1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * kernel/workqueue.c - generic async execution with shared worker pool
4 *
5 * Copyright (C) 2002 Ingo Molnar
6 *
7 * Derived from the taskqueue/keventd code by:
8 * David Woodhouse <dwmw2@infradead.org>
9 * Andrew Morton
10 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
11 * Theodore Ts'o <tytso@mit.edu>
12 *
13 * Made to use alloc_percpu by Christoph Lameter.
14 *
15 * Copyright (C) 2010 SUSE Linux Products GmbH
16 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
17 *
18 * This is the generic async execution mechanism. Work items as are
19 * executed in process context. The worker pool is shared and
20 * automatically managed. There are two worker pools for each CPU (one for
21 * normal work items and the other for high priority ones) and some extra
22 * pools for workqueues which are not bound to any specific CPU - the
23 * number of these backing pools is dynamic.
24 *
25 * Please read Documentation/core-api/workqueue.rst for details.
26 */
27
28#include <linux/export.h>
29#include <linux/kernel.h>
30#include <linux/sched.h>
31#include <linux/init.h>
32#include <linux/signal.h>
33#include <linux/completion.h>
34#include <linux/workqueue.h>
35#include <linux/slab.h>
36#include <linux/cpu.h>
37#include <linux/notifier.h>
38#include <linux/kthread.h>
39#include <linux/hardirq.h>
40#include <linux/mempolicy.h>
41#include <linux/freezer.h>
42#include <linux/debug_locks.h>
43#include <linux/lockdep.h>
44#include <linux/idr.h>
45#include <linux/jhash.h>
46#include <linux/hashtable.h>
47#include <linux/rculist.h>
48#include <linux/nodemask.h>
49#include <linux/moduleparam.h>
50#include <linux/uaccess.h>
51#include <linux/sched/isolation.h>
52#include <linux/sched/debug.h>
53#include <linux/nmi.h>
54#include <linux/kvm_para.h>
55#include <linux/delay.h>
56
57#include "workqueue_internal.h"
58
59enum {
60 /*
61 * worker_pool flags
62 *
63 * A bound pool is either associated or disassociated with its CPU.
64 * While associated (!DISASSOCIATED), all workers are bound to the
65 * CPU and none has %WORKER_UNBOUND set and concurrency management
66 * is in effect.
67 *
68 * While DISASSOCIATED, the cpu may be offline and all workers have
69 * %WORKER_UNBOUND set and concurrency management disabled, and may
70 * be executing on any CPU. The pool behaves as an unbound one.
71 *
72 * Note that DISASSOCIATED should be flipped only while holding
73 * wq_pool_attach_mutex to avoid changing binding state while
74 * worker_attach_to_pool() is in progress.
75 */
76 POOL_MANAGER_ACTIVE = 1 << 0, /* being managed */
77 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
78
79 /* worker flags */
80 WORKER_DIE = 1 << 1, /* die die die */
81 WORKER_IDLE = 1 << 2, /* is idle */
82 WORKER_PREP = 1 << 3, /* preparing to run works */
83 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
84 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
85 WORKER_REBOUND = 1 << 8, /* worker was rebound */
86
87 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
88 WORKER_UNBOUND | WORKER_REBOUND,
89
90 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
91
92 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
93 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
94
95 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
96 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
97
98 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
99 /* call for help after 10ms
100 (min two ticks) */
101 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
102 CREATE_COOLDOWN = HZ, /* time to breath after fail */
103
104 /*
105 * Rescue workers are used only on emergencies and shared by
106 * all cpus. Give MIN_NICE.
107 */
108 RESCUER_NICE_LEVEL = MIN_NICE,
109 HIGHPRI_NICE_LEVEL = MIN_NICE,
110
111 WQ_NAME_LEN = 24,
112};
113
114/*
115 * Structure fields follow one of the following exclusion rules.
116 *
117 * I: Modifiable by initialization/destruction paths and read-only for
118 * everyone else.
119 *
120 * P: Preemption protected. Disabling preemption is enough and should
121 * only be modified and accessed from the local cpu.
122 *
123 * L: pool->lock protected. Access with pool->lock held.
124 *
125 * K: Only modified by worker while holding pool->lock. Can be safely read by
126 * self, while holding pool->lock or from IRQ context if %current is the
127 * kworker.
128 *
129 * S: Only modified by worker self.
130 *
131 * A: wq_pool_attach_mutex protected.
132 *
133 * PL: wq_pool_mutex protected.
134 *
135 * PR: wq_pool_mutex protected for writes. RCU protected for reads.
136 *
137 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads.
138 *
139 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or
140 * RCU for reads.
141 *
142 * WQ: wq->mutex protected.
143 *
144 * WR: wq->mutex protected for writes. RCU protected for reads.
145 *
146 * MD: wq_mayday_lock protected.
147 *
148 * WD: Used internally by the watchdog.
149 */
150
151/* struct worker is defined in workqueue_internal.h */
152
153struct worker_pool {
154 raw_spinlock_t lock; /* the pool lock */
155 int cpu; /* I: the associated cpu */
156 int node; /* I: the associated node ID */
157 int id; /* I: pool ID */
158 unsigned int flags; /* L: flags */
159
160 unsigned long watchdog_ts; /* L: watchdog timestamp */
161 bool cpu_stall; /* WD: stalled cpu bound pool */
162
163 /*
164 * The counter is incremented in a process context on the associated CPU
165 * w/ preemption disabled, and decremented or reset in the same context
166 * but w/ pool->lock held. The readers grab pool->lock and are
167 * guaranteed to see if the counter reached zero.
168 */
169 int nr_running;
170
171 struct list_head worklist; /* L: list of pending works */
172
173 int nr_workers; /* L: total number of workers */
174 int nr_idle; /* L: currently idle workers */
175
176 struct list_head idle_list; /* L: list of idle workers */
177 struct timer_list idle_timer; /* L: worker idle timeout */
178 struct work_struct idle_cull_work; /* L: worker idle cleanup */
179
180 struct timer_list mayday_timer; /* L: SOS timer for workers */
181
182 /* a workers is either on busy_hash or idle_list, or the manager */
183 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
184 /* L: hash of busy workers */
185
186 struct worker *manager; /* L: purely informational */
187 struct list_head workers; /* A: attached workers */
188 struct list_head dying_workers; /* A: workers about to die */
189 struct completion *detach_completion; /* all workers detached */
190
191 struct ida worker_ida; /* worker IDs for task name */
192
193 struct workqueue_attrs *attrs; /* I: worker attributes */
194 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
195 int refcnt; /* PL: refcnt for unbound pools */
196
197 /*
198 * Destruction of pool is RCU protected to allow dereferences
199 * from get_work_pool().
200 */
201 struct rcu_head rcu;
202};
203
204/*
205 * Per-pool_workqueue statistics. These can be monitored using
206 * tools/workqueue/wq_monitor.py.
207 */
208enum pool_workqueue_stats {
209 PWQ_STAT_STARTED, /* work items started execution */
210 PWQ_STAT_COMPLETED, /* work items completed execution */
211 PWQ_STAT_CPU_TIME, /* total CPU time consumed */
212 PWQ_STAT_CPU_INTENSIVE, /* wq_cpu_intensive_thresh_us violations */
213 PWQ_STAT_CM_WAKEUP, /* concurrency-management worker wakeups */
214 PWQ_STAT_REPATRIATED, /* unbound workers brought back into scope */
215 PWQ_STAT_MAYDAY, /* maydays to rescuer */
216 PWQ_STAT_RESCUED, /* linked work items executed by rescuer */
217
218 PWQ_NR_STATS,
219};
220
221/*
222 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
223 * of work_struct->data are used for flags and the remaining high bits
224 * point to the pwq; thus, pwqs need to be aligned at two's power of the
225 * number of flag bits.
226 */
227struct pool_workqueue {
228 struct worker_pool *pool; /* I: the associated pool */
229 struct workqueue_struct *wq; /* I: the owning workqueue */
230 int work_color; /* L: current color */
231 int flush_color; /* L: flushing color */
232 int refcnt; /* L: reference count */
233 int nr_in_flight[WORK_NR_COLORS];
234 /* L: nr of in_flight works */
235
236 /*
237 * nr_active management and WORK_STRUCT_INACTIVE:
238 *
239 * When pwq->nr_active >= max_active, new work item is queued to
240 * pwq->inactive_works instead of pool->worklist and marked with
241 * WORK_STRUCT_INACTIVE.
242 *
243 * All work items marked with WORK_STRUCT_INACTIVE do not participate
244 * in pwq->nr_active and all work items in pwq->inactive_works are
245 * marked with WORK_STRUCT_INACTIVE. But not all WORK_STRUCT_INACTIVE
246 * work items are in pwq->inactive_works. Some of them are ready to
247 * run in pool->worklist or worker->scheduled. Those work itmes are
248 * only struct wq_barrier which is used for flush_work() and should
249 * not participate in pwq->nr_active. For non-barrier work item, it
250 * is marked with WORK_STRUCT_INACTIVE iff it is in pwq->inactive_works.
251 */
252 int nr_active; /* L: nr of active works */
253 int max_active; /* L: max active works */
254 struct list_head inactive_works; /* L: inactive works */
255 struct list_head pwqs_node; /* WR: node on wq->pwqs */
256 struct list_head mayday_node; /* MD: node on wq->maydays */
257
258 u64 stats[PWQ_NR_STATS];
259
260 /*
261 * Release of unbound pwq is punted to a kthread_worker. See put_pwq()
262 * and pwq_release_workfn() for details. pool_workqueue itself is also
263 * RCU protected so that the first pwq can be determined without
264 * grabbing wq->mutex.
265 */
266 struct kthread_work release_work;
267 struct rcu_head rcu;
268} __aligned(1 << WORK_STRUCT_FLAG_BITS);
269
270/*
271 * Structure used to wait for workqueue flush.
272 */
273struct wq_flusher {
274 struct list_head list; /* WQ: list of flushers */
275 int flush_color; /* WQ: flush color waiting for */
276 struct completion done; /* flush completion */
277};
278
279struct wq_device;
280
281/*
282 * The externally visible workqueue. It relays the issued work items to
283 * the appropriate worker_pool through its pool_workqueues.
284 */
285struct workqueue_struct {
286 struct list_head pwqs; /* WR: all pwqs of this wq */
287 struct list_head list; /* PR: list of all workqueues */
288
289 struct mutex mutex; /* protects this wq */
290 int work_color; /* WQ: current work color */
291 int flush_color; /* WQ: current flush color */
292 atomic_t nr_pwqs_to_flush; /* flush in progress */
293 struct wq_flusher *first_flusher; /* WQ: first flusher */
294 struct list_head flusher_queue; /* WQ: flush waiters */
295 struct list_head flusher_overflow; /* WQ: flush overflow list */
296
297 struct list_head maydays; /* MD: pwqs requesting rescue */
298 struct worker *rescuer; /* MD: rescue worker */
299
300 int nr_drainers; /* WQ: drain in progress */
301 int saved_max_active; /* WQ: saved pwq max_active */
302
303 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */
304 struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */
305
306#ifdef CONFIG_SYSFS
307 struct wq_device *wq_dev; /* I: for sysfs interface */
308#endif
309#ifdef CONFIG_LOCKDEP
310 char *lock_name;
311 struct lock_class_key key;
312 struct lockdep_map lockdep_map;
313#endif
314 char name[WQ_NAME_LEN]; /* I: workqueue name */
315
316 /*
317 * Destruction of workqueue_struct is RCU protected to allow walking
318 * the workqueues list without grabbing wq_pool_mutex.
319 * This is used to dump all workqueues from sysrq.
320 */
321 struct rcu_head rcu;
322
323 /* hot fields used during command issue, aligned to cacheline */
324 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
325 struct pool_workqueue __percpu __rcu **cpu_pwq; /* I: per-cpu pwqs */
326};
327
328static struct kmem_cache *pwq_cache;
329
330/*
331 * Each pod type describes how CPUs should be grouped for unbound workqueues.
332 * See the comment above workqueue_attrs->affn_scope.
333 */
334struct wq_pod_type {
335 int nr_pods; /* number of pods */
336 cpumask_var_t *pod_cpus; /* pod -> cpus */
337 int *pod_node; /* pod -> node */
338 int *cpu_pod; /* cpu -> pod */
339};
340
341static struct wq_pod_type wq_pod_types[WQ_AFFN_NR_TYPES];
342static enum wq_affn_scope wq_affn_dfl = WQ_AFFN_CACHE;
343
344static const char *wq_affn_names[WQ_AFFN_NR_TYPES] = {
345 [WQ_AFFN_DFL] = "default",
346 [WQ_AFFN_CPU] = "cpu",
347 [WQ_AFFN_SMT] = "smt",
348 [WQ_AFFN_CACHE] = "cache",
349 [WQ_AFFN_NUMA] = "numa",
350 [WQ_AFFN_SYSTEM] = "system",
351};
352
353/*
354 * Per-cpu work items which run for longer than the following threshold are
355 * automatically considered CPU intensive and excluded from concurrency
356 * management to prevent them from noticeably delaying other per-cpu work items.
357 * ULONG_MAX indicates that the user hasn't overridden it with a boot parameter.
358 * The actual value is initialized in wq_cpu_intensive_thresh_init().
359 */
360static unsigned long wq_cpu_intensive_thresh_us = ULONG_MAX;
361module_param_named(cpu_intensive_thresh_us, wq_cpu_intensive_thresh_us, ulong, 0644);
362
363/* see the comment above the definition of WQ_POWER_EFFICIENT */
364static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
365module_param_named(power_efficient, wq_power_efficient, bool, 0444);
366
367static bool wq_online; /* can kworkers be created yet? */
368
369/* buf for wq_update_unbound_pod_attrs(), protected by CPU hotplug exclusion */
370static struct workqueue_attrs *wq_update_pod_attrs_buf;
371
372static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
373static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
374static DEFINE_RAW_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
375/* wait for manager to go away */
376static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait);
377
378static LIST_HEAD(workqueues); /* PR: list of all workqueues */
379static bool workqueue_freezing; /* PL: have wqs started freezing? */
380
381/* PL&A: allowable cpus for unbound wqs and work items */
382static cpumask_var_t wq_unbound_cpumask;
383
384/* for further constrain wq_unbound_cpumask by cmdline parameter*/
385static struct cpumask wq_cmdline_cpumask __initdata;
386
387/* CPU where unbound work was last round robin scheduled from this CPU */
388static DEFINE_PER_CPU(int, wq_rr_cpu_last);
389
390/*
391 * Local execution of unbound work items is no longer guaranteed. The
392 * following always forces round-robin CPU selection on unbound work items
393 * to uncover usages which depend on it.
394 */
395#ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
396static bool wq_debug_force_rr_cpu = true;
397#else
398static bool wq_debug_force_rr_cpu = false;
399#endif
400module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
401
402/* the per-cpu worker pools */
403static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
404
405static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
406
407/* PL: hash of all unbound pools keyed by pool->attrs */
408static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
409
410/* I: attributes used when instantiating standard unbound pools on demand */
411static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
412
413/* I: attributes used when instantiating ordered pools on demand */
414static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
415
416/*
417 * I: kthread_worker to release pwq's. pwq release needs to be bounced to a
418 * process context while holding a pool lock. Bounce to a dedicated kthread
419 * worker to avoid A-A deadlocks.
420 */
421static struct kthread_worker *pwq_release_worker __ro_after_init;
422
423struct workqueue_struct *system_wq __ro_after_init;
424EXPORT_SYMBOL(system_wq);
425struct workqueue_struct *system_highpri_wq __ro_after_init;
426EXPORT_SYMBOL_GPL(system_highpri_wq);
427struct workqueue_struct *system_long_wq __ro_after_init;
428EXPORT_SYMBOL_GPL(system_long_wq);
429struct workqueue_struct *system_unbound_wq __ro_after_init;
430EXPORT_SYMBOL_GPL(system_unbound_wq);
431struct workqueue_struct *system_freezable_wq __ro_after_init;
432EXPORT_SYMBOL_GPL(system_freezable_wq);
433struct workqueue_struct *system_power_efficient_wq __ro_after_init;
434EXPORT_SYMBOL_GPL(system_power_efficient_wq);
435struct workqueue_struct *system_freezable_power_efficient_wq __ro_after_init;
436EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
437
438static int worker_thread(void *__worker);
439static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
440static void show_pwq(struct pool_workqueue *pwq);
441static void show_one_worker_pool(struct worker_pool *pool);
442
443#define CREATE_TRACE_POINTS
444#include <trace/events/workqueue.h>
445
446#define assert_rcu_or_pool_mutex() \
447 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
448 !lockdep_is_held(&wq_pool_mutex), \
449 "RCU or wq_pool_mutex should be held")
450
451#define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \
452 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
453 !lockdep_is_held(&wq->mutex) && \
454 !lockdep_is_held(&wq_pool_mutex), \
455 "RCU, wq->mutex or wq_pool_mutex should be held")
456
457#define for_each_cpu_worker_pool(pool, cpu) \
458 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
459 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
460 (pool)++)
461
462/**
463 * for_each_pool - iterate through all worker_pools in the system
464 * @pool: iteration cursor
465 * @pi: integer used for iteration
466 *
467 * This must be called either with wq_pool_mutex held or RCU read
468 * locked. If the pool needs to be used beyond the locking in effect, the
469 * caller is responsible for guaranteeing that the pool stays online.
470 *
471 * The if/else clause exists only for the lockdep assertion and can be
472 * ignored.
473 */
474#define for_each_pool(pool, pi) \
475 idr_for_each_entry(&worker_pool_idr, pool, pi) \
476 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
477 else
478
479/**
480 * for_each_pool_worker - iterate through all workers of a worker_pool
481 * @worker: iteration cursor
482 * @pool: worker_pool to iterate workers of
483 *
484 * This must be called with wq_pool_attach_mutex.
485 *
486 * The if/else clause exists only for the lockdep assertion and can be
487 * ignored.
488 */
489#define for_each_pool_worker(worker, pool) \
490 list_for_each_entry((worker), &(pool)->workers, node) \
491 if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
492 else
493
494/**
495 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
496 * @pwq: iteration cursor
497 * @wq: the target workqueue
498 *
499 * This must be called either with wq->mutex held or RCU read locked.
500 * If the pwq needs to be used beyond the locking in effect, the caller is
501 * responsible for guaranteeing that the pwq stays online.
502 *
503 * The if/else clause exists only for the lockdep assertion and can be
504 * ignored.
505 */
506#define for_each_pwq(pwq, wq) \
507 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node, \
508 lockdep_is_held(&(wq->mutex)))
509
510#ifdef CONFIG_DEBUG_OBJECTS_WORK
511
512static const struct debug_obj_descr work_debug_descr;
513
514static void *work_debug_hint(void *addr)
515{
516 return ((struct work_struct *) addr)->func;
517}
518
519static bool work_is_static_object(void *addr)
520{
521 struct work_struct *work = addr;
522
523 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
524}
525
526/*
527 * fixup_init is called when:
528 * - an active object is initialized
529 */
530static bool work_fixup_init(void *addr, enum debug_obj_state state)
531{
532 struct work_struct *work = addr;
533
534 switch (state) {
535 case ODEBUG_STATE_ACTIVE:
536 cancel_work_sync(work);
537 debug_object_init(addr: work, descr: &work_debug_descr);
538 return true;
539 default:
540 return false;
541 }
542}
543
544/*
545 * fixup_free is called when:
546 * - an active object is freed
547 */
548static bool work_fixup_free(void *addr, enum debug_obj_state state)
549{
550 struct work_struct *work = addr;
551
552 switch (state) {
553 case ODEBUG_STATE_ACTIVE:
554 cancel_work_sync(work);
555 debug_object_free(addr: work, descr: &work_debug_descr);
556 return true;
557 default:
558 return false;
559 }
560}
561
562static const struct debug_obj_descr work_debug_descr = {
563 .name = "work_struct",
564 .debug_hint = work_debug_hint,
565 .is_static_object = work_is_static_object,
566 .fixup_init = work_fixup_init,
567 .fixup_free = work_fixup_free,
568};
569
570static inline void debug_work_activate(struct work_struct *work)
571{
572 debug_object_activate(addr: work, descr: &work_debug_descr);
573}
574
575static inline void debug_work_deactivate(struct work_struct *work)
576{
577 debug_object_deactivate(addr: work, descr: &work_debug_descr);
578}
579
580void __init_work(struct work_struct *work, int onstack)
581{
582 if (onstack)
583 debug_object_init_on_stack(addr: work, descr: &work_debug_descr);
584 else
585 debug_object_init(addr: work, descr: &work_debug_descr);
586}
587EXPORT_SYMBOL_GPL(__init_work);
588
589void destroy_work_on_stack(struct work_struct *work)
590{
591 debug_object_free(addr: work, descr: &work_debug_descr);
592}
593EXPORT_SYMBOL_GPL(destroy_work_on_stack);
594
595void destroy_delayed_work_on_stack(struct delayed_work *work)
596{
597 destroy_timer_on_stack(timer: &work->timer);
598 debug_object_free(addr: &work->work, descr: &work_debug_descr);
599}
600EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
601
602#else
603static inline void debug_work_activate(struct work_struct *work) { }
604static inline void debug_work_deactivate(struct work_struct *work) { }
605#endif
606
607/**
608 * worker_pool_assign_id - allocate ID and assign it to @pool
609 * @pool: the pool pointer of interest
610 *
611 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
612 * successfully, -errno on failure.
613 */
614static int worker_pool_assign_id(struct worker_pool *pool)
615{
616 int ret;
617
618 lockdep_assert_held(&wq_pool_mutex);
619
620 ret = idr_alloc(&worker_pool_idr, ptr: pool, start: 0, WORK_OFFQ_POOL_NONE,
621 GFP_KERNEL);
622 if (ret >= 0) {
623 pool->id = ret;
624 return 0;
625 }
626 return ret;
627}
628
629static unsigned int work_color_to_flags(int color)
630{
631 return color << WORK_STRUCT_COLOR_SHIFT;
632}
633
634static int get_work_color(unsigned long work_data)
635{
636 return (work_data >> WORK_STRUCT_COLOR_SHIFT) &
637 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
638}
639
640static int work_next_color(int color)
641{
642 return (color + 1) % WORK_NR_COLORS;
643}
644
645/*
646 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
647 * contain the pointer to the queued pwq. Once execution starts, the flag
648 * is cleared and the high bits contain OFFQ flags and pool ID.
649 *
650 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
651 * and clear_work_data() can be used to set the pwq, pool or clear
652 * work->data. These functions should only be called while the work is
653 * owned - ie. while the PENDING bit is set.
654 *
655 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
656 * corresponding to a work. Pool is available once the work has been
657 * queued anywhere after initialization until it is sync canceled. pwq is
658 * available only while the work item is queued.
659 *
660 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
661 * canceled. While being canceled, a work item may have its PENDING set
662 * but stay off timer and worklist for arbitrarily long and nobody should
663 * try to steal the PENDING bit.
664 */
665static inline void set_work_data(struct work_struct *work, unsigned long data,
666 unsigned long flags)
667{
668 WARN_ON_ONCE(!work_pending(work));
669 atomic_long_set(v: &work->data, i: data | flags | work_static(work));
670}
671
672static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
673 unsigned long extra_flags)
674{
675 set_work_data(work, data: (unsigned long)pwq,
676 flags: WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
677}
678
679static void set_work_pool_and_keep_pending(struct work_struct *work,
680 int pool_id)
681{
682 set_work_data(work, data: (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
683 flags: WORK_STRUCT_PENDING);
684}
685
686static void set_work_pool_and_clear_pending(struct work_struct *work,
687 int pool_id)
688{
689 /*
690 * The following wmb is paired with the implied mb in
691 * test_and_set_bit(PENDING) and ensures all updates to @work made
692 * here are visible to and precede any updates by the next PENDING
693 * owner.
694 */
695 smp_wmb();
696 set_work_data(work, data: (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, flags: 0);
697 /*
698 * The following mb guarantees that previous clear of a PENDING bit
699 * will not be reordered with any speculative LOADS or STORES from
700 * work->current_func, which is executed afterwards. This possible
701 * reordering can lead to a missed execution on attempt to queue
702 * the same @work. E.g. consider this case:
703 *
704 * CPU#0 CPU#1
705 * ---------------------------- --------------------------------
706 *
707 * 1 STORE event_indicated
708 * 2 queue_work_on() {
709 * 3 test_and_set_bit(PENDING)
710 * 4 } set_..._and_clear_pending() {
711 * 5 set_work_data() # clear bit
712 * 6 smp_mb()
713 * 7 work->current_func() {
714 * 8 LOAD event_indicated
715 * }
716 *
717 * Without an explicit full barrier speculative LOAD on line 8 can
718 * be executed before CPU#0 does STORE on line 1. If that happens,
719 * CPU#0 observes the PENDING bit is still set and new execution of
720 * a @work is not queued in a hope, that CPU#1 will eventually
721 * finish the queued @work. Meanwhile CPU#1 does not see
722 * event_indicated is set, because speculative LOAD was executed
723 * before actual STORE.
724 */
725 smp_mb();
726}
727
728static void clear_work_data(struct work_struct *work)
729{
730 smp_wmb(); /* see set_work_pool_and_clear_pending() */
731 set_work_data(work, WORK_STRUCT_NO_POOL, flags: 0);
732}
733
734static inline struct pool_workqueue *work_struct_pwq(unsigned long data)
735{
736 return (struct pool_workqueue *)(data & WORK_STRUCT_WQ_DATA_MASK);
737}
738
739static struct pool_workqueue *get_work_pwq(struct work_struct *work)
740{
741 unsigned long data = atomic_long_read(v: &work->data);
742
743 if (data & WORK_STRUCT_PWQ)
744 return work_struct_pwq(data);
745 else
746 return NULL;
747}
748
749/**
750 * get_work_pool - return the worker_pool a given work was associated with
751 * @work: the work item of interest
752 *
753 * Pools are created and destroyed under wq_pool_mutex, and allows read
754 * access under RCU read lock. As such, this function should be
755 * called under wq_pool_mutex or inside of a rcu_read_lock() region.
756 *
757 * All fields of the returned pool are accessible as long as the above
758 * mentioned locking is in effect. If the returned pool needs to be used
759 * beyond the critical section, the caller is responsible for ensuring the
760 * returned pool is and stays online.
761 *
762 * Return: The worker_pool @work was last associated with. %NULL if none.
763 */
764static struct worker_pool *get_work_pool(struct work_struct *work)
765{
766 unsigned long data = atomic_long_read(v: &work->data);
767 int pool_id;
768
769 assert_rcu_or_pool_mutex();
770
771 if (data & WORK_STRUCT_PWQ)
772 return work_struct_pwq(data)->pool;
773
774 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
775 if (pool_id == WORK_OFFQ_POOL_NONE)
776 return NULL;
777
778 return idr_find(&worker_pool_idr, id: pool_id);
779}
780
781/**
782 * get_work_pool_id - return the worker pool ID a given work is associated with
783 * @work: the work item of interest
784 *
785 * Return: The worker_pool ID @work was last associated with.
786 * %WORK_OFFQ_POOL_NONE if none.
787 */
788static int get_work_pool_id(struct work_struct *work)
789{
790 unsigned long data = atomic_long_read(v: &work->data);
791
792 if (data & WORK_STRUCT_PWQ)
793 return work_struct_pwq(data)->pool->id;
794
795 return data >> WORK_OFFQ_POOL_SHIFT;
796}
797
798static void mark_work_canceling(struct work_struct *work)
799{
800 unsigned long pool_id = get_work_pool_id(work);
801
802 pool_id <<= WORK_OFFQ_POOL_SHIFT;
803 set_work_data(work, data: pool_id | WORK_OFFQ_CANCELING, flags: WORK_STRUCT_PENDING);
804}
805
806static bool work_is_canceling(struct work_struct *work)
807{
808 unsigned long data = atomic_long_read(v: &work->data);
809
810 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
811}
812
813/*
814 * Policy functions. These define the policies on how the global worker
815 * pools are managed. Unless noted otherwise, these functions assume that
816 * they're being called with pool->lock held.
817 */
818
819/*
820 * Need to wake up a worker? Called from anything but currently
821 * running workers.
822 *
823 * Note that, because unbound workers never contribute to nr_running, this
824 * function will always return %true for unbound pools as long as the
825 * worklist isn't empty.
826 */
827static bool need_more_worker(struct worker_pool *pool)
828{
829 return !list_empty(head: &pool->worklist) && !pool->nr_running;
830}
831
832/* Can I start working? Called from busy but !running workers. */
833static bool may_start_working(struct worker_pool *pool)
834{
835 return pool->nr_idle;
836}
837
838/* Do I need to keep working? Called from currently running workers. */
839static bool keep_working(struct worker_pool *pool)
840{
841 return !list_empty(head: &pool->worklist) && (pool->nr_running <= 1);
842}
843
844/* Do we need a new worker? Called from manager. */
845static bool need_to_create_worker(struct worker_pool *pool)
846{
847 return need_more_worker(pool) && !may_start_working(pool);
848}
849
850/* Do we have too many workers and should some go away? */
851static bool too_many_workers(struct worker_pool *pool)
852{
853 bool managing = pool->flags & POOL_MANAGER_ACTIVE;
854 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
855 int nr_busy = pool->nr_workers - nr_idle;
856
857 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
858}
859
860/**
861 * worker_set_flags - set worker flags and adjust nr_running accordingly
862 * @worker: self
863 * @flags: flags to set
864 *
865 * Set @flags in @worker->flags and adjust nr_running accordingly.
866 */
867static inline void worker_set_flags(struct worker *worker, unsigned int flags)
868{
869 struct worker_pool *pool = worker->pool;
870
871 lockdep_assert_held(&pool->lock);
872
873 /* If transitioning into NOT_RUNNING, adjust nr_running. */
874 if ((flags & WORKER_NOT_RUNNING) &&
875 !(worker->flags & WORKER_NOT_RUNNING)) {
876 pool->nr_running--;
877 }
878
879 worker->flags |= flags;
880}
881
882/**
883 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
884 * @worker: self
885 * @flags: flags to clear
886 *
887 * Clear @flags in @worker->flags and adjust nr_running accordingly.
