1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * Scheduler internal types and methods:
4 */
5#include <linux/sched.h>
6
7#include <linux/sched/autogroup.h>
8#include <linux/sched/clock.h>
9#include <linux/sched/coredump.h>
10#include <linux/sched/cpufreq.h>
11#include <linux/sched/cputime.h>
12#include <linux/sched/deadline.h>
13#include <linux/sched/debug.h>
14#include <linux/sched/hotplug.h>
15#include <linux/sched/idle.h>
16#include <linux/sched/init.h>
17#include <linux/sched/isolation.h>
18#include <linux/sched/jobctl.h>
19#include <linux/sched/loadavg.h>
20#include <linux/sched/mm.h>
21#include <linux/sched/nohz.h>
22#include <linux/sched/numa_balancing.h>
23#include <linux/sched/prio.h>
24#include <linux/sched/rt.h>
25#include <linux/sched/signal.h>
26#include <linux/sched/smt.h>
27#include <linux/sched/stat.h>
28#include <linux/sched/sysctl.h>
29#include <linux/sched/task.h>
30#include <linux/sched/task_stack.h>
31#include <linux/sched/topology.h>
32#include <linux/sched/user.h>
33#include <linux/sched/wake_q.h>
34#include <linux/sched/xacct.h>
35
36#include <uapi/linux/sched/types.h>
37
38#include <linux/binfmts.h>
39#include <linux/blkdev.h>
40#include <linux/compat.h>
41#include <linux/context_tracking.h>
42#include <linux/cpufreq.h>
43#include <linux/cpuidle.h>
44#include <linux/cpuset.h>
45#include <linux/ctype.h>
46#include <linux/debugfs.h>
47#include <linux/delayacct.h>
48#include <linux/energy_model.h>
49#include <linux/init_task.h>
50#include <linux/kprobes.h>
51#include <linux/kthread.h>
52#include <linux/membarrier.h>
53#include <linux/migrate.h>
54#include <linux/mmu_context.h>
55#include <linux/nmi.h>
56#include <linux/proc_fs.h>
57#include <linux/prefetch.h>
58#include <linux/profile.h>
59#include <linux/psi.h>
60#include <linux/rcupdate_wait.h>
61#include <linux/security.h>
62#include <linux/stop_machine.h>
63#include <linux/suspend.h>
64#include <linux/swait.h>
65#include <linux/syscalls.h>
66#include <linux/task_work.h>
67#include <linux/tsacct_kern.h>
68
69#include <asm/tlb.h>
70
71#ifdef CONFIG_PARAVIRT
72# include <asm/paravirt.h>
73#endif
74
75#include "cpupri.h"
76#include "cpudeadline.h"
77
78#ifdef CONFIG_SCHED_DEBUG
79# define SCHED_WARN_ON(x) WARN_ONCE(x, #x)
80#else
81# define SCHED_WARN_ON(x) ({ (void)(x), 0; })
82#endif
83
84struct rq;
85struct cpuidle_state;
86
87/* task_struct::on_rq states: */
88#define TASK_ON_RQ_QUEUED 1
89#define TASK_ON_RQ_MIGRATING 2
90
91extern __read_mostly int scheduler_running;
92
93extern unsigned long calc_load_update;
94extern atomic_long_t calc_load_tasks;
95
96extern void calc_global_load_tick(struct rq *this_rq);
97extern long calc_load_fold_active(struct rq *this_rq, long adjust);
98
99#ifdef CONFIG_SMP
100extern void cpu_load_update_active(struct rq *this_rq);
101#else
102static inline void cpu_load_update_active(struct rq *this_rq) { }
103#endif
104
105/*
106 * Helpers for converting nanosecond timing to jiffy resolution
107 */
108#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
109
110/*
111 * Increase resolution of nice-level calculations for 64-bit architectures.
112 * The extra resolution improves shares distribution and load balancing of
113 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
114 * hierarchies, especially on larger systems. This is not a user-visible change
115 * and does not change the user-interface for setting shares/weights.
116 *
117 * We increase resolution only if we have enough bits to allow this increased
118 * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit
119 * are pretty high and the returns do not justify the increased costs.
120 *
121 * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to
122 * increase coverage and consistency always enable it on 64-bit platforms.
123 */
124#ifdef CONFIG_64BIT
125# define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
126# define scale_load(w) ((w) << SCHED_FIXEDPOINT_SHIFT)
127# define scale_load_down(w) ((w) >> SCHED_FIXEDPOINT_SHIFT)
128#else
129# define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT)
130# define scale_load(w) (w)
131# define scale_load_down(w) (w)
132#endif
133
134/*
135 * Task weight (visible to users) and its load (invisible to users) have
136 * independent resolution, but they should be well calibrated. We use
137 * scale_load() and scale_load_down(w) to convert between them. The
138 * following must be true:
139 *
140 * scale_load(sched_prio_to_weight[USER_PRIO(NICE_TO_PRIO(0))]) == NICE_0_LOAD
141 *
142 */
143#define NICE_0_LOAD (1L << NICE_0_LOAD_SHIFT)
144
145/*
146 * Single value that decides SCHED_DEADLINE internal math precision.
147 * 10 -> just above 1us
148 * 9 -> just above 0.5us
149 */
150#define DL_SCALE 10
151
152/*
153 * Single value that denotes runtime == period, ie unlimited time.
154 */
155#define RUNTIME_INF ((u64)~0ULL)
156
157static inline int idle_policy(int policy)
158{
159 return policy == SCHED_IDLE;
160}
161static inline int fair_policy(int policy)
162{
163 return policy == SCHED_NORMAL || policy == SCHED_BATCH;
164}
165
166static inline int rt_policy(int policy)
167{
168 return policy == SCHED_FIFO || policy == SCHED_RR;
169}
170
171static inline int dl_policy(int policy)
172{
173 return policy == SCHED_DEADLINE;
174}
175static inline bool valid_policy(int policy)
176{
177 return idle_policy(policy) || fair_policy(policy) ||
178 rt_policy(policy) || dl_policy(policy);
179}
180
181static inline int task_has_idle_policy(struct task_struct *p)
182{
183 return idle_policy(p->policy);
184}
185
186static inline int task_has_rt_policy(struct task_struct *p)
187{
188 return rt_policy(p->policy);
189}
190
191static inline int task_has_dl_policy(struct task_struct *p)
192{
193 return dl_policy(p->policy);
194}
195
196#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
197
198/*
199 * !! For sched_setattr_nocheck() (kernel) only !!
200 *
201 * This is actually gross. :(
202 *
203 * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE
204 * tasks, but still be able to sleep. We need this on platforms that cannot
205 * atomically change clock frequency. Remove once fast switching will be
206 * available on such platforms.
207 *
208 * SUGOV stands for SchedUtil GOVernor.
209 */
210#define SCHED_FLAG_SUGOV 0x10000000
211
212static inline bool dl_entity_is_special(struct sched_dl_entity *dl_se)
213{
214#ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
215 return unlikely(dl_se->flags & SCHED_FLAG_SUGOV);
216#else
217 return false;
218#endif
219}
220
221/*
222 * Tells if entity @a should preempt entity @b.
223 */
224static inline bool
225dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
226{
227 return dl_entity_is_special(a) ||
228 dl_time_before(a->deadline, b->deadline);
229}
230
231/*
232 * This is the priority-queue data structure of the RT scheduling class:
233 */
234struct rt_prio_array {
235 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
236 struct list_head queue[MAX_RT_PRIO];
237};
238
239struct rt_bandwidth {
240 /* nests inside the rq lock: */
241 raw_spinlock_t rt_runtime_lock;
242 ktime_t rt_period;
243 u64 rt_runtime;
244 struct hrtimer rt_period_timer;
245 unsigned int rt_period_active;
246};
247
248void __dl_clear_params(struct task_struct *p);
249
250/*
251 * To keep the bandwidth of -deadline tasks and groups under control
252 * we need some place where:
253 * - store the maximum -deadline bandwidth of the system (the group);
254 * - cache the fraction of that bandwidth that is currently allocated.
255 *
256 * This is all done in the data structure below. It is similar to the
257 * one used for RT-throttling (rt_bandwidth), with the main difference
258 * that, since here we are only interested in admission control, we
259 * do not decrease any runtime while the group "executes", neither we
260 * need a timer to replenish it.
261 *
262 * With respect to SMP, the bandwidth is given on a per-CPU basis,
263 * meaning that:
264 * - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
265 * - dl_total_bw array contains, in the i-eth element, the currently
266 * allocated bandwidth on the i-eth CPU.
267 * Moreover, groups consume bandwidth on each CPU, while tasks only
268 * consume bandwidth on the CPU they're running on.
269 * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
270 * that will be shown the next time the proc or cgroup controls will
271 * be red. It on its turn can be changed by writing on its own
272 * control.
