1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/mm/filemap.c
4 *
5 * Copyright (C) 1994-1999 Linus Torvalds
6 */
7
8/*
9 * This file handles the generic file mmap semantics used by
10 * most "normal" filesystems (but you don't /have/ to use this:
11 * the NFS filesystem used to do this differently, for example)
12 */
13#include <linux/export.h>
14#include <linux/compiler.h>
15#include <linux/dax.h>
16#include <linux/fs.h>
17#include <linux/sched/signal.h>
18#include <linux/uaccess.h>
19#include <linux/capability.h>
20#include <linux/kernel_stat.h>
21#include <linux/gfp.h>
22#include <linux/mm.h>
23#include <linux/swap.h>
24#include <linux/swapops.h>
25#include <linux/syscalls.h>
26#include <linux/mman.h>
27#include <linux/pagemap.h>
28#include <linux/file.h>
29#include <linux/uio.h>
30#include <linux/error-injection.h>
31#include <linux/hash.h>
32#include <linux/writeback.h>
33#include <linux/backing-dev.h>
34#include <linux/pagevec.h>
35#include <linux/security.h>
36#include <linux/cpuset.h>
37#include <linux/hugetlb.h>
38#include <linux/memcontrol.h>
39#include <linux/shmem_fs.h>
40#include <linux/rmap.h>
41#include <linux/delayacct.h>
42#include <linux/psi.h>
43#include <linux/ramfs.h>
44#include <linux/page_idle.h>
45#include <linux/migrate.h>
46#include <linux/pipe_fs_i.h>
47#include <linux/splice.h>
48#include <asm/pgalloc.h>
49#include <asm/tlbflush.h>
50#include "internal.h"
51
52#define CREATE_TRACE_POINTS
53#include <trace/events/filemap.h>
54
55/*
56 * FIXME: remove all knowledge of the buffer layer from the core VM
57 */
58#include <linux/buffer_head.h> /* for try_to_free_buffers */
59
60#include <asm/mman.h>
61
62#include "swap.h"
63
64/*
65 * Shared mappings implemented 30.11.1994. It's not fully working yet,
66 * though.
67 *
68 * Shared mappings now work. 15.8.1995 Bruno.
69 *
70 * finished 'unifying' the page and buffer cache and SMP-threaded the
71 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
72 *
73 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
74 */
75
76/*
77 * Lock ordering:
78 *
79 * ->i_mmap_rwsem (truncate_pagecache)
80 * ->private_lock (__free_pte->block_dirty_folio)
81 * ->swap_lock (exclusive_swap_page, others)
82 * ->i_pages lock
83 *
84 * ->i_rwsem
85 * ->invalidate_lock (acquired by fs in truncate path)
86 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
87 *
88 * ->mmap_lock
89 * ->i_mmap_rwsem
90 * ->page_table_lock or pte_lock (various, mainly in memory.c)
91 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock)
92 *
93 * ->mmap_lock
94 * ->invalidate_lock (filemap_fault)
95 * ->lock_page (filemap_fault, access_process_vm)
96 *
97 * ->i_rwsem (generic_perform_write)
98 * ->mmap_lock (fault_in_readable->do_page_fault)
99 *
100 * bdi->wb.list_lock
101 * sb_lock (fs/fs-writeback.c)
102 * ->i_pages lock (__sync_single_inode)
103 *
104 * ->i_mmap_rwsem
105 * ->anon_vma.lock (vma_merge)
106 *
107 * ->anon_vma.lock
108 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
109 *
110 * ->page_table_lock or pte_lock
111 * ->swap_lock (try_to_unmap_one)
112 * ->private_lock (try_to_unmap_one)
113 * ->i_pages lock (try_to_unmap_one)
114 * ->lruvec->lru_lock (follow_page->mark_page_accessed)
115 * ->lruvec->lru_lock (check_pte_range->isolate_lru_page)
116 * ->private_lock (page_remove_rmap->set_page_dirty)
117 * ->i_pages lock (page_remove_rmap->set_page_dirty)
118 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
119 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
120 * ->memcg->move_lock (page_remove_rmap->folio_memcg_lock)
121 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
122 * ->inode->i_lock (zap_pte_range->set_page_dirty)
123 * ->private_lock (zap_pte_range->block_dirty_folio)
124 */
125
126static void page_cache_delete(struct address_space *mapping,
127 struct folio *folio, void *shadow)
128{
129 XA_STATE(xas, &mapping->i_pages, folio->index);
130 long nr = 1;
131
132 mapping_set_update(&xas, mapping);
133
134 xas_set_order(xas: &xas, index: folio->index, order: folio_order(folio));
135 nr = folio_nr_pages(folio);
136
137 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
138
139 xas_store(&xas, entry: shadow);
140 xas_init_marks(&xas);
141
142 folio->mapping = NULL;
143 /* Leave page->index set: truncation lookup relies upon it */
144 mapping->nrpages -= nr;
145}
146
147static void filemap_unaccount_folio(struct address_space *mapping,
148 struct folio *folio)
149{
150 long nr;
151
152 VM_BUG_ON_FOLIO(folio_mapped(folio), folio);
153 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(folio_mapped(folio))) {
154 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
155 current->comm, folio_pfn(folio));
156 dump_page(page: &folio->page, reason: "still mapped when deleted");
157 dump_stack();
158 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
159
160 if (mapping_exiting(mapping) && !folio_test_large(folio)) {
161 int mapcount = page_mapcount(page: &folio->page);
162
163 if (folio_ref_count(folio) >= mapcount + 2) {
164 /*
165 * All vmas have already been torn down, so it's
166 * a good bet that actually the page is unmapped
167 * and we'd rather not leak it: if we're wrong,
168 * another bad page check should catch it later.
169 */
170 page_mapcount_reset(page: &folio->page);
171 folio_ref_sub(folio, nr: mapcount);
172 }
173 }
174 }
175
176 /* hugetlb folios do not participate in page cache accounting. */
177 if (folio_test_hugetlb(folio))
178 return;
179
180 nr = folio_nr_pages(folio);
181
182 __lruvec_stat_mod_folio(folio, idx: NR_FILE_PAGES, val: -nr);
183 if (folio_test_swapbacked(folio)) {
184 __lruvec_stat_mod_folio(folio, idx: NR_SHMEM, val: -nr);
185 if (folio_test_pmd_mappable(folio))
186 __lruvec_stat_mod_folio(folio, idx: NR_SHMEM_THPS, val: -nr);
187 } else if (folio_test_pmd_mappable(folio)) {
188 __lruvec_stat_mod_folio(folio, idx: NR_FILE_THPS, val: -nr);
189 filemap_nr_thps_dec(mapping);
190 }
191
192 /*
193 * At this point folio must be either written or cleaned by
194 * truncate. Dirty folio here signals a bug and loss of
195 * unwritten data - on ordinary filesystems.
196 *
197 * But it's harmless on in-memory filesystems like tmpfs; and can
198 * occur when a driver which did get_user_pages() sets page dirty
199 * before putting it, while the inode is being finally evicted.
200 *
201 * Below fixes dirty accounting after removing the folio entirely
202 * but leaves the dirty flag set: it has no effect for truncated
203 * folio and anyway will be cleared before returning folio to
204 * buddy allocator.
205 */
206 if (WARN_ON_ONCE(folio_test_dirty(folio) &&
207 mapping_can_writeback(mapping)))
208 folio_account_cleaned(folio, wb: inode_to_wb(inode: mapping->host));
209}
210
211/*
212 * Delete a page from the page cache and free it. Caller has to make
213 * sure the page is locked and that nobody else uses it - or that usage
214 * is safe. The caller must hold the i_pages lock.
215 */
216void __filemap_remove_folio(struct folio *folio, void *shadow)
217{
218 struct address_space *mapping = folio->mapping;
219
220 trace_mm_filemap_delete_from_page_cache(folio);
221 filemap_unaccount_folio(mapping, folio);
222 page_cache_delete(mapping, folio, shadow);
223}
224
225void filemap_free_folio(struct address_space *mapping, struct folio *folio)
226{
227 void (*free_folio)(struct folio *);
228 int refs = 1;
229
230 free_folio = mapping->a_ops->free_folio;
231 if (free_folio)
232 free_folio(folio);
233
234 if (folio_test_large(folio))
235 refs = folio_nr_pages(folio);
236 folio_put_refs(folio, refs);
237}
238
239/**
240 * filemap_remove_folio - Remove folio from page cache.
241 * @folio: The folio.
242 *
243 * This must be called only on folios that are locked and have been
244 * verified to be in the page cache. It will never put the folio into
245 * the free list because the caller has a reference on the page.
246 */
247void filemap_remove_folio(struct folio *folio)
248{
249 struct address_space *mapping = folio->mapping;
250
251 BUG_ON(!folio_test_locked(folio));
252 spin_lock(lock: &mapping->host->i_lock);
253 xa_lock_irq(&mapping->i_pages);
254 __filemap_remove_folio(folio, NULL);
255 xa_unlock_irq(&mapping->i_pages);
256 if (mapping_shrinkable(mapping))
257 inode_add_lru(inode: mapping->host);
258 spin_unlock(lock: &mapping->host->i_lock);
259
260 filemap_free_folio(mapping, folio);
261}
262
263/*
264 * page_cache_delete_batch - delete several folios from page cache
265 * @mapping: the mapping to which folios belong
266 * @fbatch: batch of folios to delete
267 *
268 * The function walks over mapping->i_pages and removes folios passed in
269 * @fbatch from the mapping. The function expects @fbatch to be sorted
270 * by page index and is optimised for it to be dense.
271 * It tolerates holes in @fbatch (mapping entries at those indices are not
272 * modified).
273 *
274 * The function expects the i_pages lock to be held.
275 */
276static void page_cache_delete_batch(struct address_space *mapping,
277 struct folio_batch *fbatch)
278{
279 XA_STATE(xas, &mapping->i_pages, fbatch->folios[0]->index);
280 long total_pages = 0;
281 int i = 0;
282 struct folio *folio;
283
284 mapping_set_update(&xas, mapping);
285 xas_for_each(&xas, folio, ULONG_MAX) {
286 if (i >= folio_batch_count(fbatch))
287 break;
288
289 /* A swap/dax/shadow entry got inserted? Skip it. */
290 if (xa_is_value(entry: folio))
291 continue;
292 /*
293 * A page got inserted in our range? Skip it. We have our
294 * pages locked so they are protected from being removed.
295 * If we see a page whose index is higher than ours, it
296 * means our page has been removed, which shouldn't be
297 * possible because we're holding the PageLock.
298 */
299 if (folio != fbatch->folios[i]) {
300 VM_BUG_ON_FOLIO(folio->index >
301 fbatch->folios[i]->index, folio);
302 continue;
303 }
304
305 WARN_ON_ONCE(!folio_test_locked(folio));
306
307 folio->mapping = NULL;
308 /* Leave folio->index set: truncation lookup relies on it */
309
310 i++;
311 xas_store(&xas, NULL);
312 total_pages += folio_nr_pages(folio);
313 }
314 mapping->nrpages -= total_pages;
315}
316
317void delete_from_page_cache_batch(struct address_space *mapping,
318 struct folio_batch *fbatch)
319{
320 int i;
321
322 if (!folio_batch_count(fbatch))
323 return;
324
325 spin_lock(lock: &mapping->host->i_lock);
326 xa_lock_irq(&mapping->i_pages);
327 for (i = 0; i < folio_batch_count(fbatch); i++) {
328 struct folio *folio = fbatch->folios[i];
329
330 trace_mm_filemap_delete_from_page_cache(folio);
331 filemap_unaccount_folio(mapping, folio);
332 }
333 page_cache_delete_batch(mapping, fbatch);
334 xa_unlock_irq(&mapping->i_pages);
335 if (mapping_shrinkable(mapping))
336 inode_add_lru(inode: mapping->host);
337 spin_unlock(lock: &mapping->host->i_lock);
338
339 for (i = 0; i < folio_batch_count(fbatch); i++)
340 filemap_free_folio(mapping, folio: fbatch->folios[i]);
341}
342
343int filemap_check_errors(struct address_space *mapping)
344{
345 int ret = 0;
346 /* Check for outstanding write errors */
347 if (test_bit(AS_ENOSPC, &mapping->flags) &&
348 test_and_clear_bit(nr: AS_ENOSPC, addr: &mapping->flags))
349 ret = -ENOSPC;
350 if (test_bit(AS_EIO, &mapping->flags) &&
351 test_and_clear_bit(nr: AS_EIO, addr: &mapping->flags))
352 ret = -EIO;
353 return ret;
354}
355EXPORT_SYMBOL(filemap_check_errors);
356
357static int filemap_check_and_keep_errors(struct address_space *mapping)
358{
359 /* Check for outstanding write errors */
360 if (test_bit(AS_EIO, &mapping->flags))
361 return -EIO;
362 if (test_bit(AS_ENOSPC, &mapping->flags))
363 return -ENOSPC;
364 return 0;
365}
366
367/**
368 * filemap_fdatawrite_wbc - start writeback on mapping dirty pages in range
369 * @mapping: address space structure to write
370 * @wbc: the writeback_control controlling the writeout
371 *
372 * Call writepages on the mapping using the provided wbc to control the
373 * writeout.
374 *
375 * Return: %0 on success, negative error code otherwise.
376 */
377int filemap_fdatawrite_wbc(struct address_space *mapping,
378 struct writeback_control *wbc)
379{
380 int ret;
381
382 if (!mapping_can_writeback(mapping) ||
383 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
384 return 0;
385
386 wbc_attach_fdatawrite_inode(wbc, inode: mapping->host);
387 ret = do_writepages(mapping, wbc);
388 wbc_detach_inode(wbc);
389 return ret;
390}
391EXPORT_SYMBOL(filemap_fdatawrite_wbc);
392
393/**
394 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
395 * @mapping: address space structure to write
396 * @start: offset in bytes where the range starts
397 * @end: offset in bytes where the range ends (inclusive)
398 * @sync_mode: enable synchronous operation
399 *
400 * Start writeback against all of a mapping's dirty pages that lie
401 * within the byte offsets <start, end> inclusive.
402 *
403 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
404 * opposed to a regular memory cleansing writeback. The difference between
405 * these two operations is that if a dirty page/buffer is encountered, it must
406 * be waited upon, and not just skipped over.
407 *
408 * Return: %0 on success, negative error code otherwise.
409 */
410int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
411 loff_t end, int sync_mode)
412{
413 struct writeback_control wbc = {
414 .sync_mode = sync_mode,
415 .nr_to_write = LONG_MAX,
416 .range_start = start,
417 .range_end = end,
418 };
419
420 return filemap_fdatawrite_wbc(mapping, &wbc);
421}
422
423static inline int __filemap_fdatawrite(struct address_space *mapping,
424 int sync_mode)
425{
426 return __filemap_fdatawrite_range(mapping, start: 0, LLONG_MAX, sync_mode);
427}
428
429int filemap_fdatawrite(struct address_space *mapping)
430{
431 return __filemap_fdatawrite(mapping, sync_mode: WB_SYNC_ALL);
432}
433EXPORT_SYMBOL(filemap_fdatawrite);
434
435int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
436 loff_t end)
437{
438 return __filemap_fdatawrite_range(mapping, start, end, sync_mode: WB_SYNC_ALL);
439}
440EXPORT_SYMBOL(filemap_fdatawrite_range);
441
442/**
443 * filemap_flush - mostly a non-blocking flush
444 * @mapping: target address_space
445 *
446 * This is a mostly non-blocking flush. Not suitable for data-integrity
447 * purposes - I/O may not be started against all dirty pages.
448 *
449 * Return: %0 on success, negative error code otherwise.
450 */
451int filemap_flush(struct address_space *mapping)
452{
453 return __filemap_fdatawrite(mapping, sync_mode: WB_SYNC_NONE);
454}
455EXPORT_SYMBOL(filemap_flush);
456
457/**
458 * filemap_range_has_page - check if a page exists in range.
459 * @mapping: address space within which to check
460 * @start_byte: offset in bytes where the range starts
461 * @end_byte: offset in bytes where the range ends (inclusive)
462 *
463 * Find at least one page in the range supplied, usually used to check if
464 * direct writing in this range will trigger a writeback.
465 *
466 * Return: %true if at least one page exists in the specified range,
467 * %false otherwise.
468 */
469bool filemap_range_has_page(struct address_space *mapping,
470 loff_t start_byte, loff_t end_byte)
471{
472 struct folio *folio;
473 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
474 pgoff_t max = end_byte >> PAGE_SHIFT;
475
476 if (end_byte < start_byte)
477 return false;
478
479 rcu_read_lock();
480 for (;;) {
481 folio = xas_find(&xas, max);
482 if (xas_retry(xas: &xas, entry: folio))
483 continue;
484 /* Shadow entries don't count */
485 if (xa_is_value(entry: folio))
486 continue;
487 /*
488 * We don't need to try to pin this page; we're about to
489 * release the RCU lock anyway. It is enough to know that
490 * there was a page here recently.
491 */
492 break;
493 }
494 rcu_read_unlock();
495
496 return folio != NULL;
497}
498EXPORT_SYMBOL(filemap_range_has_page);
499
500static void __filemap_fdatawait_range(struct address_space *mapping,
501 loff_t start_byte, loff_t end_byte)
502{
503 pgoff_t index = start_byte >> PAGE_SHIFT;
504 pgoff_t end = end_byte >> PAGE_SHIFT;
505 struct folio_batch fbatch;
506 unsigned nr_folios;
507
508 folio_batch_init(fbatch: &fbatch);
509
510 while (index <= end) {
511 unsigned i;
512
513 nr_folios = filemap_get_folios_tag(mapping, start: &index, end,
514 PAGECACHE_TAG_WRITEBACK, fbatch: &fbatch);
515
516 if (!nr_folios)
517 break;
518
519 for (i = 0; i < nr_folios; i++) {
520 struct folio *folio = fbatch.folios[i];
521
522 folio_wait_writeback(folio);
523 folio_clear_error(folio);
524 }
525 folio_batch_release(fbatch: &fbatch);
526 cond_resched();
527 }
528}
529
530/**
531 * filemap_fdatawait_range - wait for writeback to complete
532 * @mapping: address space structure to wait for
533 * @start_byte: offset in bytes where the range starts
534 * @end_byte: offset in bytes where the range ends (inclusive)
535 *
536 * Walk the list of under-writeback pages of the given address space
537 * in the given range and wait for all of them. Check error status of
538 * the address space and return it.
539 *
540 * Since the error status of the address space is cleared by this function,
541 * callers are responsible for checking the return value and handling and/or
542 * reporting the error.
543 *
544 * Return: error status of the address space.
545 */
546int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
547 loff_t end_byte)
548{
549 __filemap_fdatawait_range(mapping, start_byte, end_byte);
550 return filemap_check_errors(mapping);
551}
552EXPORT_SYMBOL(filemap_fdatawait_range);
553
554/**
555 * filemap_fdatawait_range_keep_errors - wait for writeback to complete
556 * @mapping: address space structure to wait for
557 * @start_byte: offset in bytes where the range starts
558 * @end_byte: offset in bytes where the range ends (inclusive)
559 *
560 * Walk the list of under-writeback pages of the given address space in the
561 * given range and wait for all of them. Unlike filemap_fdatawait_range(),
562 * this function does not clear error status of the address space.