888 */
889static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
890{
891 struct worker_pool *pool = worker->pool;
892 unsigned int oflags = worker->flags;
893
894 lockdep_assert_held(&pool->lock);
895
896 worker->flags &= ~flags;
897
898 /*
899 * If transitioning out of NOT_RUNNING, increment nr_running. Note
900 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
901 * of multiple flags, not a single flag.
902 */
903 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
904 if (!(worker->flags & WORKER_NOT_RUNNING))
905 pool->nr_running++;
906}
907
908/* Return the first idle worker. Called with pool->lock held. */
909static struct worker *first_idle_worker(struct worker_pool *pool)
910{
911 if (unlikely(list_empty(&pool->idle_list)))
912 return NULL;
913
914 return list_first_entry(&pool->idle_list, struct worker, entry);
915}
916
917/**
918 * worker_enter_idle - enter idle state
919 * @worker: worker which is entering idle state
920 *
921 * @worker is entering idle state. Update stats and idle timer if
922 * necessary.
923 *
924 * LOCKING:
925 * raw_spin_lock_irq(pool->lock).
926 */
927static void worker_enter_idle(struct worker *worker)
928{
929 struct worker_pool *pool = worker->pool;
930
931 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
932 WARN_ON_ONCE(!list_empty(&worker->entry) &&
933 (worker->hentry.next || worker->hentry.pprev)))
934 return;
935
936 /* can't use worker_set_flags(), also called from create_worker() */
937 worker->flags |= WORKER_IDLE;
938 pool->nr_idle++;
939 worker->last_active = jiffies;
940
941 /* idle_list is LIFO */
942 list_add(new: &worker->entry, head: &pool->idle_list);
943
944 if (too_many_workers(pool) && !timer_pending(timer: &pool->idle_timer))
945 mod_timer(timer: &pool->idle_timer, expires: jiffies + IDLE_WORKER_TIMEOUT);
946
947 /* Sanity check nr_running. */
948 WARN_ON_ONCE(pool->nr_workers == pool->nr_idle && pool->nr_running);
949}
950
951/**
952 * worker_leave_idle - leave idle state
953 * @worker: worker which is leaving idle state
954 *
955 * @worker is leaving idle state. Update stats.
956 *
957 * LOCKING:
958 * raw_spin_lock_irq(pool->lock).
959 */
960static void worker_leave_idle(struct worker *worker)
961{
962 struct worker_pool *pool = worker->pool;
963
964 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
965 return;
966 worker_clr_flags(worker, flags: WORKER_IDLE);
967 pool->nr_idle--;
968 list_del_init(entry: &worker->entry);
969}
970
971/**
972 * find_worker_executing_work - find worker which is executing a work
973 * @pool: pool of interest
974 * @work: work to find worker for
975 *
976 * Find a worker which is executing @work on @pool by searching
977 * @pool->busy_hash which is keyed by the address of @work. For a worker
978 * to match, its current execution should match the address of @work and
979 * its work function. This is to avoid unwanted dependency between
980 * unrelated work executions through a work item being recycled while still
981 * being executed.
982 *
983 * This is a bit tricky. A work item may be freed once its execution
984 * starts and nothing prevents the freed area from being recycled for
985 * another work item. If the same work item address ends up being reused
986 * before the original execution finishes, workqueue will identify the
987 * recycled work item as currently executing and make it wait until the
988 * current execution finishes, introducing an unwanted dependency.
989 *
990 * This function checks the work item address and work function to avoid
991 * false positives. Note that this isn't complete as one may construct a
992 * work function which can introduce dependency onto itself through a
993 * recycled work item. Well, if somebody wants to shoot oneself in the
994 * foot that badly, there's only so much we can do, and if such deadlock
995 * actually occurs, it should be easy to locate the culprit work function.
996 *
997 * CONTEXT:
998 * raw_spin_lock_irq(pool->lock).
999 *
1000 * Return:
1001 * Pointer to worker which is executing @work if found, %NULL
1002 * otherwise.
1003 */
1004static struct worker *find_worker_executing_work(struct worker_pool *pool,
1005 struct work_struct *work)
1006{
1007 struct worker *worker;
1008
1009 hash_for_each_possible(pool->busy_hash, worker, hentry,
1010 (unsigned long)work)
1011 if (worker->current_work == work &&
1012 worker->current_func == work->func)
1013 return worker;
1014
1015 return NULL;
1016}
1017
1018/**
1019 * move_linked_works - move linked works to a list
1020 * @work: start of series of works to be scheduled
1021 * @head: target list to append @work to
1022 * @nextp: out parameter for nested worklist walking
1023 *
1024 * Schedule linked works starting from @work to @head. Work series to be
1025 * scheduled starts at @work and includes any consecutive work with
1026 * WORK_STRUCT_LINKED set in its predecessor. See assign_work() for details on
1027 * @nextp.
1028 *
1029 * CONTEXT:
1030 * raw_spin_lock_irq(pool->lock).
1031 */
1032static void move_linked_works(struct work_struct *work, struct list_head *head,
1033 struct work_struct **nextp)
1034{
1035 struct work_struct *n;
1036
1037 /*
1038 * Linked worklist will always end before the end of the list,
1039 * use NULL for list head.
1040 */
1041 list_for_each_entry_safe_from(work, n, NULL, entry) {
1042 list_move_tail(list: &work->entry, head);
1043 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1044 break;
1045 }
1046
1047 /*
1048 * If we're already inside safe list traversal and have moved
1049 * multiple works to the scheduled queue, the next position
1050 * needs to be updated.
1051 */
1052 if (nextp)
1053 *nextp = n;
1054}
1055
1056/**
1057 * assign_work - assign a work item and its linked work items to a worker
1058 * @work: work to assign
1059 * @worker: worker to assign to
1060 * @nextp: out parameter for nested worklist walking
1061 *
1062 * Assign @work and its linked work items to @worker. If @work is already being
1063 * executed by another worker in the same pool, it'll be punted there.
1064 *
1065 * If @nextp is not NULL, it's updated to point to the next work of the last
1066 * scheduled work. This allows assign_work() to be nested inside
1067 * list_for_each_entry_safe().
1068 *
1069 * Returns %true if @work was successfully assigned to @worker. %false if @work
1070 * was punted to another worker already executing it.
1071 */
1072static bool assign_work(struct work_struct *work, struct worker *worker,
1073 struct work_struct **nextp)
1074{
1075 struct worker_pool *pool = worker->pool;
1076 struct worker *collision;
1077
1078 lockdep_assert_held(&pool->lock);
1079
1080 /*
1081 * A single work shouldn't be executed concurrently by multiple workers.
1082 * __queue_work() ensures that @work doesn't jump to a different pool
1083 * while still running in the previous pool. Here, we should ensure that
1084 * @work is not executed concurrently by multiple workers from the same
1085 * pool. Check whether anyone is already processing the work. If so,
1086 * defer the work to the currently executing one.
1087 */
1088 collision = find_worker_executing_work(pool, work);
1089 if (unlikely(collision)) {
1090 move_linked_works(work, head: &collision->scheduled, nextp);
1091 return false;
1092 }
1093
1094 move_linked_works(work, head: &worker->scheduled, nextp);
1095 return true;
1096}
1097
1098/**
1099 * kick_pool - wake up an idle worker if necessary
1100 * @pool: pool to kick
1101 *
1102 * @pool may have pending work items. Wake up worker if necessary. Returns
1103 * whether a worker was woken up.
1104 */
1105static bool kick_pool(struct worker_pool *pool)
1106{
1107 struct worker *worker = first_idle_worker(pool);
1108 struct task_struct *p;
1109
1110 lockdep_assert_held(&pool->lock);
1111
1112 if (!need_more_worker(pool) || !worker)
1113 return false;
1114
1115 p = worker->task;
1116
1117#ifdef CONFIG_SMP
1118 /*
1119 * Idle @worker is about to execute @work and waking up provides an
1120 * opportunity to migrate @worker at a lower cost by setting the task's
1121 * wake_cpu field. Let's see if we want to move @worker to improve
1122 * execution locality.
1123 *
1124 * We're waking the worker that went idle the latest and there's some
1125 * chance that @worker is marked idle but hasn't gone off CPU yet. If
1126 * so, setting the wake_cpu won't do anything. As this is a best-effort
1127 * optimization and the race window is narrow, let's leave as-is for
1128 * now. If this becomes pronounced, we can skip over workers which are
1129 * still on cpu when picking an idle worker.
1130 *
1131 * If @pool has non-strict affinity, @worker might have ended up outside
1132 * its affinity scope. Repatriate.
1133 */
1134 if (!pool->attrs->affn_strict &&
1135 !cpumask_test_cpu(cpu: p->wake_cpu, cpumask: pool->attrs->__pod_cpumask)) {
1136 struct work_struct *work = list_first_entry(&pool->worklist,
1137 struct work_struct, entry);
1138 p->wake_cpu = cpumask_any_distribute(srcp: pool->attrs->__pod_cpumask);
1139 get_work_pwq(work)->stats[PWQ_STAT_REPATRIATED]++;
1140 }
1141#endif
1142 wake_up_process(tsk: p);
1143 return true;
1144}
1145
1146#ifdef CONFIG_WQ_CPU_INTENSIVE_REPORT
1147
1148/*
1149 * Concurrency-managed per-cpu work items that hog CPU for longer than
1150 * wq_cpu_intensive_thresh_us trigger the automatic CPU_INTENSIVE mechanism,
1151 * which prevents them from stalling other concurrency-managed work items. If a
1152 * work function keeps triggering this mechanism, it's likely that the work item
1153 * should be using an unbound workqueue instead.
1154 *
1155 * wq_cpu_intensive_report() tracks work functions which trigger such conditions
1156 * and report them so that they can be examined and converted to use unbound
1157 * workqueues as appropriate. To avoid flooding the console, each violating work
1158 * function is tracked and reported with exponential backoff.
1159 */
1160#define WCI_MAX_ENTS 128
1161
1162struct wci_ent {
1163 work_func_t func;
1164 atomic64_t cnt;
1165 struct hlist_node hash_node;
1166};
1167
1168static struct wci_ent wci_ents[WCI_MAX_ENTS];
1169static int wci_nr_ents;
1170static DEFINE_RAW_SPINLOCK(wci_lock);
1171static DEFINE_HASHTABLE(wci_hash, ilog2(WCI_MAX_ENTS));
1172
1173static struct wci_ent *wci_find_ent(work_func_t func)
1174{
1175 struct wci_ent *ent;
1176
1177 hash_for_each_possible_rcu(wci_hash, ent, hash_node,
1178 (unsigned long)func) {
1179 if (ent->func == func)
1180 return ent;
1181 }
1182 return NULL;
1183}
1184
1185static void wq_cpu_intensive_report(work_func_t func)
1186{
1187 struct wci_ent *ent;
1188
1189restart:
1190 ent = wci_find_ent(func);
1191 if (ent) {
1192 u64 cnt;
1193
1194 /*
1195 * Start reporting from the fourth time and back off
1196 * exponentially.
1197 */
1198 cnt = atomic64_inc_return_relaxed(v: &ent->cnt);
1199 if (cnt >= 4 && is_power_of_2(n: cnt))
1200 printk_deferred(KERN_WARNING "workqueue: %ps hogged CPU for >%luus %llu times, consider switching to WQ_UNBOUND\n",
1201 ent->func, wq_cpu_intensive_thresh_us,
1202 atomic64_read(&ent->cnt));
1203 return;
1204 }
1205
1206 /*
1207 * @func is a new violation. Allocate a new entry for it. If wcn_ents[]
1208 * is exhausted, something went really wrong and we probably made enough
1209 * noise already.
1210 */
1211 if (wci_nr_ents >= WCI_MAX_ENTS)
1212 return;
1213
1214 raw_spin_lock(&wci_lock);
1215
1216 if (wci_nr_ents >= WCI_MAX_ENTS) {
1217 raw_spin_unlock(&wci_lock);
1218 return;
1219 }
1220
1221 if (wci_find_ent(func)) {
1222 raw_spin_unlock(&wci_lock);
1223 goto restart;
1224 }
1225
1226 ent = &wci_ents[wci_nr_ents++];
1227 ent->func = func;
1228 atomic64_set(v: &ent->cnt, i: 1);
1229 hash_add_rcu(wci_hash, &ent->hash_node, (unsigned long)func);
1230
1231 raw_spin_unlock(&wci_lock);
1232}
1233
1234#else /* CONFIG_WQ_CPU_INTENSIVE_REPORT */
1235static void wq_cpu_intensive_report(work_func_t func) {}
1236#endif /* CONFIG_WQ_CPU_INTENSIVE_REPORT */
1237
1238/**
1239 * wq_worker_running - a worker is running again
1240 * @task: task waking up
1241 *
1242 * This function is called when a worker returns from schedule()
1243 */
1244void wq_worker_running(struct task_struct *task)
1245{
1246 struct worker *worker = kthread_data(k: task);
1247
1248 if (!READ_ONCE(worker->sleeping))
1249 return;
1250
1251 /*
1252 * If preempted by unbind_workers() between the WORKER_NOT_RUNNING check
1253 * and the nr_running increment below, we may ruin the nr_running reset
1254 * and leave with an unexpected pool->nr_running == 1 on the newly unbound
1255 * pool. Protect against such race.
1256 */
1257 preempt_disable();
1258 if (!(worker->flags & WORKER_NOT_RUNNING))
1259 worker->pool->nr_running++;
1260 preempt_enable();
1261
1262 /*
1263 * CPU intensive auto-detection cares about how long a work item hogged
1264 * CPU without sleeping. Reset the starting timestamp on wakeup.
1265 */
1266 worker->current_at = worker->task->se.sum_exec_runtime;
1267
1268 WRITE_ONCE(worker->sleeping, 0);
1269}
1270
1271/**
1272 * wq_worker_sleeping - a worker is going to sleep
1273 * @task: task going to sleep
1274 *
1275 * This function is called from schedule() when a busy worker is
1276 * going to sleep.
1277 */
1278void wq_worker_sleeping(struct task_struct *task)
1279{
1280 struct worker *worker = kthread_data(k: task);
1281 struct worker_pool *pool;
1282
1283 /*
1284 * Rescuers, which may not have all the fields set up like normal
1285 * workers, also reach here, let's not access anything before
1286 * checking NOT_RUNNING.
1287 */
1288 if (worker->flags & WORKER_NOT_RUNNING)
1289 return;
1290
1291 pool = worker->pool;
1292
1293 /* Return if preempted before wq_worker_running() was reached */
1294 if (READ_ONCE(worker->sleeping))
1295 return;
1296
1297 WRITE_ONCE(worker->sleeping, 1);
1298 raw_spin_lock_irq(&pool->lock);
1299
1300 /*
1301 * Recheck in case unbind_workers() preempted us. We don't
1302 * want to decrement nr_running after the worker is unbound
1303 * and nr_running has been reset.
1304 */
1305 if (worker->flags & WORKER_NOT_RUNNING) {
1306 raw_spin_unlock_irq(&pool->lock);
1307 return;
1308 }
1309
1310 pool->nr_running--;
1311 if (kick_pool(pool))
1312 worker->current_pwq->stats[PWQ_STAT_CM_WAKEUP]++;
1313
1314 raw_spin_unlock_irq(&pool->lock);
1315}
1316
1317/**
1318 * wq_worker_tick - a scheduler tick occurred while a kworker is running
1319 * @task: task currently running
1320 *
1321 * Called from scheduler_tick(). We're in the IRQ context and the current
1322 * worker's fields which follow the 'K' locking rule can be accessed safely.
1323 */
1324void wq_worker_tick(struct task_struct *task)
1325{
1326 struct worker *worker = kthread_data(k: task);
1327 struct pool_workqueue *pwq = worker->current_pwq;
1328 struct worker_pool *pool = worker->pool;
1329
1330 if (!pwq)
1331 return;
1332
1333 pwq->stats[PWQ_STAT_CPU_TIME] += TICK_USEC;
1334
1335 if (!wq_cpu_intensive_thresh_us)
1336 return;
1337
1338 /*
1339 * If the current worker is concurrency managed and hogged the CPU for
1340 * longer than wq_cpu_intensive_thresh_us, it's automatically marked
1341 * CPU_INTENSIVE to avoid stalling other concurrency-managed work items.
1342 *
1343 * Set @worker->sleeping means that @worker is in the process of
1344 * switching out voluntarily and won't be contributing to
1345 * @pool->nr_running until it wakes up. As wq_worker_sleeping() also
1346 * decrements ->nr_running, setting CPU_INTENSIVE here can lead to
1347 * double decrements. The task is releasing the CPU anyway. Let's skip.
1348 * We probably want to make this prettier in the future.
1349 */
1350 if ((worker->flags & WORKER_NOT_RUNNING) || READ_ONCE(worker->sleeping) ||
1351 worker->task->se.sum_exec_runtime - worker->current_at <
1352 wq_cpu_intensive_thresh_us * NSEC_PER_USEC)
1353 return;
1354
1355 raw_spin_lock(&pool->lock);
1356
1357 worker_set_flags(worker, flags: WORKER_CPU_INTENSIVE);
1358 wq_cpu_intensive_report(func: worker->current_func);
1359 pwq->stats[PWQ_STAT_CPU_INTENSIVE]++;
1360
1361 if (kick_pool(pool))
1362 pwq->stats[PWQ_STAT_CM_WAKEUP]++;
1363
1364 raw_spin_unlock(&pool->lock);
1365}
1366
1367/**
1368 * wq_worker_last_func - retrieve worker's last work function
1369 * @task: Task to retrieve last work function of.
1370 *
1371 * Determine the last function a worker executed. This is called from
1372 * the scheduler to get a worker's last known identity.
1373 *
1374 * CONTEXT:
1375 * raw_spin_lock_irq(rq->lock)
1376 *
1377 * This function is called during schedule() when a kworker is going
1378 * to sleep. It's used by psi to identify aggregation workers during
1379 * dequeuing, to allow periodic aggregation to shut-off when that
1380 * worker is the last task in the system or cgroup to go to sleep.
1381 *
1382 * As this function doesn't involve any workqueue-related locking, it
1383 * only returns stable values when called from inside the scheduler's
1384 * queuing and dequeuing paths, when @task, which must be a kworker,
1385 * is guaranteed to not be processing any works.
1386 *
1387 * Return:
1388 * The last work function %current executed as a worker, NULL if it
1389 * hasn't executed any work yet.
1390 */
1391work_func_t wq_worker_last_func(struct task_struct *task)
1392{
1393 struct worker *worker = kthread_data(k: task);
1394
1395 return worker->last_func;
1396}
1397
1398/**
1399 * get_pwq - get an extra reference on the specified pool_workqueue
1400 * @pwq: pool_workqueue to get
1401 *
1402 * Obtain an extra reference on @pwq. The caller should guarantee that
1403 * @pwq has positive refcnt and be holding the matching pool->lock.
1404 */
1405static void get_pwq(struct pool_workqueue *pwq)
1406{
1407 lockdep_assert_held(&pwq->pool->lock);
1408 WARN_ON_ONCE(pwq->refcnt <= 0);
1409 pwq->refcnt++;
1410}
1411
1412/**
1413 * put_pwq - put a pool_workqueue reference
1414 * @pwq: pool_workqueue to put
1415 *
1416 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1417 * destruction. The caller should be holding the matching pool->lock.
1418 */
1419static void put_pwq(struct pool_workqueue *pwq)
1420{
1421 lockdep_assert_held(&pwq->pool->lock);
1422 if (likely(--pwq->refcnt))
1423 return;
1424 /*
1425 * @pwq can't be released under pool->lock, bounce to a dedicated
1426 * kthread_worker to avoid A-A deadlocks.
1427 */
1428 kthread_queue_work(worker: pwq_release_worker, work: &pwq->release_work);
1429}
1430
1431/**
1432 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1433 * @pwq: pool_workqueue to put (can be %NULL)
1434 *
1435 * put_pwq() with locking. This function also allows %NULL @pwq.
1436 */
1437static void put_pwq_unlocked(struct pool_workqueue *pwq)
1438{
1439 if (pwq) {
1440 /*
1441 * As both pwqs and pools are RCU protected, the
1442 * following lock operations are safe.
1443 */
1444 raw_spin_lock_irq(&pwq->pool->lock);
1445 put_pwq(pwq);
1446 raw_spin_unlock_irq(&pwq->pool->lock);
1447 }
1448}
1449
1450static void pwq_activate_inactive_work(struct work_struct *work)
1451{
1452 struct pool_workqueue *pwq = get_work_pwq(work);
1453
1454 trace_workqueue_activate_work(work);
1455 if (list_empty(head: &pwq->pool->worklist))
1456 pwq->pool->watchdog_ts = jiffies;
1457 move_linked_works(work, head: &pwq->pool->worklist, NULL);
1458 __clear_bit(WORK_STRUCT_INACTIVE_BIT, work_data_bits(work));
1459 pwq->nr_active++;
1460}
1461
1462static void pwq_activate_first_inactive(struct pool_workqueue *pwq)
1463{
1464 struct work_struct *work = list_first_entry(&pwq->inactive_works,
1465 struct work_struct, entry);
1466
1467 pwq_activate_inactive_work(work);
1468}
1469
1470/**
1471 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1472 * @pwq: pwq of interest
1473 * @work_data: work_data of work which left the queue
1474 *
1475 * A work either has completed or is removed from pending queue,
1476 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1477 *
1478 * CONTEXT:
1479 * raw_spin_lock_irq(pool->lock).
1480 */
1481static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, unsigned long work_data)
1482{
1483 int color = get_work_color(work_data);
1484
1485 if (!(work_data & WORK_STRUCT_INACTIVE)) {
1486 pwq->nr_active--;
1487 if (!list_empty(head: &pwq->inactive_works)) {
1488 /* one down, submit an inactive one */
1489 if (pwq->nr_active < pwq->max_active)
1490 pwq_activate_first_inactive(pwq);
1491 }
1492 }
1493
1494 pwq->nr_in_flight[color]--;
1495
1496 /* is flush in progress and are we at the flushing tip? */
1497 if (likely(pwq->flush_color != color))
1498 goto out_put;
1499
1500 /* are there still in-flight works? */
1501 if (pwq->nr_in_flight[color])
1502 goto out_put;
1503
1504 /* this pwq is done, clear flush_color */
1505 pwq->flush_color = -1;
1506
1507 /*
1508 * If this was the last pwq, wake up the first flusher. It
1509 * will handle the rest.
1510 */
1511 if (atomic_dec_and_test(v: &pwq->wq->nr_pwqs_to_flush))
1512 complete(&pwq->wq->first_flusher->done);
1513out_put:
1514 put_pwq(pwq);
1515}
1516
1517/**
1518 * try_to_grab_pending - steal work item from worklist and disable irq
1519 * @work: work item to steal
1520 * @is_dwork: @work is a delayed_work
1521 * @flags: place to store irq state
1522 *
1523 * Try to grab PENDING bit of @work. This function can handle @work in any
1524 * stable state - idle, on timer or on worklist.
1525 *
1526 * Return:
1527 *
1528 * ======== ================================================================
1529 * 1 if @work was pending and we successfully stole PENDING
1530 * 0 if @work was idle and we claimed PENDING
1531 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
1532 * -ENOENT if someone else is canceling @work, this state may persist
1533 * for arbitrarily long
1534 * ======== ================================================================
1535 *
1536 * Note:
1537 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
1538 * interrupted while holding PENDING and @work off queue, irq must be
1539 * disabled on entry. This, combined with delayed_work->timer being
1540 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1541 *
1542 * On successful return, >= 0, irq is disabled and the caller is
1543 * responsible for releasing it using local_irq_restore(*@flags).
1544 *
1545 * This function is safe to call from any context including IRQ handler.
1546 */
1547static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1548 unsigned long *flags)
1549{
1550 struct worker_pool *pool;
1551 struct pool_workqueue *pwq;
1552
1553 local_irq_save(*flags);
1554
1555 /* try to steal the timer if it exists */
1556 if (is_dwork) {
1557 struct delayed_work *dwork = to_delayed_work(work);
1558
1559 /*
1560 * dwork->timer is irqsafe. If del_timer() fails, it's
1561 * guaranteed that the timer is not queued anywhere and not
1562 * running on the local CPU.
1563 */
1564 if (likely(del_timer(&dwork->timer)))
1565 return 1;
1566 }
1567
1568 /* try to claim PENDING the normal way */
1569 if (!test_and_set_bit(nr: WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1570 return 0;
1571
1572 rcu_read_lock();
1573 /*
1574 * The queueing is in progress, or it is already queued. Try to
1575 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1576 */
1577 pool = get_work_pool(work);
1578 if (!pool)
1579 goto fail;
1580
1581 raw_spin_lock(&pool->lock);
1582 /*
1583 * work->data is guaranteed to point to pwq only while the work
1584 * item is queued on pwq->wq, and both updating work->data to point
1585 * to pwq on queueing and to pool on dequeueing are done under
1586 * pwq->pool->lock. This in turn guarantees that, if work->data
1587 * points to pwq which is associated with a locked pool, the work
1588 * item is currently queued on that pool.
1589 */
1590 pwq = get_work_pwq(work);
1591 if (pwq && pwq->pool == pool) {
1592 debug_work_deactivate(work);
1593
1594 /*
1595 * A cancelable inactive work item must be in the
1596 * pwq->inactive_works since a queued barrier can't be
1597 * canceled (see the comments in insert_wq_barrier()).
1598 *
1599 * An inactive work item cannot be grabbed directly because
1600 * it might have linked barrier work items which, if left
1601 * on the inactive_works list, will confuse pwq->nr_active
1602 * management later on and cause stall. Make sure the work
1603 * item is activated before grabbing.
1604 */
1605 if (*work_data_bits(work) & WORK_STRUCT_INACTIVE)
1606 pwq_activate_inactive_work(work);
1607
1608 list_del_init(entry: &work->entry);
1609 pwq_dec_nr_in_flight(pwq, work_data: *work_data_bits(work));
1610
1611 /* work->data points to pwq iff queued, point to pool */
1612 set_work_pool_and_keep_pending(work, pool_id: pool->id);
1613
1614 raw_spin_unlock(&pool->lock);
1615 rcu_read_unlock();
1616 return 1;
1617 }
1618 raw_spin_unlock(&pool->lock);
1619fail:
1620 rcu_read_unlock();
1621 local_irq_restore(*flags);
1622 if (work_is_canceling(work))
1623 return -ENOENT;
1624 cpu_relax();
1625 return -EAGAIN;
1626}
1627
1628/**
1629 * insert_work - insert a work into a pool
1630 * @pwq: pwq @work belongs to
1631 * @work: work to insert
1632 * @head: insertion point
1633 * @extra_flags: extra WORK_STRUCT_* flags to set
1634 *
1635 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
1636 * work_struct flags.
1637 *
1638 * CONTEXT:
1639 * raw_spin_lock_irq(pool->lock).
1640 */
1641static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1642 struct list_head *head, unsigned int extra_flags)
1643{
1644 debug_work_activate(work);
1645
1646 /* record the work call stack in order to print it in KASAN reports */
1647 kasan_record_aux_stack_noalloc(ptr: work);
1648
1649 /* we own @work, set data and link */
1650 set_work_pwq(work, pwq, extra_flags);
1651 list_add_tail(new: &work->entry, head);
1652 get_pwq(pwq);
1653}
1654
1655/*
1656 * Test whether @work is being queued from another work executing on the
1657 * same workqueue.
1658 */
1659static bool is_chained_work(struct workqueue_struct *wq)
1660{
1661 struct worker *worker;
1662
1663 worker = current_wq_worker();
1664 /*
1665 * Return %true iff I'm a worker executing a work item on @wq. If
1666 * I'm @worker, it's safe to dereference it without locking.
1667 */
1668 return worker && worker->current_pwq->wq == wq;
1669}
1670
1671/*
1672 * When queueing an unbound work item to a wq, prefer local CPU if allowed
1673 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to
1674 * avoid perturbing sensitive tasks.
1675 */
1676static int wq_select_unbound_cpu(int cpu)
1677{
1678 int new_cpu;
1679
1680 if (likely(!wq_debug_force_rr_cpu)) {
1681 if (cpumask_test_cpu(cpu, cpumask: wq_unbound_cpumask))
1682 return cpu;
1683 } else {
1684 pr_warn_once("workqueue: round-robin CPU selection forced, expect performance impact\n");
1685 }
1686
1687 if (cpumask_empty(srcp: wq_unbound_cpumask))
1688 return cpu;
1689
1690 new_cpu = __this_cpu_read(wq_rr_cpu_last);
1691 new_cpu = cpumask_next_and(n: new_cpu, src1p: wq_unbound_cpumask, cpu_online_mask);
1692 if (unlikely(new_cpu >= nr_cpu_ids)) {
1693 new_cpu = cpumask_first_and(srcp1: wq_unbound_cpumask, cpu_online_mask);
1694 if (unlikely(new_cpu >= nr_cpu_ids))
1695 return cpu;
1696 }
1697 __this_cpu_write(wq_rr_cpu_last, new_cpu);
1698
1699 return new_cpu;
1700}
1701
1702static void __queue_work(int cpu, struct workqueue_struct *wq,
1703 struct work_struct *work)
1704{
1705 struct pool_workqueue *pwq;
1706 struct worker_pool *last_pool, *pool;
1707 unsigned int work_flags;
1708 unsigned int req_cpu = cpu;
1709
1710 /*
1711 * While a work item is PENDING && off queue, a task trying to
1712 * steal the PENDING will busy-loop waiting for it to either get
1713 * queued or lose PENDING. Grabbing PENDING and queueing should
1714 * happen with IRQ disabled.
1715 */
1716 lockdep_assert_irqs_disabled();
1717
1718
1719 /*
1720 * For a draining wq, only works from the same workqueue are
1721 * allowed. The __WQ_DESTROYING helps to spot the issue that
1722 * queues a new work item to a wq after destroy_workqueue(wq).
