1// SPDX-License-Identifier: GPL-2.0-or-later
2/* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23 *
24 * Per memcg lru locking
25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi
26 */
27
28#include <linux/page_counter.h>
29#include <linux/memcontrol.h>
30#include <linux/cgroup.h>
31#include <linux/pagewalk.h>
32#include <linux/sched/mm.h>
33#include <linux/shmem_fs.h>
34#include <linux/hugetlb.h>
35#include <linux/pagemap.h>
36#include <linux/vm_event_item.h>
37#include <linux/smp.h>
38#include <linux/page-flags.h>
39#include <linux/backing-dev.h>
40#include <linux/bit_spinlock.h>
41#include <linux/rcupdate.h>
42#include <linux/limits.h>
43#include <linux/export.h>
44#include <linux/mutex.h>
45#include <linux/rbtree.h>
46#include <linux/slab.h>
47#include <linux/swap.h>
48#include <linux/swapops.h>
49#include <linux/spinlock.h>
50#include <linux/eventfd.h>
51#include <linux/poll.h>
52#include <linux/sort.h>
53#include <linux/fs.h>
54#include <linux/seq_file.h>
55#include <linux/vmpressure.h>
56#include <linux/memremap.h>
57#include <linux/mm_inline.h>
58#include <linux/swap_cgroup.h>
59#include <linux/cpu.h>
60#include <linux/oom.h>
61#include <linux/lockdep.h>
62#include <linux/file.h>
63#include <linux/resume_user_mode.h>
64#include <linux/psi.h>
65#include <linux/seq_buf.h>
66#include <linux/sched/isolation.h>
67#include "internal.h"
68#include <net/sock.h>
69#include <net/ip.h>
70#include "slab.h"
71#include "swap.h"
72
73#include <linux/uaccess.h>
74
75#include <trace/events/vmscan.h>
76
77struct cgroup_subsys memory_cgrp_subsys __read_mostly;
78EXPORT_SYMBOL(memory_cgrp_subsys);
79
80struct mem_cgroup *root_mem_cgroup __read_mostly;
81
82/* Active memory cgroup to use from an interrupt context */
83DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
84EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
85
86/* Socket memory accounting disabled? */
87static bool cgroup_memory_nosocket __ro_after_init;
88
89/* Kernel memory accounting disabled? */
90static bool cgroup_memory_nokmem __ro_after_init;
91
92/* BPF memory accounting disabled? */
93static bool cgroup_memory_nobpf __ro_after_init;
94
95#ifdef CONFIG_CGROUP_WRITEBACK
96static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
97#endif
98
99/* Whether legacy memory+swap accounting is active */
100static bool do_memsw_account(void)
101{
102 return !cgroup_subsys_on_dfl(memory_cgrp_subsys);
103}
104
105#define THRESHOLDS_EVENTS_TARGET 128
106#define SOFTLIMIT_EVENTS_TARGET 1024
107
108/*
109 * Cgroups above their limits are maintained in a RB-Tree, independent of
110 * their hierarchy representation
111 */
112
113struct mem_cgroup_tree_per_node {
114 struct rb_root rb_root;
115 struct rb_node *rb_rightmost;
116 spinlock_t lock;
117};
118
119struct mem_cgroup_tree {
120 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
121};
122
123static struct mem_cgroup_tree soft_limit_tree __read_mostly;
124
125/* for OOM */
126struct mem_cgroup_eventfd_list {
127 struct list_head list;
128 struct eventfd_ctx *eventfd;
129};
130
131/*
132 * cgroup_event represents events which userspace want to receive.
133 */
134struct mem_cgroup_event {
135 /*
136 * memcg which the event belongs to.
137 */
138 struct mem_cgroup *memcg;
139 /*
140 * eventfd to signal userspace about the event.
141 */
142 struct eventfd_ctx *eventfd;
143 /*
144 * Each of these stored in a list by the cgroup.
145 */
146 struct list_head list;
147 /*
148 * register_event() callback will be used to add new userspace
149 * waiter for changes related to this event. Use eventfd_signal()
150 * on eventfd to send notification to userspace.
151 */
152 int (*register_event)(struct mem_cgroup *memcg,
153 struct eventfd_ctx *eventfd, const char *args);
154 /*
155 * unregister_event() callback will be called when userspace closes
156 * the eventfd or on cgroup removing. This callback must be set,
157 * if you want provide notification functionality.
158 */
159 void (*unregister_event)(struct mem_cgroup *memcg,
160 struct eventfd_ctx *eventfd);
161 /*
162 * All fields below needed to unregister event when
163 * userspace closes eventfd.
164 */
165 poll_table pt;
166 wait_queue_head_t *wqh;
167 wait_queue_entry_t wait;
168 struct work_struct remove;
169};
170
171static void mem_cgroup_threshold(struct mem_cgroup *memcg);
172static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
173
174/* Stuffs for move charges at task migration. */
175/*
176 * Types of charges to be moved.
177 */
178#define MOVE_ANON 0x1U
179#define MOVE_FILE 0x2U
180#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
181
182/* "mc" and its members are protected by cgroup_mutex */
183static struct move_charge_struct {
184 spinlock_t lock; /* for from, to */
185 struct mm_struct *mm;
186 struct mem_cgroup *from;
187 struct mem_cgroup *to;
188 unsigned long flags;
189 unsigned long precharge;
190 unsigned long moved_charge;
191 unsigned long moved_swap;
192 struct task_struct *moving_task; /* a task moving charges */
193 wait_queue_head_t waitq; /* a waitq for other context */
194} mc = {
195 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
196 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
197};
198
199/*
200 * Maximum loops in mem_cgroup_soft_reclaim(), used for soft
201 * limit reclaim to prevent infinite loops, if they ever occur.
202 */
203#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
204#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
205
206/* for encoding cft->private value on file */
207enum res_type {
208 _MEM,
209 _MEMSWAP,
210 _KMEM,
211 _TCP,
212};
213
214#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
215#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
216#define MEMFILE_ATTR(val) ((val) & 0xffff)
217
218/*
219 * Iteration constructs for visiting all cgroups (under a tree). If
220 * loops are exited prematurely (break), mem_cgroup_iter_break() must
221 * be used for reference counting.
222 */
223#define for_each_mem_cgroup_tree(iter, root) \
224 for (iter = mem_cgroup_iter(root, NULL, NULL); \
225 iter != NULL; \
226 iter = mem_cgroup_iter(root, iter, NULL))
227
228#define for_each_mem_cgroup(iter) \
229 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
230 iter != NULL; \
231 iter = mem_cgroup_iter(NULL, iter, NULL))
232
233static inline bool task_is_dying(void)
234{
235 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
236 (current->flags & PF_EXITING);
237}
238
239/* Some nice accessors for the vmpressure. */
240struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
241{
242 if (!memcg)
243 memcg = root_mem_cgroup;
244 return &memcg->vmpressure;
245}
246
247struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr)
248{
249 return container_of(vmpr, struct mem_cgroup, vmpressure);
250}
251
252#define CURRENT_OBJCG_UPDATE_BIT 0
253#define CURRENT_OBJCG_UPDATE_FLAG (1UL << CURRENT_OBJCG_UPDATE_BIT)
254
255#ifdef CONFIG_MEMCG_KMEM
256static DEFINE_SPINLOCK(objcg_lock);
257
258bool mem_cgroup_kmem_disabled(void)
259{
260 return cgroup_memory_nokmem;
261}
262
263static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
264 unsigned int nr_pages);
265
266static void obj_cgroup_release(struct percpu_ref *ref)
267{
268 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
269 unsigned int nr_bytes;
270 unsigned int nr_pages;
271 unsigned long flags;
272
273 /*
274 * At this point all allocated objects are freed, and
275 * objcg->nr_charged_bytes can't have an arbitrary byte value.
276 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
277 *
278 * The following sequence can lead to it:
279 * 1) CPU0: objcg == stock->cached_objcg
280 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
281 * PAGE_SIZE bytes are charged
282 * 3) CPU1: a process from another memcg is allocating something,
283 * the stock if flushed,
284 * objcg->nr_charged_bytes = PAGE_SIZE - 92
285 * 5) CPU0: we do release this object,
286 * 92 bytes are added to stock->nr_bytes
287 * 6) CPU0: stock is flushed,
288 * 92 bytes are added to objcg->nr_charged_bytes
289 *
290 * In the result, nr_charged_bytes == PAGE_SIZE.
291 * This page will be uncharged in obj_cgroup_release().
292 */
293 nr_bytes = atomic_read(v: &objcg->nr_charged_bytes);
294 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
295 nr_pages = nr_bytes >> PAGE_SHIFT;
296
297 if (nr_pages)
298 obj_cgroup_uncharge_pages(objcg, nr_pages);
299
300 spin_lock_irqsave(&objcg_lock, flags);
301 list_del(entry: &objcg->list);
302 spin_unlock_irqrestore(lock: &objcg_lock, flags);
303
304 percpu_ref_exit(ref);
305 kfree_rcu(objcg, rcu);
306}
307
308static struct obj_cgroup *obj_cgroup_alloc(void)
309{
310 struct obj_cgroup *objcg;
311 int ret;
312
313 objcg = kzalloc(size: sizeof(struct obj_cgroup), GFP_KERNEL);
314 if (!objcg)
315 return NULL;
316
317 ret = percpu_ref_init(ref: &objcg->refcnt, release: obj_cgroup_release, flags: 0,
318 GFP_KERNEL);
319 if (ret) {
320 kfree(objp: objcg);
321 return NULL;
322 }
323 INIT_LIST_HEAD(list: &objcg->list);
324 return objcg;
325}
326
327static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
328 struct mem_cgroup *parent)
329{
330 struct obj_cgroup *objcg, *iter;
331
332 objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
333
334 spin_lock_irq(lock: &objcg_lock);
335
336 /* 1) Ready to reparent active objcg. */
337 list_add(new: &objcg->list, head: &memcg->objcg_list);
338 /* 2) Reparent active objcg and already reparented objcgs to parent. */
339 list_for_each_entry(iter, &memcg->objcg_list, list)
340 WRITE_ONCE(iter->memcg, parent);
341 /* 3) Move already reparented objcgs to the parent's list */
342 list_splice(list: &memcg->objcg_list, head: &parent->objcg_list);
343
344 spin_unlock_irq(lock: &objcg_lock);
345
346 percpu_ref_kill(ref: &objcg->refcnt);
347}
348
349/*
350 * A lot of the calls to the cache allocation functions are expected to be
351 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
352 * conditional to this static branch, we'll have to allow modules that does
353 * kmem_cache_alloc and the such to see this symbol as well
354 */
355DEFINE_STATIC_KEY_FALSE(memcg_kmem_online_key);
356EXPORT_SYMBOL(memcg_kmem_online_key);
357
358DEFINE_STATIC_KEY_FALSE(memcg_bpf_enabled_key);
359EXPORT_SYMBOL(memcg_bpf_enabled_key);
360#endif
361
362/**
363 * mem_cgroup_css_from_folio - css of the memcg associated with a folio
364 * @folio: folio of interest
365 *
366 * If memcg is bound to the default hierarchy, css of the memcg associated
367 * with @folio is returned. The returned css remains associated with @folio
368 * until it is released.
369 *
370 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
371 * is returned.
372 */
373struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio)
374{
375 struct mem_cgroup *memcg = folio_memcg(folio);
376
377 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
378 memcg = root_mem_cgroup;
379
380 return &memcg->css;
381}
382
383/**
384 * page_cgroup_ino - return inode number of the memcg a page is charged to
385 * @page: the page
386 *
387 * Look up the closest online ancestor of the memory cgroup @page is charged to
388 * and return its inode number or 0 if @page is not charged to any cgroup. It
389 * is safe to call this function without holding a reference to @page.
390 *
391 * Note, this function is inherently racy, because there is nothing to prevent
392 * the cgroup inode from getting torn down and potentially reallocated a moment
393 * after page_cgroup_ino() returns, so it only should be used by callers that
394 * do not care (such as procfs interfaces).
395 */
396ino_t page_cgroup_ino(struct page *page)
397{
398 struct mem_cgroup *memcg;
399 unsigned long ino = 0;
400
401 rcu_read_lock();
402 /* page_folio() is racy here, but the entire function is racy anyway */
403 memcg = folio_memcg_check(page_folio(page));
404
405 while (memcg && !(memcg->css.flags & CSS_ONLINE))
406 memcg = parent_mem_cgroup(memcg);
407 if (memcg)
408 ino = cgroup_ino(cgrp: memcg->css.cgroup);
409 rcu_read_unlock();
410 return ino;
411}
412
413static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
414 struct mem_cgroup_tree_per_node *mctz,
415 unsigned long new_usage_in_excess)
416{
417 struct rb_node **p = &mctz->rb_root.rb_node;
418 struct rb_node *parent = NULL;
419 struct mem_cgroup_per_node *mz_node;
420 bool rightmost = true;
421
422 if (mz->on_tree)
423 return;
424
425 mz->usage_in_excess = new_usage_in_excess;
426 if (!mz->usage_in_excess)
427 return;
428 while (*p) {
429 parent = *p;
430 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
431 tree_node);
432 if (mz->usage_in_excess < mz_node->usage_in_excess) {
433 p = &(*p)->rb_left;
434 rightmost = false;
435 } else {
436 p = &(*p)->rb_right;
437 }
438 }
439
440 if (rightmost)
441 mctz->rb_rightmost = &mz->tree_node;
442
443 rb_link_node(node: &mz->tree_node, parent, rb_link: p);
444 rb_insert_color(&mz->tree_node, &mctz->rb_root);
445 mz->on_tree = true;
446}
447
448static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
449 struct mem_cgroup_tree_per_node *mctz)
450{
451 if (!mz->on_tree)
452 return;
453
454 if (&mz->tree_node == mctz->rb_rightmost)
455 mctz->rb_rightmost = rb_prev(&mz->tree_node);
456
457 rb_erase(&mz->tree_node, &mctz->rb_root);
458 mz->on_tree = false;
459}
460
461static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
462 struct mem_cgroup_tree_per_node *mctz)
463{
464 unsigned long flags;
465
466 spin_lock_irqsave(&mctz->lock, flags);
467 __mem_cgroup_remove_exceeded(mz, mctz);
468 spin_unlock_irqrestore(lock: &mctz->lock, flags);
469}
470
471static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
472{
473 unsigned long nr_pages = page_counter_read(counter: &memcg->memory);
474 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
475 unsigned long excess = 0;
476
477 if (nr_pages > soft_limit)
478 excess = nr_pages - soft_limit;
479
480 return excess;
481}
482
483static void mem_cgroup_update_tree(struct mem_cgroup *memcg, int nid)
484{
485 unsigned long excess;
486 struct mem_cgroup_per_node *mz;
487 struct mem_cgroup_tree_per_node *mctz;
488
489 if (lru_gen_enabled()) {
490 if (soft_limit_excess(memcg))
491 lru_gen_soft_reclaim(memcg, nid);
492 return;
493 }
494
495 mctz = soft_limit_tree.rb_tree_per_node[nid];
496 if (!mctz)
497 return;
498 /*
499 * Necessary to update all ancestors when hierarchy is used.
