1642 /*
1643 * There appear to be other CPUs that can accept
1644 * the current task but none can run 'p', so lets reschedule
1645 * to try and push the current task away:
1646 */
1647 requeue_task_rt(rq, p, head: 1);
1648 resched_curr(rq);
1649}
1650
1651static int balance_rt(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1652{
1653 if (!on_rt_rq(rt_se: &p->rt) && need_pull_rt_task(rq, prev: p)) {
1654 /*
1655 * This is OK, because current is on_cpu, which avoids it being
1656 * picked for load-balance and preemption/IRQs are still
1657 * disabled avoiding further scheduler activity on it and we've
1658 * not yet started the picking loop.
1659 */
1660 rq_unpin_lock(rq, rf);
1661 pull_rt_task(rq);
1662 rq_repin_lock(rq, rf);
1663 }
1664
1665 return sched_stop_runnable(rq) || sched_dl_runnable(rq) || sched_rt_runnable(rq);
1666}
1667#endif /* CONFIG_SMP */
1668
1669/*
1670 * Preempt the current task with a newly woken task if needed:
1671 */
1672static void wakeup_preempt_rt(struct rq *rq, struct task_struct *p, int flags)
1673{
1674 if (p->prio < rq->curr->prio) {
1675 resched_curr(rq);
1676 return;
1677 }
1678
1679#ifdef CONFIG_SMP
1680 /*
1681 * If:
1682 *
1683 * - the newly woken task is of equal priority to the current task
1684 * - the newly woken task is non-migratable while current is migratable
1685 * - current will be preempted on the next reschedule
1686 *
1687 * we should check to see if current can readily move to a different
1688 * cpu. If so, we will reschedule to allow the push logic to try
1689 * to move current somewhere else, making room for our non-migratable
1690 * task.
1691 */
1692 if (p->prio == rq->curr->prio && !test_tsk_need_resched(tsk: rq->curr))
1693 check_preempt_equal_prio(rq, p);
1694#endif
1695}
1696
1697static inline void set_next_task_rt(struct rq *rq, struct task_struct *p, bool first)
1698{
1699 struct sched_rt_entity *rt_se = &p->rt;
1700 struct rt_rq *rt_rq = &rq->rt;
1701
1702 p->se.exec_start = rq_clock_task(rq);
1703 if (on_rt_rq(rt_se: &p->rt))
1704 update_stats_wait_end_rt(rt_rq, rt_se);
1705
1706 /* The running task is never eligible for pushing */
1707 dequeue_pushable_task(rq, p);
1708
1709 if (!first)
1710 return;
1711
1712 /*
1713 * If prev task was rt, put_prev_task() has already updated the
1714 * utilization. We only care of the case where we start to schedule a
1715 * rt task
1716 */
1717 if (rq->curr->sched_class != &rt_sched_class)
1718 update_rt_rq_load_avg(now: rq_clock_pelt(rq), rq, running: 0);
1719
1720 rt_queue_push_tasks(rq);
1721}
1722
1723static struct sched_rt_entity *pick_next_rt_entity(struct rt_rq *rt_rq)
1724{
1725 struct rt_prio_array *array = &rt_rq->active;
1726 struct sched_rt_entity *next = NULL;
1727 struct list_head *queue;
1728 int idx;
1729
1730 idx = sched_find_first_bit(b: array->bitmap);
1731 BUG_ON(idx >= MAX_RT_PRIO);
1732
1733 queue = array->queue + idx;
1734 if (SCHED_WARN_ON(list_empty(queue)))
1735 return NULL;
1736 next = list_entry(queue->next, struct sched_rt_entity, run_list);
1737
1738 return next;
1739}
1740
1741static struct task_struct *_pick_next_task_rt(struct rq *rq)
1742{
1743 struct sched_rt_entity *rt_se;
1744 struct rt_rq *rt_rq = &rq->rt;
1745
1746 do {
1747 rt_se = pick_next_rt_entity(rt_rq);
1748 if (unlikely(!rt_se))
1749 return NULL;
1750 rt_rq = group_rt_rq(rt_se);
1751 } while (rt_rq);
1752
1753 return rt_task_of(rt_se);
1754}
1755
1756static struct task_struct *pick_task_rt(struct rq *rq)
1757{
1758 struct task_struct *p;
1759
1760 if (!sched_rt_runnable(rq))
1761 return NULL;
1762
1763 p = _pick_next_task_rt(rq);
1764
1765 return p;
1766}
1767
1768static struct task_struct *pick_next_task_rt(struct rq *rq)
1769{
1770 struct task_struct *p = pick_task_rt(rq);
1771
1772 if (p)
1773 set_next_task_rt(rq, p, first: true);
1774
1775 return p;
1776}
1777
1778static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1779{
1780 struct sched_rt_entity *rt_se = &p->rt;
1781 struct rt_rq *rt_rq = &rq->rt;
1782
1783 if (on_rt_rq(rt_se: &p->rt))
1784 update_stats_wait_start_rt(rt_rq, rt_se);
1785
1786 update_curr_rt(rq);
1787
1788 update_rt_rq_load_avg(now: rq_clock_pelt(rq), rq, running: 1);
1789
1790 /*
1791 * The previous task needs to be made eligible for pushing
1792 * if it is still active
1793 */
1794 if (on_rt_rq(rt_se: &p->rt) && p->nr_cpus_allowed > 1)
1795 enqueue_pushable_task(rq, p);
1796}
1797
1798#ifdef CONFIG_SMP
1799
1800/* Only try algorithms three times */
1801#define RT_MAX_TRIES 3
1802
1803static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1804{
1805 if (!task_on_cpu(rq, p) &&
1806 cpumask_test_cpu(cpu, cpumask: &p->cpus_mask))
1807 return 1;
1808
1809 return 0;
1810}
1811
1812/*
1813 * Return the highest pushable rq's task, which is suitable to be executed
1814 * on the CPU, NULL otherwise
1815 */
1816static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
1817{
1818 struct plist_head *head = &rq->rt.pushable_tasks;
1819 struct task_struct *p;
1820
1821 if (!has_pushable_tasks(rq))
1822 return NULL;
1823
1824 plist_for_each_entry(p, head, pushable_tasks) {
1825 if (pick_rt_task(rq, p, cpu))
1826 return p;
1827 }
1828
1829 return NULL;
1830}
1831
1832static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1833
1834static int find_lowest_rq(struct task_struct *task)
1835{
1836 struct sched_domain *sd;
1837 struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
1838 int this_cpu = smp_processor_id();
1839 int cpu = task_cpu(p: task);
1840 int ret;
1841
1842 /* Make sure the mask is initialized first */
1843 if (unlikely(!lowest_mask))
1844 return -1;
1845
1846 if (task->nr_cpus_allowed == 1)
1847 return -1; /* No other targets possible */
1848
1849 /*
1850 * If we're on asym system ensure we consider the different capacities
1851 * of the CPUs when searching for the lowest_mask.