273 */
274struct dl_bandwidth {
275 raw_spinlock_t dl_runtime_lock;
276 u64 dl_runtime;
277 u64 dl_period;
278};
279
280static inline int dl_bandwidth_enabled(void)
281{
282 return sysctl_sched_rt_runtime >= 0;
283}
284
285struct dl_bw {
286 raw_spinlock_t lock;
287 u64 bw;
288 u64 total_bw;
289};
290
291static inline void __dl_update(struct dl_bw *dl_b, s64 bw);
292
293static inline
294void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
295{
296 dl_b->total_bw -= tsk_bw;
297 __dl_update(dl_b, (s32)tsk_bw / cpus);
298}
299
300static inline
301void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
302{
303 dl_b->total_bw += tsk_bw;
304 __dl_update(dl_b, -((s32)tsk_bw / cpus));
305}
306
307static inline
308bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
309{
310 return dl_b->bw != -1 &&
311 dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
312}
313
314extern void dl_change_utilization(struct task_struct *p, u64 new_bw);
315extern void init_dl_bw(struct dl_bw *dl_b);
316extern int sched_dl_global_validate(void);
317extern void sched_dl_do_global(void);
318extern int sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr);
319extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr);
320extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr);
321extern bool __checkparam_dl(const struct sched_attr *attr);
322extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr);
323extern int dl_task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
324extern int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
325extern bool dl_cpu_busy(unsigned int cpu);
326
327#ifdef CONFIG_CGROUP_SCHED
328
329#include <linux/cgroup.h>
330#include <linux/psi.h>
331
332struct cfs_rq;
333struct rt_rq;
334
335extern struct list_head task_groups;
336
337struct cfs_bandwidth {
338#ifdef CONFIG_CFS_BANDWIDTH
339 raw_spinlock_t lock;
340 ktime_t period;
341 u64 quota;
342 u64 runtime;
343 s64 hierarchical_quota;
344 u64 runtime_expires;
345 int expires_seq;
346
347 short idle;
348 short period_active;
349 struct hrtimer period_timer;
350 struct hrtimer slack_timer;
351 struct list_head throttled_cfs_rq;
352
353 /* Statistics: */
354 int nr_periods;
355 int nr_throttled;
356 u64 throttled_time;
357
358 bool distribute_running;
359#endif
360};
361
362/* Task group related information */
363struct task_group {
364 struct cgroup_subsys_state css;
365
366#ifdef CONFIG_FAIR_GROUP_SCHED
367 /* schedulable entities of this group on each CPU */
368 struct sched_entity **se;
369 /* runqueue "owned" by this group on each CPU */
370 struct cfs_rq **cfs_rq;
371 unsigned long shares;
372
373#ifdef CONFIG_SMP
374 /*
375 * load_avg can be heavily contended at clock tick time, so put
376 * it in its own cacheline separated from the fields above which
377 * will also be accessed at each tick.
378 */
379 atomic_long_t load_avg ____cacheline_aligned;
380#endif
381#endif
382
383#ifdef CONFIG_RT_GROUP_SCHED
384 struct sched_rt_entity **rt_se;
385 struct rt_rq **rt_rq;
386
387 struct rt_bandwidth rt_bandwidth;
388#endif
389
390 struct rcu_head rcu;
391 struct list_head list;
392
393 struct task_group *parent;
394 struct list_head siblings;
395 struct list_head children;
396
397#ifdef CONFIG_SCHED_AUTOGROUP
398 struct autogroup *autogroup;
399#endif
400
401 struct cfs_bandwidth cfs_bandwidth;
402};
403
404#ifdef CONFIG_FAIR_GROUP_SCHED
405#define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
406
407/*
408 * A weight of 0 or 1 can cause arithmetics problems.
409 * A weight of a cfs_rq is the sum of weights of which entities
410 * are queued on this cfs_rq, so a weight of a entity should not be
411 * too large, so as the shares value of a task group.
412 * (The default weight is 1024 - so there's no practical
413 * limitation from this.)
414 */
415#define MIN_SHARES (1UL << 1)
416#define MAX_SHARES (1UL << 18)
417#endif
418
419typedef int (*tg_visitor)(struct task_group *, void *);
420
421extern int walk_tg_tree_from(struct task_group *from,
422 tg_visitor down, tg_visitor up, void *data);
423
424/*
425 * Iterate the full tree, calling @down when first entering a node and @up when
426 * leaving it for the final time.
427 *
428 * Caller must hold rcu_lock or sufficient equivalent.
429 */
430static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
431{
432 return walk_tg_tree_from(&root_task_group, down, up, data);
433}
434
435extern int tg_nop(struct task_group *tg, void *data);
436
437extern void free_fair_sched_group(struct task_group *tg);
438extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
439extern void online_fair_sched_group(struct task_group *tg);
440extern void unregister_fair_sched_group(struct task_group *tg);
441extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
442 struct sched_entity *se, int cpu,
443 struct sched_entity *parent);
444extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
445
446extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
447extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
448extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
449
450extern void free_rt_sched_group(struct task_group *tg);
451extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
452extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
453 struct sched_rt_entity *rt_se, int cpu,
454 struct sched_rt_entity *parent);
455extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us);
456extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us);
457extern long sched_group_rt_runtime(struct task_group *tg);
458extern long sched_group_rt_period(struct task_group *tg);
459extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
460
461extern struct task_group *sched_create_group(struct task_group *parent);
462extern void sched_online_group(struct task_group *tg,
463 struct task_group *parent);
464extern void sched_destroy_group(struct task_group *tg);
465extern void sched_offline_group(struct task_group *tg);
466
467extern void sched_move_task(struct task_struct *tsk);
468
469#ifdef CONFIG_FAIR_GROUP_SCHED
470extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
471
472#ifdef CONFIG_SMP
473extern void set_task_rq_fair(struct sched_entity *se,
474 struct cfs_rq *prev, struct cfs_rq *next);
475#else /* !CONFIG_SMP */
476static inline void set_task_rq_fair(struct sched_entity *se,
477 struct cfs_rq *prev, struct cfs_rq *next) { }
478#endif /* CONFIG_SMP */
479#endif /* CONFIG_FAIR_GROUP_SCHED */
480
481#else /* CONFIG_CGROUP_SCHED */
482
483struct cfs_bandwidth { };
484
485#endif /* CONFIG_CGROUP_SCHED */
486
487/* CFS-related fields in a runqueue */
488struct cfs_rq {
489 struct load_weight load;
490 unsigned long runnable_weight;
491 unsigned int nr_running;
492 unsigned int h_nr_running;
493
494 u64 exec_clock;
495 u64 min_vruntime;
496#ifndef CONFIG_64BIT
497 u64 min_vruntime_copy;
498#endif
499
500 struct rb_root_cached tasks_timeline;
501
502 /*
503 * 'curr' points to currently running entity on this cfs_rq.
504 * It is set to NULL otherwise (i.e when none are currently running).
505 */
506 struct sched_entity *curr;
507 struct sched_entity *next;
508 struct sched_entity *last;
509 struct sched_entity *skip;
510
511#ifdef CONFIG_SCHED_DEBUG
512 unsigned int nr_spread_over;
513#endif
514
515#ifdef CONFIG_SMP
516 /*
517 * CFS load tracking
518 */
519 struct sched_avg avg;
520#ifndef CONFIG_64BIT
521 u64 load_last_update_time_copy;
522#endif
523 struct {
524 raw_spinlock_t lock ____cacheline_aligned;
525 int nr;
526 unsigned long load_avg;
527 unsigned long util_avg;
528 unsigned long runnable_sum;
529 } removed;
530
531#ifdef CONFIG_FAIR_GROUP_SCHED
532 unsigned long tg_load_avg_contrib;
533 long propagate;
534 long prop_runnable_sum;
535
536 /*
537 * h_load = weight * f(tg)
538 *
539 * Where f(tg) is the recursive weight fraction assigned to
540 * this group.
541 */
542 unsigned long h_load;
543 u64 last_h_load_update;
544 struct sched_entity *h_load_next;
545#endif /* CONFIG_FAIR_GROUP_SCHED */
546#endif /* CONFIG_SMP */
547
548#ifdef CONFIG_FAIR_GROUP_SCHED
549 struct rq *rq; /* CPU runqueue to which this cfs_rq is attached */
550
551 /*
552 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
553 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
554 * (like users, containers etc.)
555 *
556 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU.
557 * This list is used during load balance.