500 * because their event counter is not touched.
501 */
502 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
503 mz = memcg->nodeinfo[nid];
504 excess = soft_limit_excess(memcg);
505 /*
506 * We have to update the tree if mz is on RB-tree or
507 * mem is over its softlimit.
508 */
509 if (excess || mz->on_tree) {
510 unsigned long flags;
511
512 spin_lock_irqsave(&mctz->lock, flags);
513 /* if on-tree, remove it */
514 if (mz->on_tree)
515 __mem_cgroup_remove_exceeded(mz, mctz);
516 /*
517 * Insert again. mz->usage_in_excess will be updated.
518 * If excess is 0, no tree ops.
519 */
520 __mem_cgroup_insert_exceeded(mz, mctz, new_usage_in_excess: excess);
521 spin_unlock_irqrestore(lock: &mctz->lock, flags);
522 }
523 }
524}
525
526static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
527{
528 struct mem_cgroup_tree_per_node *mctz;
529 struct mem_cgroup_per_node *mz;
530 int nid;
531
532 for_each_node(nid) {
533 mz = memcg->nodeinfo[nid];
534 mctz = soft_limit_tree.rb_tree_per_node[nid];
535 if (mctz)
536 mem_cgroup_remove_exceeded(mz, mctz);
537 }
538}
539
540static struct mem_cgroup_per_node *
541__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
542{
543 struct mem_cgroup_per_node *mz;
544
545retry:
546 mz = NULL;
547 if (!mctz->rb_rightmost)
548 goto done; /* Nothing to reclaim from */
549
550 mz = rb_entry(mctz->rb_rightmost,
551 struct mem_cgroup_per_node, tree_node);
552 /*
553 * Remove the node now but someone else can add it back,
554 * we will to add it back at the end of reclaim to its correct
555 * position in the tree.
556 */
557 __mem_cgroup_remove_exceeded(mz, mctz);
558 if (!soft_limit_excess(memcg: mz->memcg) ||
559 !css_tryget(css: &mz->memcg->css))
560 goto retry;
561done:
562 return mz;
563}
564
565static struct mem_cgroup_per_node *
566mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
567{
568 struct mem_cgroup_per_node *mz;
569
570 spin_lock_irq(lock: &mctz->lock);
571 mz = __mem_cgroup_largest_soft_limit_node(mctz);
572 spin_unlock_irq(lock: &mctz->lock);
573 return mz;
574}
575
576/*
577 * memcg and lruvec stats flushing
578 *
579 * Many codepaths leading to stats update or read are performance sensitive and
580 * adding stats flushing in such codepaths is not desirable. So, to optimize the
581 * flushing the kernel does:
582 *
583 * 1) Periodically and asynchronously flush the stats every 2 seconds to not let
584 * rstat update tree grow unbounded.
585 *
586 * 2) Flush the stats synchronously on reader side only when there are more than
587 * (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization
588 * will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but
589 * only for 2 seconds due to (1).
590 */
591static void flush_memcg_stats_dwork(struct work_struct *w);
592static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork);
593static DEFINE_PER_CPU(unsigned int, stats_updates);
594static atomic_t stats_flush_ongoing = ATOMIC_INIT(0);
595static atomic_t stats_flush_threshold = ATOMIC_INIT(0);
596static u64 flush_next_time;
597
598#define FLUSH_TIME (2UL*HZ)
599
600/*
601 * Accessors to ensure that preemption is disabled on PREEMPT_RT because it can
602 * not rely on this as part of an acquired spinlock_t lock. These functions are
603 * never used in hardirq context on PREEMPT_RT and therefore disabling preemtion
604 * is sufficient.
605 */
606static void memcg_stats_lock(void)
607{
608 preempt_disable_nested();
609 VM_WARN_ON_IRQS_ENABLED();
610}
611
612static void __memcg_stats_lock(void)
613{
614 preempt_disable_nested();
615}
616
617static void memcg_stats_unlock(void)
618{
619 preempt_enable_nested();
620}
621
622static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val)
623{
624 unsigned int x;
625
626 if (!val)
627 return;
628
629 cgroup_rstat_updated(cgrp: memcg->css.cgroup, smp_processor_id());
630
631 x = __this_cpu_add_return(stats_updates, abs(val));
632 if (x > MEMCG_CHARGE_BATCH) {
633 /*
634 * If stats_flush_threshold exceeds the threshold
635 * (>num_online_cpus()), cgroup stats update will be triggered
636 * in __mem_cgroup_flush_stats(). Increasing this var further
637 * is redundant and simply adds overhead in atomic update.
638 */
639 if (atomic_read(v: &stats_flush_threshold) <= num_online_cpus())
640 atomic_add(i: x / MEMCG_CHARGE_BATCH, v: &stats_flush_threshold);
641 __this_cpu_write(stats_updates, 0);
642 }
643}
644
645static void do_flush_stats(void)
646{
647 /*
648 * We always flush the entire tree, so concurrent flushers can just
649 * skip. This avoids a thundering herd problem on the rstat global lock
650 * from memcg flushers (e.g. reclaim, refault, etc).
651 */
652 if (atomic_read(v: &stats_flush_ongoing) ||
653 atomic_xchg(v: &stats_flush_ongoing, new: 1))
654 return;
655
656 WRITE_ONCE(flush_next_time, jiffies_64 + 2*FLUSH_TIME);
657
658 cgroup_rstat_flush(cgrp: root_mem_cgroup->css.cgroup);
659
660 atomic_set(v: &stats_flush_threshold, i: 0);
661 atomic_set(v: &stats_flush_ongoing, i: 0);
662}
663
664void mem_cgroup_flush_stats(void)
665{
666 if (atomic_read(v: &stats_flush_threshold) > num_online_cpus())
667 do_flush_stats();
668}
669
670void mem_cgroup_flush_stats_ratelimited(void)
671{
672 if (time_after64(jiffies_64, READ_ONCE(flush_next_time)))
673 mem_cgroup_flush_stats();
674}
675
676static void flush_memcg_stats_dwork(struct work_struct *w)
677{
678 /*
679 * Always flush here so that flushing in latency-sensitive paths is
680 * as cheap as possible.
681 */
682 do_flush_stats();
683 queue_delayed_work(wq: system_unbound_wq, dwork: &stats_flush_dwork, FLUSH_TIME);
684}
685
686/* Subset of vm_event_item to report for memcg event stats */
687static const unsigned int memcg_vm_event_stat[] = {
688 PGPGIN,
689 PGPGOUT,
690 PGSCAN_KSWAPD,
691 PGSCAN_DIRECT,
692 PGSCAN_KHUGEPAGED,
693 PGSTEAL_KSWAPD,
694 PGSTEAL_DIRECT,
695 PGSTEAL_KHUGEPAGED,
696 PGFAULT,
697 PGMAJFAULT,
698 PGREFILL,
699 PGACTIVATE,
700 PGDEACTIVATE,
701 PGLAZYFREE,
702 PGLAZYFREED,
703#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
704 ZSWPIN,
705 ZSWPOUT,
706#endif
707#ifdef CONFIG_TRANSPARENT_HUGEPAGE
708 THP_FAULT_ALLOC,
709 THP_COLLAPSE_ALLOC,
710 THP_SWPOUT,
711 THP_SWPOUT_FALLBACK,
712#endif
713};
714
715#define NR_MEMCG_EVENTS ARRAY_SIZE(memcg_vm_event_stat)
716static int mem_cgroup_events_index[NR_VM_EVENT_ITEMS] __read_mostly;
717
718static void init_memcg_events(void)
719{
720 int i;
721
722 for (i = 0; i < NR_MEMCG_EVENTS; ++i)
723 mem_cgroup_events_index[memcg_vm_event_stat[i]] = i + 1;
724}
725
726static inline int memcg_events_index(enum vm_event_item idx)
727{
728 return mem_cgroup_events_index[idx] - 1;
729}
730
731struct memcg_vmstats_percpu {
732 /* Local (CPU and cgroup) page state & events */
733 long state[MEMCG_NR_STAT];
734 unsigned long events[NR_MEMCG_EVENTS];
735
736 /* Delta calculation for lockless upward propagation */
737 long state_prev[MEMCG_NR_STAT];
738 unsigned long events_prev[NR_MEMCG_EVENTS];
739
740 /* Cgroup1: threshold notifications & softlimit tree updates */
741 unsigned long nr_page_events;
742 unsigned long targets[MEM_CGROUP_NTARGETS];
743};
744
745struct memcg_vmstats {
746 /* Aggregated (CPU and subtree) page state & events */
747 long state[MEMCG_NR_STAT];
748 unsigned long events[NR_MEMCG_EVENTS];
749
750 /* Non-hierarchical (CPU aggregated) page state & events */
751 long state_local[MEMCG_NR_STAT];
752 unsigned long events_local[NR_MEMCG_EVENTS];
753
754 /* Pending child counts during tree propagation */
755 long state_pending[MEMCG_NR_STAT];
756 unsigned long events_pending[NR_MEMCG_EVENTS];
757};
758
759unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
760{
761 long x = READ_ONCE(memcg->vmstats->state[idx]);
762#ifdef CONFIG_SMP
763 if (x < 0)
764 x = 0;
765#endif
766 return x;
767}
768
769static int memcg_page_state_unit(int item);
770
771/*
772 * Normalize the value passed into memcg_rstat_updated() to be in pages. Round
773 * up non-zero sub-page updates to 1 page as zero page updates are ignored.
774 */
775static int memcg_state_val_in_pages(int idx, int val)
776{
777 int unit = memcg_page_state_unit(item: idx);
778
779 if (!val || unit == PAGE_SIZE)
780 return val;
781 else
782 return max(val * unit / PAGE_SIZE, 1UL);
783}
784
785/**
786 * __mod_memcg_state - update cgroup memory statistics
787 * @memcg: the memory cgroup
788 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
789 * @val: delta to add to the counter, can be negative
790 */
791void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
792{
793 if (mem_cgroup_disabled())
794 return;
795
796 __this_cpu_add(memcg->vmstats_percpu->state[idx], val);
797 memcg_rstat_updated(memcg, val: memcg_state_val_in_pages(idx, val));
798}
799
800/* idx can be of type enum memcg_stat_item or node_stat_item. */
801static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
802{
803 long x = READ_ONCE(memcg->vmstats->state_local[idx]);
804
805#ifdef CONFIG_SMP
806 if (x < 0)
807 x = 0;
808#endif
809 return x;
810}
811
812void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
813 int val)
814{
815 struct mem_cgroup_per_node *pn;
816 struct mem_cgroup *memcg;
817
818 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
819 memcg = pn->memcg;
820
821 /*
822 * The caller from rmap relies on disabled preemption because they never
823 * update their counter from in-interrupt context. For these two
824 * counters we check that the update is never performed from an
825 * interrupt context while other caller need to have disabled interrupt.
826 */
827 __memcg_stats_lock();
828 if (IS_ENABLED(CONFIG_DEBUG_VM)) {
829 switch (idx) {
830 case NR_ANON_MAPPED:
831 case NR_FILE_MAPPED:
832 case NR_ANON_THPS:
833 case NR_SHMEM_PMDMAPPED:
834 case NR_FILE_PMDMAPPED:
835 WARN_ON_ONCE(!in_task());
836 break;
837 default:
838 VM_WARN_ON_IRQS_ENABLED();
839 }
840 }
841
842 /* Update memcg */
843 __this_cpu_add(memcg->vmstats_percpu->state[idx], val);
844
845 /* Update lruvec */
846 __this_cpu_add(pn->lruvec_stats_percpu->state[idx], val);
847
848 memcg_rstat_updated(memcg, val: memcg_state_val_in_pages(idx, val));
849 memcg_stats_unlock();
850}
851
852/**
853 * __mod_lruvec_state - update lruvec memory statistics
854 * @lruvec: the lruvec
855 * @idx: the stat item
856 * @val: delta to add to the counter, can be negative
857 *
858 * The lruvec is the intersection of the NUMA node and a cgroup. This
859 * function updates the all three counters that are affected by a
860 * change of state at this level: per-node, per-cgroup, per-lruvec.