1852 */
1853 if (sched_asym_cpucap_active()) {
1854
1855 ret = cpupri_find_fitness(cp: &task_rq(task)->rd->cpupri,
1856 p: task, lowest_mask,
1857 fitness_fn: rt_task_fits_capacity);
1858 } else {
1859
1860 ret = cpupri_find(cp: &task_rq(task)->rd->cpupri,
1861 p: task, lowest_mask);
1862 }
1863
1864 if (!ret)
1865 return -1; /* No targets found */
1866
1867 /*
1868 * At this point we have built a mask of CPUs representing the
1869 * lowest priority tasks in the system. Now we want to elect
1870 * the best one based on our affinity and topology.
1871 *
1872 * We prioritize the last CPU that the task executed on since
1873 * it is most likely cache-hot in that location.
1874 */
1875 if (cpumask_test_cpu(cpu, cpumask: lowest_mask))
1876 return cpu;
1877
1878 /*
1879 * Otherwise, we consult the sched_domains span maps to figure
1880 * out which CPU is logically closest to our hot cache data.
1881 */
1882 if (!cpumask_test_cpu(cpu: this_cpu, cpumask: lowest_mask))
1883 this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1884
1885 rcu_read_lock();
1886 for_each_domain(cpu, sd) {
1887 if (sd->flags & SD_WAKE_AFFINE) {
1888 int best_cpu;
1889
1890 /*
1891 * "this_cpu" is cheaper to preempt than a
1892 * remote processor.
1893 */
1894 if (this_cpu != -1 &&
1895 cpumask_test_cpu(cpu: this_cpu, cpumask: sched_domain_span(sd))) {
1896 rcu_read_unlock();
1897 return this_cpu;
1898 }
1899
1900 best_cpu = cpumask_any_and_distribute(src1p: lowest_mask,
1901 src2p: sched_domain_span(sd));
1902 if (best_cpu < nr_cpu_ids) {
1903 rcu_read_unlock();
1904 return best_cpu;
1905 }
1906 }
1907 }
1908 rcu_read_unlock();
1909
1910 /*
1911 * And finally, if there were no matches within the domains
1912 * just give the caller *something* to work with from the compatible
1913 * locations.
1914 */
1915 if (this_cpu != -1)
1916 return this_cpu;
1917
1918 cpu = cpumask_any_distribute(srcp: lowest_mask);
1919 if (cpu < nr_cpu_ids)
1920 return cpu;
1921
1922 return -1;
1923}
1924
1925/* Will lock the rq it finds */
1926static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1927{
1928 struct rq *lowest_rq = NULL;
1929 int tries;
1930 int cpu;
1931
1932 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1933 cpu = find_lowest_rq(task);
1934
1935 if ((cpu == -1) || (cpu == rq->cpu))
1936 break;
1937
1938 lowest_rq = cpu_rq(cpu);
1939
1940 if (lowest_rq->rt.highest_prio.curr <= task->prio) {
1941 /*
1942 * Target rq has tasks of equal or higher priority,
1943 * retrying does not release any lock and is unlikely
1944 * to yield a different result.
1945 */
1946 lowest_rq = NULL;
1947 break;
1948 }
1949
1950 /* if the prio of this runqueue changed, try again */
1951 if (double_lock_balance(this_rq: rq, busiest: lowest_rq)) {
1952 /*
1953 * We had to unlock the run queue. In
1954 * the mean time, task could have
1955 * migrated already or had its affinity changed.
1956 * Also make sure that it wasn't scheduled on its rq.
1957 * It is possible the task was scheduled, set
1958 * "migrate_disabled" and then got preempted, so we must
1959 * check the task migration disable flag here too.
1960 */
1961 if (unlikely(task_rq(task) != rq ||
1962 !cpumask_test_cpu(lowest_rq->cpu, &task->cpus_mask) ||
1963 task_on_cpu(rq, task) ||
1964 !rt_task(task) ||
1965 is_migration_disabled(task) ||
1966 !task_on_rq_queued(task))) {
1967
1968 double_unlock_balance(this_rq: rq, busiest: lowest_rq);
1969 lowest_rq = NULL;
1970 break;
1971 }
1972 }
1973
1974 /* If this rq is still suitable use it. */
1975 if (lowest_rq->rt.highest_prio.curr > task->prio)
1976 break;
1977
1978 /* try again */
1979 double_unlock_balance(this_rq: rq, busiest: lowest_rq);
1980 lowest_rq = NULL;
1981 }
1982
1983 return lowest_rq;
1984}
1985
1986static struct task_struct *pick_next_pushable_task(struct rq *rq)
1987{
1988 struct task_struct *p;
1989
1990 if (!has_pushable_tasks(rq))
1991 return NULL;
1992
1993 p = plist_first_entry(&rq->rt.pushable_tasks,
1994 struct task_struct, pushable_tasks);
1995
1996 BUG_ON(rq->cpu != task_cpu(p));
1997 BUG_ON(task_current(rq, p));
1998 BUG_ON(p->nr_cpus_allowed <= 1);
1999
2000 BUG_ON(!task_on_rq_queued(p));
2001 BUG_ON(!rt_task(p));
2002
2003 return p;
2004}
2005
2006/*
2007 * If the current CPU has more than one RT task, see if the non
2008 * running task can migrate over to a CPU that is running a task
2009 * of lesser priority.