1723 */
1724 if (unlikely(wq->flags & (__WQ_DESTROYING | __WQ_DRAINING) &&
1725 WARN_ON_ONCE(!is_chained_work(wq))))
1726 return;
1727 rcu_read_lock();
1728retry:
1729 /* pwq which will be used unless @work is executing elsewhere */
1730 if (req_cpu == WORK_CPU_UNBOUND) {
1731 if (wq->flags & WQ_UNBOUND)
1732 cpu = wq_select_unbound_cpu(raw_smp_processor_id());
1733 else
1734 cpu = raw_smp_processor_id();
1735 }
1736
1737 pwq = rcu_dereference(*per_cpu_ptr(wq->cpu_pwq, cpu));
1738 pool = pwq->pool;
1739
1740 /*
1741 * If @work was previously on a different pool, it might still be
1742 * running there, in which case the work needs to be queued on that
1743 * pool to guarantee non-reentrancy.
1744 */
1745 last_pool = get_work_pool(work);
1746 if (last_pool && last_pool != pool) {
1747 struct worker *worker;
1748
1749 raw_spin_lock(&last_pool->lock);
1750
1751 worker = find_worker_executing_work(pool: last_pool, work);
1752
1753 if (worker && worker->current_pwq->wq == wq) {
1754 pwq = worker->current_pwq;
1755 pool = pwq->pool;
1756 WARN_ON_ONCE(pool != last_pool);
1757 } else {
1758 /* meh... not running there, queue here */
1759 raw_spin_unlock(&last_pool->lock);
1760 raw_spin_lock(&pool->lock);
1761 }
1762 } else {
1763 raw_spin_lock(&pool->lock);
1764 }
1765
1766 /*
1767 * pwq is determined and locked. For unbound pools, we could have raced
1768 * with pwq release and it could already be dead. If its refcnt is zero,
1769 * repeat pwq selection. Note that unbound pwqs never die without
1770 * another pwq replacing it in cpu_pwq or while work items are executing
1771 * on it, so the retrying is guaranteed to make forward-progress.
1772 */
1773 if (unlikely(!pwq->refcnt)) {
1774 if (wq->flags & WQ_UNBOUND) {
1775 raw_spin_unlock(&pool->lock);
1776 cpu_relax();
1777 goto retry;
1778 }
1779 /* oops */
1780 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1781 wq->name, cpu);
1782 }
1783
1784 /* pwq determined, queue */
1785 trace_workqueue_queue_work(req_cpu, pwq, work);
1786
1787 if (WARN_ON(!list_empty(&work->entry)))
1788 goto out;
1789
1790 pwq->nr_in_flight[pwq->work_color]++;
1791 work_flags = work_color_to_flags(color: pwq->work_color);
1792
1793 if (likely(pwq->nr_active < pwq->max_active)) {
1794 if (list_empty(head: &pool->worklist))
1795 pool->watchdog_ts = jiffies;
1796
1797 trace_workqueue_activate_work(work);
1798 pwq->nr_active++;
1799 insert_work(pwq, work, head: &pool->worklist, extra_flags: work_flags);
1800 kick_pool(pool);
1801 } else {
1802 work_flags |= WORK_STRUCT_INACTIVE;
1803 insert_work(pwq, work, head: &pwq->inactive_works, extra_flags: work_flags);
1804 }
1805
1806out:
1807 raw_spin_unlock(&pool->lock);
1808 rcu_read_unlock();
1809}
1810
1811/**
1812 * queue_work_on - queue work on specific cpu
1813 * @cpu: CPU number to execute work on
1814 * @wq: workqueue to use
1815 * @work: work to queue
1816 *
1817 * We queue the work to a specific CPU, the caller must ensure it
1818 * can't go away. Callers that fail to ensure that the specified
1819 * CPU cannot go away will execute on a randomly chosen CPU.
1820 * But note well that callers specifying a CPU that never has been
1821 * online will get a splat.
1822 *
1823 * Return: %false if @work was already on a queue, %true otherwise.
1824 */
1825bool queue_work_on(int cpu, struct workqueue_struct *wq,
1826 struct work_struct *work)
1827{
1828 bool ret = false;
1829 unsigned long flags;
1830
1831 local_irq_save(flags);
1832
1833 if (!test_and_set_bit(nr: WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1834 __queue_work(cpu, wq, work);
1835 ret = true;
1836 }
1837
1838 local_irq_restore(flags);
1839 return ret;
1840}
1841EXPORT_SYMBOL(queue_work_on);
1842
1843/**
1844 * select_numa_node_cpu - Select a CPU based on NUMA node
1845 * @node: NUMA node ID that we want to select a CPU from
1846 *
1847 * This function will attempt to find a "random" cpu available on a given
1848 * node. If there are no CPUs available on the given node it will return
1849 * WORK_CPU_UNBOUND indicating that we should just schedule to any
1850 * available CPU if we need to schedule this work.
1851 */
1852static int select_numa_node_cpu(int node)
1853{
1854 int cpu;
1855
1856 /* Delay binding to CPU if node is not valid or online */
1857 if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
1858 return WORK_CPU_UNBOUND;
1859
1860 /* Use local node/cpu if we are already there */
1861 cpu = raw_smp_processor_id();
1862 if (node == cpu_to_node(cpu))
1863 return cpu;
1864
1865 /* Use "random" otherwise know as "first" online CPU of node */
1866 cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
1867
1868 /* If CPU is valid return that, otherwise just defer */
1869 return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND;
1870}
1871
1872/**
1873 * queue_work_node - queue work on a "random" cpu for a given NUMA node
1874 * @node: NUMA node that we are targeting the work for
1875 * @wq: workqueue to use
1876 * @work: work to queue
1877 *
1878 * We queue the work to a "random" CPU within a given NUMA node. The basic
1879 * idea here is to provide a way to somehow associate work with a given
1880 * NUMA node.
1881 *
1882 * This function will only make a best effort attempt at getting this onto
1883 * the right NUMA node. If no node is requested or the requested node is
1884 * offline then we just fall back to standard queue_work behavior.
1885 *
1886 * Currently the "random" CPU ends up being the first available CPU in the
1887 * intersection of cpu_online_mask and the cpumask of the node, unless we
1888 * are running on the node. In that case we just use the current CPU.
1889 *
1890 * Return: %false if @work was already on a queue, %true otherwise.
1891 */
1892bool queue_work_node(int node, struct workqueue_struct *wq,
1893 struct work_struct *work)
1894{
1895 unsigned long flags;
1896 bool ret = false;
1897
1898 /*
1899 * This current implementation is specific to unbound workqueues.
1900 * Specifically we only return the first available CPU for a given
1901 * node instead of cycling through individual CPUs within the node.
1902 *
1903 * If this is used with a per-cpu workqueue then the logic in
1904 * workqueue_select_cpu_near would need to be updated to allow for
1905 * some round robin type logic.
1906 */
1907 WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));
1908
1909 local_irq_save(flags);
1910
1911 if (!test_and_set_bit(nr: WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1912 int cpu = select_numa_node_cpu(node);
1913
1914 __queue_work(cpu, wq, work);
1915 ret = true;
1916 }
1917
1918 local_irq_restore(flags);
1919 return ret;
1920}
1921EXPORT_SYMBOL_GPL(queue_work_node);
1922
1923void delayed_work_timer_fn(struct timer_list *t)
1924{
1925 struct delayed_work *dwork = from_timer(dwork, t, timer);
1926
1927 /* should have been called from irqsafe timer with irq already off */
1928 __queue_work(cpu: dwork->cpu, wq: dwork->wq, work: &dwork->work);
1929}
1930EXPORT_SYMBOL(delayed_work_timer_fn);
1931
1932static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1933 struct delayed_work *dwork, unsigned long delay)
1934{
1935 struct timer_list *timer = &dwork->timer;
1936 struct work_struct *work = &dwork->work;
1937
1938 WARN_ON_ONCE(!wq);
1939 WARN_ON_ONCE(timer->function != delayed_work_timer_fn);
1940 WARN_ON_ONCE(timer_pending(timer));
1941 WARN_ON_ONCE(!list_empty(&work->entry));
1942
1943 /*
1944 * If @delay is 0, queue @dwork->work immediately. This is for
1945 * both optimization and correctness. The earliest @timer can
1946 * expire is on the closest next tick and delayed_work users depend
1947 * on that there's no such delay when @delay is 0.
1948 */
1949 if (!delay) {
1950 __queue_work(cpu, wq, work: &dwork->work);
1951 return;
1952 }
1953
1954 dwork->wq = wq;
1955 dwork->cpu = cpu;
1956 timer->expires = jiffies + delay;
1957
1958 if (unlikely(cpu != WORK_CPU_UNBOUND))
1959 add_timer_on(timer, cpu);
1960 else
1961 add_timer(timer);
1962}
1963
1964/**
1965 * queue_delayed_work_on - queue work on specific CPU after delay
1966 * @cpu: CPU number to execute work on
1967 * @wq: workqueue to use
1968 * @dwork: work to queue
1969 * @delay: number of jiffies to wait before queueing
1970 *
1971 * Return: %false if @work was already on a queue, %true otherwise. If
1972 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1973 * execution.
1974 */
1975bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1976 struct delayed_work *dwork, unsigned long delay)
1977{
1978 struct work_struct *work = &dwork->work;
1979 bool ret = false;
1980 unsigned long flags;
1981
1982 /* read the comment in __queue_work() */
1983 local_irq_save(flags);
1984
1985 if (!test_and_set_bit(nr: WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1986 __queue_delayed_work(cpu, wq, dwork, delay);
1987 ret = true;
1988 }
1989
1990 local_irq_restore(flags);
1991 return ret;
1992}
1993EXPORT_SYMBOL(queue_delayed_work_on);
1994
1995/**
1996 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1997 * @cpu: CPU number to execute work on
1998 * @wq: workqueue to use
1999 * @dwork: work to queue
2000 * @delay: number of jiffies to wait before queueing
2001 *
2002 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
2003 * modify @dwork's timer so that it expires after @delay. If @delay is
2004 * zero, @work is guaranteed to be scheduled immediately regardless of its
2005 * current state.
2006 *
2007 * Return: %false if @dwork was idle and queued, %true if @dwork was
2008 * pending and its timer was modified.
2009 *
2010 * This function is safe to call from any context including IRQ handler.
2011 * See try_to_grab_pending() for details.
2012 */
2013bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
2014 struct delayed_work *dwork, unsigned long delay)
2015{
2016 unsigned long flags;
2017 int ret;
2018
2019 do {
2020 ret = try_to_grab_pending(work: &dwork->work, is_dwork: true, flags: &flags);
2021 } while (unlikely(ret == -EAGAIN));
2022
2023 if (likely(ret >= 0)) {
2024 __queue_delayed_work(cpu, wq, dwork, delay);
2025 local_irq_restore(flags);
2026 }
2027
2028 /* -ENOENT from try_to_grab_pending() becomes %true */
2029 return ret;
2030}
2031EXPORT_SYMBOL_GPL(mod_delayed_work_on);
2032
2033static void rcu_work_rcufn(struct rcu_head *rcu)
2034{
2035 struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
2036
2037 /* read the comment in __queue_work() */
2038 local_irq_disable();
2039 __queue_work(cpu: WORK_CPU_UNBOUND, wq: rwork->wq, work: &rwork->work);
2040 local_irq_enable();
2041}
2042
2043/**
2044 * queue_rcu_work - queue work after a RCU grace period
2045 * @wq: workqueue to use
2046 * @rwork: work to queue
2047 *
2048 * Return: %false if @rwork was already pending, %true otherwise. Note
2049 * that a full RCU grace period is guaranteed only after a %true return.
2050 * While @rwork is guaranteed to be executed after a %false return, the
2051 * execution may happen before a full RCU grace period has passed.
2052 */
2053bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
2054{
2055 struct work_struct *work = &rwork->work;
2056
2057 if (!test_and_set_bit(nr: WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
2058 rwork->wq = wq;
2059 call_rcu_hurry(head: &rwork->rcu, func: rcu_work_rcufn);
2060 return true;
2061 }
2062
2063 return false;
2064}
2065EXPORT_SYMBOL(queue_rcu_work);
2066
2067static struct worker *alloc_worker(int node)
2068{
2069 struct worker *worker;
2070
2071 worker = kzalloc_node(size: sizeof(*worker), GFP_KERNEL, node);
2072 if (worker) {
2073 INIT_LIST_HEAD(list: &worker->entry);
2074 INIT_LIST_HEAD(list: &worker->scheduled);
2075 INIT_LIST_HEAD(list: &worker->node);
2076 /* on creation a worker is in !idle && prep state */
2077 worker->flags = WORKER_PREP;
2078 }
2079 return worker;
2080}
2081
2082static cpumask_t *pool_allowed_cpus(struct worker_pool *pool)
2083{
2084 if (pool->cpu < 0 && pool->attrs->affn_strict)
2085 return pool->attrs->__pod_cpumask;
2086 else
2087 return pool->attrs->cpumask;
2088}
2089
2090/**
2091 * worker_attach_to_pool() - attach a worker to a pool
2092 * @worker: worker to be attached
2093 * @pool: the target pool
2094 *
2095 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and
2096 * cpu-binding of @worker are kept coordinated with the pool across
2097 * cpu-[un]hotplugs.
2098 */
2099static void worker_attach_to_pool(struct worker *worker,
2100 struct worker_pool *pool)
2101{
2102 mutex_lock(&wq_pool_attach_mutex);
2103
2104 /*
2105 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains
2106 * stable across this function. See the comments above the flag
2107 * definition for details.
2108 */
2109 if (pool->flags & POOL_DISASSOCIATED)
2110 worker->flags |= WORKER_UNBOUND;
2111 else
2112 kthread_set_per_cpu(k: worker->task, cpu: pool->cpu);
2113
2114 if (worker->rescue_wq)
2115 set_cpus_allowed_ptr(p: worker->task, new_mask: pool_allowed_cpus(pool));
2116
2117 list_add_tail(new: &worker->node, head: &pool->workers);
2118 worker->pool = pool;
2119
2120 mutex_unlock(lock: &wq_pool_attach_mutex);
2121}
2122
2123/**
2124 * worker_detach_from_pool() - detach a worker from its pool
2125 * @worker: worker which is attached to its pool
2126 *
2127 * Undo the attaching which had been done in worker_attach_to_pool(). The
2128 * caller worker shouldn't access to the pool after detached except it has
2129 * other reference to the pool.
2130 */
2131static void worker_detach_from_pool(struct worker *worker)
2132{
2133 struct worker_pool *pool = worker->pool;
2134 struct completion *detach_completion = NULL;
2135
2136 mutex_lock(&wq_pool_attach_mutex);
2137
2138 kthread_set_per_cpu(k: worker->task, cpu: -1);
2139 list_del(entry: &worker->node);
2140 worker->pool = NULL;
2141
2142 if (list_empty(head: &pool->workers) && list_empty(head: &pool->dying_workers))
2143 detach_completion = pool->detach_completion;
2144 mutex_unlock(lock: &wq_pool_attach_mutex);
2145
2146 /* clear leftover flags without pool->lock after it is detached */
2147 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
2148
2149 if (detach_completion)
2150 complete(detach_completion);
2151}
2152
2153/**
2154 * create_worker - create a new workqueue worker
2155 * @pool: pool the new worker will belong to
2156 *
2157 * Create and start a new worker which is attached to @pool.
2158 *
2159 * CONTEXT:
2160 * Might sleep. Does GFP_KERNEL allocations.
2161 *
2162 * Return:
2163 * Pointer to the newly created worker.
2164 */
2165static struct worker *create_worker(struct worker_pool *pool)
2166{
2167 struct worker *worker;
2168 int id;
2169 char id_buf[23];
2170
2171 /* ID is needed to determine kthread name */
2172 id = ida_alloc(ida: &pool->worker_ida, GFP_KERNEL);
2173 if (id < 0) {
2174 pr_err_once("workqueue: Failed to allocate a worker ID: %pe\n",
2175 ERR_PTR(id));
2176 return NULL;
2177 }
2178
2179 worker = alloc_worker(node: pool->node);
2180 if (!worker) {
2181 pr_err_once("workqueue: Failed to allocate a worker\n");
2182 goto fail;
2183 }
2184
2185 worker->id = id;
2186
2187 if (pool->cpu >= 0)
2188 snprintf(buf: id_buf, size: sizeof(id_buf), fmt: "%d:%d%s", pool->cpu, id,
2189 pool->attrs->nice < 0 ? "H" : "");
2190 else
2191 snprintf(buf: id_buf, size: sizeof(id_buf), fmt: "u%d:%d", pool->id, id);
2192
2193 worker->task = kthread_create_on_node(threadfn: worker_thread, data: worker, node: pool->node,
2194 namefmt: "kworker/%s", id_buf);
2195 if (IS_ERR(ptr: worker->task)) {
2196 if (PTR_ERR(ptr: worker->task) == -EINTR) {
2197 pr_err("workqueue: Interrupted when creating a worker thread \"kworker/%s\"\n",
2198 id_buf);
2199 } else {
2200 pr_err_once("workqueue: Failed to create a worker thread: %pe",
2201 worker->task);
2202 }
2203 goto fail;
2204 }
2205
2206 set_user_nice(p: worker->task, nice: pool->attrs->nice);
2207 kthread_bind_mask(k: worker->task, mask: pool_allowed_cpus(pool));
2208
2209 /* successful, attach the worker to the pool */
2210 worker_attach_to_pool(worker, pool);
2211
2212 /* start the newly created worker */
2213 raw_spin_lock_irq(&pool->lock);
2214
2215 worker->pool->nr_workers++;
2216 worker_enter_idle(worker);
2217 kick_pool(pool);
2218
2219 /*
2220 * @worker is waiting on a completion in kthread() and will trigger hung
2221 * check if not woken up soon. As kick_pool() might not have waken it
2222 * up, wake it up explicitly once more.
2223 */
2224 wake_up_process(tsk: worker->task);
2225
2226 raw_spin_unlock_irq(&pool->lock);
2227
2228 return worker;
2229
2230fail:
2231 ida_free(&pool->worker_ida, id);
2232 kfree(objp: worker);
2233 return NULL;
2234}
2235
2236static void unbind_worker(struct worker *worker)
2237{
2238 lockdep_assert_held(&wq_pool_attach_mutex);
2239
2240 kthread_set_per_cpu(k: worker->task, cpu: -1);
2241 if (cpumask_intersects(src1p: wq_unbound_cpumask, cpu_active_mask))
2242 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, wq_unbound_cpumask) < 0);
2243 else
2244 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, cpu_possible_mask) < 0);
2245}
2246
2247static void wake_dying_workers(struct list_head *cull_list)
2248{
2249 struct worker *worker, *tmp;
2250
2251 list_for_each_entry_safe(worker, tmp, cull_list, entry) {
2252 list_del_init(entry: &worker->entry);
2253 unbind_worker(worker);
2254 /*
2255 * If the worker was somehow already running, then it had to be
2256 * in pool->idle_list when set_worker_dying() happened or we
2257 * wouldn't have gotten here.
2258 *
2259 * Thus, the worker must either have observed the WORKER_DIE
2260 * flag, or have set its state to TASK_IDLE. Either way, the
2261 * below will be observed by the worker and is safe to do
2262 * outside of pool->lock.
2263 */
2264 wake_up_process(tsk: worker->task);
2265 }
2266}
2267
2268/**
2269 * set_worker_dying - Tag a worker for destruction
2270 * @worker: worker to be destroyed
2271 * @list: transfer worker away from its pool->idle_list and into list
2272 *
2273 * Tag @worker for destruction and adjust @pool stats accordingly. The worker
2274 * should be idle.
2275 *
2276 * CONTEXT:
2277 * raw_spin_lock_irq(pool->lock).
2278 */
2279static void set_worker_dying(struct worker *worker, struct list_head *list)
2280{
2281 struct worker_pool *pool = worker->pool;
2282
2283 lockdep_assert_held(&pool->lock);
2284 lockdep_assert_held(&wq_pool_attach_mutex);
2285
2286 /* sanity check frenzy */
2287 if (WARN_ON(worker->current_work) ||
2288 WARN_ON(!list_empty(&worker->scheduled)) ||
2289 WARN_ON(!(worker->flags & WORKER_IDLE)))
2290 return;
2291
2292 pool->nr_workers--;
2293 pool->nr_idle--;
2294
2295 worker->flags |= WORKER_DIE;
2296
2297 list_move(list: &worker->entry, head: list);
2298 list_move(list: &worker->node, head: &pool->dying_workers);
2299}
2300
2301/**
2302 * idle_worker_timeout - check if some idle workers can now be deleted.
2303 * @t: The pool's idle_timer that just expired
2304 *
2305 * The timer is armed in worker_enter_idle(). Note that it isn't disarmed in
2306 * worker_leave_idle(), as a worker flicking between idle and active while its
2307 * pool is at the too_many_workers() tipping point would cause too much timer
2308 * housekeeping overhead. Since IDLE_WORKER_TIMEOUT is long enough, we just let
2309 * it expire and re-evaluate things from there.
2310 */
2311static void idle_worker_timeout(struct timer_list *t)
2312{
2313 struct worker_pool *pool = from_timer(pool, t, idle_timer);
2314 bool do_cull = false;
2315
2316 if (work_pending(&pool->idle_cull_work))
2317 return;
2318
2319 raw_spin_lock_irq(&pool->lock);
2320
2321 if (too_many_workers(pool)) {
2322 struct worker *worker;
2323 unsigned long expires;
2324
2325 /* idle_list is kept in LIFO order, check the last one */
2326 worker = list_entry(pool->idle_list.prev, struct worker, entry);
2327 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2328 do_cull = !time_before(jiffies, expires);
2329
2330 if (!do_cull)
2331 mod_timer(timer: &pool->idle_timer, expires);
2332 }
2333 raw_spin_unlock_irq(&pool->lock);
2334
2335 if (do_cull)
2336 queue_work(wq: system_unbound_wq, work: &pool->idle_cull_work);
2337}
2338
2339/**
2340 * idle_cull_fn - cull workers that have been idle for too long.
2341 * @work: the pool's work for handling these idle workers
2342 *
2343 * This goes through a pool's idle workers and gets rid of those that have been
2344 * idle for at least IDLE_WORKER_TIMEOUT seconds.
2345 *
2346 * We don't want to disturb isolated CPUs because of a pcpu kworker being
2347 * culled, so this also resets worker affinity. This requires a sleepable
2348 * context, hence the split between timer callback and work item.
2349 */
2350static void idle_cull_fn(struct work_struct *work)
2351{
2352 struct worker_pool *pool = container_of(work, struct worker_pool, idle_cull_work);
2353 LIST_HEAD(cull_list);
2354
2355 /*
2356 * Grabbing wq_pool_attach_mutex here ensures an already-running worker
2357 * cannot proceed beyong worker_detach_from_pool() in its self-destruct
2358 * path. This is required as a previously-preempted worker could run after
2359 * set_worker_dying() has happened but before wake_dying_workers() did.
2360 */
2361 mutex_lock(&wq_pool_attach_mutex);
2362 raw_spin_lock_irq(&pool->lock);
2363
2364 while (too_many_workers(pool)) {
2365 struct worker *worker;
2366 unsigned long expires;
2367
2368 worker = list_entry(pool->idle_list.prev, struct worker, entry);
2369 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2370
2371 if (time_before(jiffies, expires)) {
2372 mod_timer(timer: &pool->idle_timer, expires);
2373 break;
2374 }
2375
2376 set_worker_dying(worker, list: &cull_list);
2377 }
2378
2379 raw_spin_unlock_irq(&pool->lock);
2380 wake_dying_workers(cull_list: &cull_list);
2381 mutex_unlock(lock: &wq_pool_attach_mutex);
2382}
2383
2384static void send_mayday(struct work_struct *work)
2385{
2386 struct pool_workqueue *pwq = get_work_pwq(work);
2387 struct workqueue_struct *wq = pwq->wq;
2388
2389 lockdep_assert_held(&wq_mayday_lock);
2390
2391 if (!wq->rescuer)
2392 return;
2393
2394 /* mayday mayday mayday */
2395 if (list_empty(head: &pwq->mayday_node)) {
2396 /*
2397 * If @pwq is for an unbound wq, its base ref may be put at
2398 * any time due to an attribute change. Pin @pwq until the
2399 * rescuer is done with it.
2400 */
2401 get_pwq(pwq);
2402 list_add_tail(new: &pwq->mayday_node, head: &wq->maydays);
2403 wake_up_process(tsk: wq->rescuer->task);
2404 pwq->stats[PWQ_STAT_MAYDAY]++;
2405 }
2406}
2407
2408static void pool_mayday_timeout(struct timer_list *t)
2409{
2410 struct worker_pool *pool = from_timer(pool, t, mayday_timer);
2411 struct work_struct *work;
2412
2413 raw_spin_lock_irq(&pool->lock);
2414 raw_spin_lock(&wq_mayday_lock); /* for wq->maydays */
2415
2416 if (need_to_create_worker(pool)) {
2417 /*
2418 * We've been trying to create a new worker but
2419 * haven't been successful. We might be hitting an
2420 * allocation deadlock. Send distress signals to
2421 * rescuers.
2422 */
2423 list_for_each_entry(work, &pool->worklist, entry)
2424 send_mayday(work);
2425 }
2426
2427 raw_spin_unlock(&wq_mayday_lock);
2428 raw_spin_unlock_irq(&pool->lock);
2429
2430 mod_timer(timer: &pool->mayday_timer, expires: jiffies + MAYDAY_INTERVAL);
2431}
2432
2433/**
2434 * maybe_create_worker - create a new worker if necessary
2435 * @pool: pool to create a new worker for
2436 *
2437 * Create a new worker for @pool if necessary. @pool is guaranteed to
2438 * have at least one idle worker on return from this function. If
2439 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
2440 * sent to all rescuers with works scheduled on @pool to resolve
2441 * possible allocation deadlock.
2442 *
2443 * On return, need_to_create_worker() is guaranteed to be %false and
2444 * may_start_working() %true.
2445 *
2446 * LOCKING:
2447 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2448 * multiple times. Does GFP_KERNEL allocations. Called only from
2449 * manager.
2450 */
2451static void maybe_create_worker(struct worker_pool *pool)
2452__releases(&pool->lock)
2453__acquires(&pool->lock)
2454{
2455restart:
2456 raw_spin_unlock_irq(&pool->lock);
2457
2458 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
2459 mod_timer(timer: &pool->mayday_timer, expires: jiffies + MAYDAY_INITIAL_TIMEOUT);
2460
2461 while (true) {
2462 if (create_worker(pool) || !need_to_create_worker(pool))
2463 break;
2464
2465 schedule_timeout_interruptible(timeout: CREATE_COOLDOWN);
2466
2467 if (!need_to_create_worker(pool))
2468 break;
2469 }
2470
2471 del_timer_sync(timer: &pool->mayday_timer);
2472 raw_spin_lock_irq(&pool->lock);
2473 /*
2474 * This is necessary even after a new worker was just successfully
2475 * created as @pool->lock was dropped and the new worker might have
2476 * already become busy.
2477 */
2478 if (need_to_create_worker(pool))
2479 goto restart;
2480}
2481
2482/**
2483 * manage_workers - manage worker pool
2484 * @worker: self
2485 *
2486 * Assume the manager role and manage the worker pool @worker belongs
2487 * to. At any given time, there can be only zero or one manager per
2488 * pool. The exclusion is handled automatically by this function.
2489 *
2490 * The caller can safely start processing works on false return. On
2491 * true return, it's guaranteed that need_to_create_worker() is false
2492 * and may_start_working() is true.
2493 *
2494 * CONTEXT:
2495 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2496 * multiple times. Does GFP_KERNEL allocations.
2497 *
2498 * Return:
2499 * %false if the pool doesn't need management and the caller can safely
2500 * start processing works, %true if management function was performed and
2501 * the conditions that the caller verified before calling the function may
2502 * no longer be true.
2503 */
2504static bool manage_workers(struct worker *worker)
2505{
2506 struct worker_pool *pool = worker->pool;
2507
2508 if (pool->flags & POOL_MANAGER_ACTIVE)
2509 return false;
2510
2511 pool->flags |= POOL_MANAGER_ACTIVE;
2512 pool->manager = worker;
2513
2514 maybe_create_worker(pool);
2515
2516 pool->manager = NULL;
2517 pool->flags &= ~POOL_MANAGER_ACTIVE;
2518 rcuwait_wake_up(w: &manager_wait);
2519 return true;
2520}
2521
2522/**
2523 * process_one_work - process single work
2524 * @worker: self
2525 * @work: work to process
2526 *
2527 * Process @work. This function contains all the logics necessary to
2528 * process a single work including synchronization against and
2529 * interaction with other workers on the same cpu, queueing and
2530 * flushing. As long as context requirement is met, any worker can
2531 * call this function to process a work.
2532 *
2533 * CONTEXT:
2534 * raw_spin_lock_irq(pool->lock) which is released and regrabbed.
2535 */
2536static void process_one_work(struct worker *worker, struct work_struct *work)
2537__releases(&pool->lock)
2538__acquires(&pool->lock)
2539{
2540 struct pool_workqueue *pwq = get_work_pwq(work);
2541 struct worker_pool *pool = worker->pool;
2542 unsigned long work_data;
2543#ifdef CONFIG_LOCKDEP
2544 /*
2545 * It is permissible to free the struct work_struct from
2546 * inside the function that is called from it, this we need to
2547 * take into account for lockdep too. To avoid bogus "held
2548 * lock freed" warnings as well as problems when looking into
2549 * work->lockdep_map, make a copy and use that here.
2550 */
2551 struct lockdep_map lockdep_map;
2552
2553 lockdep_copy_map(to: &lockdep_map, from: &work->lockdep_map);
2554#endif
2555 /* ensure we're on the correct CPU */
2556 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
2557 raw_smp_processor_id() != pool->cpu);
2558
2559 /* claim and dequeue */
2560 debug_work_deactivate(work);
2561 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2562 worker->current_work = work;
2563 worker->current_func = work->func;
2564 worker->current_pwq = pwq;
2565 worker->current_at = worker->task->se.sum_exec_runtime;
2566 work_data = *work_data_bits(work);
2567 worker->current_color = get_work_color(work_data);
2568
2569 /*
2570 * Record wq name for cmdline and debug reporting, may get
2571 * overridden through set_worker_desc().
2572 */
2573 strscpy(p: worker->desc, q: pwq->wq->name, size: WORKER_DESC_LEN);
2574
2575 list_del_init(entry: &work->entry);
2576
2577 /*
2578 * CPU intensive works don't participate in concurrency management.
