1// SPDX-License-Identifier: GPL-2.0
2/*
3 * linux/mm/compaction.c
4 *
5 * Memory compaction for the reduction of external fragmentation. Note that
6 * this heavily depends upon page migration to do all the real heavy
7 * lifting
8 *
9 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
10 */
11#include <linux/cpu.h>
12#include <linux/swap.h>
13#include <linux/migrate.h>
14#include <linux/compaction.h>
15#include <linux/mm_inline.h>
16#include <linux/sched/signal.h>
17#include <linux/backing-dev.h>
18#include <linux/sysctl.h>
19#include <linux/sysfs.h>
20#include <linux/page-isolation.h>
21#include <linux/kasan.h>
22#include <linux/kthread.h>
23#include <linux/freezer.h>
24#include <linux/page_owner.h>
25#include <linux/psi.h>
26#include "internal.h"
27
28#ifdef CONFIG_COMPACTION
29/*
30 * Fragmentation score check interval for proactive compaction purposes.
31 */
32#define HPAGE_FRAG_CHECK_INTERVAL_MSEC (500)
33
34static inline void count_compact_event(enum vm_event_item item)
35{
36 count_vm_event(item);
37}
38
39static inline void count_compact_events(enum vm_event_item item, long delta)
40{
41 count_vm_events(item, delta);
42}
43#else
44#define count_compact_event(item) do { } while (0)
45#define count_compact_events(item, delta) do { } while (0)
46#endif
47
48#if defined CONFIG_COMPACTION || defined CONFIG_CMA
49
50#define CREATE_TRACE_POINTS
51#include <trace/events/compaction.h>
52
53#define block_start_pfn(pfn, order) round_down(pfn, 1UL << (order))
54#define block_end_pfn(pfn, order) ALIGN((pfn) + 1, 1UL << (order))
55
56/*
57 * Page order with-respect-to which proactive compaction
58 * calculates external fragmentation, which is used as
59 * the "fragmentation score" of a node/zone.
60 */
61#if defined CONFIG_TRANSPARENT_HUGEPAGE
62#define COMPACTION_HPAGE_ORDER HPAGE_PMD_ORDER
63#elif defined CONFIG_HUGETLBFS
64#define COMPACTION_HPAGE_ORDER HUGETLB_PAGE_ORDER
65#else
66#define COMPACTION_HPAGE_ORDER (PMD_SHIFT - PAGE_SHIFT)
67#endif
68
69static unsigned long release_freepages(struct list_head *freelist)
70{
71 struct page *page, *next;
72 unsigned long high_pfn = 0;
73
74 list_for_each_entry_safe(page, next, freelist, lru) {
75 unsigned long pfn = page_to_pfn(page);
76 list_del(entry: &page->lru);
77 __free_page(page);
78 if (pfn > high_pfn)
79 high_pfn = pfn;
80 }
81
82 return high_pfn;
83}
84
85static void split_map_pages(struct list_head *list)
86{
87 unsigned int i, order, nr_pages;
88 struct page *page, *next;
89 LIST_HEAD(tmp_list);
90
91 list_for_each_entry_safe(page, next, list, lru) {
92 list_del(entry: &page->lru);
93
94 order = page_private(page);
95 nr_pages = 1 << order;
96
97 post_alloc_hook(page, order, __GFP_MOVABLE);
98 if (order)
99 split_page(page, order);
100
101 for (i = 0; i < nr_pages; i++) {
102 list_add(new: &page->lru, head: &tmp_list);
103 page++;
104 }
105 }
106
107 list_splice(list: &tmp_list, head: list);
108}
109
110#ifdef CONFIG_COMPACTION
111bool PageMovable(struct page *page)
112{
113 const struct movable_operations *mops;
114
115 VM_BUG_ON_PAGE(!PageLocked(page), page);
116 if (!__PageMovable(page))
117 return false;
118
119 mops = page_movable_ops(page);
120 if (mops)
121 return true;
122
123 return false;
124}
125
126void __SetPageMovable(struct page *page, const struct movable_operations *mops)
127{
128 VM_BUG_ON_PAGE(!PageLocked(page), page);
129 VM_BUG_ON_PAGE((unsigned long)mops & PAGE_MAPPING_MOVABLE, page);
130 page->mapping = (void *)((unsigned long)mops | PAGE_MAPPING_MOVABLE);
131}
132EXPORT_SYMBOL(__SetPageMovable);
133
134void __ClearPageMovable(struct page *page)
135{
136 VM_BUG_ON_PAGE(!PageMovable(page), page);
137 /*
138 * This page still has the type of a movable page, but it's
139 * actually not movable any more.
140 */
141 page->mapping = (void *)PAGE_MAPPING_MOVABLE;
142}
143EXPORT_SYMBOL(__ClearPageMovable);
144
145/* Do not skip compaction more than 64 times */
146#define COMPACT_MAX_DEFER_SHIFT 6
147
148/*
149 * Compaction is deferred when compaction fails to result in a page
150 * allocation success. 1 << compact_defer_shift, compactions are skipped up
151 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
152 */
153static void defer_compaction(struct zone *zone, int order)
154{
155 zone->compact_considered = 0;
156 zone->compact_defer_shift++;
157
158 if (order < zone->compact_order_failed)
159 zone->compact_order_failed = order;
160
161 if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
162 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
163
164 trace_mm_compaction_defer_compaction(zone, order);
165}
166
167/* Returns true if compaction should be skipped this time */
168static bool compaction_deferred(struct zone *zone, int order)
169{
170 unsigned long defer_limit = 1UL << zone->compact_defer_shift;
171
172 if (order < zone->compact_order_failed)
173 return false;
174
175 /* Avoid possible overflow */
176 if (++zone->compact_considered >= defer_limit) {
177 zone->compact_considered = defer_limit;
178 return false;
179 }
180
181 trace_mm_compaction_deferred(zone, order);
182
183 return true;
184}
185
186/*
187 * Update defer tracking counters after successful compaction of given order,
188 * which means an allocation either succeeded (alloc_success == true) or is
189 * expected to succeed.
190 */
191void compaction_defer_reset(struct zone *zone, int order,
192 bool alloc_success)
193{
194 if (alloc_success) {
195 zone->compact_considered = 0;
196 zone->compact_defer_shift = 0;
197 }
198 if (order >= zone->compact_order_failed)
199 zone->compact_order_failed = order + 1;
200
201 trace_mm_compaction_defer_reset(zone, order);
202}
203
204/* Returns true if restarting compaction after many failures */
205static bool compaction_restarting(struct zone *zone, int order)
206{
207 if (order < zone->compact_order_failed)
208 return false;
209
210 return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
211 zone->compact_considered >= 1UL << zone->compact_defer_shift;
212}
213
214/* Returns true if the pageblock should be scanned for pages to isolate. */
215static inline bool isolation_suitable(struct compact_control *cc,
216 struct page *page)
217{
218 if (cc->ignore_skip_hint)
219 return true;
220
221 return !get_pageblock_skip(page);
222}
223
224static void reset_cached_positions(struct zone *zone)
225{
226 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
227 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
228 zone->compact_cached_free_pfn =
229 pageblock_start_pfn(zone_end_pfn(zone) - 1);
230}
231
232#ifdef CONFIG_SPARSEMEM
233/*
234 * If the PFN falls into an offline section, return the start PFN of the
235 * next online section. If the PFN falls into an online section or if
236 * there is no next online section, return 0.
237 */
238static unsigned long skip_offline_sections(unsigned long start_pfn)
239{
240 unsigned long start_nr = pfn_to_section_nr(pfn: start_pfn);
241
242 if (online_section_nr(nr: start_nr))
243 return 0;
244
245 while (++start_nr <= __highest_present_section_nr) {
246 if (online_section_nr(nr: start_nr))
247 return section_nr_to_pfn(sec: start_nr);
248 }
249
250 return 0;
251}
252
253/*
254 * If the PFN falls into an offline section, return the end PFN of the
255 * next online section in reverse. If the PFN falls into an online section
256 * or if there is no next online section in reverse, return 0.
257 */
258static unsigned long skip_offline_sections_reverse(unsigned long start_pfn)
259{
260 unsigned long start_nr = pfn_to_section_nr(pfn: start_pfn);
261
262 if (!start_nr || online_section_nr(nr: start_nr))
263 return 0;
264
265 while (start_nr-- > 0) {
266 if (online_section_nr(nr: start_nr))
267 return section_nr_to_pfn(sec: start_nr) + PAGES_PER_SECTION;
268 }
269
270 return 0;
271}
272#else
273static unsigned long skip_offline_sections(unsigned long start_pfn)
274{
275 return 0;
276}
277
278static unsigned long skip_offline_sections_reverse(unsigned long start_pfn)
279{
280 return 0;
281}
282#endif
283
284/*
285 * Compound pages of >= pageblock_order should consistently be skipped until
286 * released. It is always pointless to compact pages of such order (if they are
287 * migratable), and the pageblocks they occupy cannot contain any free pages.
288 */
289static bool pageblock_skip_persistent(struct page *page)
290{
291 if (!PageCompound(page))
292 return false;
293
294 page = compound_head(page);
295
296 if (compound_order(page) >= pageblock_order)
297 return true;
298
299 return false;
300}
301
302static bool
303__reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
304 bool check_target)
305{
306 struct page *page = pfn_to_online_page(pfn);
307 struct page *block_page;
308 struct page *end_page;
309 unsigned long block_pfn;
310
311 if (!page)
312 return false;
313 if (zone != page_zone(page))
314 return false;
315 if (pageblock_skip_persistent(page))
316 return false;
317
318 /*
319 * If skip is already cleared do no further checking once the
320 * restart points have been set.
321 */
322 if (check_source && check_target && !get_pageblock_skip(page))
323 return true;
324
325 /*
326 * If clearing skip for the target scanner, do not select a
327 * non-movable pageblock as the starting point.
328 */
329 if (!check_source && check_target &&
330 get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
331 return false;
332
333 /* Ensure the start of the pageblock or zone is online and valid */
334 block_pfn = pageblock_start_pfn(pfn);
335 block_pfn = max(block_pfn, zone->zone_start_pfn);
336 block_page = pfn_to_online_page(pfn: block_pfn);
337 if (block_page) {
338 page = block_page;
339 pfn = block_pfn;
340 }
341
342 /* Ensure the end of the pageblock or zone is online and valid */
343 block_pfn = pageblock_end_pfn(pfn) - 1;
344 block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
345 end_page = pfn_to_online_page(pfn: block_pfn);
346 if (!end_page)
347 return false;
348
349 /*
350 * Only clear the hint if a sample indicates there is either a
351 * free page or an LRU page in the block. One or other condition
352 * is necessary for the block to be a migration source/target.
353 */
354 do {
355 if (check_source && PageLRU(page)) {
356 clear_pageblock_skip(page);
357 return true;
358 }
359
360 if (check_target && PageBuddy(page)) {
361 clear_pageblock_skip(page);
362 return true;
363 }
364
365 page += (1 << PAGE_ALLOC_COSTLY_ORDER);
366 } while (page <= end_page);
367
368 return false;
369}
370
371/*
372 * This function is called to clear all cached information on pageblocks that
373 * should be skipped for page isolation when the migrate and free page scanner
374 * meet.
375 */
376static void __reset_isolation_suitable(struct zone *zone)
377{
378 unsigned long migrate_pfn = zone->zone_start_pfn;
379 unsigned long free_pfn = zone_end_pfn(zone) - 1;
380 unsigned long reset_migrate = free_pfn;
381 unsigned long reset_free = migrate_pfn;
382 bool source_set = false;
383 bool free_set = false;
384
385 /* Only flush if a full compaction finished recently */
386 if (!zone->compact_blockskip_flush)
387 return;
388
389 zone->compact_blockskip_flush = false;
390
391 /*
392 * Walk the zone and update pageblock skip information. Source looks
393 * for PageLRU while target looks for PageBuddy. When the scanner
394 * is found, both PageBuddy and PageLRU are checked as the pageblock
395 * is suitable as both source and target.
396 */
397 for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
398 free_pfn -= pageblock_nr_pages) {
399 cond_resched();
400
401 /* Update the migrate PFN */
402 if (__reset_isolation_pfn(zone, pfn: migrate_pfn, check_source: true, check_target: source_set) &&
403 migrate_pfn < reset_migrate) {
404 source_set = true;
405 reset_migrate = migrate_pfn;
406 zone->compact_init_migrate_pfn = reset_migrate;
407 zone->compact_cached_migrate_pfn[0] = reset_migrate;
408 zone->compact_cached_migrate_pfn[1] = reset_migrate;
409 }
410
411 /* Update the free PFN */
412 if (__reset_isolation_pfn(zone, pfn: free_pfn, check_source: free_set, check_target: true) &&
413 free_pfn > reset_free) {
414 free_set = true;
415 reset_free = free_pfn;
416 zone->compact_init_free_pfn = reset_free;
417 zone->compact_cached_free_pfn = reset_free;
418 }
419 }
420
421 /* Leave no distance if no suitable block was reset */
422 if (reset_migrate >= reset_free) {
423 zone->compact_cached_migrate_pfn[0] = migrate_pfn;
424 zone->compact_cached_migrate_pfn[1] = migrate_pfn;
425 zone->compact_cached_free_pfn = free_pfn;
426 }
427}
428
429void reset_isolation_suitable(pg_data_t *pgdat)
430{
431 int zoneid;
432
433 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
434 struct zone *zone = &pgdat->node_zones[zoneid];
435 if (!populated_zone(zone))
436 continue;
437
438 __reset_isolation_suitable(zone);
439 }
440}
441
442/*
443 * Sets the pageblock skip bit if it was clear. Note that this is a hint as
444 * locks are not required for read/writers. Returns true if it was already set.