2010 */
2011static int push_rt_task(struct rq *rq, bool pull)
2012{
2013 struct task_struct *next_task;
2014 struct rq *lowest_rq;
2015 int ret = 0;
2016
2017 if (!rq->rt.overloaded)
2018 return 0;
2019
2020 next_task = pick_next_pushable_task(rq);
2021 if (!next_task)
2022 return 0;
2023
2024retry:
2025 /*
2026 * It's possible that the next_task slipped in of
2027 * higher priority than current. If that's the case
2028 * just reschedule current.
2029 */
2030 if (unlikely(next_task->prio < rq->curr->prio)) {
2031 resched_curr(rq);
2032 return 0;
2033 }
2034
2035 if (is_migration_disabled(p: next_task)) {
2036 struct task_struct *push_task = NULL;
2037 int cpu;
2038
2039 if (!pull || rq->push_busy)
2040 return 0;
2041
2042 /*
2043 * Invoking find_lowest_rq() on anything but an RT task doesn't
2044 * make sense. Per the above priority check, curr has to
2045 * be of higher priority than next_task, so no need to
2046 * reschedule when bailing out.
2047 *
2048 * Note that the stoppers are masqueraded as SCHED_FIFO
2049 * (cf. sched_set_stop_task()), so we can't rely on rt_task().
2050 */
2051 if (rq->curr->sched_class != &rt_sched_class)
2052 return 0;
2053
2054 cpu = find_lowest_rq(task: rq->curr);
2055 if (cpu == -1 || cpu == rq->cpu)
2056 return 0;
2057
2058 /*
2059 * Given we found a CPU with lower priority than @next_task,
2060 * therefore it should be running. However we cannot migrate it
2061 * to this other CPU, instead attempt to push the current
2062 * running task on this CPU away.
2063 */
2064 push_task = get_push_task(rq);
2065 if (push_task) {
2066 preempt_disable();
2067 raw_spin_rq_unlock(rq);
2068 stop_one_cpu_nowait(cpu: rq->cpu, fn: push_cpu_stop,
2069 arg: push_task, work_buf: &rq->push_work);
2070 preempt_enable();
2071 raw_spin_rq_lock(rq);
2072 }
2073
2074 return 0;
2075 }
2076
2077 if (WARN_ON(next_task == rq->curr))
2078 return 0;
2079
2080 /* We might release rq lock */
2081 get_task_struct(t: next_task);
2082
2083 /* find_lock_lowest_rq locks the rq if found */
2084 lowest_rq = find_lock_lowest_rq(task: next_task, rq);
2085 if (!lowest_rq) {
2086 struct task_struct *task;
2087 /*
2088 * find_lock_lowest_rq releases rq->lock
2089 * so it is possible that next_task has migrated.
2090 *
2091 * We need to make sure that the task is still on the same
2092 * run-queue and is also still the next task eligible for
2093 * pushing.
2094 */
2095 task = pick_next_pushable_task(rq);
2096 if (task == next_task) {
2097 /*
2098 * The task hasn't migrated, and is still the next
2099 * eligible task, but we failed to find a run-queue
2100 * to push it to. Do not retry in this case, since
2101 * other CPUs will pull from us when ready.
2102 */
2103 goto out;
2104 }
2105
2106 if (!task)
2107 /* No more tasks, just exit */
2108 goto out;
2109
2110 /*
2111 * Something has shifted, try again.
2112 */
2113 put_task_struct(t: next_task);
2114 next_task = task;
2115 goto retry;
2116 }
2117
2118 deactivate_task(rq, p: next_task, flags: 0);
2119 set_task_cpu(p: next_task, cpu: lowest_rq->cpu);
2120 activate_task(rq: lowest_rq, p: next_task, flags: 0);
2121 resched_curr(rq: lowest_rq);
2122 ret = 1;
2123
2124 double_unlock_balance(this_rq: rq, busiest: lowest_rq);
2125out:
2126 put_task_struct(t: next_task);
2127
2128 return ret;
2129}
2130
2131static void push_rt_tasks(struct rq *rq)
2132{
2133 /* push_rt_task will return true if it moved an RT */
2134 while (push_rt_task(rq, pull: false))
2135 ;
2136}
2137
2138#ifdef HAVE_RT_PUSH_IPI
2139
2140/*
2141 * When a high priority task schedules out from a CPU and a lower priority
2142 * task is scheduled in, a check is made to see if there's any RT tasks
2143 * on other CPUs that are waiting to run because a higher priority RT task
2144 * is currently running on its CPU. In this case, the CPU with multiple RT
2145 * tasks queued on it (overloaded) needs to be notified that a CPU has opened
2146 * up that may be able to run one of its non-running queued RT tasks.
2147 *
2148 * All CPUs with overloaded RT tasks need to be notified as there is currently
2149 * no way to know which of these CPUs have the highest priority task waiting
2150 * to run. Instead of trying to take a spinlock on each of these CPUs,
2151 * which has shown to cause large latency when done on machines with many
2152 * CPUs, sending an IPI to the CPUs to have them push off the overloaded
2153 * RT tasks waiting to run.
2154 *
2155 * Just sending an IPI to each of the CPUs is also an issue, as on large
2156 * count CPU machines, this can cause an IPI storm on a CPU, especially
2157 * if its the only CPU with multiple RT tasks queued, and a large number
2158 * of CPUs scheduling a lower priority task at the same time.
2159 *
2160 * Each root domain has its own irq work function that can iterate over
2161 * all CPUs with RT overloaded tasks. Since all CPUs with overloaded RT
2162 * task must be checked if there's one or many CPUs that are lowering
2163 * their priority, there's a single irq work iterator that will try to
2164 * push off RT tasks that are waiting to run.