2579 * They're the scheduler's responsibility. This takes @worker out
2580 * of concurrency management and the next code block will chain
2581 * execution of the pending work items.
2582 */
2583 if (unlikely(pwq->wq->flags & WQ_CPU_INTENSIVE))
2584 worker_set_flags(worker, flags: WORKER_CPU_INTENSIVE);
2585
2586 /*
2587 * Kick @pool if necessary. It's always noop for per-cpu worker pools
2588 * since nr_running would always be >= 1 at this point. This is used to
2589 * chain execution of the pending work items for WORKER_NOT_RUNNING
2590 * workers such as the UNBOUND and CPU_INTENSIVE ones.
2591 */
2592 kick_pool(pool);
2593
2594 /*
2595 * Record the last pool and clear PENDING which should be the last
2596 * update to @work. Also, do this inside @pool->lock so that
2597 * PENDING and queued state changes happen together while IRQ is
2598 * disabled.
2599 */
2600 set_work_pool_and_clear_pending(work, pool_id: pool->id);
2601
2602 pwq->stats[PWQ_STAT_STARTED]++;
2603 raw_spin_unlock_irq(&pool->lock);
2604
2605 lock_map_acquire(&pwq->wq->lockdep_map);
2606 lock_map_acquire(&lockdep_map);
2607 /*
2608 * Strictly speaking we should mark the invariant state without holding
2609 * any locks, that is, before these two lock_map_acquire()'s.
2610 *
2611 * However, that would result in:
2612 *
2613 * A(W1)
2614 * WFC(C)
2615 * A(W1)
2616 * C(C)
2617 *
2618 * Which would create W1->C->W1 dependencies, even though there is no
2619 * actual deadlock possible. There are two solutions, using a
2620 * read-recursive acquire on the work(queue) 'locks', but this will then
2621 * hit the lockdep limitation on recursive locks, or simply discard
2622 * these locks.
2623 *
2624 * AFAICT there is no possible deadlock scenario between the
2625 * flush_work() and complete() primitives (except for single-threaded
2626 * workqueues), so hiding them isn't a problem.
2627 */
2628 lockdep_invariant_state(force: true);
2629 trace_workqueue_execute_start(work);
2630 worker->current_func(work);
2631 /*
2632 * While we must be careful to not use "work" after this, the trace
2633 * point will only record its address.
2634 */
2635 trace_workqueue_execute_end(work, function: worker->current_func);
2636 pwq->stats[PWQ_STAT_COMPLETED]++;
2637 lock_map_release(&lockdep_map);
2638 lock_map_release(&pwq->wq->lockdep_map);
2639
2640 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2641 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2642 " last function: %ps\n",
2643 current->comm, preempt_count(), task_pid_nr(current),
2644 worker->current_func);
2645 debug_show_held_locks(current);
2646 dump_stack();
2647 }
2648
2649 /*
2650 * The following prevents a kworker from hogging CPU on !PREEMPTION
2651 * kernels, where a requeueing work item waiting for something to
2652 * happen could deadlock with stop_machine as such work item could
2653 * indefinitely requeue itself while all other CPUs are trapped in
2654 * stop_machine. At the same time, report a quiescent RCU state so
2655 * the same condition doesn't freeze RCU.
2656 */
2657 cond_resched();
2658
2659 raw_spin_lock_irq(&pool->lock);
2660
2661 /*
2662 * In addition to %WQ_CPU_INTENSIVE, @worker may also have been marked
2663 * CPU intensive by wq_worker_tick() if @work hogged CPU longer than
2664 * wq_cpu_intensive_thresh_us. Clear it.
2665 */
2666 worker_clr_flags(worker, flags: WORKER_CPU_INTENSIVE);
2667
2668 /* tag the worker for identification in schedule() */
2669 worker->last_func = worker->current_func;
2670
2671 /* we're done with it, release */
2672 hash_del(node: &worker->hentry);
2673 worker->current_work = NULL;
2674 worker->current_func = NULL;
2675 worker->current_pwq = NULL;
2676 worker->current_color = INT_MAX;
2677 pwq_dec_nr_in_flight(pwq, work_data);
2678}
2679
2680/**
2681 * process_scheduled_works - process scheduled works
2682 * @worker: self
2683 *
2684 * Process all scheduled works. Please note that the scheduled list
2685 * may change while processing a work, so this function repeatedly
2686 * fetches a work from the top and executes it.
2687 *
2688 * CONTEXT:
2689 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2690 * multiple times.
2691 */
2692static void process_scheduled_works(struct worker *worker)
2693{
2694 struct work_struct *work;
2695 bool first = true;
2696
2697 while ((work = list_first_entry_or_null(&worker->scheduled,
2698 struct work_struct, entry))) {
2699 if (first) {
2700 worker->pool->watchdog_ts = jiffies;
2701 first = false;
2702 }
2703 process_one_work(worker, work);
2704 }
2705}
2706
2707static void set_pf_worker(bool val)
2708{
2709 mutex_lock(&wq_pool_attach_mutex);
2710 if (val)
2711 current->flags |= PF_WQ_WORKER;
2712 else
2713 current->flags &= ~PF_WQ_WORKER;
2714 mutex_unlock(lock: &wq_pool_attach_mutex);
2715}
2716
2717/**
2718 * worker_thread - the worker thread function
2719 * @__worker: self
2720 *
2721 * The worker thread function. All workers belong to a worker_pool -
2722 * either a per-cpu one or dynamic unbound one. These workers process all
2723 * work items regardless of their specific target workqueue. The only
2724 * exception is work items which belong to workqueues with a rescuer which
2725 * will be explained in rescuer_thread().
2726 *
2727 * Return: 0
2728 */
2729static int worker_thread(void *__worker)
2730{
2731 struct worker *worker = __worker;
2732 struct worker_pool *pool = worker->pool;
2733
2734 /* tell the scheduler that this is a workqueue worker */
2735 set_pf_worker(true);
2736woke_up:
2737 raw_spin_lock_irq(&pool->lock);
2738
2739 /* am I supposed to die? */
2740 if (unlikely(worker->flags & WORKER_DIE)) {
2741 raw_spin_unlock_irq(&pool->lock);
2742 set_pf_worker(false);
2743
2744 set_task_comm(tsk: worker->task, from: "kworker/dying");
2745 ida_free(&pool->worker_ida, id: worker->id);
2746 worker_detach_from_pool(worker);
2747 WARN_ON_ONCE(!list_empty(&worker->entry));
2748 kfree(objp: worker);
2749 return 0;
2750 }
2751
2752 worker_leave_idle(worker);
2753recheck:
2754 /* no more worker necessary? */
2755 if (!need_more_worker(pool))
2756 goto sleep;
2757
2758 /* do we need to manage? */
2759 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2760 goto recheck;
2761
2762 /*
2763 * ->scheduled list can only be filled while a worker is
2764 * preparing to process a work or actually processing it.
2765 * Make sure nobody diddled with it while I was sleeping.
2766 */
2767 WARN_ON_ONCE(!list_empty(&worker->scheduled));
2768
2769 /*
2770 * Finish PREP stage. We're guaranteed to have at least one idle
2771 * worker or that someone else has already assumed the manager
2772 * role. This is where @worker starts participating in concurrency
2773 * management if applicable and concurrency management is restored
2774 * after being rebound. See rebind_workers() for details.
2775 */
2776 worker_clr_flags(worker, flags: WORKER_PREP | WORKER_REBOUND);
2777
2778 do {
2779 struct work_struct *work =
2780 list_first_entry(&pool->worklist,
2781 struct work_struct, entry);
2782
2783 if (assign_work(work, worker, NULL))
2784 process_scheduled_works(worker);
2785 } while (keep_working(pool));
2786
2787 worker_set_flags(worker, flags: WORKER_PREP);
2788sleep:
2789 /*
2790 * pool->lock is held and there's no work to process and no need to
2791 * manage, sleep. Workers are woken up only while holding
2792 * pool->lock or from local cpu, so setting the current state
2793 * before releasing pool->lock is enough to prevent losing any
2794 * event.
2795 */
2796 worker_enter_idle(worker);
2797 __set_current_state(TASK_IDLE);
2798 raw_spin_unlock_irq(&pool->lock);
2799 schedule();
2800 goto woke_up;
2801}
2802
2803/**
2804 * rescuer_thread - the rescuer thread function
2805 * @__rescuer: self
2806 *
2807 * Workqueue rescuer thread function. There's one rescuer for each
2808 * workqueue which has WQ_MEM_RECLAIM set.
2809 *
2810 * Regular work processing on a pool may block trying to create a new
2811 * worker which uses GFP_KERNEL allocation which has slight chance of
2812 * developing into deadlock if some works currently on the same queue
2813 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2814 * the problem rescuer solves.
2815 *
2816 * When such condition is possible, the pool summons rescuers of all
2817 * workqueues which have works queued on the pool and let them process
2818 * those works so that forward progress can be guaranteed.
2819 *
2820 * This should happen rarely.
2821 *
2822 * Return: 0
2823 */
2824static int rescuer_thread(void *__rescuer)
2825{
2826 struct worker *rescuer = __rescuer;
2827 struct workqueue_struct *wq = rescuer->rescue_wq;
2828 bool should_stop;
2829
2830 set_user_nice(current, nice: RESCUER_NICE_LEVEL);
2831
2832 /*
2833 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2834 * doesn't participate in concurrency management.
2835 */
2836 set_pf_worker(true);
2837repeat:
2838 set_current_state(TASK_IDLE);
2839
2840 /*
2841 * By the time the rescuer is requested to stop, the workqueue
2842 * shouldn't have any work pending, but @wq->maydays may still have
2843 * pwq(s) queued. This can happen by non-rescuer workers consuming
2844 * all the work items before the rescuer got to them. Go through
2845 * @wq->maydays processing before acting on should_stop so that the
2846 * list is always empty on exit.
2847 */
2848 should_stop = kthread_should_stop();
2849
2850 /* see whether any pwq is asking for help */
2851 raw_spin_lock_irq(&wq_mayday_lock);
2852
2853 while (!list_empty(head: &wq->maydays)) {
2854 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2855 struct pool_workqueue, mayday_node);
2856 struct worker_pool *pool = pwq->pool;
2857 struct work_struct *work, *n;
2858
2859 __set_current_state(TASK_RUNNING);
2860 list_del_init(entry: &pwq->mayday_node);
2861
2862 raw_spin_unlock_irq(&wq_mayday_lock);
2863
2864 worker_attach_to_pool(worker: rescuer, pool);
2865
2866 raw_spin_lock_irq(&pool->lock);
2867
2868 /*
2869 * Slurp in all works issued via this workqueue and
2870 * process'em.
2871 */
2872 WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
2873 list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2874 if (get_work_pwq(work) == pwq &&
2875 assign_work(work, worker: rescuer, nextp: &n))
2876 pwq->stats[PWQ_STAT_RESCUED]++;
2877 }
2878
2879 if (!list_empty(head: &rescuer->scheduled)) {
2880 process_scheduled_works(worker: rescuer);
2881
2882 /*
2883 * The above execution of rescued work items could
2884 * have created more to rescue through
2885 * pwq_activate_first_inactive() or chained
2886 * queueing. Let's put @pwq back on mayday list so
2887 * that such back-to-back work items, which may be
2888 * being used to relieve memory pressure, don't
2889 * incur MAYDAY_INTERVAL delay inbetween.
2890 */
2891 if (pwq->nr_active && need_to_create_worker(pool)) {
2892 raw_spin_lock(&wq_mayday_lock);
2893 /*
2894 * Queue iff we aren't racing destruction
2895 * and somebody else hasn't queued it already.
2896 */
2897 if (wq->rescuer && list_empty(head: &pwq->mayday_node)) {
2898 get_pwq(pwq);
2899 list_add_tail(new: &pwq->mayday_node, head: &wq->maydays);
2900 }
2901 raw_spin_unlock(&wq_mayday_lock);
2902 }
2903 }
2904
2905 /*
2906 * Put the reference grabbed by send_mayday(). @pool won't
2907 * go away while we're still attached to it.
2908 */
2909 put_pwq(pwq);
2910
2911 /*
2912 * Leave this pool. Notify regular workers; otherwise, we end up
2913 * with 0 concurrency and stalling the execution.
2914 */
2915 kick_pool(pool);
2916
2917 raw_spin_unlock_irq(&pool->lock);
2918
2919 worker_detach_from_pool(worker: rescuer);
2920
2921 raw_spin_lock_irq(&wq_mayday_lock);
2922 }
2923
2924 raw_spin_unlock_irq(&wq_mayday_lock);
2925
2926 if (should_stop) {
2927 __set_current_state(TASK_RUNNING);
2928 set_pf_worker(false);
2929 return 0;
2930 }
2931
2932 /* rescuers should never participate in concurrency management */
2933 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2934 schedule();
2935 goto repeat;
2936}
2937
2938/**
2939 * check_flush_dependency - check for flush dependency sanity
2940 * @target_wq: workqueue being flushed
2941 * @target_work: work item being flushed (NULL for workqueue flushes)
2942 *
2943 * %current is trying to flush the whole @target_wq or @target_work on it.
2944 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2945 * reclaiming memory or running on a workqueue which doesn't have
2946 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2947 * a deadlock.
2948 */
2949static void check_flush_dependency(struct workqueue_struct *target_wq,
2950 struct work_struct *target_work)
2951{
2952 work_func_t target_func = target_work ? target_work->func : NULL;
2953 struct worker *worker;
2954
2955 if (target_wq->flags & WQ_MEM_RECLAIM)
2956 return;
2957
2958 worker = current_wq_worker();
2959
2960 WARN_ONCE(current->flags & PF_MEMALLOC,
2961 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps",
2962 current->pid, current->comm, target_wq->name, target_func);
2963 WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2964 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
2965 "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps",
2966 worker->current_pwq->wq->name, worker->current_func,
2967 target_wq->name, target_func);
2968}
2969
2970struct wq_barrier {
2971 struct work_struct work;
2972 struct completion done;
2973 struct task_struct *task; /* purely informational */
2974};
2975
2976static void wq_barrier_func(struct work_struct *work)
2977{
2978 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2979 complete(&barr->done);
2980}
2981
2982/**
2983 * insert_wq_barrier - insert a barrier work
2984 * @pwq: pwq to insert barrier into
2985 * @barr: wq_barrier to insert
2986 * @target: target work to attach @barr to
2987 * @worker: worker currently executing @target, NULL if @target is not executing
2988 *
2989 * @barr is linked to @target such that @barr is completed only after
2990 * @target finishes execution. Please note that the ordering
2991 * guarantee is observed only with respect to @target and on the local
2992 * cpu.
2993 *
2994 * Currently, a queued barrier can't be canceled. This is because
2995 * try_to_grab_pending() can't determine whether the work to be
2996 * grabbed is at the head of the queue and thus can't clear LINKED
2997 * flag of the previous work while there must be a valid next work
2998 * after a work with LINKED flag set.
2999 *
3000 * Note that when @worker is non-NULL, @target may be modified
3001 * underneath us, so we can't reliably determine pwq from @target.
3002 *
3003 * CONTEXT:
3004 * raw_spin_lock_irq(pool->lock).
3005 */
3006static void insert_wq_barrier(struct pool_workqueue *pwq,
3007 struct wq_barrier *barr,
3008 struct work_struct *target, struct worker *worker)
3009{
3010 unsigned int work_flags = 0;
3011 unsigned int work_color;
3012 struct list_head *head;
3013
3014 /*
3015 * debugobject calls are safe here even with pool->lock locked
3016 * as we know for sure that this will not trigger any of the
3017 * checks and call back into the fixup functions where we
3018 * might deadlock.
3019 */
3020 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
3021 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
3022
3023 init_completion_map(&barr->done, &target->lockdep_map);
3024
3025 barr->task = current;
3026
3027 /* The barrier work item does not participate in pwq->nr_active. */
3028 work_flags |= WORK_STRUCT_INACTIVE;
3029
3030 /*
3031 * If @target is currently being executed, schedule the
3032 * barrier to the worker; otherwise, put it after @target.
3033 */
3034 if (worker) {
3035 head = worker->scheduled.next;
3036 work_color = worker->current_color;
3037 } else {
3038 unsigned long *bits = work_data_bits(target);
3039
3040 head = target->entry.next;
3041 /* there can already be other linked works, inherit and set */
3042 work_flags |= *bits & WORK_STRUCT_LINKED;
3043 work_color = get_work_color(work_data: *bits);
3044 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
3045 }
3046
3047 pwq->nr_in_flight[work_color]++;
3048 work_flags |= work_color_to_flags(color: work_color);
3049
3050 insert_work(pwq, work: &barr->work, head, extra_flags: work_flags);
3051}
3052
3053/**
3054 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
3055 * @wq: workqueue being flushed
3056 * @flush_color: new flush color, < 0 for no-op
3057 * @work_color: new work color, < 0 for no-op
3058 *
3059 * Prepare pwqs for workqueue flushing.
3060 *
3061 * If @flush_color is non-negative, flush_color on all pwqs should be
3062 * -1. If no pwq has in-flight commands at the specified color, all
3063 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
3064 * has in flight commands, its pwq->flush_color is set to
3065 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
3066 * wakeup logic is armed and %true is returned.
3067 *
3068 * The caller should have initialized @wq->first_flusher prior to
3069 * calling this function with non-negative @flush_color. If
3070 * @flush_color is negative, no flush color update is done and %false
3071 * is returned.
3072 *
3073 * If @work_color is non-negative, all pwqs should have the same
3074 * work_color which is previous to @work_color and all will be
3075 * advanced to @work_color.
3076 *
3077 * CONTEXT:
3078 * mutex_lock(wq->mutex).
3079 *
3080 * Return:
3081 * %true if @flush_color >= 0 and there's something to flush. %false
3082 * otherwise.
3083 */
3084static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
3085 int flush_color, int work_color)
3086{
3087 bool wait = false;
3088 struct pool_workqueue *pwq;
3089
3090 if (flush_color >= 0) {
3091 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
3092 atomic_set(v: &wq->nr_pwqs_to_flush, i: 1);
3093 }
3094
3095 for_each_pwq(pwq, wq) {
3096 struct worker_pool *pool = pwq->pool;
3097
3098 raw_spin_lock_irq(&pool->lock);
3099
3100 if (flush_color >= 0) {
3101 WARN_ON_ONCE(pwq->flush_color != -1);
3102
3103 if (pwq->nr_in_flight[flush_color]) {
3104 pwq->flush_color = flush_color;
3105 atomic_inc(v: &wq->nr_pwqs_to_flush);
3106 wait = true;
3107 }
3108 }
3109
3110 if (work_color >= 0) {
3111 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
3112 pwq->work_color = work_color;
3113 }
3114
3115 raw_spin_unlock_irq(&pool->lock);
3116 }
3117
3118 if (flush_color >= 0 && atomic_dec_and_test(v: &wq->nr_pwqs_to_flush))
3119 complete(&wq->first_flusher->done);
3120
3121 return wait;
3122}
3123
3124/**
3125 * __flush_workqueue - ensure that any scheduled work has run to completion.
3126 * @wq: workqueue to flush
3127 *
3128 * This function sleeps until all work items which were queued on entry
3129 * have finished execution, but it is not livelocked by new incoming ones.
3130 */
3131void __flush_workqueue(struct workqueue_struct *wq)
3132{
3133 struct wq_flusher this_flusher = {
3134 .list = LIST_HEAD_INIT(this_flusher.list),
3135 .flush_color = -1,
3136 .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
3137 };
3138 int next_color;
3139
3140 if (WARN_ON(!wq_online))
3141 return;
3142
3143 lock_map_acquire(&wq->lockdep_map);
3144 lock_map_release(&wq->lockdep_map);
3145
3146 mutex_lock(&wq->mutex);
3147
3148 /*
3149 * Start-to-wait phase
3150 */
3151 next_color = work_next_color(color: wq->work_color);
3152
3153 if (next_color != wq->flush_color) {
3154 /*
3155 * Color space is not full. The current work_color
3156 * becomes our flush_color and work_color is advanced
3157 * by one.
3158 */
3159 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
3160 this_flusher.flush_color = wq->work_color;
3161 wq->work_color = next_color;
3162
3163 if (!wq->first_flusher) {
3164 /* no flush in progress, become the first flusher */
3165 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
3166
3167 wq->first_flusher = &this_flusher;
3168
3169 if (!flush_workqueue_prep_pwqs(wq, flush_color: wq->flush_color,
3170 work_color: wq->work_color)) {
3171 /* nothing to flush, done */
3172 wq->flush_color = next_color;
3173 wq->first_flusher = NULL;
3174 goto out_unlock;
3175 }
3176 } else {
3177 /* wait in queue */
3178 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
3179 list_add_tail(new: &this_flusher.list, head: &wq->flusher_queue);
3180 flush_workqueue_prep_pwqs(wq, flush_color: -1, work_color: wq->work_color);
3181 }
3182 } else {
3183 /*
3184 * Oops, color space is full, wait on overflow queue.
3185 * The next flush completion will assign us
3186 * flush_color and transfer to flusher_queue.
3187 */
3188 list_add_tail(new: &this_flusher.list, head: &wq->flusher_overflow);
3189 }
3190
3191 check_flush_dependency(target_wq: wq, NULL);
3192
3193 mutex_unlock(lock: &wq->mutex);
3194
3195 wait_for_completion(&this_flusher.done);
3196
3197 /*
3198 * Wake-up-and-cascade phase
3199 *
3200 * First flushers are responsible for cascading flushes and
3201 * handling overflow. Non-first flushers can simply return.
3202 */
3203 if (READ_ONCE(wq->first_flusher) != &this_flusher)
3204 return;
3205
3206 mutex_lock(&wq->mutex);
3207
3208 /* we might have raced, check again with mutex held */
3209 if (wq->first_flusher != &this_flusher)
3210 goto out_unlock;
3211
3212 WRITE_ONCE(wq->first_flusher, NULL);
3213
3214 WARN_ON_ONCE(!list_empty(&this_flusher.list));
3215 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
3216
3217 while (true) {
3218 struct wq_flusher *next, *tmp;
3219
3220 /* complete all the flushers sharing the current flush color */
3221 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
3222 if (next->flush_color != wq->flush_color)
3223 break;
3224 list_del_init(entry: &next->list);
3225 complete(&next->done);
3226 }
3227
3228 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
3229 wq->flush_color != work_next_color(wq->work_color));
3230
3231 /* this flush_color is finished, advance by one */
3232 wq->flush_color = work_next_color(color: wq->flush_color);
3233
3234 /* one color has been freed, handle overflow queue */
3235 if (!list_empty(head: &wq->flusher_overflow)) {
3236 /*
3237 * Assign the same color to all overflowed
3238 * flushers, advance work_color and append to
3239 * flusher_queue. This is the start-to-wait
3240 * phase for these overflowed flushers.
3241 */
3242 list_for_each_entry(tmp, &wq->flusher_overflow, list)
3243 tmp->flush_color = wq->work_color;
3244
3245 wq->work_color = work_next_color(color: wq->work_color);
3246
3247 list_splice_tail_init(list: &wq->flusher_overflow,
3248 head: &wq->flusher_queue);
3249 flush_workqueue_prep_pwqs(wq, flush_color: -1, work_color: wq->work_color);
3250 }
3251
3252 if (list_empty(head: &wq->flusher_queue)) {
3253 WARN_ON_ONCE(wq->flush_color != wq->work_color);
3254 break;
3255 }
3256
3257 /*
3258 * Need to flush more colors. Make the next flusher
3259 * the new first flusher and arm pwqs.
3260 */
3261 WARN_ON_ONCE(wq->flush_color == wq->work_color);
3262 WARN_ON_ONCE(wq->flush_color != next->flush_color);
3263
3264 list_del_init(entry: &next->list);
3265 wq->first_flusher = next;
3266
3267 if (flush_workqueue_prep_pwqs(wq, flush_color: wq->flush_color, work_color: -1))
3268 break;
3269
3270 /*
3271 * Meh... this color is already done, clear first
3272 * flusher and repeat cascading.
3273 */
3274 wq->first_flusher = NULL;
3275 }
3276
3277out_unlock:
3278 mutex_unlock(lock: &wq->mutex);
3279}
3280EXPORT_SYMBOL(__flush_workqueue);
3281
3282/**
3283 * drain_workqueue - drain a workqueue
3284 * @wq: workqueue to drain
3285 *
3286 * Wait until the workqueue becomes empty. While draining is in progress,
3287 * only chain queueing is allowed. IOW, only currently pending or running
3288 * work items on @wq can queue further work items on it. @wq is flushed
3289 * repeatedly until it becomes empty. The number of flushing is determined
3290 * by the depth of chaining and should be relatively short. Whine if it
3291 * takes too long.
3292 */
3293void drain_workqueue(struct workqueue_struct *wq)
3294{
3295 unsigned int flush_cnt = 0;
3296 struct pool_workqueue *pwq;
3297
3298 /*
3299 * __queue_work() needs to test whether there are drainers, is much
3300 * hotter than drain_workqueue() and already looks at @wq->flags.
3301 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
3302 */
3303 mutex_lock(&wq->mutex);
3304 if (!wq->nr_drainers++)
3305 wq->flags |= __WQ_DRAINING;
3306 mutex_unlock(lock: &wq->mutex);
3307reflush:
3308 __flush_workqueue(wq);
3309
3310 mutex_lock(&wq->mutex);
3311
3312 for_each_pwq(pwq, wq) {
3313 bool drained;
3314
3315 raw_spin_lock_irq(&pwq->pool->lock);
3316 drained = !pwq->nr_active && list_empty(head: &pwq->inactive_works);
3317 raw_spin_unlock_irq(&pwq->pool->lock);
3318
3319 if (drained)
3320 continue;
3321
3322 if (++flush_cnt == 10 ||
3323 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
3324 pr_warn("workqueue %s: %s() isn't complete after %u tries\n",
3325 wq->name, __func__, flush_cnt);
3326
3327 mutex_unlock(lock: &wq->mutex);
3328 goto reflush;
3329 }
3330
3331 if (!--wq->nr_drainers)
3332 wq->flags &= ~__WQ_DRAINING;
3333 mutex_unlock(lock: &wq->mutex);
3334}
3335EXPORT_SYMBOL_GPL(drain_workqueue);
3336
3337static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
3338 bool from_cancel)
3339{
3340 struct worker *worker = NULL;
3341 struct worker_pool *pool;
3342 struct pool_workqueue *pwq;
3343
3344 might_sleep();
3345
3346 rcu_read_lock();
3347 pool = get_work_pool(work);
3348 if (!pool) {
3349 rcu_read_unlock();
3350 return false;
3351 }
3352
3353 raw_spin_lock_irq(&pool->lock);
3354 /* see the comment in try_to_grab_pending() with the same code */
3355 pwq = get_work_pwq(work);
3356 if (pwq) {
3357 if (unlikely(pwq->pool != pool))
3358 goto already_gone;
3359 } else {
3360 worker = find_worker_executing_work(pool, work);
3361 if (!worker)
3362 goto already_gone;
3363 pwq = worker->current_pwq;
3364 }
3365
3366 check_flush_dependency(target_wq: pwq->wq, target_work: work);
3367
3368 insert_wq_barrier(pwq, barr, target: work, worker);
3369 raw_spin_unlock_irq(&pool->lock);
3370
3371 /*
3372 * Force a lock recursion deadlock when using flush_work() inside a
3373 * single-threaded or rescuer equipped workqueue.
3374 *
3375 * For single threaded workqueues the deadlock happens when the work
3376 * is after the work issuing the flush_work(). For rescuer equipped
3377 * workqueues the deadlock happens when the rescuer stalls, blocking
3378 * forward progress.
3379 */
3380 if (!from_cancel &&
3381 (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) {
3382 lock_map_acquire(&pwq->wq->lockdep_map);
3383 lock_map_release(&pwq->wq->lockdep_map);
3384 }
3385 rcu_read_unlock();
3386 return true;
3387already_gone:
3388 raw_spin_unlock_irq(&pool->lock);
3389 rcu_read_unlock();
3390 return false;
3391}
3392
3393static bool __flush_work(struct work_struct *work, bool from_cancel)
3394{
3395 struct wq_barrier barr;
3396
3397 if (WARN_ON(!wq_online))
3398 return false;
3399
3400 if (WARN_ON(!work->func))
3401 return false;
3402
3403 lock_map_acquire(&work->lockdep_map);
3404 lock_map_release(&work->lockdep_map);
3405
3406 if (start_flush_work(work, barr: &barr, from_cancel)) {
3407 wait_for_completion(&barr.done);
3408 destroy_work_on_stack(&barr.work);
3409 return true;
3410 } else {
3411 return false;
3412 }
3413}
3414
3415/**
3416 * flush_work - wait for a work to finish executing the last queueing instance
3417 * @work: the work to flush
3418 *
3419 * Wait until @work has finished execution. @work is guaranteed to be idle
3420 * on return if it hasn't been requeued since flush started.
3421 *
3422 * Return:
3423 * %true if flush_work() waited for the work to finish execution,
3424 * %false if it was already idle.
3425 */
3426bool flush_work(struct work_struct *work)
3427{
3428 return __flush_work(work, from_cancel: false);
3429}
3430EXPORT_SYMBOL_GPL(flush_work);
3431
3432struct cwt_wait {
3433 wait_queue_entry_t wait;
3434 struct work_struct *work;
3435};
3436
3437static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
3438{
3439 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
3440
3441 if (cwait->work != key)
3442 return 0;
3443 return autoremove_wake_function(wq_entry: wait, mode, sync, key);
3444}
3445
3446static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
3447{
3448 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
3449 unsigned long flags;
3450 int ret;
3451
3452 do {
3453 ret = try_to_grab_pending(work, is_dwork, flags: &flags);
3454 /*
3455 * If someone else is already canceling, wait for it to
3456 * finish. flush_work() doesn't work for PREEMPT_NONE
3457 * because we may get scheduled between @work's completion
3458 * and the other canceling task resuming and clearing
3459 * CANCELING - flush_work() will return false immediately
3460 * as @work is no longer busy, try_to_grab_pending() will
3461 * return -ENOENT as @work is still being canceled and the
3462 * other canceling task won't be able to clear CANCELING as
3463 * we're hogging the CPU.