558 */
559 int on_list;
560 struct list_head leaf_cfs_rq_list;
561 struct task_group *tg; /* group that "owns" this runqueue */
562
563#ifdef CONFIG_CFS_BANDWIDTH
564 int runtime_enabled;
565 int expires_seq;
566 u64 runtime_expires;
567 s64 runtime_remaining;
568
569 u64 throttled_clock;
570 u64 throttled_clock_task;
571 u64 throttled_clock_task_time;
572 int throttled;
573 int throttle_count;
574 struct list_head throttled_list;
575#endif /* CONFIG_CFS_BANDWIDTH */
576#endif /* CONFIG_FAIR_GROUP_SCHED */
577};
578
579static inline int rt_bandwidth_enabled(void)
580{
581 return sysctl_sched_rt_runtime >= 0;
582}
583
584/* RT IPI pull logic requires IRQ_WORK */
585#if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP)
586# define HAVE_RT_PUSH_IPI
587#endif
588
589/* Real-Time classes' related field in a runqueue: */
590struct rt_rq {
591 struct rt_prio_array active;
592 unsigned int rt_nr_running;
593 unsigned int rr_nr_running;
594#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
595 struct {
596 int curr; /* highest queued rt task prio */
597#ifdef CONFIG_SMP
598 int next; /* next highest */
599#endif
600 } highest_prio;
601#endif
602#ifdef CONFIG_SMP
603 unsigned long rt_nr_migratory;
604 unsigned long rt_nr_total;
605 int overloaded;
606 struct plist_head pushable_tasks;
607
608#endif /* CONFIG_SMP */
609 int rt_queued;
610
611 int rt_throttled;
612 u64 rt_time;
613 u64 rt_runtime;
614 /* Nests inside the rq lock: */
615 raw_spinlock_t rt_runtime_lock;
616
617#ifdef CONFIG_RT_GROUP_SCHED
618 unsigned long rt_nr_boosted;
619
620 struct rq *rq;
621 struct task_group *tg;
622#endif
623};
624
625static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq)
626{
627 return rt_rq->rt_queued && rt_rq->rt_nr_running;
628}
629
630/* Deadline class' related fields in a runqueue */
631struct dl_rq {
632 /* runqueue is an rbtree, ordered by deadline */
633 struct rb_root_cached root;
634
635 unsigned long dl_nr_running;
636
637#ifdef CONFIG_SMP
638 /*
639 * Deadline values of the currently executing and the
640 * earliest ready task on this rq. Caching these facilitates
641 * the decision whether or not a ready but not running task
642 * should migrate somewhere else.
643 */
644 struct {
645 u64 curr;
646 u64 next;
647 } earliest_dl;
648
649 unsigned long dl_nr_migratory;
650 int overloaded;
651
652 /*
653 * Tasks on this rq that can be pushed away. They are kept in
654 * an rb-tree, ordered by tasks' deadlines, with caching
655 * of the leftmost (earliest deadline) element.
656 */
657 struct rb_root_cached pushable_dl_tasks_root;
658#else
659 struct dl_bw dl_bw;
660#endif
661 /*
662 * "Active utilization" for this runqueue: increased when a
663 * task wakes up (becomes TASK_RUNNING) and decreased when a
664 * task blocks
665 */
666 u64 running_bw;
667
668 /*
669 * Utilization of the tasks "assigned" to this runqueue (including
670 * the tasks that are in runqueue and the tasks that executed on this
671 * CPU and blocked). Increased when a task moves to this runqueue, and
672 * decreased when the task moves away (migrates, changes scheduling
673 * policy, or terminates).
674 * This is needed to compute the "inactive utilization" for the
675 * runqueue (inactive utilization = this_bw - running_bw).
676 */
677 u64 this_bw;
678 u64 extra_bw;
679
680 /*
681 * Inverse of the fraction of CPU utilization that can be reclaimed
682 * by the GRUB algorithm.
683 */
684 u64 bw_ratio;
685};
686
687#ifdef CONFIG_FAIR_GROUP_SCHED
688/* An entity is a task if it doesn't "own" a runqueue */
689#define entity_is_task(se) (!se->my_q)
690#else
691#define entity_is_task(se) 1
692#endif
693
694#ifdef CONFIG_SMP
695/*
696 * XXX we want to get rid of these helpers and use the full load resolution.
697 */
698static inline long se_weight(struct sched_entity *se)
699{
700 return scale_load_down(se->load.weight);
701}
702
703static inline long se_runnable(struct sched_entity *se)
704{
705 return scale_load_down(se->runnable_weight);
706}
707
708static inline bool sched_asym_prefer(int a, int b)
709{
710 return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
711}
712
713struct perf_domain {
714 struct em_perf_domain *em_pd;
715 struct perf_domain *next;
716 struct rcu_head rcu;
717};
718
719/* Scheduling group status flags */
720#define SG_OVERLOAD 0x1 /* More than one runnable task on a CPU. */
721#define SG_OVERUTILIZED 0x2 /* One or more CPUs are over-utilized. */
722
723/*
724 * We add the notion of a root-domain which will be used to define per-domain
725 * variables. Each exclusive cpuset essentially defines an island domain by
726 * fully partitioning the member CPUs from any other cpuset. Whenever a new
727 * exclusive cpuset is created, we also create and attach a new root-domain
728 * object.
729 *
730 */
731struct root_domain {
732 atomic_t refcount;
733 atomic_t rto_count;
734 struct rcu_head rcu;
735 cpumask_var_t span;
736 cpumask_var_t online;
737
738 /*
739 * Indicate pullable load on at least one CPU, e.g:
740 * - More than one runnable task
741 * - Running task is misfit
742 */
743 int overload;
744
745 /* Indicate one or more cpus over-utilized (tipping point) */
746 int overutilized;
747
748 /*
749 * The bit corresponding to a CPU gets set here if such CPU has more
750 * than one runnable -deadline task (as it is below for RT tasks).
751 */
752 cpumask_var_t dlo_mask;
753 atomic_t dlo_count;
754 struct dl_bw dl_bw;
755 struct cpudl cpudl;
756
757#ifdef HAVE_RT_PUSH_IPI
758 /*
759 * For IPI pull requests, loop across the rto_mask.
760 */
761 struct irq_work rto_push_work;
762 raw_spinlock_t rto_lock;
763 /* These are only updated and read within rto_lock */
764 int rto_loop;
765 int rto_cpu;
766 /* These atomics are updated outside of a lock */
767 atomic_t rto_loop_next;
768 atomic_t rto_loop_start;
769#endif
770 /*
771 * The "RT overload" flag: it gets set if a CPU has more than
772 * one runnable RT task.
773 */
774 cpumask_var_t rto_mask;
775 struct cpupri cpupri;
776
777 unsigned long max_cpu_capacity;
778
779 /*
780 * NULL-terminated list of performance domains intersecting with the
781 * CPUs of the rd. Protected by RCU.
782 */
783 struct perf_domain *pd;
784};
785
786extern struct root_domain def_root_domain;
787extern struct mutex sched_domains_mutex;
788
789extern void init_defrootdomain(void);
790extern int sched_init_domains(const struct cpumask *cpu_map);
791extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
792extern void sched_get_rd(struct root_domain *rd);
793extern void sched_put_rd(struct root_domain *rd);
794
795#ifdef HAVE_RT_PUSH_IPI
796extern void rto_push_irq_work_func(struct irq_work *work);
797#endif
798#endif /* CONFIG_SMP */
799
800/*
801 * This is the main, per-CPU runqueue data structure.
802 *
803 * Locking rule: those places that want to lock multiple runqueues
804 * (such as the load balancing or the thread migration code), lock
805 * acquire operations must be ordered by ascending &runqueue.
806 */
807struct rq {
808 /* runqueue lock: */
809 raw_spinlock_t lock;
810
811 /*
812 * nr_running and cpu_load should be in the same cacheline because
813 * remote CPUs use both these fields when doing load calculation.