2165 *
2166 * When a CPU schedules a lower priority task, it will kick off the
2167 * irq work iterator that will jump to each CPU with overloaded RT tasks.
2168 * As it only takes the first CPU that schedules a lower priority task
2169 * to start the process, the rto_start variable is incremented and if
2170 * the atomic result is one, then that CPU will try to take the rto_lock.
2171 * This prevents high contention on the lock as the process handles all
2172 * CPUs scheduling lower priority tasks.
2173 *
2174 * All CPUs that are scheduling a lower priority task will increment the
2175 * rt_loop_next variable. This will make sure that the irq work iterator
2176 * checks all RT overloaded CPUs whenever a CPU schedules a new lower
2177 * priority task, even if the iterator is in the middle of a scan. Incrementing
2178 * the rt_loop_next will cause the iterator to perform another scan.
2179 *
2180 */
2181static int rto_next_cpu(struct root_domain *rd)
2182{
2183 int next;
2184 int cpu;
2185
2186 /*
2187 * When starting the IPI RT pushing, the rto_cpu is set to -1,
2188 * rt_next_cpu() will simply return the first CPU found in
2189 * the rto_mask.
2190 *
2191 * If rto_next_cpu() is called with rto_cpu is a valid CPU, it
2192 * will return the next CPU found in the rto_mask.
2193 *
2194 * If there are no more CPUs left in the rto_mask, then a check is made
2195 * against rto_loop and rto_loop_next. rto_loop is only updated with
2196 * the rto_lock held, but any CPU may increment the rto_loop_next
2197 * without any locking.
2198 */
2199 for (;;) {
2200
2201 /* When rto_cpu is -1 this acts like cpumask_first() */
2202 cpu = cpumask_next(n: rd->rto_cpu, srcp: rd->rto_mask);
2203
2204 rd->rto_cpu = cpu;
2205
2206 if (cpu < nr_cpu_ids)
2207 return cpu;
2208
2209 rd->rto_cpu = -1;
2210
2211 /*
2212 * ACQUIRE ensures we see the @rto_mask changes
2213 * made prior to the @next value observed.
2214 *
2215 * Matches WMB in rt_set_overload().
2216 */
2217 next = atomic_read_acquire(v: &rd->rto_loop_next);
2218
2219 if (rd->rto_loop == next)
2220 break;
2221
2222 rd->rto_loop = next;
2223 }
2224
2225 return -1;
2226}
2227
2228static inline bool rto_start_trylock(atomic_t *v)
2229{
2230 return !atomic_cmpxchg_acquire(v, old: 0, new: 1);
2231}
2232
2233static inline void rto_start_unlock(atomic_t *v)
2234{
2235 atomic_set_release(v, i: 0);
2236}
2237
2238static void tell_cpu_to_push(struct rq *rq)
2239{
2240 int cpu = -1;
2241
2242 /* Keep the loop going if the IPI is currently active */
2243 atomic_inc(v: &rq->rd->rto_loop_next);
2244
2245 /* Only one CPU can initiate a loop at a time */
2246 if (!rto_start_trylock(v: &rq->rd->rto_loop_start))
2247 return;
2248
2249 raw_spin_lock(&rq->rd->rto_lock);
2250
2251 /*
2252 * The rto_cpu is updated under the lock, if it has a valid CPU
2253 * then the IPI is still running and will continue due to the
2254 * update to loop_next, and nothing needs to be done here.
2255 * Otherwise it is finishing up and an ipi needs to be sent.
2256 */
2257 if (rq->rd->rto_cpu < 0)
2258 cpu = rto_next_cpu(rd: rq->rd);
2259
2260 raw_spin_unlock(&rq->rd->rto_lock);
2261
2262 rto_start_unlock(v: &rq->rd->rto_loop_start);
2263
2264 if (cpu >= 0) {
2265 /* Make sure the rd does not get freed while pushing */
2266 sched_get_rd(rd: rq->rd);
2267 irq_work_queue_on(work: &rq->rd->rto_push_work, cpu);
2268 }
2269}
2270
2271/* Called from hardirq context */
2272void rto_push_irq_work_func(struct irq_work *work)
2273{
2274 struct root_domain *rd =
2275 container_of(work, struct root_domain, rto_push_work);
2276 struct rq *rq;
2277 int cpu;
2278
2279 rq = this_rq();
2280
2281 /*
2282 * We do not need to grab the lock to check for has_pushable_tasks.
2283 * When it gets updated, a check is made if a push is possible.
2284 */
2285 if (has_pushable_tasks(rq)) {
2286 raw_spin_rq_lock(rq);
2287 while (push_rt_task(rq, pull: true))
2288 ;
2289 raw_spin_rq_unlock(rq);
2290 }
2291
2292 raw_spin_lock(&rd->rto_lock);
2293
2294 /* Pass the IPI to the next rt overloaded queue */
2295 cpu = rto_next_cpu(rd);
2296
2297 raw_spin_unlock(&rd->rto_lock);
2298
2299 if (cpu < 0) {
2300 sched_put_rd(rd);
2301 return;
2302 }
2303
2304 /* Try the next RT overloaded CPU */
2305 irq_work_queue_on(work: &rd->rto_push_work, cpu);
2306}
2307#endif /* HAVE_RT_PUSH_IPI */
2308
2309static void pull_rt_task(struct rq *this_rq)
2310{
2311 int this_cpu = this_rq->cpu, cpu;
2312 bool resched = false;
2313 struct task_struct *p, *push_task;
2314 struct rq *src_rq;
2315 int rt_overload_count = rt_overloaded(rq: this_rq);
2316
2317 if (likely(!rt_overload_count))
2318 return;
2319
2320 /*
2321 * Match the barrier from rt_set_overloaded; this guarantees that if we
2322 * see overloaded we must also see the rto_mask bit.