3464 *
3465 * Let's wait for completion using a waitqueue. As this
3466 * may lead to the thundering herd problem, use a custom
3467 * wake function which matches @work along with exclusive
3468 * wait and wakeup.
3469 */
3470 if (unlikely(ret == -ENOENT)) {
3471 struct cwt_wait cwait;
3472
3473 init_wait(&cwait.wait);
3474 cwait.wait.func = cwt_wakefn;
3475 cwait.work = work;
3476
3477 prepare_to_wait_exclusive(wq_head: &cancel_waitq, wq_entry: &cwait.wait,
3478 TASK_UNINTERRUPTIBLE);
3479 if (work_is_canceling(work))
3480 schedule();
3481 finish_wait(wq_head: &cancel_waitq, wq_entry: &cwait.wait);
3482 }
3483 } while (unlikely(ret < 0));
3484
3485 /* tell other tasks trying to grab @work to back off */
3486 mark_work_canceling(work);
3487 local_irq_restore(flags);
3488
3489 /*
3490 * This allows canceling during early boot. We know that @work
3491 * isn't executing.
3492 */
3493 if (wq_online)
3494 __flush_work(work, from_cancel: true);
3495
3496 clear_work_data(work);
3497
3498 /*
3499 * Paired with prepare_to_wait() above so that either
3500 * waitqueue_active() is visible here or !work_is_canceling() is
3501 * visible there.
3502 */
3503 smp_mb();
3504 if (waitqueue_active(wq_head: &cancel_waitq))
3505 __wake_up(wq_head: &cancel_waitq, TASK_NORMAL, nr: 1, key: work);
3506
3507 return ret;
3508}
3509
3510/**
3511 * cancel_work_sync - cancel a work and wait for it to finish
3512 * @work: the work to cancel
3513 *
3514 * Cancel @work and wait for its execution to finish. This function
3515 * can be used even if the work re-queues itself or migrates to
3516 * another workqueue. On return from this function, @work is
3517 * guaranteed to be not pending or executing on any CPU.
3518 *
3519 * cancel_work_sync(&delayed_work->work) must not be used for
3520 * delayed_work's. Use cancel_delayed_work_sync() instead.
3521 *
3522 * The caller must ensure that the workqueue on which @work was last
3523 * queued can't be destroyed before this function returns.
3524 *
3525 * Return:
3526 * %true if @work was pending, %false otherwise.
3527 */
3528bool cancel_work_sync(struct work_struct *work)
3529{
3530 return __cancel_work_timer(work, is_dwork: false);
3531}
3532EXPORT_SYMBOL_GPL(cancel_work_sync);
3533
3534/**
3535 * flush_delayed_work - wait for a dwork to finish executing the last queueing
3536 * @dwork: the delayed work to flush
3537 *
3538 * Delayed timer is cancelled and the pending work is queued for
3539 * immediate execution. Like flush_work(), this function only
3540 * considers the last queueing instance of @dwork.
3541 *
3542 * Return:
3543 * %true if flush_work() waited for the work to finish execution,
3544 * %false if it was already idle.
3545 */
3546bool flush_delayed_work(struct delayed_work *dwork)
3547{
3548 local_irq_disable();
3549 if (del_timer_sync(timer: &dwork->timer))
3550 __queue_work(cpu: dwork->cpu, wq: dwork->wq, work: &dwork->work);
3551 local_irq_enable();
3552 return flush_work(&dwork->work);
3553}
3554EXPORT_SYMBOL(flush_delayed_work);
3555
3556/**
3557 * flush_rcu_work - wait for a rwork to finish executing the last queueing
3558 * @rwork: the rcu work to flush
3559 *
3560 * Return:
3561 * %true if flush_rcu_work() waited for the work to finish execution,
3562 * %false if it was already idle.
3563 */
3564bool flush_rcu_work(struct rcu_work *rwork)
3565{
3566 if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
3567 rcu_barrier();
3568 flush_work(&rwork->work);
3569 return true;
3570 } else {
3571 return flush_work(&rwork->work);
3572 }
3573}
3574EXPORT_SYMBOL(flush_rcu_work);
3575
3576static bool __cancel_work(struct work_struct *work, bool is_dwork)
3577{
3578 unsigned long flags;
3579 int ret;
3580
3581 do {
3582 ret = try_to_grab_pending(work, is_dwork, flags: &flags);
3583 } while (unlikely(ret == -EAGAIN));
3584
3585 if (unlikely(ret < 0))
3586 return false;
3587
3588 set_work_pool_and_clear_pending(work, pool_id: get_work_pool_id(work));
3589 local_irq_restore(flags);
3590 return ret;
3591}
3592
3593/*
3594 * See cancel_delayed_work()
3595 */
3596bool cancel_work(struct work_struct *work)
3597{
3598 return __cancel_work(work, is_dwork: false);
3599}
3600EXPORT_SYMBOL(cancel_work);
3601
3602/**
3603 * cancel_delayed_work - cancel a delayed work
3604 * @dwork: delayed_work to cancel
3605 *
3606 * Kill off a pending delayed_work.
3607 *
3608 * Return: %true if @dwork was pending and canceled; %false if it wasn't
3609 * pending.
3610 *
3611 * Note:
3612 * The work callback function may still be running on return, unless
3613 * it returns %true and the work doesn't re-arm itself. Explicitly flush or
3614 * use cancel_delayed_work_sync() to wait on it.
3615 *
3616 * This function is safe to call from any context including IRQ handler.
3617 */
3618bool cancel_delayed_work(struct delayed_work *dwork)
3619{
3620 return __cancel_work(work: &dwork->work, is_dwork: true);
3621}
3622EXPORT_SYMBOL(cancel_delayed_work);
3623
3624/**
3625 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3626 * @dwork: the delayed work cancel
3627 *
3628 * This is cancel_work_sync() for delayed works.
3629 *
3630 * Return:
3631 * %true if @dwork was pending, %false otherwise.
3632 */
3633bool cancel_delayed_work_sync(struct delayed_work *dwork)
3634{
3635 return __cancel_work_timer(work: &dwork->work, is_dwork: true);
3636}
3637EXPORT_SYMBOL(cancel_delayed_work_sync);
3638
3639/**
3640 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3641 * @func: the function to call
3642 *
3643 * schedule_on_each_cpu() executes @func on each online CPU using the
3644 * system workqueue and blocks until all CPUs have completed.
3645 * schedule_on_each_cpu() is very slow.
3646 *
3647 * Return:
3648 * 0 on success, -errno on failure.
3649 */
3650int schedule_on_each_cpu(work_func_t func)
3651{
3652 int cpu;
3653 struct work_struct __percpu *works;
3654
3655 works = alloc_percpu(struct work_struct);
3656 if (!works)
3657 return -ENOMEM;
3658
3659 cpus_read_lock();
3660
3661 for_each_online_cpu(cpu) {
3662 struct work_struct *work = per_cpu_ptr(works, cpu);
3663
3664 INIT_WORK(work, func);
3665 schedule_work_on(cpu, work);
3666 }
3667
3668 for_each_online_cpu(cpu)
3669 flush_work(per_cpu_ptr(works, cpu));
3670
3671 cpus_read_unlock();
3672 free_percpu(pdata: works);
3673 return 0;
3674}
3675
3676/**
3677 * execute_in_process_context - reliably execute the routine with user context
3678 * @fn: the function to execute
3679 * @ew: guaranteed storage for the execute work structure (must
3680 * be available when the work executes)
3681 *
3682 * Executes the function immediately if process context is available,
3683 * otherwise schedules the function for delayed execution.
3684 *
3685 * Return: 0 - function was executed
3686 * 1 - function was scheduled for execution
3687 */
3688int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3689{
3690 if (!in_interrupt()) {
3691 fn(&ew->work);
3692 return 0;
3693 }
3694
3695 INIT_WORK(&ew->work, fn);
3696 schedule_work(work: &ew->work);
3697
3698 return 1;
3699}
3700EXPORT_SYMBOL_GPL(execute_in_process_context);
3701
3702/**
3703 * free_workqueue_attrs - free a workqueue_attrs
3704 * @attrs: workqueue_attrs to free
3705 *
3706 * Undo alloc_workqueue_attrs().
3707 */
3708void free_workqueue_attrs(struct workqueue_attrs *attrs)
3709{
3710 if (attrs) {
3711 free_cpumask_var(mask: attrs->cpumask);
3712 free_cpumask_var(mask: attrs->__pod_cpumask);
3713 kfree(objp: attrs);
3714 }
3715}
3716
3717/**
3718 * alloc_workqueue_attrs - allocate a workqueue_attrs
3719 *
3720 * Allocate a new workqueue_attrs, initialize with default settings and
3721 * return it.
3722 *
3723 * Return: The allocated new workqueue_attr on success. %NULL on failure.
3724 */
3725struct workqueue_attrs *alloc_workqueue_attrs(void)
3726{
3727 struct workqueue_attrs *attrs;
3728
3729 attrs = kzalloc(size: sizeof(*attrs), GFP_KERNEL);
3730 if (!attrs)
3731 goto fail;
3732 if (!alloc_cpumask_var(mask: &attrs->cpumask, GFP_KERNEL))
3733 goto fail;
3734 if (!alloc_cpumask_var(mask: &attrs->__pod_cpumask, GFP_KERNEL))
3735 goto fail;
3736
3737 cpumask_copy(dstp: attrs->cpumask, cpu_possible_mask);
3738 attrs->affn_scope = WQ_AFFN_DFL;
3739 return attrs;
3740fail:
3741 free_workqueue_attrs(attrs);
3742 return NULL;
3743}
3744
3745static void copy_workqueue_attrs(struct workqueue_attrs *to,
3746 const struct workqueue_attrs *from)
3747{
3748 to->nice = from->nice;
3749 cpumask_copy(dstp: to->cpumask, srcp: from->cpumask);
3750 cpumask_copy(dstp: to->__pod_cpumask, srcp: from->__pod_cpumask);
3751 to->affn_strict = from->affn_strict;
3752
3753 /*
3754 * Unlike hash and equality test, copying shouldn't ignore wq-only
3755 * fields as copying is used for both pool and wq attrs. Instead,
3756 * get_unbound_pool() explicitly clears the fields.
3757 */
3758 to->affn_scope = from->affn_scope;
3759 to->ordered = from->ordered;
3760}
3761
3762/*
3763 * Some attrs fields are workqueue-only. Clear them for worker_pool's. See the
3764 * comments in 'struct workqueue_attrs' definition.
3765 */
3766static void wqattrs_clear_for_pool(struct workqueue_attrs *attrs)
3767{
3768 attrs->affn_scope = WQ_AFFN_NR_TYPES;
3769 attrs->ordered = false;
3770}
3771
3772/* hash value of the content of @attr */
3773static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3774{
3775 u32 hash = 0;
3776
3777 hash = jhash_1word(a: attrs->nice, initval: hash);
3778 hash = jhash(cpumask_bits(attrs->cpumask),
3779 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), initval: hash);
3780 hash = jhash(cpumask_bits(attrs->__pod_cpumask),
3781 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), initval: hash);
3782 hash = jhash_1word(a: attrs->affn_strict, initval: hash);
3783 return hash;
3784}
3785
3786/* content equality test */
3787static bool wqattrs_equal(const struct workqueue_attrs *a,
3788 const struct workqueue_attrs *b)
3789{
3790 if (a->nice != b->nice)
3791 return false;
3792 if (!cpumask_equal(src1p: a->cpumask, src2p: b->cpumask))
3793 return false;
3794 if (!cpumask_equal(src1p: a->__pod_cpumask, src2p: b->__pod_cpumask))
3795 return false;
3796 if (a->affn_strict != b->affn_strict)
3797 return false;
3798 return true;
3799}
3800
3801/* Update @attrs with actually available CPUs */
3802static void wqattrs_actualize_cpumask(struct workqueue_attrs *attrs,
3803 const cpumask_t *unbound_cpumask)
3804{
3805 /*
3806 * Calculate the effective CPU mask of @attrs given @unbound_cpumask. If
3807 * @attrs->cpumask doesn't overlap with @unbound_cpumask, we fallback to
3808 * @unbound_cpumask.
3809 */
3810 cpumask_and(dstp: attrs->cpumask, src1p: attrs->cpumask, src2p: unbound_cpumask);
3811 if (unlikely(cpumask_empty(attrs->cpumask)))
3812 cpumask_copy(dstp: attrs->cpumask, srcp: unbound_cpumask);
3813}
3814
3815/* find wq_pod_type to use for @attrs */
3816static const struct wq_pod_type *
3817wqattrs_pod_type(const struct workqueue_attrs *attrs)
3818{
3819 enum wq_affn_scope scope;
3820 struct wq_pod_type *pt;
3821
3822 /* to synchronize access to wq_affn_dfl */
3823 lockdep_assert_held(&wq_pool_mutex);
3824
3825 if (attrs->affn_scope == WQ_AFFN_DFL)
3826 scope = wq_affn_dfl;
3827 else
3828 scope = attrs->affn_scope;
3829
3830 pt = &wq_pod_types[scope];
3831
3832 if (!WARN_ON_ONCE(attrs->affn_scope == WQ_AFFN_NR_TYPES) &&
3833 likely(pt->nr_pods))
3834 return pt;
3835
3836 /*
3837 * Before workqueue_init_topology(), only SYSTEM is available which is
3838 * initialized in workqueue_init_early().
3839 */
3840 pt = &wq_pod_types[WQ_AFFN_SYSTEM];
3841 BUG_ON(!pt->nr_pods);
3842 return pt;
3843}
3844
3845/**
3846 * init_worker_pool - initialize a newly zalloc'd worker_pool
3847 * @pool: worker_pool to initialize
3848 *
3849 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs.
3850 *
3851 * Return: 0 on success, -errno on failure. Even on failure, all fields
3852 * inside @pool proper are initialized and put_unbound_pool() can be called
3853 * on @pool safely to release it.
3854 */
3855static int init_worker_pool(struct worker_pool *pool)
3856{
3857 raw_spin_lock_init(&pool->lock);
3858 pool->id = -1;
3859 pool->cpu = -1;
3860 pool->node = NUMA_NO_NODE;
3861 pool->flags |= POOL_DISASSOCIATED;
3862 pool->watchdog_ts = jiffies;
3863 INIT_LIST_HEAD(list: &pool->worklist);
3864 INIT_LIST_HEAD(list: &pool->idle_list);
3865 hash_init(pool->busy_hash);
3866
3867 timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
3868 INIT_WORK(&pool->idle_cull_work, idle_cull_fn);
3869
3870 timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
3871
3872 INIT_LIST_HEAD(list: &pool->workers);
3873 INIT_LIST_HEAD(list: &pool->dying_workers);
3874
3875 ida_init(ida: &pool->worker_ida);
3876 INIT_HLIST_NODE(h: &pool->hash_node);
3877 pool->refcnt = 1;
3878
3879 /* shouldn't fail above this point */
3880 pool->attrs = alloc_workqueue_attrs();
3881 if (!pool->attrs)
3882 return -ENOMEM;
3883
3884 wqattrs_clear_for_pool(attrs: pool->attrs);
3885
3886 return 0;
3887}
3888
3889#ifdef CONFIG_LOCKDEP
3890static void wq_init_lockdep(struct workqueue_struct *wq)
3891{
3892 char *lock_name;
3893
3894 lockdep_register_key(key: &wq->key);
3895 lock_name = kasprintf(GFP_KERNEL, fmt: "%s%s", "(wq_completion)", wq->name);
3896 if (!lock_name)
3897 lock_name = wq->name;
3898
3899 wq->lock_name = lock_name;
3900 lockdep_init_map(lock: &wq->lockdep_map, name: lock_name, key: &wq->key, subclass: 0);
3901}
3902
3903static void wq_unregister_lockdep(struct workqueue_struct *wq)
3904{
3905 lockdep_unregister_key(key: &wq->key);
3906}
3907
3908static void wq_free_lockdep(struct workqueue_struct *wq)
3909{
3910 if (wq->lock_name != wq->name)
3911 kfree(objp: wq->lock_name);
3912}
3913#else
3914static void wq_init_lockdep(struct workqueue_struct *wq)
3915{
3916}
3917
3918static void wq_unregister_lockdep(struct workqueue_struct *wq)
3919{
3920}
3921
3922static void wq_free_lockdep(struct workqueue_struct *wq)
3923{
3924}
3925#endif
3926
3927static void rcu_free_wq(struct rcu_head *rcu)
3928{
3929 struct workqueue_struct *wq =
3930 container_of(rcu, struct workqueue_struct, rcu);
3931
3932 wq_free_lockdep(wq);
3933 free_percpu(pdata: wq->cpu_pwq);
3934 free_workqueue_attrs(attrs: wq->unbound_attrs);
3935 kfree(objp: wq);
3936}
3937
3938static void rcu_free_pool(struct rcu_head *rcu)
3939{
3940 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3941
3942 ida_destroy(ida: &pool->worker_ida);
3943 free_workqueue_attrs(attrs: pool->attrs);
3944 kfree(objp: pool);
3945}
3946
3947/**
3948 * put_unbound_pool - put a worker_pool
3949 * @pool: worker_pool to put
3950 *
3951 * Put @pool. If its refcnt reaches zero, it gets destroyed in RCU
3952 * safe manner. get_unbound_pool() calls this function on its failure path
3953 * and this function should be able to release pools which went through,
3954 * successfully or not, init_worker_pool().
3955 *
3956 * Should be called with wq_pool_mutex held.
3957 */
3958static void put_unbound_pool(struct worker_pool *pool)
3959{
3960 DECLARE_COMPLETION_ONSTACK(detach_completion);
3961 struct worker *worker;
3962 LIST_HEAD(cull_list);
3963
3964 lockdep_assert_held(&wq_pool_mutex);
3965
3966 if (--pool->refcnt)
3967 return;
3968
3969 /* sanity checks */
3970 if (WARN_ON(!(pool->cpu < 0)) ||
3971 WARN_ON(!list_empty(&pool->worklist)))
3972 return;
3973
3974 /* release id and unhash */
3975 if (pool->id >= 0)
3976 idr_remove(&worker_pool_idr, id: pool->id);
3977 hash_del(node: &pool->hash_node);
3978
3979 /*
3980 * Become the manager and destroy all workers. This prevents
3981 * @pool's workers from blocking on attach_mutex. We're the last
3982 * manager and @pool gets freed with the flag set.
3983 *
3984 * Having a concurrent manager is quite unlikely to happen as we can
3985 * only get here with
3986 * pwq->refcnt == pool->refcnt == 0
3987 * which implies no work queued to the pool, which implies no worker can
3988 * become the manager. However a worker could have taken the role of
3989 * manager before the refcnts dropped to 0, since maybe_create_worker()
3990 * drops pool->lock
3991 */
3992 while (true) {
3993 rcuwait_wait_event(&manager_wait,
3994 !(pool->flags & POOL_MANAGER_ACTIVE),
3995 TASK_UNINTERRUPTIBLE);
3996
3997 mutex_lock(&wq_pool_attach_mutex);
3998 raw_spin_lock_irq(&pool->lock);
3999 if (!(pool->flags & POOL_MANAGER_ACTIVE)) {
4000 pool->flags |= POOL_MANAGER_ACTIVE;
4001 break;
4002 }
4003 raw_spin_unlock_irq(&pool->lock);
4004 mutex_unlock(lock: &wq_pool_attach_mutex);
4005 }
4006
4007 while ((worker = first_idle_worker(pool)))
4008 set_worker_dying(worker, list: &cull_list);
4009 WARN_ON(pool->nr_workers || pool->nr_idle);
4010 raw_spin_unlock_irq(&pool->lock);
4011
4012 wake_dying_workers(cull_list: &cull_list);
4013
4014 if (!list_empty(head: &pool->workers) || !list_empty(head: &pool->dying_workers))
4015 pool->detach_completion = &detach_completion;
4016 mutex_unlock(lock: &wq_pool_attach_mutex);
4017
4018 if (pool->detach_completion)
4019 wait_for_completion(pool->detach_completion);
4020
4021 /* shut down the timers */
4022 del_timer_sync(timer: &pool->idle_timer);
4023 cancel_work_sync(&pool->idle_cull_work);
4024 del_timer_sync(timer: &pool->mayday_timer);
4025
4026 /* RCU protected to allow dereferences from get_work_pool() */
4027 call_rcu(head: &pool->rcu, func: rcu_free_pool);
4028}
4029
4030/**
4031 * get_unbound_pool - get a worker_pool with the specified attributes
4032 * @attrs: the attributes of the worker_pool to get
4033 *
4034 * Obtain a worker_pool which has the same attributes as @attrs, bump the
4035 * reference count and return it. If there already is a matching
4036 * worker_pool, it will be used; otherwise, this function attempts to
4037 * create a new one.
4038 *
4039 * Should be called with wq_pool_mutex held.
4040 *
4041 * Return: On success, a worker_pool with the same attributes as @attrs.
4042 * On failure, %NULL.
4043 */
4044static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
4045{
4046 struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_NUMA];
4047 u32 hash = wqattrs_hash(attrs);
4048 struct worker_pool *pool;
4049 int pod, node = NUMA_NO_NODE;
4050
4051 lockdep_assert_held(&wq_pool_mutex);
4052
4053 /* do we already have a matching pool? */
4054 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
4055 if (wqattrs_equal(a: pool->attrs, b: attrs)) {
4056 pool->refcnt++;
4057 return pool;
4058 }
4059 }
4060
4061 /* If __pod_cpumask is contained inside a NUMA pod, that's our node */
4062 for (pod = 0; pod < pt->nr_pods; pod++) {
4063 if (cpumask_subset(src1p: attrs->__pod_cpumask, src2p: pt->pod_cpus[pod])) {
4064 node = pt->pod_node[pod];
4065 break;
4066 }
4067 }
4068
4069 /* nope, create a new one */
4070 pool = kzalloc_node(size: sizeof(*pool), GFP_KERNEL, node);
4071 if (!pool || init_worker_pool(pool) < 0)
4072 goto fail;
4073
4074 pool->node = node;
4075 copy_workqueue_attrs(to: pool->attrs, from: attrs);
4076 wqattrs_clear_for_pool(attrs: pool->attrs);
4077
4078 if (worker_pool_assign_id(pool) < 0)
4079 goto fail;
4080
4081 /* create and start the initial worker */
4082 if (wq_online && !create_worker(pool))
4083 goto fail;
4084
4085 /* install */
4086 hash_add(unbound_pool_hash, &pool->hash_node, hash);
4087
4088 return pool;
4089fail:
4090 if (pool)
4091 put_unbound_pool(pool);
4092 return NULL;
4093}
4094
4095static void rcu_free_pwq(struct rcu_head *rcu)
4096{
4097 kmem_cache_free(s: pwq_cache,
4098 container_of(rcu, struct pool_workqueue, rcu));
4099}
4100
4101/*
4102 * Scheduled on pwq_release_worker by put_pwq() when an unbound pwq hits zero
4103 * refcnt and needs to be destroyed.
4104 */
4105static void pwq_release_workfn(struct kthread_work *work)
4106{
4107 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
4108 release_work);
4109 struct workqueue_struct *wq = pwq->wq;
4110 struct worker_pool *pool = pwq->pool;
4111 bool is_last = false;
4112
4113 /*
4114 * When @pwq is not linked, it doesn't hold any reference to the
4115 * @wq, and @wq is invalid to access.
4116 */
4117 if (!list_empty(head: &pwq->pwqs_node)) {
4118 mutex_lock(&wq->mutex);
4119 list_del_rcu(entry: &pwq->pwqs_node);
4120 is_last = list_empty(head: &wq->pwqs);
4121 mutex_unlock(lock: &wq->mutex);
4122 }
4123
4124 if (wq->flags & WQ_UNBOUND) {
4125 mutex_lock(&wq_pool_mutex);
4126 put_unbound_pool(pool);
4127 mutex_unlock(lock: &wq_pool_mutex);
4128 }
4129
4130 call_rcu(head: &pwq->rcu, func: rcu_free_pwq);
4131
4132 /*
4133 * If we're the last pwq going away, @wq is already dead and no one
4134 * is gonna access it anymore. Schedule RCU free.
4135 */
4136 if (is_last) {
4137 wq_unregister_lockdep(wq);
4138 call_rcu(head: &wq->rcu, func: rcu_free_wq);
4139 }
4140}
4141
4142/**
4143 * pwq_adjust_max_active - update a pwq's max_active to the current setting
4144 * @pwq: target pool_workqueue
4145 *
4146 * If @pwq isn't freezing, set @pwq->max_active to the associated
4147 * workqueue's saved_max_active and activate inactive work items
4148 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
4149 */
4150static void pwq_adjust_max_active(struct pool_workqueue *pwq)
4151{
4152 struct workqueue_struct *wq = pwq->wq;
4153 bool freezable = wq->flags & WQ_FREEZABLE;
4154 unsigned long flags;
4155
4156 /* for @wq->saved_max_active */
4157 lockdep_assert_held(&wq->mutex);
4158
4159 /* fast exit for non-freezable wqs */
4160 if (!freezable && pwq->max_active == wq->saved_max_active)
4161 return;
4162
4163 /* this function can be called during early boot w/ irq disabled */
4164 raw_spin_lock_irqsave(&pwq->pool->lock, flags);
4165
4166 /*
4167 * During [un]freezing, the caller is responsible for ensuring that
4168 * this function is called at least once after @workqueue_freezing
4169 * is updated and visible.
4170 */
4171 if (!freezable || !workqueue_freezing) {
4172 pwq->max_active = wq->saved_max_active;
4173
4174 while (!list_empty(head: &pwq->inactive_works) &&
4175 pwq->nr_active < pwq->max_active)
4176 pwq_activate_first_inactive(pwq);
4177
4178 kick_pool(pool: pwq->pool);
4179 } else {
4180 pwq->max_active = 0;
4181 }
4182
4183 raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
4184}
4185
4186/* initialize newly allocated @pwq which is associated with @wq and @pool */
4187static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
4188 struct worker_pool *pool)
4189{
4190 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
4191
4192 memset(pwq, 0, sizeof(*pwq));
4193
4194 pwq->pool = pool;
4195 pwq->wq = wq;
4196 pwq->flush_color = -1;
4197 pwq->refcnt = 1;
4198 INIT_LIST_HEAD(list: &pwq->inactive_works);
4199 INIT_LIST_HEAD(list: &pwq->pwqs_node);
4200 INIT_LIST_HEAD(list: &pwq->mayday_node);
4201 kthread_init_work(&pwq->release_work, pwq_release_workfn);
4202}
4203
4204/* sync @pwq with the current state of its associated wq and link it */
4205static void link_pwq(struct pool_workqueue *pwq)
4206{
4207 struct workqueue_struct *wq = pwq->wq;
4208
4209 lockdep_assert_held(&wq->mutex);
4210
4211 /* may be called multiple times, ignore if already linked */
4212 if (!list_empty(head: &pwq->pwqs_node))
4213 return;
4214
4215 /* set the matching work_color */
4216 pwq->work_color = wq->work_color;
4217
4218 /* sync max_active to the current setting */
4219 pwq_adjust_max_active(pwq);
4220
4221 /* link in @pwq */
4222 list_add_rcu(new: &pwq->pwqs_node, head: &wq->pwqs);
4223}
4224
4225/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
4226static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
4227 const struct workqueue_attrs *attrs)
4228{
4229 struct worker_pool *pool;
4230 struct pool_workqueue *pwq;
4231
4232 lockdep_assert_held(&wq_pool_mutex);
4233
4234 pool = get_unbound_pool(attrs);
4235 if (!pool)
4236 return NULL;
4237
4238 pwq = kmem_cache_alloc_node(s: pwq_cache, GFP_KERNEL, node: pool->node);
4239 if (!pwq) {
4240 put_unbound_pool(pool);
4241 return NULL;
4242 }
4243
4244 init_pwq(pwq, wq, pool);
4245 return pwq;
4246}
4247
4248/**
4249 * wq_calc_pod_cpumask - calculate a wq_attrs' cpumask for a pod
4250 * @attrs: the wq_attrs of the default pwq of the target workqueue
4251 * @cpu: the target CPU
4252 * @cpu_going_down: if >= 0, the CPU to consider as offline
4253 *
4254 * Calculate the cpumask a workqueue with @attrs should use on @pod. If
4255 * @cpu_going_down is >= 0, that cpu is considered offline during calculation.
4256 * The result is stored in @attrs->__pod_cpumask.
4257 *
4258 * If pod affinity is not enabled, @attrs->cpumask is always used. If enabled
4259 * and @pod has online CPUs requested by @attrs, the returned cpumask is the
4260 * intersection of the possible CPUs of @pod and @attrs->cpumask.
4261 *
4262 * The caller is responsible for ensuring that the cpumask of @pod stays stable.