445 */
446static bool test_and_set_skip(struct compact_control *cc, struct page *page)
447{
448 bool skip;
449
450 /* Do not update if skip hint is being ignored */
451 if (cc->ignore_skip_hint)
452 return false;
453
454 skip = get_pageblock_skip(page);
455 if (!skip && !cc->no_set_skip_hint)
456 set_pageblock_skip(page);
457
458 return skip;
459}
460
461static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
462{
463 struct zone *zone = cc->zone;
464
465 /* Set for isolation rather than compaction */
466 if (cc->no_set_skip_hint)
467 return;
468
469 pfn = pageblock_end_pfn(pfn);
470
471 /* Update where async and sync compaction should restart */
472 if (pfn > zone->compact_cached_migrate_pfn[0])
473 zone->compact_cached_migrate_pfn[0] = pfn;
474 if (cc->mode != MIGRATE_ASYNC &&
475 pfn > zone->compact_cached_migrate_pfn[1])
476 zone->compact_cached_migrate_pfn[1] = pfn;
477}
478
479/*
480 * If no pages were isolated then mark this pageblock to be skipped in the
481 * future. The information is later cleared by __reset_isolation_suitable().
482 */
483static void update_pageblock_skip(struct compact_control *cc,
484 struct page *page, unsigned long pfn)
485{
486 struct zone *zone = cc->zone;
487
488 if (cc->no_set_skip_hint)
489 return;
490
491 set_pageblock_skip(page);
492
493 if (pfn < zone->compact_cached_free_pfn)
494 zone->compact_cached_free_pfn = pfn;
495}
496#else
497static inline bool isolation_suitable(struct compact_control *cc,
498 struct page *page)
499{
500 return true;
501}
502
503static inline bool pageblock_skip_persistent(struct page *page)
504{
505 return false;
506}
507
508static inline void update_pageblock_skip(struct compact_control *cc,
509 struct page *page, unsigned long pfn)
510{
511}
512
513static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
514{
515}
516
517static bool test_and_set_skip(struct compact_control *cc, struct page *page)
518{
519 return false;
520}
521#endif /* CONFIG_COMPACTION */
522
523/*
524 * Compaction requires the taking of some coarse locks that are potentially
525 * very heavily contended. For async compaction, trylock and record if the
526 * lock is contended. The lock will still be acquired but compaction will
527 * abort when the current block is finished regardless of success rate.
528 * Sync compaction acquires the lock.
529 *
530 * Always returns true which makes it easier to track lock state in callers.
531 */
532static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
533 struct compact_control *cc)
534 __acquires(lock)
535{
536 /* Track if the lock is contended in async mode */
537 if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
538 if (spin_trylock_irqsave(lock, *flags))
539 return true;
540
541 cc->contended = true;
542 }
543
544 spin_lock_irqsave(lock, *flags);
545 return true;
546}
547
548/*
549 * Compaction requires the taking of some coarse locks that are potentially
550 * very heavily contended. The lock should be periodically unlocked to avoid
551 * having disabled IRQs for a long time, even when there is nobody waiting on
552 * the lock. It might also be that allowing the IRQs will result in
553 * need_resched() becoming true. If scheduling is needed, compaction schedules.
554 * Either compaction type will also abort if a fatal signal is pending.
555 * In either case if the lock was locked, it is dropped and not regained.
556 *
557 * Returns true if compaction should abort due to fatal signal pending.
558 * Returns false when compaction can continue.
559 */
560static bool compact_unlock_should_abort(spinlock_t *lock,
561 unsigned long flags, bool *locked, struct compact_control *cc)
562{
563 if (*locked) {
564 spin_unlock_irqrestore(lock, flags);
565 *locked = false;
566 }
567
568 if (fatal_signal_pending(current)) {
569 cc->contended = true;
570 return true;
571 }
572
573 cond_resched();
574
575 return false;
576}
577
578/*
579 * Isolate free pages onto a private freelist. If @strict is true, will abort
580 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
581 * (even though it may still end up isolating some pages).
582 */
583static unsigned long isolate_freepages_block(struct compact_control *cc,
584 unsigned long *start_pfn,
585 unsigned long end_pfn,
586 struct list_head *freelist,
587 unsigned int stride,
588 bool strict)
589{
590 int nr_scanned = 0, total_isolated = 0;
591 struct page *page;
592 unsigned long flags = 0;
593 bool locked = false;
594 unsigned long blockpfn = *start_pfn;
595 unsigned int order;
596
597 /* Strict mode is for isolation, speed is secondary */
598 if (strict)
599 stride = 1;
600
601 page = pfn_to_page(blockpfn);
602
603 /* Isolate free pages. */
604 for (; blockpfn < end_pfn; blockpfn += stride, page += stride) {
605 int isolated;
606
607 /*
608 * Periodically drop the lock (if held) regardless of its
609 * contention, to give chance to IRQs. Abort if fatal signal
610 * pending.
611 */
612 if (!(blockpfn % COMPACT_CLUSTER_MAX)
613 && compact_unlock_should_abort(lock: &cc->zone->lock, flags,
614 locked: &locked, cc))
615 break;
616
617 nr_scanned++;
618
619 /*
620 * For compound pages such as THP and hugetlbfs, we can save
621 * potentially a lot of iterations if we skip them at once.
622 * The check is racy, but we can consider only valid values
623 * and the only danger is skipping too much.
624 */
625 if (PageCompound(page)) {
626 const unsigned int order = compound_order(page);
627
628 if (blockpfn + (1UL << order) <= end_pfn) {
629 blockpfn += (1UL << order) - 1;
630 page += (1UL << order) - 1;
631 nr_scanned += (1UL << order) - 1;
632 }
633
634 goto isolate_fail;
635 }
636
637 if (!PageBuddy(page))
638 goto isolate_fail;
639
640 /* If we already hold the lock, we can skip some rechecking. */
641 if (!locked) {
642 locked = compact_lock_irqsave(lock: &cc->zone->lock,
643 flags: &flags, cc);
644
645 /* Recheck this is a buddy page under lock */
646 if (!PageBuddy(page))
647 goto isolate_fail;
648 }
649
650 /* Found a free page, will break it into order-0 pages */
651 order = buddy_order(page);
652 isolated = __isolate_free_page(page, order);
653 if (!isolated)
654 break;
655 set_page_private(page, private: order);
656
657 nr_scanned += isolated - 1;
658 total_isolated += isolated;
659 cc->nr_freepages += isolated;
660 list_add_tail(new: &page->lru, head: freelist);
661
662 if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
663 blockpfn += isolated;
664 break;
665 }
666 /* Advance to the end of split page */
667 blockpfn += isolated - 1;
668 page += isolated - 1;
669 continue;
670
671isolate_fail:
672 if (strict)
673 break;
674
675 }
676
677 if (locked)
678 spin_unlock_irqrestore(lock: &cc->zone->lock, flags);
679
680 /*
681 * Be careful to not go outside of the pageblock.
682 */
683 if (unlikely(blockpfn > end_pfn))
684 blockpfn = end_pfn;
685
686 trace_mm_compaction_isolate_freepages(start_pfn: *start_pfn, end_pfn: blockpfn,
687 nr_scanned, nr_taken: total_isolated);
688
689 /* Record how far we have got within the block */
690 *start_pfn = blockpfn;
691
692 /*
693 * If strict isolation is requested by CMA then check that all the
694 * pages requested were isolated. If there were any failures, 0 is
695 * returned and CMA will fail.
696 */
697 if (strict && blockpfn < end_pfn)
698 total_isolated = 0;
699
700 cc->total_free_scanned += nr_scanned;
701 if (total_isolated)
702 count_compact_events(item: COMPACTISOLATED, delta: total_isolated);
703 return total_isolated;
704}
705
706/**
707 * isolate_freepages_range() - isolate free pages.
708 * @cc: Compaction control structure.
709 * @start_pfn: The first PFN to start isolating.
710 * @end_pfn: The one-past-last PFN.
711 *
712 * Non-free pages, invalid PFNs, or zone boundaries within the
713 * [start_pfn, end_pfn) range are considered errors, cause function to
714 * undo its actions and return zero.
715 *
716 * Otherwise, function returns one-past-the-last PFN of isolated page
717 * (which may be greater then end_pfn if end fell in a middle of
718 * a free page).
719 */
720unsigned long
721isolate_freepages_range(struct compact_control *cc,
722 unsigned long start_pfn, unsigned long end_pfn)
723{
724 unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
725 LIST_HEAD(freelist);
726
727 pfn = start_pfn;
728 block_start_pfn = pageblock_start_pfn(pfn);
729 if (block_start_pfn < cc->zone->zone_start_pfn)
730 block_start_pfn = cc->zone->zone_start_pfn;
731 block_end_pfn = pageblock_end_pfn(pfn);
732
733 for (; pfn < end_pfn; pfn += isolated,
734 block_start_pfn = block_end_pfn,
735 block_end_pfn += pageblock_nr_pages) {
736 /* Protect pfn from changing by isolate_freepages_block */
737 unsigned long isolate_start_pfn = pfn;
738
739 /*
740 * pfn could pass the block_end_pfn if isolated freepage
741 * is more than pageblock order. In this case, we adjust
742 * scanning range to right one.
743 */
744 if (pfn >= block_end_pfn) {
745 block_start_pfn = pageblock_start_pfn(pfn);
746 block_end_pfn = pageblock_end_pfn(pfn);
747 }
748
749 block_end_pfn = min(block_end_pfn, end_pfn);
750
751 if (!pageblock_pfn_to_page(start_pfn: block_start_pfn,
752 end_pfn: block_end_pfn, zone: cc->zone))
753 break;
754
755 isolated = isolate_freepages_block(cc, start_pfn: &isolate_start_pfn,
756 end_pfn: block_end_pfn, freelist: &freelist, stride: 0, strict: true);
757
758 /*
759 * In strict mode, isolate_freepages_block() returns 0 if
760 * there are any holes in the block (ie. invalid PFNs or
761 * non-free pages).
762 */
763 if (!isolated)
764 break;
765
766 /*
767 * If we managed to isolate pages, it is always (1 << n) *
768 * pageblock_nr_pages for some non-negative n. (Max order
769 * page may span two pageblocks).
770 */
771 }
772
773 /* __isolate_free_page() does not map the pages */
774 split_map_pages(list: &freelist);
775
776 if (pfn < end_pfn) {
777 /* Loop terminated early, cleanup. */
778 release_freepages(freelist: &freelist);
779 return 0;
780 }
781
782 /* We don't use freelists for anything. */
783 return pfn;
784}
785
786/* Similar to reclaim, but different enough that they don't share logic */
787static bool too_many_isolated(struct compact_control *cc)
788{
789 pg_data_t *pgdat = cc->zone->zone_pgdat;
790 bool too_many;
791
792 unsigned long active, inactive, isolated;
793
794 inactive = node_page_state(pgdat, item: NR_INACTIVE_FILE) +
795 node_page_state(pgdat, item: NR_INACTIVE_ANON);
796 active = node_page_state(pgdat, item: NR_ACTIVE_FILE) +
797 node_page_state(pgdat, item: NR_ACTIVE_ANON);
798 isolated = node_page_state(pgdat, item: NR_ISOLATED_FILE) +
799 node_page_state(pgdat, item: NR_ISOLATED_ANON);
800
801 /*
802 * Allow GFP_NOFS to isolate past the limit set for regular
803 * compaction runs. This prevents an ABBA deadlock when other
804 * compactors have already isolated to the limit, but are
805 * blocked on filesystem locks held by the GFP_NOFS thread.
806 */
807 if (cc->gfp_mask & __GFP_FS) {
808 inactive >>= 3;
809 active >>= 3;
810 }
811
812 too_many = isolated > (inactive + active) / 2;
813 if (!too_many)
814 wake_throttle_isolated(pgdat);
815
816 return too_many;
817}
818
819/**
820 * isolate_migratepages_block() - isolate all migrate-able pages within
821 * a single pageblock
822 * @cc: Compaction control structure.
823 * @low_pfn: The first PFN to isolate
824 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock
825 * @mode: Isolation mode to be used.
826 *
827 * Isolate all pages that can be migrated from the range specified by
828 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
829 * Returns errno, like -EAGAIN or -EINTR in case e.g signal pending or congestion,
830 * -ENOMEM in case we could not allocate a page, or 0.
831 * cc->migrate_pfn will contain the next pfn to scan.
832 *
833 * The pages are isolated on cc->migratepages list (not required to be empty),
834 * and cc->nr_migratepages is updated accordingly.
835 */
836static int
837isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
838 unsigned long end_pfn, isolate_mode_t mode)
839{
840 pg_data_t *pgdat = cc->zone->zone_pgdat;
841 unsigned long nr_scanned = 0, nr_isolated = 0;
842 struct lruvec *lruvec;
843 unsigned long flags = 0;
844 struct lruvec *locked = NULL;
845 struct folio *folio = NULL;
846 struct page *page = NULL, *valid_page = NULL;
847 struct address_space *mapping;
848 unsigned long start_pfn = low_pfn;
849 bool skip_on_failure = false;
850 unsigned long next_skip_pfn = 0;
851 bool skip_updated = false;
852 int ret = 0;
853
854 cc->migrate_pfn = low_pfn;
855
856 /*
857 * Ensure that there are not too many pages isolated from the LRU
858 * list by either parallel reclaimers or compaction. If there are,
859 * delay for some time until fewer pages are isolated
860 */
861 while (unlikely(too_many_isolated(cc))) {
862 /* stop isolation if there are still pages not migrated */
863 if (cc->nr_migratepages)
864 return -EAGAIN;
865
866 /* async migration should just abort */
867 if (cc->mode == MIGRATE_ASYNC)
868 return -EAGAIN;
869
870 reclaim_throttle(pgdat, reason: VMSCAN_THROTTLE_ISOLATED);
871
872 if (fatal_signal_pending(current))
873 return -EINTR;
874 }
875
876 cond_resched();
877
878 if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
879 skip_on_failure = true;
880 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
881 }
882
883 /* Time to isolate some pages for migration */
884 for (; low_pfn < end_pfn; low_pfn++) {
885
886 if (skip_on_failure && low_pfn >= next_skip_pfn) {
887 /*
888 * We have isolated all migration candidates in the
889 * previous order-aligned block, and did not skip it due
890 * to failure. We should migrate the pages now and
891 * hopefully succeed compaction.