2323 */
2324 smp_rmb();
2325
2326 /* If we are the only overloaded CPU do nothing */
2327 if (rt_overload_count == 1 &&
2328 cpumask_test_cpu(cpu: this_rq->cpu, cpumask: this_rq->rd->rto_mask))
2329 return;
2330
2331#ifdef HAVE_RT_PUSH_IPI
2332 if (sched_feat(RT_PUSH_IPI)) {
2333 tell_cpu_to_push(rq: this_rq);
2334 return;
2335 }
2336#endif
2337
2338 for_each_cpu(cpu, this_rq->rd->rto_mask) {
2339 if (this_cpu == cpu)
2340 continue;
2341
2342 src_rq = cpu_rq(cpu);
2343
2344 /*
2345 * Don't bother taking the src_rq->lock if the next highest
2346 * task is known to be lower-priority than our current task.
2347 * This may look racy, but if this value is about to go
2348 * logically higher, the src_rq will push this task away.
2349 * And if its going logically lower, we do not care
2350 */
2351 if (src_rq->rt.highest_prio.next >=
2352 this_rq->rt.highest_prio.curr)
2353 continue;
2354
2355 /*
2356 * We can potentially drop this_rq's lock in
2357 * double_lock_balance, and another CPU could
2358 * alter this_rq
2359 */
2360 push_task = NULL;
2361 double_lock_balance(this_rq, busiest: src_rq);
2362
2363 /*
2364 * We can pull only a task, which is pushable
2365 * on its rq, and no others.
2366 */
2367 p = pick_highest_pushable_task(rq: src_rq, cpu: this_cpu);
2368
2369 /*
2370 * Do we have an RT task that preempts
2371 * the to-be-scheduled task?
2372 */
2373 if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
2374 WARN_ON(p == src_rq->curr);
2375 WARN_ON(!task_on_rq_queued(p));
2376
2377 /*
2378 * There's a chance that p is higher in priority
2379 * than what's currently running on its CPU.
2380 * This is just that p is waking up and hasn't
2381 * had a chance to schedule. We only pull
2382 * p if it is lower in priority than the
2383 * current task on the run queue
2384 */
2385 if (p->prio < src_rq->curr->prio)
2386 goto skip;
2387
2388 if (is_migration_disabled(p)) {
2389 push_task = get_push_task(rq: src_rq);
2390 } else {
2391 deactivate_task(rq: src_rq, p, flags: 0);
2392 set_task_cpu(p, cpu: this_cpu);
2393 activate_task(rq: this_rq, p, flags: 0);
2394 resched = true;
2395 }
2396 /*
2397 * We continue with the search, just in
2398 * case there's an even higher prio task
2399 * in another runqueue. (low likelihood
2400 * but possible)
2401 */
2402 }
2403skip:
2404 double_unlock_balance(this_rq, busiest: src_rq);
2405
2406 if (push_task) {
2407 preempt_disable();
2408 raw_spin_rq_unlock(rq: this_rq);
2409 stop_one_cpu_nowait(cpu: src_rq->cpu, fn: push_cpu_stop,
2410 arg: push_task, work_buf: &src_rq->push_work);
2411 preempt_enable();
2412 raw_spin_rq_lock(rq: this_rq);
2413 }
2414 }
2415
2416 if (resched)
2417 resched_curr(rq: this_rq);
2418}
2419
2420/*
2421 * If we are not running and we are not going to reschedule soon, we should
2422 * try to push tasks away now
2423 */
2424static void task_woken_rt(struct rq *rq, struct task_struct *p)
2425{
2426 bool need_to_push = !task_on_cpu(rq, p) &&
2427 !test_tsk_need_resched(tsk: rq->curr) &&
2428 p->nr_cpus_allowed > 1 &&
2429 (dl_task(p: rq->curr) || rt_task(p: rq->curr)) &&
2430 (rq->curr->nr_cpus_allowed < 2 ||
2431 rq->curr->prio <= p->prio);
2432
2433 if (need_to_push)
2434 push_rt_tasks(rq);
2435}
2436
2437/* Assumes rq->lock is held */
2438static void rq_online_rt(struct rq *rq)
2439{
2440 if (rq->rt.overloaded)
2441 rt_set_overload(rq);
2442
2443 __enable_runtime(rq);
2444
2445 cpupri_set(cp: &rq->rd->cpupri, cpu: rq->cpu, pri: rq->rt.highest_prio.curr);
2446}
2447
2448/* Assumes rq->lock is held */
2449static void rq_offline_rt(struct rq *rq)
2450{
2451 if (rq->rt.overloaded)
2452 rt_clear_overload(rq);
2453
2454 __disable_runtime(rq);
2455
2456 cpupri_set(cp: &rq->rd->cpupri, cpu: rq->cpu, CPUPRI_INVALID);
2457}
2458
2459/*
2460 * When switch from the rt queue, we bring ourselves to a position
2461 * that we might want to pull RT tasks from other runqueues.
2462 */
2463static void switched_from_rt(struct rq *rq, struct task_struct *p)
2464{
2465 /*
2466 * If there are other RT tasks then we will reschedule
2467 * and the scheduling of the other RT tasks will handle
2468 * the balancing. But if we are the last RT task
2469 * we may need to handle the pulling of RT tasks
2470 * now.
2471 */
2472 if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
2473 return;
2474
2475 rt_queue_pull_task(rq);
2476}
2477
2478void __init init_sched_rt_class(void)
2479{
2480 unsigned int i;
2481
2482 for_each_possible_cpu(i) {
2483 zalloc_cpumask_var_node(mask: &per_cpu(local_cpu_mask, i),
2484 GFP_KERNEL, cpu_to_node(cpu: i));
2485 }
2486}
2487#endif /* CONFIG_SMP */
2488
2489/*
2490 * When switching a task to RT, we may overload the runqueue
2491 * with RT tasks. In this case we try to push them off to
2492 * other runqueues.