861 */
862void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
863 int val)
864{
865 /* Update node */
866 __mod_node_page_state(lruvec_pgdat(lruvec), item: idx, val);
867
868 /* Update memcg and lruvec */
869 if (!mem_cgroup_disabled())
870 __mod_memcg_lruvec_state(lruvec, idx, val);
871}
872
873void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx,
874 int val)
875{
876 struct page *head = compound_head(page); /* rmap on tail pages */
877 struct mem_cgroup *memcg;
878 pg_data_t *pgdat = page_pgdat(page);
879 struct lruvec *lruvec;
880
881 rcu_read_lock();
882 memcg = page_memcg(page: head);
883 /* Untracked pages have no memcg, no lruvec. Update only the node */
884 if (!memcg) {
885 rcu_read_unlock();
886 __mod_node_page_state(pgdat, item: idx, val);
887 return;
888 }
889
890 lruvec = mem_cgroup_lruvec(memcg, pgdat);
891 __mod_lruvec_state(lruvec, idx, val);
892 rcu_read_unlock();
893}
894EXPORT_SYMBOL(__mod_lruvec_page_state);
895
896void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
897{
898 pg_data_t *pgdat = page_pgdat(virt_to_page(p));
899 struct mem_cgroup *memcg;
900 struct lruvec *lruvec;
901
902 rcu_read_lock();
903 memcg = mem_cgroup_from_slab_obj(p);
904
905 /*
906 * Untracked pages have no memcg, no lruvec. Update only the
907 * node. If we reparent the slab objects to the root memcg,
908 * when we free the slab object, we need to update the per-memcg
909 * vmstats to keep it correct for the root memcg.
910 */
911 if (!memcg) {
912 __mod_node_page_state(pgdat, item: idx, val);
913 } else {
914 lruvec = mem_cgroup_lruvec(memcg, pgdat);
915 __mod_lruvec_state(lruvec, idx, val);
916 }
917 rcu_read_unlock();
918}
919
920/**
921 * __count_memcg_events - account VM events in a cgroup
922 * @memcg: the memory cgroup
923 * @idx: the event item
924 * @count: the number of events that occurred
925 */
926void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
927 unsigned long count)
928{
929 int index = memcg_events_index(idx);
930
931 if (mem_cgroup_disabled() || index < 0)
932 return;
933
934 memcg_stats_lock();
935 __this_cpu_add(memcg->vmstats_percpu->events[index], count);
936 memcg_rstat_updated(memcg, val: count);
937 memcg_stats_unlock();
938}
939
940static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
941{
942 int index = memcg_events_index(idx: event);
943
944 if (index < 0)
945 return 0;
946 return READ_ONCE(memcg->vmstats->events[index]);
947}
948
949static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
950{
951 int index = memcg_events_index(idx: event);
952
953 if (index < 0)
954 return 0;
955
956 return READ_ONCE(memcg->vmstats->events_local[index]);
957}
958
959static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
960 int nr_pages)
961{
962 /* pagein of a big page is an event. So, ignore page size */
963 if (nr_pages > 0)
964 __count_memcg_events(memcg, idx: PGPGIN, count: 1);
965 else {
966 __count_memcg_events(memcg, idx: PGPGOUT, count: 1);
967 nr_pages = -nr_pages; /* for event */
968 }
969
970 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
971}
972
973static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
974 enum mem_cgroup_events_target target)
975{
976 unsigned long val, next;
977
978 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
979 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
980 /* from time_after() in jiffies.h */
981 if ((long)(next - val) < 0) {
982 switch (target) {
983 case MEM_CGROUP_TARGET_THRESH:
984 next = val + THRESHOLDS_EVENTS_TARGET;
985 break;
986 case MEM_CGROUP_TARGET_SOFTLIMIT:
987 next = val + SOFTLIMIT_EVENTS_TARGET;
988 break;
989 default:
990 break;
991 }
992 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
993 return true;
994 }
995 return false;
996}
997
998/*
999 * Check events in order.
1000 *
1001 */
1002static void memcg_check_events(struct mem_cgroup *memcg, int nid)
1003{
1004 if (IS_ENABLED(CONFIG_PREEMPT_RT))
1005 return;
1006
1007 /* threshold event is triggered in finer grain than soft limit */
1008 if (unlikely(mem_cgroup_event_ratelimit(memcg,
1009 MEM_CGROUP_TARGET_THRESH))) {
1010 bool do_softlimit;
1011
1012 do_softlimit = mem_cgroup_event_ratelimit(memcg,
1013 target: MEM_CGROUP_TARGET_SOFTLIMIT);
1014 mem_cgroup_threshold(memcg);
1015 if (unlikely(do_softlimit))
1016 mem_cgroup_update_tree(memcg, nid);
1017 }
1018}
1019
1020struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1021{
1022 /*
1023 * mm_update_next_owner() may clear mm->owner to NULL
1024 * if it races with swapoff, page migration, etc.
1025 * So this can be called with p == NULL.
1026 */
1027 if (unlikely(!p))
1028 return NULL;
1029
1030 return mem_cgroup_from_css(css: task_css(task: p, subsys_id: memory_cgrp_id));
1031}
1032EXPORT_SYMBOL(mem_cgroup_from_task);
1033
1034static __always_inline struct mem_cgroup *active_memcg(void)
1035{
1036 if (!in_task())
1037 return this_cpu_read(int_active_memcg);
1038 else
1039 return current->active_memcg;
1040}
1041
1042/**
1043 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
1044 * @mm: mm from which memcg should be extracted. It can be NULL.
1045 *
1046 * Obtain a reference on mm->memcg and returns it if successful. If mm
1047 * is NULL, then the memcg is chosen as follows:
1048 * 1) The active memcg, if set.
1049 * 2) current->mm->memcg, if available
1050 * 3) root memcg
1051 * If mem_cgroup is disabled, NULL is returned.
1052 */
1053struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1054{
1055 struct mem_cgroup *memcg;
1056
1057 if (mem_cgroup_disabled())
1058 return NULL;
1059
1060 /*
1061 * Page cache insertions can happen without an
1062 * actual mm context, e.g. during disk probing
1063 * on boot, loopback IO, acct() writes etc.
1064 *
1065 * No need to css_get on root memcg as the reference
1066 * counting is disabled on the root level in the
1067 * cgroup core. See CSS_NO_REF.
1068 */
1069 if (unlikely(!mm)) {
1070 memcg = active_memcg();
1071 if (unlikely(memcg)) {
1072 /* remote memcg must hold a ref */
1073 css_get(css: &memcg->css);
1074 return memcg;
1075 }
1076 mm = current->mm;
1077 if (unlikely(!mm))
1078 return root_mem_cgroup;
1079 }
1080
1081 rcu_read_lock();
1082 do {
1083 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1084 if (unlikely(!memcg))
1085 memcg = root_mem_cgroup;
1086 } while (!css_tryget(css: &memcg->css));
1087 rcu_read_unlock();
1088 return memcg;
1089}
1090EXPORT_SYMBOL(get_mem_cgroup_from_mm);
1091
1092/**
1093 * get_mem_cgroup_from_current - Obtain a reference on current task's memcg.
1094 */
1095struct mem_cgroup *get_mem_cgroup_from_current(void)
1096{
1097 struct mem_cgroup *memcg;
1098
1099 if (mem_cgroup_disabled())
1100 return NULL;
1101
1102again:
1103 rcu_read_lock();
1104 memcg = mem_cgroup_from_task(current);
1105 if (!css_tryget(css: &memcg->css)) {
1106 rcu_read_unlock();
1107 goto again;
1108 }
1109 rcu_read_unlock();
1110 return memcg;
1111}
1112
1113/**
1114 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1115 * @root: hierarchy root
1116 * @prev: previously returned memcg, NULL on first invocation
1117 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1118 *
1119 * Returns references to children of the hierarchy below @root, or
1120 * @root itself, or %NULL after a full round-trip.
1121 *
1122 * Caller must pass the return value in @prev on subsequent
1123 * invocations for reference counting, or use mem_cgroup_iter_break()
1124 * to cancel a hierarchy walk before the round-trip is complete.
1125 *
1126 * Reclaimers can specify a node in @reclaim to divide up the memcgs
1127 * in the hierarchy among all concurrent reclaimers operating on the
1128 * same node.
1129 */
1130struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1131 struct mem_cgroup *prev,
1132 struct mem_cgroup_reclaim_cookie *reclaim)
1133{
1134 struct mem_cgroup_reclaim_iter *iter;
1135 struct cgroup_subsys_state *css = NULL;
1136 struct mem_cgroup *memcg = NULL;
1137 struct mem_cgroup *pos = NULL;
1138
1139 if (mem_cgroup_disabled())
1140 return NULL;
1141
1142 if (!root)
1143 root = root_mem_cgroup;
1144
1145 rcu_read_lock();
1146
1147 if (reclaim) {
1148 struct mem_cgroup_per_node *mz;
1149
1150 mz = root->nodeinfo[reclaim->pgdat->node_id];
1151 iter = &mz->iter;
1152
1153 /*
1154 * On start, join the current reclaim iteration cycle.
1155 * Exit when a concurrent walker completes it.
1156 */
1157 if (!prev)
1158 reclaim->generation = iter->generation;
1159 else if (reclaim->generation != iter->generation)
1160 goto out_unlock;
1161
1162 while (1) {
1163 pos = READ_ONCE(iter->position);
1164 if (!pos || css_tryget(css: &pos->css))
1165 break;
1166 /*
1167 * css reference reached zero, so iter->position will
1168 * be cleared by ->css_released. However, we should not
1169 * rely on this happening soon, because ->css_released
1170 * is called from a work queue, and by busy-waiting we
1171 * might block it. So we clear iter->position right
1172 * away.
1173 */
1174 (void)cmpxchg(&iter->position, pos, NULL);
1175 }
1176 } else if (prev) {
1177 pos = prev;
1178 }
1179
1180 if (pos)
1181 css = &pos->css;
1182
1183 for (;;) {
1184 css = css_next_descendant_pre(pos: css, css: &root->css);
1185 if (!css) {
1186 /*
1187 * Reclaimers share the hierarchy walk, and a
1188 * new one might jump in right at the end of
1189 * the hierarchy - make sure they see at least
1190 * one group and restart from the beginning.
1191 */
1192 if (!prev)
1193 continue;
1194 break;
1195 }
1196
1197 /*
1198 * Verify the css and acquire a reference. The root
1199 * is provided by the caller, so we know it's alive
1200 * and kicking, and don't take an extra reference.
1201 */
1202 if (css == &root->css || css_tryget(css)) {
1203 memcg = mem_cgroup_from_css(css);
1204 break;
1205 }
1206 }
1207
1208 if (reclaim) {
1209 /*
1210 * The position could have already been updated by a competing
1211 * thread, so check that the value hasn't changed since we read
1212 * it to avoid reclaiming from the same cgroup twice.
1213 */
1214 (void)cmpxchg(&iter->position, pos, memcg);
1215
1216 if (pos)
1217 css_put(css: &pos->css);
1218
1219 if (!memcg)
1220 iter->generation++;
1221 }
1222
1223out_unlock:
1224 rcu_read_unlock();
1225 if (prev && prev != root)
1226 css_put(css: &prev->css);
1227
1228 return memcg;
1229}
1230
1231/**
1232 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1233 * @root: hierarchy root
1234 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1235 */
1236void mem_cgroup_iter_break(struct mem_cgroup *root,
1237 struct mem_cgroup *prev)
1238{
1239 if (!root)
1240 root = root_mem_cgroup;
1241 if (prev && prev != root)
1242 css_put(css: &prev->css);
1243}
1244
1245static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1246 struct mem_cgroup *dead_memcg)
1247{
1248 struct mem_cgroup_reclaim_iter *iter;
1249 struct mem_cgroup_per_node *mz;
1250 int nid;
1251
1252 for_each_node(nid) {
1253 mz = from->nodeinfo[nid];
1254 iter = &mz->iter;
1255 cmpxchg(&iter->position, dead_memcg, NULL);
1256 }
1257}
1258
1259static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1260{
1261 struct mem_cgroup *memcg = dead_memcg;
1262 struct mem_cgroup *last;
1263
1264 do {
1265 __invalidate_reclaim_iterators(from: memcg, dead_memcg);
1266 last = memcg;
1267 } while ((memcg = parent_mem_cgroup(memcg)));
1268
1269 /*
1270 * When cgroup1 non-hierarchy mode is used,
1271 * parent_mem_cgroup() does not walk all the way up to the
1272 * cgroup root (root_mem_cgroup). So we have to handle
1273 * dead_memcg from cgroup root separately.
1274 */
1275 if (!mem_cgroup_is_root(memcg: last))
1276 __invalidate_reclaim_iterators(from: root_mem_cgroup,
1277 dead_memcg);
1278}
1279
1280/**
1281 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1282 * @memcg: hierarchy root
1283 * @fn: function to call for each task
1284 * @arg: argument passed to @fn
1285 *
1286 * This function iterates over tasks attached to @memcg or to any of its
1287 * descendants and calls @fn for each task. If @fn returns a non-zero
1288 * value, the function breaks the iteration loop. Otherwise, it will iterate
1289 * over all tasks and return 0.
1290 *
1291 * This function must not be called for the root memory cgroup.
