1#include <linux/kernel.h>
2#include <linux/gcd.h>
3#include <linux/export.h>
4
5/*
6 * This implements the binary GCD algorithm. (Often attributed to Stein,
7 * but as Knuth has noted, appears in a first-century Chinese math text.)
8 *
9 * This is faster than the division-based algorithm even on x86, which
10 * has decent hardware division.
11 */
12
13#if !defined(CONFIG_CPU_NO_EFFICIENT_FFS)
14
15/* If __ffs is available, the even/odd algorithm benchmarks slower. */
16
17/**
18 * gcd - calculate and return the greatest common divisor of 2 unsigned longs
19 * @a: first value
20 * @b: second value
21 */
22unsigned long gcd(unsigned long a, unsigned long b)
23{
24 unsigned long r = a | b;
25
26 if (!a || !b)
27 return r;
28
29 b >>= __ffs(b);
30 if (b == 1)
31 return r & -r;
32
33 for (;;) {
34 a >>= __ffs(a);
35 if (a == 1)
36 return r & -r;
37 if (a == b)
38 return a << __ffs(r);
39
40 if (a < b)
41 swap(a, b);
42 a -= b;
43 }
44}
45
46#else
47
48/* If normalization is done by loops, the even/odd algorithm is a win. */
49unsigned long gcd(unsigned long a, unsigned long b)
50{
51 unsigned long r = a | b;
52
53 if (!a || !b)
54 return r;
55
56 /* Isolate lsbit of r */
57 r &= -r;
58
59 while (!(b & r))
60 b >>= 1;
61 if (b == r)
62 return r;
63
64 for (;;) {
65 while (!(a & r))
66 a >>= 1;
67 if (a == r)
68 return r;
69 if (a == b)
70 return a;
71
72 if (a < b)
73 swap(a, b);
74 a -= b;
75 a >>= 1;
76 if (a & r)
77 a += b;
78 a >>= 1;
79 }
80}
81
82#endif
83
84EXPORT_SYMBOL_GPL(gcd);
85