2493 */
2494static void switched_to_rt(struct rq *rq, struct task_struct *p)
2495{
2496 /*
2497 * If we are running, update the avg_rt tracking, as the running time
2498 * will now on be accounted into the latter.
2499 */
2500 if (task_current(rq, p)) {
2501 update_rt_rq_load_avg(now: rq_clock_pelt(rq), rq, running: 0);
2502 return;
2503 }
2504
2505 /*
2506 * If we are not running we may need to preempt the current
2507 * running task. If that current running task is also an RT task
2508 * then see if we can move to another run queue.
2509 */
2510 if (task_on_rq_queued(p)) {
2511#ifdef CONFIG_SMP
2512 if (p->nr_cpus_allowed > 1 && rq->rt.overloaded)
2513 rt_queue_push_tasks(rq);
2514#endif /* CONFIG_SMP */
2515 if (p->prio < rq->curr->prio && cpu_online(cpu: cpu_of(rq)))
2516 resched_curr(rq);
2517 }
2518}
2519
2520/*
2521 * Priority of the task has changed. This may cause
2522 * us to initiate a push or pull.
2523 */
2524static void
2525prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
2526{
2527 if (!task_on_rq_queued(p))
2528 return;
2529
2530 if (task_current(rq, p)) {
2531#ifdef CONFIG_SMP
2532 /*
2533 * If our priority decreases while running, we
2534 * may need to pull tasks to this runqueue.
2535 */
2536 if (oldprio < p->prio)
2537 rt_queue_pull_task(rq);
2538
2539 /*
2540 * If there's a higher priority task waiting to run
2541 * then reschedule.
2542 */
2543 if (p->prio > rq->rt.highest_prio.curr)
2544 resched_curr(rq);
2545#else
2546 /* For UP simply resched on drop of prio */
2547 if (oldprio < p->prio)
2548 resched_curr(rq);
2549#endif /* CONFIG_SMP */
2550 } else {
2551 /*
2552 * This task is not running, but if it is
2553 * greater than the current running task
2554 * then reschedule.
2555 */
2556 if (p->prio < rq->curr->prio)
2557 resched_curr(rq);
2558 }
2559}
2560
2561#ifdef CONFIG_POSIX_TIMERS
2562static void watchdog(struct rq *rq, struct task_struct *p)
2563{
2564 unsigned long soft, hard;
2565
2566 /* max may change after cur was read, this will be fixed next tick */
2567 soft = task_rlimit(task: p, RLIMIT_RTTIME);
2568 hard = task_rlimit_max(task: p, RLIMIT_RTTIME);
2569
2570 if (soft != RLIM_INFINITY) {
2571 unsigned long next;
2572
2573 if (p->rt.watchdog_stamp != jiffies) {
2574 p->rt.timeout++;
2575 p->rt.watchdog_stamp = jiffies;
2576 }
2577
2578 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
2579 if (p->rt.timeout > next) {
2580 posix_cputimers_rt_watchdog(pct: &p->posix_cputimers,
2581 runtime: p->se.sum_exec_runtime);
2582 }
2583 }
2584}
2585#else
2586static inline void watchdog(struct rq *rq, struct task_struct *p) { }
2587#endif
2588
2589/*
2590 * scheduler tick hitting a task of our scheduling class.
2591 *
2592 * NOTE: This function can be called remotely by the tick offload that
2593 * goes along full dynticks. Therefore no local assumption can be made
2594 * and everything must be accessed through the @rq and @curr passed in
2595 * parameters.
2596 */
2597static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
2598{
2599 struct sched_rt_entity *rt_se = &p->rt;
2600
2601 update_curr_rt(rq);
2602 update_rt_rq_load_avg(now: rq_clock_pelt(rq), rq, running: 1);
2603
2604 watchdog(rq, p);
2605
2606 /*
2607 * RR tasks need a special form of timeslice management.
2608 * FIFO tasks have no timeslices.
2609 */
2610 if (p->policy != SCHED_RR)
2611 return;
2612
2613 if (--p->rt.time_slice)
2614 return;
2615
2616 p->rt.time_slice = sched_rr_timeslice;
2617
2618 /*
2619 * Requeue to the end of queue if we (and all of our ancestors) are not
2620 * the only element on the queue
2621 */
2622 for_each_sched_rt_entity(rt_se) {
2623 if (rt_se->run_list.prev != rt_se->run_list.next) {
2624 requeue_task_rt(rq, p, head: 0);
2625 resched_curr(rq);
2626 return;
2627 }
2628 }
2629}
2630
2631static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2632{
2633 /*
2634 * Time slice is 0 for SCHED_FIFO tasks
2635 */
2636 if (task->policy == SCHED_RR)
2637 return sched_rr_timeslice;
2638 else
2639 return 0;
2640}
2641
2642#ifdef CONFIG_SCHED_CORE
2643static int task_is_throttled_rt(struct task_struct *p, int cpu)
2644{
2645 struct rt_rq *rt_rq;
2646
2647#ifdef CONFIG_RT_GROUP_SCHED
2648 rt_rq = task_group(p)->rt_rq[cpu];
2649#else
2650 rt_rq = &cpu_rq(cpu)->rt;
2651#endif
2652
2653 return rt_rq_throttled(rt_rq);
2654}
2655#endif
2656
2657DEFINE_SCHED_CLASS(rt) = {
2658
2659 .enqueue_task = enqueue_task_rt,
2660 .dequeue_task = dequeue_task_rt,
2661 .yield_task = yield_task_rt,
2662
2663 .wakeup_preempt = wakeup_preempt_rt,
2664
2665 .pick_next_task = pick_next_task_rt,
2666 .put_prev_task = put_prev_task_rt,
2667 .set_next_task = set_next_task_rt,
2668
2669#ifdef CONFIG_SMP
2670 .balance = balance_rt,
2671 .pick_task = pick_task_rt,
2672 .select_task_rq = select_task_rq_rt,
2673 .set_cpus_allowed = set_cpus_allowed_common,
2674 .rq_online = rq_online_rt,
2675 .rq_offline = rq_offline_rt,
2676 .task_woken = task_woken_rt,
2677 .switched_from = switched_from_rt,
2678 .find_lock_rq = find_lock_lowest_rq,
2679#endif
2680
2681 .task_tick = task_tick_rt,
2682
2683 .get_rr_interval = get_rr_interval_rt,
2684
2685 .prio_changed = prio_changed_rt,
2686 .switched_to = switched_to_rt,
2687
2688 .update_curr = update_curr_rt,
2689
2690#ifdef CONFIG_SCHED_CORE
2691 .task_is_throttled = task_is_throttled_rt,
2692#endif
2693
2694#ifdef CONFIG_UCLAMP_TASK
2695 .uclamp_enabled = 1,
2696#endif
2697};
2698
2699#ifdef CONFIG_RT_GROUP_SCHED
2700/*
2701 * Ensure that the real time constraints are schedulable.