1292 */
1293void mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1294 int (*fn)(struct task_struct *, void *), void *arg)
1295{
1296 struct mem_cgroup *iter;
1297 int ret = 0;
1298
1299 BUG_ON(mem_cgroup_is_root(memcg));
1300
1301 for_each_mem_cgroup_tree(iter, memcg) {
1302 struct css_task_iter it;
1303 struct task_struct *task;
1304
1305 css_task_iter_start(css: &iter->css, flags: CSS_TASK_ITER_PROCS, it: &it);
1306 while (!ret && (task = css_task_iter_next(it: &it)))
1307 ret = fn(task, arg);
1308 css_task_iter_end(it: &it);
1309 if (ret) {
1310 mem_cgroup_iter_break(root: memcg, prev: iter);
1311 break;
1312 }
1313 }
1314}
1315
1316#ifdef CONFIG_DEBUG_VM
1317void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1318{
1319 struct mem_cgroup *memcg;
1320
1321 if (mem_cgroup_disabled())
1322 return;
1323
1324 memcg = folio_memcg(folio);
1325
1326 if (!memcg)
1327 VM_BUG_ON_FOLIO(!mem_cgroup_is_root(lruvec_memcg(lruvec)), folio);
1328 else
1329 VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio);
1330}
1331#endif
1332
1333/**
1334 * folio_lruvec_lock - Lock the lruvec for a folio.
1335 * @folio: Pointer to the folio.
1336 *
1337 * These functions are safe to use under any of the following conditions:
1338 * - folio locked
1339 * - folio_test_lru false
1340 * - folio_memcg_lock()
1341 * - folio frozen (refcount of 0)
1342 *
1343 * Return: The lruvec this folio is on with its lock held.
1344 */
1345struct lruvec *folio_lruvec_lock(struct folio *folio)
1346{
1347 struct lruvec *lruvec = folio_lruvec(folio);
1348
1349 spin_lock(lock: &lruvec->lru_lock);
1350 lruvec_memcg_debug(lruvec, folio);
1351
1352 return lruvec;
1353}
1354
1355/**
1356 * folio_lruvec_lock_irq - Lock the lruvec for a folio.
1357 * @folio: Pointer to the folio.
1358 *
1359 * These functions are safe to use under any of the following conditions:
1360 * - folio locked
1361 * - folio_test_lru false
1362 * - folio_memcg_lock()
1363 * - folio frozen (refcount of 0)
1364 *
1365 * Return: The lruvec this folio is on with its lock held and interrupts
1366 * disabled.
1367 */
1368struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1369{
1370 struct lruvec *lruvec = folio_lruvec(folio);
1371
1372 spin_lock_irq(lock: &lruvec->lru_lock);
1373 lruvec_memcg_debug(lruvec, folio);
1374
1375 return lruvec;
1376}
1377
1378/**
1379 * folio_lruvec_lock_irqsave - Lock the lruvec for a folio.
1380 * @folio: Pointer to the folio.
1381 * @flags: Pointer to irqsave flags.
1382 *
1383 * These functions are safe to use under any of the following conditions:
1384 * - folio locked
1385 * - folio_test_lru false
1386 * - folio_memcg_lock()
1387 * - folio frozen (refcount of 0)
1388 *
1389 * Return: The lruvec this folio is on with its lock held and interrupts
1390 * disabled.
1391 */
1392struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1393 unsigned long *flags)
1394{
1395 struct lruvec *lruvec = folio_lruvec(folio);
1396
1397 spin_lock_irqsave(&lruvec->lru_lock, *flags);
1398 lruvec_memcg_debug(lruvec, folio);
1399
1400 return lruvec;
1401}
1402
1403/**
1404 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1405 * @lruvec: mem_cgroup per zone lru vector
1406 * @lru: index of lru list the page is sitting on
1407 * @zid: zone id of the accounted pages
1408 * @nr_pages: positive when adding or negative when removing
1409 *
1410 * This function must be called under lru_lock, just before a page is added
1411 * to or just after a page is removed from an lru list.
1412 */
1413void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1414 int zid, int nr_pages)
1415{
1416 struct mem_cgroup_per_node *mz;
1417 unsigned long *lru_size;
1418 long size;
1419
1420 if (mem_cgroup_disabled())
1421 return;
1422
1423 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1424 lru_size = &mz->lru_zone_size[zid][lru];
1425
1426 if (nr_pages < 0)
1427 *lru_size += nr_pages;
1428
1429 size = *lru_size;
1430 if (WARN_ONCE(size < 0,
1431 "%s(%p, %d, %d): lru_size %ld\n",
1432 __func__, lruvec, lru, nr_pages, size)) {
1433 VM_BUG_ON(1);
1434 *lru_size = 0;
1435 }
1436
1437 if (nr_pages > 0)
1438 *lru_size += nr_pages;
1439}
1440
1441/**
1442 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1443 * @memcg: the memory cgroup
1444 *
1445 * Returns the maximum amount of memory @mem can be charged with, in
1446 * pages.
1447 */
1448static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1449{
1450 unsigned long margin = 0;
1451 unsigned long count;
1452 unsigned long limit;
1453
1454 count = page_counter_read(counter: &memcg->memory);
1455 limit = READ_ONCE(memcg->memory.max);
1456 if (count < limit)
1457 margin = limit - count;
1458
1459 if (do_memsw_account()) {
1460 count = page_counter_read(counter: &memcg->memsw);
1461 limit = READ_ONCE(memcg->memsw.max);
1462 if (count < limit)
1463 margin = min(margin, limit - count);
1464 else
1465 margin = 0;
1466 }
1467
1468 return margin;
1469}
1470
1471/*
1472 * A routine for checking "mem" is under move_account() or not.
1473 *
1474 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1475 * moving cgroups. This is for waiting at high-memory pressure
1476 * caused by "move".
1477 */
1478static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1479{
1480 struct mem_cgroup *from;
1481 struct mem_cgroup *to;
1482 bool ret = false;
1483 /*
1484 * Unlike task_move routines, we access mc.to, mc.from not under
1485 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1486 */
1487 spin_lock(lock: &mc.lock);
1488 from = mc.from;
1489 to = mc.to;
1490 if (!from)
1491 goto unlock;
1492
1493 ret = mem_cgroup_is_descendant(memcg: from, root: memcg) ||
1494 mem_cgroup_is_descendant(memcg: to, root: memcg);
1495unlock:
1496 spin_unlock(lock: &mc.lock);
1497 return ret;
1498}
1499
1500static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1501{
1502 if (mc.moving_task && current != mc.moving_task) {
1503 if (mem_cgroup_under_move(memcg)) {
1504 DEFINE_WAIT(wait);
1505 prepare_to_wait(wq_head: &mc.waitq, wq_entry: &wait, TASK_INTERRUPTIBLE);
1506 /* moving charge context might have finished. */
1507 if (mc.moving_task)
1508 schedule();
1509 finish_wait(wq_head: &mc.waitq, wq_entry: &wait);
1510 return true;
1511 }
1512 }
1513 return false;
1514}
1515
1516struct memory_stat {
1517 const char *name;
1518 unsigned int idx;
1519};
1520
1521static const struct memory_stat memory_stats[] = {
1522 { "anon", NR_ANON_MAPPED },
1523 { "file", NR_FILE_PAGES },
1524 { "kernel", MEMCG_KMEM },
1525 { "kernel_stack", NR_KERNEL_STACK_KB },
1526 { "pagetables", NR_PAGETABLE },
1527 { "sec_pagetables", NR_SECONDARY_PAGETABLE },
1528 { "percpu", MEMCG_PERCPU_B },
1529 { "sock", MEMCG_SOCK },
1530 { "vmalloc", MEMCG_VMALLOC },
1531 { "shmem", NR_SHMEM },
1532#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
1533 { "zswap", MEMCG_ZSWAP_B },
1534 { "zswapped", MEMCG_ZSWAPPED },
1535#endif
1536 { "file_mapped", NR_FILE_MAPPED },
1537 { "file_dirty", NR_FILE_DIRTY },
1538 { "file_writeback", NR_WRITEBACK },
1539#ifdef CONFIG_SWAP
1540 { "swapcached", NR_SWAPCACHE },
1541#endif
1542#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1543 { "anon_thp", NR_ANON_THPS },
1544 { "file_thp", NR_FILE_THPS },
1545 { "shmem_thp", NR_SHMEM_THPS },
1546#endif
1547 { "inactive_anon", NR_INACTIVE_ANON },
1548 { "active_anon", NR_ACTIVE_ANON },
1549 { "inactive_file", NR_INACTIVE_FILE },
1550 { "active_file", NR_ACTIVE_FILE },
1551 { "unevictable", NR_UNEVICTABLE },
1552 { "slab_reclaimable", NR_SLAB_RECLAIMABLE_B },
1553 { "slab_unreclaimable", NR_SLAB_UNRECLAIMABLE_B },
1554
1555 /* The memory events */
1556 { "workingset_refault_anon", WORKINGSET_REFAULT_ANON },
1557 { "workingset_refault_file", WORKINGSET_REFAULT_FILE },
1558 { "workingset_activate_anon", WORKINGSET_ACTIVATE_ANON },
1559 { "workingset_activate_file", WORKINGSET_ACTIVATE_FILE },
1560 { "workingset_restore_anon", WORKINGSET_RESTORE_ANON },
1561 { "workingset_restore_file", WORKINGSET_RESTORE_FILE },
1562 { "workingset_nodereclaim", WORKINGSET_NODERECLAIM },
1563};
1564
1565/* The actual unit of the state item, not the same as the output unit */
1566static int memcg_page_state_unit(int item)
1567{
1568 switch (item) {
1569 case MEMCG_PERCPU_B:
1570 case MEMCG_ZSWAP_B:
1571 case NR_SLAB_RECLAIMABLE_B:
1572 case NR_SLAB_UNRECLAIMABLE_B:
1573 return 1;
1574 case NR_KERNEL_STACK_KB:
1575 return SZ_1K;
1576 default:
1577 return PAGE_SIZE;
1578 }
1579}
1580
1581/* Translate stat items to the correct unit for memory.stat output */
1582static int memcg_page_state_output_unit(int item)
1583{
1584 /*
1585 * Workingset state is actually in pages, but we export it to userspace
1586 * as a scalar count of events, so special case it here.
1587 */
1588 switch (item) {
1589 case WORKINGSET_REFAULT_ANON:
1590 case WORKINGSET_REFAULT_FILE:
1591 case WORKINGSET_ACTIVATE_ANON:
1592 case WORKINGSET_ACTIVATE_FILE:
1593 case WORKINGSET_RESTORE_ANON:
1594 case WORKINGSET_RESTORE_FILE:
1595 case WORKINGSET_NODERECLAIM:
1596 return 1;
1597 default:
1598 return memcg_page_state_unit(item);
1599 }
1600}
1601
1602static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg,
1603 int item)
1604{
1605 return memcg_page_state(memcg, idx: item) *
1606 memcg_page_state_output_unit(item);
1607}
1608
1609static inline unsigned long memcg_page_state_local_output(
1610 struct mem_cgroup *memcg, int item)
1611{
1612 return memcg_page_state_local(memcg, idx: item) *
1613 memcg_page_state_output_unit(item);
1614}
1615
1616static void memcg_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
1617{
1618 int i;
1619
1620 /*
1621 * Provide statistics on the state of the memory subsystem as
1622 * well as cumulative event counters that show past behavior.
1623 *
1624 * This list is ordered following a combination of these gradients:
1625 * 1) generic big picture -> specifics and details
1626 * 2) reflecting userspace activity -> reflecting kernel heuristics
1627 *
1628 * Current memory state:
1629 */
1630 mem_cgroup_flush_stats();
1631
1632 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1633 u64 size;
1634
1635 size = memcg_page_state_output(memcg, item: memory_stats[i].idx);
1636 seq_buf_printf(s, fmt: "%s %llu\n", memory_stats[i].name, size);
1637
1638 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1639 size += memcg_page_state_output(memcg,
1640 item: NR_SLAB_RECLAIMABLE_B);
1641 seq_buf_printf(s, fmt: "slab %llu\n", size);
1642 }
1643 }
1644
1645 /* Accumulated memory events */
1646 seq_buf_printf(s, fmt: "pgscan %lu\n",
1647 memcg_events(memcg, event: PGSCAN_KSWAPD) +
1648 memcg_events(memcg, event: PGSCAN_DIRECT) +
1649 memcg_events(memcg, event: PGSCAN_KHUGEPAGED));
1650 seq_buf_printf(s, fmt: "pgsteal %lu\n",
1651 memcg_events(memcg, event: PGSTEAL_KSWAPD) +
1652 memcg_events(memcg, event: PGSTEAL_DIRECT) +
1653 memcg_events(memcg, event: PGSTEAL_KHUGEPAGED));
1654
1655 for (i = 0; i < ARRAY_SIZE(memcg_vm_event_stat); i++) {
1656 if (memcg_vm_event_stat[i] == PGPGIN ||
1657 memcg_vm_event_stat[i] == PGPGOUT)
1658 continue;
1659
1660 seq_buf_printf(s, fmt: "%s %lu\n",
1661 vm_event_name(item: memcg_vm_event_stat[i]),
1662 memcg_events(memcg, event: memcg_vm_event_stat[i]));
1663 }
1664
1665 /* The above should easily fit into one page */
1666 WARN_ON_ONCE(seq_buf_has_overflowed(s));
1667}
1668
1669static void memcg1_stat_format(struct mem_cgroup *memcg, struct seq_buf *s);
1670
1671static void memory_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
1672{
1673 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1674 memcg_stat_format(memcg, s);
1675 else
1676 memcg1_stat_format(memcg, s);
1677 WARN_ON_ONCE(seq_buf_has_overflowed(s));
1678}
1679
1680/**
1681 * mem_cgroup_print_oom_context: Print OOM information relevant to
1682 * memory controller.
1683 * @memcg: The memory cgroup that went over limit
1684 * @p: Task that is going to be killed
1685 *
1686 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1687 * enabled
1688 */
1689void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1690{
1691 rcu_read_lock();
1692
1693 if (memcg) {
1694 pr_cont(",oom_memcg=");
1695 pr_cont_cgroup_path(cgrp: memcg->css.cgroup);
1696 } else
1697 pr_cont(",global_oom");
1698 if (p) {
1699 pr_cont(",task_memcg=");
1700 pr_cont_cgroup_path(cgrp: task_cgroup(task: p, subsys_id: memory_cgrp_id));
1701 }
1702 rcu_read_unlock();
1703}
1704
1705/**
1706 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1707 * memory controller.