814 */
815 unsigned int nr_running;
816#ifdef CONFIG_NUMA_BALANCING
817 unsigned int nr_numa_running;
818 unsigned int nr_preferred_running;
819 unsigned int numa_migrate_on;
820#endif
821 #define CPU_LOAD_IDX_MAX 5
822 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
823#ifdef CONFIG_NO_HZ_COMMON
824#ifdef CONFIG_SMP
825 unsigned long last_load_update_tick;
826 unsigned long last_blocked_load_update_tick;
827 unsigned int has_blocked_load;
828#endif /* CONFIG_SMP */
829 unsigned int nohz_tick_stopped;
830 atomic_t nohz_flags;
831#endif /* CONFIG_NO_HZ_COMMON */
832
833 /* capture load from *all* tasks on this CPU: */
834 struct load_weight load;
835 unsigned long nr_load_updates;
836 u64 nr_switches;
837
838 struct cfs_rq cfs;
839 struct rt_rq rt;
840 struct dl_rq dl;
841
842#ifdef CONFIG_FAIR_GROUP_SCHED
843 /* list of leaf cfs_rq on this CPU: */
844 struct list_head leaf_cfs_rq_list;
845 struct list_head *tmp_alone_branch;
846#endif /* CONFIG_FAIR_GROUP_SCHED */
847
848 /*
849 * This is part of a global counter where only the total sum
850 * over all CPUs matters. A task can increase this counter on
851 * one CPU and if it got migrated afterwards it may decrease
852 * it on another CPU. Always updated under the runqueue lock:
853 */
854 unsigned long nr_uninterruptible;
855
856 struct task_struct *curr;
857 struct task_struct *idle;
858 struct task_struct *stop;
859 unsigned long next_balance;
860 struct mm_struct *prev_mm;
861
862 unsigned int clock_update_flags;
863 u64 clock;
864 /* Ensure that all clocks are in the same cache line */
865 u64 clock_task ____cacheline_aligned;
866 u64 clock_pelt;
867 unsigned long lost_idle_time;
868
869 atomic_t nr_iowait;
870
871#ifdef CONFIG_SMP
872 struct root_domain *rd;
873 struct sched_domain *sd;
874
875 unsigned long cpu_capacity;
876 unsigned long cpu_capacity_orig;
877
878 struct callback_head *balance_callback;
879
880 unsigned char idle_balance;
881
882 unsigned long misfit_task_load;
883
884 /* For active balancing */
885 int active_balance;
886 int push_cpu;
887 struct cpu_stop_work active_balance_work;
888
889 /* CPU of this runqueue: */
890 int cpu;
891 int online;
892
893 struct list_head cfs_tasks;
894
895 struct sched_avg avg_rt;
896 struct sched_avg avg_dl;
897#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
898 struct sched_avg avg_irq;
899#endif
900 u64 idle_stamp;
901 u64 avg_idle;
902
903 /* This is used to determine avg_idle's max value */
904 u64 max_idle_balance_cost;
905#endif
906
907#ifdef CONFIG_IRQ_TIME_ACCOUNTING
908 u64 prev_irq_time;
909#endif
910#ifdef CONFIG_PARAVIRT
911 u64 prev_steal_time;
912#endif
913#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
914 u64 prev_steal_time_rq;
915#endif
916
917 /* calc_load related fields */
918 unsigned long calc_load_update;
919 long calc_load_active;
920
921#ifdef CONFIG_SCHED_HRTICK
922#ifdef CONFIG_SMP
923 int hrtick_csd_pending;
924 call_single_data_t hrtick_csd;
925#endif
926 struct hrtimer hrtick_timer;
927#endif
928
929#ifdef CONFIG_SCHEDSTATS
930 /* latency stats */
931 struct sched_info rq_sched_info;
932 unsigned long long rq_cpu_time;
933 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
934
935 /* sys_sched_yield() stats */
936 unsigned int yld_count;
937
938 /* schedule() stats */
939 unsigned int sched_count;
940 unsigned int sched_goidle;
941
942 /* try_to_wake_up() stats */
943 unsigned int ttwu_count;
944 unsigned int ttwu_local;
945#endif
946
947#ifdef CONFIG_SMP
948 struct llist_head wake_list;
949#endif
950
951#ifdef CONFIG_CPU_IDLE
952 /* Must be inspected within a rcu lock section */
953 struct cpuidle_state *idle_state;
954#endif
955};
956
957#ifdef CONFIG_FAIR_GROUP_SCHED
958
959/* CPU runqueue to which this cfs_rq is attached */
960static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
961{
962 return cfs_rq->rq;
963}
964
965#else
966
967static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
968{
969 return container_of(cfs_rq, struct rq, cfs);
970}
971#endif
972
973static inline int cpu_of(struct rq *rq)
974{
975#ifdef CONFIG_SMP
976 return rq->cpu;
977#else
978 return 0;
979#endif
980}
981
982
983#ifdef CONFIG_SCHED_SMT
984extern void __update_idle_core(struct rq *rq);
985
986static inline void update_idle_core(struct rq *rq)
987{
988 if (static_branch_unlikely(&sched_smt_present))
989 __update_idle_core(rq);
990}
991
992#else
993static inline void update_idle_core(struct rq *rq) { }
994#endif
995
996DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
997
998#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
999#define this_rq() this_cpu_ptr(&runqueues)
1000#define task_rq(p) cpu_rq(task_cpu(p))
1001#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
1002#define raw_rq() raw_cpu_ptr(&runqueues)
1003
1004extern void update_rq_clock(struct rq *rq);
1005
1006static inline u64 __rq_clock_broken(struct rq *rq)
1007{
1008 return READ_ONCE(rq->clock);
1009}
1010
1011/*
1012 * rq::clock_update_flags bits
1013 *
1014 * %RQCF_REQ_SKIP - will request skipping of clock update on the next
1015 * call to __schedule(). This is an optimisation to avoid
1016 * neighbouring rq clock updates.
1017 *
1018 * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
1019 * in effect and calls to update_rq_clock() are being ignored.
1020 *
1021 * %RQCF_UPDATED - is a debug flag that indicates whether a call has been
1022 * made to update_rq_clock() since the last time rq::lock was pinned.
1023 *
1024 * If inside of __schedule(), clock_update_flags will have been
1025 * shifted left (a left shift is a cheap operation for the fast path
1026 * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
1027 *
1028 * if (rq-clock_update_flags >= RQCF_UPDATED)
1029 *
1030 * to check if %RQCF_UPADTED is set. It'll never be shifted more than
1031 * one position though, because the next rq_unpin_lock() will shift it
1032 * back.
1033 */
1034#define RQCF_REQ_SKIP 0x01
1035#define RQCF_ACT_SKIP 0x02
1036#define RQCF_UPDATED 0x04
1037
1038static inline void assert_clock_updated(struct rq *rq)
1039{
1040 /*
1041 * The only reason for not seeing a clock update since the
1042 * last rq_pin_lock() is if we're currently skipping updates.
1043 */
1044 SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP);
1045}
1046
1047static inline u64 rq_clock(struct rq *rq)
1048{
1049 lockdep_assert_held(&rq->lock);
1050 assert_clock_updated(rq);
1051
1052 return rq->clock;
1053}
1054
1055static inline u64 rq_clock_task(struct rq *rq)
1056{
1057 lockdep_assert_held(&rq->lock);
1058 assert_clock_updated(rq);
1059
1060 return rq->clock_task;
1061}
1062
1063static inline void rq_clock_skip_update(struct rq *rq)
1064{
1065 lockdep_assert_held(&rq->lock);
1066 rq->clock_update_flags |= RQCF_REQ_SKIP;
1067}
1068
1069/*
1070 * See rt task throttling, which is the only time a skip
1071 * request is cancelled.
1072 */
1073static inline void rq_clock_cancel_skipupdate(struct rq *rq)
1074{
1075 lockdep_assert_held(&rq->lock);
1076 rq->clock_update_flags &= ~RQCF_REQ_SKIP;
1077}
1078
1079struct rq_flags {
1080 unsigned long flags;
1081 struct pin_cookie cookie;
1082#ifdef CONFIG_SCHED_DEBUG
1083 /*
1084 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
1085 * current pin context is stashed here in case it needs to be
1086 * restored in rq_repin_lock().
1087 */
1088 unsigned int clock_update_flags;
1089#endif
1090};
1091
1092static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
1093{
1094 rf->cookie = lockdep_pin_lock(&rq->lock);
1095
1096#ifdef CONFIG_SCHED_DEBUG
1097 rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
1098 rf->clock_update_flags = 0;
1099#endif
1100}
1101
1102static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
1103{
1104#ifdef CONFIG_SCHED_DEBUG
1105 if (rq->clock_update_flags > RQCF_ACT_SKIP)
1106 rf->clock_update_flags = RQCF_UPDATED;
1107#endif
1108
1109 lockdep_unpin_lock(&rq->lock, rf->cookie);
1110}
1111
1112static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
1113{
1114 lockdep_repin_lock(&rq->lock, rf->cookie);
1115
1116#ifdef CONFIG_SCHED_DEBUG
1117 /*
1118 * Restore the value we stashed in @rf for this pin context.