892 */
893 if (nr_isolated)
894 break;
895
896 /*
897 * We failed to isolate in the previous order-aligned
898 * block. Set the new boundary to the end of the
899 * current block. Note we can't simply increase
900 * next_skip_pfn by 1 << order, as low_pfn might have
901 * been incremented by a higher number due to skipping
902 * a compound or a high-order buddy page in the
903 * previous loop iteration.
904 */
905 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
906 }
907
908 /*
909 * Periodically drop the lock (if held) regardless of its
910 * contention, to give chance to IRQs. Abort completely if
911 * a fatal signal is pending.
912 */
913 if (!(low_pfn % COMPACT_CLUSTER_MAX)) {
914 if (locked) {
915 unlock_page_lruvec_irqrestore(lruvec: locked, flags);
916 locked = NULL;
917 }
918
919 if (fatal_signal_pending(current)) {
920 cc->contended = true;
921 ret = -EINTR;
922
923 goto fatal_pending;
924 }
925
926 cond_resched();
927 }
928
929 nr_scanned++;
930
931 page = pfn_to_page(low_pfn);
932
933 /*
934 * Check if the pageblock has already been marked skipped.
935 * Only the first PFN is checked as the caller isolates
936 * COMPACT_CLUSTER_MAX at a time so the second call must
937 * not falsely conclude that the block should be skipped.
938 */
939 if (!valid_page && (pageblock_aligned(low_pfn) ||
940 low_pfn == cc->zone->zone_start_pfn)) {
941 if (!isolation_suitable(cc, page)) {
942 low_pfn = end_pfn;
943 folio = NULL;
944 goto isolate_abort;
945 }
946 valid_page = page;
947 }
948
949 if (PageHuge(page) && cc->alloc_contig) {
950 if (locked) {
951 unlock_page_lruvec_irqrestore(lruvec: locked, flags);
952 locked = NULL;
953 }
954
955 ret = isolate_or_dissolve_huge_page(page, list: &cc->migratepages);
956
957 /*
958 * Fail isolation in case isolate_or_dissolve_huge_page()
959 * reports an error. In case of -ENOMEM, abort right away.
960 */
961 if (ret < 0) {
962 /* Do not report -EBUSY down the chain */
963 if (ret == -EBUSY)
964 ret = 0;
965 low_pfn += compound_nr(page) - 1;
966 nr_scanned += compound_nr(page) - 1;
967 goto isolate_fail;
968 }
969
970 if (PageHuge(page)) {
971 /*
972 * Hugepage was successfully isolated and placed
973 * on the cc->migratepages list.
974 */
975 folio = page_folio(page);
976 low_pfn += folio_nr_pages(folio) - 1;
977 goto isolate_success_no_list;
978 }
979
980 /*
981 * Ok, the hugepage was dissolved. Now these pages are
982 * Buddy and cannot be re-allocated because they are
983 * isolated. Fall-through as the check below handles
984 * Buddy pages.
985 */
986 }
987
988 /*
989 * Skip if free. We read page order here without zone lock
990 * which is generally unsafe, but the race window is small and
991 * the worst thing that can happen is that we skip some
992 * potential isolation targets.
993 */
994 if (PageBuddy(page)) {
995 unsigned long freepage_order = buddy_order_unsafe(page);
996
997 /*
998 * Without lock, we cannot be sure that what we got is
999 * a valid page order. Consider only values in the
1000 * valid order range to prevent low_pfn overflow.
1001 */
1002 if (freepage_order > 0 && freepage_order <= MAX_ORDER) {
1003 low_pfn += (1UL << freepage_order) - 1;
1004 nr_scanned += (1UL << freepage_order) - 1;
1005 }
1006 continue;
1007 }
1008
1009 /*
1010 * Regardless of being on LRU, compound pages such as THP and
1011 * hugetlbfs are not to be compacted unless we are attempting
1012 * an allocation much larger than the huge page size (eg CMA).
1013 * We can potentially save a lot of iterations if we skip them
1014 * at once. The check is racy, but we can consider only valid
1015 * values and the only danger is skipping too much.
1016 */
1017 if (PageCompound(page) && !cc->alloc_contig) {
1018 const unsigned int order = compound_order(page);
1019
1020 if (likely(order <= MAX_ORDER)) {
1021 low_pfn += (1UL << order) - 1;
1022 nr_scanned += (1UL << order) - 1;
1023 }
1024 goto isolate_fail;
1025 }
1026
1027 /*
1028 * Check may be lockless but that's ok as we recheck later.
1029 * It's possible to migrate LRU and non-lru movable pages.
1030 * Skip any other type of page
1031 */
1032 if (!PageLRU(page)) {
1033 /*
1034 * __PageMovable can return false positive so we need
1035 * to verify it under page_lock.
1036 */
1037 if (unlikely(__PageMovable(page)) &&
1038 !PageIsolated(page)) {
1039 if (locked) {
1040 unlock_page_lruvec_irqrestore(lruvec: locked, flags);
1041 locked = NULL;
1042 }
1043
1044 if (isolate_movable_page(page, mode)) {
1045 folio = page_folio(page);
1046 goto isolate_success;
1047 }
1048 }
1049
1050 goto isolate_fail;
1051 }
1052
1053 /*
1054 * Be careful not to clear PageLRU until after we're
1055 * sure the page is not being freed elsewhere -- the
1056 * page release code relies on it.
1057 */
1058 folio = folio_get_nontail_page(page);
1059 if (unlikely(!folio))
1060 goto isolate_fail;
1061
1062 /*
1063 * Migration will fail if an anonymous page is pinned in memory,
1064 * so avoid taking lru_lock and isolating it unnecessarily in an
1065 * admittedly racy check.
1066 */
1067 mapping = folio_mapping(folio);
1068 if (!mapping && (folio_ref_count(folio) - 1) > folio_mapcount(folio))
1069 goto isolate_fail_put;
1070
1071 /*
1072 * Only allow to migrate anonymous pages in GFP_NOFS context
1073 * because those do not depend on fs locks.
1074 */
1075 if (!(cc->gfp_mask & __GFP_FS) && mapping)
1076 goto isolate_fail_put;
1077
1078 /* Only take pages on LRU: a check now makes later tests safe */
1079 if (!folio_test_lru(folio))
1080 goto isolate_fail_put;
1081
1082 /* Compaction might skip unevictable pages but CMA takes them */
1083 if (!(mode & ISOLATE_UNEVICTABLE) && folio_test_unevictable(folio))
1084 goto isolate_fail_put;
1085
1086 /*
1087 * To minimise LRU disruption, the caller can indicate with
1088 * ISOLATE_ASYNC_MIGRATE that it only wants to isolate pages
1089 * it will be able to migrate without blocking - clean pages
1090 * for the most part. PageWriteback would require blocking.
1091 */
1092 if ((mode & ISOLATE_ASYNC_MIGRATE) && folio_test_writeback(folio))
1093 goto isolate_fail_put;
1094
1095 if ((mode & ISOLATE_ASYNC_MIGRATE) && folio_test_dirty(folio)) {
1096 bool migrate_dirty;
1097
1098 /*
1099 * Only folios without mappings or that have
1100 * a ->migrate_folio callback are possible to
1101 * migrate without blocking. However, we may
1102 * be racing with truncation, which can free
1103 * the mapping. Truncation holds the folio lock
1104 * until after the folio is removed from the page
1105 * cache so holding it ourselves is sufficient.
1106 */
1107 if (!folio_trylock(folio))
1108 goto isolate_fail_put;
1109
1110 mapping = folio_mapping(folio);
1111 migrate_dirty = !mapping ||
1112 mapping->a_ops->migrate_folio;
1113 folio_unlock(folio);
1114 if (!migrate_dirty)
1115 goto isolate_fail_put;
1116 }
1117
1118 /* Try isolate the folio */
1119 if (!folio_test_clear_lru(folio))
1120 goto isolate_fail_put;
1121
1122 lruvec = folio_lruvec(folio);
1123
1124 /* If we already hold the lock, we can skip some rechecking */
1125 if (lruvec != locked) {
1126 if (locked)
1127 unlock_page_lruvec_irqrestore(lruvec: locked, flags);
1128
1129 compact_lock_irqsave(lock: &lruvec->lru_lock, flags: &flags, cc);
1130 locked = lruvec;
1131
1132 lruvec_memcg_debug(lruvec, folio);
1133
1134 /*
1135 * Try get exclusive access under lock. If marked for
1136 * skip, the scan is aborted unless the current context
1137 * is a rescan to reach the end of the pageblock.
1138 */
1139 if (!skip_updated && valid_page) {
1140 skip_updated = true;
1141 if (test_and_set_skip(cc, page: valid_page) &&
1142 !cc->finish_pageblock) {
1143 low_pfn = end_pfn;
1144 goto isolate_abort;
1145 }
1146 }
1147
1148 /*
1149 * folio become large since the non-locked check,
1150 * and it's on LRU.
1151 */
1152 if (unlikely(folio_test_large(folio) && !cc->alloc_contig)) {
1153 low_pfn += folio_nr_pages(folio) - 1;
1154 nr_scanned += folio_nr_pages(folio) - 1;
1155 folio_set_lru(folio);
1156 goto isolate_fail_put;
1157 }
1158 }
1159
1160 /* The folio is taken off the LRU */
1161 if (folio_test_large(folio))
1162 low_pfn += folio_nr_pages(folio) - 1;
1163
1164 /* Successfully isolated */
1165 lruvec_del_folio(lruvec, folio);
1166 node_stat_mod_folio(folio,
1167 item: NR_ISOLATED_ANON + folio_is_file_lru(folio),
1168 nr: folio_nr_pages(folio));
1169
1170isolate_success:
1171 list_add(new: &folio->lru, head: &cc->migratepages);
1172isolate_success_no_list:
1173 cc->nr_migratepages += folio_nr_pages(folio);
1174 nr_isolated += folio_nr_pages(folio);
1175 nr_scanned += folio_nr_pages(folio) - 1;
1176
1177 /*
1178 * Avoid isolating too much unless this block is being
1179 * fully scanned (e.g. dirty/writeback pages, parallel allocation)
1180 * or a lock is contended. For contention, isolate quickly to
1181 * potentially remove one source of contention.
1182 */
1183 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX &&
1184 !cc->finish_pageblock && !cc->contended) {
1185 ++low_pfn;
1186 break;
1187 }
1188
1189 continue;
1190
1191isolate_fail_put:
1192 /* Avoid potential deadlock in freeing page under lru_lock */
1193 if (locked) {
1194 unlock_page_lruvec_irqrestore(lruvec: locked, flags);
1195 locked = NULL;
1196 }
1197 folio_put(folio);
1198
1199isolate_fail:
1200 if (!skip_on_failure && ret != -ENOMEM)
1201 continue;
1202
1203 /*
1204 * We have isolated some pages, but then failed. Release them
1205 * instead of migrating, as we cannot form the cc->order buddy
1206 * page anyway.
1207 */
1208 if (nr_isolated) {
1209 if (locked) {
1210 unlock_page_lruvec_irqrestore(lruvec: locked, flags);
1211 locked = NULL;
1212 }
1213 putback_movable_pages(l: &cc->migratepages);
1214 cc->nr_migratepages = 0;
1215 nr_isolated = 0;
1216 }
1217
1218 if (low_pfn < next_skip_pfn) {
1219 low_pfn = next_skip_pfn - 1;
1220 /*
1221 * The check near the loop beginning would have updated
1222 * next_skip_pfn too, but this is a bit simpler.
1223 */
1224 next_skip_pfn += 1UL << cc->order;
1225 }
1226
1227 if (ret == -ENOMEM)
1228 break;
1229 }
1230
1231 /*
1232 * The PageBuddy() check could have potentially brought us outside
1233 * the range to be scanned.
1234 */
1235 if (unlikely(low_pfn > end_pfn))
1236 low_pfn = end_pfn;
1237
1238 folio = NULL;
1239
1240isolate_abort:
1241 if (locked)
1242 unlock_page_lruvec_irqrestore(lruvec: locked, flags);
1243 if (folio) {
1244 folio_set_lru(folio);
1245 folio_put(folio);
1246 }
1247
1248 /*
1249 * Update the cached scanner pfn once the pageblock has been scanned.
1250 * Pages will either be migrated in which case there is no point
1251 * scanning in the near future or migration failed in which case the
1252 * failure reason may persist. The block is marked for skipping if
1253 * there were no pages isolated in the block or if the block is
1254 * rescanned twice in a row.
1255 */
1256 if (low_pfn == end_pfn && (!nr_isolated || cc->finish_pageblock)) {
1257 if (!cc->no_set_skip_hint && valid_page && !skip_updated)
1258 set_pageblock_skip(valid_page);
1259 update_cached_migrate(cc, pfn: low_pfn);
1260 }
1261
1262 trace_mm_compaction_isolate_migratepages(start_pfn, end_pfn: low_pfn,
1263 nr_scanned, nr_taken: nr_isolated);
1264
1265fatal_pending:
1266 cc->total_migrate_scanned += nr_scanned;
1267 if (nr_isolated)
1268 count_compact_events(item: COMPACTISOLATED, delta: nr_isolated);
1269
1270 cc->migrate_pfn = low_pfn;
1271
1272 return ret;
1273}
1274
1275/**
1276 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1277 * @cc: Compaction control structure.
1278 * @start_pfn: The first PFN to start isolating.
1279 * @end_pfn: The one-past-last PFN.