1708 * @memcg: The memory cgroup that went over limit
1709 */
1710void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1711{
1712 /* Use static buffer, for the caller is holding oom_lock. */
1713 static char buf[PAGE_SIZE];
1714 struct seq_buf s;
1715
1716 lockdep_assert_held(&oom_lock);
1717
1718 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1719 K((u64)page_counter_read(&memcg->memory)),
1720 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1721 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1722 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1723 K((u64)page_counter_read(&memcg->swap)),
1724 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1725 else {
1726 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1727 K((u64)page_counter_read(&memcg->memsw)),
1728 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1729 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1730 K((u64)page_counter_read(&memcg->kmem)),
1731 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1732 }
1733
1734 pr_info("Memory cgroup stats for ");
1735 pr_cont_cgroup_path(cgrp: memcg->css.cgroup);
1736 pr_cont(":");
1737 seq_buf_init(s: &s, buf, size: sizeof(buf));
1738 memory_stat_format(memcg, s: &s);
1739 seq_buf_do_printk(s: &s, KERN_INFO);
1740}
1741
1742/*
1743 * Return the memory (and swap, if configured) limit for a memcg.
1744 */
1745unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1746{
1747 unsigned long max = READ_ONCE(memcg->memory.max);
1748
1749 if (do_memsw_account()) {
1750 if (mem_cgroup_swappiness(memcg)) {
1751 /* Calculate swap excess capacity from memsw limit */
1752 unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1753
1754 max += min(swap, (unsigned long)total_swap_pages);
1755 }
1756 } else {
1757 if (mem_cgroup_swappiness(memcg))
1758 max += min(READ_ONCE(memcg->swap.max),
1759 (unsigned long)total_swap_pages);
1760 }
1761 return max;
1762}
1763
1764unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1765{
1766 return page_counter_read(counter: &memcg->memory);
1767}
1768
1769static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1770 int order)
1771{
1772 struct oom_control oc = {
1773 .zonelist = NULL,
1774 .nodemask = NULL,
1775 .memcg = memcg,
1776 .gfp_mask = gfp_mask,
1777 .order = order,
1778 };
1779 bool ret = true;
1780
1781 if (mutex_lock_killable(&oom_lock))
1782 return true;
1783
1784 if (mem_cgroup_margin(memcg) >= (1 << order))
1785 goto unlock;
1786
1787 /*
1788 * A few threads which were not waiting at mutex_lock_killable() can
1789 * fail to bail out. Therefore, check again after holding oom_lock.
1790 */
1791 ret = task_is_dying() || out_of_memory(oc: &oc);
1792
1793unlock:
1794 mutex_unlock(lock: &oom_lock);
1795 return ret;
1796}
1797
1798static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1799 pg_data_t *pgdat,
1800 gfp_t gfp_mask,
1801 unsigned long *total_scanned)
1802{
1803 struct mem_cgroup *victim = NULL;
1804 int total = 0;
1805 int loop = 0;
1806 unsigned long excess;
1807 unsigned long nr_scanned;
1808 struct mem_cgroup_reclaim_cookie reclaim = {
1809 .pgdat = pgdat,
1810 };
1811
1812 excess = soft_limit_excess(memcg: root_memcg);
1813
1814 while (1) {
1815 victim = mem_cgroup_iter(root: root_memcg, prev: victim, reclaim: &reclaim);
1816 if (!victim) {
1817 loop++;
1818 if (loop >= 2) {
1819 /*
1820 * If we have not been able to reclaim
1821 * anything, it might because there are
1822 * no reclaimable pages under this hierarchy
1823 */
1824 if (!total)
1825 break;
1826 /*
1827 * We want to do more targeted reclaim.
1828 * excess >> 2 is not to excessive so as to
1829 * reclaim too much, nor too less that we keep
1830 * coming back to reclaim from this cgroup
1831 */
1832 if (total >= (excess >> 2) ||
1833 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1834 break;
1835 }
1836 continue;
1837 }
1838 total += mem_cgroup_shrink_node(mem: victim, gfp_mask, noswap: false,
1839 pgdat, nr_scanned: &nr_scanned);
1840 *total_scanned += nr_scanned;
1841 if (!soft_limit_excess(memcg: root_memcg))
1842 break;
1843 }
1844 mem_cgroup_iter_break(root: root_memcg, prev: victim);
1845 return total;
1846}
1847
1848#ifdef CONFIG_LOCKDEP
1849static struct lockdep_map memcg_oom_lock_dep_map = {
1850 .name = "memcg_oom_lock",
1851};
1852#endif
1853
1854static DEFINE_SPINLOCK(memcg_oom_lock);
1855
1856/*
1857 * Check OOM-Killer is already running under our hierarchy.
1858 * If someone is running, return false.
1859 */
1860static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1861{
1862 struct mem_cgroup *iter, *failed = NULL;
1863
1864 spin_lock(lock: &memcg_oom_lock);
1865
1866 for_each_mem_cgroup_tree(iter, memcg) {
1867 if (iter->oom_lock) {
1868 /*
1869 * this subtree of our hierarchy is already locked
1870 * so we cannot give a lock.
1871 */
1872 failed = iter;
1873 mem_cgroup_iter_break(root: memcg, prev: iter);
1874 break;
1875 } else
1876 iter->oom_lock = true;
1877 }
1878
1879 if (failed) {
1880 /*
1881 * OK, we failed to lock the whole subtree so we have
1882 * to clean up what we set up to the failing subtree
1883 */
1884 for_each_mem_cgroup_tree(iter, memcg) {
1885 if (iter == failed) {
1886 mem_cgroup_iter_break(root: memcg, prev: iter);
1887 break;
1888 }
1889 iter->oom_lock = false;
1890 }
1891 } else
1892 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1893
1894 spin_unlock(lock: &memcg_oom_lock);
1895
1896 return !failed;
1897}
1898
1899static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1900{
1901 struct mem_cgroup *iter;
1902
1903 spin_lock(lock: &memcg_oom_lock);
1904 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1905 for_each_mem_cgroup_tree(iter, memcg)
1906 iter->oom_lock = false;
1907 spin_unlock(lock: &memcg_oom_lock);
1908}
1909
1910static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1911{
1912 struct mem_cgroup *iter;
1913
1914 spin_lock(lock: &memcg_oom_lock);
1915 for_each_mem_cgroup_tree(iter, memcg)
1916 iter->under_oom++;
1917 spin_unlock(lock: &memcg_oom_lock);
1918}
1919
1920static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1921{
1922 struct mem_cgroup *iter;
1923
1924 /*
1925 * Be careful about under_oom underflows because a child memcg
1926 * could have been added after mem_cgroup_mark_under_oom.
1927 */
1928 spin_lock(lock: &memcg_oom_lock);
1929 for_each_mem_cgroup_tree(iter, memcg)
1930 if (iter->under_oom > 0)
1931 iter->under_oom--;
1932 spin_unlock(lock: &memcg_oom_lock);
1933}
1934
1935static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1936
1937struct oom_wait_info {
1938 struct mem_cgroup *memcg;
1939 wait_queue_entry_t wait;
1940};
1941
1942static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1943 unsigned mode, int sync, void *arg)
1944{
1945 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1946 struct mem_cgroup *oom_wait_memcg;
1947 struct oom_wait_info *oom_wait_info;
1948
1949 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1950 oom_wait_memcg = oom_wait_info->memcg;
1951
1952 if (!mem_cgroup_is_descendant(memcg: wake_memcg, root: oom_wait_memcg) &&
1953 !mem_cgroup_is_descendant(memcg: oom_wait_memcg, root: wake_memcg))
1954 return 0;
1955 return autoremove_wake_function(wq_entry: wait, mode, sync, key: arg);
1956}
1957
1958static void memcg_oom_recover(struct mem_cgroup *memcg)
1959{
1960 /*
1961 * For the following lockless ->under_oom test, the only required
1962 * guarantee is that it must see the state asserted by an OOM when
1963 * this function is called as a result of userland actions
1964 * triggered by the notification of the OOM. This is trivially
1965 * achieved by invoking mem_cgroup_mark_under_oom() before
1966 * triggering notification.
1967 */
1968 if (memcg && memcg->under_oom)
1969 __wake_up(wq_head: &memcg_oom_waitq, TASK_NORMAL, nr: 0, key: memcg);
1970}
1971
1972/*
1973 * Returns true if successfully killed one or more processes. Though in some
1974 * corner cases it can return true even without killing any process.
1975 */
1976static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1977{
1978 bool locked, ret;
1979
1980 if (order > PAGE_ALLOC_COSTLY_ORDER)
1981 return false;
1982
1983 memcg_memory_event(memcg, event: MEMCG_OOM);
1984
1985 /*
1986 * We are in the middle of the charge context here, so we
1987 * don't want to block when potentially sitting on a callstack
1988 * that holds all kinds of filesystem and mm locks.
1989 *
1990 * cgroup1 allows disabling the OOM killer and waiting for outside
1991 * handling until the charge can succeed; remember the context and put
1992 * the task to sleep at the end of the page fault when all locks are
1993 * released.
1994 *
1995 * On the other hand, in-kernel OOM killer allows for an async victim
1996 * memory reclaim (oom_reaper) and that means that we are not solely
1997 * relying on the oom victim to make a forward progress and we can
1998 * invoke the oom killer here.
1999 *
2000 * Please note that mem_cgroup_out_of_memory might fail to find a
2001 * victim and then we have to bail out from the charge path.
2002 */
2003 if (READ_ONCE(memcg->oom_kill_disable)) {
2004 if (current->in_user_fault) {
2005 css_get(css: &memcg->css);
2006 current->memcg_in_oom = memcg;
2007 current->memcg_oom_gfp_mask = mask;
2008 current->memcg_oom_order = order;
2009 }
2010 return false;
2011 }
2012
2013 mem_cgroup_mark_under_oom(memcg);
2014
2015 locked = mem_cgroup_oom_trylock(memcg);
2016
2017 if (locked)
2018 mem_cgroup_oom_notify(memcg);
2019
2020 mem_cgroup_unmark_under_oom(memcg);
2021 ret = mem_cgroup_out_of_memory(memcg, gfp_mask: mask, order);
2022
2023 if (locked)
2024 mem_cgroup_oom_unlock(memcg);
2025
2026 return ret;
2027}
2028
2029/**
2030 * mem_cgroup_oom_synchronize - complete memcg OOM handling
2031 * @handle: actually kill/wait or just clean up the OOM state
2032 *
2033 * This has to be called at the end of a page fault if the memcg OOM
2034 * handler was enabled.
2035 *
2036 * Memcg supports userspace OOM handling where failed allocations must
2037 * sleep on a waitqueue until the userspace task resolves the
2038 * situation. Sleeping directly in the charge context with all kinds
2039 * of locks held is not a good idea, instead we remember an OOM state
2040 * in the task and mem_cgroup_oom_synchronize() has to be called at
2041 * the end of the page fault to complete the OOM handling.
2042 *
2043 * Returns %true if an ongoing memcg OOM situation was detected and
2044 * completed, %false otherwise.
2045 */
2046bool mem_cgroup_oom_synchronize(bool handle)
2047{
2048 struct mem_cgroup *memcg = current->memcg_in_oom;
2049 struct oom_wait_info owait;
2050 bool locked;
2051
2052 /* OOM is global, do not handle */
2053 if (!memcg)
2054 return false;
2055
2056 if (!handle)
2057 goto cleanup;
2058
2059 owait.memcg = memcg;
2060 owait.wait.flags = 0;
2061 owait.wait.func = memcg_oom_wake_function;
2062 owait.wait.private = current;
2063 INIT_LIST_HEAD(list: &owait.wait.entry);
2064
2065 prepare_to_wait(wq_head: &memcg_oom_waitq, wq_entry: &owait.wait, TASK_KILLABLE);
2066 mem_cgroup_mark_under_oom(memcg);
2067
2068 locked = mem_cgroup_oom_trylock(memcg);
2069
2070 if (locked)
2071 mem_cgroup_oom_notify(memcg);
2072
2073 schedule();
2074 mem_cgroup_unmark_under_oom(memcg);
2075 finish_wait(wq_head: &memcg_oom_waitq, wq_entry: &owait.wait);
2076
2077 if (locked)
2078 mem_cgroup_oom_unlock(memcg);
2079cleanup:
2080 current->memcg_in_oom = NULL;
2081 css_put(css: &memcg->css);
2082 return true;
2083}
2084
2085/**
2086 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
2087 * @victim: task to be killed by the OOM killer
2088 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
2089 *
2090 * Returns a pointer to a memory cgroup, which has to be cleaned up
2091 * by killing all belonging OOM-killable tasks.
2092 *
2093 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
2094 */
2095struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
2096 struct mem_cgroup *oom_domain)
2097{
2098 struct mem_cgroup *oom_group = NULL;
2099 struct mem_cgroup *memcg;
2100
2101 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2102 return NULL;
2103
2104 if (!oom_domain)
2105 oom_domain = root_mem_cgroup;
2106
2107 rcu_read_lock();
2108
2109 memcg = mem_cgroup_from_task(victim);
2110 if (mem_cgroup_is_root(memcg))
2111 goto out;
2112
2113 /*
2114 * If the victim task has been asynchronously moved to a different
2115 * memory cgroup, we might end up killing tasks outside oom_domain.
2116 * In this case it's better to ignore memory.group.oom.
2117 */
2118 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
2119 goto out;
2120
2121 /*
2122 * Traverse the memory cgroup hierarchy from the victim task's
2123 * cgroup up to the OOMing cgroup (or root) to find the
2124 * highest-level memory cgroup with oom.group set.