2702 */
2703static DEFINE_MUTEX(rt_constraints_mutex);
2704
2705static inline int tg_has_rt_tasks(struct task_group *tg)
2706{
2707 struct task_struct *task;
2708 struct css_task_iter it;
2709 int ret = 0;
2710
2711 /*
2712 * Autogroups do not have RT tasks; see autogroup_create().
2713 */
2714 if (task_group_is_autogroup(tg))
2715 return 0;
2716
2717 css_task_iter_start(css: &tg->css, flags: 0, it: &it);
2718 while (!ret && (task = css_task_iter_next(it: &it)))
2719 ret |= rt_task(p: task);
2720 css_task_iter_end(it: &it);
2721
2722 return ret;
2723}
2724
2725struct rt_schedulable_data {
2726 struct task_group *tg;
2727 u64 rt_period;
2728 u64 rt_runtime;
2729};
2730
2731static int tg_rt_schedulable(struct task_group *tg, void *data)
2732{
2733 struct rt_schedulable_data *d = data;
2734 struct task_group *child;
2735 unsigned long total, sum = 0;
2736 u64 period, runtime;
2737
2738 period = ktime_to_ns(kt: tg->rt_bandwidth.rt_period);
2739 runtime = tg->rt_bandwidth.rt_runtime;
2740
2741 if (tg == d->tg) {
2742 period = d->rt_period;
2743 runtime = d->rt_runtime;
2744 }
2745
2746 /*
2747 * Cannot have more runtime than the period.
2748 */
2749 if (runtime > period && runtime != RUNTIME_INF)
2750 return -EINVAL;
2751
2752 /*
2753 * Ensure we don't starve existing RT tasks if runtime turns zero.
2754 */
2755 if (rt_bandwidth_enabled() && !runtime &&
2756 tg->rt_bandwidth.rt_runtime && tg_has_rt_tasks(tg))
2757 return -EBUSY;
2758
2759 total = to_ratio(period, runtime);
2760
2761 /*
2762 * Nobody can have more than the global setting allows.
2763 */
2764 if (total > to_ratio(period: global_rt_period(), runtime: global_rt_runtime()))
2765 return -EINVAL;
2766
2767 /*
2768 * The sum of our children's runtime should not exceed our own.
2769 */
2770 list_for_each_entry_rcu(child, &tg->children, siblings) {
2771 period = ktime_to_ns(kt: child->rt_bandwidth.rt_period);
2772 runtime = child->rt_bandwidth.rt_runtime;
2773
2774 if (child == d->tg) {
2775 period = d->rt_period;
2776 runtime = d->rt_runtime;
2777 }
2778
2779 sum += to_ratio(period, runtime);
2780 }
2781
2782 if (sum > total)
2783 return -EINVAL;
2784
2785 return 0;
2786}
2787
2788static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
2789{
2790 int ret;
2791
2792 struct rt_schedulable_data data = {
2793 .tg = tg,
2794 .rt_period = period,
2795 .rt_runtime = runtime,
2796 };
2797
2798 rcu_read_lock();
2799 ret = walk_tg_tree(down: tg_rt_schedulable, up: tg_nop, data: &data);
2800 rcu_read_unlock();
2801
2802 return ret;
2803}
2804
2805static int tg_set_rt_bandwidth(struct task_group *tg,
2806 u64 rt_period, u64 rt_runtime)
2807{
2808 int i, err = 0;
2809
2810 /*
2811 * Disallowing the root group RT runtime is BAD, it would disallow the
2812 * kernel creating (and or operating) RT threads.
2813 */
2814 if (tg == &root_task_group && rt_runtime == 0)
2815 return -EINVAL;
2816
2817 /* No period doesn't make any sense. */
2818 if (rt_period == 0)
2819 return -EINVAL;
2820
2821 /*
2822 * Bound quota to defend quota against overflow during bandwidth shift.