563 *
564 * Use this function if callers don't handle errors themselves. Expected
565 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
566 * fsfreeze(8)
567 */
568int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
569 loff_t start_byte, loff_t end_byte)
570{
571 __filemap_fdatawait_range(mapping, start_byte, end_byte);
572 return filemap_check_and_keep_errors(mapping);
573}
574EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
575
576/**
577 * file_fdatawait_range - wait for writeback to complete
578 * @file: file pointing to address space structure to wait for
579 * @start_byte: offset in bytes where the range starts
580 * @end_byte: offset in bytes where the range ends (inclusive)
581 *
582 * Walk the list of under-writeback pages of the address space that file
583 * refers to, in the given range and wait for all of them. Check error
584 * status of the address space vs. the file->f_wb_err cursor and return it.
585 *
586 * Since the error status of the file is advanced by this function,
587 * callers are responsible for checking the return value and handling and/or
588 * reporting the error.
589 *
590 * Return: error status of the address space vs. the file->f_wb_err cursor.
591 */
592int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
593{
594 struct address_space *mapping = file->f_mapping;
595
596 __filemap_fdatawait_range(mapping, start_byte, end_byte);
597 return file_check_and_advance_wb_err(file);
598}
599EXPORT_SYMBOL(file_fdatawait_range);
600
601/**
602 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
603 * @mapping: address space structure to wait for
604 *
605 * Walk the list of under-writeback pages of the given address space
606 * and wait for all of them. Unlike filemap_fdatawait(), this function
607 * does not clear error status of the address space.
608 *
609 * Use this function if callers don't handle errors themselves. Expected
610 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
611 * fsfreeze(8)
612 *
613 * Return: error status of the address space.
614 */
615int filemap_fdatawait_keep_errors(struct address_space *mapping)
616{
617 __filemap_fdatawait_range(mapping, start_byte: 0, LLONG_MAX);
618 return filemap_check_and_keep_errors(mapping);
619}
620EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
621
622/* Returns true if writeback might be needed or already in progress. */
623static bool mapping_needs_writeback(struct address_space *mapping)
624{
625 return mapping->nrpages;
626}
627
628bool filemap_range_has_writeback(struct address_space *mapping,
629 loff_t start_byte, loff_t end_byte)
630{
631 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
632 pgoff_t max = end_byte >> PAGE_SHIFT;
633 struct folio *folio;
634
635 if (end_byte < start_byte)
636 return false;
637
638 rcu_read_lock();
639 xas_for_each(&xas, folio, max) {
640 if (xas_retry(xas: &xas, entry: folio))
641 continue;
642 if (xa_is_value(entry: folio))
643 continue;
644 if (folio_test_dirty(folio) || folio_test_locked(folio) ||
645 folio_test_writeback(folio))
646 break;
647 }
648 rcu_read_unlock();
649 return folio != NULL;
650}
651EXPORT_SYMBOL_GPL(filemap_range_has_writeback);
652
653/**
654 * filemap_write_and_wait_range - write out & wait on a file range
655 * @mapping: the address_space for the pages
656 * @lstart: offset in bytes where the range starts
657 * @lend: offset in bytes where the range ends (inclusive)
658 *
659 * Write out and wait upon file offsets lstart->lend, inclusive.
660 *
661 * Note that @lend is inclusive (describes the last byte to be written) so
662 * that this function can be used to write to the very end-of-file (end = -1).
663 *
664 * Return: error status of the address space.
665 */
666int filemap_write_and_wait_range(struct address_space *mapping,
667 loff_t lstart, loff_t lend)
668{
669 int err = 0, err2;
670
671 if (lend < lstart)
672 return 0;
673
674 if (mapping_needs_writeback(mapping)) {
675 err = __filemap_fdatawrite_range(mapping, start: lstart, end: lend,
676 sync_mode: WB_SYNC_ALL);
677 /*
678 * Even if the above returned error, the pages may be
679 * written partially (e.g. -ENOSPC), so we wait for it.
680 * But the -EIO is special case, it may indicate the worst
681 * thing (e.g. bug) happened, so we avoid waiting for it.
682 */
683 if (err != -EIO)
684 __filemap_fdatawait_range(mapping, start_byte: lstart, end_byte: lend);
685 }
686 err2 = filemap_check_errors(mapping);
687 if (!err)
688 err = err2;
689 return err;
690}
691EXPORT_SYMBOL(filemap_write_and_wait_range);
692
693void __filemap_set_wb_err(struct address_space *mapping, int err)
694{
695 errseq_t eseq = errseq_set(eseq: &mapping->wb_err, err);
696
697 trace_filemap_set_wb_err(mapping, eseq);
698}
699EXPORT_SYMBOL(__filemap_set_wb_err);
700
701/**
702 * file_check_and_advance_wb_err - report wb error (if any) that was previously
703 * and advance wb_err to current one
704 * @file: struct file on which the error is being reported
705 *
706 * When userland calls fsync (or something like nfsd does the equivalent), we
707 * want to report any writeback errors that occurred since the last fsync (or
708 * since the file was opened if there haven't been any).
709 *
710 * Grab the wb_err from the mapping. If it matches what we have in the file,
711 * then just quickly return 0. The file is all caught up.
712 *
713 * If it doesn't match, then take the mapping value, set the "seen" flag in
714 * it and try to swap it into place. If it works, or another task beat us
715 * to it with the new value, then update the f_wb_err and return the error
716 * portion. The error at this point must be reported via proper channels
717 * (a'la fsync, or NFS COMMIT operation, etc.).
718 *
719 * While we handle mapping->wb_err with atomic operations, the f_wb_err
720 * value is protected by the f_lock since we must ensure that it reflects
721 * the latest value swapped in for this file descriptor.
722 *
723 * Return: %0 on success, negative error code otherwise.
724 */
725int file_check_and_advance_wb_err(struct file *file)
726{
727 int err = 0;
728 errseq_t old = READ_ONCE(file->f_wb_err);
729 struct address_space *mapping = file->f_mapping;
730
731 /* Locklessly handle the common case where nothing has changed */
732 if (errseq_check(eseq: &mapping->wb_err, since: old)) {
733 /* Something changed, must use slow path */
734 spin_lock(lock: &file->f_lock);
735 old = file->f_wb_err;
736 err = errseq_check_and_advance(eseq: &mapping->wb_err,
737 since: &file->f_wb_err);
738 trace_file_check_and_advance_wb_err(file, old);
739 spin_unlock(lock: &file->f_lock);
740 }
741
742 /*
743 * We're mostly using this function as a drop in replacement for
744 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
745 * that the legacy code would have had on these flags.
746 */
747 clear_bit(nr: AS_EIO, addr: &mapping->flags);
748 clear_bit(nr: AS_ENOSPC, addr: &mapping->flags);
749 return err;
750}
751EXPORT_SYMBOL(file_check_and_advance_wb_err);
752
753/**
754 * file_write_and_wait_range - write out & wait on a file range
755 * @file: file pointing to address_space with pages
756 * @lstart: offset in bytes where the range starts
757 * @lend: offset in bytes where the range ends (inclusive)
758 *
759 * Write out and wait upon file offsets lstart->lend, inclusive.
760 *
761 * Note that @lend is inclusive (describes the last byte to be written) so
762 * that this function can be used to write to the very end-of-file (end = -1).
763 *
764 * After writing out and waiting on the data, we check and advance the
765 * f_wb_err cursor to the latest value, and return any errors detected there.
766 *
767 * Return: %0 on success, negative error code otherwise.
768 */
769int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
770{
771 int err = 0, err2;
772 struct address_space *mapping = file->f_mapping;
773
774 if (lend < lstart)
775 return 0;
776
777 if (mapping_needs_writeback(mapping)) {
778 err = __filemap_fdatawrite_range(mapping, start: lstart, end: lend,
779 sync_mode: WB_SYNC_ALL);
780 /* See comment of filemap_write_and_wait() */
781 if (err != -EIO)
782 __filemap_fdatawait_range(mapping, start_byte: lstart, end_byte: lend);
783 }
784 err2 = file_check_and_advance_wb_err(file);
785 if (!err)
786 err = err2;
787 return err;
788}
789EXPORT_SYMBOL(file_write_and_wait_range);
790
791/**
792 * replace_page_cache_folio - replace a pagecache folio with a new one
793 * @old: folio to be replaced
794 * @new: folio to replace with
795 *
796 * This function replaces a folio in the pagecache with a new one. On
797 * success it acquires the pagecache reference for the new folio and
798 * drops it for the old folio. Both the old and new folios must be
799 * locked. This function does not add the new folio to the LRU, the
800 * caller must do that.
801 *
802 * The remove + add is atomic. This function cannot fail.
803 */
804void replace_page_cache_folio(struct folio *old, struct folio *new)
805{
806 struct address_space *mapping = old->mapping;
807 void (*free_folio)(struct folio *) = mapping->a_ops->free_folio;
808 pgoff_t offset = old->index;
809 XA_STATE(xas, &mapping->i_pages, offset);
810
811 VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
812 VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
813 VM_BUG_ON_FOLIO(new->mapping, new);
814
815 folio_get(folio: new);
816 new->mapping = mapping;
817 new->index = offset;
818
819 mem_cgroup_replace_folio(old, new);
820
821 xas_lock_irq(&xas);
822 xas_store(&xas, entry: new);
823
824 old->mapping = NULL;
825 /* hugetlb pages do not participate in page cache accounting. */
826 if (!folio_test_hugetlb(folio: old))
827 __lruvec_stat_sub_folio(folio: old, idx: NR_FILE_PAGES);
828 if (!folio_test_hugetlb(folio: new))
829 __lruvec_stat_add_folio(folio: new, idx: NR_FILE_PAGES);
830 if (folio_test_swapbacked(folio: old))
831 __lruvec_stat_sub_folio(folio: old, idx: NR_SHMEM);
832 if (folio_test_swapbacked(folio: new))
833 __lruvec_stat_add_folio(folio: new, idx: NR_SHMEM);
834 xas_unlock_irq(&xas);
835 if (free_folio)
836 free_folio(old);
837 folio_put(folio: old);
838}
839EXPORT_SYMBOL_GPL(replace_page_cache_folio);
840
841noinline int __filemap_add_folio(struct address_space *mapping,
842 struct folio *folio, pgoff_t index, gfp_t gfp, void **shadowp)
843{
844 XA_STATE(xas, &mapping->i_pages, index);
845 int huge = folio_test_hugetlb(folio);
846 bool charged = false;
847 long nr = 1;
848
849 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
850 VM_BUG_ON_FOLIO(folio_test_swapbacked(folio), folio);
851 mapping_set_update(&xas, mapping);
852
853 if (!huge) {
854 int error = mem_cgroup_charge(folio, NULL, gfp);
855 if (error)
856 return error;
857 charged = true;
858 }
859
860 VM_BUG_ON_FOLIO(index & (folio_nr_pages(folio) - 1), folio);
861 xas_set_order(xas: &xas, index, order: folio_order(folio));
862 nr = folio_nr_pages(folio);
863
864 gfp &= GFP_RECLAIM_MASK;
865 folio_ref_add(folio, nr);
866 folio->mapping = mapping;
867 folio->index = xas.xa_index;
868
869 do {
870 unsigned int order = xa_get_order(xas.xa, index: xas.xa_index);
871 void *entry, *old = NULL;
872
873 if (order > folio_order(folio))
874 xas_split_alloc(&xas, entry: xa_load(xas.xa, index: xas.xa_index),
875 order, gfp);
876 xas_lock_irq(&xas);
877 xas_for_each_conflict(&xas, entry) {
878 old = entry;
879 if (!xa_is_value(entry)) {
880 xas_set_err(xas: &xas, err: -EEXIST);
881 goto unlock;
882 }
883 }
884
885 if (old) {
886 if (shadowp)
887 *shadowp = old;
888 /* entry may have been split before we acquired lock */
889 order = xa_get_order(xas.xa, index: xas.xa_index);
890 if (order > folio_order(folio)) {
891 /* How to handle large swap entries? */
892 BUG_ON(shmem_mapping(mapping));
893 xas_split(&xas, entry: old, order);
894 xas_reset(xas: &xas);
895 }
896 }
897
898 xas_store(&xas, entry: folio);
899 if (xas_error(xas: &xas))
900 goto unlock;
901
902 mapping->nrpages += nr;
903
904 /* hugetlb pages do not participate in page cache accounting */
905 if (!huge) {
906 __lruvec_stat_mod_folio(folio, idx: NR_FILE_PAGES, val: nr);
907 if (folio_test_pmd_mappable(folio))
908 __lruvec_stat_mod_folio(folio,
909 idx: NR_FILE_THPS, val: nr);
910 }
911unlock:
912 xas_unlock_irq(&xas);
913 } while (xas_nomem(&xas, gfp));
914
915 if (xas_error(xas: &xas))
916 goto error;
917
918 trace_mm_filemap_add_to_page_cache(folio);
919 return 0;
920error:
921 if (charged)
922 mem_cgroup_uncharge(folio);
923 folio->mapping = NULL;
924 /* Leave page->index set: truncation relies upon it */
925 folio_put_refs(folio, refs: nr);
926 return xas_error(xas: &xas);
927}
928ALLOW_ERROR_INJECTION(__filemap_add_folio, ERRNO);
929
930int filemap_add_folio(struct address_space *mapping, struct folio *folio,
931 pgoff_t index, gfp_t gfp)
932{
933 void *shadow = NULL;
934 int ret;
935
936 __folio_set_locked(folio);
937 ret = __filemap_add_folio(mapping, folio, index, gfp, shadowp: &shadow);
938 if (unlikely(ret))
939 __folio_clear_locked(folio);
940 else {
941 /*
942 * The folio might have been evicted from cache only
943 * recently, in which case it should be activated like
944 * any other repeatedly accessed folio.
945 * The exception is folios getting rewritten; evicting other
946 * data from the working set, only to cache data that will
947 * get overwritten with something else, is a waste of memory.
948 */
949 WARN_ON_ONCE(folio_test_active(folio));
950 if (!(gfp & __GFP_WRITE) && shadow)
951 workingset_refault(folio, shadow);
952 folio_add_lru(folio);
953 }
954 return ret;
955}
956EXPORT_SYMBOL_GPL(filemap_add_folio);
957
958#ifdef CONFIG_NUMA
959struct folio *filemap_alloc_folio(gfp_t gfp, unsigned int order)
960{
961 int n;
962 struct folio *folio;
963
964 if (cpuset_do_page_mem_spread()) {
965 unsigned int cpuset_mems_cookie;
966 do {
967 cpuset_mems_cookie = read_mems_allowed_begin();
968 n = cpuset_mem_spread_node();
969 folio = __folio_alloc_node(gfp, order, nid: n);
970 } while (!folio && read_mems_allowed_retry(seq: cpuset_mems_cookie));
971
972 return folio;
973 }
974 return folio_alloc(gfp, order);
975}
976EXPORT_SYMBOL(filemap_alloc_folio);
977#endif
978
979/*
980 * filemap_invalidate_lock_two - lock invalidate_lock for two mappings
981 *
982 * Lock exclusively invalidate_lock of any passed mapping that is not NULL.
983 *
984 * @mapping1: the first mapping to lock
985 * @mapping2: the second mapping to lock
986 */
987void filemap_invalidate_lock_two(struct address_space *mapping1,
988 struct address_space *mapping2)
989{
990 if (mapping1 > mapping2)
991 swap(mapping1, mapping2);
992 if (mapping1)
993 down_write(sem: &mapping1->invalidate_lock);
994 if (mapping2 && mapping1 != mapping2)
995 down_write_nested(sem: &mapping2->invalidate_lock, subclass: 1);
996}
997EXPORT_SYMBOL(filemap_invalidate_lock_two);
998
999/*
1000 * filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings
1001 *
1002 * Unlock exclusive invalidate_lock of any passed mapping that is not NULL.
1003 *
1004 * @mapping1: the first mapping to unlock
1005 * @mapping2: the second mapping to unlock
1006 */
1007void filemap_invalidate_unlock_two(struct address_space *mapping1,
1008 struct address_space *mapping2)
1009{
1010 if (mapping1)
1011 up_write(sem: &mapping1->invalidate_lock);
1012 if (mapping2 && mapping1 != mapping2)
1013 up_write(sem: &mapping2->invalidate_lock);
1014}
1015EXPORT_SYMBOL(filemap_invalidate_unlock_two);
1016
1017/*
1018 * In order to wait for pages to become available there must be
1019 * waitqueues associated with pages. By using a hash table of
1020 * waitqueues where the bucket discipline is to maintain all
1021 * waiters on the same queue and wake all when any of the pages
1022 * become available, and for the woken contexts to check to be
1023 * sure the appropriate page became available, this saves space
1024 * at a cost of "thundering herd" phenomena during rare hash
1025 * collisions.
1026 */
1027#define PAGE_WAIT_TABLE_BITS 8
1028#define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
1029static wait_queue_head_t folio_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
1030
1031static wait_queue_head_t *folio_waitqueue(struct folio *folio)
1032{
1033 return &folio_wait_table[hash_ptr(ptr: folio, PAGE_WAIT_TABLE_BITS)];
1034}
1035
1036void __init pagecache_init(void)
1037{
1038 int i;
1039
1040 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
1041 init_waitqueue_head(&folio_wait_table[i]);
1042
1043 page_writeback_init();
1044}
1045
1046/*
1047 * The page wait code treats the "wait->flags" somewhat unusually, because
1048 * we have multiple different kinds of waits, not just the usual "exclusive"
1049 * one.
1050 *
1051 * We have:
1052 *
1053 * (a) no special bits set:
1054 *
1055 * We're just waiting for the bit to be released, and when a waker
1056 * calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up,
1057 * and remove it from the wait queue.
1058 *
1059 * Simple and straightforward.
1060 *
1061 * (b) WQ_FLAG_EXCLUSIVE:
1062 *
1063 * The waiter is waiting to get the lock, and only one waiter should
1064 * be woken up to avoid any thundering herd behavior. We'll set the
1065 * WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue.
1066 *
1067 * This is the traditional exclusive wait.
1068 *
1069 * (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM:
1070 *
1071 * The waiter is waiting to get the bit, and additionally wants the
1072 * lock to be transferred to it for fair lock behavior. If the lock
1073 * cannot be taken, we stop walking the wait queue without waking
1074 * the waiter.
1075 *
1076 * This is the "fair lock handoff" case, and in addition to setting
1077 * WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see
1078 * that it now has the lock.
1079 */
1080static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1081{
1082 unsigned int flags;
1083 struct wait_page_key *key = arg;
1084 struct wait_page_queue *wait_page
1085 = container_of(wait, struct wait_page_queue, wait);
1086
1087 if (!wake_page_match(wait_page, key))
1088 return 0;
1089
1090 /*
1091 * If it's a lock handoff wait, we get the bit for it, and
1092 * stop walking (and do not wake it up) if we can't.