2125 */
2126 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
2127 if (READ_ONCE(memcg->oom_group))
2128 oom_group = memcg;
2129
2130 if (memcg == oom_domain)
2131 break;
2132 }
2133
2134 if (oom_group)
2135 css_get(css: &oom_group->css);
2136out:
2137 rcu_read_unlock();
2138
2139 return oom_group;
2140}
2141
2142void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2143{
2144 pr_info("Tasks in ");
2145 pr_cont_cgroup_path(cgrp: memcg->css.cgroup);
2146 pr_cont(" are going to be killed due to memory.oom.group set\n");
2147}
2148
2149/**
2150 * folio_memcg_lock - Bind a folio to its memcg.
2151 * @folio: The folio.
2152 *
2153 * This function prevents unlocked LRU folios from being moved to
2154 * another cgroup.
2155 *
2156 * It ensures lifetime of the bound memcg. The caller is responsible
2157 * for the lifetime of the folio.
2158 */
2159void folio_memcg_lock(struct folio *folio)
2160{
2161 struct mem_cgroup *memcg;
2162 unsigned long flags;
2163
2164 /*
2165 * The RCU lock is held throughout the transaction. The fast
2166 * path can get away without acquiring the memcg->move_lock
2167 * because page moving starts with an RCU grace period.
2168 */
2169 rcu_read_lock();
2170
2171 if (mem_cgroup_disabled())
2172 return;
2173again:
2174 memcg = folio_memcg(folio);
2175 if (unlikely(!memcg))
2176 return;
2177
2178#ifdef CONFIG_PROVE_LOCKING
2179 local_irq_save(flags);
2180 might_lock(&memcg->move_lock);
2181 local_irq_restore(flags);
2182#endif
2183
2184 if (atomic_read(v: &memcg->moving_account) <= 0)
2185 return;
2186
2187 spin_lock_irqsave(&memcg->move_lock, flags);
2188 if (memcg != folio_memcg(folio)) {
2189 spin_unlock_irqrestore(lock: &memcg->move_lock, flags);
2190 goto again;
2191 }
2192
2193 /*
2194 * When charge migration first begins, we can have multiple
2195 * critical sections holding the fast-path RCU lock and one
2196 * holding the slowpath move_lock. Track the task who has the
2197 * move_lock for folio_memcg_unlock().
2198 */
2199 memcg->move_lock_task = current;
2200 memcg->move_lock_flags = flags;
2201}
2202
2203static void __folio_memcg_unlock(struct mem_cgroup *memcg)
2204{
2205 if (memcg && memcg->move_lock_task == current) {
2206 unsigned long flags = memcg->move_lock_flags;
2207
2208 memcg->move_lock_task = NULL;
2209 memcg->move_lock_flags = 0;
2210
2211 spin_unlock_irqrestore(lock: &memcg->move_lock, flags);
2212 }
2213
2214 rcu_read_unlock();
2215}
2216
2217/**
2218 * folio_memcg_unlock - Release the binding between a folio and its memcg.
2219 * @folio: The folio.
2220 *
2221 * This releases the binding created by folio_memcg_lock(). This does
2222 * not change the accounting of this folio to its memcg, but it does
2223 * permit others to change it.
2224 */
2225void folio_memcg_unlock(struct folio *folio)
2226{
2227 __folio_memcg_unlock(memcg: folio_memcg(folio));
2228}
2229
2230struct memcg_stock_pcp {
2231 local_lock_t stock_lock;
2232 struct mem_cgroup *cached; /* this never be root cgroup */
2233 unsigned int nr_pages;
2234
2235#ifdef CONFIG_MEMCG_KMEM
2236 struct obj_cgroup *cached_objcg;
2237 struct pglist_data *cached_pgdat;
2238 unsigned int nr_bytes;
2239 int nr_slab_reclaimable_b;
2240 int nr_slab_unreclaimable_b;
2241#endif
2242
2243 struct work_struct work;
2244 unsigned long flags;
2245#define FLUSHING_CACHED_CHARGE 0
2246};
2247static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock) = {
2248 .stock_lock = INIT_LOCAL_LOCK(stock_lock),
2249};
2250static DEFINE_MUTEX(percpu_charge_mutex);
2251
2252#ifdef CONFIG_MEMCG_KMEM
2253static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock);
2254static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2255 struct mem_cgroup *root_memcg);
2256static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages);
2257
2258#else
2259static inline struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
2260{
2261 return NULL;
2262}
2263static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2264 struct mem_cgroup *root_memcg)
2265{
2266 return false;
2267}
2268static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
2269{
2270}
2271#endif
2272
2273/**
2274 * consume_stock: Try to consume stocked charge on this cpu.
2275 * @memcg: memcg to consume from.
2276 * @nr_pages: how many pages to charge.
2277 *
2278 * The charges will only happen if @memcg matches the current cpu's memcg
2279 * stock, and at least @nr_pages are available in that stock. Failure to
2280 * service an allocation will refill the stock.
2281 *
2282 * returns true if successful, false otherwise.
2283 */
2284static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2285{
2286 struct memcg_stock_pcp *stock;
2287 unsigned long flags;
2288 bool ret = false;
2289
2290 if (nr_pages > MEMCG_CHARGE_BATCH)
2291 return ret;
2292
2293 local_lock_irqsave(&memcg_stock.stock_lock, flags);
2294
2295 stock = this_cpu_ptr(&memcg_stock);
2296 if (memcg == READ_ONCE(stock->cached) && stock->nr_pages >= nr_pages) {
2297 stock->nr_pages -= nr_pages;
2298 ret = true;
2299 }
2300
2301 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2302
2303 return ret;
2304}
2305
2306/*
2307 * Returns stocks cached in percpu and reset cached information.
2308 */
2309static void drain_stock(struct memcg_stock_pcp *stock)
2310{
2311 struct mem_cgroup *old = READ_ONCE(stock->cached);
2312
2313 if (!old)
2314 return;
2315
2316 if (stock->nr_pages) {
2317 page_counter_uncharge(counter: &old->memory, nr_pages: stock->nr_pages);
2318 if (do_memsw_account())
2319 page_counter_uncharge(counter: &old->memsw, nr_pages: stock->nr_pages);
2320 stock->nr_pages = 0;
2321 }
2322
2323 css_put(css: &old->css);
2324 WRITE_ONCE(stock->cached, NULL);
2325}
2326
2327static void drain_local_stock(struct work_struct *dummy)
2328{
2329 struct memcg_stock_pcp *stock;
2330 struct obj_cgroup *old = NULL;
2331 unsigned long flags;
2332
2333 /*
2334 * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs.
2335 * drain_stock races is that we always operate on local CPU stock
2336 * here with IRQ disabled
2337 */
2338 local_lock_irqsave(&memcg_stock.stock_lock, flags);
2339
2340 stock = this_cpu_ptr(&memcg_stock);
2341 old = drain_obj_stock(stock);
2342 drain_stock(stock);
2343 clear_bit(FLUSHING_CACHED_CHARGE, addr: &stock->flags);
2344
2345 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2346 if (old)
2347 obj_cgroup_put(objcg: old);
2348}
2349
2350/*
2351 * Cache charges(val) to local per_cpu area.
2352 * This will be consumed by consume_stock() function, later.
2353 */
2354static void __refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2355{
2356 struct memcg_stock_pcp *stock;
2357
2358 stock = this_cpu_ptr(&memcg_stock);
2359 if (READ_ONCE(stock->cached) != memcg) { /* reset if necessary */
2360 drain_stock(stock);
2361 css_get(css: &memcg->css);
2362 WRITE_ONCE(stock->cached, memcg);
2363 }
2364 stock->nr_pages += nr_pages;
2365
2366 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2367 drain_stock(stock);
2368}
2369
2370static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2371{
2372 unsigned long flags;
2373
2374 local_lock_irqsave(&memcg_stock.stock_lock, flags);
2375 __refill_stock(memcg, nr_pages);
2376 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2377}
2378
2379/*
2380 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2381 * of the hierarchy under it.
2382 */
2383static void drain_all_stock(struct mem_cgroup *root_memcg)
2384{
2385 int cpu, curcpu;
2386
2387 /* If someone's already draining, avoid adding running more workers. */
2388 if (!mutex_trylock(lock: &percpu_charge_mutex))
2389 return;
2390 /*
2391 * Notify other cpus that system-wide "drain" is running
2392 * We do not care about races with the cpu hotplug because cpu down
2393 * as well as workers from this path always operate on the local
2394 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2395 */
2396 migrate_disable();
2397 curcpu = smp_processor_id();
2398 for_each_online_cpu(cpu) {
2399 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2400 struct mem_cgroup *memcg;
2401 bool flush = false;
2402
2403 rcu_read_lock();
2404 memcg = READ_ONCE(stock->cached);
2405 if (memcg && stock->nr_pages &&
2406 mem_cgroup_is_descendant(memcg, root: root_memcg))
2407 flush = true;
2408 else if (obj_stock_flush_required(stock, root_memcg))
2409 flush = true;
2410 rcu_read_unlock();
2411
2412 if (flush &&
2413 !test_and_set_bit(FLUSHING_CACHED_CHARGE, addr: &stock->flags)) {
2414 if (cpu == curcpu)
2415 drain_local_stock(dummy: &stock->work);
2416 else if (!cpu_is_isolated(cpu))
2417 schedule_work_on(cpu, work: &stock->work);
2418 }
2419 }
2420 migrate_enable();
2421 mutex_unlock(lock: &percpu_charge_mutex);
2422}
2423
2424static int memcg_hotplug_cpu_dead(unsigned int cpu)
2425{
2426 struct memcg_stock_pcp *stock;
2427
2428 stock = &per_cpu(memcg_stock, cpu);
2429 drain_stock(stock);
2430
2431 return 0;
2432}
2433
2434static unsigned long reclaim_high(struct mem_cgroup *memcg,
2435 unsigned int nr_pages,
2436 gfp_t gfp_mask)
2437{
2438 unsigned long nr_reclaimed = 0;
2439
2440 do {
2441 unsigned long pflags;
2442
2443 if (page_counter_read(counter: &memcg->memory) <=
2444 READ_ONCE(memcg->memory.high))
2445 continue;
2446
2447 memcg_memory_event(memcg, event: MEMCG_HIGH);
2448
2449 psi_memstall_enter(flags: &pflags);
2450 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2451 gfp_mask,
2452 MEMCG_RECLAIM_MAY_SWAP);
2453 psi_memstall_leave(flags: &pflags);
2454 } while ((memcg = parent_mem_cgroup(memcg)) &&
2455 !mem_cgroup_is_root(memcg));
2456
2457 return nr_reclaimed;
2458}
2459
2460static void high_work_func(struct work_struct *work)
2461{
2462 struct mem_cgroup *memcg;
2463
2464 memcg = container_of(work, struct mem_cgroup, high_work);
2465 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2466}
2467
2468/*
2469 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2470 * enough to still cause a significant slowdown in most cases, while still
2471 * allowing diagnostics and tracing to proceed without becoming stuck.
2472 */
2473#define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2474
2475/*
2476 * When calculating the delay, we use these either side of the exponentiation to
2477 * maintain precision and scale to a reasonable number of jiffies (see the table
2478 * below.
2479 *
2480 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2481 * overage ratio to a delay.
2482 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2483 * proposed penalty in order to reduce to a reasonable number of jiffies, and
2484 * to produce a reasonable delay curve.
2485 *
2486 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2487 * reasonable delay curve compared to precision-adjusted overage, not
2488 * penalising heavily at first, but still making sure that growth beyond the
2489 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2490 * example, with a high of 100 megabytes:
2491 *
2492 * +-------+------------------------+
2493 * | usage | time to allocate in ms |
2494 * +-------+------------------------+
2495 * | 100M | 0 |
2496 * | 101M | 6 |
2497 * | 102M | 25 |
2498 * | 103M | 57 |
2499 * | 104M | 102 |
2500 * | 105M | 159 |
2501 * | 106M | 230 |
2502 * | 107M | 313 |
2503 * | 108M | 409 |
2504 * | 109M | 518 |
2505 * | 110M | 639 |
2506 * | 111M | 774 |
2507 * | 112M | 921 |
2508 * | 113M | 1081 |
2509 * | 114M | 1254 |
2510 * | 115M | 1439 |
2511 * | 116M | 1638 |
2512 * | 117M | 1849 |
2513 * | 118M | 2000 |
2514 * | 119M | 2000 |
2515 * | 120M | 2000 |
2516 * +-------+------------------------+
2517 */
2518 #define MEMCG_DELAY_PRECISION_SHIFT 20
2519 #define MEMCG_DELAY_SCALING_SHIFT 14
2520
2521static u64 calculate_overage(unsigned long usage, unsigned long high)
2522{
2523 u64 overage;
2524
2525 if (usage <= high)
2526 return 0;
2527
2528 /*
2529 * Prevent division by 0 in overage calculation by acting as if
2530 * it was a threshold of 1 page
2531 */
2532 high = max(high, 1UL);
2533
2534 overage = usage - high;
2535 overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2536 return div64_u64(dividend: overage, divisor: high);
2537}
2538
2539static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2540{
2541 u64 overage, max_overage = 0;
2542
2543 do {
2544 overage = calculate_overage(usage: page_counter_read(counter: &memcg->memory),
2545 READ_ONCE(memcg->memory.high));
2546 max_overage = max(overage, max_overage);
2547 } while ((memcg = parent_mem_cgroup(memcg)) &&
2548 !mem_cgroup_is_root(memcg));
2549
2550 return max_overage;
2551}
2552
2553static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2554{
2555 u64 overage, max_overage = 0;
2556
2557 do {
2558 overage = calculate_overage(usage: page_counter_read(counter: &memcg->swap),
2559 READ_ONCE(memcg->swap.high));
2560 if (overage)
2561 memcg_memory_event(memcg, event: MEMCG_SWAP_HIGH);
2562 max_overage = max(overage, max_overage);
2563 } while ((memcg = parent_mem_cgroup(memcg)) &&
2564 !mem_cgroup_is_root(memcg));
2565
2566 return max_overage;
2567}
2568
2569/*
2570 * Get the number of jiffies that we should penalise a mischievous cgroup which
2571 * is exceeding its memory.high by checking both it and its ancestors.