4263 */
4264static void wq_calc_pod_cpumask(struct workqueue_attrs *attrs, int cpu,
4265 int cpu_going_down)
4266{
4267 const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
4268 int pod = pt->cpu_pod[cpu];
4269
4270 /* does @pod have any online CPUs @attrs wants? */
4271 cpumask_and(dstp: attrs->__pod_cpumask, src1p: pt->pod_cpus[pod], src2p: attrs->cpumask);
4272 cpumask_and(dstp: attrs->__pod_cpumask, src1p: attrs->__pod_cpumask, cpu_online_mask);
4273 if (cpu_going_down >= 0)
4274 cpumask_clear_cpu(cpu: cpu_going_down, dstp: attrs->__pod_cpumask);
4275
4276 if (cpumask_empty(srcp: attrs->__pod_cpumask)) {
4277 cpumask_copy(dstp: attrs->__pod_cpumask, srcp: attrs->cpumask);
4278 return;
4279 }
4280
4281 /* yeap, return possible CPUs in @pod that @attrs wants */
4282 cpumask_and(dstp: attrs->__pod_cpumask, src1p: attrs->cpumask, src2p: pt->pod_cpus[pod]);
4283
4284 if (cpumask_empty(srcp: attrs->__pod_cpumask))
4285 pr_warn_once("WARNING: workqueue cpumask: online intersect > "
4286 "possible intersect\n");
4287}
4288
4289/* install @pwq into @wq's cpu_pwq and return the old pwq */
4290static struct pool_workqueue *install_unbound_pwq(struct workqueue_struct *wq,
4291 int cpu, struct pool_workqueue *pwq)
4292{
4293 struct pool_workqueue *old_pwq;
4294
4295 lockdep_assert_held(&wq_pool_mutex);
4296 lockdep_assert_held(&wq->mutex);
4297
4298 /* link_pwq() can handle duplicate calls */
4299 link_pwq(pwq);
4300
4301 old_pwq = rcu_access_pointer(*per_cpu_ptr(wq->cpu_pwq, cpu));
4302 rcu_assign_pointer(*per_cpu_ptr(wq->cpu_pwq, cpu), pwq);
4303 return old_pwq;
4304}
4305
4306/* context to store the prepared attrs & pwqs before applying */
4307struct apply_wqattrs_ctx {
4308 struct workqueue_struct *wq; /* target workqueue */
4309 struct workqueue_attrs *attrs; /* attrs to apply */
4310 struct list_head list; /* queued for batching commit */
4311 struct pool_workqueue *dfl_pwq;
4312 struct pool_workqueue *pwq_tbl[];
4313};
4314
4315/* free the resources after success or abort */
4316static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
4317{
4318 if (ctx) {
4319 int cpu;
4320
4321 for_each_possible_cpu(cpu)
4322 put_pwq_unlocked(pwq: ctx->pwq_tbl[cpu]);
4323 put_pwq_unlocked(pwq: ctx->dfl_pwq);
4324
4325 free_workqueue_attrs(attrs: ctx->attrs);
4326
4327 kfree(objp: ctx);
4328 }
4329}
4330
4331/* allocate the attrs and pwqs for later installation */
4332static struct apply_wqattrs_ctx *
4333apply_wqattrs_prepare(struct workqueue_struct *wq,
4334 const struct workqueue_attrs *attrs,
4335 const cpumask_var_t unbound_cpumask)
4336{
4337 struct apply_wqattrs_ctx *ctx;
4338 struct workqueue_attrs *new_attrs;
4339 int cpu;
4340
4341 lockdep_assert_held(&wq_pool_mutex);
4342
4343 if (WARN_ON(attrs->affn_scope < 0 ||
4344 attrs->affn_scope >= WQ_AFFN_NR_TYPES))
4345 return ERR_PTR(error: -EINVAL);
4346
4347 ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_cpu_ids), GFP_KERNEL);
4348
4349 new_attrs = alloc_workqueue_attrs();
4350 if (!ctx || !new_attrs)
4351 goto out_free;
4352
4353 /*
4354 * If something goes wrong during CPU up/down, we'll fall back to
4355 * the default pwq covering whole @attrs->cpumask. Always create
4356 * it even if we don't use it immediately.
4357 */
4358 copy_workqueue_attrs(to: new_attrs, from: attrs);
4359 wqattrs_actualize_cpumask(attrs: new_attrs, unbound_cpumask);
4360 cpumask_copy(dstp: new_attrs->__pod_cpumask, srcp: new_attrs->cpumask);
4361 ctx->dfl_pwq = alloc_unbound_pwq(wq, attrs: new_attrs);
4362 if (!ctx->dfl_pwq)
4363 goto out_free;
4364
4365 for_each_possible_cpu(cpu) {
4366 if (new_attrs->ordered) {
4367 ctx->dfl_pwq->refcnt++;
4368 ctx->pwq_tbl[cpu] = ctx->dfl_pwq;
4369 } else {
4370 wq_calc_pod_cpumask(attrs: new_attrs, cpu, cpu_going_down: -1);
4371 ctx->pwq_tbl[cpu] = alloc_unbound_pwq(wq, attrs: new_attrs);
4372 if (!ctx->pwq_tbl[cpu])
4373 goto out_free;
4374 }
4375 }
4376
4377 /* save the user configured attrs and sanitize it. */
4378 copy_workqueue_attrs(to: new_attrs, from: attrs);
4379 cpumask_and(dstp: new_attrs->cpumask, src1p: new_attrs->cpumask, cpu_possible_mask);
4380 cpumask_copy(dstp: new_attrs->__pod_cpumask, srcp: new_attrs->cpumask);
4381 ctx->attrs = new_attrs;
4382
4383 ctx->wq = wq;
4384 return ctx;
4385
4386out_free:
4387 free_workqueue_attrs(attrs: new_attrs);
4388 apply_wqattrs_cleanup(ctx);
4389 return ERR_PTR(error: -ENOMEM);
4390}
4391
4392/* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
4393static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
4394{
4395 int cpu;
4396
4397 /* all pwqs have been created successfully, let's install'em */
4398 mutex_lock(&ctx->wq->mutex);
4399
4400 copy_workqueue_attrs(to: ctx->wq->unbound_attrs, from: ctx->attrs);
4401
4402 /* save the previous pwq and install the new one */
4403 for_each_possible_cpu(cpu)
4404 ctx->pwq_tbl[cpu] = install_unbound_pwq(wq: ctx->wq, cpu,
4405 pwq: ctx->pwq_tbl[cpu]);
4406
4407 /* @dfl_pwq might not have been used, ensure it's linked */
4408 link_pwq(pwq: ctx->dfl_pwq);
4409 swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
4410
4411 mutex_unlock(lock: &ctx->wq->mutex);
4412}
4413
4414static void apply_wqattrs_lock(void)
4415{
4416 /* CPUs should stay stable across pwq creations and installations */
4417 cpus_read_lock();
4418 mutex_lock(&wq_pool_mutex);
4419}
4420
4421static void apply_wqattrs_unlock(void)
4422{
4423 mutex_unlock(lock: &wq_pool_mutex);
4424 cpus_read_unlock();
4425}
4426
4427static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
4428 const struct workqueue_attrs *attrs)
4429{
4430 struct apply_wqattrs_ctx *ctx;
4431
4432 /* only unbound workqueues can change attributes */
4433 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
4434 return -EINVAL;
4435
4436 /* creating multiple pwqs breaks ordering guarantee */
4437 if (!list_empty(head: &wq->pwqs)) {
4438 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4439 return -EINVAL;
4440
4441 wq->flags &= ~__WQ_ORDERED;
4442 }
4443
4444 ctx = apply_wqattrs_prepare(wq, attrs, unbound_cpumask: wq_unbound_cpumask);
4445 if (IS_ERR(ptr: ctx))
4446 return PTR_ERR(ptr: ctx);
4447
4448 /* the ctx has been prepared successfully, let's commit it */
4449 apply_wqattrs_commit(ctx);
4450 apply_wqattrs_cleanup(ctx);
4451
4452 return 0;
4453}
4454
4455/**
4456 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
4457 * @wq: the target workqueue
4458 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
4459 *
4460 * Apply @attrs to an unbound workqueue @wq. Unless disabled, this function maps
4461 * a separate pwq to each CPU pod with possibles CPUs in @attrs->cpumask so that
4462 * work items are affine to the pod it was issued on. Older pwqs are released as
4463 * in-flight work items finish. Note that a work item which repeatedly requeues
4464 * itself back-to-back will stay on its current pwq.
4465 *
4466 * Performs GFP_KERNEL allocations.
4467 *
4468 * Assumes caller has CPU hotplug read exclusion, i.e. cpus_read_lock().
4469 *
4470 * Return: 0 on success and -errno on failure.
4471 */
4472int apply_workqueue_attrs(struct workqueue_struct *wq,
4473 const struct workqueue_attrs *attrs)
4474{
4475 int ret;
4476
4477 lockdep_assert_cpus_held();
4478
4479 mutex_lock(&wq_pool_mutex);
4480 ret = apply_workqueue_attrs_locked(wq, attrs);
4481 mutex_unlock(lock: &wq_pool_mutex);
4482
4483 return ret;
4484}
4485
4486/**
4487 * wq_update_pod - update pod affinity of a wq for CPU hot[un]plug
4488 * @wq: the target workqueue
4489 * @cpu: the CPU to update pool association for
4490 * @hotplug_cpu: the CPU coming up or going down
4491 * @online: whether @cpu is coming up or going down
4492 *
4493 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
4494 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update pod affinity of
4495 * @wq accordingly.
4496 *
4497 *
4498 * If pod affinity can't be adjusted due to memory allocation failure, it falls
4499 * back to @wq->dfl_pwq which may not be optimal but is always correct.
4500 *
4501 * Note that when the last allowed CPU of a pod goes offline for a workqueue
4502 * with a cpumask spanning multiple pods, the workers which were already
4503 * executing the work items for the workqueue will lose their CPU affinity and
4504 * may execute on any CPU. This is similar to how per-cpu workqueues behave on
4505 * CPU_DOWN. If a workqueue user wants strict affinity, it's the user's
4506 * responsibility to flush the work item from CPU_DOWN_PREPARE.
4507 */
4508static void wq_update_pod(struct workqueue_struct *wq, int cpu,
4509 int hotplug_cpu, bool online)
4510{
4511 int off_cpu = online ? -1 : hotplug_cpu;
4512 struct pool_workqueue *old_pwq = NULL, *pwq;
4513 struct workqueue_attrs *target_attrs;
4514
4515 lockdep_assert_held(&wq_pool_mutex);
4516
4517 if (!(wq->flags & WQ_UNBOUND) || wq->unbound_attrs->ordered)
4518 return;
4519
4520 /*
4521 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
4522 * Let's use a preallocated one. The following buf is protected by
4523 * CPU hotplug exclusion.
4524 */
4525 target_attrs = wq_update_pod_attrs_buf;
4526
4527 copy_workqueue_attrs(to: target_attrs, from: wq->unbound_attrs);
4528 wqattrs_actualize_cpumask(attrs: target_attrs, unbound_cpumask: wq_unbound_cpumask);
4529
4530 /* nothing to do if the target cpumask matches the current pwq */
4531 wq_calc_pod_cpumask(attrs: target_attrs, cpu, cpu_going_down: off_cpu);
4532 pwq = rcu_dereference_protected(*per_cpu_ptr(wq->cpu_pwq, cpu),
4533 lockdep_is_held(&wq_pool_mutex));
4534 if (wqattrs_equal(a: target_attrs, b: pwq->pool->attrs))
4535 return;
4536
4537 /* create a new pwq */
4538 pwq = alloc_unbound_pwq(wq, attrs: target_attrs);
4539 if (!pwq) {
4540 pr_warn("workqueue: allocation failed while updating CPU pod affinity of \"%s\"\n",
4541 wq->name);
4542 goto use_dfl_pwq;
4543 }
4544
4545 /* Install the new pwq. */
4546 mutex_lock(&wq->mutex);
4547 old_pwq = install_unbound_pwq(wq, cpu, pwq);
4548 goto out_unlock;
4549
4550use_dfl_pwq:
4551 mutex_lock(&wq->mutex);
4552 raw_spin_lock_irq(&wq->dfl_pwq->pool->lock);
4553 get_pwq(pwq: wq->dfl_pwq);
4554 raw_spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4555 old_pwq = install_unbound_pwq(wq, cpu, pwq: wq->dfl_pwq);
4556out_unlock:
4557 mutex_unlock(lock: &wq->mutex);
4558 put_pwq_unlocked(pwq: old_pwq);
4559}
4560
4561static int alloc_and_link_pwqs(struct workqueue_struct *wq)
4562{
4563 bool highpri = wq->flags & WQ_HIGHPRI;
4564 int cpu, ret;
4565
4566 wq->cpu_pwq = alloc_percpu(struct pool_workqueue *);
4567 if (!wq->cpu_pwq)
4568 goto enomem;
4569
4570 if (!(wq->flags & WQ_UNBOUND)) {
4571 for_each_possible_cpu(cpu) {
4572 struct pool_workqueue **pwq_p =
4573 per_cpu_ptr(wq->cpu_pwq, cpu);
4574 struct worker_pool *pool =
4575 &(per_cpu_ptr(cpu_worker_pools, cpu)[highpri]);
4576
4577 *pwq_p = kmem_cache_alloc_node(s: pwq_cache, GFP_KERNEL,
4578 node: pool->node);
4579 if (!*pwq_p)
4580 goto enomem;
4581
4582 init_pwq(pwq: *pwq_p, wq, pool);
4583
4584 mutex_lock(&wq->mutex);
4585 link_pwq(pwq: *pwq_p);
4586 mutex_unlock(lock: &wq->mutex);
4587 }
4588 return 0;
4589 }
4590
4591 cpus_read_lock();
4592 if (wq->flags & __WQ_ORDERED) {
4593 ret = apply_workqueue_attrs(wq, attrs: ordered_wq_attrs[highpri]);
4594 /* there should only be single pwq for ordering guarantee */
4595 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
4596 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
4597 "ordering guarantee broken for workqueue %s\n", wq->name);
4598 } else {
4599 ret = apply_workqueue_attrs(wq, attrs: unbound_std_wq_attrs[highpri]);
4600 }
4601 cpus_read_unlock();
4602
4603 /* for unbound pwq, flush the pwq_release_worker ensures that the
4604 * pwq_release_workfn() completes before calling kfree(wq).
4605 */
4606 if (ret)
4607 kthread_flush_worker(worker: pwq_release_worker);
4608
4609 return ret;
4610
4611enomem:
4612 if (wq->cpu_pwq) {
4613 for_each_possible_cpu(cpu) {
4614 struct pool_workqueue *pwq = *per_cpu_ptr(wq->cpu_pwq, cpu);
4615
4616 if (pwq)
4617 kmem_cache_free(s: pwq_cache, objp: pwq);
4618 }
4619 free_percpu(pdata: wq->cpu_pwq);
4620 wq->cpu_pwq = NULL;
4621 }
4622 return -ENOMEM;
4623}
4624
4625static int wq_clamp_max_active(int max_active, unsigned int flags,
4626 const char *name)
4627{
4628 if (max_active < 1 || max_active > WQ_MAX_ACTIVE)
4629 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4630 max_active, name, 1, WQ_MAX_ACTIVE);
4631
4632 return clamp_val(max_active, 1, WQ_MAX_ACTIVE);
4633}
4634
4635/*
4636 * Workqueues which may be used during memory reclaim should have a rescuer
4637 * to guarantee forward progress.
4638 */
4639static int init_rescuer(struct workqueue_struct *wq)
4640{
4641 struct worker *rescuer;
4642 int ret;
4643
4644 if (!(wq->flags & WQ_MEM_RECLAIM))
4645 return 0;
4646
4647 rescuer = alloc_worker(NUMA_NO_NODE);
4648 if (!rescuer) {
4649 pr_err("workqueue: Failed to allocate a rescuer for wq \"%s\"\n",
4650 wq->name);
4651 return -ENOMEM;
4652 }
4653
4654 rescuer->rescue_wq = wq;
4655 rescuer->task = kthread_create(rescuer_thread, rescuer, "kworker/R-%s", wq->name);
4656 if (IS_ERR(ptr: rescuer->task)) {
4657 ret = PTR_ERR(ptr: rescuer->task);
4658 pr_err("workqueue: Failed to create a rescuer kthread for wq \"%s\": %pe",
4659 wq->name, ERR_PTR(ret));
4660 kfree(objp: rescuer);
4661 return ret;
4662 }
4663
4664 wq->rescuer = rescuer;
4665 kthread_bind_mask(k: rescuer->task, cpu_possible_mask);
4666 wake_up_process(tsk: rescuer->task);
4667
4668 return 0;
4669}
4670
4671__printf(1, 4)
4672struct workqueue_struct *alloc_workqueue(const char *fmt,
4673 unsigned int flags,
4674 int max_active, ...)
4675{
4676 va_list args;
4677 struct workqueue_struct *wq;
4678 struct pool_workqueue *pwq;
4679
4680 /*
4681 * Unbound && max_active == 1 used to imply ordered, which is no longer
4682 * the case on many machines due to per-pod pools. While
4683 * alloc_ordered_workqueue() is the right way to create an ordered
4684 * workqueue, keep the previous behavior to avoid subtle breakages.
4685 */
4686 if ((flags & WQ_UNBOUND) && max_active == 1)
4687 flags |= __WQ_ORDERED;
4688
4689 /* see the comment above the definition of WQ_POWER_EFFICIENT */
4690 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4691 flags |= WQ_UNBOUND;
4692
4693 /* allocate wq and format name */
4694 wq = kzalloc(size: sizeof(*wq), GFP_KERNEL);
4695 if (!wq)
4696 return NULL;
4697
4698 if (flags & WQ_UNBOUND) {
4699 wq->unbound_attrs = alloc_workqueue_attrs();
4700 if (!wq->unbound_attrs)
4701 goto err_free_wq;
4702 }
4703
4704 va_start(args, max_active);
4705 vsnprintf(buf: wq->name, size: sizeof(wq->name), fmt, args);
4706 va_end(args);
4707
4708 max_active = max_active ?: WQ_DFL_ACTIVE;
4709 max_active = wq_clamp_max_active(max_active, flags, name: wq->name);
4710
4711 /* init wq */
4712 wq->flags = flags;
4713 wq->saved_max_active = max_active;
4714 mutex_init(&wq->mutex);
4715 atomic_set(v: &wq->nr_pwqs_to_flush, i: 0);
4716 INIT_LIST_HEAD(list: &wq->pwqs);
4717 INIT_LIST_HEAD(list: &wq->flusher_queue);
4718 INIT_LIST_HEAD(list: &wq->flusher_overflow);
4719 INIT_LIST_HEAD(list: &wq->maydays);
4720
4721 wq_init_lockdep(wq);
4722 INIT_LIST_HEAD(list: &wq->list);
4723
4724 if (alloc_and_link_pwqs(wq) < 0)
4725 goto err_unreg_lockdep;
4726
4727 if (wq_online && init_rescuer(wq) < 0)
4728 goto err_destroy;
4729
4730 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4731 goto err_destroy;
4732
4733 /*
4734 * wq_pool_mutex protects global freeze state and workqueues list.
4735 * Grab it, adjust max_active and add the new @wq to workqueues
4736 * list.
4737 */
4738 mutex_lock(&wq_pool_mutex);
4739
4740 mutex_lock(&wq->mutex);
4741 for_each_pwq(pwq, wq)
4742 pwq_adjust_max_active(pwq);
4743 mutex_unlock(lock: &wq->mutex);
4744
4745 list_add_tail_rcu(new: &wq->list, head: &workqueues);
4746
4747 mutex_unlock(lock: &wq_pool_mutex);
4748
4749 return wq;
4750
4751err_unreg_lockdep:
4752 wq_unregister_lockdep(wq);
4753 wq_free_lockdep(wq);
4754err_free_wq:
4755 free_workqueue_attrs(attrs: wq->unbound_attrs);
4756 kfree(objp: wq);
4757 return NULL;
4758err_destroy:
4759 destroy_workqueue(wq);
4760 return NULL;
4761}
4762EXPORT_SYMBOL_GPL(alloc_workqueue);
4763
4764static bool pwq_busy(struct pool_workqueue *pwq)
4765{
4766 int i;
4767
4768 for (i = 0; i < WORK_NR_COLORS; i++)
4769 if (pwq->nr_in_flight[i])
4770 return true;
4771
4772 if ((pwq != pwq->wq->dfl_pwq) && (pwq->refcnt > 1))
4773 return true;
4774 if (pwq->nr_active || !list_empty(head: &pwq->inactive_works))
4775 return true;
4776
4777 return false;
4778}
4779
4780/**
4781 * destroy_workqueue - safely terminate a workqueue
4782 * @wq: target workqueue
4783 *
4784 * Safely destroy a workqueue. All work currently pending will be done first.
4785 */
4786void destroy_workqueue(struct workqueue_struct *wq)
4787{
4788 struct pool_workqueue *pwq;
4789 int cpu;
4790
4791 /*
4792 * Remove it from sysfs first so that sanity check failure doesn't
4793 * lead to sysfs name conflicts.
4794 */
4795 workqueue_sysfs_unregister(wq);
4796
4797 /* mark the workqueue destruction is in progress */
4798 mutex_lock(&wq->mutex);
4799 wq->flags |= __WQ_DESTROYING;
4800 mutex_unlock(lock: &wq->mutex);
4801
4802 /* drain it before proceeding with destruction */
4803 drain_workqueue(wq);
4804
4805 /* kill rescuer, if sanity checks fail, leave it w/o rescuer */
4806 if (wq->rescuer) {
4807 struct worker *rescuer = wq->rescuer;
4808
4809 /* this prevents new queueing */
4810 raw_spin_lock_irq(&wq_mayday_lock);
4811 wq->rescuer = NULL;
4812 raw_spin_unlock_irq(&wq_mayday_lock);
4813
4814 /* rescuer will empty maydays list before exiting */
4815 kthread_stop(k: rescuer->task);
4816 kfree(objp: rescuer);
4817 }
4818
4819 /*
4820 * Sanity checks - grab all the locks so that we wait for all
4821 * in-flight operations which may do put_pwq().
4822 */
4823 mutex_lock(&wq_pool_mutex);
4824 mutex_lock(&wq->mutex);
4825 for_each_pwq(pwq, wq) {
4826 raw_spin_lock_irq(&pwq->pool->lock);
4827 if (WARN_ON(pwq_busy(pwq))) {
4828 pr_warn("%s: %s has the following busy pwq\n",
4829 __func__, wq->name);
4830 show_pwq(pwq);
4831 raw_spin_unlock_irq(&pwq->pool->lock);
4832 mutex_unlock(lock: &wq->mutex);
4833 mutex_unlock(lock: &wq_pool_mutex);
4834 show_one_workqueue(wq);
4835 return;
4836 }
4837 raw_spin_unlock_irq(&pwq->pool->lock);
4838 }
4839 mutex_unlock(lock: &wq->mutex);
4840
4841 /*
4842 * wq list is used to freeze wq, remove from list after
4843 * flushing is complete in case freeze races us.
4844 */
4845 list_del_rcu(entry: &wq->list);
4846 mutex_unlock(lock: &wq_pool_mutex);
4847
4848 /*
4849 * We're the sole accessor of @wq. Directly access cpu_pwq and dfl_pwq
4850 * to put the base refs. @wq will be auto-destroyed from the last
4851 * pwq_put. RCU read lock prevents @wq from going away from under us.
4852 */
4853 rcu_read_lock();
4854
4855 for_each_possible_cpu(cpu) {
4856 pwq = rcu_access_pointer(*per_cpu_ptr(wq->cpu_pwq, cpu));
4857 RCU_INIT_POINTER(*per_cpu_ptr(wq->cpu_pwq, cpu), NULL);
4858 put_pwq_unlocked(pwq);
4859 }
4860
4861 put_pwq_unlocked(pwq: wq->dfl_pwq);
4862 wq->dfl_pwq = NULL;
4863
4864 rcu_read_unlock();
4865}
4866EXPORT_SYMBOL_GPL(destroy_workqueue);
4867
4868/**
4869 * workqueue_set_max_active - adjust max_active of a workqueue
4870 * @wq: target workqueue
4871 * @max_active: new max_active value.
4872 *
4873 * Set max_active of @wq to @max_active.
4874 *
4875 * CONTEXT:
4876 * Don't call from IRQ context.
4877 */
4878void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4879{
4880 struct pool_workqueue *pwq;
4881
4882 /* disallow meddling with max_active for ordered workqueues */
4883 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4884 return;
4885
4886 max_active = wq_clamp_max_active(max_active, flags: wq->flags, name: wq->name);
4887
4888 mutex_lock(&wq->mutex);
4889
4890 wq->flags &= ~__WQ_ORDERED;
4891 wq->saved_max_active = max_active;
4892
4893 for_each_pwq(pwq, wq)
4894 pwq_adjust_max_active(pwq);
4895
4896 mutex_unlock(lock: &wq->mutex);
4897}
4898EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4899
4900/**
4901 * current_work - retrieve %current task's work struct
4902 *
4903 * Determine if %current task is a workqueue worker and what it's working on.
4904 * Useful to find out the context that the %current task is running in.
4905 *
4906 * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
4907 */
4908struct work_struct *current_work(void)
4909{
4910 struct worker *worker = current_wq_worker();
4911
4912 return worker ? worker->current_work : NULL;
4913}
4914EXPORT_SYMBOL(current_work);
4915
4916/**
4917 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4918 *
4919 * Determine whether %current is a workqueue rescuer. Can be used from
4920 * work functions to determine whether it's being run off the rescuer task.
4921 *
4922 * Return: %true if %current is a workqueue rescuer. %false otherwise.
4923 */
4924bool current_is_workqueue_rescuer(void)
4925{
4926 struct worker *worker = current_wq_worker();
4927
4928 return worker && worker->rescue_wq;
4929}
4930
4931/**
4932 * workqueue_congested - test whether a workqueue is congested
4933 * @cpu: CPU in question
4934 * @wq: target workqueue
4935 *
4936 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4937 * no synchronization around this function and the test result is
4938 * unreliable and only useful as advisory hints or for debugging.
4939 *
4940 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4941 *
4942 * With the exception of ordered workqueues, all workqueues have per-cpu
4943 * pool_workqueues, each with its own congested state. A workqueue being
4944 * congested on one CPU doesn't mean that the workqueue is contested on any
4945 * other CPUs.
4946 *
4947 * Return:
4948 * %true if congested, %false otherwise.
4949 */
4950bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4951{
4952 struct pool_workqueue *pwq;
4953 bool ret;
4954
4955 rcu_read_lock();
4956 preempt_disable();
4957
4958 if (cpu == WORK_CPU_UNBOUND)
4959 cpu = smp_processor_id();
4960
4961 pwq = *per_cpu_ptr(wq->cpu_pwq, cpu);
4962 ret = !list_empty(head: &pwq->inactive_works);
4963
4964 preempt_enable();
4965 rcu_read_unlock();
4966
4967 return ret;
4968}
4969EXPORT_SYMBOL_GPL(workqueue_congested);
4970
4971/**
4972 * work_busy - test whether a work is currently pending or running
4973 * @work: the work to be tested
4974 *
4975 * Test whether @work is currently pending or running. There is no
4976 * synchronization around this function and the test result is
4977 * unreliable and only useful as advisory hints or for debugging.
4978 *
4979 * Return:
4980 * OR'd bitmask of WORK_BUSY_* bits.
4981 */
4982unsigned int work_busy(struct work_struct *work)
4983{
4984 struct worker_pool *pool;
4985 unsigned long flags;
4986 unsigned int ret = 0;
4987
4988 if (work_pending(work))
4989 ret |= WORK_BUSY_PENDING;
4990
4991 rcu_read_lock();
4992 pool = get_work_pool(work);
4993 if (pool) {
4994 raw_spin_lock_irqsave(&pool->lock, flags);
4995 if (find_worker_executing_work(pool, work))
4996 ret |= WORK_BUSY_RUNNING;
4997 raw_spin_unlock_irqrestore(&pool->lock, flags);
4998 }
4999 rcu_read_unlock();
5000
5001 return ret;
5002}
5003EXPORT_SYMBOL_GPL(work_busy);
5004
5005/**
5006 * set_worker_desc - set description for the current work item
5007 * @fmt: printf-style format string
5008 * @...: arguments for the format string
5009 *
5010 * This function can be called by a running work function to describe what
5011 * the work item is about. If the worker task gets dumped, this
5012 * information will be printed out together to help debugging. The
5013 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
5014 */
5015void set_worker_desc(const char *fmt, ...)
5016{
5017 struct worker *worker = current_wq_worker();
5018 va_list args;
5019
5020 if (worker) {
5021 va_start(args, fmt);
5022 vsnprintf(buf: worker->desc, size: sizeof(worker->desc), fmt, args);
5023 va_end(args);
5024 }
5025}
5026EXPORT_SYMBOL_GPL(set_worker_desc);
5027
5028/**
5029 * print_worker_info - print out worker information and description
5030 * @log_lvl: the log level to use when printing
5031 * @task: target task
5032 *
5033 * If @task is a worker and currently executing a work item, print out the
5034 * name of the workqueue being serviced and worker description set with
5035 * set_worker_desc() by the currently executing work item.
5036 *
5037 * This function can be safely called on any task as long as the
5038 * task_struct itself is accessible. While safe, this function isn't
5039 * synchronized and may print out mixups or garbages of limited length.
5040 */
5041void print_worker_info(const char *log_lvl, struct task_struct *task)
5042{
5043 work_func_t *fn = NULL;
5044 char name[WQ_NAME_LEN] = { };
5045 char desc[WORKER_DESC_LEN] = { };
5046 struct pool_workqueue *pwq = NULL;
5047 struct workqueue_struct *wq = NULL;
5048 struct worker *worker;
5049
5050 if (!(task->flags & PF_WQ_WORKER))
5051 return;
5052
5053 /*
5054 * This function is called without any synchronization and @task
5055 * could be in any state. Be careful with dereferences.
5056 */
5057 worker = kthread_probe_data(k: task);
5058
5059 /*
5060 * Carefully copy the associated workqueue's workfn, name and desc.
5061 * Keep the original last '\0' in case the original is garbage.