1280 *
1281 * Returns -EAGAIN when contented, -EINTR in case of a signal pending, -ENOMEM
1282 * in case we could not allocate a page, or 0.
1283 */
1284int
1285isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1286 unsigned long end_pfn)
1287{
1288 unsigned long pfn, block_start_pfn, block_end_pfn;
1289 int ret = 0;
1290
1291 /* Scan block by block. First and last block may be incomplete */
1292 pfn = start_pfn;
1293 block_start_pfn = pageblock_start_pfn(pfn);
1294 if (block_start_pfn < cc->zone->zone_start_pfn)
1295 block_start_pfn = cc->zone->zone_start_pfn;
1296 block_end_pfn = pageblock_end_pfn(pfn);
1297
1298 for (; pfn < end_pfn; pfn = block_end_pfn,
1299 block_start_pfn = block_end_pfn,
1300 block_end_pfn += pageblock_nr_pages) {
1301
1302 block_end_pfn = min(block_end_pfn, end_pfn);
1303
1304 if (!pageblock_pfn_to_page(start_pfn: block_start_pfn,
1305 end_pfn: block_end_pfn, zone: cc->zone))
1306 continue;
1307
1308 ret = isolate_migratepages_block(cc, low_pfn: pfn, end_pfn: block_end_pfn,
1309 ISOLATE_UNEVICTABLE);
1310
1311 if (ret)
1312 break;
1313
1314 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX)
1315 break;
1316 }
1317
1318 return ret;
1319}
1320
1321#endif /* CONFIG_COMPACTION || CONFIG_CMA */
1322#ifdef CONFIG_COMPACTION
1323
1324static bool suitable_migration_source(struct compact_control *cc,
1325 struct page *page)
1326{
1327 int block_mt;
1328
1329 if (pageblock_skip_persistent(page))
1330 return false;
1331
1332 if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1333 return true;
1334
1335 block_mt = get_pageblock_migratetype(page);
1336
1337 if (cc->migratetype == MIGRATE_MOVABLE)
1338 return is_migrate_movable(mt: block_mt);
1339 else
1340 return block_mt == cc->migratetype;
1341}
1342
1343/* Returns true if the page is within a block suitable for migration to */
1344static bool suitable_migration_target(struct compact_control *cc,
1345 struct page *page)
1346{
1347 /* If the page is a large free page, then disallow migration */
1348 if (PageBuddy(page)) {
1349 /*
1350 * We are checking page_order without zone->lock taken. But
1351 * the only small danger is that we skip a potentially suitable
1352 * pageblock, so it's not worth to check order for valid range.
1353 */
1354 if (buddy_order_unsafe(page) >= pageblock_order)
1355 return false;
1356 }
1357
1358 if (cc->ignore_block_suitable)
1359 return true;
1360
1361 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1362 if (is_migrate_movable(get_pageblock_migratetype(page)))
1363 return true;
1364
1365 /* Otherwise skip the block */
1366 return false;
1367}
1368
1369static inline unsigned int
1370freelist_scan_limit(struct compact_control *cc)
1371{
1372 unsigned short shift = BITS_PER_LONG - 1;
1373
1374 return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
1375}
1376
1377/*
1378 * Test whether the free scanner has reached the same or lower pageblock than
1379 * the migration scanner, and compaction should thus terminate.
1380 */
1381static inline bool compact_scanners_met(struct compact_control *cc)
1382{
1383 return (cc->free_pfn >> pageblock_order)
1384 <= (cc->migrate_pfn >> pageblock_order);
1385}
1386
1387/*
1388 * Used when scanning for a suitable migration target which scans freelists
1389 * in reverse. Reorders the list such as the unscanned pages are scanned
1390 * first on the next iteration of the free scanner
1391 */
1392static void
1393move_freelist_head(struct list_head *freelist, struct page *freepage)
1394{
1395 LIST_HEAD(sublist);
1396
1397 if (!list_is_first(list: &freepage->buddy_list, head: freelist)) {
1398 list_cut_before(list: &sublist, head: freelist, entry: &freepage->buddy_list);
1399 list_splice_tail(list: &sublist, head: freelist);
1400 }
1401}
1402
1403/*
1404 * Similar to move_freelist_head except used by the migration scanner
1405 * when scanning forward. It's possible for these list operations to
1406 * move against each other if they search the free list exactly in
1407 * lockstep.
1408 */
1409static void
1410move_freelist_tail(struct list_head *freelist, struct page *freepage)
1411{
1412 LIST_HEAD(sublist);
1413
1414 if (!list_is_last(list: &freepage->buddy_list, head: freelist)) {
1415 list_cut_position(list: &sublist, head: freelist, entry: &freepage->buddy_list);
1416 list_splice_tail(list: &sublist, head: freelist);
1417 }
1418}
1419
1420static void
1421fast_isolate_around(struct compact_control *cc, unsigned long pfn)
1422{
1423 unsigned long start_pfn, end_pfn;
1424 struct page *page;
1425
1426 /* Do not search around if there are enough pages already */
1427 if (cc->nr_freepages >= cc->nr_migratepages)
1428 return;
1429
1430 /* Minimise scanning during async compaction */
1431 if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1432 return;
1433
1434 /* Pageblock boundaries */
1435 start_pfn = max(pageblock_start_pfn(pfn), cc->zone->zone_start_pfn);
1436 end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone));
1437
1438 page = pageblock_pfn_to_page(start_pfn, end_pfn, zone: cc->zone);
1439 if (!page)
1440 return;
1441
1442 isolate_freepages_block(cc, start_pfn: &start_pfn, end_pfn, freelist: &cc->freepages, stride: 1, strict: false);
1443
1444 /* Skip this pageblock in the future as it's full or nearly full */
1445 if (start_pfn == end_pfn && !cc->no_set_skip_hint)
1446 set_pageblock_skip(page);
1447}
1448
1449/* Search orders in round-robin fashion */
1450static int next_search_order(struct compact_control *cc, int order)
1451{
1452 order--;
1453 if (order < 0)
1454 order = cc->order - 1;
1455
1456 /* Search wrapped around? */
1457 if (order == cc->search_order) {
1458 cc->search_order--;
1459 if (cc->search_order < 0)
1460 cc->search_order = cc->order - 1;
1461 return -1;
1462 }
1463
1464 return order;
1465}
1466
1467static void fast_isolate_freepages(struct compact_control *cc)
1468{
1469 unsigned int limit = max(1U, freelist_scan_limit(cc) >> 1);
1470 unsigned int nr_scanned = 0, total_isolated = 0;
1471 unsigned long low_pfn, min_pfn, highest = 0;
1472 unsigned long nr_isolated = 0;
1473 unsigned long distance;
1474 struct page *page = NULL;
1475 bool scan_start = false;
1476 int order;
1477
1478 /* Full compaction passes in a negative order */
1479 if (cc->order <= 0)
1480 return;
1481
1482 /*
1483 * If starting the scan, use a deeper search and use the highest
1484 * PFN found if a suitable one is not found.
1485 */
1486 if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
1487 limit = pageblock_nr_pages >> 1;
1488 scan_start = true;
1489 }
1490
1491 /*
1492 * Preferred point is in the top quarter of the scan space but take
1493 * a pfn from the top half if the search is problematic.
1494 */
1495 distance = (cc->free_pfn - cc->migrate_pfn);
1496 low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1497 min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1498
1499 if (WARN_ON_ONCE(min_pfn > low_pfn))
1500 low_pfn = min_pfn;
1501
1502 /*
1503 * Search starts from the last successful isolation order or the next
1504 * order to search after a previous failure
1505 */
1506 cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1507
1508 for (order = cc->search_order;
1509 !page && order >= 0;
1510 order = next_search_order(cc, order)) {
1511 struct free_area *area = &cc->zone->free_area[order];
1512 struct list_head *freelist;
1513 struct page *freepage;
1514 unsigned long flags;
1515 unsigned int order_scanned = 0;
1516 unsigned long high_pfn = 0;
1517
1518 if (!area->nr_free)
1519 continue;
1520
1521 spin_lock_irqsave(&cc->zone->lock, flags);
1522 freelist = &area->free_list[MIGRATE_MOVABLE];
1523 list_for_each_entry_reverse(freepage, freelist, buddy_list) {
1524 unsigned long pfn;
1525
1526 order_scanned++;
1527 nr_scanned++;
1528 pfn = page_to_pfn(freepage);
1529
1530 if (pfn >= highest)
1531 highest = max(pageblock_start_pfn(pfn),
1532 cc->zone->zone_start_pfn);
1533
1534 if (pfn >= low_pfn) {
1535 cc->fast_search_fail = 0;
1536 cc->search_order = order;
1537 page = freepage;
1538 break;
1539 }
1540
1541 if (pfn >= min_pfn && pfn > high_pfn) {
1542 high_pfn = pfn;
1543
1544 /* Shorten the scan if a candidate is found */
1545 limit >>= 1;
1546 }
1547
1548 if (order_scanned >= limit)
1549 break;
1550 }
1551
1552 /* Use a maximum candidate pfn if a preferred one was not found */
1553 if (!page && high_pfn) {
1554 page = pfn_to_page(high_pfn);
1555
1556 /* Update freepage for the list reorder below */
1557 freepage = page;
1558 }
1559
1560 /* Reorder to so a future search skips recent pages */
1561 move_freelist_head(freelist, freepage);
1562
1563 /* Isolate the page if available */
1564 if (page) {
1565 if (__isolate_free_page(page, order)) {
1566 set_page_private(page, private: order);
1567 nr_isolated = 1 << order;
1568 nr_scanned += nr_isolated - 1;
1569 total_isolated += nr_isolated;
1570 cc->nr_freepages += nr_isolated;
1571 list_add_tail(new: &page->lru, head: &cc->freepages);
1572 count_compact_events(item: COMPACTISOLATED, delta: nr_isolated);
1573 } else {
1574 /* If isolation fails, abort the search */
1575 order = cc->search_order + 1;
1576 page = NULL;
1577 }
1578 }
1579
1580 spin_unlock_irqrestore(lock: &cc->zone->lock, flags);
1581
1582 /* Skip fast search if enough freepages isolated */
1583 if (cc->nr_freepages >= cc->nr_migratepages)
1584 break;
1585
1586 /*
1587 * Smaller scan on next order so the total scan is related
1588 * to freelist_scan_limit.
1589 */
1590 if (order_scanned >= limit)
1591 limit = max(1U, limit >> 1);
1592 }
1593
1594 trace_mm_compaction_fast_isolate_freepages(start_pfn: min_pfn, end_pfn: cc->free_pfn,
1595 nr_scanned, nr_taken: total_isolated);
1596
1597 if (!page) {
1598 cc->fast_search_fail++;
1599 if (scan_start) {
1600 /*
1601 * Use the highest PFN found above min. If one was
1602 * not found, be pessimistic for direct compaction
1603 * and use the min mark.
1604 */
1605 if (highest >= min_pfn) {
1606 page = pfn_to_page(highest);
1607 cc->free_pfn = highest;
1608 } else {
1609 if (cc->direct_compaction && pfn_valid(pfn: min_pfn)) {
1610 page = pageblock_pfn_to_page(start_pfn: min_pfn,
1611 min(pageblock_end_pfn(min_pfn),
1612 zone_end_pfn(cc->zone)),
1613 zone: cc->zone);
1614 cc->free_pfn = min_pfn;
1615 }
1616 }
1617 }
1618 }
1619
1620 if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1621 highest -= pageblock_nr_pages;
1622 cc->zone->compact_cached_free_pfn = highest;
1623 }
1624
1625 cc->total_free_scanned += nr_scanned;
1626 if (!page)
1627 return;
1628
1629 low_pfn = page_to_pfn(page);
1630 fast_isolate_around(cc, pfn: low_pfn);
1631}
1632
1633/*
1634 * Based on information in the current compact_control, find blocks
1635 * suitable for isolating free pages from and then isolate them.
1636 */
1637static void isolate_freepages(struct compact_control *cc)
1638{
1639 struct zone *zone = cc->zone;
1640 struct page *page;
1641 unsigned long block_start_pfn; /* start of current pageblock */
1642 unsigned long isolate_start_pfn; /* exact pfn we start at */
1643 unsigned long block_end_pfn; /* end of current pageblock */
1644 unsigned long low_pfn; /* lowest pfn scanner is able to scan */
1645 struct list_head *freelist = &cc->freepages;
1646 unsigned int stride;
1647
1648 /* Try a small search of the free lists for a candidate */
1649 fast_isolate_freepages(cc);
1650 if (cc->nr_freepages)
1651 goto splitmap;
1652
1653 /*
1654 * Initialise the free scanner. The starting point is where we last
1655 * successfully isolated from, zone-cached value, or the end of the
1656 * zone when isolating for the first time. For looping we also need
1657 * this pfn aligned down to the pageblock boundary, because we do
1658 * block_start_pfn -= pageblock_nr_pages in the for loop.
1659 * For ending point, take care when isolating in last pageblock of a
1660 * zone which ends in the middle of a pageblock.
1661 * The low boundary is the end of the pageblock the migration scanner
1662 * is using.
1663 */
1664 isolate_start_pfn = cc->free_pfn;
1665 block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
1666 block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1667 zone_end_pfn(zone));
1668 low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1669 stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
1670
1671 /*
1672 * Isolate free pages until enough are available to migrate the
1673 * pages on cc->migratepages. We stop searching if the migrate
1674 * and free page scanners meet or enough free pages are isolated.
1675 */
1676 for (; block_start_pfn >= low_pfn;
1677 block_end_pfn = block_start_pfn,
1678 block_start_pfn -= pageblock_nr_pages,
1679 isolate_start_pfn = block_start_pfn) {
1680 unsigned long nr_isolated;
1681
1682 /*
1683 * This can iterate a massively long zone without finding any
1684 * suitable migration targets, so periodically check resched.