2572 */
2573static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2574 unsigned int nr_pages,
2575 u64 max_overage)
2576{
2577 unsigned long penalty_jiffies;
2578
2579 if (!max_overage)
2580 return 0;
2581
2582 /*
2583 * We use overage compared to memory.high to calculate the number of
2584 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2585 * fairly lenient on small overages, and increasingly harsh when the
2586 * memcg in question makes it clear that it has no intention of stopping
2587 * its crazy behaviour, so we exponentially increase the delay based on
2588 * overage amount.
2589 */
2590 penalty_jiffies = max_overage * max_overage * HZ;
2591 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2592 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2593
2594 /*
2595 * Factor in the task's own contribution to the overage, such that four
2596 * N-sized allocations are throttled approximately the same as one
2597 * 4N-sized allocation.
2598 *
2599 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2600 * larger the current charge patch is than that.
2601 */
2602 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2603}
2604
2605/*
2606 * Scheduled by try_charge() to be executed from the userland return path
2607 * and reclaims memory over the high limit.
2608 */
2609void mem_cgroup_handle_over_high(gfp_t gfp_mask)
2610{
2611 unsigned long penalty_jiffies;
2612 unsigned long pflags;
2613 unsigned long nr_reclaimed;
2614 unsigned int nr_pages = current->memcg_nr_pages_over_high;
2615 int nr_retries = MAX_RECLAIM_RETRIES;
2616 struct mem_cgroup *memcg;
2617 bool in_retry = false;
2618
2619 if (likely(!nr_pages))
2620 return;
2621
2622 memcg = get_mem_cgroup_from_mm(current->mm);
2623 current->memcg_nr_pages_over_high = 0;
2624
2625retry_reclaim:
2626 /*
2627 * The allocating task should reclaim at least the batch size, but for
2628 * subsequent retries we only want to do what's necessary to prevent oom
2629 * or breaching resource isolation.
2630 *
2631 * This is distinct from memory.max or page allocator behaviour because
2632 * memory.high is currently batched, whereas memory.max and the page
2633 * allocator run every time an allocation is made.
2634 */
2635 nr_reclaimed = reclaim_high(memcg,
2636 nr_pages: in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2637 gfp_mask);
2638
2639 /*
2640 * memory.high is breached and reclaim is unable to keep up. Throttle
2641 * allocators proactively to slow down excessive growth.
2642 */
2643 penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2644 max_overage: mem_find_max_overage(memcg));
2645
2646 penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2647 max_overage: swap_find_max_overage(memcg));
2648
2649 /*
2650 * Clamp the max delay per usermode return so as to still keep the
2651 * application moving forwards and also permit diagnostics, albeit
2652 * extremely slowly.
2653 */
2654 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2655
2656 /*
2657 * Don't sleep if the amount of jiffies this memcg owes us is so low
2658 * that it's not even worth doing, in an attempt to be nice to those who
2659 * go only a small amount over their memory.high value and maybe haven't
2660 * been aggressively reclaimed enough yet.
2661 */
2662 if (penalty_jiffies <= HZ / 100)
2663 goto out;
2664
2665 /*
2666 * If reclaim is making forward progress but we're still over
2667 * memory.high, we want to encourage that rather than doing allocator
2668 * throttling.
2669 */
2670 if (nr_reclaimed || nr_retries--) {
2671 in_retry = true;
2672 goto retry_reclaim;
2673 }
2674
2675 /*
2676 * If we exit early, we're guaranteed to die (since
2677 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2678 * need to account for any ill-begotten jiffies to pay them off later.
2679 */
2680 psi_memstall_enter(flags: &pflags);
2681 schedule_timeout_killable(timeout: penalty_jiffies);
2682 psi_memstall_leave(flags: &pflags);
2683
2684out:
2685 css_put(css: &memcg->css);
2686}
2687
2688static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
2689 unsigned int nr_pages)
2690{
2691 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2692 int nr_retries = MAX_RECLAIM_RETRIES;
2693 struct mem_cgroup *mem_over_limit;
2694 struct page_counter *counter;
2695 unsigned long nr_reclaimed;
2696 bool passed_oom = false;
2697 unsigned int reclaim_options = MEMCG_RECLAIM_MAY_SWAP;
2698 bool drained = false;
2699 bool raised_max_event = false;
2700 unsigned long pflags;
2701
2702retry:
2703 if (consume_stock(memcg, nr_pages))
2704 return 0;
2705
2706 if (!do_memsw_account() ||
2707 page_counter_try_charge(counter: &memcg->memsw, nr_pages: batch, fail: &counter)) {
2708 if (page_counter_try_charge(counter: &memcg->memory, nr_pages: batch, fail: &counter))
2709 goto done_restock;
2710 if (do_memsw_account())
2711 page_counter_uncharge(counter: &memcg->memsw, nr_pages: batch);
2712 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2713 } else {
2714 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2715 reclaim_options &= ~MEMCG_RECLAIM_MAY_SWAP;
2716 }
2717
2718 if (batch > nr_pages) {
2719 batch = nr_pages;
2720 goto retry;
2721 }
2722
2723 /*
2724 * Prevent unbounded recursion when reclaim operations need to
2725 * allocate memory. This might exceed the limits temporarily,
2726 * but we prefer facilitating memory reclaim and getting back
2727 * under the limit over triggering OOM kills in these cases.
2728 */
2729 if (unlikely(current->flags & PF_MEMALLOC))
2730 goto force;
2731
2732 if (unlikely(task_in_memcg_oom(current)))
2733 goto nomem;
2734
2735 if (!gfpflags_allow_blocking(gfp_flags: gfp_mask))
2736 goto nomem;
2737
2738 memcg_memory_event(memcg: mem_over_limit, event: MEMCG_MAX);
2739 raised_max_event = true;
2740
2741 psi_memstall_enter(flags: &pflags);
2742 nr_reclaimed = try_to_free_mem_cgroup_pages(memcg: mem_over_limit, nr_pages,
2743 gfp_mask, reclaim_options);
2744 psi_memstall_leave(flags: &pflags);
2745
2746 if (mem_cgroup_margin(memcg: mem_over_limit) >= nr_pages)
2747 goto retry;
2748
2749 if (!drained) {
2750 drain_all_stock(root_memcg: mem_over_limit);
2751 drained = true;
2752 goto retry;
2753 }
2754
2755 if (gfp_mask & __GFP_NORETRY)
2756 goto nomem;
2757 /*
2758 * Even though the limit is exceeded at this point, reclaim
2759 * may have been able to free some pages. Retry the charge
2760 * before killing the task.
2761 *
2762 * Only for regular pages, though: huge pages are rather
2763 * unlikely to succeed so close to the limit, and we fall back
2764 * to regular pages anyway in case of failure.
2765 */
2766 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2767 goto retry;
2768 /*
2769 * At task move, charge accounts can be doubly counted. So, it's
2770 * better to wait until the end of task_move if something is going on.
2771 */
2772 if (mem_cgroup_wait_acct_move(memcg: mem_over_limit))
2773 goto retry;
2774
2775 if (nr_retries--)
2776 goto retry;
2777
2778 if (gfp_mask & __GFP_RETRY_MAYFAIL)
2779 goto nomem;
2780
2781 /* Avoid endless loop for tasks bypassed by the oom killer */
2782 if (passed_oom && task_is_dying())
2783 goto nomem;
2784
2785 /*
2786 * keep retrying as long as the memcg oom killer is able to make
2787 * a forward progress or bypass the charge if the oom killer
2788 * couldn't make any progress.
2789 */
2790 if (mem_cgroup_oom(memcg: mem_over_limit, mask: gfp_mask,
2791 order: get_order(size: nr_pages * PAGE_SIZE))) {
2792 passed_oom = true;
2793 nr_retries = MAX_RECLAIM_RETRIES;
2794 goto retry;
2795 }
2796nomem:
2797 /*
2798 * Memcg doesn't have a dedicated reserve for atomic
2799 * allocations. But like the global atomic pool, we need to
2800 * put the burden of reclaim on regular allocation requests
2801 * and let these go through as privileged allocations.
2802 */
2803 if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH)))
2804 return -ENOMEM;
2805force:
2806 /*
2807 * If the allocation has to be enforced, don't forget to raise
2808 * a MEMCG_MAX event.
2809 */
2810 if (!raised_max_event)
2811 memcg_memory_event(memcg: mem_over_limit, event: MEMCG_MAX);
2812
2813 /*
2814 * The allocation either can't fail or will lead to more memory
2815 * being freed very soon. Allow memory usage go over the limit
2816 * temporarily by force charging it.
2817 */
2818 page_counter_charge(counter: &memcg->memory, nr_pages);
2819 if (do_memsw_account())
2820 page_counter_charge(counter: &memcg->memsw, nr_pages);
2821
2822 return 0;
2823
2824done_restock:
2825 if (batch > nr_pages)
2826 refill_stock(memcg, nr_pages: batch - nr_pages);
2827
2828 /*
2829 * If the hierarchy is above the normal consumption range, schedule
2830 * reclaim on returning to userland. We can perform reclaim here
2831 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2832 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2833 * not recorded as it most likely matches current's and won't
2834 * change in the meantime. As high limit is checked again before
2835 * reclaim, the cost of mismatch is negligible.
2836 */
2837 do {
2838 bool mem_high, swap_high;
2839
2840 mem_high = page_counter_read(counter: &memcg->memory) >
2841 READ_ONCE(memcg->memory.high);
2842 swap_high = page_counter_read(counter: &memcg->swap) >
2843 READ_ONCE(memcg->swap.high);
2844
2845 /* Don't bother a random interrupted task */
2846 if (!in_task()) {
2847 if (mem_high) {
2848 schedule_work(work: &memcg->high_work);
2849 break;
2850 }
2851 continue;
2852 }
2853
2854 if (mem_high || swap_high) {
2855 /*
2856 * The allocating tasks in this cgroup will need to do
2857 * reclaim or be throttled to prevent further growth
2858 * of the memory or swap footprints.
2859 *
2860 * Target some best-effort fairness between the tasks,
2861 * and distribute reclaim work and delay penalties
2862 * based on how much each task is actually allocating.
2863 */
2864 current->memcg_nr_pages_over_high += batch;
2865 set_notify_resume(current);
2866 break;
2867 }
2868 } while ((memcg = parent_mem_cgroup(memcg)));
2869
2870 if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH &&
2871 !(current->flags & PF_MEMALLOC) &&
2872 gfpflags_allow_blocking(gfp_flags: gfp_mask)) {
2873 mem_cgroup_handle_over_high(gfp_mask);
2874 }
2875 return 0;
2876}
2877
2878static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2879 unsigned int nr_pages)
2880{
2881 if (mem_cgroup_is_root(memcg))
2882 return 0;
2883
2884 return try_charge_memcg(memcg, gfp_mask, nr_pages);
2885}
2886
2887/**
2888 * mem_cgroup_cancel_charge() - cancel an uncommitted try_charge() call.
2889 * @memcg: memcg previously charged.
2890 * @nr_pages: number of pages previously charged.
2891 */
2892void mem_cgroup_cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2893{
2894 if (mem_cgroup_is_root(memcg))
2895 return;
2896
2897 page_counter_uncharge(counter: &memcg->memory, nr_pages);
2898 if (do_memsw_account())
2899 page_counter_uncharge(counter: &memcg->memsw, nr_pages);
2900}
2901
2902static void commit_charge(struct folio *folio, struct mem_cgroup *memcg)
2903{
2904 VM_BUG_ON_FOLIO(folio_memcg(folio), folio);
2905 /*
2906 * Any of the following ensures page's memcg stability:
2907 *
2908 * - the page lock
2909 * - LRU isolation
2910 * - folio_memcg_lock()
2911 * - exclusive reference
2912 * - mem_cgroup_trylock_pages()
2913 */
2914 folio->memcg_data = (unsigned long)memcg;
2915}
2916
2917/**
2918 * mem_cgroup_commit_charge - commit a previously successful try_charge().
2919 * @folio: folio to commit the charge to.
2920 * @memcg: memcg previously charged.
2921 */
2922void mem_cgroup_commit_charge(struct folio *folio, struct mem_cgroup *memcg)
2923{
2924 css_get(css: &memcg->css);
2925 commit_charge(folio, memcg);
2926
2927 local_irq_disable();
2928 mem_cgroup_charge_statistics(memcg, nr_pages: folio_nr_pages(folio));
2929 memcg_check_events(memcg, nid: folio_nid(folio));
2930 local_irq_enable();
2931}
2932
2933#ifdef CONFIG_MEMCG_KMEM
2934/*
2935 * The allocated objcg pointers array is not accounted directly.
2936 * Moreover, it should not come from DMA buffer and is not readily
2937 * reclaimable. So those GFP bits should be masked off.
2938 */
2939#define OBJCGS_CLEAR_MASK (__GFP_DMA | __GFP_RECLAIMABLE | __GFP_ACCOUNT)
2940
2941/*
2942 * mod_objcg_mlstate() may be called with irq enabled, so
2943 * mod_memcg_lruvec_state() should be used.