1093 */
1094 flags = wait->flags;
1095 if (flags & WQ_FLAG_EXCLUSIVE) {
1096 if (test_bit(key->bit_nr, &key->folio->flags))
1097 return -1;
1098 if (flags & WQ_FLAG_CUSTOM) {
1099 if (test_and_set_bit(nr: key->bit_nr, addr: &key->folio->flags))
1100 return -1;
1101 flags |= WQ_FLAG_DONE;
1102 }
1103 }
1104
1105 /*
1106 * We are holding the wait-queue lock, but the waiter that
1107 * is waiting for this will be checking the flags without
1108 * any locking.
1109 *
1110 * So update the flags atomically, and wake up the waiter
1111 * afterwards to avoid any races. This store-release pairs
1112 * with the load-acquire in folio_wait_bit_common().
1113 */
1114 smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN);
1115 wake_up_state(tsk: wait->private, state: mode);
1116
1117 /*
1118 * Ok, we have successfully done what we're waiting for,
1119 * and we can unconditionally remove the wait entry.
1120 *
1121 * Note that this pairs with the "finish_wait()" in the
1122 * waiter, and has to be the absolute last thing we do.
1123 * After this list_del_init(&wait->entry) the wait entry
1124 * might be de-allocated and the process might even have
1125 * exited.
1126 */
1127 list_del_init_careful(entry: &wait->entry);
1128 return (flags & WQ_FLAG_EXCLUSIVE) != 0;
1129}
1130
1131static void folio_wake_bit(struct folio *folio, int bit_nr)
1132{
1133 wait_queue_head_t *q = folio_waitqueue(folio);
1134 struct wait_page_key key;
1135 unsigned long flags;
1136
1137 key.folio = folio;
1138 key.bit_nr = bit_nr;
1139 key.page_match = 0;
1140
1141 spin_lock_irqsave(&q->lock, flags);
1142 __wake_up_locked_key(wq_head: q, TASK_NORMAL, key: &key);
1143
1144 /*
1145 * It's possible to miss clearing waiters here, when we woke our page
1146 * waiters, but the hashed waitqueue has waiters for other pages on it.
1147 * That's okay, it's a rare case. The next waker will clear it.
1148 *
1149 * Note that, depending on the page pool (buddy, hugetlb, ZONE_DEVICE,
1150 * other), the flag may be cleared in the course of freeing the page;
1151 * but that is not required for correctness.
1152 */
1153 if (!waitqueue_active(wq_head: q) || !key.page_match)
1154 folio_clear_waiters(folio);
1155
1156 spin_unlock_irqrestore(lock: &q->lock, flags);
1157}
1158
1159/*
1160 * A choice of three behaviors for folio_wait_bit_common():
1161 */
1162enum behavior {
1163 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like
1164 * __folio_lock() waiting on then setting PG_locked.
1165 */
1166 SHARED, /* Hold ref to page and check the bit when woken, like
1167 * folio_wait_writeback() waiting on PG_writeback.
1168 */
1169 DROP, /* Drop ref to page before wait, no check when woken,
1170 * like folio_put_wait_locked() on PG_locked.
1171 */
1172};
1173
1174/*
1175 * Attempt to check (or get) the folio flag, and mark us done
1176 * if successful.
1177 */
1178static inline bool folio_trylock_flag(struct folio *folio, int bit_nr,
1179 struct wait_queue_entry *wait)
1180{
1181 if (wait->flags & WQ_FLAG_EXCLUSIVE) {
1182 if (test_and_set_bit(nr: bit_nr, addr: &folio->flags))
1183 return false;
1184 } else if (test_bit(bit_nr, &folio->flags))
1185 return false;
1186
1187 wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE;
1188 return true;
1189}
1190
1191/* How many times do we accept lock stealing from under a waiter? */
1192int sysctl_page_lock_unfairness = 5;
1193
1194static inline int folio_wait_bit_common(struct folio *folio, int bit_nr,
1195 int state, enum behavior behavior)
1196{
1197 wait_queue_head_t *q = folio_waitqueue(folio);
1198 int unfairness = sysctl_page_lock_unfairness;
1199 struct wait_page_queue wait_page;
1200 wait_queue_entry_t *wait = &wait_page.wait;
1201 bool thrashing = false;
1202 unsigned long pflags;
1203 bool in_thrashing;
1204
1205 if (bit_nr == PG_locked &&
1206 !folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1207 delayacct_thrashing_start(in_thrashing: &in_thrashing);
1208 psi_memstall_enter(flags: &pflags);
1209 thrashing = true;
1210 }
1211
1212 init_wait(wait);
1213 wait->func = wake_page_function;
1214 wait_page.folio = folio;
1215 wait_page.bit_nr = bit_nr;
1216
1217repeat:
1218 wait->flags = 0;
1219 if (behavior == EXCLUSIVE) {
1220 wait->flags = WQ_FLAG_EXCLUSIVE;
1221 if (--unfairness < 0)
1222 wait->flags |= WQ_FLAG_CUSTOM;
1223 }
1224
1225 /*
1226 * Do one last check whether we can get the
1227 * page bit synchronously.
1228 *
1229 * Do the folio_set_waiters() marking before that
1230 * to let any waker we _just_ missed know they
1231 * need to wake us up (otherwise they'll never
1232 * even go to the slow case that looks at the
1233 * page queue), and add ourselves to the wait
1234 * queue if we need to sleep.
1235 *
1236 * This part needs to be done under the queue
1237 * lock to avoid races.
1238 */
1239 spin_lock_irq(lock: &q->lock);
1240 folio_set_waiters(folio);
1241 if (!folio_trylock_flag(folio, bit_nr, wait))
1242 __add_wait_queue_entry_tail(wq_head: q, wq_entry: wait);
1243 spin_unlock_irq(lock: &q->lock);
1244
1245 /*
1246 * From now on, all the logic will be based on
1247 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to
1248 * see whether the page bit testing has already
1249 * been done by the wake function.
1250 *
1251 * We can drop our reference to the folio.
1252 */
1253 if (behavior == DROP)
1254 folio_put(folio);
1255
1256 /*
1257 * Note that until the "finish_wait()", or until
1258 * we see the WQ_FLAG_WOKEN flag, we need to
1259 * be very careful with the 'wait->flags', because
1260 * we may race with a waker that sets them.
1261 */
1262 for (;;) {
1263 unsigned int flags;
1264
1265 set_current_state(state);
1266
1267 /* Loop until we've been woken or interrupted */
1268 flags = smp_load_acquire(&wait->flags);
1269 if (!(flags & WQ_FLAG_WOKEN)) {
1270 if (signal_pending_state(state, current))
1271 break;
1272
1273 io_schedule();
1274 continue;
1275 }
1276
1277 /* If we were non-exclusive, we're done */
1278 if (behavior != EXCLUSIVE)
1279 break;
1280
1281 /* If the waker got the lock for us, we're done */
1282 if (flags & WQ_FLAG_DONE)
1283 break;
1284
1285 /*
1286 * Otherwise, if we're getting the lock, we need to
1287 * try to get it ourselves.
1288 *
1289 * And if that fails, we'll have to retry this all.
1290 */
1291 if (unlikely(test_and_set_bit(bit_nr, folio_flags(folio, 0))))
1292 goto repeat;
1293
1294 wait->flags |= WQ_FLAG_DONE;
1295 break;
1296 }
1297
1298 /*
1299 * If a signal happened, this 'finish_wait()' may remove the last
1300 * waiter from the wait-queues, but the folio waiters bit will remain
1301 * set. That's ok. The next wakeup will take care of it, and trying
1302 * to do it here would be difficult and prone to races.
1303 */
1304 finish_wait(wq_head: q, wq_entry: wait);
1305
1306 if (thrashing) {
1307 delayacct_thrashing_end(in_thrashing: &in_thrashing);
1308 psi_memstall_leave(flags: &pflags);
1309 }
1310
1311 /*
1312 * NOTE! The wait->flags weren't stable until we've done the
1313 * 'finish_wait()', and we could have exited the loop above due
1314 * to a signal, and had a wakeup event happen after the signal
1315 * test but before the 'finish_wait()'.
1316 *
1317 * So only after the finish_wait() can we reliably determine
1318 * if we got woken up or not, so we can now figure out the final
1319 * return value based on that state without races.
1320 *
1321 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive
1322 * waiter, but an exclusive one requires WQ_FLAG_DONE.
1323 */
1324 if (behavior == EXCLUSIVE)
1325 return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR;
1326
1327 return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR;
1328}
1329
1330#ifdef CONFIG_MIGRATION
1331/**
1332 * migration_entry_wait_on_locked - Wait for a migration entry to be removed
1333 * @entry: migration swap entry.
1334 * @ptl: already locked ptl. This function will drop the lock.
1335 *
1336 * Wait for a migration entry referencing the given page to be removed. This is
1337 * equivalent to put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE) except
1338 * this can be called without taking a reference on the page. Instead this
1339 * should be called while holding the ptl for the migration entry referencing
1340 * the page.
1341 *
1342 * Returns after unlocking the ptl.
1343 *
1344 * This follows the same logic as folio_wait_bit_common() so see the comments
1345 * there.
1346 */
1347void migration_entry_wait_on_locked(swp_entry_t entry, spinlock_t *ptl)
1348 __releases(ptl)
1349{
1350 struct wait_page_queue wait_page;
1351 wait_queue_entry_t *wait = &wait_page.wait;
1352 bool thrashing = false;
1353 unsigned long pflags;
1354 bool in_thrashing;
1355 wait_queue_head_t *q;
1356 struct folio *folio = page_folio(pfn_swap_entry_to_page(entry));
1357
1358 q = folio_waitqueue(folio);
1359 if (!folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1360 delayacct_thrashing_start(in_thrashing: &in_thrashing);
1361 psi_memstall_enter(flags: &pflags);
1362 thrashing = true;
1363 }
1364
1365 init_wait(wait);
1366 wait->func = wake_page_function;
1367 wait_page.folio = folio;
1368 wait_page.bit_nr = PG_locked;
1369 wait->flags = 0;
1370
1371 spin_lock_irq(lock: &q->lock);
1372 folio_set_waiters(folio);
1373 if (!folio_trylock_flag(folio, bit_nr: PG_locked, wait))
1374 __add_wait_queue_entry_tail(wq_head: q, wq_entry: wait);
1375 spin_unlock_irq(lock: &q->lock);
1376
1377 /*
1378 * If a migration entry exists for the page the migration path must hold
1379 * a valid reference to the page, and it must take the ptl to remove the
1380 * migration entry. So the page is valid until the ptl is dropped.
1381 */
1382 spin_unlock(lock: ptl);
1383
1384 for (;;) {
1385 unsigned int flags;
1386
1387 set_current_state(TASK_UNINTERRUPTIBLE);
1388
1389 /* Loop until we've been woken or interrupted */
1390 flags = smp_load_acquire(&wait->flags);
1391 if (!(flags & WQ_FLAG_WOKEN)) {
1392 if (signal_pending_state(TASK_UNINTERRUPTIBLE, current))
1393 break;
1394
1395 io_schedule();
1396 continue;
1397 }
1398 break;
1399 }
1400
1401 finish_wait(wq_head: q, wq_entry: wait);
1402
1403 if (thrashing) {
1404 delayacct_thrashing_end(in_thrashing: &in_thrashing);
1405 psi_memstall_leave(flags: &pflags);
1406 }
1407}
1408#endif
1409
1410void folio_wait_bit(struct folio *folio, int bit_nr)
1411{
1412 folio_wait_bit_common(folio, bit_nr, TASK_UNINTERRUPTIBLE, behavior: SHARED);
1413}
1414EXPORT_SYMBOL(folio_wait_bit);
1415
1416int folio_wait_bit_killable(struct folio *folio, int bit_nr)
1417{
1418 return folio_wait_bit_common(folio, bit_nr, TASK_KILLABLE, behavior: SHARED);
1419}
1420EXPORT_SYMBOL(folio_wait_bit_killable);
1421
1422/**
1423 * folio_put_wait_locked - Drop a reference and wait for it to be unlocked
1424 * @folio: The folio to wait for.
1425 * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc).
1426 *
1427 * The caller should hold a reference on @folio. They expect the page to
1428 * become unlocked relatively soon, but do not wish to hold up migration
1429 * (for example) by holding the reference while waiting for the folio to
1430 * come unlocked. After this function returns, the caller should not
1431 * dereference @folio.
1432 *
1433 * Return: 0 if the folio was unlocked or -EINTR if interrupted by a signal.
1434 */
1435static int folio_put_wait_locked(struct folio *folio, int state)
1436{
1437 return folio_wait_bit_common(folio, bit_nr: PG_locked, state, behavior: DROP);
1438}
1439
1440/**
1441 * folio_add_wait_queue - Add an arbitrary waiter to a folio's wait queue
1442 * @folio: Folio defining the wait queue of interest
1443 * @waiter: Waiter to add to the queue
1444 *
1445 * Add an arbitrary @waiter to the wait queue for the nominated @folio.
1446 */
1447void folio_add_wait_queue(struct folio *folio, wait_queue_entry_t *waiter)
1448{
1449 wait_queue_head_t *q = folio_waitqueue(folio);
1450 unsigned long flags;
1451
1452 spin_lock_irqsave(&q->lock, flags);
1453 __add_wait_queue_entry_tail(wq_head: q, wq_entry: waiter);
1454 folio_set_waiters(folio);
1455 spin_unlock_irqrestore(lock: &q->lock, flags);
1456}
1457EXPORT_SYMBOL_GPL(folio_add_wait_queue);
1458
1459/**
1460 * folio_unlock - Unlock a locked folio.
1461 * @folio: The folio.
1462 *
1463 * Unlocks the folio and wakes up any thread sleeping on the page lock.
1464 *
1465 * Context: May be called from interrupt or process context. May not be
1466 * called from NMI context.
1467 */
1468void folio_unlock(struct folio *folio)
1469{
1470 /* Bit 7 allows x86 to check the byte's sign bit */
1471 BUILD_BUG_ON(PG_waiters != 7);
1472 BUILD_BUG_ON(PG_locked > 7);
1473 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1474 if (folio_xor_flags_has_waiters(folio, mask: 1 << PG_locked))
1475 folio_wake_bit(folio, bit_nr: PG_locked);
1476}
1477EXPORT_SYMBOL(folio_unlock);
1478
1479/**
1480 * folio_end_read - End read on a folio.
1481 * @folio: The folio.
1482 * @success: True if all reads completed successfully.
1483 *
1484 * When all reads against a folio have completed, filesystems should
1485 * call this function to let the pagecache know that no more reads
1486 * are outstanding. This will unlock the folio and wake up any thread
1487 * sleeping on the lock. The folio will also be marked uptodate if all
1488 * reads succeeded.
1489 *
1490 * Context: May be called from interrupt or process context. May not be
1491 * called from NMI context.
1492 */
1493void folio_end_read(struct folio *folio, bool success)
1494{
1495 unsigned long mask = 1 << PG_locked;
1496
1497 /* Must be in bottom byte for x86 to work */
1498 BUILD_BUG_ON(PG_uptodate > 7);
1499 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1500 VM_BUG_ON_FOLIO(folio_test_uptodate(folio), folio);
1501
1502 if (likely(success))
1503 mask |= 1 << PG_uptodate;
1504 if (folio_xor_flags_has_waiters(folio, mask))
1505 folio_wake_bit(folio, bit_nr: PG_locked);
1506}
1507EXPORT_SYMBOL(folio_end_read);
1508
1509/**
1510 * folio_end_private_2 - Clear PG_private_2 and wake any waiters.
1511 * @folio: The folio.
1512 *
1513 * Clear the PG_private_2 bit on a folio and wake up any sleepers waiting for
1514 * it. The folio reference held for PG_private_2 being set is released.
1515 *
1516 * This is, for example, used when a netfs folio is being written to a local
1517 * disk cache, thereby allowing writes to the cache for the same folio to be
1518 * serialised.
1519 */
1520void folio_end_private_2(struct folio *folio)
1521{
1522 VM_BUG_ON_FOLIO(!folio_test_private_2(folio), folio);
1523 clear_bit_unlock(nr: PG_private_2, addr: folio_flags(folio, n: 0));
1524 folio_wake_bit(folio, bit_nr: PG_private_2);
1525 folio_put(folio);
1526}
1527EXPORT_SYMBOL(folio_end_private_2);
1528
1529/**
1530 * folio_wait_private_2 - Wait for PG_private_2 to be cleared on a folio.
1531 * @folio: The folio to wait on.
1532 *
1533 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio.
1534 */
1535void folio_wait_private_2(struct folio *folio)
1536{
1537 while (folio_test_private_2(folio))
1538 folio_wait_bit(folio, PG_private_2);
1539}
1540EXPORT_SYMBOL(folio_wait_private_2);
1541
1542/**
1543 * folio_wait_private_2_killable - Wait for PG_private_2 to be cleared on a folio.
1544 * @folio: The folio to wait on.
1545 *
1546 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio or until a
1547 * fatal signal is received by the calling task.
1548 *
1549 * Return:
1550 * - 0 if successful.
1551 * - -EINTR if a fatal signal was encountered.
1552 */
1553int folio_wait_private_2_killable(struct folio *folio)
1554{
1555 int ret = 0;
1556
1557 while (folio_test_private_2(folio)) {
1558 ret = folio_wait_bit_killable(folio, PG_private_2);
1559 if (ret < 0)
1560 break;
1561 }
1562
1563 return ret;
1564}
1565EXPORT_SYMBOL(folio_wait_private_2_killable);
1566
1567/**
1568 * folio_end_writeback - End writeback against a folio.
1569 * @folio: The folio.
1570 *
1571 * The folio must actually be under writeback.
1572 *
1573 * Context: May be called from process or interrupt context.
1574 */
1575void folio_end_writeback(struct folio *folio)
1576{
1577 VM_BUG_ON_FOLIO(!folio_test_writeback(folio), folio);
1578
1579 /*
1580 * folio_test_clear_reclaim() could be used here but it is an
1581 * atomic operation and overkill in this particular case. Failing
1582 * to shuffle a folio marked for immediate reclaim is too mild
1583 * a gain to justify taking an atomic operation penalty at the
1584 * end of every folio writeback.
1585 */
1586 if (folio_test_reclaim(folio)) {
1587 folio_clear_reclaim(folio);
1588 folio_rotate_reclaimable(folio);
1589 }
1590
1591 /*
1592 * Writeback does not hold a folio reference of its own, relying
1593 * on truncation to wait for the clearing of PG_writeback.
1594 * But here we must make sure that the folio is not freed and
1595 * reused before the folio_wake_bit().
1596 */
1597 folio_get(folio);
1598 if (__folio_end_writeback(folio))
1599 folio_wake_bit(folio, bit_nr: PG_writeback);
1600 acct_reclaim_writeback(folio);
1601 folio_put(folio);
1602}
1603EXPORT_SYMBOL(folio_end_writeback);
1604
1605/**
1606 * __folio_lock - Get a lock on the folio, assuming we need to sleep to get it.