1119 */
1120 rq->clock_update_flags |= rf->clock_update_flags;
1121#endif
1122}
1123
1124struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1125 __acquires(rq->lock);
1126
1127struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1128 __acquires(p->pi_lock)
1129 __acquires(rq->lock);
1130
1131static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
1132 __releases(rq->lock)
1133{
1134 rq_unpin_lock(rq, rf);
1135 raw_spin_unlock(&rq->lock);
1136}
1137
1138static inline void
1139task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1140 __releases(rq->lock)
1141 __releases(p->pi_lock)
1142{
1143 rq_unpin_lock(rq, rf);
1144 raw_spin_unlock(&rq->lock);
1145 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
1146}
1147
1148static inline void
1149rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
1150 __acquires(rq->lock)
1151{
1152 raw_spin_lock_irqsave(&rq->lock, rf->flags);
1153 rq_pin_lock(rq, rf);
1154}
1155
1156static inline void
1157rq_lock_irq(struct rq *rq, struct rq_flags *rf)
1158 __acquires(rq->lock)
1159{
1160 raw_spin_lock_irq(&rq->lock);
1161 rq_pin_lock(rq, rf);
1162}
1163
1164static inline void
1165rq_lock(struct rq *rq, struct rq_flags *rf)
1166 __acquires(rq->lock)
1167{
1168 raw_spin_lock(&rq->lock);
1169 rq_pin_lock(rq, rf);
1170}
1171
1172static inline void
1173rq_relock(struct rq *rq, struct rq_flags *rf)
1174 __acquires(rq->lock)
1175{
1176 raw_spin_lock(&rq->lock);
1177 rq_repin_lock(rq, rf);
1178}
1179
1180static inline void
1181rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
1182 __releases(rq->lock)
1183{
1184 rq_unpin_lock(rq, rf);
1185 raw_spin_unlock_irqrestore(&rq->lock, rf->flags);
1186}
1187
1188static inline void
1189rq_unlock_irq(struct rq *rq, struct rq_flags *rf)
1190 __releases(rq->lock)
1191{
1192 rq_unpin_lock(rq, rf);
1193 raw_spin_unlock_irq(&rq->lock);
1194}
1195
1196static inline void
1197rq_unlock(struct rq *rq, struct rq_flags *rf)
1198 __releases(rq->lock)
1199{
1200 rq_unpin_lock(rq, rf);
1201 raw_spin_unlock(&rq->lock);
1202}
1203
1204static inline struct rq *
1205this_rq_lock_irq(struct rq_flags *rf)
1206 __acquires(rq->lock)
1207{
1208 struct rq *rq;
1209
1210 local_irq_disable();
1211 rq = this_rq();
1212 rq_lock(rq, rf);
1213 return rq;
1214}
1215
1216#ifdef CONFIG_NUMA
1217enum numa_topology_type {
1218 NUMA_DIRECT,
1219 NUMA_GLUELESS_MESH,
1220 NUMA_BACKPLANE,
1221};
1222extern enum numa_topology_type sched_numa_topology_type;
1223extern int sched_max_numa_distance;
1224extern bool find_numa_distance(int distance);
1225#endif
1226
1227#ifdef CONFIG_NUMA
1228extern void sched_init_numa(void);
1229extern void sched_domains_numa_masks_set(unsigned int cpu);
1230extern void sched_domains_numa_masks_clear(unsigned int cpu);
1231#else
1232static inline void sched_init_numa(void) { }
1233static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
1234static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
1235#endif
1236
1237#ifdef CONFIG_NUMA_BALANCING
1238/* The regions in numa_faults array from task_struct */
1239enum numa_faults_stats {
1240 NUMA_MEM = 0,
1241 NUMA_CPU,
1242 NUMA_MEMBUF,
1243 NUMA_CPUBUF
1244};
1245extern void sched_setnuma(struct task_struct *p, int node);
1246extern int migrate_task_to(struct task_struct *p, int cpu);
1247extern int migrate_swap(struct task_struct *p, struct task_struct *t,
1248 int cpu, int scpu);
1249extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p);
1250#else
1251static inline void
1252init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
1253{
1254}
1255#endif /* CONFIG_NUMA_BALANCING */
1256
1257#ifdef CONFIG_SMP
1258
1259static inline void
1260queue_balance_callback(struct rq *rq,
1261 struct callback_head *head,
1262 void (*func)(struct rq *rq))
1263{
1264 lockdep_assert_held(&rq->lock);
1265
1266 if (unlikely(head->next))
1267 return;
1268
1269 head->func = (void (*)(struct callback_head *))func;
1270 head->next = rq->balance_callback;
1271 rq->balance_callback = head;
1272}
1273
1274extern void sched_ttwu_pending(void);
1275
1276#define rcu_dereference_check_sched_domain(p) \
1277 rcu_dereference_check((p), \
1278 lockdep_is_held(&sched_domains_mutex))
1279
1280/*
1281 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1282 * See destroy_sched_domains: call_rcu for details.
1283 *
1284 * The domain tree of any CPU may only be accessed from within
1285 * preempt-disabled sections.
1286 */
1287#define for_each_domain(cpu, __sd) \
1288 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
1289 __sd; __sd = __sd->parent)
1290
1291#define for_each_lower_domain(sd) for (; sd; sd = sd->child)
1292
1293/**
1294 * highest_flag_domain - Return highest sched_domain containing flag.
1295 * @cpu: The CPU whose highest level of sched domain is to
1296 * be returned.
1297 * @flag: The flag to check for the highest sched_domain
1298 * for the given CPU.
1299 *
1300 * Returns the highest sched_domain of a CPU which contains the given flag.
1301 */
1302static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
1303{
1304 struct sched_domain *sd, *hsd = NULL;
1305
1306 for_each_domain(cpu, sd) {
1307 if (!(sd->flags & flag))
1308 break;
1309 hsd = sd;
1310 }
1311
1312 return hsd;
1313}
1314
1315static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
1316{
1317 struct sched_domain *sd;
1318
1319 for_each_domain(cpu, sd) {
1320 if (sd->flags & flag)
1321 break;
1322 }
1323
1324 return sd;
1325}
1326
1327DECLARE_PER_CPU(struct sched_domain *, sd_llc);
1328DECLARE_PER_CPU(int, sd_llc_size);
1329DECLARE_PER_CPU(int, sd_llc_id);
1330DECLARE_PER_CPU(struct sched_domain_shared *, sd_llc_shared);
1331DECLARE_PER_CPU(struct sched_domain *, sd_numa);
1332DECLARE_PER_CPU(struct sched_domain *, sd_asym_packing);
1333DECLARE_PER_CPU(struct sched_domain *, sd_asym_cpucapacity);
1334extern struct static_key_false sched_asym_cpucapacity;
1335
1336struct sched_group_capacity {
1337 atomic_t ref;
1338 /*
1339 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
1340 * for a single CPU.
1341 */
1342 unsigned long capacity;
1343 unsigned long min_capacity; /* Min per-CPU capacity in group */
1344 unsigned long max_capacity; /* Max per-CPU capacity in group */
1345 unsigned long next_update;
1346 int imbalance; /* XXX unrelated to capacity but shared group state */
1347
1348#ifdef CONFIG_SCHED_DEBUG
1349 int id;
1350#endif
1351
1352 unsigned long cpumask[0]; /* Balance mask */
1353};
1354
1355struct sched_group {
1356 struct sched_group *next; /* Must be a circular list */
1357 atomic_t ref;
1358
1359 unsigned int group_weight;
1360 struct sched_group_capacity *sgc;
1361 int asym_prefer_cpu; /* CPU of highest priority in group */
1362
1363 /*
1364 * The CPUs this group covers.
1365 *
1366 * NOTE: this field is variable length. (Allocated dynamically
1367 * by attaching extra space to the end of the structure,
1368 * depending on how many CPUs the kernel has booted up with)
1369 */
1370 unsigned long cpumask[0];
1371};
1372
1373static inline struct cpumask *sched_group_span(struct sched_group *sg)
1374{
1375 return to_cpumask(sg->cpumask);
1376}
1377
1378/*
1379 * See build_balance_mask().
1380 */
1381static inline struct cpumask *group_balance_mask(struct sched_group *sg)
1382{
1383 return to_cpumask(sg->sgc->cpumask);
1384}
1385
1386/**
1387 * group_first_cpu - Returns the first CPU in the cpumask of a sched_group.
1388 * @group: The group whose first CPU is to be returned.
1389 */
1390static inline unsigned int group_first_cpu(struct sched_group *group)
1391{
1392 return cpumask_first(sched_group_span(group));
1393}
1394
1395extern int group_balance_cpu(struct sched_group *sg);
1396
1397#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
1398void register_sched_domain_sysctl(void);
1399void dirty_sched_domain_sysctl(int cpu);
1400void unregister_sched_domain_sysctl(void);
1401#else
1402static inline void register_sched_domain_sysctl(void)
1403{
1404}
1405static inline void dirty_sched_domain_sysctl(int cpu)
1406{
1407}
1408static inline void unregister_sched_domain_sysctl(void)
1409{
1410}
1411#endif
1412
1413#else
1414
1415static inline void sched_ttwu_pending(void) { }
1416
1417#endif /* CONFIG_SMP */
1418
1419#include "stats.h"
1420#include "autogroup.h"
1421
1422#ifdef CONFIG_CGROUP_SCHED
1423
1424/*
1425 * Return the group to which this tasks belongs.
1426 *
1427 * We cannot use task_css() and friends because the cgroup subsystem
1428 * changes that value before the cgroup_subsys::attach() method is called,
1429 * therefore we cannot pin it and might observe the wrong value.
1430 *
1431 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
1432 * core changes this before calling sched_move_task().
1433 *
1434 * Instead we use a 'copy' which is updated from sched_move_task() while
1435 * holding both task_struct::pi_lock and rq::lock.
1436 */
1437static inline struct task_group *task_group(struct task_struct *p)
1438{
1439 return p->sched_task_group;
1440}
1441
1442/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
1443static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
1444{
1445#if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
1446 struct task_group *tg = task_group(p);
1447#endif
1448
1449#ifdef CONFIG_FAIR_GROUP_SCHED
1450 set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
1451 p->se.cfs_rq = tg->cfs_rq[cpu];
1452 p->se.parent = tg->se[cpu];
1453#endif
1454
1455#ifdef CONFIG_RT_GROUP_SCHED
1456 p->rt.rt_rq = tg->rt_rq[cpu];
1457 p->rt.parent = tg->rt_se[cpu];
1458#endif
1459}
1460
1461#else /* CONFIG_CGROUP_SCHED */
1462
1463static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
1464static inline struct task_group *task_group(struct task_struct *p)
1465{
1466 return NULL;
1467}
1468
1469#endif /* CONFIG_CGROUP_SCHED */
1470
1471static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1472{
1473 set_task_rq(p, cpu);
1474#ifdef CONFIG_SMP
1475 /*
1476 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1477 * successfully executed on another CPU. We must ensure that updates of
1478 * per-task data have been completed by this moment.