5062 */
5063 copy_from_kernel_nofault(dst: &fn, src: &worker->current_func, size: sizeof(fn));
5064 copy_from_kernel_nofault(dst: &pwq, src: &worker->current_pwq, size: sizeof(pwq));
5065 copy_from_kernel_nofault(dst: &wq, src: &pwq->wq, size: sizeof(wq));
5066 copy_from_kernel_nofault(dst: name, src: wq->name, size: sizeof(name) - 1);
5067 copy_from_kernel_nofault(dst: desc, src: worker->desc, size: sizeof(desc) - 1);
5068
5069 if (fn || name[0] || desc[0]) {
5070 printk("%sWorkqueue: %s %ps", log_lvl, name, fn);
5071 if (strcmp(name, desc))
5072 pr_cont(" (%s)", desc);
5073 pr_cont("\n");
5074 }
5075}
5076
5077static void pr_cont_pool_info(struct worker_pool *pool)
5078{
5079 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
5080 if (pool->node != NUMA_NO_NODE)
5081 pr_cont(" node=%d", pool->node);
5082 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
5083}
5084
5085struct pr_cont_work_struct {
5086 bool comma;
5087 work_func_t func;
5088 long ctr;
5089};
5090
5091static void pr_cont_work_flush(bool comma, work_func_t func, struct pr_cont_work_struct *pcwsp)
5092{
5093 if (!pcwsp->ctr)
5094 goto out_record;
5095 if (func == pcwsp->func) {
5096 pcwsp->ctr++;
5097 return;
5098 }
5099 if (pcwsp->ctr == 1)
5100 pr_cont("%s %ps", pcwsp->comma ? "," : "", pcwsp->func);
5101 else
5102 pr_cont("%s %ld*%ps", pcwsp->comma ? "," : "", pcwsp->ctr, pcwsp->func);
5103 pcwsp->ctr = 0;
5104out_record:
5105 if ((long)func == -1L)
5106 return;
5107 pcwsp->comma = comma;
5108 pcwsp->func = func;
5109 pcwsp->ctr = 1;
5110}
5111
5112static void pr_cont_work(bool comma, struct work_struct *work, struct pr_cont_work_struct *pcwsp)
5113{
5114 if (work->func == wq_barrier_func) {
5115 struct wq_barrier *barr;
5116
5117 barr = container_of(work, struct wq_barrier, work);
5118
5119 pr_cont_work_flush(comma, func: (work_func_t)-1, pcwsp);
5120 pr_cont("%s BAR(%d)", comma ? "," : "",
5121 task_pid_nr(barr->task));
5122 } else {
5123 if (!comma)
5124 pr_cont_work_flush(comma, func: (work_func_t)-1, pcwsp);
5125 pr_cont_work_flush(comma, func: work->func, pcwsp);
5126 }
5127}
5128
5129static void show_pwq(struct pool_workqueue *pwq)
5130{
5131 struct pr_cont_work_struct pcws = { .ctr = 0, };
5132 struct worker_pool *pool = pwq->pool;
5133 struct work_struct *work;
5134 struct worker *worker;
5135 bool has_in_flight = false, has_pending = false;
5136 int bkt;
5137
5138 pr_info(" pwq %d:", pool->id);
5139 pr_cont_pool_info(pool);
5140
5141 pr_cont(" active=%d/%d refcnt=%d%s\n",
5142 pwq->nr_active, pwq->max_active, pwq->refcnt,
5143 !list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
5144
5145 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
5146 if (worker->current_pwq == pwq) {
5147 has_in_flight = true;
5148 break;
5149 }
5150 }
5151 if (has_in_flight) {
5152 bool comma = false;
5153
5154 pr_info(" in-flight:");
5155 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
5156 if (worker->current_pwq != pwq)
5157 continue;
5158
5159 pr_cont("%s %d%s:%ps", comma ? "," : "",
5160 task_pid_nr(worker->task),
5161 worker->rescue_wq ? "(RESCUER)" : "",
5162 worker->current_func);
5163 list_for_each_entry(work, &worker->scheduled, entry)
5164 pr_cont_work(comma: false, work, pcwsp: &pcws);
5165 pr_cont_work_flush(comma, func: (work_func_t)-1L, pcwsp: &pcws);
5166 comma = true;
5167 }
5168 pr_cont("\n");
5169 }
5170
5171 list_for_each_entry(work, &pool->worklist, entry) {
5172 if (get_work_pwq(work) == pwq) {
5173 has_pending = true;
5174 break;
5175 }
5176 }
5177 if (has_pending) {
5178 bool comma = false;
5179
5180 pr_info(" pending:");
5181 list_for_each_entry(work, &pool->worklist, entry) {
5182 if (get_work_pwq(work) != pwq)
5183 continue;
5184
5185 pr_cont_work(comma, work, pcwsp: &pcws);
5186 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
5187 }
5188 pr_cont_work_flush(comma, func: (work_func_t)-1L, pcwsp: &pcws);
5189 pr_cont("\n");
5190 }
5191
5192 if (!list_empty(head: &pwq->inactive_works)) {
5193 bool comma = false;
5194
5195 pr_info(" inactive:");
5196 list_for_each_entry(work, &pwq->inactive_works, entry) {
5197 pr_cont_work(comma, work, pcwsp: &pcws);
5198 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
5199 }
5200 pr_cont_work_flush(comma, func: (work_func_t)-1L, pcwsp: &pcws);
5201 pr_cont("\n");
5202 }
5203}
5204
5205/**
5206 * show_one_workqueue - dump state of specified workqueue
5207 * @wq: workqueue whose state will be printed
5208 */
5209void show_one_workqueue(struct workqueue_struct *wq)
5210{
5211 struct pool_workqueue *pwq;
5212 bool idle = true;
5213 unsigned long flags;
5214
5215 for_each_pwq(pwq, wq) {
5216 if (pwq->nr_active || !list_empty(head: &pwq->inactive_works)) {
5217 idle = false;
5218 break;
5219 }
5220 }
5221 if (idle) /* Nothing to print for idle workqueue */
5222 return;
5223
5224 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
5225
5226 for_each_pwq(pwq, wq) {
5227 raw_spin_lock_irqsave(&pwq->pool->lock, flags);
5228 if (pwq->nr_active || !list_empty(head: &pwq->inactive_works)) {
5229 /*
5230 * Defer printing to avoid deadlocks in console
5231 * drivers that queue work while holding locks
5232 * also taken in their write paths.
5233 */
5234 printk_deferred_enter();
5235 show_pwq(pwq);
5236 printk_deferred_exit();
5237 }
5238 raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
5239 /*
5240 * We could be printing a lot from atomic context, e.g.
5241 * sysrq-t -> show_all_workqueues(). Avoid triggering
5242 * hard lockup.
5243 */
5244 touch_nmi_watchdog();
5245 }
5246
5247}
5248
5249/**
5250 * show_one_worker_pool - dump state of specified worker pool
5251 * @pool: worker pool whose state will be printed
5252 */
5253static void show_one_worker_pool(struct worker_pool *pool)
5254{
5255 struct worker *worker;
5256 bool first = true;
5257 unsigned long flags;
5258 unsigned long hung = 0;
5259
5260 raw_spin_lock_irqsave(&pool->lock, flags);
5261 if (pool->nr_workers == pool->nr_idle)
5262 goto next_pool;
5263
5264 /* How long the first pending work is waiting for a worker. */
5265 if (!list_empty(head: &pool->worklist))
5266 hung = jiffies_to_msecs(j: jiffies - pool->watchdog_ts) / 1000;
5267
5268 /*
5269 * Defer printing to avoid deadlocks in console drivers that
5270 * queue work while holding locks also taken in their write
5271 * paths.
5272 */
5273 printk_deferred_enter();
5274 pr_info("pool %d:", pool->id);
5275 pr_cont_pool_info(pool);
5276 pr_cont(" hung=%lus workers=%d", hung, pool->nr_workers);
5277 if (pool->manager)
5278 pr_cont(" manager: %d",
5279 task_pid_nr(pool->manager->task));
5280 list_for_each_entry(worker, &pool->idle_list, entry) {
5281 pr_cont(" %s%d", first ? "idle: " : "",
5282 task_pid_nr(worker->task));
5283 first = false;
5284 }
5285 pr_cont("\n");
5286 printk_deferred_exit();
5287next_pool:
5288 raw_spin_unlock_irqrestore(&pool->lock, flags);
5289 /*
5290 * We could be printing a lot from atomic context, e.g.
5291 * sysrq-t -> show_all_workqueues(). Avoid triggering
5292 * hard lockup.
5293 */
5294 touch_nmi_watchdog();
5295
5296}
5297
5298/**
5299 * show_all_workqueues - dump workqueue state
5300 *
5301 * Called from a sysrq handler and prints out all busy workqueues and pools.
5302 */
5303void show_all_workqueues(void)
5304{
5305 struct workqueue_struct *wq;
5306 struct worker_pool *pool;
5307 int pi;
5308
5309 rcu_read_lock();
5310
5311 pr_info("Showing busy workqueues and worker pools:\n");
5312
5313 list_for_each_entry_rcu(wq, &workqueues, list)
5314 show_one_workqueue(wq);
5315
5316 for_each_pool(pool, pi)
5317 show_one_worker_pool(pool);
5318
5319 rcu_read_unlock();
5320}
5321
5322/**
5323 * show_freezable_workqueues - dump freezable workqueue state
5324 *
5325 * Called from try_to_freeze_tasks() and prints out all freezable workqueues
5326 * still busy.
5327 */
5328void show_freezable_workqueues(void)
5329{
5330 struct workqueue_struct *wq;
5331
5332 rcu_read_lock();
5333
5334 pr_info("Showing freezable workqueues that are still busy:\n");
5335
5336 list_for_each_entry_rcu(wq, &workqueues, list) {
5337 if (!(wq->flags & WQ_FREEZABLE))
5338 continue;
5339 show_one_workqueue(wq);
5340 }
5341
5342 rcu_read_unlock();
5343}
5344
5345/* used to show worker information through /proc/PID/{comm,stat,status} */
5346void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
5347{
5348 int off;
5349
5350 /* always show the actual comm */
5351 off = strscpy(p: buf, q: task->comm, size);
5352 if (off < 0)
5353 return;
5354
5355 /* stabilize PF_WQ_WORKER and worker pool association */
5356 mutex_lock(&wq_pool_attach_mutex);
5357
5358 if (task->flags & PF_WQ_WORKER) {
5359 struct worker *worker = kthread_data(k: task);
5360 struct worker_pool *pool = worker->pool;
5361
5362 if (pool) {
5363 raw_spin_lock_irq(&pool->lock);
5364 /*
5365 * ->desc tracks information (wq name or
5366 * set_worker_desc()) for the latest execution. If
5367 * current, prepend '+', otherwise '-'.
5368 */
5369 if (worker->desc[0] != '\0') {
5370 if (worker->current_work)
5371 scnprintf(buf: buf + off, size: size - off, fmt: "+%s",
5372 worker->desc);
5373 else
5374 scnprintf(buf: buf + off, size: size - off, fmt: "-%s",
5375 worker->desc);
5376 }
5377 raw_spin_unlock_irq(&pool->lock);
5378 }
5379 }
5380
5381 mutex_unlock(lock: &wq_pool_attach_mutex);
5382}
5383
5384#ifdef CONFIG_SMP
5385
5386/*
5387 * CPU hotplug.
5388 *
5389 * There are two challenges in supporting CPU hotplug. Firstly, there
5390 * are a lot of assumptions on strong associations among work, pwq and
5391 * pool which make migrating pending and scheduled works very
5392 * difficult to implement without impacting hot paths. Secondly,
5393 * worker pools serve mix of short, long and very long running works making
5394 * blocked draining impractical.
5395 *
5396 * This is solved by allowing the pools to be disassociated from the CPU
5397 * running as an unbound one and allowing it to be reattached later if the
5398 * cpu comes back online.
5399 */
5400
5401static void unbind_workers(int cpu)
5402{
5403 struct worker_pool *pool;
5404 struct worker *worker;
5405
5406 for_each_cpu_worker_pool(pool, cpu) {
5407 mutex_lock(&wq_pool_attach_mutex);
5408 raw_spin_lock_irq(&pool->lock);
5409
5410 /*
5411 * We've blocked all attach/detach operations. Make all workers
5412 * unbound and set DISASSOCIATED. Before this, all workers
5413 * must be on the cpu. After this, they may become diasporas.
5414 * And the preemption disabled section in their sched callbacks
5415 * are guaranteed to see WORKER_UNBOUND since the code here
5416 * is on the same cpu.
5417 */
5418 for_each_pool_worker(worker, pool)
5419 worker->flags |= WORKER_UNBOUND;
5420
5421 pool->flags |= POOL_DISASSOCIATED;
5422
5423 /*
5424 * The handling of nr_running in sched callbacks are disabled
5425 * now. Zap nr_running. After this, nr_running stays zero and
5426 * need_more_worker() and keep_working() are always true as
5427 * long as the worklist is not empty. This pool now behaves as
5428 * an unbound (in terms of concurrency management) pool which
5429 * are served by workers tied to the pool.
5430 */
5431 pool->nr_running = 0;
5432
5433 /*
5434 * With concurrency management just turned off, a busy
5435 * worker blocking could lead to lengthy stalls. Kick off
5436 * unbound chain execution of currently pending work items.
5437 */
5438 kick_pool(pool);
5439
5440 raw_spin_unlock_irq(&pool->lock);
5441
5442 for_each_pool_worker(worker, pool)
5443 unbind_worker(worker);
5444
5445 mutex_unlock(lock: &wq_pool_attach_mutex);
5446 }
5447}
5448
5449/**
5450 * rebind_workers - rebind all workers of a pool to the associated CPU
5451 * @pool: pool of interest
5452 *
5453 * @pool->cpu is coming online. Rebind all workers to the CPU.
5454 */
5455static void rebind_workers(struct worker_pool *pool)
5456{
5457 struct worker *worker;
5458
5459 lockdep_assert_held(&wq_pool_attach_mutex);
5460
5461 /*
5462 * Restore CPU affinity of all workers. As all idle workers should
5463 * be on the run-queue of the associated CPU before any local
5464 * wake-ups for concurrency management happen, restore CPU affinity
5465 * of all workers first and then clear UNBOUND. As we're called
5466 * from CPU_ONLINE, the following shouldn't fail.
5467 */
5468 for_each_pool_worker(worker, pool) {
5469 kthread_set_per_cpu(k: worker->task, cpu: pool->cpu);
5470 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
5471 pool_allowed_cpus(pool)) < 0);
5472 }
5473
5474 raw_spin_lock_irq(&pool->lock);
5475
5476 pool->flags &= ~POOL_DISASSOCIATED;
5477
5478 for_each_pool_worker(worker, pool) {
5479 unsigned int worker_flags = worker->flags;
5480
5481 /*
5482 * We want to clear UNBOUND but can't directly call
5483 * worker_clr_flags() or adjust nr_running. Atomically
5484 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
5485 * @worker will clear REBOUND using worker_clr_flags() when
5486 * it initiates the next execution cycle thus restoring
5487 * concurrency management. Note that when or whether
5488 * @worker clears REBOUND doesn't affect correctness.
5489 *
5490 * WRITE_ONCE() is necessary because @worker->flags may be
5491 * tested without holding any lock in
5492 * wq_worker_running(). Without it, NOT_RUNNING test may
5493 * fail incorrectly leading to premature concurrency
5494 * management operations.
5495 */
5496 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
5497 worker_flags |= WORKER_REBOUND;
5498 worker_flags &= ~WORKER_UNBOUND;
5499 WRITE_ONCE(worker->flags, worker_flags);
5500 }
5501
5502 raw_spin_unlock_irq(&pool->lock);
5503}
5504
5505/**
5506 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
5507 * @pool: unbound pool of interest
5508 * @cpu: the CPU which is coming up
5509 *
5510 * An unbound pool may end up with a cpumask which doesn't have any online
5511 * CPUs. When a worker of such pool get scheduled, the scheduler resets
5512 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
5513 * online CPU before, cpus_allowed of all its workers should be restored.
5514 */
5515static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
5516{
5517 static cpumask_t cpumask;
5518 struct worker *worker;
5519
5520 lockdep_assert_held(&wq_pool_attach_mutex);
5521
5522 /* is @cpu allowed for @pool? */
5523 if (!cpumask_test_cpu(cpu, cpumask: pool->attrs->cpumask))
5524 return;
5525
5526 cpumask_and(dstp: &cpumask, src1p: pool->attrs->cpumask, cpu_online_mask);
5527
5528 /* as we're called from CPU_ONLINE, the following shouldn't fail */
5529 for_each_pool_worker(worker, pool)
5530 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
5531}
5532
5533int workqueue_prepare_cpu(unsigned int cpu)
5534{
5535 struct worker_pool *pool;
5536
5537 for_each_cpu_worker_pool(pool, cpu) {
5538 if (pool->nr_workers)
5539 continue;
5540 if (!create_worker(pool))
5541 return -ENOMEM;
5542 }
5543 return 0;
5544}
5545
5546int workqueue_online_cpu(unsigned int cpu)
5547{
5548 struct worker_pool *pool;
5549 struct workqueue_struct *wq;
5550 int pi;
5551
5552 mutex_lock(&wq_pool_mutex);
5553
5554 for_each_pool(pool, pi) {
5555 mutex_lock(&wq_pool_attach_mutex);
5556
5557 if (pool->cpu == cpu)
5558 rebind_workers(pool);
5559 else if (pool->cpu < 0)
5560 restore_unbound_workers_cpumask(pool, cpu);
5561
5562 mutex_unlock(lock: &wq_pool_attach_mutex);
5563 }
5564
5565 /* update pod affinity of unbound workqueues */
5566 list_for_each_entry(wq, &workqueues, list) {
5567 struct workqueue_attrs *attrs = wq->unbound_attrs;
5568
5569 if (attrs) {
5570 const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
5571 int tcpu;
5572
5573 for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]])
5574 wq_update_pod(wq, cpu: tcpu, hotplug_cpu: cpu, online: true);
5575 }
5576 }
5577
5578 mutex_unlock(lock: &wq_pool_mutex);
5579 return 0;
5580}
5581
5582int workqueue_offline_cpu(unsigned int cpu)
5583{
5584 struct workqueue_struct *wq;
5585
5586 /* unbinding per-cpu workers should happen on the local CPU */
5587 if (WARN_ON(cpu != smp_processor_id()))
5588 return -1;
5589
5590 unbind_workers(cpu);
5591
5592 /* update pod affinity of unbound workqueues */
5593 mutex_lock(&wq_pool_mutex);
5594 list_for_each_entry(wq, &workqueues, list) {
5595 struct workqueue_attrs *attrs = wq->unbound_attrs;
5596
5597 if (attrs) {
5598 const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
5599 int tcpu;
5600
5601 for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]])
5602 wq_update_pod(wq, cpu: tcpu, hotplug_cpu: cpu, online: false);
5603 }
5604 }
5605 mutex_unlock(lock: &wq_pool_mutex);
5606
5607 return 0;
5608}
5609
5610struct work_for_cpu {
5611 struct work_struct work;
5612 long (*fn)(void *);
5613 void *arg;
5614 long ret;
5615};
5616
5617static void work_for_cpu_fn(struct work_struct *work)
5618{
5619 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
5620
5621 wfc->ret = wfc->fn(wfc->arg);
5622}
5623
5624/**
5625 * work_on_cpu_key - run a function in thread context on a particular cpu
5626 * @cpu: the cpu to run on
5627 * @fn: the function to run
5628 * @arg: the function arg
5629 * @key: The lock class key for lock debugging purposes
5630 *
5631 * It is up to the caller to ensure that the cpu doesn't go offline.
5632 * The caller must not hold any locks which would prevent @fn from completing.
5633 *
5634 * Return: The value @fn returns.
5635 */
5636long work_on_cpu_key(int cpu, long (*fn)(void *),
5637 void *arg, struct lock_class_key *key)
5638{
5639 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
5640
5641 INIT_WORK_ONSTACK_KEY(&wfc.work, work_for_cpu_fn, key);
5642 schedule_work_on(cpu, work: &wfc.work);
5643 flush_work(&wfc.work);
5644 destroy_work_on_stack(&wfc.work);
5645 return wfc.ret;
5646}
5647EXPORT_SYMBOL_GPL(work_on_cpu_key);
5648
5649/**
5650 * work_on_cpu_safe_key - run a function in thread context on a particular cpu
5651 * @cpu: the cpu to run on
5652 * @fn: the function to run
5653 * @arg: the function argument
5654 * @key: The lock class key for lock debugging purposes
5655 *
5656 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
5657 * any locks which would prevent @fn from completing.
5658 *
5659 * Return: The value @fn returns.
5660 */
5661long work_on_cpu_safe_key(int cpu, long (*fn)(void *),
5662 void *arg, struct lock_class_key *key)
5663{
5664 long ret = -ENODEV;
5665
5666 cpus_read_lock();
5667 if (cpu_online(cpu))
5668 ret = work_on_cpu_key(cpu, fn, arg, key);
5669 cpus_read_unlock();
5670 return ret;
5671}
5672EXPORT_SYMBOL_GPL(work_on_cpu_safe_key);
5673#endif /* CONFIG_SMP */
5674
5675#ifdef CONFIG_FREEZER
5676
5677/**
5678 * freeze_workqueues_begin - begin freezing workqueues
5679 *
5680 * Start freezing workqueues. After this function returns, all freezable
5681 * workqueues will queue new works to their inactive_works list instead of
5682 * pool->worklist.
5683 *
5684 * CONTEXT:
5685 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5686 */
5687void freeze_workqueues_begin(void)
5688{
5689 struct workqueue_struct *wq;
5690 struct pool_workqueue *pwq;
5691
5692 mutex_lock(&wq_pool_mutex);
5693
5694 WARN_ON_ONCE(workqueue_freezing);
5695 workqueue_freezing = true;
5696
5697 list_for_each_entry(wq, &workqueues, list) {
5698 mutex_lock(&wq->mutex);
5699 for_each_pwq(pwq, wq)
5700 pwq_adjust_max_active(pwq);
5701 mutex_unlock(lock: &wq->mutex);
5702 }
5703
5704 mutex_unlock(lock: &wq_pool_mutex);
5705}
5706
5707/**
5708 * freeze_workqueues_busy - are freezable workqueues still busy?
5709 *
5710 * Check whether freezing is complete. This function must be called
5711 * between freeze_workqueues_begin() and thaw_workqueues().
5712 *
5713 * CONTEXT:
5714 * Grabs and releases wq_pool_mutex.
5715 *
5716 * Return:
5717 * %true if some freezable workqueues are still busy. %false if freezing
5718 * is complete.
5719 */
5720bool freeze_workqueues_busy(void)
5721{
5722 bool busy = false;
5723 struct workqueue_struct *wq;
5724 struct pool_workqueue *pwq;
5725
5726 mutex_lock(&wq_pool_mutex);
5727
5728 WARN_ON_ONCE(!workqueue_freezing);
5729
5730 list_for_each_entry(wq, &workqueues, list) {
5731 if (!(wq->flags & WQ_FREEZABLE))
5732 continue;
5733 /*
5734 * nr_active is monotonically decreasing. It's safe
5735 * to peek without lock.
5736 */
5737 rcu_read_lock();
5738 for_each_pwq(pwq, wq) {
5739 WARN_ON_ONCE(pwq->nr_active < 0);
5740 if (pwq->nr_active) {
5741 busy = true;
5742 rcu_read_unlock();
5743 goto out_unlock;
5744 }
5745 }
5746 rcu_read_unlock();
5747 }
5748out_unlock:
5749 mutex_unlock(lock: &wq_pool_mutex);
5750 return busy;
5751}
5752
5753/**
5754 * thaw_workqueues - thaw workqueues
5755 *
5756 * Thaw workqueues. Normal queueing is restored and all collected
5757 * frozen works are transferred to their respective pool worklists.
5758 *
5759 * CONTEXT:
5760 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5761 */
5762void thaw_workqueues(void)
5763{
5764 struct workqueue_struct *wq;
5765 struct pool_workqueue *pwq;
5766
5767 mutex_lock(&wq_pool_mutex);
5768
5769 if (!workqueue_freezing)
5770 goto out_unlock;
5771
5772 workqueue_freezing = false;
5773
5774 /* restore max_active and repopulate worklist */
5775 list_for_each_entry(wq, &workqueues, list) {
5776 mutex_lock(&wq->mutex);
5777 for_each_pwq(pwq, wq)
5778 pwq_adjust_max_active(pwq);
5779 mutex_unlock(lock: &wq->mutex);
5780 }
5781
5782out_unlock:
5783 mutex_unlock(lock: &wq_pool_mutex);
5784}
5785#endif /* CONFIG_FREEZER */
5786
5787static int workqueue_apply_unbound_cpumask(const cpumask_var_t unbound_cpumask)
5788{
5789 LIST_HEAD(ctxs);
5790 int ret = 0;
5791 struct workqueue_struct *wq;
5792 struct apply_wqattrs_ctx *ctx, *n;
5793
5794 lockdep_assert_held(&wq_pool_mutex);
5795
5796 list_for_each_entry(wq, &workqueues, list) {
5797 if (!(wq->flags & WQ_UNBOUND))
5798 continue;
5799
5800 /* creating multiple pwqs breaks ordering guarantee */
5801 if (!list_empty(head: &wq->pwqs)) {
5802 if (wq->flags & __WQ_ORDERED_EXPLICIT)
5803 continue;
5804 wq->flags &= ~__WQ_ORDERED;
5805 }
5806
5807 ctx = apply_wqattrs_prepare(wq, attrs: wq->unbound_attrs, unbound_cpumask);
5808 if (IS_ERR(ptr: ctx)) {
5809 ret = PTR_ERR(ptr: ctx);
5810 break;
5811 }
5812
5813 list_add_tail(new: &ctx->list, head: &ctxs);
5814 }
5815
5816 list_for_each_entry_safe(ctx, n, &ctxs, list) {
5817 if (!ret)
5818 apply_wqattrs_commit(ctx);
5819 apply_wqattrs_cleanup(ctx);
5820 }
5821
5822 if (!ret) {
5823 mutex_lock(&wq_pool_attach_mutex);
5824 cpumask_copy(dstp: wq_unbound_cpumask, srcp: unbound_cpumask);
5825 mutex_unlock(lock: &wq_pool_attach_mutex);
5826 }
5827 return ret;
5828}
5829
5830/**
5831 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
5832 * @cpumask: the cpumask to set
5833 *
5834 * The low-level workqueues cpumask is a global cpumask that limits
5835 * the affinity of all unbound workqueues. This function check the @cpumask
5836 * and apply it to all unbound workqueues and updates all pwqs of them.
5837 *
5838 * Return: 0 - Success
5839 * -EINVAL - Invalid @cpumask
5840 * -ENOMEM - Failed to allocate memory for attrs or pwqs.
5841 */
5842int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
5843{
5844 int ret = -EINVAL;
5845
5846 /*
5847 * Not excluding isolated cpus on purpose.
5848 * If the user wishes to include them, we allow that.
5849 */
5850 cpumask_and(dstp: cpumask, src1p: cpumask, cpu_possible_mask);
5851 if (!cpumask_empty(srcp: cpumask)) {
5852 apply_wqattrs_lock();
5853 if (cpumask_equal(src1p: cpumask, src2p: wq_unbound_cpumask)) {
5854 ret = 0;
5855 goto out_unlock;
5856 }
5857
5858 ret = workqueue_apply_unbound_cpumask(unbound_cpumask: cpumask);
5859
5860out_unlock:
5861 apply_wqattrs_unlock();
5862 }
5863
5864 return ret;
5865}
5866
5867static int parse_affn_scope(const char *val)
5868{
5869 int i;
5870
5871 for (i = 0; i < ARRAY_SIZE(wq_affn_names); i++) {
5872 if (!strncasecmp(s1: val, s2: wq_affn_names[i], strlen(wq_affn_names[i])))
5873 return i;
5874 }
5875 return -EINVAL;
5876}
5877
5878static int wq_affn_dfl_set(const char *val, const struct kernel_param *kp)
5879{
5880 struct workqueue_struct *wq;
5881 int affn, cpu;
5882
5883 affn = parse_affn_scope(val);
5884 if (affn < 0)
5885 return affn;
5886 if (affn == WQ_AFFN_DFL)
5887 return -EINVAL;
5888
5889 cpus_read_lock();
5890 mutex_lock(&wq_pool_mutex);
5891
5892 wq_affn_dfl = affn;
5893
5894 list_for_each_entry(wq, &workqueues, list) {
5895 for_each_online_cpu(cpu) {
5896 wq_update_pod(wq, cpu, hotplug_cpu: cpu, online: true);
5897 }
5898 }
5899
5900 mutex_unlock(lock: &wq_pool_mutex);
5901 cpus_read_unlock();
5902
5903 return 0;
5904}
5905
5906static int wq_affn_dfl_get(char *buffer, const struct kernel_param *kp)
5907{
5908 return scnprintf(buf: buffer, PAGE_SIZE, fmt: "%s\n", wq_affn_names[wq_affn_dfl]);
5909}
5910
5911static const struct kernel_param_ops wq_affn_dfl_ops = {
5912 .set = wq_affn_dfl_set,
5913 .get = wq_affn_dfl_get,
5914};
5915
5916module_param_cb(default_affinity_scope, &wq_affn_dfl_ops, NULL, 0644);
5917
5918#ifdef CONFIG_SYSFS
5919/*
5920 * Workqueues with WQ_SYSFS flag set is visible to userland via
5921 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
5922 * following attributes.
5923 *
5924 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
5925 * max_active RW int : maximum number of in-flight work items
5926 *
5927 * Unbound workqueues have the following extra attributes.