1607 * @folio: The folio to lock
1608 */
1609void __folio_lock(struct folio *folio)
1610{
1611 folio_wait_bit_common(folio, bit_nr: PG_locked, TASK_UNINTERRUPTIBLE,
1612 behavior: EXCLUSIVE);
1613}
1614EXPORT_SYMBOL(__folio_lock);
1615
1616int __folio_lock_killable(struct folio *folio)
1617{
1618 return folio_wait_bit_common(folio, bit_nr: PG_locked, TASK_KILLABLE,
1619 behavior: EXCLUSIVE);
1620}
1621EXPORT_SYMBOL_GPL(__folio_lock_killable);
1622
1623static int __folio_lock_async(struct folio *folio, struct wait_page_queue *wait)
1624{
1625 struct wait_queue_head *q = folio_waitqueue(folio);
1626 int ret = 0;
1627
1628 wait->folio = folio;
1629 wait->bit_nr = PG_locked;
1630
1631 spin_lock_irq(lock: &q->lock);
1632 __add_wait_queue_entry_tail(wq_head: q, wq_entry: &wait->wait);
1633 folio_set_waiters(folio);
1634 ret = !folio_trylock(folio);
1635 /*
1636 * If we were successful now, we know we're still on the
1637 * waitqueue as we're still under the lock. This means it's
1638 * safe to remove and return success, we know the callback
1639 * isn't going to trigger.
1640 */
1641 if (!ret)
1642 __remove_wait_queue(wq_head: q, wq_entry: &wait->wait);
1643 else
1644 ret = -EIOCBQUEUED;
1645 spin_unlock_irq(lock: &q->lock);
1646 return ret;
1647}
1648
1649/*
1650 * Return values:
1651 * 0 - folio is locked.
1652 * non-zero - folio is not locked.
1653 * mmap_lock or per-VMA lock has been released (mmap_read_unlock() or
1654 * vma_end_read()), unless flags had both FAULT_FLAG_ALLOW_RETRY and
1655 * FAULT_FLAG_RETRY_NOWAIT set, in which case the lock is still held.
1656 *
1657 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 0
1658 * with the folio locked and the mmap_lock/per-VMA lock is left unperturbed.
1659 */
1660vm_fault_t __folio_lock_or_retry(struct folio *folio, struct vm_fault *vmf)
1661{
1662 unsigned int flags = vmf->flags;
1663
1664 if (fault_flag_allow_retry_first(flags)) {
1665 /*
1666 * CAUTION! In this case, mmap_lock/per-VMA lock is not
1667 * released even though returning VM_FAULT_RETRY.
1668 */
1669 if (flags & FAULT_FLAG_RETRY_NOWAIT)
1670 return VM_FAULT_RETRY;
1671
1672 release_fault_lock(vmf);
1673 if (flags & FAULT_FLAG_KILLABLE)
1674 folio_wait_locked_killable(folio);
1675 else
1676 folio_wait_locked(folio);
1677 return VM_FAULT_RETRY;
1678 }
1679 if (flags & FAULT_FLAG_KILLABLE) {
1680 bool ret;
1681
1682 ret = __folio_lock_killable(folio);
1683 if (ret) {
1684 release_fault_lock(vmf);
1685 return VM_FAULT_RETRY;
1686 }
1687 } else {
1688 __folio_lock(folio);
1689 }
1690
1691 return 0;
1692}
1693
1694/**
1695 * page_cache_next_miss() - Find the next gap in the page cache.
1696 * @mapping: Mapping.
1697 * @index: Index.
1698 * @max_scan: Maximum range to search.
1699 *
1700 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1701 * gap with the lowest index.
1702 *
1703 * This function may be called under the rcu_read_lock. However, this will
1704 * not atomically search a snapshot of the cache at a single point in time.
1705 * For example, if a gap is created at index 5, then subsequently a gap is
1706 * created at index 10, page_cache_next_miss covering both indices may
1707 * return 10 if called under the rcu_read_lock.
1708 *
1709 * Return: The index of the gap if found, otherwise an index outside the
1710 * range specified (in which case 'return - index >= max_scan' will be true).
1711 * In the rare case of index wrap-around, 0 will be returned.
1712 */
1713pgoff_t page_cache_next_miss(struct address_space *mapping,
1714 pgoff_t index, unsigned long max_scan)
1715{
1716 XA_STATE(xas, &mapping->i_pages, index);
1717
1718 while (max_scan--) {
1719 void *entry = xas_next(xas: &xas);
1720 if (!entry || xa_is_value(entry))
1721 break;
1722 if (xas.xa_index == 0)
1723 break;
1724 }
1725
1726 return xas.xa_index;
1727}
1728EXPORT_SYMBOL(page_cache_next_miss);
1729
1730/**
1731 * page_cache_prev_miss() - Find the previous gap in the page cache.
1732 * @mapping: Mapping.
1733 * @index: Index.
1734 * @max_scan: Maximum range to search.
1735 *
1736 * Search the range [max(index - max_scan + 1, 0), index] for the
1737 * gap with the highest index.
1738 *
1739 * This function may be called under the rcu_read_lock. However, this will
1740 * not atomically search a snapshot of the cache at a single point in time.
1741 * For example, if a gap is created at index 10, then subsequently a gap is
1742 * created at index 5, page_cache_prev_miss() covering both indices may
1743 * return 5 if called under the rcu_read_lock.
1744 *
1745 * Return: The index of the gap if found, otherwise an index outside the
1746 * range specified (in which case 'index - return >= max_scan' will be true).
1747 * In the rare case of wrap-around, ULONG_MAX will be returned.
1748 */
1749pgoff_t page_cache_prev_miss(struct address_space *mapping,
1750 pgoff_t index, unsigned long max_scan)
1751{
1752 XA_STATE(xas, &mapping->i_pages, index);
1753
1754 while (max_scan--) {
1755 void *entry = xas_prev(xas: &xas);
1756 if (!entry || xa_is_value(entry))
1757 break;
1758 if (xas.xa_index == ULONG_MAX)
1759 break;
1760 }
1761
1762 return xas.xa_index;
1763}
1764EXPORT_SYMBOL(page_cache_prev_miss);
1765
1766/*
1767 * Lockless page cache protocol:
1768 * On the lookup side:
1769 * 1. Load the folio from i_pages
1770 * 2. Increment the refcount if it's not zero
1771 * 3. If the folio is not found by xas_reload(), put the refcount and retry
1772 *
1773 * On the removal side:
1774 * A. Freeze the page (by zeroing the refcount if nobody else has a reference)
1775 * B. Remove the page from i_pages
1776 * C. Return the page to the page allocator
1777 *
1778 * This means that any page may have its reference count temporarily
1779 * increased by a speculative page cache (or fast GUP) lookup as it can
1780 * be allocated by another user before the RCU grace period expires.
1781 * Because the refcount temporarily acquired here may end up being the
1782 * last refcount on the page, any page allocation must be freeable by
1783 * folio_put().
1784 */
1785
1786/*
1787 * filemap_get_entry - Get a page cache entry.
1788 * @mapping: the address_space to search
1789 * @index: The page cache index.
1790 *
1791 * Looks up the page cache entry at @mapping & @index. If it is a folio,
1792 * it is returned with an increased refcount. If it is a shadow entry
1793 * of a previously evicted folio, or a swap entry from shmem/tmpfs,
1794 * it is returned without further action.
1795 *
1796 * Return: The folio, swap or shadow entry, %NULL if nothing is found.
1797 */
1798void *filemap_get_entry(struct address_space *mapping, pgoff_t index)
1799{
1800 XA_STATE(xas, &mapping->i_pages, index);
1801 struct folio *folio;
1802
1803 rcu_read_lock();
1804repeat:
1805 xas_reset(xas: &xas);
1806 folio = xas_load(&xas);
1807 if (xas_retry(xas: &xas, entry: folio))
1808 goto repeat;
1809 /*
1810 * A shadow entry of a recently evicted page, or a swap entry from
1811 * shmem/tmpfs. Return it without attempting to raise page count.
1812 */
1813 if (!folio || xa_is_value(entry: folio))
1814 goto out;
1815
1816 if (!folio_try_get_rcu(folio))
1817 goto repeat;
1818
1819 if (unlikely(folio != xas_reload(&xas))) {
1820 folio_put(folio);
1821 goto repeat;
1822 }
1823out:
1824 rcu_read_unlock();
1825
1826 return folio;
1827}
1828
1829/**
1830 * __filemap_get_folio - Find and get a reference to a folio.
1831 * @mapping: The address_space to search.
1832 * @index: The page index.
1833 * @fgp_flags: %FGP flags modify how the folio is returned.
1834 * @gfp: Memory allocation flags to use if %FGP_CREAT is specified.
1835 *
1836 * Looks up the page cache entry at @mapping & @index.
1837 *
1838 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1839 * if the %GFP flags specified for %FGP_CREAT are atomic.
1840 *
1841 * If this function returns a folio, it is returned with an increased refcount.
1842 *
1843 * Return: The found folio or an ERR_PTR() otherwise.
1844 */
1845struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index,
1846 fgf_t fgp_flags, gfp_t gfp)
1847{
1848 struct folio *folio;
1849
1850repeat:
1851 folio = filemap_get_entry(mapping, index);
1852 if (xa_is_value(entry: folio))
1853 folio = NULL;
1854 if (!folio)
1855 goto no_page;
1856
1857 if (fgp_flags & FGP_LOCK) {
1858 if (fgp_flags & FGP_NOWAIT) {
1859 if (!folio_trylock(folio)) {
1860 folio_put(folio);
1861 return ERR_PTR(error: -EAGAIN);
1862 }
1863 } else {
1864 folio_lock(folio);
1865 }
1866
1867 /* Has the page been truncated? */
1868 if (unlikely(folio->mapping != mapping)) {
1869 folio_unlock(folio);
1870 folio_put(folio);
1871 goto repeat;
1872 }
1873 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
1874 }
1875
1876 if (fgp_flags & FGP_ACCESSED)
1877 folio_mark_accessed(folio);
1878 else if (fgp_flags & FGP_WRITE) {
1879 /* Clear idle flag for buffer write */
1880 if (folio_test_idle(folio))
1881 folio_clear_idle(folio);
1882 }
1883
1884 if (fgp_flags & FGP_STABLE)
1885 folio_wait_stable(folio);
1886no_page:
1887 if (!folio && (fgp_flags & FGP_CREAT)) {
1888 unsigned order = FGF_GET_ORDER(fgp_flags);
1889 int err;
1890
1891 if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping))
1892 gfp |= __GFP_WRITE;
1893 if (fgp_flags & FGP_NOFS)
1894 gfp &= ~__GFP_FS;
1895 if (fgp_flags & FGP_NOWAIT) {
1896 gfp &= ~GFP_KERNEL;
1897 gfp |= GFP_NOWAIT | __GFP_NOWARN;
1898 }
1899 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
1900 fgp_flags |= FGP_LOCK;
1901
1902 if (!mapping_large_folio_support(mapping))
1903 order = 0;
1904 if (order > MAX_PAGECACHE_ORDER)
1905 order = MAX_PAGECACHE_ORDER;
1906 /* If we're not aligned, allocate a smaller folio */
1907 if (index & ((1UL << order) - 1))
1908 order = __ffs(index);
1909
1910 do {
1911 gfp_t alloc_gfp = gfp;
1912
1913 err = -ENOMEM;
1914 if (order == 1)
1915 order = 0;
1916 if (order > 0)
1917 alloc_gfp |= __GFP_NORETRY | __GFP_NOWARN;
1918 folio = filemap_alloc_folio(alloc_gfp, order);
1919 if (!folio)
1920 continue;
1921
1922 /* Init accessed so avoid atomic mark_page_accessed later */
1923 if (fgp_flags & FGP_ACCESSED)
1924 __folio_set_referenced(folio);
1925
1926 err = filemap_add_folio(mapping, folio, index, gfp);
1927 if (!err)
1928 break;
1929 folio_put(folio);
1930 folio = NULL;
1931 } while (order-- > 0);
1932
1933 if (err == -EEXIST)
1934 goto repeat;
1935 if (err)
1936 return ERR_PTR(error: err);
1937 /*
1938 * filemap_add_folio locks the page, and for mmap
1939 * we expect an unlocked page.
1940 */
1941 if (folio && (fgp_flags & FGP_FOR_MMAP))
1942 folio_unlock(folio);
1943 }
1944
1945 if (!folio)
1946 return ERR_PTR(error: -ENOENT);
1947 return folio;
1948}
1949EXPORT_SYMBOL(__filemap_get_folio);
1950
1951static inline struct folio *find_get_entry(struct xa_state *xas, pgoff_t max,
1952 xa_mark_t mark)
1953{
1954 struct folio *folio;
1955
1956retry:
1957 if (mark == XA_PRESENT)
1958 folio = xas_find(xas, max);
1959 else
1960 folio = xas_find_marked(xas, max, mark);
1961
1962 if (xas_retry(xas, entry: folio))
1963 goto retry;
1964 /*
1965 * A shadow entry of a recently evicted page, a swap
1966 * entry from shmem/tmpfs or a DAX entry. Return it
1967 * without attempting to raise page count.
1968 */
1969 if (!folio || xa_is_value(entry: folio))
1970 return folio;
1971
1972 if (!folio_try_get_rcu(folio))
1973 goto reset;
1974
1975 if (unlikely(folio != xas_reload(xas))) {
1976 folio_put(folio);
1977 goto reset;
1978 }
1979
1980 return folio;
1981reset:
1982 xas_reset(xas);
1983 goto retry;
1984}
1985
1986/**
1987 * find_get_entries - gang pagecache lookup
1988 * @mapping: The address_space to search
1989 * @start: The starting page cache index
1990 * @end: The final page index (inclusive).
1991 * @fbatch: Where the resulting entries are placed.
1992 * @indices: The cache indices corresponding to the entries in @entries
1993 *
1994 * find_get_entries() will search for and return a batch of entries in
1995 * the mapping. The entries are placed in @fbatch. find_get_entries()
1996 * takes a reference on any actual folios it returns.
1997 *
1998 * The entries have ascending indexes. The indices may not be consecutive
1999 * due to not-present entries or large folios.
2000 *
2001 * Any shadow entries of evicted folios, or swap entries from
2002 * shmem/tmpfs, are included in the returned array.
2003 *
2004 * Return: The number of entries which were found.
2005 */
2006unsigned find_get_entries(struct address_space *mapping, pgoff_t *start,
2007 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2008{
2009 XA_STATE(xas, &mapping->i_pages, *start);
2010 struct folio *folio;
2011
2012 rcu_read_lock();
2013 while ((folio = find_get_entry(xas: &xas, max: end, XA_PRESENT)) != NULL) {
2014 indices[fbatch->nr] = xas.xa_index;
2015 if (!folio_batch_add(fbatch, folio))
2016 break;
2017 }
2018 rcu_read_unlock();
2019
2020 if (folio_batch_count(fbatch)) {
2021 unsigned long nr = 1;
2022 int idx = folio_batch_count(fbatch) - 1;
2023
2024 folio = fbatch->folios[idx];
2025 if (!xa_is_value(entry: folio))
2026 nr = folio_nr_pages(folio);
2027 *start = indices[idx] + nr;
2028 }
2029 return folio_batch_count(fbatch);
2030}
2031
2032/**
2033 * find_lock_entries - Find a batch of pagecache entries.
2034 * @mapping: The address_space to search.
2035 * @start: The starting page cache index.
2036 * @end: The final page index (inclusive).
2037 * @fbatch: Where the resulting entries are placed.
2038 * @indices: The cache indices of the entries in @fbatch.
2039 *
2040 * find_lock_entries() will return a batch of entries from @mapping.
2041 * Swap, shadow and DAX entries are included. Folios are returned
2042 * locked and with an incremented refcount. Folios which are locked
2043 * by somebody else or under writeback are skipped. Folios which are
2044 * partially outside the range are not returned.
2045 *
2046 * The entries have ascending indexes. The indices may not be consecutive
2047 * due to not-present entries, large folios, folios which could not be
2048 * locked or folios under writeback.
2049 *
2050 * Return: The number of entries which were found.
2051 */
2052unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start,
2053 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2054{
2055 XA_STATE(xas, &mapping->i_pages, *start);
2056 struct folio *folio;
2057
2058 rcu_read_lock();
2059 while ((folio = find_get_entry(xas: &xas, max: end, XA_PRESENT))) {
2060 if (!xa_is_value(entry: folio)) {
2061 if (folio->index < *start)
2062 goto put;
2063 if (folio_next_index(folio) - 1 > end)
2064 goto put;
2065 if (!folio_trylock(folio))
2066 goto put;
2067 if (folio->mapping != mapping ||
2068 folio_test_writeback(folio))
2069 goto unlock;
2070 VM_BUG_ON_FOLIO(!folio_contains(folio, xas.xa_index),
2071 folio);
2072 }
2073 indices[fbatch->nr] = xas.xa_index;
2074 if (!folio_batch_add(fbatch, folio))
2075 break;
2076 continue;
2077unlock:
2078 folio_unlock(folio);
2079put:
2080 folio_put(folio);
2081 }
2082 rcu_read_unlock();
2083
2084 if (folio_batch_count(fbatch)) {
2085 unsigned long nr = 1;
2086 int idx = folio_batch_count(fbatch) - 1;
2087
2088 folio = fbatch->folios[idx];
2089 if (!xa_is_value(entry: folio))
2090 nr = folio_nr_pages(folio);
2091 *start = indices[idx] + nr;
2092 }
2093 return folio_batch_count(fbatch);
2094}
2095
2096/**
2097 * filemap_get_folios - Get a batch of folios
2098 * @mapping: The address_space to search
2099 * @start: The starting page index
2100 * @end: The final page index (inclusive)
2101 * @fbatch: The batch to fill.
2102 *
2103 * Search for and return a batch of folios in the mapping starting at
2104 * index @start and up to index @end (inclusive). The folios are returned
2105 * in @fbatch with an elevated reference count.
2106 *
2107 * Return: The number of folios which were found.
2108 * We also update @start to index the next folio for the traversal.
2109 */
2110unsigned filemap_get_folios(struct address_space *mapping, pgoff_t *start,
2111 pgoff_t end, struct folio_batch *fbatch)
2112{
2113 return filemap_get_folios_tag(mapping, start, end, XA_PRESENT, fbatch);
2114}
2115EXPORT_SYMBOL(filemap_get_folios);
2116
2117/**
2118 * filemap_get_folios_contig - Get a batch of contiguous folios
2119 * @mapping: The address_space to search
2120 * @start: The starting page index
2121 * @end: The final page index (inclusive)
2122 * @fbatch: The batch to fill
2123 *
2124 * filemap_get_folios_contig() works exactly like filemap_get_folios(),
2125 * except the returned folios are guaranteed to be contiguous. This may
2126 * not return all contiguous folios if the batch gets filled up.
2127 *
2128 * Return: The number of folios found.
2129 * Also update @start to be positioned for traversal of the next folio.