1479 */
1480 smp_wmb();
1481#ifdef CONFIG_THREAD_INFO_IN_TASK
1482 WRITE_ONCE(p->cpu, cpu);
1483#else
1484 WRITE_ONCE(task_thread_info(p)->cpu, cpu);
1485#endif
1486 p->wake_cpu = cpu;
1487#endif
1488}
1489
1490/*
1491 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
1492 */
1493#ifdef CONFIG_SCHED_DEBUG
1494# include <linux/static_key.h>
1495# define const_debug __read_mostly
1496#else
1497# define const_debug const
1498#endif
1499
1500#define SCHED_FEAT(name, enabled) \
1501 __SCHED_FEAT_##name ,
1502
1503enum {
1504#include "features.h"
1505 __SCHED_FEAT_NR,
1506};
1507
1508#undef SCHED_FEAT
1509
1510#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_JUMP_LABEL)
1511
1512/*
1513 * To support run-time toggling of sched features, all the translation units
1514 * (but core.c) reference the sysctl_sched_features defined in core.c.
1515 */
1516extern const_debug unsigned int sysctl_sched_features;
1517
1518#define SCHED_FEAT(name, enabled) \
1519static __always_inline bool static_branch_##name(struct static_key *key) \
1520{ \
1521 return static_key_##enabled(key); \
1522}
1523
1524#include "features.h"
1525#undef SCHED_FEAT
1526
1527extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
1528#define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
1529
1530#else /* !(SCHED_DEBUG && CONFIG_JUMP_LABEL) */
1531
1532/*
1533 * Each translation unit has its own copy of sysctl_sched_features to allow
1534 * constants propagation at compile time and compiler optimization based on
1535 * features default.
1536 */
1537#define SCHED_FEAT(name, enabled) \
1538 (1UL << __SCHED_FEAT_##name) * enabled |
1539static const_debug __maybe_unused unsigned int sysctl_sched_features =
1540#include "features.h"
1541 0;
1542#undef SCHED_FEAT
1543
1544#define sched_feat(x) !!(sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
1545
1546#endif /* SCHED_DEBUG && CONFIG_JUMP_LABEL */
1547
1548extern struct static_key_false sched_numa_balancing;
1549extern struct static_key_false sched_schedstats;
1550
1551static inline u64 global_rt_period(void)
1552{
1553 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
1554}
1555
1556static inline u64 global_rt_runtime(void)
1557{
1558 if (sysctl_sched_rt_runtime < 0)
1559 return RUNTIME_INF;
1560
1561 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
1562}
1563
1564static inline int task_current(struct rq *rq, struct task_struct *p)
1565{
1566 return rq->curr == p;
1567}
1568
1569static inline int task_running(struct rq *rq, struct task_struct *p)
1570{
1571#ifdef CONFIG_SMP
1572 return p->on_cpu;
1573#else
1574 return task_current(rq, p);
1575#endif
1576}
1577
1578static inline int task_on_rq_queued(struct task_struct *p)
1579{
1580 return p->on_rq == TASK_ON_RQ_QUEUED;
1581}
1582
1583static inline int task_on_rq_migrating(struct task_struct *p)
1584{
1585 return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING;
1586}
1587
1588/*
1589 * wake flags
1590 */
1591#define WF_SYNC 0x01 /* Waker goes to sleep after wakeup */
1592#define WF_FORK 0x02 /* Child wakeup after fork */
1593#define WF_MIGRATED 0x4 /* Internal use, task got migrated */
1594
1595/*
1596 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1597 * of tasks with abnormal "nice" values across CPUs the contribution that
1598 * each task makes to its run queue's load is weighted according to its
1599 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1600 * scaled version of the new time slice allocation that they receive on time
1601 * slice expiry etc.
1602 */
1603
1604#define WEIGHT_IDLEPRIO 3
1605#define WMULT_IDLEPRIO 1431655765
1606
1607extern const int sched_prio_to_weight[40];
1608extern const u32 sched_prio_to_wmult[40];
1609
1610/*
1611 * {de,en}queue flags:
1612 *
1613 * DEQUEUE_SLEEP - task is no longer runnable
1614 * ENQUEUE_WAKEUP - task just became runnable
1615 *
1616 * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
1617 * are in a known state which allows modification. Such pairs
1618 * should preserve as much state as possible.
1619 *
1620 * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
1621 * in the runqueue.
1622 *
1623 * ENQUEUE_HEAD - place at front of runqueue (tail if not specified)
1624 * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
1625 * ENQUEUE_MIGRATED - the task was migrated during wakeup
1626 *
1627 */
1628
1629#define DEQUEUE_SLEEP 0x01
1630#define DEQUEUE_SAVE 0x02 /* Matches ENQUEUE_RESTORE */
1631#define DEQUEUE_MOVE 0x04 /* Matches ENQUEUE_MOVE */
1632#define DEQUEUE_NOCLOCK 0x08 /* Matches ENQUEUE_NOCLOCK */
1633
1634#define ENQUEUE_WAKEUP 0x01
1635#define ENQUEUE_RESTORE 0x02
1636#define ENQUEUE_MOVE 0x04
1637#define ENQUEUE_NOCLOCK 0x08
1638
1639#define ENQUEUE_HEAD 0x10
1640#define ENQUEUE_REPLENISH 0x20
1641#ifdef CONFIG_SMP
1642#define ENQUEUE_MIGRATED 0x40
1643#else
1644#define ENQUEUE_MIGRATED 0x00
1645#endif
1646
1647#define RETRY_TASK ((void *)-1UL)
1648
1649struct sched_class {
1650 const struct sched_class *next;
1651
1652 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1653 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1654 void (*yield_task) (struct rq *rq);
1655 bool (*yield_to_task)(struct rq *rq, struct task_struct *p, bool preempt);
1656
1657 void (*check_preempt_curr)(struct rq *rq, struct task_struct *p, int flags);
1658
1659 /*
1660 * It is the responsibility of the pick_next_task() method that will
1661 * return the next task to call put_prev_task() on the @prev task or
1662 * something equivalent.
1663 *
1664 * May return RETRY_TASK when it finds a higher prio class has runnable
1665 * tasks.
1666 */
1667 struct task_struct * (*pick_next_task)(struct rq *rq,
1668 struct task_struct *prev,
1669 struct rq_flags *rf);
1670 void (*put_prev_task)(struct rq *rq, struct task_struct *p);
1671
1672#ifdef CONFIG_SMP
1673 int (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
1674 void (*migrate_task_rq)(struct task_struct *p, int new_cpu);
1675
1676 void (*task_woken)(struct rq *this_rq, struct task_struct *task);
1677
1678 void (*set_cpus_allowed)(struct task_struct *p,
1679 const struct cpumask *newmask);
1680
1681 void (*rq_online)(struct rq *rq);
1682 void (*rq_offline)(struct rq *rq);
1683#endif
1684
1685 void (*set_curr_task)(struct rq *rq);
1686 void (*task_tick)(struct rq *rq, struct task_struct *p, int queued);
1687 void (*task_fork)(struct task_struct *p);
1688 void (*task_dead)(struct task_struct *p);
1689
1690 /*
1691 * The switched_from() call is allowed to drop rq->lock, therefore we
1692 * cannot assume the switched_from/switched_to pair is serliazed by
1693 * rq->lock. They are however serialized by p->pi_lock.