1685 */
1686 if (!(block_start_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
1687 cond_resched();
1688
1689 page = pageblock_pfn_to_page(start_pfn: block_start_pfn, end_pfn: block_end_pfn,
1690 zone);
1691 if (!page) {
1692 unsigned long next_pfn;
1693
1694 next_pfn = skip_offline_sections_reverse(start_pfn: block_start_pfn);
1695 if (next_pfn)
1696 block_start_pfn = max(next_pfn, low_pfn);
1697
1698 continue;
1699 }
1700
1701 /* Check the block is suitable for migration */
1702 if (!suitable_migration_target(cc, page))
1703 continue;
1704
1705 /* If isolation recently failed, do not retry */
1706 if (!isolation_suitable(cc, page))
1707 continue;
1708
1709 /* Found a block suitable for isolating free pages from. */
1710 nr_isolated = isolate_freepages_block(cc, start_pfn: &isolate_start_pfn,
1711 end_pfn: block_end_pfn, freelist, stride, strict: false);
1712
1713 /* Update the skip hint if the full pageblock was scanned */
1714 if (isolate_start_pfn == block_end_pfn)
1715 update_pageblock_skip(cc, page, pfn: block_start_pfn -
1716 pageblock_nr_pages);
1717
1718 /* Are enough freepages isolated? */
1719 if (cc->nr_freepages >= cc->nr_migratepages) {
1720 if (isolate_start_pfn >= block_end_pfn) {
1721 /*
1722 * Restart at previous pageblock if more
1723 * freepages can be isolated next time.
1724 */
1725 isolate_start_pfn =
1726 block_start_pfn - pageblock_nr_pages;
1727 }
1728 break;
1729 } else if (isolate_start_pfn < block_end_pfn) {
1730 /*
1731 * If isolation failed early, do not continue
1732 * needlessly.
1733 */
1734 break;
1735 }
1736
1737 /* Adjust stride depending on isolation */
1738 if (nr_isolated) {
1739 stride = 1;
1740 continue;
1741 }
1742 stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
1743 }
1744
1745 /*
1746 * Record where the free scanner will restart next time. Either we
1747 * broke from the loop and set isolate_start_pfn based on the last
1748 * call to isolate_freepages_block(), or we met the migration scanner
1749 * and the loop terminated due to isolate_start_pfn < low_pfn
1750 */
1751 cc->free_pfn = isolate_start_pfn;
1752
1753splitmap:
1754 /* __isolate_free_page() does not map the pages */
1755 split_map_pages(list: freelist);
1756}
1757
1758/*
1759 * This is a migrate-callback that "allocates" freepages by taking pages
1760 * from the isolated freelists in the block we are migrating to.
1761 */
1762static struct folio *compaction_alloc(struct folio *src, unsigned long data)
1763{
1764 struct compact_control *cc = (struct compact_control *)data;
1765 struct folio *dst;
1766
1767 if (list_empty(head: &cc->freepages)) {
1768 isolate_freepages(cc);
1769
1770 if (list_empty(head: &cc->freepages))
1771 return NULL;
1772 }
1773
1774 dst = list_entry(cc->freepages.next, struct folio, lru);
1775 list_del(entry: &dst->lru);
1776 cc->nr_freepages--;
1777
1778 return dst;
1779}
1780
1781/*
1782 * This is a migrate-callback that "frees" freepages back to the isolated
1783 * freelist. All pages on the freelist are from the same zone, so there is no
1784 * special handling needed for NUMA.
1785 */
1786static void compaction_free(struct folio *dst, unsigned long data)
1787{
1788 struct compact_control *cc = (struct compact_control *)data;
1789
1790 list_add(new: &dst->lru, head: &cc->freepages);
1791 cc->nr_freepages++;
1792}
1793
1794/* possible outcome of isolate_migratepages */
1795typedef enum {
1796 ISOLATE_ABORT, /* Abort compaction now */
1797 ISOLATE_NONE, /* No pages isolated, continue scanning */
1798 ISOLATE_SUCCESS, /* Pages isolated, migrate */
1799} isolate_migrate_t;
1800
1801/*
1802 * Allow userspace to control policy on scanning the unevictable LRU for
1803 * compactable pages.
1804 */
1805static int sysctl_compact_unevictable_allowed __read_mostly = CONFIG_COMPACT_UNEVICTABLE_DEFAULT;
1806/*
1807 * Tunable for proactive compaction. It determines how
1808 * aggressively the kernel should compact memory in the
1809 * background. It takes values in the range [0, 100].
1810 */
1811static unsigned int __read_mostly sysctl_compaction_proactiveness = 20;
1812static int sysctl_extfrag_threshold = 500;
1813static int __read_mostly sysctl_compact_memory;
1814
1815static inline void
1816update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1817{
1818 if (cc->fast_start_pfn == ULONG_MAX)
1819 return;
1820
1821 if (!cc->fast_start_pfn)
1822 cc->fast_start_pfn = pfn;
1823
1824 cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1825}
1826
1827static inline unsigned long
1828reinit_migrate_pfn(struct compact_control *cc)
1829{
1830 if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1831 return cc->migrate_pfn;
1832
1833 cc->migrate_pfn = cc->fast_start_pfn;
1834 cc->fast_start_pfn = ULONG_MAX;
1835
1836 return cc->migrate_pfn;
1837}
1838
1839/*
1840 * Briefly search the free lists for a migration source that already has
1841 * some free pages to reduce the number of pages that need migration
1842 * before a pageblock is free.
1843 */
1844static unsigned long fast_find_migrateblock(struct compact_control *cc)
1845{
1846 unsigned int limit = freelist_scan_limit(cc);
1847 unsigned int nr_scanned = 0;
1848 unsigned long distance;
1849 unsigned long pfn = cc->migrate_pfn;
1850 unsigned long high_pfn;
1851 int order;
1852 bool found_block = false;
1853
1854 /* Skip hints are relied on to avoid repeats on the fast search */
1855 if (cc->ignore_skip_hint)
1856 return pfn;
1857
1858 /*
1859 * If the pageblock should be finished then do not select a different
1860 * pageblock.
1861 */
1862 if (cc->finish_pageblock)
1863 return pfn;
1864
1865 /*
1866 * If the migrate_pfn is not at the start of a zone or the start
1867 * of a pageblock then assume this is a continuation of a previous
1868 * scan restarted due to COMPACT_CLUSTER_MAX.
1869 */
1870 if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
1871 return pfn;
1872
1873 /*
1874 * For smaller orders, just linearly scan as the number of pages
1875 * to migrate should be relatively small and does not necessarily
1876 * justify freeing up a large block for a small allocation.
1877 */
1878 if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
1879 return pfn;
1880
1881 /*
1882 * Only allow kcompactd and direct requests for movable pages to
1883 * quickly clear out a MOVABLE pageblock for allocation. This
1884 * reduces the risk that a large movable pageblock is freed for
1885 * an unmovable/reclaimable small allocation.
1886 */
1887 if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
1888 return pfn;
1889
1890 /*
1891 * When starting the migration scanner, pick any pageblock within the
1892 * first half of the search space. Otherwise try and pick a pageblock
1893 * within the first eighth to reduce the chances that a migration
1894 * target later becomes a source.
1895 */
1896 distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
1897 if (cc->migrate_pfn != cc->zone->zone_start_pfn)
1898 distance >>= 2;
1899 high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
1900
1901 for (order = cc->order - 1;
1902 order >= PAGE_ALLOC_COSTLY_ORDER && !found_block && nr_scanned < limit;
1903 order--) {
1904 struct free_area *area = &cc->zone->free_area[order];
1905 struct list_head *freelist;
1906 unsigned long flags;
1907 struct page *freepage;
1908
1909 if (!area->nr_free)
1910 continue;
1911
1912 spin_lock_irqsave(&cc->zone->lock, flags);
1913 freelist = &area->free_list[MIGRATE_MOVABLE];
1914 list_for_each_entry(freepage, freelist, buddy_list) {
1915 unsigned long free_pfn;
1916
1917 if (nr_scanned++ >= limit) {
1918 move_freelist_tail(freelist, freepage);
1919 break;
1920 }
1921
1922 free_pfn = page_to_pfn(freepage);
1923 if (free_pfn < high_pfn) {
1924 /*
1925 * Avoid if skipped recently. Ideally it would
1926 * move to the tail but even safe iteration of
1927 * the list assumes an entry is deleted, not
1928 * reordered.
1929 */
1930 if (get_pageblock_skip(freepage))
1931 continue;
1932
1933 /* Reorder to so a future search skips recent pages */
1934 move_freelist_tail(freelist, freepage);
1935
1936 update_fast_start_pfn(cc, pfn: free_pfn);
1937 pfn = pageblock_start_pfn(free_pfn);
1938 if (pfn < cc->zone->zone_start_pfn)
1939 pfn = cc->zone->zone_start_pfn;
1940 cc->fast_search_fail = 0;
1941 found_block = true;
1942 break;
1943 }
1944 }
1945 spin_unlock_irqrestore(lock: &cc->zone->lock, flags);
1946 }
1947
1948 cc->total_migrate_scanned += nr_scanned;
1949
1950 /*
1951 * If fast scanning failed then use a cached entry for a page block
1952 * that had free pages as the basis for starting a linear scan.
1953 */
1954 if (!found_block) {
1955 cc->fast_search_fail++;
1956 pfn = reinit_migrate_pfn(cc);
1957 }
1958 return pfn;
1959}
1960
1961/*
1962 * Isolate all pages that can be migrated from the first suitable block,
1963 * starting at the block pointed to by the migrate scanner pfn within
1964 * compact_control.
1965 */
1966static isolate_migrate_t isolate_migratepages(struct compact_control *cc)
1967{
1968 unsigned long block_start_pfn;
1969 unsigned long block_end_pfn;
1970 unsigned long low_pfn;
1971 struct page *page;
1972 const isolate_mode_t isolate_mode =
1973 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1974 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1975 bool fast_find_block;
1976
1977 /*
1978 * Start at where we last stopped, or beginning of the zone as
1979 * initialized by compact_zone(). The first failure will use
1980 * the lowest PFN as the starting point for linear scanning.
1981 */
1982 low_pfn = fast_find_migrateblock(cc);
1983 block_start_pfn = pageblock_start_pfn(low_pfn);
1984 if (block_start_pfn < cc->zone->zone_start_pfn)
1985 block_start_pfn = cc->zone->zone_start_pfn;
1986
1987 /*
1988 * fast_find_migrateblock() has already ensured the pageblock is not
1989 * set with a skipped flag, so to avoid the isolation_suitable check
1990 * below again, check whether the fast search was successful.
1991 */
1992 fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
1993
1994 /* Only scan within a pageblock boundary */
1995 block_end_pfn = pageblock_end_pfn(low_pfn);
1996
1997 /*
1998 * Iterate over whole pageblocks until we find the first suitable.
1999 * Do not cross the free scanner.
2000 */
2001 for (; block_end_pfn <= cc->free_pfn;
2002 fast_find_block = false,
2003 cc->migrate_pfn = low_pfn = block_end_pfn,
2004 block_start_pfn = block_end_pfn,
2005 block_end_pfn += pageblock_nr_pages) {
2006
2007 /*
2008 * This can potentially iterate a massively long zone with
2009 * many pageblocks unsuitable, so periodically check if we
2010 * need to schedule.
2011 */
2012 if (!(low_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
2013 cond_resched();
2014
2015 page = pageblock_pfn_to_page(start_pfn: block_start_pfn,
2016 end_pfn: block_end_pfn, zone: cc->zone);
2017 if (!page) {
2018 unsigned long next_pfn;
2019
2020 next_pfn = skip_offline_sections(start_pfn: block_start_pfn);
2021 if (next_pfn)
2022 block_end_pfn = min(next_pfn, cc->free_pfn);
2023 continue;
2024 }
2025
2026 /*
2027 * If isolation recently failed, do not retry. Only check the
2028 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
2029 * to be visited multiple times. Assume skip was checked
2030 * before making it "skip" so other compaction instances do
2031 * not scan the same block.
2032 */
2033 if ((pageblock_aligned(low_pfn) ||
2034 low_pfn == cc->zone->zone_start_pfn) &&
2035 !fast_find_block && !isolation_suitable(cc, page))
2036 continue;
2037
2038 /*
2039 * For async direct compaction, only scan the pageblocks of the
2040 * same migratetype without huge pages. Async direct compaction
2041 * is optimistic to see if the minimum amount of work satisfies
2042 * the allocation. The cached PFN is updated as it's possible
2043 * that all remaining blocks between source and target are
2044 * unsuitable and the compaction scanners fail to meet.
2045 */
2046 if (!suitable_migration_source(cc, page)) {
2047 update_cached_migrate(cc, pfn: block_end_pfn);
2048 continue;
2049 }
2050
2051 /* Perform the isolation */
2052 if (isolate_migratepages_block(cc, low_pfn, end_pfn: block_end_pfn,
2053 mode: isolate_mode))
2054 return ISOLATE_ABORT;
2055
2056 /*
2057 * Either we isolated something and proceed with migration. Or
2058 * we failed and compact_zone should decide if we should
2059 * continue or not.
2060 */
2061 break;
2062 }
2063
2064 return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
2065}
2066
2067/*
2068 * order == -1 is expected when compacting proactively via
2069 * 1. /proc/sys/vm/compact_memory
2070 * 2. /sys/devices/system/node/nodex/compact
2071 * 3. /proc/sys/vm/compaction_proactiveness
2072 */
2073static inline bool is_via_compact_memory(int order)
2074{
2075 return order == -1;
2076}
2077
2078/*
2079 * Determine whether kswapd is (or recently was!) running on this node.
2080 *
2081 * pgdat_kswapd_lock() pins pgdat->kswapd, so a concurrent kswapd_stop() can't
2082 * zero it.