2130 */
2131
2132unsigned filemap_get_folios_contig(struct address_space *mapping,
2133 pgoff_t *start, pgoff_t end, struct folio_batch *fbatch)
2134{
2135 XA_STATE(xas, &mapping->i_pages, *start);
2136 unsigned long nr;
2137 struct folio *folio;
2138
2139 rcu_read_lock();
2140
2141 for (folio = xas_load(&xas); folio && xas.xa_index <= end;
2142 folio = xas_next(xas: &xas)) {
2143 if (xas_retry(xas: &xas, entry: folio))
2144 continue;
2145 /*
2146 * If the entry has been swapped out, we can stop looking.
2147 * No current caller is looking for DAX entries.
2148 */
2149 if (xa_is_value(entry: folio))
2150 goto update_start;
2151
2152 if (!folio_try_get_rcu(folio))
2153 goto retry;
2154
2155 if (unlikely(folio != xas_reload(&xas)))
2156 goto put_folio;
2157
2158 if (!folio_batch_add(fbatch, folio)) {
2159 nr = folio_nr_pages(folio);
2160 *start = folio->index + nr;
2161 goto out;
2162 }
2163 continue;
2164put_folio:
2165 folio_put(folio);
2166
2167retry:
2168 xas_reset(xas: &xas);
2169 }
2170
2171update_start:
2172 nr = folio_batch_count(fbatch);
2173
2174 if (nr) {
2175 folio = fbatch->folios[nr - 1];
2176 *start = folio->index + folio_nr_pages(folio);
2177 }
2178out:
2179 rcu_read_unlock();
2180 return folio_batch_count(fbatch);
2181}
2182EXPORT_SYMBOL(filemap_get_folios_contig);
2183
2184/**
2185 * filemap_get_folios_tag - Get a batch of folios matching @tag
2186 * @mapping: The address_space to search
2187 * @start: The starting page index
2188 * @end: The final page index (inclusive)
2189 * @tag: The tag index
2190 * @fbatch: The batch to fill
2191 *
2192 * The first folio may start before @start; if it does, it will contain
2193 * @start. The final folio may extend beyond @end; if it does, it will
2194 * contain @end. The folios have ascending indices. There may be gaps
2195 * between the folios if there are indices which have no folio in the
2196 * page cache. If folios are added to or removed from the page cache
2197 * while this is running, they may or may not be found by this call.
2198 * Only returns folios that are tagged with @tag.
2199 *
2200 * Return: The number of folios found.
2201 * Also update @start to index the next folio for traversal.
2202 */
2203unsigned filemap_get_folios_tag(struct address_space *mapping, pgoff_t *start,
2204 pgoff_t end, xa_mark_t tag, struct folio_batch *fbatch)
2205{
2206 XA_STATE(xas, &mapping->i_pages, *start);
2207 struct folio *folio;
2208
2209 rcu_read_lock();
2210 while ((folio = find_get_entry(xas: &xas, max: end, mark: tag)) != NULL) {
2211 /*
2212 * Shadow entries should never be tagged, but this iteration
2213 * is lockless so there is a window for page reclaim to evict
2214 * a page we saw tagged. Skip over it.
2215 */
2216 if (xa_is_value(entry: folio))
2217 continue;
2218 if (!folio_batch_add(fbatch, folio)) {
2219 unsigned long nr = folio_nr_pages(folio);
2220 *start = folio->index + nr;
2221 goto out;
2222 }
2223 }
2224 /*
2225 * We come here when there is no page beyond @end. We take care to not
2226 * overflow the index @start as it confuses some of the callers. This
2227 * breaks the iteration when there is a page at index -1 but that is
2228 * already broke anyway.
2229 */
2230 if (end == (pgoff_t)-1)
2231 *start = (pgoff_t)-1;
2232 else
2233 *start = end + 1;
2234out:
2235 rcu_read_unlock();
2236
2237 return folio_batch_count(fbatch);
2238}
2239EXPORT_SYMBOL(filemap_get_folios_tag);
2240
2241/*
2242 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2243 * a _large_ part of the i/o request. Imagine the worst scenario:
2244 *
2245 * ---R__________________________________________B__________
2246 * ^ reading here ^ bad block(assume 4k)
2247 *
2248 * read(R) => miss => readahead(R...B) => media error => frustrating retries
2249 * => failing the whole request => read(R) => read(R+1) =>
2250 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2251 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2252 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2253 *
2254 * It is going insane. Fix it by quickly scaling down the readahead size.
2255 */
2256static void shrink_readahead_size_eio(struct file_ra_state *ra)
2257{
2258 ra->ra_pages /= 4;
2259}
2260
2261/*
2262 * filemap_get_read_batch - Get a batch of folios for read
2263 *
2264 * Get a batch of folios which represent a contiguous range of bytes in
2265 * the file. No exceptional entries will be returned. If @index is in
2266 * the middle of a folio, the entire folio will be returned. The last
2267 * folio in the batch may have the readahead flag set or the uptodate flag
2268 * clear so that the caller can take the appropriate action.
2269 */
2270static void filemap_get_read_batch(struct address_space *mapping,
2271 pgoff_t index, pgoff_t max, struct folio_batch *fbatch)
2272{
2273 XA_STATE(xas, &mapping->i_pages, index);
2274 struct folio *folio;
2275
2276 rcu_read_lock();
2277 for (folio = xas_load(&xas); folio; folio = xas_next(xas: &xas)) {
2278 if (xas_retry(xas: &xas, entry: folio))
2279 continue;
2280 if (xas.xa_index > max || xa_is_value(entry: folio))
2281 break;
2282 if (xa_is_sibling(entry: folio))
2283 break;
2284 if (!folio_try_get_rcu(folio))
2285 goto retry;
2286
2287 if (unlikely(folio != xas_reload(&xas)))
2288 goto put_folio;
2289
2290 if (!folio_batch_add(fbatch, folio))
2291 break;
2292 if (!folio_test_uptodate(folio))
2293 break;
2294 if (folio_test_readahead(folio))
2295 break;
2296 xas_advance(xas: &xas, index: folio_next_index(folio) - 1);
2297 continue;
2298put_folio:
2299 folio_put(folio);
2300retry:
2301 xas_reset(xas: &xas);
2302 }
2303 rcu_read_unlock();
2304}
2305
2306static int filemap_read_folio(struct file *file, filler_t filler,
2307 struct folio *folio)
2308{
2309 bool workingset = folio_test_workingset(folio);
2310 unsigned long pflags;
2311 int error;
2312
2313 /*
2314 * A previous I/O error may have been due to temporary failures,
2315 * eg. multipath errors. PG_error will be set again if read_folio
2316 * fails.
2317 */
2318 folio_clear_error(folio);
2319
2320 /* Start the actual read. The read will unlock the page. */
2321 if (unlikely(workingset))
2322 psi_memstall_enter(flags: &pflags);
2323 error = filler(file, folio);
2324 if (unlikely(workingset))
2325 psi_memstall_leave(flags: &pflags);
2326 if (error)
2327 return error;
2328
2329 error = folio_wait_locked_killable(folio);
2330 if (error)
2331 return error;
2332 if (folio_test_uptodate(folio))
2333 return 0;
2334 if (file)
2335 shrink_readahead_size_eio(ra: &file->f_ra);
2336 return -EIO;
2337}
2338
2339static bool filemap_range_uptodate(struct address_space *mapping,
2340 loff_t pos, size_t count, struct folio *folio,
2341 bool need_uptodate)
2342{
2343 if (folio_test_uptodate(folio))
2344 return true;
2345 /* pipes can't handle partially uptodate pages */
2346 if (need_uptodate)
2347 return false;
2348 if (!mapping->a_ops->is_partially_uptodate)
2349 return false;
2350 if (mapping->host->i_blkbits >= folio_shift(folio))
2351 return false;
2352
2353 if (folio_pos(folio) > pos) {
2354 count -= folio_pos(folio) - pos;
2355 pos = 0;
2356 } else {
2357 pos -= folio_pos(folio);
2358 }
2359
2360 return mapping->a_ops->is_partially_uptodate(folio, pos, count);
2361}
2362
2363static int filemap_update_page(struct kiocb *iocb,
2364 struct address_space *mapping, size_t count,
2365 struct folio *folio, bool need_uptodate)
2366{
2367 int error;
2368
2369 if (iocb->ki_flags & IOCB_NOWAIT) {
2370 if (!filemap_invalidate_trylock_shared(mapping))
2371 return -EAGAIN;
2372 } else {
2373 filemap_invalidate_lock_shared(mapping);
2374 }
2375
2376 if (!folio_trylock(folio)) {
2377 error = -EAGAIN;
2378 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO))
2379 goto unlock_mapping;
2380 if (!(iocb->ki_flags & IOCB_WAITQ)) {
2381 filemap_invalidate_unlock_shared(mapping);
2382 /*
2383 * This is where we usually end up waiting for a
2384 * previously submitted readahead to finish.
2385 */
2386 folio_put_wait_locked(folio, TASK_KILLABLE);
2387 return AOP_TRUNCATED_PAGE;
2388 }
2389 error = __folio_lock_async(folio, wait: iocb->ki_waitq);
2390 if (error)
2391 goto unlock_mapping;
2392 }
2393
2394 error = AOP_TRUNCATED_PAGE;
2395 if (!folio->mapping)
2396 goto unlock;
2397
2398 error = 0;
2399 if (filemap_range_uptodate(mapping, pos: iocb->ki_pos, count, folio,
2400 need_uptodate))
2401 goto unlock;
2402
2403 error = -EAGAIN;
2404 if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ))
2405 goto unlock;
2406
2407 error = filemap_read_folio(file: iocb->ki_filp, filler: mapping->a_ops->read_folio,
2408 folio);
2409 goto unlock_mapping;
2410unlock:
2411 folio_unlock(folio);
2412unlock_mapping:
2413 filemap_invalidate_unlock_shared(mapping);
2414 if (error == AOP_TRUNCATED_PAGE)
2415 folio_put(folio);
2416 return error;
2417}
2418
2419static int filemap_create_folio(struct file *file,
2420 struct address_space *mapping, pgoff_t index,
2421 struct folio_batch *fbatch)
2422{
2423 struct folio *folio;
2424 int error;
2425
2426 folio = filemap_alloc_folio(mapping_gfp_mask(mapping), 0);
2427 if (!folio)
2428 return -ENOMEM;
2429
2430 /*
2431 * Protect against truncate / hole punch. Grabbing invalidate_lock
2432 * here assures we cannot instantiate and bring uptodate new
2433 * pagecache folios after evicting page cache during truncate
2434 * and before actually freeing blocks. Note that we could
2435 * release invalidate_lock after inserting the folio into
2436 * the page cache as the locked folio would then be enough to
2437 * synchronize with hole punching. But there are code paths
2438 * such as filemap_update_page() filling in partially uptodate
2439 * pages or ->readahead() that need to hold invalidate_lock
2440 * while mapping blocks for IO so let's hold the lock here as
2441 * well to keep locking rules simple.
2442 */
2443 filemap_invalidate_lock_shared(mapping);
2444 error = filemap_add_folio(mapping, folio, index,
2445 mapping_gfp_constraint(mapping, GFP_KERNEL));
2446 if (error == -EEXIST)
2447 error = AOP_TRUNCATED_PAGE;
2448 if (error)
2449 goto error;
2450
2451 error = filemap_read_folio(file, filler: mapping->a_ops->read_folio, folio);
2452 if (error)
2453 goto error;
2454
2455 filemap_invalidate_unlock_shared(mapping);
2456 folio_batch_add(fbatch, folio);
2457 return 0;
2458error:
2459 filemap_invalidate_unlock_shared(mapping);
2460 folio_put(folio);
2461 return error;
2462}
2463
2464static int filemap_readahead(struct kiocb *iocb, struct file *file,
2465 struct address_space *mapping, struct folio *folio,
2466 pgoff_t last_index)
2467{
2468 DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, folio->index);
2469
2470 if (iocb->ki_flags & IOCB_NOIO)
2471 return -EAGAIN;
2472 page_cache_async_ra(&ractl, folio, req_count: last_index - folio->index);
2473 return 0;
2474}
2475
2476static int filemap_get_pages(struct kiocb *iocb, size_t count,
2477 struct folio_batch *fbatch, bool need_uptodate)
2478{
2479 struct file *filp = iocb->ki_filp;
2480 struct address_space *mapping = filp->f_mapping;
2481 struct file_ra_state *ra = &filp->f_ra;
2482 pgoff_t index = iocb->ki_pos >> PAGE_SHIFT;
2483 pgoff_t last_index;
2484 struct folio *folio;
2485 int err = 0;
2486
2487 /* "last_index" is the index of the page beyond the end of the read */
2488 last_index = DIV_ROUND_UP(iocb->ki_pos + count, PAGE_SIZE);
2489retry:
2490 if (fatal_signal_pending(current))
2491 return -EINTR;
2492
2493 filemap_get_read_batch(mapping, index, max: last_index - 1, fbatch);
2494 if (!folio_batch_count(fbatch)) {
2495 if (iocb->ki_flags & IOCB_NOIO)
2496 return -EAGAIN;
2497 page_cache_sync_readahead(mapping, ra, file: filp, index,
2498 req_count: last_index - index);
2499 filemap_get_read_batch(mapping, index, max: last_index - 1, fbatch);
2500 }
2501 if (!folio_batch_count(fbatch)) {
2502 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ))
2503 return -EAGAIN;
2504 err = filemap_create_folio(file: filp, mapping,
2505 index: iocb->ki_pos >> PAGE_SHIFT, fbatch);
2506 if (err == AOP_TRUNCATED_PAGE)
2507 goto retry;
2508 return err;
2509 }
2510
2511 folio = fbatch->folios[folio_batch_count(fbatch) - 1];
2512 if (folio_test_readahead(folio)) {
2513 err = filemap_readahead(iocb, file: filp, mapping, folio, last_index);
2514 if (err)
2515 goto err;
2516 }
2517 if (!folio_test_uptodate(folio)) {
2518 if ((iocb->ki_flags & IOCB_WAITQ) &&
2519 folio_batch_count(fbatch) > 1)
2520 iocb->ki_flags |= IOCB_NOWAIT;
2521 err = filemap_update_page(iocb, mapping, count, folio,
2522 need_uptodate);
2523 if (err)
2524 goto err;
2525 }
2526
2527 return 0;
2528err:
2529 if (err < 0)
2530 folio_put(folio);
2531 if (likely(--fbatch->nr))
2532 return 0;
2533 if (err == AOP_TRUNCATED_PAGE)
2534 goto retry;
2535 return err;
2536}
2537
2538static inline bool pos_same_folio(loff_t pos1, loff_t pos2, struct folio *folio)
2539{
2540 unsigned int shift = folio_shift(folio);
2541
2542 return (pos1 >> shift == pos2 >> shift);
2543}
2544
2545/**
2546 * filemap_read - Read data from the page cache.
2547 * @iocb: The iocb to read.
2548 * @iter: Destination for the data.
2549 * @already_read: Number of bytes already read by the caller.
2550 *
2551 * Copies data from the page cache. If the data is not currently present,
2552 * uses the readahead and read_folio address_space operations to fetch it.
2553 *
2554 * Return: Total number of bytes copied, including those already read by
2555 * the caller. If an error happens before any bytes are copied, returns
2556 * a negative error number.
2557 */
2558ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter,
2559 ssize_t already_read)
2560{
2561 struct file *filp = iocb->ki_filp;
2562 struct file_ra_state *ra = &filp->f_ra;
2563 struct address_space *mapping = filp->f_mapping;
2564 struct inode *inode = mapping->host;
2565 struct folio_batch fbatch;
2566 int i, error = 0;
2567 bool writably_mapped;
2568 loff_t isize, end_offset;
2569 loff_t last_pos = ra->prev_pos;
2570
2571 if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes))
2572 return 0;
2573 if (unlikely(!iov_iter_count(iter)))
2574 return 0;
2575
2576 iov_iter_truncate(i: iter, count: inode->i_sb->s_maxbytes);
2577 folio_batch_init(fbatch: &fbatch);
2578
2579 do {
2580 cond_resched();
2581
2582 /*
2583 * If we've already successfully copied some data, then we
2584 * can no longer safely return -EIOCBQUEUED. Hence mark
2585 * an async read NOWAIT at that point.
2586 */
2587 if ((iocb->ki_flags & IOCB_WAITQ) && already_read)
2588 iocb->ki_flags |= IOCB_NOWAIT;
2589
2590 if (unlikely(iocb->ki_pos >= i_size_read(inode)))
2591 break;
2592
2593 error = filemap_get_pages(iocb, count: iter->count, fbatch: &fbatch, need_uptodate: false);
2594 if (error < 0)
2595 break;
2596
2597 /*
2598 * i_size must be checked after we know the pages are Uptodate.
2599 *
2600 * Checking i_size after the check allows us to calculate
2601 * the correct value for "nr", which means the zero-filled
2602 * part of the page is not copied back to userspace (unless
2603 * another truncate extends the file - this is desired though).
2604 */
2605 isize = i_size_read(inode);
2606 if (unlikely(iocb->ki_pos >= isize))
2607 goto put_folios;
2608 end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count);
2609
2610 /*
2611 * Once we start copying data, we don't want to be touching any
2612 * cachelines that might be contended:
2613 */
2614 writably_mapped = mapping_writably_mapped(mapping);
2615
2616 /*
2617 * When a read accesses the same folio several times, only
2618 * mark it as accessed the first time.
2619 */
2620 if (!pos_same_folio(pos1: iocb->ki_pos, pos2: last_pos - 1,
2621 folio: fbatch.folios[0]))
2622 folio_mark_accessed(fbatch.folios[0]);
2623
2624 for (i = 0; i < folio_batch_count(fbatch: &fbatch); i++) {
2625 struct folio *folio = fbatch.folios[i];
2626 size_t fsize = folio_size(folio);
2627 size_t offset = iocb->ki_pos & (fsize - 1);
2628 size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos,
2629 fsize - offset);
2630 size_t copied;
2631
2632 if (end_offset < folio_pos(folio))
2633 break;
2634 if (i > 0)
2635 folio_mark_accessed(folio);
2636 /*
2637 * If users can be writing to this folio using arbitrary
2638 * virtual addresses, take care of potential aliasing
2639 * before reading the folio on the kernel side.