5928 *
5929 * nice RW int : nice value of the workers
5930 * cpumask RW mask : bitmask of allowed CPUs for the workers
5931 * affinity_scope RW str : worker CPU affinity scope (cache, numa, none)
5932 * affinity_strict RW bool : worker CPU affinity is strict
5933 */
5934struct wq_device {
5935 struct workqueue_struct *wq;
5936 struct device dev;
5937};
5938
5939static struct workqueue_struct *dev_to_wq(struct device *dev)
5940{
5941 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5942
5943 return wq_dev->wq;
5944}
5945
5946static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
5947 char *buf)
5948{
5949 struct workqueue_struct *wq = dev_to_wq(dev);
5950
5951 return scnprintf(buf, PAGE_SIZE, fmt: "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
5952}
5953static DEVICE_ATTR_RO(per_cpu);
5954
5955static ssize_t max_active_show(struct device *dev,
5956 struct device_attribute *attr, char *buf)
5957{
5958 struct workqueue_struct *wq = dev_to_wq(dev);
5959
5960 return scnprintf(buf, PAGE_SIZE, fmt: "%d\n", wq->saved_max_active);
5961}
5962
5963static ssize_t max_active_store(struct device *dev,
5964 struct device_attribute *attr, const char *buf,
5965 size_t count)
5966{
5967 struct workqueue_struct *wq = dev_to_wq(dev);
5968 int val;
5969
5970 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
5971 return -EINVAL;
5972
5973 workqueue_set_max_active(wq, val);
5974 return count;
5975}
5976static DEVICE_ATTR_RW(max_active);
5977
5978static struct attribute *wq_sysfs_attrs[] = {
5979 &dev_attr_per_cpu.attr,
5980 &dev_attr_max_active.attr,
5981 NULL,
5982};
5983ATTRIBUTE_GROUPS(wq_sysfs);
5984
5985static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
5986 char *buf)
5987{
5988 struct workqueue_struct *wq = dev_to_wq(dev);
5989 int written;
5990
5991 mutex_lock(&wq->mutex);
5992 written = scnprintf(buf, PAGE_SIZE, fmt: "%d\n", wq->unbound_attrs->nice);
5993 mutex_unlock(lock: &wq->mutex);
5994
5995 return written;
5996}
5997
5998/* prepare workqueue_attrs for sysfs store operations */
5999static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
6000{
6001 struct workqueue_attrs *attrs;
6002
6003 lockdep_assert_held(&wq_pool_mutex);
6004
6005 attrs = alloc_workqueue_attrs();
6006 if (!attrs)
6007 return NULL;
6008
6009 copy_workqueue_attrs(to: attrs, from: wq->unbound_attrs);
6010 return attrs;
6011}
6012
6013static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
6014 const char *buf, size_t count)
6015{
6016 struct workqueue_struct *wq = dev_to_wq(dev);
6017 struct workqueue_attrs *attrs;
6018 int ret = -ENOMEM;
6019
6020 apply_wqattrs_lock();
6021
6022 attrs = wq_sysfs_prep_attrs(wq);
6023 if (!attrs)
6024 goto out_unlock;
6025
6026 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
6027 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
6028 ret = apply_workqueue_attrs_locked(wq, attrs);
6029 else
6030 ret = -EINVAL;
6031
6032out_unlock:
6033 apply_wqattrs_unlock();
6034 free_workqueue_attrs(attrs);
6035 return ret ?: count;
6036}
6037
6038static ssize_t wq_cpumask_show(struct device *dev,
6039 struct device_attribute *attr, char *buf)
6040{
6041 struct workqueue_struct *wq = dev_to_wq(dev);
6042 int written;
6043
6044 mutex_lock(&wq->mutex);
6045 written = scnprintf(buf, PAGE_SIZE, fmt: "%*pb\n",
6046 cpumask_pr_args(wq->unbound_attrs->cpumask));
6047 mutex_unlock(lock: &wq->mutex);
6048 return written;
6049}
6050
6051static ssize_t wq_cpumask_store(struct device *dev,
6052 struct device_attribute *attr,
6053 const char *buf, size_t count)
6054{
6055 struct workqueue_struct *wq = dev_to_wq(dev);
6056 struct workqueue_attrs *attrs;
6057 int ret = -ENOMEM;
6058
6059 apply_wqattrs_lock();
6060
6061 attrs = wq_sysfs_prep_attrs(wq);
6062 if (!attrs)
6063 goto out_unlock;
6064
6065 ret = cpumask_parse(buf, dstp: attrs->cpumask);
6066 if (!ret)
6067 ret = apply_workqueue_attrs_locked(wq, attrs);
6068
6069out_unlock:
6070 apply_wqattrs_unlock();
6071 free_workqueue_attrs(attrs);
6072 return ret ?: count;
6073}
6074
6075static ssize_t wq_affn_scope_show(struct device *dev,
6076 struct device_attribute *attr, char *buf)
6077{
6078 struct workqueue_struct *wq = dev_to_wq(dev);
6079 int written;
6080
6081 mutex_lock(&wq->mutex);
6082 if (wq->unbound_attrs->affn_scope == WQ_AFFN_DFL)
6083 written = scnprintf(buf, PAGE_SIZE, fmt: "%s (%s)\n",
6084 wq_affn_names[WQ_AFFN_DFL],
6085 wq_affn_names[wq_affn_dfl]);
6086 else
6087 written = scnprintf(buf, PAGE_SIZE, fmt: "%s\n",
6088 wq_affn_names[wq->unbound_attrs->affn_scope]);
6089 mutex_unlock(lock: &wq->mutex);
6090
6091 return written;
6092}
6093
6094static ssize_t wq_affn_scope_store(struct device *dev,
6095 struct device_attribute *attr,
6096 const char *buf, size_t count)
6097{
6098 struct workqueue_struct *wq = dev_to_wq(dev);
6099 struct workqueue_attrs *attrs;
6100 int affn, ret = -ENOMEM;
6101
6102 affn = parse_affn_scope(val: buf);
6103 if (affn < 0)
6104 return affn;
6105
6106 apply_wqattrs_lock();
6107 attrs = wq_sysfs_prep_attrs(wq);
6108 if (attrs) {
6109 attrs->affn_scope = affn;
6110 ret = apply_workqueue_attrs_locked(wq, attrs);
6111 }
6112 apply_wqattrs_unlock();
6113 free_workqueue_attrs(attrs);
6114 return ret ?: count;
6115}
6116
6117static ssize_t wq_affinity_strict_show(struct device *dev,
6118 struct device_attribute *attr, char *buf)
6119{
6120 struct workqueue_struct *wq = dev_to_wq(dev);
6121
6122 return scnprintf(buf, PAGE_SIZE, fmt: "%d\n",
6123 wq->unbound_attrs->affn_strict);
6124}
6125
6126static ssize_t wq_affinity_strict_store(struct device *dev,
6127 struct device_attribute *attr,
6128 const char *buf, size_t count)
6129{
6130 struct workqueue_struct *wq = dev_to_wq(dev);
6131 struct workqueue_attrs *attrs;
6132 int v, ret = -ENOMEM;
6133
6134 if (sscanf(buf, "%d", &v) != 1)
6135 return -EINVAL;
6136
6137 apply_wqattrs_lock();
6138 attrs = wq_sysfs_prep_attrs(wq);
6139 if (attrs) {
6140 attrs->affn_strict = (bool)v;
6141 ret = apply_workqueue_attrs_locked(wq, attrs);
6142 }
6143 apply_wqattrs_unlock();
6144 free_workqueue_attrs(attrs);
6145 return ret ?: count;
6146}
6147
6148static struct device_attribute wq_sysfs_unbound_attrs[] = {
6149 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
6150 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
6151 __ATTR(affinity_scope, 0644, wq_affn_scope_show, wq_affn_scope_store),
6152 __ATTR(affinity_strict, 0644, wq_affinity_strict_show, wq_affinity_strict_store),
6153 __ATTR_NULL,
6154};
6155
6156static struct bus_type wq_subsys = {
6157 .name = "workqueue",
6158 .dev_groups = wq_sysfs_groups,
6159};
6160
6161static ssize_t wq_unbound_cpumask_show(struct device *dev,
6162 struct device_attribute *attr, char *buf)
6163{
6164 int written;
6165
6166 mutex_lock(&wq_pool_mutex);
6167 written = scnprintf(buf, PAGE_SIZE, fmt: "%*pb\n",
6168 cpumask_pr_args(wq_unbound_cpumask));
6169 mutex_unlock(lock: &wq_pool_mutex);
6170
6171 return written;
6172}
6173
6174static ssize_t wq_unbound_cpumask_store(struct device *dev,
6175 struct device_attribute *attr, const char *buf, size_t count)
6176{
6177 cpumask_var_t cpumask;
6178 int ret;
6179
6180 if (!zalloc_cpumask_var(mask: &cpumask, GFP_KERNEL))
6181 return -ENOMEM;
6182
6183 ret = cpumask_parse(buf, dstp: cpumask);
6184 if (!ret)
6185 ret = workqueue_set_unbound_cpumask(cpumask);
6186
6187 free_cpumask_var(mask: cpumask);
6188 return ret ? ret : count;
6189}
6190
6191static struct device_attribute wq_sysfs_cpumask_attr =
6192 __ATTR(cpumask, 0644, wq_unbound_cpumask_show,
6193 wq_unbound_cpumask_store);
6194
6195static int __init wq_sysfs_init(void)
6196{
6197 struct device *dev_root;
6198 int err;
6199
6200 err = subsys_virtual_register(subsys: &wq_subsys, NULL);
6201 if (err)
6202 return err;
6203
6204 dev_root = bus_get_dev_root(bus: &wq_subsys);
6205 if (dev_root) {
6206 err = device_create_file(device: dev_root, entry: &wq_sysfs_cpumask_attr);
6207 put_device(dev: dev_root);
6208 }
6209 return err;
6210}
6211core_initcall(wq_sysfs_init);
6212
6213static void wq_device_release(struct device *dev)
6214{
6215 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
6216
6217 kfree(objp: wq_dev);
6218}
6219
6220/**
6221 * workqueue_sysfs_register - make a workqueue visible in sysfs
6222 * @wq: the workqueue to register
6223 *
6224 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
6225 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
6226 * which is the preferred method.
6227 *
6228 * Workqueue user should use this function directly iff it wants to apply
6229 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
6230 * apply_workqueue_attrs() may race against userland updating the
6231 * attributes.
6232 *
6233 * Return: 0 on success, -errno on failure.
6234 */
6235int workqueue_sysfs_register(struct workqueue_struct *wq)
6236{
6237 struct wq_device *wq_dev;
6238 int ret;
6239
6240 /*
6241 * Adjusting max_active or creating new pwqs by applying
6242 * attributes breaks ordering guarantee. Disallow exposing ordered
6243 * workqueues.
6244 */
6245 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
6246 return -EINVAL;
6247
6248 wq->wq_dev = wq_dev = kzalloc(size: sizeof(*wq_dev), GFP_KERNEL);
6249 if (!wq_dev)
6250 return -ENOMEM;
6251
6252 wq_dev->wq = wq;
6253 wq_dev->dev.bus = &wq_subsys;
6254 wq_dev->dev.release = wq_device_release;
6255 dev_set_name(dev: &wq_dev->dev, name: "%s", wq->name);
6256
6257 /*
6258 * unbound_attrs are created separately. Suppress uevent until
6259 * everything is ready.
6260 */
6261 dev_set_uevent_suppress(dev: &wq_dev->dev, val: true);
6262
6263 ret = device_register(dev: &wq_dev->dev);
6264 if (ret) {
6265 put_device(dev: &wq_dev->dev);
6266 wq->wq_dev = NULL;
6267 return ret;
6268 }
6269
6270 if (wq->flags & WQ_UNBOUND) {
6271 struct device_attribute *attr;
6272
6273 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
6274 ret = device_create_file(device: &wq_dev->dev, entry: attr);
6275 if (ret) {
6276 device_unregister(dev: &wq_dev->dev);
6277 wq->wq_dev = NULL;
6278 return ret;
6279 }
6280 }
6281 }
6282
6283 dev_set_uevent_suppress(dev: &wq_dev->dev, val: false);
6284 kobject_uevent(kobj: &wq_dev->dev.kobj, action: KOBJ_ADD);
6285 return 0;
6286}
6287
6288/**
6289 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
6290 * @wq: the workqueue to unregister
6291 *
6292 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
6293 */
6294static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
6295{
6296 struct wq_device *wq_dev = wq->wq_dev;
6297
6298 if (!wq->wq_dev)
6299 return;
6300
6301 wq->wq_dev = NULL;
6302 device_unregister(dev: &wq_dev->dev);
6303}
6304#else /* CONFIG_SYSFS */
6305static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
6306#endif /* CONFIG_SYSFS */
6307
6308/*
6309 * Workqueue watchdog.
6310 *
6311 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
6312 * flush dependency, a concurrency managed work item which stays RUNNING
6313 * indefinitely. Workqueue stalls can be very difficult to debug as the
6314 * usual warning mechanisms don't trigger and internal workqueue state is
6315 * largely opaque.
6316 *
6317 * Workqueue watchdog monitors all worker pools periodically and dumps
6318 * state if some pools failed to make forward progress for a while where
6319 * forward progress is defined as the first item on ->worklist changing.
6320 *
6321 * This mechanism is controlled through the kernel parameter
6322 * "workqueue.watchdog_thresh" which can be updated at runtime through the
6323 * corresponding sysfs parameter file.
6324 */
6325#ifdef CONFIG_WQ_WATCHDOG
6326
6327static unsigned long wq_watchdog_thresh = 30;
6328static struct timer_list wq_watchdog_timer;
6329
6330static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
6331static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
6332
6333/*
6334 * Show workers that might prevent the processing of pending work items.
6335 * The only candidates are CPU-bound workers in the running state.
6336 * Pending work items should be handled by another idle worker
6337 * in all other situations.
6338 */
6339static void show_cpu_pool_hog(struct worker_pool *pool)
6340{
6341 struct worker *worker;
6342 unsigned long flags;
6343 int bkt;
6344
6345 raw_spin_lock_irqsave(&pool->lock, flags);
6346
6347 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
6348 if (task_is_running(worker->task)) {
6349 /*
6350 * Defer printing to avoid deadlocks in console
6351 * drivers that queue work while holding locks
6352 * also taken in their write paths.
6353 */
6354 printk_deferred_enter();
6355
6356 pr_info("pool %d:\n", pool->id);
6357 sched_show_task(p: worker->task);
6358
6359 printk_deferred_exit();
6360 }
6361 }
6362
6363 raw_spin_unlock_irqrestore(&pool->lock, flags);
6364}
6365
6366static void show_cpu_pools_hogs(void)
6367{
6368 struct worker_pool *pool;
6369 int pi;
6370
6371 pr_info("Showing backtraces of running workers in stalled CPU-bound worker pools:\n");
6372
6373 rcu_read_lock();
6374
6375 for_each_pool(pool, pi) {
6376 if (pool->cpu_stall)
6377 show_cpu_pool_hog(pool);
6378
6379 }
6380
6381 rcu_read_unlock();
6382}
6383
6384static void wq_watchdog_reset_touched(void)
6385{
6386 int cpu;
6387
6388 wq_watchdog_touched = jiffies;
6389 for_each_possible_cpu(cpu)
6390 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
6391}
6392
6393static void wq_watchdog_timer_fn(struct timer_list *unused)
6394{
6395 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
6396 bool lockup_detected = false;
6397 bool cpu_pool_stall = false;
6398 unsigned long now = jiffies;
6399 struct worker_pool *pool;
6400 int pi;
6401
6402 if (!thresh)
6403 return;
6404
6405 rcu_read_lock();
6406
6407 for_each_pool(pool, pi) {
6408 unsigned long pool_ts, touched, ts;
6409
6410 pool->cpu_stall = false;
6411 if (list_empty(head: &pool->worklist))
6412 continue;
6413
6414 /*
6415 * If a virtual machine is stopped by the host it can look to
6416 * the watchdog like a stall.
6417 */
6418 kvm_check_and_clear_guest_paused();
6419
6420 /* get the latest of pool and touched timestamps */
6421 if (pool->cpu >= 0)
6422 touched = READ_ONCE(per_cpu(wq_watchdog_touched_cpu, pool->cpu));
6423 else
6424 touched = READ_ONCE(wq_watchdog_touched);
6425 pool_ts = READ_ONCE(pool->watchdog_ts);
6426
6427 if (time_after(pool_ts, touched))
6428 ts = pool_ts;
6429 else
6430 ts = touched;
6431
6432 /* did we stall? */
6433 if (time_after(now, ts + thresh)) {
6434 lockup_detected = true;
6435 if (pool->cpu >= 0) {
6436 pool->cpu_stall = true;
6437 cpu_pool_stall = true;
6438 }
6439 pr_emerg("BUG: workqueue lockup - pool");
6440 pr_cont_pool_info(pool);
6441 pr_cont(" stuck for %us!\n",
6442 jiffies_to_msecs(now - pool_ts) / 1000);
6443 }
6444
6445
6446 }
6447
6448 rcu_read_unlock();
6449
6450 if (lockup_detected)
6451 show_all_workqueues();
6452
6453 if (cpu_pool_stall)
6454 show_cpu_pools_hogs();
6455
6456 wq_watchdog_reset_touched();
6457 mod_timer(timer: &wq_watchdog_timer, expires: jiffies + thresh);
6458}
6459
6460notrace void wq_watchdog_touch(int cpu)
6461{
6462 if (cpu >= 0)
6463 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
6464
6465 wq_watchdog_touched = jiffies;
6466}
6467
6468static void wq_watchdog_set_thresh(unsigned long thresh)
6469{
6470 wq_watchdog_thresh = 0;
6471 del_timer_sync(timer: &wq_watchdog_timer);
6472
6473 if (thresh) {
6474 wq_watchdog_thresh = thresh;
6475 wq_watchdog_reset_touched();
6476 mod_timer(timer: &wq_watchdog_timer, expires: jiffies + thresh * HZ);
6477 }
6478}
6479
6480static int wq_watchdog_param_set_thresh(const char *val,
6481 const struct kernel_param *kp)
6482{
6483 unsigned long thresh;
6484 int ret;
6485
6486 ret = kstrtoul(s: val, base: 0, res: &thresh);
6487 if (ret)
6488 return ret;
6489
6490 if (system_wq)
6491 wq_watchdog_set_thresh(thresh);
6492 else
6493 wq_watchdog_thresh = thresh;
6494
6495 return 0;
6496}
6497
6498static const struct kernel_param_ops wq_watchdog_thresh_ops = {
6499 .set = wq_watchdog_param_set_thresh,
6500 .get = param_get_ulong,
6501};
6502
6503module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
6504 0644);
6505
6506static void wq_watchdog_init(void)
6507{
6508 timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
6509 wq_watchdog_set_thresh(thresh: wq_watchdog_thresh);
6510}
6511
6512#else /* CONFIG_WQ_WATCHDOG */
6513
6514static inline void wq_watchdog_init(void) { }
6515
6516#endif /* CONFIG_WQ_WATCHDOG */
6517
6518/**
6519 * workqueue_init_early - early init for workqueue subsystem
6520 *
6521 * This is the first step of three-staged workqueue subsystem initialization and
6522 * invoked as soon as the bare basics - memory allocation, cpumasks and idr are
6523 * up. It sets up all the data structures and system workqueues and allows early
6524 * boot code to create workqueues and queue/cancel work items. Actual work item
6525 * execution starts only after kthreads can be created and scheduled right
6526 * before early initcalls.
6527 */
6528void __init workqueue_init_early(void)
6529{
6530 struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_SYSTEM];
6531 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
6532 int i, cpu;
6533
6534 BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
6535
6536 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
6537 cpumask_copy(dstp: wq_unbound_cpumask, srcp: housekeeping_cpumask(type: HK_TYPE_WQ));
6538 cpumask_and(dstp: wq_unbound_cpumask, src1p: wq_unbound_cpumask, src2p: housekeeping_cpumask(type: HK_TYPE_DOMAIN));
6539
6540 if (!cpumask_empty(srcp: &wq_cmdline_cpumask))
6541 cpumask_and(dstp: wq_unbound_cpumask, src1p: wq_unbound_cpumask, src2p: &wq_cmdline_cpumask);
6542
6543 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
6544
6545 wq_update_pod_attrs_buf = alloc_workqueue_attrs();
6546 BUG_ON(!wq_update_pod_attrs_buf);
6547
6548 /* initialize WQ_AFFN_SYSTEM pods */
6549 pt->pod_cpus = kcalloc(n: 1, size: sizeof(pt->pod_cpus[0]), GFP_KERNEL);
6550 pt->pod_node = kcalloc(n: 1, size: sizeof(pt->pod_node[0]), GFP_KERNEL);
6551 pt->cpu_pod = kcalloc(n: nr_cpu_ids, size: sizeof(pt->cpu_pod[0]), GFP_KERNEL);
6552 BUG_ON(!pt->pod_cpus || !pt->pod_node || !pt->cpu_pod);
6553
6554 BUG_ON(!zalloc_cpumask_var_node(&pt->pod_cpus[0], GFP_KERNEL, NUMA_NO_NODE));
6555
6556 pt->nr_pods = 1;
6557 cpumask_copy(dstp: pt->pod_cpus[0], cpu_possible_mask);
6558 pt->pod_node[0] = NUMA_NO_NODE;
6559 pt->cpu_pod[0] = 0;
6560
6561 /* initialize CPU pools */
6562 for_each_possible_cpu(cpu) {
6563 struct worker_pool *pool;
6564
6565 i = 0;
6566 for_each_cpu_worker_pool(pool, cpu) {
6567 BUG_ON(init_worker_pool(pool));
6568 pool->cpu = cpu;
6569 cpumask_copy(dstp: pool->attrs->cpumask, cpumask_of(cpu));
6570 cpumask_copy(dstp: pool->attrs->__pod_cpumask, cpumask_of(cpu));
6571 pool->attrs->nice = std_nice[i++];
6572 pool->attrs->affn_strict = true;
6573 pool->node = cpu_to_node(cpu);
6574
6575 /* alloc pool ID */
6576 mutex_lock(&wq_pool_mutex);
6577 BUG_ON(worker_pool_assign_id(pool));
6578 mutex_unlock(lock: &wq_pool_mutex);
6579 }
6580 }
6581
6582 /* create default unbound and ordered wq attrs */
6583 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
6584 struct workqueue_attrs *attrs;
6585
6586 BUG_ON(!(attrs = alloc_workqueue_attrs()));
6587 attrs->nice = std_nice[i];
6588 unbound_std_wq_attrs[i] = attrs;
6589
6590 /*
6591 * An ordered wq should have only one pwq as ordering is
6592 * guaranteed by max_active which is enforced by pwqs.
6593 */
6594 BUG_ON(!(attrs = alloc_workqueue_attrs()));
6595 attrs->nice = std_nice[i];
6596 attrs->ordered = true;
6597 ordered_wq_attrs[i] = attrs;
6598 }
6599
6600 system_wq = alloc_workqueue("events", 0, 0);
6601 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
6602 system_long_wq = alloc_workqueue("events_long", 0, 0);
6603 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
6604 WQ_MAX_ACTIVE);
6605 system_freezable_wq = alloc_workqueue("events_freezable",
6606 WQ_FREEZABLE, 0);
6607 system_power_efficient_wq = alloc_workqueue("events_power_efficient",
6608 WQ_POWER_EFFICIENT, 0);
6609 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
6610 WQ_FREEZABLE | WQ_POWER_EFFICIENT,
6611 0);
6612 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
6613 !system_unbound_wq || !system_freezable_wq ||
6614 !system_power_efficient_wq ||
6615 !system_freezable_power_efficient_wq);
6616}
6617
6618static void __init wq_cpu_intensive_thresh_init(void)
6619{
6620 unsigned long thresh;
6621 unsigned long bogo;
6622
6623 pwq_release_worker = kthread_create_worker(flags: 0, namefmt: "pool_workqueue_release");
6624 BUG_ON(IS_ERR(pwq_release_worker));
6625
6626 /* if the user set it to a specific value, keep it */
6627 if (wq_cpu_intensive_thresh_us != ULONG_MAX)
6628 return;
6629
6630 /*
6631 * The default of 10ms is derived from the fact that most modern (as of
6632 * 2023) processors can do a lot in 10ms and that it's just below what
6633 * most consider human-perceivable. However, the kernel also runs on a
6634 * lot slower CPUs including microcontrollers where the threshold is way
6635 * too low.
6636 *
6637 * Let's scale up the threshold upto 1 second if BogoMips is below 4000.
6638 * This is by no means accurate but it doesn't have to be. The mechanism
6639 * is still useful even when the threshold is fully scaled up. Also, as
6640 * the reports would usually be applicable to everyone, some machines
6641 * operating on longer thresholds won't significantly diminish their
6642 * usefulness.
6643 */
6644 thresh = 10 * USEC_PER_MSEC;
6645
6646 /* see init/calibrate.c for lpj -> BogoMIPS calculation */
6647 bogo = max_t(unsigned long, loops_per_jiffy / 500000 * HZ, 1);
6648 if (bogo < 4000)
6649 thresh = min_t(unsigned long, thresh * 4000 / bogo, USEC_PER_SEC);
6650
6651 pr_debug("wq_cpu_intensive_thresh: lpj=%lu BogoMIPS=%lu thresh_us=%lu\n",
6652 loops_per_jiffy, bogo, thresh);
6653
6654 wq_cpu_intensive_thresh_us = thresh;
6655}
6656
6657/**
6658 * workqueue_init - bring workqueue subsystem fully online
6659 *
6660 * This is the second step of three-staged workqueue subsystem initialization
6661 * and invoked as soon as kthreads can be created and scheduled. Workqueues have
6662 * been created and work items queued on them, but there are no kworkers
6663 * executing the work items yet. Populate the worker pools with the initial
6664 * workers and enable future kworker creations.
6665 */
6666void __init workqueue_init(void)
6667{
6668 struct workqueue_struct *wq;
6669 struct worker_pool *pool;
6670 int cpu, bkt;
6671
6672 wq_cpu_intensive_thresh_init();
6673
6674 mutex_lock(&wq_pool_mutex);
6675
6676 /*
6677 * Per-cpu pools created earlier could be missing node hint. Fix them
6678 * up. Also, create a rescuer for workqueues that requested it.
6679 */
6680 for_each_possible_cpu(cpu) {
6681 for_each_cpu_worker_pool(pool, cpu) {
6682 pool->node = cpu_to_node(cpu);
6683 }
6684 }
6685
6686 list_for_each_entry(wq, &workqueues, list) {
6687 WARN(init_rescuer(wq),
6688 "workqueue: failed to create early rescuer for %s",
6689 wq->name);
6690 }
6691
6692 mutex_unlock(lock: &wq_pool_mutex);
6693
6694 /* create the initial workers */
6695 for_each_online_cpu(cpu) {
6696 for_each_cpu_worker_pool(pool, cpu) {
6697 pool->flags &= ~POOL_DISASSOCIATED;
6698 BUG_ON(!create_worker(pool));
6699 }
6700 }
6701
6702 hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
6703 BUG_ON(!create_worker(pool));
6704
6705 wq_online = true;
6706 wq_watchdog_init();
6707}
6708
6709/*
6710 * Initialize @pt by first initializing @pt->cpu_pod[] with pod IDs according to
6711 * @cpu_shares_pod(). Each subset of CPUs that share a pod is assigned a unique
6712 * and consecutive pod ID. The rest of @pt is initialized accordingly.
6713 */
6714static void __init init_pod_type(struct wq_pod_type *pt,
6715 bool (*cpus_share_pod)(int, int))
6716{
6717 int cur, pre, cpu, pod;
6718
6719 pt->nr_pods = 0;
6720
6721 /* init @pt->cpu_pod[] according to @cpus_share_pod() */
6722 pt->cpu_pod = kcalloc(n: nr_cpu_ids, size: sizeof(pt->cpu_pod[0]), GFP_KERNEL);
6723 BUG_ON(!pt->cpu_pod);
6724
6725 for_each_possible_cpu(cur) {
6726 for_each_possible_cpu(pre) {
6727 if (pre >= cur) {
6728 pt->cpu_pod[cur] = pt->nr_pods++;
6729 break;
6730 }
6731 if (cpus_share_pod(cur, pre)) {
6732 pt->cpu_pod[cur] = pt->cpu_pod[pre];
6733 break;
6734 }
6735 }
6736 }
6737
6738 /* init the rest to match @pt->cpu_pod[] */
6739 pt->pod_cpus = kcalloc(n: pt->nr_pods, size: sizeof(pt->pod_cpus[0]), GFP_KERNEL);
6740 pt->pod_node = kcalloc(n: pt->nr_pods, size: sizeof(pt->pod_node[0]), GFP_KERNEL);
6741 BUG_ON(!pt->pod_cpus || !pt->pod_node);
6742
6743 for (pod = 0; pod < pt->nr_pods; pod++)
6744 BUG_ON(!zalloc_cpumask_var(&pt->pod_cpus[pod], GFP_KERNEL));
6745
6746 for_each_possible_cpu(cpu) {
6747 cpumask_set_cpu(cpu, dstp: pt->pod_cpus[pt->cpu_pod[cpu]]);
6748 pt->pod_node[pt->cpu_pod[cpu]] = cpu_to_node(cpu);
6749 }
6750}
6751
6752static bool __init cpus_dont_share(int cpu0, int cpu1)
6753{
6754 return false;
6755}
6756
6757static bool __init cpus_share_smt(int cpu0, int cpu1)
6758{
6759#ifdef CONFIG_SCHED_SMT
6760 return cpumask_test_cpu(cpu: cpu0, cpumask: cpu_smt_mask(cpu: cpu1));
6761#else
6762 return false;
6763#endif
6764}
6765
6766static bool __init cpus_share_numa(int cpu0, int cpu1)
6767{
6768 return cpu_to_node(cpu: cpu0) == cpu_to_node(cpu: cpu1);
6769}
6770
6771/**
6772 * workqueue_init_topology - initialize CPU pods for unbound workqueues
6773 *
6774 * This is the third step of there-staged workqueue subsystem initialization and
6775 * invoked after SMP and topology information are fully initialized. It
6776 * initializes the unbound CPU pods accordingly.
6777 */
6778void __init workqueue_init_topology(void)
6779{
6780 struct workqueue_struct *wq;
6781 int cpu;
6782
6783 init_pod_type(pt: &wq_pod_types[WQ_AFFN_CPU], cpus_share_pod: cpus_dont_share);
6784 init_pod_type(pt: &wq_pod_types[WQ_AFFN_SMT], cpus_share_pod: cpus_share_smt);
6785 init_pod_type(pt: &wq_pod_types[WQ_AFFN_CACHE], cpus_share_pod: cpus_share_cache);
6786 init_pod_type(pt: &wq_pod_types[WQ_AFFN_NUMA], cpus_share_pod: cpus_share_numa);
6787
6788 mutex_lock(&wq_pool_mutex);
6789
6790 /*
6791 * Workqueues allocated earlier would have all CPUs sharing the default
6792 * worker pool. Explicitly call wq_update_pod() on all workqueue and CPU
6793 * combinations to apply per-pod sharing.
6794 */
6795 list_for_each_entry(wq, &workqueues, list) {
6796 for_each_online_cpu(cpu) {
6797 wq_update_pod(wq, cpu, hotplug_cpu: cpu, online: true);
6798 }
6799 }
6800
6801 mutex_unlock(lock: &wq_pool_mutex);
6802}
6803
6804void __warn_flushing_systemwide_wq(void)
6805{
6806 pr_warn("WARNING: Flushing system-wide workqueues will be prohibited in near future.\n");
6807 dump_stack();
6808}
6809EXPORT_SYMBOL(__warn_flushing_systemwide_wq);
6810
6811static int __init workqueue_unbound_cpus_setup(char *str)
6812{
6813 if (cpulist_parse(buf: str, dstp: &wq_cmdline_cpumask) < 0) {
6814 cpumask_clear(dstp: &wq_cmdline_cpumask);
6815 pr_warn("workqueue.unbound_cpus: incorrect CPU range, using default\n");
6816 }
6817
6818 return 1;
6819}
6820__setup("workqueue.unbound_cpus=", workqueue_unbound_cpus_setup);
6821

source code of linux/kernel/workqueue.c