2083 */
2084static bool kswapd_is_running(pg_data_t *pgdat)
2085{
2086 bool running;
2087
2088 pgdat_kswapd_lock(pgdat);
2089 running = pgdat->kswapd && task_is_running(pgdat->kswapd);
2090 pgdat_kswapd_unlock(pgdat);
2091
2092 return running;
2093}
2094
2095/*
2096 * A zone's fragmentation score is the external fragmentation wrt to the
2097 * COMPACTION_HPAGE_ORDER. It returns a value in the range [0, 100].
2098 */
2099static unsigned int fragmentation_score_zone(struct zone *zone)
2100{
2101 return extfrag_for_order(zone, COMPACTION_HPAGE_ORDER);
2102}
2103
2104/*
2105 * A weighted zone's fragmentation score is the external fragmentation
2106 * wrt to the COMPACTION_HPAGE_ORDER scaled by the zone's size. It
2107 * returns a value in the range [0, 100].
2108 *
2109 * The scaling factor ensures that proactive compaction focuses on larger
2110 * zones like ZONE_NORMAL, rather than smaller, specialized zones like
2111 * ZONE_DMA32. For smaller zones, the score value remains close to zero,
2112 * and thus never exceeds the high threshold for proactive compaction.
2113 */
2114static unsigned int fragmentation_score_zone_weighted(struct zone *zone)
2115{
2116 unsigned long score;
2117
2118 score = zone->present_pages * fragmentation_score_zone(zone);
2119 return div64_ul(score, zone->zone_pgdat->node_present_pages + 1);
2120}
2121
2122/*
2123 * The per-node proactive (background) compaction process is started by its
2124 * corresponding kcompactd thread when the node's fragmentation score
2125 * exceeds the high threshold. The compaction process remains active till
2126 * the node's score falls below the low threshold, or one of the back-off
2127 * conditions is met.
2128 */
2129static unsigned int fragmentation_score_node(pg_data_t *pgdat)
2130{
2131 unsigned int score = 0;
2132 int zoneid;
2133
2134 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2135 struct zone *zone;
2136
2137 zone = &pgdat->node_zones[zoneid];
2138 if (!populated_zone(zone))
2139 continue;
2140 score += fragmentation_score_zone_weighted(zone);
2141 }
2142
2143 return score;
2144}
2145
2146static unsigned int fragmentation_score_wmark(bool low)
2147{
2148 unsigned int wmark_low;
2149
2150 /*
2151 * Cap the low watermark to avoid excessive compaction
2152 * activity in case a user sets the proactiveness tunable
2153 * close to 100 (maximum).
2154 */
2155 wmark_low = max(100U - sysctl_compaction_proactiveness, 5U);
2156 return low ? wmark_low : min(wmark_low + 10, 100U);
2157}
2158
2159static bool should_proactive_compact_node(pg_data_t *pgdat)
2160{
2161 int wmark_high;
2162
2163 if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat))
2164 return false;
2165
2166 wmark_high = fragmentation_score_wmark(low: false);
2167 return fragmentation_score_node(pgdat) > wmark_high;
2168}
2169
2170static enum compact_result __compact_finished(struct compact_control *cc)
2171{
2172 unsigned int order;
2173 const int migratetype = cc->migratetype;
2174 int ret;
2175
2176 /* Compaction run completes if the migrate and free scanner meet */
2177 if (compact_scanners_met(cc)) {
2178 /* Let the next compaction start anew. */
2179 reset_cached_positions(zone: cc->zone);
2180
2181 /*
2182 * Mark that the PG_migrate_skip information should be cleared
2183 * by kswapd when it goes to sleep. kcompactd does not set the
2184 * flag itself as the decision to be clear should be directly
2185 * based on an allocation request.
2186 */
2187 if (cc->direct_compaction)
2188 cc->zone->compact_blockskip_flush = true;
2189
2190 if (cc->whole_zone)
2191 return COMPACT_COMPLETE;
2192 else
2193 return COMPACT_PARTIAL_SKIPPED;
2194 }
2195
2196 if (cc->proactive_compaction) {
2197 int score, wmark_low;
2198 pg_data_t *pgdat;
2199
2200 pgdat = cc->zone->zone_pgdat;
2201 if (kswapd_is_running(pgdat))
2202 return COMPACT_PARTIAL_SKIPPED;
2203
2204 score = fragmentation_score_zone(zone: cc->zone);
2205 wmark_low = fragmentation_score_wmark(low: true);
2206
2207 if (score > wmark_low)
2208 ret = COMPACT_CONTINUE;
2209 else
2210 ret = COMPACT_SUCCESS;
2211
2212 goto out;
2213 }
2214
2215 if (is_via_compact_memory(order: cc->order))
2216 return COMPACT_CONTINUE;
2217
2218 /*
2219 * Always finish scanning a pageblock to reduce the possibility of
2220 * fallbacks in the future. This is particularly important when
2221 * migration source is unmovable/reclaimable but it's not worth
2222 * special casing.
2223 */
2224 if (!pageblock_aligned(cc->migrate_pfn))
2225 return COMPACT_CONTINUE;
2226
2227 /* Direct compactor: Is a suitable page free? */
2228 ret = COMPACT_NO_SUITABLE_PAGE;
2229 for (order = cc->order; order <= MAX_ORDER; order++) {
2230 struct free_area *area = &cc->zone->free_area[order];
2231 bool can_steal;
2232
2233 /* Job done if page is free of the right migratetype */
2234 if (!free_area_empty(area, migratetype))
2235 return COMPACT_SUCCESS;
2236
2237#ifdef CONFIG_CMA
2238 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
2239 if (migratetype == MIGRATE_MOVABLE &&
2240 !free_area_empty(area, migratetype: MIGRATE_CMA))
2241 return COMPACT_SUCCESS;
2242#endif
2243 /*
2244 * Job done if allocation would steal freepages from
2245 * other migratetype buddy lists.
2246 */
2247 if (find_suitable_fallback(area, order, migratetype,
2248 only_stealable: true, can_steal: &can_steal) != -1)
2249 /*
2250 * Movable pages are OK in any pageblock. If we are
2251 * stealing for a non-movable allocation, make sure
2252 * we finish compacting the current pageblock first
2253 * (which is assured by the above migrate_pfn align
2254 * check) so it is as free as possible and we won't
2255 * have to steal another one soon.
2256 */
2257 return COMPACT_SUCCESS;
2258 }
2259
2260out:
2261 if (cc->contended || fatal_signal_pending(current))
2262 ret = COMPACT_CONTENDED;
2263
2264 return ret;
2265}
2266
2267static enum compact_result compact_finished(struct compact_control *cc)
2268{
2269 int ret;
2270
2271 ret = __compact_finished(cc);
2272 trace_mm_compaction_finished(zone: cc->zone, order: cc->order, ret);
2273 if (ret == COMPACT_NO_SUITABLE_PAGE)
2274 ret = COMPACT_CONTINUE;
2275
2276 return ret;
2277}
2278
2279static bool __compaction_suitable(struct zone *zone, int order,
2280 int highest_zoneidx,
2281 unsigned long wmark_target)
2282{
2283 unsigned long watermark;
2284 /*
2285 * Watermarks for order-0 must be met for compaction to be able to
2286 * isolate free pages for migration targets. This means that the
2287 * watermark and alloc_flags have to match, or be more pessimistic than
2288 * the check in __isolate_free_page(). We don't use the direct
2289 * compactor's alloc_flags, as they are not relevant for freepage
2290 * isolation. We however do use the direct compactor's highest_zoneidx
2291 * to skip over zones where lowmem reserves would prevent allocation
2292 * even if compaction succeeds.
2293 * For costly orders, we require low watermark instead of min for
2294 * compaction to proceed to increase its chances.
2295 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
2296 * suitable migration targets
2297 */
2298 watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
2299 low_wmark_pages(zone) : min_wmark_pages(zone);
2300 watermark += compact_gap(order);
2301 return __zone_watermark_ok(z: zone, order: 0, mark: watermark, highest_zoneidx,
2302 ALLOC_CMA, free_pages: wmark_target);
2303}
2304
2305/*
2306 * compaction_suitable: Is this suitable to run compaction on this zone now?
2307 */
2308bool compaction_suitable(struct zone *zone, int order, int highest_zoneidx)
2309{
2310 enum compact_result compact_result;
2311 bool suitable;
2312
2313 suitable = __compaction_suitable(zone, order, highest_zoneidx,
2314 wmark_target: zone_page_state(zone, item: NR_FREE_PAGES));
2315 /*
2316 * fragmentation index determines if allocation failures are due to
2317 * low memory or external fragmentation
2318 *
2319 * index of -1000 would imply allocations might succeed depending on
2320 * watermarks, but we already failed the high-order watermark check
2321 * index towards 0 implies failure is due to lack of memory
2322 * index towards 1000 implies failure is due to fragmentation
2323 *
2324 * Only compact if a failure would be due to fragmentation. Also
2325 * ignore fragindex for non-costly orders where the alternative to
2326 * a successful reclaim/compaction is OOM. Fragindex and the
2327 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2328 * excessive compaction for costly orders, but it should not be at the
2329 * expense of system stability.
2330 */
2331 if (suitable) {
2332 compact_result = COMPACT_CONTINUE;
2333 if (order > PAGE_ALLOC_COSTLY_ORDER) {
2334 int fragindex = fragmentation_index(zone, order);
2335
2336 if (fragindex >= 0 &&
2337 fragindex <= sysctl_extfrag_threshold) {
2338 suitable = false;
2339 compact_result = COMPACT_NOT_SUITABLE_ZONE;
2340 }
2341 }
2342 } else {
2343 compact_result = COMPACT_SKIPPED;
2344 }
2345
2346 trace_mm_compaction_suitable(zone, order, ret: compact_result);
2347
2348 return suitable;
2349}
2350
2351bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2352 int alloc_flags)
2353{
2354 struct zone *zone;
2355 struct zoneref *z;
2356
2357 /*
2358 * Make sure at least one zone would pass __compaction_suitable if we continue
2359 * retrying the reclaim.
2360 */
2361 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2362 ac->highest_zoneidx, ac->nodemask) {
2363 unsigned long available;
2364
2365 /*
2366 * Do not consider all the reclaimable memory because we do not
2367 * want to trash just for a single high order allocation which
2368 * is even not guaranteed to appear even if __compaction_suitable
2369 * is happy about the watermark check.
2370 */
2371 available = zone_reclaimable_pages(zone) / order;
2372 available += zone_page_state_snapshot(zone, item: NR_FREE_PAGES);
2373 if (__compaction_suitable(zone, order, highest_zoneidx: ac->highest_zoneidx,
2374 wmark_target: available))
2375 return true;
2376 }
2377
2378 return false;
2379}
2380
2381/*
2382 * Should we do compaction for target allocation order.
2383 * Return COMPACT_SUCCESS if allocation for target order can be already
2384 * satisfied
2385 * Return COMPACT_SKIPPED if compaction for target order is likely to fail
2386 * Return COMPACT_CONTINUE if compaction for target order should be ran
2387 */
2388static enum compact_result
2389compaction_suit_allocation_order(struct zone *zone, unsigned int order,
2390 int highest_zoneidx, unsigned int alloc_flags)
2391{
2392 unsigned long watermark;
2393
2394 watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
2395 if (zone_watermark_ok(z: zone, order, mark: watermark, highest_zoneidx,
2396 alloc_flags))
2397 return COMPACT_SUCCESS;
2398
2399 if (!compaction_suitable(zone, order, highest_zoneidx))
2400 return COMPACT_SKIPPED;
2401
2402 return COMPACT_CONTINUE;
2403}
2404
2405static enum compact_result
2406compact_zone(struct compact_control *cc, struct capture_control *capc)
2407{
2408 enum compact_result ret;
2409 unsigned long start_pfn = cc->zone->zone_start_pfn;
2410 unsigned long end_pfn = zone_end_pfn(zone: cc->zone);
2411 unsigned long last_migrated_pfn;
2412 const bool sync = cc->mode != MIGRATE_ASYNC;
2413 bool update_cached;
2414 unsigned int nr_succeeded = 0;
2415
2416 /*
2417 * These counters track activities during zone compaction. Initialize
2418 * them before compacting a new zone.
2419 */
2420 cc->total_migrate_scanned = 0;
2421 cc->total_free_scanned = 0;
2422 cc->nr_migratepages = 0;
2423 cc->nr_freepages = 0;
2424 INIT_LIST_HEAD(list: &cc->freepages);
2425 INIT_LIST_HEAD(list: &cc->migratepages);
2426
2427 cc->migratetype = gfp_migratetype(gfp_flags: cc->gfp_mask);
2428
2429 if (!is_via_compact_memory(order: cc->order)) {
2430 ret = compaction_suit_allocation_order(zone: cc->zone, order: cc->order,
2431 highest_zoneidx: cc->highest_zoneidx,
2432 alloc_flags: cc->alloc_flags);
2433 if (ret != COMPACT_CONTINUE)
2434 return ret;
2435 }
2436
2437 /*
2438 * Clear pageblock skip if there were failures recently and compaction
2439 * is about to be retried after being deferred.
2440 */
2441 if (compaction_restarting(zone: cc->zone, order: cc->order))
2442 __reset_isolation_suitable(zone: cc->zone);
2443
2444 /*
2445 * Setup to move all movable pages to the end of the zone. Used cached
2446 * information on where the scanners should start (unless we explicitly
2447 * want to compact the whole zone), but check that it is initialised
2448 * by ensuring the values are within zone boundaries.