1694 */
1695 void (*switched_from)(struct rq *this_rq, struct task_struct *task);
1696 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1697 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1698 int oldprio);
1699
1700 unsigned int (*get_rr_interval)(struct rq *rq,
1701 struct task_struct *task);
1702
1703 void (*update_curr)(struct rq *rq);
1704
1705#define TASK_SET_GROUP 0
1706#define TASK_MOVE_GROUP 1
1707
1708#ifdef CONFIG_FAIR_GROUP_SCHED
1709 void (*task_change_group)(struct task_struct *p, int type);
1710#endif
1711};
1712
1713static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
1714{
1715 prev->sched_class->put_prev_task(rq, prev);
1716}
1717
1718static inline void set_curr_task(struct rq *rq, struct task_struct *curr)
1719{
1720 curr->sched_class->set_curr_task(rq);
1721}
1722
1723#ifdef CONFIG_SMP
1724#define sched_class_highest (&stop_sched_class)
1725#else
1726#define sched_class_highest (&dl_sched_class)
1727#endif
1728#define for_each_class(class) \
1729 for (class = sched_class_highest; class; class = class->next)
1730
1731extern const struct sched_class stop_sched_class;
1732extern const struct sched_class dl_sched_class;
1733extern const struct sched_class rt_sched_class;
1734extern const struct sched_class fair_sched_class;
1735extern const struct sched_class idle_sched_class;
1736
1737
1738#ifdef CONFIG_SMP
1739
1740extern void update_group_capacity(struct sched_domain *sd, int cpu);
1741
1742extern void trigger_load_balance(struct rq *rq);
1743
1744extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask);
1745
1746#endif
1747
1748#ifdef CONFIG_CPU_IDLE
1749static inline void idle_set_state(struct rq *rq,
1750 struct cpuidle_state *idle_state)
1751{
1752 rq->idle_state = idle_state;
1753}
1754
1755static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1756{
1757 SCHED_WARN_ON(!rcu_read_lock_held());
1758
1759 return rq->idle_state;
1760}
1761#else
1762static inline void idle_set_state(struct rq *rq,
1763 struct cpuidle_state *idle_state)
1764{
1765}
1766
1767static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1768{
1769 return NULL;
1770}
1771#endif
1772
1773extern void schedule_idle(void);
1774
1775extern void sysrq_sched_debug_show(void);
1776extern void sched_init_granularity(void);
1777extern void update_max_interval(void);
1778
1779extern void init_sched_dl_class(void);
1780extern void init_sched_rt_class(void);
1781extern void init_sched_fair_class(void);
1782
1783extern void reweight_task(struct task_struct *p, int prio);
1784
1785extern void resched_curr(struct rq *rq);
1786extern void resched_cpu(int cpu);
1787
1788extern struct rt_bandwidth def_rt_bandwidth;
1789extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
1790
1791extern struct dl_bandwidth def_dl_bandwidth;
1792extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
1793extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
1794extern void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se);
1795extern void init_dl_rq_bw_ratio(struct dl_rq *dl_rq);
1796
1797#define BW_SHIFT 20
1798#define BW_UNIT (1 << BW_SHIFT)
1799#define RATIO_SHIFT 8
1800unsigned long to_ratio(u64 period, u64 runtime);
1801
1802extern void init_entity_runnable_average(struct sched_entity *se);
1803extern void post_init_entity_util_avg(struct task_struct *p);
1804
1805#ifdef CONFIG_NO_HZ_FULL
1806extern bool sched_can_stop_tick(struct rq *rq);
1807extern int __init sched_tick_offload_init(void);
1808
1809/*
1810 * Tick may be needed by tasks in the runqueue depending on their policy and
1811 * requirements. If tick is needed, lets send the target an IPI to kick it out of
1812 * nohz mode if necessary.
1813 */
1814static inline void sched_update_tick_dependency(struct rq *rq)
1815{
1816 int cpu;
1817
1818 if (!tick_nohz_full_enabled())
1819 return;
1820
1821 cpu = cpu_of(rq);
1822
1823 if (!tick_nohz_full_cpu(cpu))
1824 return;
1825
1826 if (sched_can_stop_tick(rq))
1827 tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
1828 else
1829 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
1830}
1831#else
1832static inline int sched_tick_offload_init(void) { return 0; }
1833static inline void sched_update_tick_dependency(struct rq *rq) { }
1834#endif
1835
1836static inline void add_nr_running(struct rq *rq, unsigned count)
1837{
1838 unsigned prev_nr = rq->nr_running;
1839
1840 rq->nr_running = prev_nr + count;
1841
1842#ifdef CONFIG_SMP
1843 if (prev_nr < 2 && rq->nr_running >= 2) {
1844 if (!READ_ONCE(rq->rd->overload))
1845 WRITE_ONCE(rq->rd->overload, 1);
1846 }
1847#endif
1848
1849 sched_update_tick_dependency(rq);
1850}
1851
1852static inline void sub_nr_running(struct rq *rq, unsigned count)
1853{
1854 rq->nr_running -= count;
1855 /* Check if we still need preemption */
1856 sched_update_tick_dependency(rq);
1857}
1858
1859extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
1860extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
1861
1862extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
1863
1864extern const_debug unsigned int sysctl_sched_nr_migrate;
1865extern const_debug unsigned int sysctl_sched_migration_cost;
1866
1867#ifdef CONFIG_SCHED_HRTICK
1868
1869/*
1870 * Use hrtick when:
1871 * - enabled by features
1872 * - hrtimer is actually high res
1873 */
1874static inline int hrtick_enabled(struct rq *rq)
1875{
1876 if (!sched_feat(HRTICK))
1877 return 0;
1878 if (!cpu_active(cpu_of(rq)))
1879 return 0;
1880 return hrtimer_is_hres_active(&rq->hrtick_timer);
1881}
1882
1883void hrtick_start(struct rq *rq, u64 delay);
1884
1885#else
1886
1887static inline int hrtick_enabled(struct rq *rq)
1888{
1889 return 0;
1890}
1891
1892#endif /* CONFIG_SCHED_HRTICK */
1893
1894#ifndef arch_scale_freq_capacity
1895static __always_inline
1896unsigned long arch_scale_freq_capacity(int cpu)
1897{
1898 return SCHED_CAPACITY_SCALE;
1899}
1900#endif
1901
1902#ifdef CONFIG_SMP
1903#ifdef CONFIG_PREEMPT
1904
1905static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1906
1907/*
1908 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1909 * way at the expense of forcing extra atomic operations in all
1910 * invocations. This assures that the double_lock is acquired using the
1911 * same underlying policy as the spinlock_t on this architecture, which
1912 * reduces latency compared to the unfair variant below. However, it
1913 * also adds more overhead and therefore may reduce throughput.
1914 */
1915static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1916 __releases(this_rq->lock)
1917 __acquires(busiest->lock)
1918 __acquires(this_rq->lock)
1919{
1920 raw_spin_unlock(&this_rq->lock);
1921 double_rq_lock(this_rq, busiest);
1922
1923 return 1;
1924}
1925
1926#else
1927/*
1928 * Unfair double_lock_balance: Optimizes throughput at the expense of
1929 * latency by eliminating extra atomic operations when the locks are
1930 * already in proper order on entry. This favors lower CPU-ids and will
1931 * grant the double lock to lower CPUs over higher ids under contention,
1932 * regardless of entry order into the function.
1933 */
1934static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1935 __releases(this_rq->lock)
1936 __acquires(busiest->lock)
1937 __acquires(this_rq->lock)
1938{
1939 int ret = 0;
1940
1941 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1942 if (busiest < this_rq) {
1943 raw_spin_unlock(&this_rq->lock);
1944 raw_spin_lock(&busiest->lock);
1945 raw_spin_lock_nested(&this_rq->lock,
1946 SINGLE_DEPTH_NESTING);
1947 ret = 1;
1948 } else
1949 raw_spin_lock_nested(&busiest->lock,
1950 SINGLE_DEPTH_NESTING);
1951 }
1952 return ret;
1953}
1954
1955#endif /* CONFIG_PREEMPT */
1956
1957/*
1958 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1959 */
1960static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1961{
1962 if (unlikely(!irqs_disabled())) {
1963 /* printk() doesn't work well under rq->lock */
1964 raw_spin_unlock(&this_rq->lock);
1965 BUG_ON(1);
1966 }
1967
1968 return _double_lock_balance(this_rq, busiest);
1969}
1970
1971static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1972 __releases(busiest->lock)
1973{
1974 raw_spin_unlock(&busiest->lock);
1975 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1976}
1977
1978static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
1979{
1980 if (l1 > l2)
1981 swap(l1, l2);
1982
1983 spin_lock(l1);
1984 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1985}
1986
1987static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
1988{
1989 if (l1 > l2)
1990 swap(l1, l2);
1991
1992 spin_lock_irq(l1);
1993 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1994}
1995
1996static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
1997{
1998 if (l1 > l2)
1999 swap(l1, l2);
2000
2001 raw_spin_lock(l1);
2002 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2003}
2004
2005/*
2006 * double_rq_lock - safely lock two runqueues
2007 *
2008 * Note this does not disable interrupts like task_rq_lock,
2009 * you need to do so manually before calling.
2010 */
2011static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
2012 __acquires(rq1->lock)
2013 __acquires(rq2->lock)
2014{
2015 BUG_ON(!irqs_disabled());
2016 if (rq1 == rq2) {
2017 raw_spin_lock(&rq1->lock);
2018 __acquire(rq2->lock); /* Fake it out ;) */
2019 } else {
2020 if (rq1 < rq2) {
2021 raw_spin_lock(&rq1->lock);
2022 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
2023 } else {
2024 raw_spin_lock(&rq2->lock);
2025 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
2026 }
2027 }
2028}
2029
2030/*
2031 * double_rq_unlock - safely unlock two runqueues
2032 *
2033 * Note this does not restore interrupts like task_rq_unlock,
2034 * you need to do so manually after calling.
2035 */
2036static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2037 __releases(rq1->lock)
2038 __releases(rq2->lock)
2039{
2040 raw_spin_unlock(&rq1->lock);
2041 if (rq1 != rq2)
2042 raw_spin_unlock(&rq2->lock);
2043 else
2044 __release(rq2->lock);
2045}
2046
2047extern void set_rq_online (struct rq *rq);
2048extern void set_rq_offline(struct rq *rq);
2049extern bool sched_smp_initialized;
2050
2051#else /* CONFIG_SMP */
2052
2053/*
2054 * double_rq_lock - safely lock two runqueues
2055 *
2056 * Note this does not disable interrupts like task_rq_lock,
2057 * you need to do so manually before calling.