2640 */
2641 if (writably_mapped)
2642 flush_dcache_folio(folio);
2643
2644 copied = copy_folio_to_iter(folio, offset, bytes, i: iter);
2645
2646 already_read += copied;
2647 iocb->ki_pos += copied;
2648 last_pos = iocb->ki_pos;
2649
2650 if (copied < bytes) {
2651 error = -EFAULT;
2652 break;
2653 }
2654 }
2655put_folios:
2656 for (i = 0; i < folio_batch_count(fbatch: &fbatch); i++)
2657 folio_put(folio: fbatch.folios[i]);
2658 folio_batch_init(fbatch: &fbatch);
2659 } while (iov_iter_count(i: iter) && iocb->ki_pos < isize && !error);
2660
2661 file_accessed(file: filp);
2662 ra->prev_pos = last_pos;
2663 return already_read ? already_read : error;
2664}
2665EXPORT_SYMBOL_GPL(filemap_read);
2666
2667int kiocb_write_and_wait(struct kiocb *iocb, size_t count)
2668{
2669 struct address_space *mapping = iocb->ki_filp->f_mapping;
2670 loff_t pos = iocb->ki_pos;
2671 loff_t end = pos + count - 1;
2672
2673 if (iocb->ki_flags & IOCB_NOWAIT) {
2674 if (filemap_range_needs_writeback(mapping, start_byte: pos, end_byte: end))
2675 return -EAGAIN;
2676 return 0;
2677 }
2678
2679 return filemap_write_and_wait_range(mapping, pos, end);
2680}
2681
2682int kiocb_invalidate_pages(struct kiocb *iocb, size_t count)
2683{
2684 struct address_space *mapping = iocb->ki_filp->f_mapping;
2685 loff_t pos = iocb->ki_pos;
2686 loff_t end = pos + count - 1;
2687 int ret;
2688
2689 if (iocb->ki_flags & IOCB_NOWAIT) {
2690 /* we could block if there are any pages in the range */
2691 if (filemap_range_has_page(mapping, pos, end))
2692 return -EAGAIN;
2693 } else {
2694 ret = filemap_write_and_wait_range(mapping, pos, end);
2695 if (ret)
2696 return ret;
2697 }
2698
2699 /*
2700 * After a write we want buffered reads to be sure to go to disk to get
2701 * the new data. We invalidate clean cached page from the region we're
2702 * about to write. We do this *before* the write so that we can return
2703 * without clobbering -EIOCBQUEUED from ->direct_IO().
2704 */
2705 return invalidate_inode_pages2_range(mapping, start: pos >> PAGE_SHIFT,
2706 end: end >> PAGE_SHIFT);
2707}
2708
2709/**
2710 * generic_file_read_iter - generic filesystem read routine
2711 * @iocb: kernel I/O control block
2712 * @iter: destination for the data read
2713 *
2714 * This is the "read_iter()" routine for all filesystems
2715 * that can use the page cache directly.
2716 *
2717 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
2718 * be returned when no data can be read without waiting for I/O requests
2719 * to complete; it doesn't prevent readahead.
2720 *
2721 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
2722 * requests shall be made for the read or for readahead. When no data
2723 * can be read, -EAGAIN shall be returned. When readahead would be
2724 * triggered, a partial, possibly empty read shall be returned.
2725 *
2726 * Return:
2727 * * number of bytes copied, even for partial reads
2728 * * negative error code (or 0 if IOCB_NOIO) if nothing was read
2729 */
2730ssize_t
2731generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2732{
2733 size_t count = iov_iter_count(i: iter);
2734 ssize_t retval = 0;
2735
2736 if (!count)
2737 return 0; /* skip atime */
2738
2739 if (iocb->ki_flags & IOCB_DIRECT) {
2740 struct file *file = iocb->ki_filp;
2741 struct address_space *mapping = file->f_mapping;
2742 struct inode *inode = mapping->host;
2743
2744 retval = kiocb_write_and_wait(iocb, count);
2745 if (retval < 0)
2746 return retval;
2747 file_accessed(file);
2748
2749 retval = mapping->a_ops->direct_IO(iocb, iter);
2750 if (retval >= 0) {
2751 iocb->ki_pos += retval;
2752 count -= retval;
2753 }
2754 if (retval != -EIOCBQUEUED)
2755 iov_iter_revert(i: iter, bytes: count - iov_iter_count(i: iter));
2756
2757 /*
2758 * Btrfs can have a short DIO read if we encounter
2759 * compressed extents, so if there was an error, or if
2760 * we've already read everything we wanted to, or if
2761 * there was a short read because we hit EOF, go ahead
2762 * and return. Otherwise fallthrough to buffered io for
2763 * the rest of the read. Buffered reads will not work for
2764 * DAX files, so don't bother trying.
2765 */
2766 if (retval < 0 || !count || IS_DAX(inode))
2767 return retval;
2768 if (iocb->ki_pos >= i_size_read(inode))
2769 return retval;
2770 }
2771
2772 return filemap_read(iocb, iter, retval);
2773}
2774EXPORT_SYMBOL(generic_file_read_iter);
2775
2776/*
2777 * Splice subpages from a folio into a pipe.
2778 */
2779size_t splice_folio_into_pipe(struct pipe_inode_info *pipe,
2780 struct folio *folio, loff_t fpos, size_t size)
2781{
2782 struct page *page;
2783 size_t spliced = 0, offset = offset_in_folio(folio, fpos);
2784
2785 page = folio_page(folio, offset / PAGE_SIZE);
2786 size = min(size, folio_size(folio) - offset);
2787 offset %= PAGE_SIZE;
2788
2789 while (spliced < size &&
2790 !pipe_full(head: pipe->head, tail: pipe->tail, limit: pipe->max_usage)) {
2791 struct pipe_buffer *buf = pipe_head_buf(pipe);
2792 size_t part = min_t(size_t, PAGE_SIZE - offset, size - spliced);
2793
2794 *buf = (struct pipe_buffer) {
2795 .ops = &page_cache_pipe_buf_ops,
2796 .page = page,
2797 .offset = offset,
2798 .len = part,
2799 };
2800 folio_get(folio);
2801 pipe->head++;
2802 page++;
2803 spliced += part;
2804 offset = 0;
2805 }
2806
2807 return spliced;
2808}
2809
2810/**
2811 * filemap_splice_read - Splice data from a file's pagecache into a pipe
2812 * @in: The file to read from
2813 * @ppos: Pointer to the file position to read from
2814 * @pipe: The pipe to splice into
2815 * @len: The amount to splice
2816 * @flags: The SPLICE_F_* flags
2817 *
2818 * This function gets folios from a file's pagecache and splices them into the
2819 * pipe. Readahead will be called as necessary to fill more folios. This may
2820 * be used for blockdevs also.
2821 *
2822 * Return: On success, the number of bytes read will be returned and *@ppos
2823 * will be updated if appropriate; 0 will be returned if there is no more data
2824 * to be read; -EAGAIN will be returned if the pipe had no space, and some
2825 * other negative error code will be returned on error. A short read may occur
2826 * if the pipe has insufficient space, we reach the end of the data or we hit a
2827 * hole.
2828 */
2829ssize_t filemap_splice_read(struct file *in, loff_t *ppos,
2830 struct pipe_inode_info *pipe,
2831 size_t len, unsigned int flags)
2832{
2833 struct folio_batch fbatch;
2834 struct kiocb iocb;
2835 size_t total_spliced = 0, used, npages;
2836 loff_t isize, end_offset;
2837 bool writably_mapped;
2838 int i, error = 0;
2839
2840 if (unlikely(*ppos >= in->f_mapping->host->i_sb->s_maxbytes))
2841 return 0;
2842
2843 init_sync_kiocb(kiocb: &iocb, filp: in);
2844 iocb.ki_pos = *ppos;
2845
2846 /* Work out how much data we can actually add into the pipe */
2847 used = pipe_occupancy(head: pipe->head, tail: pipe->tail);
2848 npages = max_t(ssize_t, pipe->max_usage - used, 0);
2849 len = min_t(size_t, len, npages * PAGE_SIZE);
2850
2851 folio_batch_init(fbatch: &fbatch);
2852
2853 do {
2854 cond_resched();
2855
2856 if (*ppos >= i_size_read(inode: in->f_mapping->host))
2857 break;
2858
2859 iocb.ki_pos = *ppos;
2860 error = filemap_get_pages(iocb: &iocb, count: len, fbatch: &fbatch, need_uptodate: true);
2861 if (error < 0)
2862 break;
2863
2864 /*
2865 * i_size must be checked after we know the pages are Uptodate.
2866 *
2867 * Checking i_size after the check allows us to calculate
2868 * the correct value for "nr", which means the zero-filled
2869 * part of the page is not copied back to userspace (unless
2870 * another truncate extends the file - this is desired though).
2871 */
2872 isize = i_size_read(inode: in->f_mapping->host);
2873 if (unlikely(*ppos >= isize))
2874 break;
2875 end_offset = min_t(loff_t, isize, *ppos + len);
2876
2877 /*
2878 * Once we start copying data, we don't want to be touching any
2879 * cachelines that might be contended:
2880 */
2881 writably_mapped = mapping_writably_mapped(mapping: in->f_mapping);
2882
2883 for (i = 0; i < folio_batch_count(fbatch: &fbatch); i++) {
2884 struct folio *folio = fbatch.folios[i];
2885 size_t n;
2886
2887 if (folio_pos(folio) >= end_offset)
2888 goto out;
2889 folio_mark_accessed(folio);
2890
2891 /*
2892 * If users can be writing to this folio using arbitrary
2893 * virtual addresses, take care of potential aliasing
2894 * before reading the folio on the kernel side.
2895 */
2896 if (writably_mapped)
2897 flush_dcache_folio(folio);
2898
2899 n = min_t(loff_t, len, isize - *ppos);
2900 n = splice_folio_into_pipe(pipe, folio, fpos: *ppos, size: n);
2901 if (!n)
2902 goto out;
2903 len -= n;
2904 total_spliced += n;
2905 *ppos += n;
2906 in->f_ra.prev_pos = *ppos;
2907 if (pipe_full(head: pipe->head, tail: pipe->tail, limit: pipe->max_usage))
2908 goto out;
2909 }
2910
2911 folio_batch_release(fbatch: &fbatch);
2912 } while (len);
2913
2914out:
2915 folio_batch_release(fbatch: &fbatch);
2916 file_accessed(file: in);
2917
2918 return total_spliced ? total_spliced : error;
2919}
2920EXPORT_SYMBOL(filemap_splice_read);
2921
2922static inline loff_t folio_seek_hole_data(struct xa_state *xas,
2923 struct address_space *mapping, struct folio *folio,
2924 loff_t start, loff_t end, bool seek_data)
2925{
2926 const struct address_space_operations *ops = mapping->a_ops;
2927 size_t offset, bsz = i_blocksize(node: mapping->host);
2928
2929 if (xa_is_value(entry: folio) || folio_test_uptodate(folio))
2930 return seek_data ? start : end;
2931 if (!ops->is_partially_uptodate)
2932 return seek_data ? end : start;
2933
2934 xas_pause(xas);
2935 rcu_read_unlock();
2936 folio_lock(folio);
2937 if (unlikely(folio->mapping != mapping))
2938 goto unlock;
2939
2940 offset = offset_in_folio(folio, start) & ~(bsz - 1);
2941
2942 do {
2943 if (ops->is_partially_uptodate(folio, offset, bsz) ==
2944 seek_data)
2945 break;
2946 start = (start + bsz) & ~(bsz - 1);
2947 offset += bsz;
2948 } while (offset < folio_size(folio));
2949unlock:
2950 folio_unlock(folio);
2951 rcu_read_lock();
2952 return start;
2953}
2954
2955static inline size_t seek_folio_size(struct xa_state *xas, struct folio *folio)
2956{
2957 if (xa_is_value(entry: folio))
2958 return PAGE_SIZE << xa_get_order(xas->xa, index: xas->xa_index);
2959 return folio_size(folio);
2960}
2961
2962/**
2963 * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache.
2964 * @mapping: Address space to search.
2965 * @start: First byte to consider.
2966 * @end: Limit of search (exclusive).
2967 * @whence: Either SEEK_HOLE or SEEK_DATA.
2968 *
2969 * If the page cache knows which blocks contain holes and which blocks
2970 * contain data, your filesystem can use this function to implement
2971 * SEEK_HOLE and SEEK_DATA. This is useful for filesystems which are
2972 * entirely memory-based such as tmpfs, and filesystems which support
2973 * unwritten extents.
2974 *
2975 * Return: The requested offset on success, or -ENXIO if @whence specifies
2976 * SEEK_DATA and there is no data after @start. There is an implicit hole
2977 * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start
2978 * and @end contain data.
2979 */
2980loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start,
2981 loff_t end, int whence)
2982{
2983 XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT);
2984 pgoff_t max = (end - 1) >> PAGE_SHIFT;
2985 bool seek_data = (whence == SEEK_DATA);
2986 struct folio *folio;
2987
2988 if (end <= start)
2989 return -ENXIO;
2990
2991 rcu_read_lock();
2992 while ((folio = find_get_entry(xas: &xas, max, XA_PRESENT))) {
2993 loff_t pos = (u64)xas.xa_index << PAGE_SHIFT;
2994 size_t seek_size;
2995
2996 if (start < pos) {
2997 if (!seek_data)
2998 goto unlock;
2999 start = pos;
3000 }
3001
3002 seek_size = seek_folio_size(xas: &xas, folio);
3003 pos = round_up((u64)pos + 1, seek_size);
3004 start = folio_seek_hole_data(xas: &xas, mapping, folio, start, end: pos,
3005 seek_data);
3006 if (start < pos)
3007 goto unlock;
3008 if (start >= end)
3009 break;
3010 if (seek_size > PAGE_SIZE)
3011 xas_set(xas: &xas, index: pos >> PAGE_SHIFT);
3012 if (!xa_is_value(entry: folio))
3013 folio_put(folio);
3014 }
3015 if (seek_data)
3016 start = -ENXIO;
3017unlock:
3018 rcu_read_unlock();
3019 if (folio && !xa_is_value(entry: folio))
3020 folio_put(folio);
3021 if (start > end)
3022 return end;
3023 return start;
3024}
3025
3026#ifdef CONFIG_MMU
3027#define MMAP_LOTSAMISS (100)
3028/*
3029 * lock_folio_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
3030 * @vmf - the vm_fault for this fault.
3031 * @folio - the folio to lock.
3032 * @fpin - the pointer to the file we may pin (or is already pinned).
3033 *
3034 * This works similar to lock_folio_or_retry in that it can drop the
3035 * mmap_lock. It differs in that it actually returns the folio locked
3036 * if it returns 1 and 0 if it couldn't lock the folio. If we did have
3037 * to drop the mmap_lock then fpin will point to the pinned file and
3038 * needs to be fput()'ed at a later point.
3039 */
3040static int lock_folio_maybe_drop_mmap(struct vm_fault *vmf, struct folio *folio,
3041 struct file **fpin)
3042{
3043 if (folio_trylock(folio))
3044 return 1;
3045
3046 /*
3047 * NOTE! This will make us return with VM_FAULT_RETRY, but with
3048 * the fault lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
3049 * is supposed to work. We have way too many special cases..
3050 */
3051 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
3052 return 0;
3053
3054 *fpin = maybe_unlock_mmap_for_io(vmf, fpin: *fpin);
3055 if (vmf->flags & FAULT_FLAG_KILLABLE) {
3056 if (__folio_lock_killable(folio)) {
3057 /*
3058 * We didn't have the right flags to drop the
3059 * fault lock, but all fault_handlers only check
3060 * for fatal signals if we return VM_FAULT_RETRY,
3061 * so we need to drop the fault lock here and
3062 * return 0 if we don't have a fpin.
3063 */
3064 if (*fpin == NULL)
3065 release_fault_lock(vmf);
3066 return 0;
3067 }
3068 } else
3069 __folio_lock(folio);
3070
3071 return 1;
3072}
3073
3074/*
3075 * Synchronous readahead happens when we don't even find a page in the page
3076 * cache at all. We don't want to perform IO under the mmap sem, so if we have
3077 * to drop the mmap sem we return the file that was pinned in order for us to do
3078 * that. If we didn't pin a file then we return NULL. The file that is
3079 * returned needs to be fput()'ed when we're done with it.
3080 */
3081static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
3082{
3083 struct file *file = vmf->vma->vm_file;
3084 struct file_ra_state *ra = &file->f_ra;
3085 struct address_space *mapping = file->f_mapping;
3086 DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff);
3087 struct file *fpin = NULL;
3088 unsigned long vm_flags = vmf->vma->vm_flags;
3089 unsigned int mmap_miss;
3090
3091#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3092 /* Use the readahead code, even if readahead is disabled */
3093 if (vm_flags & VM_HUGEPAGE) {
3094 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3095 ractl._index &= ~((unsigned long)HPAGE_PMD_NR - 1);
3096 ra->size = HPAGE_PMD_NR;
3097 /*
3098 * Fetch two PMD folios, so we get the chance to actually
3099 * readahead, unless we've been told not to.
3100 */
3101 if (!(vm_flags & VM_RAND_READ))
3102 ra->size *= 2;
3103 ra->async_size = HPAGE_PMD_NR;
3104 page_cache_ra_order(&ractl, ra, HPAGE_PMD_ORDER);
3105 return fpin;
3106 }
3107#endif
3108
3109 /* If we don't want any read-ahead, don't bother */
3110 if (vm_flags & VM_RAND_READ)
3111 return fpin;
3112 if (!ra->ra_pages)
3113 return fpin;
3114
3115 if (vm_flags & VM_SEQ_READ) {
3116 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3117 page_cache_sync_ra(&ractl, req_count: ra->ra_pages);
3118 return fpin;
3119 }
3120
3121 /* Avoid banging the cache line if not needed */
3122 mmap_miss = READ_ONCE(ra->mmap_miss);
3123 if (mmap_miss < MMAP_LOTSAMISS * 10)
3124 WRITE_ONCE(ra->mmap_miss, ++mmap_miss);
3125
3126 /*
3127 * Do we miss much more than hit in this file? If so,
3128 * stop bothering with read-ahead. It will only hurt.
3129 */
3130 if (mmap_miss > MMAP_LOTSAMISS)
3131 return fpin;
3132
3133 /*
3134 * mmap read-around
3135 */
3136 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3137 ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2);
3138 ra->size = ra->ra_pages;
3139 ra->async_size = ra->ra_pages / 4;
3140 ractl._index = ra->start;
3141 page_cache_ra_order(&ractl, ra, order: 0);
3142 return fpin;
3143}
3144
3145/*
3146 * Asynchronous readahead happens when we find the page and PG_readahead,
3147 * so we want to possibly extend the readahead further. We return the file that
3148 * was pinned if we have to drop the mmap_lock in order to do IO.
3149 */
3150static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
3151 struct folio *folio)
3152{
3153 struct file *file = vmf->vma->vm_file;
3154 struct file_ra_state *ra = &file->f_ra;
3155 DEFINE_READAHEAD(ractl, file, ra, file->f_mapping, vmf->pgoff);
3156 struct file *fpin = NULL;
3157 unsigned int mmap_miss;
3158
3159 /* If we don't want any read-ahead, don't bother */
3160 if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
3161 return fpin;
3162
3163 mmap_miss = READ_ONCE(ra->mmap_miss);
3164 if (mmap_miss)
3165 WRITE_ONCE(ra->mmap_miss, --mmap_miss);
3166
3167 if (folio_test_readahead(folio)) {
3168 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3169 page_cache_async_ra(&ractl, folio, req_count: ra->ra_pages);
3170 }
3171 return fpin;
3172}
3173
3174/**
3175 * filemap_fault - read in file data for page fault handling
3176 * @vmf: struct vm_fault containing details of the fault
3177 *
3178 * filemap_fault() is invoked via the vma operations vector for a
3179 * mapped memory region to read in file data during a page fault.