2449 */
2450 cc->fast_start_pfn = 0;
2451 if (cc->whole_zone) {
2452 cc->migrate_pfn = start_pfn;
2453 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2454 } else {
2455 cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2456 cc->free_pfn = cc->zone->compact_cached_free_pfn;
2457 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2458 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2459 cc->zone->compact_cached_free_pfn = cc->free_pfn;
2460 }
2461 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2462 cc->migrate_pfn = start_pfn;
2463 cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2464 cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
2465 }
2466
2467 if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
2468 cc->whole_zone = true;
2469 }
2470
2471 last_migrated_pfn = 0;
2472
2473 /*
2474 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2475 * the basis that some migrations will fail in ASYNC mode. However,
2476 * if the cached PFNs match and pageblocks are skipped due to having
2477 * no isolation candidates, then the sync state does not matter.
2478 * Until a pageblock with isolation candidates is found, keep the
2479 * cached PFNs in sync to avoid revisiting the same blocks.
2480 */
2481 update_cached = !sync &&
2482 cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2483
2484 trace_mm_compaction_begin(cc, zone_start: start_pfn, zone_end: end_pfn, sync);
2485
2486 /* lru_add_drain_all could be expensive with involving other CPUs */
2487 lru_add_drain();
2488
2489 while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
2490 int err;
2491 unsigned long iteration_start_pfn = cc->migrate_pfn;
2492
2493 /*
2494 * Avoid multiple rescans of the same pageblock which can
2495 * happen if a page cannot be isolated (dirty/writeback in
2496 * async mode) or if the migrated pages are being allocated
2497 * before the pageblock is cleared. The first rescan will
2498 * capture the entire pageblock for migration. If it fails,
2499 * it'll be marked skip and scanning will proceed as normal.
2500 */
2501 cc->finish_pageblock = false;
2502 if (pageblock_start_pfn(last_migrated_pfn) ==
2503 pageblock_start_pfn(iteration_start_pfn)) {
2504 cc->finish_pageblock = true;
2505 }
2506
2507rescan:
2508 switch (isolate_migratepages(cc)) {
2509 case ISOLATE_ABORT:
2510 ret = COMPACT_CONTENDED;
2511 putback_movable_pages(l: &cc->migratepages);
2512 cc->nr_migratepages = 0;
2513 goto out;
2514 case ISOLATE_NONE:
2515 if (update_cached) {
2516 cc->zone->compact_cached_migrate_pfn[1] =
2517 cc->zone->compact_cached_migrate_pfn[0];
2518 }
2519
2520 /*
2521 * We haven't isolated and migrated anything, but
2522 * there might still be unflushed migrations from
2523 * previous cc->order aligned block.
2524 */
2525 goto check_drain;
2526 case ISOLATE_SUCCESS:
2527 update_cached = false;
2528 last_migrated_pfn = max(cc->zone->zone_start_pfn,
2529 pageblock_start_pfn(cc->migrate_pfn - 1));
2530 }
2531
2532 err = migrate_pages(l: &cc->migratepages, new: compaction_alloc,
2533 free: compaction_free, private: (unsigned long)cc, mode: cc->mode,
2534 reason: MR_COMPACTION, ret_succeeded: &nr_succeeded);
2535
2536 trace_mm_compaction_migratepages(cc, nr_succeeded);
2537
2538 /* All pages were either migrated or will be released */
2539 cc->nr_migratepages = 0;
2540 if (err) {
2541 putback_movable_pages(l: &cc->migratepages);
2542 /*
2543 * migrate_pages() may return -ENOMEM when scanners meet
2544 * and we want compact_finished() to detect it
2545 */
2546 if (err == -ENOMEM && !compact_scanners_met(cc)) {
2547 ret = COMPACT_CONTENDED;
2548 goto out;
2549 }
2550 /*
2551 * If an ASYNC or SYNC_LIGHT fails to migrate a page
2552 * within the pageblock_order-aligned block and
2553 * fast_find_migrateblock may be used then scan the
2554 * remainder of the pageblock. This will mark the
2555 * pageblock "skip" to avoid rescanning in the near
2556 * future. This will isolate more pages than necessary
2557 * for the request but avoid loops due to
2558 * fast_find_migrateblock revisiting blocks that were
2559 * recently partially scanned.
2560 */
2561 if (!pageblock_aligned(cc->migrate_pfn) &&
2562 !cc->ignore_skip_hint && !cc->finish_pageblock &&
2563 (cc->mode < MIGRATE_SYNC)) {
2564 cc->finish_pageblock = true;
2565
2566 /*
2567 * Draining pcplists does not help THP if
2568 * any page failed to migrate. Even after
2569 * drain, the pageblock will not be free.
2570 */
2571 if (cc->order == COMPACTION_HPAGE_ORDER)
2572 last_migrated_pfn = 0;
2573
2574 goto rescan;
2575 }
2576 }
2577
2578 /* Stop if a page has been captured */
2579 if (capc && capc->page) {
2580 ret = COMPACT_SUCCESS;
2581 break;
2582 }
2583
2584check_drain:
2585 /*
2586 * Has the migration scanner moved away from the previous
2587 * cc->order aligned block where we migrated from? If yes,
2588 * flush the pages that were freed, so that they can merge and
2589 * compact_finished() can detect immediately if allocation
2590 * would succeed.
2591 */
2592 if (cc->order > 0 && last_migrated_pfn) {
2593 unsigned long current_block_start =
2594 block_start_pfn(cc->migrate_pfn, cc->order);
2595
2596 if (last_migrated_pfn < current_block_start) {
2597 lru_add_drain_cpu_zone(zone: cc->zone);
2598 /* No more flushing until we migrate again */
2599 last_migrated_pfn = 0;
2600 }
2601 }
2602 }
2603
2604out:
2605 /*
2606 * Release free pages and update where the free scanner should restart,
2607 * so we don't leave any returned pages behind in the next attempt.
2608 */
2609 if (cc->nr_freepages > 0) {
2610 unsigned long free_pfn = release_freepages(freelist: &cc->freepages);
2611
2612 cc->nr_freepages = 0;
2613 VM_BUG_ON(free_pfn == 0);
2614 /* The cached pfn is always the first in a pageblock */
2615 free_pfn = pageblock_start_pfn(free_pfn);
2616 /*
2617 * Only go back, not forward. The cached pfn might have been
2618 * already reset to zone end in compact_finished()
2619 */
2620 if (free_pfn > cc->zone->compact_cached_free_pfn)
2621 cc->zone->compact_cached_free_pfn = free_pfn;
2622 }
2623
2624 count_compact_events(item: COMPACTMIGRATE_SCANNED, delta: cc->total_migrate_scanned);
2625 count_compact_events(item: COMPACTFREE_SCANNED, delta: cc->total_free_scanned);
2626
2627 trace_mm_compaction_end(cc, zone_start: start_pfn, zone_end: end_pfn, sync, status: ret);
2628
2629 VM_BUG_ON(!list_empty(&cc->freepages));
2630 VM_BUG_ON(!list_empty(&cc->migratepages));
2631
2632 return ret;
2633}
2634
2635static enum compact_result compact_zone_order(struct zone *zone, int order,
2636 gfp_t gfp_mask, enum compact_priority prio,
2637 unsigned int alloc_flags, int highest_zoneidx,
2638 struct page **capture)
2639{
2640 enum compact_result ret;
2641 struct compact_control cc = {
2642 .order = order,
2643 .search_order = order,
2644 .gfp_mask = gfp_mask,
2645 .zone = zone,
2646 .mode = (prio == COMPACT_PRIO_ASYNC) ?
2647 MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT,
2648 .alloc_flags = alloc_flags,
2649 .highest_zoneidx = highest_zoneidx,
2650 .direct_compaction = true,
2651 .whole_zone = (prio == MIN_COMPACT_PRIORITY),
2652 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2653 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
2654 };
2655 struct capture_control capc = {
2656 .cc = &cc,
2657 .page = NULL,
2658 };
2659
2660 /*
2661 * Make sure the structs are really initialized before we expose the
2662 * capture control, in case we are interrupted and the interrupt handler
2663 * frees a page.
2664 */
2665 barrier();
2666 WRITE_ONCE(current->capture_control, &capc);
2667
2668 ret = compact_zone(cc: &cc, capc: &capc);
2669
2670 /*
2671 * Make sure we hide capture control first before we read the captured
2672 * page pointer, otherwise an interrupt could free and capture a page
2673 * and we would leak it.
2674 */
2675 WRITE_ONCE(current->capture_control, NULL);
2676 *capture = READ_ONCE(capc.page);
2677 /*
2678 * Technically, it is also possible that compaction is skipped but
2679 * the page is still captured out of luck(IRQ came and freed the page).
2680 * Returning COMPACT_SUCCESS in such cases helps in properly accounting
2681 * the COMPACT[STALL|FAIL] when compaction is skipped.
2682 */
2683 if (*capture)
2684 ret = COMPACT_SUCCESS;
2685
2686 return ret;
2687}
2688
2689/**
2690 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
2691 * @gfp_mask: The GFP mask of the current allocation
2692 * @order: The order of the current allocation
2693 * @alloc_flags: The allocation flags of the current allocation
2694 * @ac: The context of current allocation
2695 * @prio: Determines how hard direct compaction should try to succeed
2696 * @capture: Pointer to free page created by compaction will be stored here
2697 *
2698 * This is the main entry point for direct page compaction.
2699 */
2700enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
2701 unsigned int alloc_flags, const struct alloc_context *ac,
2702 enum compact_priority prio, struct page **capture)
2703{
2704 int may_perform_io = (__force int)(gfp_mask & __GFP_IO);
2705 struct zoneref *z;
2706 struct zone *zone;
2707 enum compact_result rc = COMPACT_SKIPPED;
2708
2709 /*
2710 * Check if the GFP flags allow compaction - GFP_NOIO is really
2711 * tricky context because the migration might require IO
2712 */
2713 if (!may_perform_io)
2714 return COMPACT_SKIPPED;
2715
2716 trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
2717
2718 /* Compact each zone in the list */
2719 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2720 ac->highest_zoneidx, ac->nodemask) {
2721 enum compact_result status;
2722
2723 if (prio > MIN_COMPACT_PRIORITY
2724 && compaction_deferred(zone, order)) {
2725 rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
2726 continue;
2727 }
2728
2729 status = compact_zone_order(zone, order, gfp_mask, prio,
2730 alloc_flags, highest_zoneidx: ac->highest_zoneidx, capture);
2731 rc = max(status, rc);
2732
2733 /* The allocation should succeed, stop compacting */
2734 if (status == COMPACT_SUCCESS) {
2735 /*
2736 * We think the allocation will succeed in this zone,
2737 * but it is not certain, hence the false. The caller
2738 * will repeat this with true if allocation indeed
2739 * succeeds in this zone.
2740 */
2741 compaction_defer_reset(zone, order, alloc_success: false);
2742
2743 break;
2744 }
2745
2746 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
2747 status == COMPACT_PARTIAL_SKIPPED))
2748 /*
2749 * We think that allocation won't succeed in this zone
2750 * so we defer compaction there. If it ends up
2751 * succeeding after all, it will be reset.
2752 */
2753 defer_compaction(zone, order);
2754
2755 /*
2756 * We might have stopped compacting due to need_resched() in
2757 * async compaction, or due to a fatal signal detected. In that
2758 * case do not try further zones
2759 */
2760 if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2761 || fatal_signal_pending(current))
2762 break;
2763 }
2764
2765 return rc;
2766}
2767
2768/*
2769 * Compact all zones within a node till each zone's fragmentation score
2770 * reaches within proactive compaction thresholds (as determined by the
2771 * proactiveness tunable).
2772 *
2773 * It is possible that the function returns before reaching score targets
2774 * due to various back-off conditions, such as, contention on per-node or
2775 * per-zone locks.