2058 */
2059static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
2060 __acquires(rq1->lock)
2061 __acquires(rq2->lock)
2062{
2063 BUG_ON(!irqs_disabled());
2064 BUG_ON(rq1 != rq2);
2065 raw_spin_lock(&rq1->lock);
2066 __acquire(rq2->lock); /* Fake it out ;) */
2067}
2068
2069/*
2070 * double_rq_unlock - safely unlock two runqueues
2071 *
2072 * Note this does not restore interrupts like task_rq_unlock,
2073 * you need to do so manually after calling.
2074 */
2075static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2076 __releases(rq1->lock)
2077 __releases(rq2->lock)
2078{
2079 BUG_ON(rq1 != rq2);
2080 raw_spin_unlock(&rq1->lock);
2081 __release(rq2->lock);
2082}
2083
2084#endif
2085
2086extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
2087extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
2088
2089#ifdef CONFIG_SCHED_DEBUG
2090extern bool sched_debug_enabled;
2091
2092extern void print_cfs_stats(struct seq_file *m, int cpu);
2093extern void print_rt_stats(struct seq_file *m, int cpu);
2094extern void print_dl_stats(struct seq_file *m, int cpu);
2095extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
2096extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2097extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
2098#ifdef CONFIG_NUMA_BALANCING
2099extern void
2100show_numa_stats(struct task_struct *p, struct seq_file *m);
2101extern void
2102print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
2103 unsigned long tpf, unsigned long gsf, unsigned long gpf);
2104#endif /* CONFIG_NUMA_BALANCING */
2105#endif /* CONFIG_SCHED_DEBUG */
2106
2107extern void init_cfs_rq(struct cfs_rq *cfs_rq);
2108extern void init_rt_rq(struct rt_rq *rt_rq);
2109extern void init_dl_rq(struct dl_rq *dl_rq);
2110
2111extern void cfs_bandwidth_usage_inc(void);
2112extern void cfs_bandwidth_usage_dec(void);
2113
2114#ifdef CONFIG_NO_HZ_COMMON
2115#define NOHZ_BALANCE_KICK_BIT 0
2116#define NOHZ_STATS_KICK_BIT 1
2117
2118#define NOHZ_BALANCE_KICK BIT(NOHZ_BALANCE_KICK_BIT)
2119#define NOHZ_STATS_KICK BIT(NOHZ_STATS_KICK_BIT)
2120
2121#define NOHZ_KICK_MASK (NOHZ_BALANCE_KICK | NOHZ_STATS_KICK)
2122
2123#define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
2124
2125extern void nohz_balance_exit_idle(struct rq *rq);
2126#else
2127static inline void nohz_balance_exit_idle(struct rq *rq) { }
2128#endif
2129
2130
2131#ifdef CONFIG_SMP
2132static inline
2133void __dl_update(struct dl_bw *dl_b, s64 bw)
2134{
2135 struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw);
2136 int i;
2137
2138 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2139 "sched RCU must be held");
2140 for_each_cpu_and(i, rd->span, cpu_active_mask) {
2141 struct rq *rq = cpu_rq(i);
2142
2143 rq->dl.extra_bw += bw;
2144 }
2145}
2146#else
2147static inline
2148void __dl_update(struct dl_bw *dl_b, s64 bw)
2149{
2150 struct dl_rq *dl = container_of(dl_b, struct dl_rq, dl_bw);
2151
2152 dl->extra_bw += bw;
2153}
2154#endif
2155
2156
2157#ifdef CONFIG_IRQ_TIME_ACCOUNTING
2158struct irqtime {
2159 u64 total;
2160 u64 tick_delta;
2161 u64 irq_start_time;
2162 struct u64_stats_sync sync;
2163};
2164
2165DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
2166
2167/*
2168 * Returns the irqtime minus the softirq time computed by ksoftirqd.
2169 * Otherwise ksoftirqd's sum_exec_runtime is substracted its own runtime
2170 * and never move forward.
2171 */
2172static inline u64 irq_time_read(int cpu)
2173{
2174 struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
2175 unsigned int seq;
2176 u64 total;
2177
2178 do {
2179 seq = __u64_stats_fetch_begin(&irqtime->sync);
2180 total = irqtime->total;
2181 } while (__u64_stats_fetch_retry(&irqtime->sync, seq));
2182
2183 return total;
2184}
2185#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2186
2187#ifdef CONFIG_CPU_FREQ
2188DECLARE_PER_CPU(struct update_util_data *, cpufreq_update_util_data);
2189
2190/**
2191 * cpufreq_update_util - Take a note about CPU utilization changes.
2192 * @rq: Runqueue to carry out the update for.
2193 * @flags: Update reason flags.
2194 *
2195 * This function is called by the scheduler on the CPU whose utilization is
2196 * being updated.
2197 *
2198 * It can only be called from RCU-sched read-side critical sections.
2199 *
2200 * The way cpufreq is currently arranged requires it to evaluate the CPU
2201 * performance state (frequency/voltage) on a regular basis to prevent it from
2202 * being stuck in a completely inadequate performance level for too long.
2203 * That is not guaranteed to happen if the updates are only triggered from CFS
2204 * and DL, though, because they may not be coming in if only RT tasks are
2205 * active all the time (or there are RT tasks only).
2206 *
2207 * As a workaround for that issue, this function is called periodically by the
2208 * RT sched class to trigger extra cpufreq updates to prevent it from stalling,
2209 * but that really is a band-aid. Going forward it should be replaced with
2210 * solutions targeted more specifically at RT tasks.
2211 */
2212static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
2213{
2214 struct update_util_data *data;
2215
2216 data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data,
2217 cpu_of(rq)));
2218 if (data)
2219 data->func(data, rq_clock(rq), flags);
2220}
2221#else
2222static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {}
2223#endif /* CONFIG_CPU_FREQ */
2224
2225#ifdef arch_scale_freq_capacity
2226# ifndef arch_scale_freq_invariant
2227# define arch_scale_freq_invariant() true
2228# endif
2229#else
2230# define arch_scale_freq_invariant() false
2231#endif
2232
2233#ifdef CONFIG_SMP
2234static inline unsigned long capacity_orig_of(int cpu)
2235{
2236 return cpu_rq(cpu)->cpu_capacity_orig;
2237}
2238#endif
2239
2240#ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
2241/**
2242 * enum schedutil_type - CPU utilization type
2243 * @FREQUENCY_UTIL: Utilization used to select frequency
2244 * @ENERGY_UTIL: Utilization used during energy calculation
2245 *
2246 * The utilization signals of all scheduling classes (CFS/RT/DL) and IRQ time
2247 * need to be aggregated differently depending on the usage made of them. This
2248 * enum is used within schedutil_freq_util() to differentiate the types of
2249 * utilization expected by the callers, and adjust the aggregation accordingly.
2250 */
2251enum schedutil_type {
2252 FREQUENCY_UTIL,
2253 ENERGY_UTIL,
2254};
2255
2256unsigned long schedutil_freq_util(int cpu, unsigned long util_cfs,
2257 unsigned long max, enum schedutil_type type);
2258
2259static inline unsigned long schedutil_energy_util(int cpu, unsigned long cfs)
2260{
2261 unsigned long max = arch_scale_cpu_capacity(NULL, cpu);
2262
2263 return schedutil_freq_util(cpu, cfs, max, ENERGY_UTIL);
2264}
2265
2266static inline unsigned long cpu_bw_dl(struct rq *rq)
2267{
2268 return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT;
2269}
2270
2271static inline unsigned long cpu_util_dl(struct rq *rq)
2272{
2273 return READ_ONCE(rq->avg_dl.util_avg);
2274}
2275
2276static inline unsigned long cpu_util_cfs(struct rq *rq)
2277{
2278 unsigned long util = READ_ONCE(rq->cfs.avg.util_avg);
2279
2280 if (sched_feat(UTIL_EST)) {
2281 util = max_t(unsigned long, util,
2282 READ_ONCE(rq->cfs.avg.util_est.enqueued));
2283 }
2284
2285 return util;
2286}
2287
2288static inline unsigned long cpu_util_rt(struct rq *rq)
2289{
2290 return READ_ONCE(rq->avg_rt.util_avg);
2291}
2292#else /* CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
2293static inline unsigned long schedutil_energy_util(int cpu, unsigned long cfs)
2294{
2295 return cfs;
2296}
2297#endif
2298
2299#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
2300static inline unsigned long cpu_util_irq(struct rq *rq)
2301{
2302 return rq->avg_irq.util_avg;
2303}
2304
2305static inline
2306unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
2307{
2308 util *= (max - irq);
2309 util /= max;
2310
2311 return util;
2312
2313}
2314#else
2315static inline unsigned long cpu_util_irq(struct rq *rq)
2316{
2317 return 0;
2318}
2319
2320static inline
2321unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
2322{
2323 return util;
2324}
2325#endif
2326
2327#if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
2328
2329#define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus)))
2330
2331DECLARE_STATIC_KEY_FALSE(sched_energy_present);
2332
2333static inline bool sched_energy_enabled(void)
2334{
2335 return static_branch_unlikely(&sched_energy_present);
2336}
2337
2338#else /* ! (CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */
2339
2340#define perf_domain_span(pd) NULL
2341static inline bool sched_energy_enabled(void) { return false; }
2342
2343#endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
2344