3180 *
3181 * The goto's are kind of ugly, but this streamlines the normal case of having
3182 * it in the page cache, and handles the special cases reasonably without
3183 * having a lot of duplicated code.
3184 *
3185 * vma->vm_mm->mmap_lock must be held on entry.
3186 *
3187 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
3188 * may be dropped before doing I/O or by lock_folio_maybe_drop_mmap().
3189 *
3190 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
3191 * has not been released.
3192 *
3193 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
3194 *
3195 * Return: bitwise-OR of %VM_FAULT_ codes.
3196 */
3197vm_fault_t filemap_fault(struct vm_fault *vmf)
3198{
3199 int error;
3200 struct file *file = vmf->vma->vm_file;
3201 struct file *fpin = NULL;
3202 struct address_space *mapping = file->f_mapping;
3203 struct inode *inode = mapping->host;
3204 pgoff_t max_idx, index = vmf->pgoff;
3205 struct folio *folio;
3206 vm_fault_t ret = 0;
3207 bool mapping_locked = false;
3208
3209 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3210 if (unlikely(index >= max_idx))
3211 return VM_FAULT_SIGBUS;
3212
3213 /*
3214 * Do we have something in the page cache already?
3215 */
3216 folio = filemap_get_folio(mapping, index);
3217 if (likely(!IS_ERR(folio))) {
3218 /*
3219 * We found the page, so try async readahead before waiting for
3220 * the lock.
3221 */
3222 if (!(vmf->flags & FAULT_FLAG_TRIED))
3223 fpin = do_async_mmap_readahead(vmf, folio);
3224 if (unlikely(!folio_test_uptodate(folio))) {
3225 filemap_invalidate_lock_shared(mapping);
3226 mapping_locked = true;
3227 }
3228 } else {
3229 /* No page in the page cache at all */
3230 count_vm_event(item: PGMAJFAULT);
3231 count_memcg_event_mm(mm: vmf->vma->vm_mm, idx: PGMAJFAULT);
3232 ret = VM_FAULT_MAJOR;
3233 fpin = do_sync_mmap_readahead(vmf);
3234retry_find:
3235 /*
3236 * See comment in filemap_create_folio() why we need
3237 * invalidate_lock
3238 */
3239 if (!mapping_locked) {
3240 filemap_invalidate_lock_shared(mapping);
3241 mapping_locked = true;
3242 }
3243 folio = __filemap_get_folio(mapping, index,
3244 FGP_CREAT|FGP_FOR_MMAP,
3245 vmf->gfp_mask);
3246 if (IS_ERR(ptr: folio)) {
3247 if (fpin)
3248 goto out_retry;
3249 filemap_invalidate_unlock_shared(mapping);
3250 return VM_FAULT_OOM;
3251 }
3252 }
3253
3254 if (!lock_folio_maybe_drop_mmap(vmf, folio, fpin: &fpin))
3255 goto out_retry;
3256
3257 /* Did it get truncated? */
3258 if (unlikely(folio->mapping != mapping)) {
3259 folio_unlock(folio);
3260 folio_put(folio);
3261 goto retry_find;
3262 }
3263 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
3264
3265 /*
3266 * We have a locked folio in the page cache, now we need to check
3267 * that it's up-to-date. If not, it is going to be due to an error,
3268 * or because readahead was otherwise unable to retrieve it.
3269 */
3270 if (unlikely(!folio_test_uptodate(folio))) {
3271 /*
3272 * If the invalidate lock is not held, the folio was in cache
3273 * and uptodate and now it is not. Strange but possible since we
3274 * didn't hold the page lock all the time. Let's drop
3275 * everything, get the invalidate lock and try again.
3276 */
3277 if (!mapping_locked) {
3278 folio_unlock(folio);
3279 folio_put(folio);
3280 goto retry_find;
3281 }
3282
3283 /*
3284 * OK, the folio is really not uptodate. This can be because the
3285 * VMA has the VM_RAND_READ flag set, or because an error
3286 * arose. Let's read it in directly.
3287 */
3288 goto page_not_uptodate;
3289 }
3290
3291 /*
3292 * We've made it this far and we had to drop our mmap_lock, now is the
3293 * time to return to the upper layer and have it re-find the vma and
3294 * redo the fault.
3295 */
3296 if (fpin) {
3297 folio_unlock(folio);
3298 goto out_retry;
3299 }
3300 if (mapping_locked)
3301 filemap_invalidate_unlock_shared(mapping);
3302
3303 /*
3304 * Found the page and have a reference on it.
3305 * We must recheck i_size under page lock.
3306 */
3307 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3308 if (unlikely(index >= max_idx)) {
3309 folio_unlock(folio);
3310 folio_put(folio);
3311 return VM_FAULT_SIGBUS;
3312 }
3313
3314 vmf->page = folio_file_page(folio, index);
3315 return ret | VM_FAULT_LOCKED;
3316
3317page_not_uptodate:
3318 /*
3319 * Umm, take care of errors if the page isn't up-to-date.
3320 * Try to re-read it _once_. We do this synchronously,
3321 * because there really aren't any performance issues here
3322 * and we need to check for errors.
3323 */
3324 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3325 error = filemap_read_folio(file, filler: mapping->a_ops->read_folio, folio);
3326 if (fpin)
3327 goto out_retry;
3328 folio_put(folio);
3329
3330 if (!error || error == AOP_TRUNCATED_PAGE)
3331 goto retry_find;
3332 filemap_invalidate_unlock_shared(mapping);
3333
3334 return VM_FAULT_SIGBUS;
3335
3336out_retry:
3337 /*
3338 * We dropped the mmap_lock, we need to return to the fault handler to
3339 * re-find the vma and come back and find our hopefully still populated
3340 * page.
3341 */
3342 if (!IS_ERR(ptr: folio))
3343 folio_put(folio);
3344 if (mapping_locked)
3345 filemap_invalidate_unlock_shared(mapping);
3346 if (fpin)
3347 fput(fpin);
3348 return ret | VM_FAULT_RETRY;
3349}
3350EXPORT_SYMBOL(filemap_fault);
3351
3352static bool filemap_map_pmd(struct vm_fault *vmf, struct folio *folio,
3353 pgoff_t start)
3354{
3355 struct mm_struct *mm = vmf->vma->vm_mm;
3356
3357 /* Huge page is mapped? No need to proceed. */
3358 if (pmd_trans_huge(pmd: *vmf->pmd)) {
3359 folio_unlock(folio);
3360 folio_put(folio);
3361 return true;
3362 }
3363
3364 if (pmd_none(pmd: *vmf->pmd) && folio_test_pmd_mappable(folio)) {
3365 struct page *page = folio_file_page(folio, index: start);
3366 vm_fault_t ret = do_set_pmd(vmf, page);
3367 if (!ret) {
3368 /* The page is mapped successfully, reference consumed. */
3369 folio_unlock(folio);
3370 return true;
3371 }
3372 }
3373
3374 if (pmd_none(pmd: *vmf->pmd))
3375 pmd_install(mm, pmd: vmf->pmd, pte: &vmf->prealloc_pte);
3376
3377 return false;
3378}
3379
3380static struct folio *next_uptodate_folio(struct xa_state *xas,
3381 struct address_space *mapping, pgoff_t end_pgoff)
3382{
3383 struct folio *folio = xas_next_entry(xas, max: end_pgoff);
3384 unsigned long max_idx;
3385
3386 do {
3387 if (!folio)
3388 return NULL;
3389 if (xas_retry(xas, entry: folio))
3390 continue;
3391 if (xa_is_value(entry: folio))
3392 continue;
3393 if (folio_test_locked(folio))
3394 continue;
3395 if (!folio_try_get_rcu(folio))
3396 continue;
3397 /* Has the page moved or been split? */
3398 if (unlikely(folio != xas_reload(xas)))
3399 goto skip;
3400 if (!folio_test_uptodate(folio) || folio_test_readahead(folio))
3401 goto skip;
3402 if (!folio_trylock(folio))
3403 goto skip;
3404 if (folio->mapping != mapping)
3405 goto unlock;
3406 if (!folio_test_uptodate(folio))
3407 goto unlock;
3408 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
3409 if (xas->xa_index >= max_idx)
3410 goto unlock;
3411 return folio;
3412unlock:
3413 folio_unlock(folio);
3414skip:
3415 folio_put(folio);
3416 } while ((folio = xas_next_entry(xas, max: end_pgoff)) != NULL);
3417
3418 return NULL;
3419}
3420
3421/*
3422 * Map page range [start_page, start_page + nr_pages) of folio.
3423 * start_page is gotten from start by folio_page(folio, start)
3424 */
3425static vm_fault_t filemap_map_folio_range(struct vm_fault *vmf,
3426 struct folio *folio, unsigned long start,
3427 unsigned long addr, unsigned int nr_pages,
3428 unsigned int *mmap_miss)
3429{
3430 vm_fault_t ret = 0;
3431 struct page *page = folio_page(folio, start);
3432 unsigned int count = 0;
3433 pte_t *old_ptep = vmf->pte;
3434
3435 do {
3436 if (PageHWPoison(page: page + count))
3437 goto skip;
3438
3439 (*mmap_miss)++;
3440
3441 /*
3442 * NOTE: If there're PTE markers, we'll leave them to be
3443 * handled in the specific fault path, and it'll prohibit the
3444 * fault-around logic.
3445 */
3446 if (!pte_none(pte: vmf->pte[count]))
3447 goto skip;
3448
3449 count++;
3450 continue;
3451skip:
3452 if (count) {
3453 set_pte_range(vmf, folio, page, nr: count, addr);
3454 folio_ref_add(folio, nr: count);
3455 if (in_range(vmf->address, addr, count * PAGE_SIZE))
3456 ret = VM_FAULT_NOPAGE;
3457 }
3458
3459 count++;
3460 page += count;
3461 vmf->pte += count;
3462 addr += count * PAGE_SIZE;
3463 count = 0;
3464 } while (--nr_pages > 0);
3465
3466 if (count) {
3467 set_pte_range(vmf, folio, page, nr: count, addr);
3468 folio_ref_add(folio, nr: count);
3469 if (in_range(vmf->address, addr, count * PAGE_SIZE))
3470 ret = VM_FAULT_NOPAGE;
3471 }
3472
3473 vmf->pte = old_ptep;
3474
3475 return ret;
3476}
3477
3478static vm_fault_t filemap_map_order0_folio(struct vm_fault *vmf,
3479 struct folio *folio, unsigned long addr,
3480 unsigned int *mmap_miss)
3481{
3482 vm_fault_t ret = 0;
3483 struct page *page = &folio->page;
3484
3485 if (PageHWPoison(page))
3486 return ret;
3487
3488 (*mmap_miss)++;
3489
3490 /*
3491 * NOTE: If there're PTE markers, we'll leave them to be
3492 * handled in the specific fault path, and it'll prohibit
3493 * the fault-around logic.
3494 */
3495 if (!pte_none(pte: ptep_get(ptep: vmf->pte)))
3496 return ret;
3497
3498 if (vmf->address == addr)
3499 ret = VM_FAULT_NOPAGE;
3500
3501 set_pte_range(vmf, folio, page, nr: 1, addr);
3502 folio_ref_inc(folio);
3503
3504 return ret;
3505}
3506
3507vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3508 pgoff_t start_pgoff, pgoff_t end_pgoff)
3509{
3510 struct vm_area_struct *vma = vmf->vma;
3511 struct file *file = vma->vm_file;
3512 struct address_space *mapping = file->f_mapping;
3513 pgoff_t last_pgoff = start_pgoff;
3514 unsigned long addr;
3515 XA_STATE(xas, &mapping->i_pages, start_pgoff);
3516 struct folio *folio;
3517 vm_fault_t ret = 0;
3518 unsigned int nr_pages = 0, mmap_miss = 0, mmap_miss_saved;
3519
3520 rcu_read_lock();
3521 folio = next_uptodate_folio(xas: &xas, mapping, end_pgoff);
3522 if (!folio)
3523 goto out;
3524
3525 if (filemap_map_pmd(vmf, folio, start: start_pgoff)) {
3526 ret = VM_FAULT_NOPAGE;
3527 goto out;
3528 }
3529
3530 addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT);
3531 vmf->pte = pte_offset_map_lock(mm: vma->vm_mm, pmd: vmf->pmd, addr, ptlp: &vmf->ptl);
3532 if (!vmf->pte) {
3533 folio_unlock(folio);
3534 folio_put(folio);
3535 goto out;
3536 }
3537 do {
3538 unsigned long end;
3539
3540 addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
3541 vmf->pte += xas.xa_index - last_pgoff;
3542 last_pgoff = xas.xa_index;
3543 end = folio_next_index(folio) - 1;
3544 nr_pages = min(end, end_pgoff) - xas.xa_index + 1;
3545
3546 if (!folio_test_large(folio))
3547 ret |= filemap_map_order0_folio(vmf,
3548 folio, addr, mmap_miss: &mmap_miss);
3549 else
3550 ret |= filemap_map_folio_range(vmf, folio,
3551 start: xas.xa_index - folio->index, addr,
3552 nr_pages, mmap_miss: &mmap_miss);
3553
3554 folio_unlock(folio);
3555 folio_put(folio);
3556 } while ((folio = next_uptodate_folio(xas: &xas, mapping, end_pgoff)) != NULL);
3557 pte_unmap_unlock(vmf->pte, vmf->ptl);
3558out:
3559 rcu_read_unlock();
3560
3561 mmap_miss_saved = READ_ONCE(file->f_ra.mmap_miss);
3562 if (mmap_miss >= mmap_miss_saved)
3563 WRITE_ONCE(file->f_ra.mmap_miss, 0);
3564 else
3565 WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss_saved - mmap_miss);
3566
3567 return ret;
3568}
3569EXPORT_SYMBOL(filemap_map_pages);
3570
3571vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3572{
3573 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
3574 struct folio *folio = page_folio(vmf->page);
3575 vm_fault_t ret = VM_FAULT_LOCKED;
3576
3577 sb_start_pagefault(sb: mapping->host->i_sb);
3578 file_update_time(file: vmf->vma->vm_file);
3579 folio_lock(folio);
3580 if (folio->mapping != mapping) {
3581 folio_unlock(folio);
3582 ret = VM_FAULT_NOPAGE;
3583 goto out;
3584 }
3585 /*
3586 * We mark the folio dirty already here so that when freeze is in
3587 * progress, we are guaranteed that writeback during freezing will
3588 * see the dirty folio and writeprotect it again.
3589 */
3590 folio_mark_dirty(folio);
3591 folio_wait_stable(folio);
3592out:
3593 sb_end_pagefault(sb: mapping->host->i_sb);
3594 return ret;
3595}
3596
3597const struct vm_operations_struct generic_file_vm_ops = {
3598 .fault = filemap_fault,
3599 .map_pages = filemap_map_pages,
3600 .page_mkwrite = filemap_page_mkwrite,
3601};
3602
3603/* This is used for a general mmap of a disk file */
3604
3605int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3606{
3607 struct address_space *mapping = file->f_mapping;
3608
3609 if (!mapping->a_ops->read_folio)
3610 return -ENOEXEC;
3611 file_accessed(file);
3612 vma->vm_ops = &generic_file_vm_ops;
3613 return 0;
3614}
3615
3616/*
3617 * This is for filesystems which do not implement ->writepage.
3618 */
3619int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3620{
3621 if (vma_is_shared_maywrite(vma))
3622 return -EINVAL;
3623 return generic_file_mmap(file, vma);
3624}
3625#else
3626vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3627{
3628 return VM_FAULT_SIGBUS;
3629}
3630int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3631{
3632 return -ENOSYS;
3633}
3634int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3635{
3636 return -ENOSYS;
3637}
3638#endif /* CONFIG_MMU */
3639
3640EXPORT_SYMBOL(filemap_page_mkwrite);
3641EXPORT_SYMBOL(generic_file_mmap);
3642EXPORT_SYMBOL(generic_file_readonly_mmap);
3643
3644static struct folio *do_read_cache_folio(struct address_space *mapping,
3645 pgoff_t index, filler_t filler, struct file *file, gfp_t gfp)
3646{
3647 struct folio *folio;
3648 int err;
3649
3650 if (!filler)
3651 filler = mapping->a_ops->read_folio;
3652repeat:
3653 folio = filemap_get_folio(mapping, index);
3654 if (IS_ERR(ptr: folio)) {
3655 folio = filemap_alloc_folio(gfp, 0);
3656 if (!folio)
3657 return ERR_PTR(error: -ENOMEM);
3658 err = filemap_add_folio(mapping, folio, index, gfp);
3659 if (unlikely(err)) {
3660 folio_put(folio);
3661 if (err == -EEXIST)
3662 goto repeat;
3663 /* Presumably ENOMEM for xarray node */
3664 return ERR_PTR(error: err);
3665 }
3666
3667 goto filler;
3668 }
3669 if (folio_test_uptodate(folio))
3670 goto out;
3671
3672 if (!folio_trylock(folio)) {
3673 folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE);
3674 goto repeat;
3675 }
3676
3677 /* Folio was truncated from mapping */
3678 if (!folio->mapping) {
3679 folio_unlock(folio);
3680 folio_put(folio);
3681 goto repeat;
3682 }
3683
3684 /* Someone else locked and filled the page in a very small window */
3685 if (folio_test_uptodate(folio)) {
3686 folio_unlock(folio);
3687 goto out;
3688 }
3689
3690filler:
3691 err = filemap_read_folio(file, filler, folio);
3692 if (err) {
3693 folio_put(folio);
3694 if (err == AOP_TRUNCATED_PAGE)
3695 goto repeat;
3696 return ERR_PTR(error: err);
3697 }
3698
3699out:
3700 folio_mark_accessed(folio);
3701 return folio;
3702}
3703
3704/**
3705 * read_cache_folio - Read into page cache, fill it if needed.
3706 * @mapping: The address_space to read from.
3707 * @index: The index to read.
3708 * @filler: Function to perform the read, or NULL to use aops->read_folio().
3709 * @file: Passed to filler function, may be NULL if not required.
3710 *
3711 * Read one page into the page cache. If it succeeds, the folio returned
3712 * will contain @index, but it may not be the first page of the folio.
3713 *
3714 * If the filler function returns an error, it will be returned to the
3715 * caller.
3716 *
3717 * Context: May sleep. Expects mapping->invalidate_lock to be held.
3718 * Return: An uptodate folio on success, ERR_PTR() on failure.
3719 */
3720struct folio *read_cache_folio(struct address_space *mapping, pgoff_t index,
3721 filler_t filler, struct file *file)
3722{
3723 return do_read_cache_folio(mapping, index, filler, file,
3724 gfp: mapping_gfp_mask(mapping));
3725}
3726EXPORT_SYMBOL(read_cache_folio);
3727
3728/**
3729 * mapping_read_folio_gfp - Read into page cache, using specified allocation flags.
3730 * @mapping: The address_space for the folio.