2776 */
2777static void proactive_compact_node(pg_data_t *pgdat)
2778{
2779 int zoneid;
2780 struct zone *zone;
2781 struct compact_control cc = {
2782 .order = -1,
2783 .mode = MIGRATE_SYNC_LIGHT,
2784 .ignore_skip_hint = true,
2785 .whole_zone = true,
2786 .gfp_mask = GFP_KERNEL,
2787 .proactive_compaction = true,
2788 };
2789
2790 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2791 zone = &pgdat->node_zones[zoneid];
2792 if (!populated_zone(zone))
2793 continue;
2794
2795 cc.zone = zone;
2796
2797 compact_zone(cc: &cc, NULL);
2798
2799 count_compact_events(item: KCOMPACTD_MIGRATE_SCANNED,
2800 delta: cc.total_migrate_scanned);
2801 count_compact_events(item: KCOMPACTD_FREE_SCANNED,
2802 delta: cc.total_free_scanned);
2803 }
2804}
2805
2806/* Compact all zones within a node */
2807static void compact_node(int nid)
2808{
2809 pg_data_t *pgdat = NODE_DATA(nid);
2810 int zoneid;
2811 struct zone *zone;
2812 struct compact_control cc = {
2813 .order = -1,
2814 .mode = MIGRATE_SYNC,
2815 .ignore_skip_hint = true,
2816 .whole_zone = true,
2817 .gfp_mask = GFP_KERNEL,
2818 };
2819
2820
2821 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2822
2823 zone = &pgdat->node_zones[zoneid];
2824 if (!populated_zone(zone))
2825 continue;
2826
2827 cc.zone = zone;
2828
2829 compact_zone(cc: &cc, NULL);
2830 }
2831}
2832
2833/* Compact all nodes in the system */
2834static void compact_nodes(void)
2835{
2836 int nid;
2837
2838 /* Flush pending updates to the LRU lists */
2839 lru_add_drain_all();
2840
2841 for_each_online_node(nid)
2842 compact_node(nid);
2843}
2844
2845static int compaction_proactiveness_sysctl_handler(struct ctl_table *table, int write,
2846 void *buffer, size_t *length, loff_t *ppos)
2847{
2848 int rc, nid;
2849
2850 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
2851 if (rc)
2852 return rc;
2853
2854 if (write && sysctl_compaction_proactiveness) {
2855 for_each_online_node(nid) {
2856 pg_data_t *pgdat = NODE_DATA(nid);
2857
2858 if (pgdat->proactive_compact_trigger)
2859 continue;
2860
2861 pgdat->proactive_compact_trigger = true;
2862 trace_mm_compaction_wakeup_kcompactd(nid: pgdat->node_id, order: -1,
2863 highest_zoneidx: pgdat->nr_zones - 1);
2864 wake_up_interruptible(&pgdat->kcompactd_wait);
2865 }
2866 }
2867
2868 return 0;
2869}
2870
2871/*
2872 * This is the entry point for compacting all nodes via
2873 * /proc/sys/vm/compact_memory
2874 */
2875static int sysctl_compaction_handler(struct ctl_table *table, int write,
2876 void *buffer, size_t *length, loff_t *ppos)
2877{
2878 int ret;
2879
2880 ret = proc_dointvec(table, write, buffer, length, ppos);
2881 if (ret)
2882 return ret;
2883
2884 if (sysctl_compact_memory != 1)
2885 return -EINVAL;
2886
2887 if (write)
2888 compact_nodes();
2889
2890 return 0;
2891}
2892
2893#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
2894static ssize_t compact_store(struct device *dev,
2895 struct device_attribute *attr,
2896 const char *buf, size_t count)
2897{
2898 int nid = dev->id;
2899
2900 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
2901 /* Flush pending updates to the LRU lists */
2902 lru_add_drain_all();
2903
2904 compact_node(nid);
2905 }
2906
2907 return count;
2908}
2909static DEVICE_ATTR_WO(compact);
2910
2911int compaction_register_node(struct node *node)
2912{
2913 return device_create_file(device: &node->dev, entry: &dev_attr_compact);
2914}
2915
2916void compaction_unregister_node(struct node *node)
2917{
2918 device_remove_file(dev: &node->dev, attr: &dev_attr_compact);
2919}
2920#endif /* CONFIG_SYSFS && CONFIG_NUMA */
2921
2922static inline bool kcompactd_work_requested(pg_data_t *pgdat)
2923{
2924 return pgdat->kcompactd_max_order > 0 || kthread_should_stop() ||
2925 pgdat->proactive_compact_trigger;
2926}
2927
2928static bool kcompactd_node_suitable(pg_data_t *pgdat)
2929{
2930 int zoneid;
2931 struct zone *zone;
2932 enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx;
2933 enum compact_result ret;
2934
2935 for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) {
2936 zone = &pgdat->node_zones[zoneid];
2937
2938 if (!populated_zone(zone))
2939 continue;
2940
2941 ret = compaction_suit_allocation_order(zone,
2942 order: pgdat->kcompactd_max_order,
2943 highest_zoneidx, ALLOC_WMARK_MIN);
2944 if (ret == COMPACT_CONTINUE)
2945 return true;
2946 }
2947
2948 return false;
2949}
2950
2951static void kcompactd_do_work(pg_data_t *pgdat)
2952{
2953 /*
2954 * With no special task, compact all zones so that a page of requested
2955 * order is allocatable.
2956 */
2957 int zoneid;
2958 struct zone *zone;
2959 struct compact_control cc = {
2960 .order = pgdat->kcompactd_max_order,
2961 .search_order = pgdat->kcompactd_max_order,
2962 .highest_zoneidx = pgdat->kcompactd_highest_zoneidx,
2963 .mode = MIGRATE_SYNC_LIGHT,
2964 .ignore_skip_hint = false,
2965 .gfp_mask = GFP_KERNEL,
2966 };
2967 enum compact_result ret;
2968
2969 trace_mm_compaction_kcompactd_wake(nid: pgdat->node_id, order: cc.order,
2970 highest_zoneidx: cc.highest_zoneidx);
2971 count_compact_event(item: KCOMPACTD_WAKE);
2972
2973 for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) {
2974 int status;
2975
2976 zone = &pgdat->node_zones[zoneid];
2977 if (!populated_zone(zone))
2978 continue;
2979
2980 if (compaction_deferred(zone, order: cc.order))
2981 continue;
2982
2983 ret = compaction_suit_allocation_order(zone,
2984 order: cc.order, highest_zoneidx: zoneid, ALLOC_WMARK_MIN);
2985 if (ret != COMPACT_CONTINUE)
2986 continue;
2987
2988 if (kthread_should_stop())
2989 return;
2990
2991 cc.zone = zone;
2992 status = compact_zone(cc: &cc, NULL);
2993
2994 if (status == COMPACT_SUCCESS) {
2995 compaction_defer_reset(zone, order: cc.order, alloc_success: false);
2996 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
2997 /*
2998 * Buddy pages may become stranded on pcps that could
2999 * otherwise coalesce on the zone's free area for
3000 * order >= cc.order. This is ratelimited by the
3001 * upcoming deferral.
3002 */
3003 drain_all_pages(zone);
3004
3005 /*
3006 * We use sync migration mode here, so we defer like
3007 * sync direct compaction does.
3008 */
3009 defer_compaction(zone, order: cc.order);
3010 }
3011
3012 count_compact_events(item: KCOMPACTD_MIGRATE_SCANNED,
3013 delta: cc.total_migrate_scanned);
3014 count_compact_events(item: KCOMPACTD_FREE_SCANNED,
3015 delta: cc.total_free_scanned);
3016 }
3017
3018 /*
3019 * Regardless of success, we are done until woken up next. But remember
3020 * the requested order/highest_zoneidx in case it was higher/tighter
3021 * than our current ones
3022 */
3023 if (pgdat->kcompactd_max_order <= cc.order)
3024 pgdat->kcompactd_max_order = 0;
3025 if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx)
3026 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
3027}
3028
3029void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx)
3030{
3031 if (!order)
3032 return;
3033
3034 if (pgdat->kcompactd_max_order < order)
3035 pgdat->kcompactd_max_order = order;
3036
3037 if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx)
3038 pgdat->kcompactd_highest_zoneidx = highest_zoneidx;
3039
3040 /*
3041 * Pairs with implicit barrier in wait_event_freezable()
3042 * such that wakeups are not missed.
3043 */
3044 if (!wq_has_sleeper(wq_head: &pgdat->kcompactd_wait))
3045 return;
3046
3047 if (!kcompactd_node_suitable(pgdat))
3048 return;
3049
3050 trace_mm_compaction_wakeup_kcompactd(nid: pgdat->node_id, order,
3051 highest_zoneidx);
3052 wake_up_interruptible(&pgdat->kcompactd_wait);
3053}
3054
3055/*
3056 * The background compaction daemon, started as a kernel thread
3057 * from the init process.
3058 */
3059static int kcompactd(void *p)
3060{
3061 pg_data_t *pgdat = (pg_data_t *)p;
3062 struct task_struct *tsk = current;
3063 long default_timeout = msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC);
3064 long timeout = default_timeout;
3065
3066 const struct cpumask *cpumask = cpumask_of_node(node: pgdat->node_id);
3067
3068 if (!cpumask_empty(srcp: cpumask))
3069 set_cpus_allowed_ptr(p: tsk, new_mask: cpumask);
3070
3071 set_freezable();
3072
3073 pgdat->kcompactd_max_order = 0;
3074 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
3075
3076 while (!kthread_should_stop()) {
3077 unsigned long pflags;
3078
3079 /*
3080 * Avoid the unnecessary wakeup for proactive compaction
3081 * when it is disabled.
3082 */
3083 if (!sysctl_compaction_proactiveness)
3084 timeout = MAX_SCHEDULE_TIMEOUT;
3085 trace_mm_compaction_kcompactd_sleep(nid: pgdat->node_id);
3086 if (wait_event_freezable_timeout(pgdat->kcompactd_wait,
3087 kcompactd_work_requested(pgdat), timeout) &&
3088 !pgdat->proactive_compact_trigger) {
3089
3090 psi_memstall_enter(flags: &pflags);
3091 kcompactd_do_work(pgdat);
3092 psi_memstall_leave(flags: &pflags);
3093 /*
3094 * Reset the timeout value. The defer timeout from
3095 * proactive compaction is lost here but that is fine
3096 * as the condition of the zone changing substantionally
3097 * then carrying on with the previous defer interval is
3098 * not useful.
3099 */
3100 timeout = default_timeout;
3101 continue;
3102 }
3103
3104 /*
3105 * Start the proactive work with default timeout. Based
3106 * on the fragmentation score, this timeout is updated.
3107 */
3108 timeout = default_timeout;
3109 if (should_proactive_compact_node(pgdat)) {
3110 unsigned int prev_score, score;
3111
3112 prev_score = fragmentation_score_node(pgdat);
3113 proactive_compact_node(pgdat);
3114 score = fragmentation_score_node(pgdat);
3115 /*
3116 * Defer proactive compaction if the fragmentation
3117 * score did not go down i.e. no progress made.
3118 */
3119 if (unlikely(score >= prev_score))
3120 timeout =
3121 default_timeout << COMPACT_MAX_DEFER_SHIFT;
3122 }
3123 if (unlikely(pgdat->proactive_compact_trigger))
3124 pgdat->proactive_compact_trigger = false;
3125 }
3126
3127 return 0;
3128}
3129
3130/*
3131 * This kcompactd start function will be called by init and node-hot-add.
3132 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
3133 */
3134void __meminit kcompactd_run(int nid)
3135{
3136 pg_data_t *pgdat = NODE_DATA(nid);
3137
3138 if (pgdat->kcompactd)
3139 return;
3140
3141 pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
3142 if (IS_ERR(ptr: pgdat->kcompactd)) {
3143 pr_err("Failed to start kcompactd on node %d\n", nid);
3144 pgdat->kcompactd = NULL;
3145 }
3146}
3147
3148/*
3149 * Called by memory hotplug when all memory in a node is offlined. Caller must
3150 * be holding mem_hotplug_begin/done().
3151 */
3152void __meminit kcompactd_stop(int nid)
3153{
3154 struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
3155
3156 if (kcompactd) {
3157 kthread_stop(k: kcompactd);
3158 NODE_DATA(nid)->kcompactd = NULL;
3159 }
3160}
3161
3162/*
3163 * It's optimal to keep kcompactd on the same CPUs as their memory, but
3164 * not required for correctness. So if the last cpu in a node goes
3165 * away, we get changed to run anywhere: as the first one comes back,
3166 * restore their cpu bindings.
3167 */
3168static int kcompactd_cpu_online(unsigned int cpu)
3169{
3170 int nid;
3171
3172 for_each_node_state(nid, N_MEMORY) {
3173 pg_data_t *pgdat = NODE_DATA(nid);
3174 const struct cpumask *mask;
3175
3176 mask = cpumask_of_node(node: pgdat->node_id);
3177
3178 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3179 /* One of our CPUs online: restore mask */
3180 if (pgdat->kcompactd)
3181 set_cpus_allowed_ptr(p: pgdat->kcompactd, new_mask: mask);
3182 }
3183 return 0;
3184}
3185
3186static int proc_dointvec_minmax_warn_RT_change(struct ctl_table *table,
3187 int write, void *buffer, size_t *lenp, loff_t *ppos)
3188{
3189 int ret, old;
3190
3191 if (!IS_ENABLED(CONFIG_PREEMPT_RT) || !write)
3192 return proc_dointvec_minmax(table, write, buffer, lenp, ppos);
3193
3194 old = *(int *)table->data;
3195 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
3196 if (ret)
3197 return ret;
3198 if (old != *(int *)table->data)
3199 pr_warn_once("sysctl attribute %s changed by %s[%d]\n",
3200 table->procname, current->comm,
3201 task_pid_nr(current));
3202 return ret;
3203}
3204
3205static struct ctl_table vm_compaction[] = {
3206 {
3207 .procname = "compact_memory",
3208 .data = &sysctl_compact_memory,
3209 .maxlen = sizeof(int),
3210 .mode = 0200,
3211 .proc_handler = sysctl_compaction_handler,
3212 },
3213 {
3214 .procname = "compaction_proactiveness",
3215 .data = &sysctl_compaction_proactiveness,
3216 .maxlen = sizeof(sysctl_compaction_proactiveness),
3217 .mode = 0644,
3218 .proc_handler = compaction_proactiveness_sysctl_handler,
3219 .extra1 = SYSCTL_ZERO,
3220 .extra2 = SYSCTL_ONE_HUNDRED,
3221 },
3222 {
3223 .procname = "extfrag_threshold",
3224 .data = &sysctl_extfrag_threshold,
3225 .maxlen = sizeof(int),
3226 .mode = 0644,
3227 .proc_handler = proc_dointvec_minmax,
3228 .extra1 = SYSCTL_ZERO,
3229 .extra2 = SYSCTL_ONE_THOUSAND,
3230 },
3231 {
3232 .procname = "compact_unevictable_allowed",
3233 .data = &sysctl_compact_unevictable_allowed,
3234 .maxlen = sizeof(int),
3235 .mode = 0644,
3236 .proc_handler = proc_dointvec_minmax_warn_RT_change,
3237 .extra1 = SYSCTL_ZERO,
3238 .extra2 = SYSCTL_ONE,
3239 },
3240 { }
3241};
3242
3243static int __init kcompactd_init(void)
3244{
3245 int nid;
3246 int ret;
3247
3248 ret = cpuhp_setup_state_nocalls(state: CPUHP_AP_ONLINE_DYN,
3249 name: "mm/compaction:online",
3250 startup: kcompactd_cpu_online, NULL);
3251 if (ret < 0) {
3252 pr_err("kcompactd: failed to register hotplug callbacks.\n");
3253 return ret;
3254 }
3255
3256 for_each_node_state(nid, N_MEMORY)
3257 kcompactd_run(nid);
3258 register_sysctl_init("vm", vm_compaction);
3259 return 0;
3260}
3261subsys_initcall(kcompactd_init)
3262
3263#endif /* CONFIG_COMPACTION */
3264

source code of linux/mm/compaction.c