2823 */
2824 if (rt_runtime != RUNTIME_INF && rt_runtime > max_rt_runtime)
2825 return -EINVAL;
2826
2827 mutex_lock(&rt_constraints_mutex);
2828 err = __rt_schedulable(tg, period: rt_period, runtime: rt_runtime);
2829 if (err)
2830 goto unlock;
2831
2832 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2833 tg->rt_bandwidth.rt_period = ns_to_ktime(ns: rt_period);
2834 tg->rt_bandwidth.rt_runtime = rt_runtime;
2835
2836 for_each_possible_cpu(i) {
2837 struct rt_rq *rt_rq = tg->rt_rq[i];
2838
2839 raw_spin_lock(&rt_rq->rt_runtime_lock);
2840 rt_rq->rt_runtime = rt_runtime;
2841 raw_spin_unlock(&rt_rq->rt_runtime_lock);
2842 }
2843 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2844unlock:
2845 mutex_unlock(lock: &rt_constraints_mutex);
2846
2847 return err;
2848}
2849
2850int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
2851{
2852 u64 rt_runtime, rt_period;
2853
2854 rt_period = ktime_to_ns(kt: tg->rt_bandwidth.rt_period);
2855 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
2856 if (rt_runtime_us < 0)
2857 rt_runtime = RUNTIME_INF;
2858 else if ((u64)rt_runtime_us > U64_MAX / NSEC_PER_USEC)
2859 return -EINVAL;
2860
2861 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2862}
2863
2864long sched_group_rt_runtime(struct task_group *tg)
2865{
2866 u64 rt_runtime_us;
2867
2868 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
2869 return -1;
2870
2871 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
2872 do_div(rt_runtime_us, NSEC_PER_USEC);
2873 return rt_runtime_us;
2874}
2875
2876int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
2877{
2878 u64 rt_runtime, rt_period;
2879
2880 if (rt_period_us > U64_MAX / NSEC_PER_USEC)
2881 return -EINVAL;
2882
2883 rt_period = rt_period_us * NSEC_PER_USEC;
2884 rt_runtime = tg->rt_bandwidth.rt_runtime;
2885
2886 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2887}
2888
2889long sched_group_rt_period(struct task_group *tg)
2890{
2891 u64 rt_period_us;
2892
2893 rt_period_us = ktime_to_ns(kt: tg->rt_bandwidth.rt_period);
2894 do_div(rt_period_us, NSEC_PER_USEC);
2895 return rt_period_us;
2896}
2897
2898#ifdef CONFIG_SYSCTL
2899static int sched_rt_global_constraints(void)
2900{
2901 int ret = 0;
2902
2903 mutex_lock(&rt_constraints_mutex);
2904 ret = __rt_schedulable(NULL, period: 0, runtime: 0);
2905 mutex_unlock(lock: &rt_constraints_mutex);
2906
2907 return ret;
2908}
2909#endif /* CONFIG_SYSCTL */
2910
2911int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
2912{
2913 /* Don't accept realtime tasks when there is no way for them to run */
2914 if (rt_task(p: tsk) && tg->rt_bandwidth.rt_runtime == 0)
2915 return 0;
2916
2917 return 1;
2918}
2919
2920#else /* !CONFIG_RT_GROUP_SCHED */
2921
2922#ifdef CONFIG_SYSCTL
2923static int sched_rt_global_constraints(void)
2924{
2925 unsigned long flags;
2926 int i;
2927
2928 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
2929 for_each_possible_cpu(i) {
2930 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
2931
2932 raw_spin_lock(&rt_rq->rt_runtime_lock);
2933 rt_rq->rt_runtime = global_rt_runtime();
2934 raw_spin_unlock(&rt_rq->rt_runtime_lock);
2935 }
2936 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
2937
2938 return 0;
2939}
2940#endif /* CONFIG_SYSCTL */
2941#endif /* CONFIG_RT_GROUP_SCHED */
2942
2943#ifdef CONFIG_SYSCTL
2944static int sched_rt_global_validate(void)
2945{
2946 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
2947 ((sysctl_sched_rt_runtime > sysctl_sched_rt_period) ||
2948 ((u64)sysctl_sched_rt_runtime *
2949 NSEC_PER_USEC > max_rt_runtime)))
2950 return -EINVAL;
2951
2952 return 0;
2953}
2954
2955static void sched_rt_do_global(void)
2956{
2957 unsigned long flags;
2958
2959 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
2960 def_rt_bandwidth.rt_runtime = global_rt_runtime();
2961 def_rt_bandwidth.rt_period = ns_to_ktime(ns: global_rt_period());
2962 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
2963}
2964
2965static int sched_rt_handler(struct ctl_table *table, int write, void *buffer,
2966 size_t *lenp, loff_t *ppos)
2967{
2968 int old_period, old_runtime;
2969 static DEFINE_MUTEX(mutex);
2970 int ret;
2971
2972 mutex_lock(&mutex);
2973 old_period = sysctl_sched_rt_period;
2974 old_runtime = sysctl_sched_rt_runtime;
2975
2976 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2977
2978 if (!ret && write) {
2979 ret = sched_rt_global_validate();
2980 if (ret)
2981 goto undo;
2982
2983 ret = sched_dl_global_validate();
2984 if (ret)
2985 goto undo;
2986
2987 ret = sched_rt_global_constraints();
2988 if (ret)
2989 goto undo;
2990
2991 sched_rt_do_global();
2992 sched_dl_do_global();
2993 }
2994 if (0) {
2995undo:
2996 sysctl_sched_rt_period = old_period;
2997 sysctl_sched_rt_runtime = old_runtime;
2998 }
2999 mutex_unlock(lock: &mutex);
3000
3001 return ret;
3002}
3003
3004static int sched_rr_handler(struct ctl_table *table, int write, void *buffer,
3005 size_t *lenp, loff_t *ppos)
3006{
3007 int ret;
3008 static DEFINE_MUTEX(mutex);
3009
3010 mutex_lock(&mutex);
3011 ret = proc_dointvec(table, write, buffer, lenp, ppos);
3012 /*
3013 * Make sure that internally we keep jiffies.
3014 * Also, writing zero resets the timeslice to default:
3015 */
3016 if (!ret && write) {
3017 sched_rr_timeslice =
3018 sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE :
3019 msecs_to_jiffies(m: sysctl_sched_rr_timeslice);
3020
3021 if (sysctl_sched_rr_timeslice <= 0)
3022 sysctl_sched_rr_timeslice = jiffies_to_msecs(RR_TIMESLICE);
3023 }
3024 mutex_unlock(lock: &mutex);
3025
3026 return ret;
3027}
3028#endif /* CONFIG_SYSCTL */
3029
3030#ifdef CONFIG_SCHED_DEBUG
3031void print_rt_stats(struct seq_file *m, int cpu)
3032{
3033 rt_rq_iter_t iter;
3034 struct rt_rq *rt_rq;
3035
3036 rcu_read_lock();
3037 for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
3038 print_rt_rq(m, cpu, rt_rq);
3039 rcu_read_unlock();
3040}
3041#endif /* CONFIG_SCHED_DEBUG */
3042

source code of linux/kernel/sched/rt.c