3731 * @index: The index that the allocated folio will contain.
3732 * @gfp: The page allocator flags to use if allocating.
3733 *
3734 * This is the same as "read_cache_folio(mapping, index, NULL, NULL)", but with
3735 * any new memory allocations done using the specified allocation flags.
3736 *
3737 * The most likely error from this function is EIO, but ENOMEM is
3738 * possible and so is EINTR. If ->read_folio returns another error,
3739 * that will be returned to the caller.
3740 *
3741 * The function expects mapping->invalidate_lock to be already held.
3742 *
3743 * Return: Uptodate folio on success, ERR_PTR() on failure.
3744 */
3745struct folio *mapping_read_folio_gfp(struct address_space *mapping,
3746 pgoff_t index, gfp_t gfp)
3747{
3748 return do_read_cache_folio(mapping, index, NULL, NULL, gfp);
3749}
3750EXPORT_SYMBOL(mapping_read_folio_gfp);
3751
3752static struct page *do_read_cache_page(struct address_space *mapping,
3753 pgoff_t index, filler_t *filler, struct file *file, gfp_t gfp)
3754{
3755 struct folio *folio;
3756
3757 folio = do_read_cache_folio(mapping, index, filler, file, gfp);
3758 if (IS_ERR(ptr: folio))
3759 return &folio->page;
3760 return folio_file_page(folio, index);
3761}
3762
3763struct page *read_cache_page(struct address_space *mapping,
3764 pgoff_t index, filler_t *filler, struct file *file)
3765{
3766 return do_read_cache_page(mapping, index, filler, file,
3767 gfp: mapping_gfp_mask(mapping));
3768}
3769EXPORT_SYMBOL(read_cache_page);
3770
3771/**
3772 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
3773 * @mapping: the page's address_space
3774 * @index: the page index
3775 * @gfp: the page allocator flags to use if allocating
3776 *
3777 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
3778 * any new page allocations done using the specified allocation flags.
3779 *
3780 * If the page does not get brought uptodate, return -EIO.
3781 *
3782 * The function expects mapping->invalidate_lock to be already held.
3783 *
3784 * Return: up to date page on success, ERR_PTR() on failure.
3785 */
3786struct page *read_cache_page_gfp(struct address_space *mapping,
3787 pgoff_t index,
3788 gfp_t gfp)
3789{
3790 return do_read_cache_page(mapping, index, NULL, NULL, gfp);
3791}
3792EXPORT_SYMBOL(read_cache_page_gfp);
3793
3794/*
3795 * Warn about a page cache invalidation failure during a direct I/O write.
3796 */
3797static void dio_warn_stale_pagecache(struct file *filp)
3798{
3799 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
3800 char pathname[128];
3801 char *path;
3802
3803 errseq_set(eseq: &filp->f_mapping->wb_err, err: -EIO);
3804 if (__ratelimit(&_rs)) {
3805 path = file_path(filp, pathname, sizeof(pathname));
3806 if (IS_ERR(ptr: path))
3807 path = "(unknown)";
3808 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n");
3809 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
3810 current->comm);
3811 }
3812}
3813
3814void kiocb_invalidate_post_direct_write(struct kiocb *iocb, size_t count)
3815{
3816 struct address_space *mapping = iocb->ki_filp->f_mapping;
3817
3818 if (mapping->nrpages &&
3819 invalidate_inode_pages2_range(mapping,
3820 start: iocb->ki_pos >> PAGE_SHIFT,
3821 end: (iocb->ki_pos + count - 1) >> PAGE_SHIFT))
3822 dio_warn_stale_pagecache(filp: iocb->ki_filp);
3823}
3824
3825ssize_t
3826generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
3827{
3828 struct address_space *mapping = iocb->ki_filp->f_mapping;
3829 size_t write_len = iov_iter_count(i: from);
3830 ssize_t written;
3831
3832 /*
3833 * If a page can not be invalidated, return 0 to fall back
3834 * to buffered write.
3835 */
3836 written = kiocb_invalidate_pages(iocb, count: write_len);
3837 if (written) {
3838 if (written == -EBUSY)
3839 return 0;
3840 return written;
3841 }
3842
3843 written = mapping->a_ops->direct_IO(iocb, from);
3844
3845 /*
3846 * Finally, try again to invalidate clean pages which might have been
3847 * cached by non-direct readahead, or faulted in by get_user_pages()
3848 * if the source of the write was an mmap'ed region of the file
3849 * we're writing. Either one is a pretty crazy thing to do,
3850 * so we don't support it 100%. If this invalidation
3851 * fails, tough, the write still worked...
3852 *
3853 * Most of the time we do not need this since dio_complete() will do
3854 * the invalidation for us. However there are some file systems that
3855 * do not end up with dio_complete() being called, so let's not break
3856 * them by removing it completely.
3857 *
3858 * Noticeable example is a blkdev_direct_IO().
3859 *
3860 * Skip invalidation for async writes or if mapping has no pages.
3861 */
3862 if (written > 0) {
3863 struct inode *inode = mapping->host;
3864 loff_t pos = iocb->ki_pos;
3865
3866 kiocb_invalidate_post_direct_write(iocb, count: written);
3867 pos += written;
3868 write_len -= written;
3869 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3870 i_size_write(inode, i_size: pos);
3871 mark_inode_dirty(inode);
3872 }
3873 iocb->ki_pos = pos;
3874 }
3875 if (written != -EIOCBQUEUED)
3876 iov_iter_revert(i: from, bytes: write_len - iov_iter_count(i: from));
3877 return written;
3878}
3879EXPORT_SYMBOL(generic_file_direct_write);
3880
3881ssize_t generic_perform_write(struct kiocb *iocb, struct iov_iter *i)
3882{
3883 struct file *file = iocb->ki_filp;
3884 loff_t pos = iocb->ki_pos;
3885 struct address_space *mapping = file->f_mapping;
3886 const struct address_space_operations *a_ops = mapping->a_ops;
3887 long status = 0;
3888 ssize_t written = 0;
3889
3890 do {
3891 struct page *page;
3892 unsigned long offset; /* Offset into pagecache page */
3893 unsigned long bytes; /* Bytes to write to page */
3894 size_t copied; /* Bytes copied from user */
3895 void *fsdata = NULL;
3896
3897 offset = (pos & (PAGE_SIZE - 1));
3898 bytes = min_t(unsigned long, PAGE_SIZE - offset,
3899 iov_iter_count(i));
3900
3901again:
3902 /*
3903 * Bring in the user page that we will copy from _first_.
3904 * Otherwise there's a nasty deadlock on copying from the
3905 * same page as we're writing to, without it being marked
3906 * up-to-date.
3907 */
3908 if (unlikely(fault_in_iov_iter_readable(i, bytes) == bytes)) {
3909 status = -EFAULT;
3910 break;
3911 }
3912
3913 if (fatal_signal_pending(current)) {
3914 status = -EINTR;
3915 break;
3916 }
3917
3918 status = a_ops->write_begin(file, mapping, pos, bytes,
3919 &page, &fsdata);
3920 if (unlikely(status < 0))
3921 break;
3922
3923 if (mapping_writably_mapped(mapping))
3924 flush_dcache_page(page);
3925
3926 copied = copy_page_from_iter_atomic(page, offset, bytes, i);
3927 flush_dcache_page(page);
3928
3929 status = a_ops->write_end(file, mapping, pos, bytes, copied,
3930 page, fsdata);
3931 if (unlikely(status != copied)) {
3932 iov_iter_revert(i, bytes: copied - max(status, 0L));
3933 if (unlikely(status < 0))
3934 break;
3935 }
3936 cond_resched();
3937
3938 if (unlikely(status == 0)) {
3939 /*
3940 * A short copy made ->write_end() reject the
3941 * thing entirely. Might be memory poisoning
3942 * halfway through, might be a race with munmap,
3943 * might be severe memory pressure.
3944 */
3945 if (copied)
3946 bytes = copied;
3947 goto again;
3948 }
3949 pos += status;
3950 written += status;
3951
3952 balance_dirty_pages_ratelimited(mapping);
3953 } while (iov_iter_count(i));
3954
3955 if (!written)
3956 return status;
3957 iocb->ki_pos += written;
3958 return written;
3959}
3960EXPORT_SYMBOL(generic_perform_write);
3961
3962/**
3963 * __generic_file_write_iter - write data to a file
3964 * @iocb: IO state structure (file, offset, etc.)
3965 * @from: iov_iter with data to write
3966 *
3967 * This function does all the work needed for actually writing data to a
3968 * file. It does all basic checks, removes SUID from the file, updates
3969 * modification times and calls proper subroutines depending on whether we
3970 * do direct IO or a standard buffered write.
3971 *
3972 * It expects i_rwsem to be grabbed unless we work on a block device or similar
3973 * object which does not need locking at all.
3974 *
3975 * This function does *not* take care of syncing data in case of O_SYNC write.
3976 * A caller has to handle it. This is mainly due to the fact that we want to
3977 * avoid syncing under i_rwsem.
3978 *
3979 * Return:
3980 * * number of bytes written, even for truncated writes
3981 * * negative error code if no data has been written at all
3982 */
3983ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3984{
3985 struct file *file = iocb->ki_filp;
3986 struct address_space *mapping = file->f_mapping;
3987 struct inode *inode = mapping->host;
3988 ssize_t ret;
3989
3990 ret = file_remove_privs(file);
3991 if (ret)
3992 return ret;
3993
3994 ret = file_update_time(file);
3995 if (ret)
3996 return ret;
3997
3998 if (iocb->ki_flags & IOCB_DIRECT) {
3999 ret = generic_file_direct_write(iocb, from);
4000 /*
4001 * If the write stopped short of completing, fall back to
4002 * buffered writes. Some filesystems do this for writes to
4003 * holes, for example. For DAX files, a buffered write will
4004 * not succeed (even if it did, DAX does not handle dirty
4005 * page-cache pages correctly).
4006 */
4007 if (ret < 0 || !iov_iter_count(i: from) || IS_DAX(inode))
4008 return ret;
4009 return direct_write_fallback(iocb, iter: from, direct_written: ret,
4010 buffered_written: generic_perform_write(iocb, from));
4011 }
4012
4013 return generic_perform_write(iocb, from);
4014}
4015EXPORT_SYMBOL(__generic_file_write_iter);
4016
4017/**
4018 * generic_file_write_iter - write data to a file
4019 * @iocb: IO state structure
4020 * @from: iov_iter with data to write
4021 *
4022 * This is a wrapper around __generic_file_write_iter() to be used by most
4023 * filesystems. It takes care of syncing the file in case of O_SYNC file
4024 * and acquires i_rwsem as needed.
4025 * Return:
4026 * * negative error code if no data has been written at all of
4027 * vfs_fsync_range() failed for a synchronous write
4028 * * number of bytes written, even for truncated writes
4029 */
4030ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
4031{
4032 struct file *file = iocb->ki_filp;
4033 struct inode *inode = file->f_mapping->host;
4034 ssize_t ret;
4035
4036 inode_lock(inode);
4037 ret = generic_write_checks(iocb, from);
4038 if (ret > 0)
4039 ret = __generic_file_write_iter(iocb, from);
4040 inode_unlock(inode);
4041
4042 if (ret > 0)
4043 ret = generic_write_sync(iocb, count: ret);
4044 return ret;
4045}
4046EXPORT_SYMBOL(generic_file_write_iter);
4047
4048/**
4049 * filemap_release_folio() - Release fs-specific metadata on a folio.
4050 * @folio: The folio which the kernel is trying to free.
4051 * @gfp: Memory allocation flags (and I/O mode).
4052 *
4053 * The address_space is trying to release any data attached to a folio
4054 * (presumably at folio->private).
4055 *
4056 * This will also be called if the private_2 flag is set on a page,
4057 * indicating that the folio has other metadata associated with it.
4058 *
4059 * The @gfp argument specifies whether I/O may be performed to release
4060 * this page (__GFP_IO), and whether the call may block
4061 * (__GFP_RECLAIM & __GFP_FS).
4062 *
4063 * Return: %true if the release was successful, otherwise %false.
4064 */
4065bool filemap_release_folio(struct folio *folio, gfp_t gfp)
4066{
4067 struct address_space * const mapping = folio->mapping;
4068
4069 BUG_ON(!folio_test_locked(folio));
4070 if (!folio_needs_release(folio))
4071 return true;
4072 if (folio_test_writeback(folio))
4073 return false;
4074
4075 if (mapping && mapping->a_ops->release_folio)
4076 return mapping->a_ops->release_folio(folio, gfp);
4077 return try_to_free_buffers(folio);
4078}
4079EXPORT_SYMBOL(filemap_release_folio);
4080
4081#ifdef CONFIG_CACHESTAT_SYSCALL
4082/**
4083 * filemap_cachestat() - compute the page cache statistics of a mapping
4084 * @mapping: The mapping to compute the statistics for.
4085 * @first_index: The starting page cache index.
4086 * @last_index: The final page index (inclusive).
4087 * @cs: the cachestat struct to write the result to.
4088 *
4089 * This will query the page cache statistics of a mapping in the
4090 * page range of [first_index, last_index] (inclusive). The statistics
4091 * queried include: number of dirty pages, number of pages marked for
4092 * writeback, and the number of (recently) evicted pages.
4093 */
4094static void filemap_cachestat(struct address_space *mapping,
4095 pgoff_t first_index, pgoff_t last_index, struct cachestat *cs)
4096{
4097 XA_STATE(xas, &mapping->i_pages, first_index);
4098 struct folio *folio;
4099
4100 rcu_read_lock();
4101 xas_for_each(&xas, folio, last_index) {
4102 unsigned long nr_pages;
4103 pgoff_t folio_first_index, folio_last_index;
4104
4105 if (xas_retry(xas: &xas, entry: folio))
4106 continue;
4107
4108 if (xa_is_value(entry: folio)) {
4109 /* page is evicted */
4110 void *shadow = (void *)folio;
4111 bool workingset; /* not used */
4112 int order = xa_get_order(xas.xa, index: xas.xa_index);
4113
4114 nr_pages = 1 << order;
4115 folio_first_index = round_down(xas.xa_index, 1 << order);
4116 folio_last_index = folio_first_index + nr_pages - 1;
4117
4118 /* Folios might straddle the range boundaries, only count covered pages */
4119 if (folio_first_index < first_index)
4120 nr_pages -= first_index - folio_first_index;
4121
4122 if (folio_last_index > last_index)
4123 nr_pages -= folio_last_index - last_index;
4124
4125 cs->nr_evicted += nr_pages;
4126
4127#ifdef CONFIG_SWAP /* implies CONFIG_MMU */
4128 if (shmem_mapping(mapping)) {
4129 /* shmem file - in swap cache */
4130 swp_entry_t swp = radix_to_swp_entry(arg: folio);
4131
4132 shadow = get_shadow_from_swap_cache(entry: swp);
4133 }
4134#endif
4135 if (workingset_test_recent(shadow, file: true, workingset: &workingset))
4136 cs->nr_recently_evicted += nr_pages;
4137
4138 goto resched;
4139 }
4140
4141 nr_pages = folio_nr_pages(folio);
4142 folio_first_index = folio_pgoff(folio);
4143 folio_last_index = folio_first_index + nr_pages - 1;
4144
4145 /* Folios might straddle the range boundaries, only count covered pages */
4146 if (folio_first_index < first_index)
4147 nr_pages -= first_index - folio_first_index;
4148
4149 if (folio_last_index > last_index)
4150 nr_pages -= folio_last_index - last_index;
4151
4152 /* page is in cache */
4153 cs->nr_cache += nr_pages;
4154
4155 if (folio_test_dirty(folio))
4156 cs->nr_dirty += nr_pages;
4157
4158 if (folio_test_writeback(folio))
4159 cs->nr_writeback += nr_pages;
4160
4161resched:
4162 if (need_resched()) {
4163 xas_pause(&xas);
4164 cond_resched_rcu();
4165 }
4166 }
4167 rcu_read_unlock();
4168}
4169
4170/*
4171 * The cachestat(2) system call.
4172 *
4173 * cachestat() returns the page cache statistics of a file in the
4174 * bytes range specified by `off` and `len`: number of cached pages,
4175 * number of dirty pages, number of pages marked for writeback,
4176 * number of evicted pages, and number of recently evicted pages.
4177 *
4178 * An evicted page is a page that is previously in the page cache
4179 * but has been evicted since. A page is recently evicted if its last
4180 * eviction was recent enough that its reentry to the cache would
4181 * indicate that it is actively being used by the system, and that
4182 * there is memory pressure on the system.
4183 *
4184 * `off` and `len` must be non-negative integers. If `len` > 0,
4185 * the queried range is [`off`, `off` + `len`]. If `len` == 0,
4186 * we will query in the range from `off` to the end of the file.
4187 *
4188 * The `flags` argument is unused for now, but is included for future
4189 * extensibility. User should pass 0 (i.e no flag specified).
4190 *
4191 * Currently, hugetlbfs is not supported.
4192 *
4193 * Because the status of a page can change after cachestat() checks it
4194 * but before it returns to the application, the returned values may
4195 * contain stale information.
4196 *
4197 * return values:
4198 * zero - success
4199 * -EFAULT - cstat or cstat_range points to an illegal address
4200 * -EINVAL - invalid flags
4201 * -EBADF - invalid file descriptor
4202 * -EOPNOTSUPP - file descriptor is of a hugetlbfs file
4203 */
4204SYSCALL_DEFINE4(cachestat, unsigned int, fd,
4205 struct cachestat_range __user *, cstat_range,
4206 struct cachestat __user *, cstat, unsigned int, flags)
4207{
4208 struct fd f = fdget(fd);
4209 struct address_space *mapping;
4210 struct cachestat_range csr;
4211 struct cachestat cs;
4212 pgoff_t first_index, last_index;
4213
4214 if (!f.file)
4215 return -EBADF;
4216
4217 if (copy_from_user(to: &csr, from: cstat_range,
4218 n: sizeof(struct cachestat_range))) {
4219 fdput(fd: f);
4220 return -EFAULT;
4221 }
4222
4223 /* hugetlbfs is not supported */
4224 if (is_file_hugepages(file: f.file)) {
4225 fdput(fd: f);
4226 return -EOPNOTSUPP;
4227 }
4228
4229 if (flags != 0) {
4230 fdput(fd: f);
4231 return -EINVAL;
4232 }
4233
4234 first_index = csr.off >> PAGE_SHIFT;
4235 last_index =
4236 csr.len == 0 ? ULONG_MAX : (csr.off + csr.len - 1) >> PAGE_SHIFT;
4237 memset(&cs, 0, sizeof(struct cachestat));
4238 mapping = f.file->f_mapping;
4239 filemap_cachestat(mapping, first_index, last_index, cs: &cs);
4240 fdput(fd: f);
4241
4242 if (copy_to_user(to: cstat, from: &cs, n: sizeof(struct cachestat)))
4243 return -EFAULT;
4244
4245 return 0;
4246}
4247#endif /* CONFIG_CACHESTAT_SYSCALL */
4248

source code of linux/mm/filemap.c