2944 */
2945static inline void mod_objcg_mlstate(struct obj_cgroup *objcg,
2946 struct pglist_data *pgdat,
2947 enum node_stat_item idx, int nr)
2948{
2949 struct mem_cgroup *memcg;
2950 struct lruvec *lruvec;
2951
2952 rcu_read_lock();
2953 memcg = obj_cgroup_memcg(objcg);
2954 lruvec = mem_cgroup_lruvec(memcg, pgdat);
2955 mod_memcg_lruvec_state(lruvec, idx, val: nr);
2956 rcu_read_unlock();
2957}
2958
2959int memcg_alloc_slab_cgroups(struct slab *slab, struct kmem_cache *s,
2960 gfp_t gfp, bool new_slab)
2961{
2962 unsigned int objects = objs_per_slab(cache: s, slab);
2963 unsigned long memcg_data;
2964 void *vec;
2965
2966 gfp &= ~OBJCGS_CLEAR_MASK;
2967 vec = kcalloc_node(n: objects, size: sizeof(struct obj_cgroup *), flags: gfp,
2968 node: slab_nid(slab));
2969 if (!vec)
2970 return -ENOMEM;
2971
2972 memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS;
2973 if (new_slab) {
2974 /*
2975 * If the slab is brand new and nobody can yet access its
2976 * memcg_data, no synchronization is required and memcg_data can
2977 * be simply assigned.
2978 */
2979 slab->memcg_data = memcg_data;
2980 } else if (cmpxchg(&slab->memcg_data, 0, memcg_data)) {
2981 /*
2982 * If the slab is already in use, somebody can allocate and
2983 * assign obj_cgroups in parallel. In this case the existing
2984 * objcg vector should be reused.
2985 */
2986 kfree(objp: vec);
2987 return 0;
2988 }
2989
2990 kmemleak_not_leak(ptr: vec);
2991 return 0;
2992}
2993
2994static __always_inline
2995struct mem_cgroup *mem_cgroup_from_obj_folio(struct folio *folio, void *p)
2996{
2997 /*
2998 * Slab objects are accounted individually, not per-page.
2999 * Memcg membership data for each individual object is saved in
3000 * slab->memcg_data.
3001 */
3002 if (folio_test_slab(folio)) {
3003 struct obj_cgroup **objcgs;
3004 struct slab *slab;
3005 unsigned int off;
3006
3007 slab = folio_slab(folio);
3008 objcgs = slab_objcgs(slab);
3009 if (!objcgs)
3010 return NULL;
3011
3012 off = obj_to_index(cache: slab->slab_cache, slab, obj: p);
3013 if (objcgs[off])
3014 return obj_cgroup_memcg(objcg: objcgs[off]);
3015
3016 return NULL;
3017 }
3018
3019 /*
3020 * folio_memcg_check() is used here, because in theory we can encounter
3021 * a folio where the slab flag has been cleared already, but
3022 * slab->memcg_data has not been freed yet
3023 * folio_memcg_check() will guarantee that a proper memory
3024 * cgroup pointer or NULL will be returned.
3025 */
3026 return folio_memcg_check(folio);
3027}
3028
3029/*
3030 * Returns a pointer to the memory cgroup to which the kernel object is charged.
3031 *
3032 * A passed kernel object can be a slab object, vmalloc object or a generic
3033 * kernel page, so different mechanisms for getting the memory cgroup pointer
3034 * should be used.
3035 *
3036 * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
3037 * can not know for sure how the kernel object is implemented.
3038 * mem_cgroup_from_obj() can be safely used in such cases.
3039 *
3040 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
3041 * cgroup_mutex, etc.
3042 */
3043struct mem_cgroup *mem_cgroup_from_obj(void *p)
3044{
3045 struct folio *folio;
3046
3047 if (mem_cgroup_disabled())
3048 return NULL;
3049
3050 if (unlikely(is_vmalloc_addr(p)))
3051 folio = page_folio(vmalloc_to_page(p));
3052 else
3053 folio = virt_to_folio(x: p);
3054
3055 return mem_cgroup_from_obj_folio(folio, p);
3056}
3057
3058/*
3059 * Returns a pointer to the memory cgroup to which the kernel object is charged.
3060 * Similar to mem_cgroup_from_obj(), but faster and not suitable for objects,
3061 * allocated using vmalloc().
3062 *
3063 * A passed kernel object must be a slab object or a generic kernel page.
3064 *
3065 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
3066 * cgroup_mutex, etc.
3067 */
3068struct mem_cgroup *mem_cgroup_from_slab_obj(void *p)
3069{
3070 if (mem_cgroup_disabled())
3071 return NULL;
3072
3073 return mem_cgroup_from_obj_folio(folio: virt_to_folio(x: p), p);
3074}
3075
3076static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg)
3077{
3078 struct obj_cgroup *objcg = NULL;
3079
3080 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
3081 objcg = rcu_dereference(memcg->objcg);
3082 if (likely(objcg && obj_cgroup_tryget(objcg)))
3083 break;
3084 objcg = NULL;
3085 }
3086 return objcg;
3087}
3088
3089static struct obj_cgroup *current_objcg_update(void)
3090{
3091 struct mem_cgroup *memcg;
3092 struct obj_cgroup *old, *objcg = NULL;
3093
3094 do {
3095 /* Atomically drop the update bit. */
3096 old = xchg(&current->objcg, NULL);
3097 if (old) {
3098 old = (struct obj_cgroup *)
3099 ((unsigned long)old & ~CURRENT_OBJCG_UPDATE_FLAG);
3100 if (old)
3101 obj_cgroup_put(objcg: old);
3102
3103 old = NULL;
3104 }
3105
3106 /* If new objcg is NULL, no reason for the second atomic update. */
3107 if (!current->mm || (current->flags & PF_KTHREAD))
3108 return NULL;
3109
3110 /*
3111 * Release the objcg pointer from the previous iteration,
3112 * if try_cmpxcg() below fails.
3113 */
3114 if (unlikely(objcg)) {
3115 obj_cgroup_put(objcg);
3116 objcg = NULL;
3117 }
3118
3119 /*
3120 * Obtain the new objcg pointer. The current task can be
3121 * asynchronously moved to another memcg and the previous
3122 * memcg can be offlined. So let's get the memcg pointer
3123 * and try get a reference to objcg under a rcu read lock.
3124 */
3125
3126 rcu_read_lock();
3127 memcg = mem_cgroup_from_task(current);
3128 objcg = __get_obj_cgroup_from_memcg(memcg);
3129 rcu_read_unlock();
3130
3131 /*
3132 * Try set up a new objcg pointer atomically. If it
3133 * fails, it means the update flag was set concurrently, so
3134 * the whole procedure should be repeated.
3135 */
3136 } while (!try_cmpxchg(&current->objcg, &old, objcg));
3137
3138 return objcg;
3139}
3140
3141__always_inline struct obj_cgroup *current_obj_cgroup(void)
3142{
3143 struct mem_cgroup *memcg;
3144 struct obj_cgroup *objcg;
3145
3146 if (in_task()) {
3147 memcg = current->active_memcg;
3148 if (unlikely(memcg))
3149 goto from_memcg;
3150
3151 objcg = READ_ONCE(current->objcg);
3152 if (unlikely((unsigned long)objcg & CURRENT_OBJCG_UPDATE_FLAG))
3153 objcg = current_objcg_update();
3154 /*
3155 * Objcg reference is kept by the task, so it's safe
3156 * to use the objcg by the current task.
3157 */
3158 return objcg;
3159 }
3160
3161 memcg = this_cpu_read(int_active_memcg);
3162 if (unlikely(memcg))
3163 goto from_memcg;
3164
3165 return NULL;
3166
3167from_memcg:
3168 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
3169 /*
3170 * Memcg pointer is protected by scope (see set_active_memcg())
3171 * and is pinning the corresponding objcg, so objcg can't go
3172 * away and can be used within the scope without any additional
3173 * protection.
3174 */
3175 objcg = rcu_dereference_check(memcg->objcg, 1);
3176 if (likely(objcg))
3177 break;
3178 objcg = NULL;
3179 }
3180
3181 return objcg;
3182}
3183
3184struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio)
3185{
3186 struct obj_cgroup *objcg;
3187
3188 if (!memcg_kmem_online())
3189 return NULL;
3190
3191 if (folio_memcg_kmem(folio)) {
3192 objcg = __folio_objcg(folio);
3193 obj_cgroup_get(objcg);
3194 } else {
3195 struct mem_cgroup *memcg;
3196
3197 rcu_read_lock();
3198 memcg = __folio_memcg(folio);
3199 if (memcg)
3200 objcg = __get_obj_cgroup_from_memcg(memcg);
3201 else
3202 objcg = NULL;
3203 rcu_read_unlock();
3204 }
3205 return objcg;
3206}
3207
3208static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
3209{
3210 mod_memcg_state(memcg, idx: MEMCG_KMEM, val: nr_pages);
3211 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
3212 if (nr_pages > 0)
3213 page_counter_charge(counter: &memcg->kmem, nr_pages);
3214 else
3215 page_counter_uncharge(counter: &memcg->kmem, nr_pages: -nr_pages);
3216 }
3217}
3218
3219
3220/*
3221 * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
3222 * @objcg: object cgroup to uncharge
3223 * @nr_pages: number of pages to uncharge
3224 */
3225static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
3226 unsigned int nr_pages)
3227{
3228 struct mem_cgroup *memcg;
3229
3230 memcg = get_mem_cgroup_from_objcg(objcg);
3231
3232 memcg_account_kmem(memcg, nr_pages: -nr_pages);
3233 refill_stock(memcg, nr_pages);
3234
3235 css_put(css: &memcg->css);
3236}
3237
3238/*
3239 * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
3240 * @objcg: object cgroup to charge
3241 * @gfp: reclaim mode
3242 * @nr_pages: number of pages to charge
3243 *
3244 * Returns 0 on success, an error code on failure.
3245 */
3246static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
3247 unsigned int nr_pages)
3248{
3249 struct mem_cgroup *memcg;
3250 int ret;
3251
3252 memcg = get_mem_cgroup_from_objcg(objcg);
3253
3254 ret = try_charge_memcg(memcg, gfp_mask: gfp, nr_pages);
3255 if (ret)
3256 goto out;
3257
3258 memcg_account_kmem(memcg, nr_pages);
3259out:
3260 css_put(css: &memcg->css);
3261
3262 return ret;
3263}
3264
3265/**
3266 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
3267 * @page: page to charge
3268 * @gfp: reclaim mode
3269 * @order: allocation order
3270 *
3271 * Returns 0 on success, an error code on failure.
3272 */
3273int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
3274{
3275 struct obj_cgroup *objcg;
3276 int ret = 0;
3277
3278 objcg = current_obj_cgroup();
3279 if (objcg) {
3280 ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages: 1 << order);
3281 if (!ret) {
3282 obj_cgroup_get(objcg);
3283 page->memcg_data = (unsigned long)objcg |
3284 MEMCG_DATA_KMEM;
3285 return 0;
3286 }
3287 }
3288 return ret;
3289}
3290
3291/**
3292 * __memcg_kmem_uncharge_page: uncharge a kmem page
3293 * @page: page to uncharge
3294 * @order: allocation order
3295 */
3296void __memcg_kmem_uncharge_page(struct page *page, int order)
3297{
3298 struct folio *folio = page_folio(page);
3299 struct obj_cgroup *objcg;
3300 unsigned int nr_pages = 1 << order;
3301
3302 if (!folio_memcg_kmem(folio))
3303 return;
3304
3305 objcg = __folio_objcg(folio);
3306 obj_cgroup_uncharge_pages(objcg, nr_pages);
3307 folio->memcg_data = 0;
3308 obj_cgroup_put(objcg);
3309}
3310
3311void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
3312 enum node_stat_item idx, int nr)
3313{
3314 struct memcg_stock_pcp *stock;
3315 struct obj_cgroup *old = NULL;
3316 unsigned long flags;
3317 int *bytes;
3318
3319 local_lock_irqsave(&memcg_stock.stock_lock, flags);
3320 stock = this_cpu_ptr(&memcg_stock);
3321
3322 /*
3323 * Save vmstat data in stock and skip vmstat array update unless
3324 * accumulating over a page of vmstat data or when pgdat or idx
3325 * changes.
3326 */
3327 if (READ_ONCE(stock->cached_objcg) != objcg) {
3328 old = drain_obj_stock(stock);
3329 obj_cgroup_get(objcg);
3330 stock->nr_bytes = atomic_read(v: &objcg->nr_charged_bytes)
3331 ? atomic_xchg(v: &objcg->nr_charged_bytes, new: 0) : 0;
3332 WRITE_ONCE(stock->cached_objcg, objcg);
3333 stock->cached_pgdat = pgdat;
3334 } else if (stock->cached_pgdat != pgdat) {
3335 /* Flush the existing cached vmstat data */
3336 struct pglist_data *oldpg = stock->cached_pgdat;
3337
3338 if (stock->nr_slab_reclaimable_b) {
3339 mod_objcg_mlstate(objcg, pgdat: oldpg, idx: NR_SLAB_RECLAIMABLE_B,
3340 nr: stock->nr_slab_reclaimable_b);
3341 stock->nr_slab_reclaimable_b = 0;
3342 }
3343 if (stock->nr_slab_unreclaimable_b) {
3344 mod_objcg_mlstate(objcg, pgdat: oldpg, idx: NR_SLAB_UNRECLAIMABLE_B,
3345 nr: stock->nr_slab_unreclaimable_b);
3346 stock->nr_slab_unreclaimable_b = 0;
3347 }
3348 stock->cached_pgdat = pgdat;
3349 }
3350
3351 bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
3352 : &stock->nr_slab_unreclaimable_b;
3353 /*
3354 * Even for large object >= PAGE_SIZE, the vmstat data will still be
3355 * cached locally at least once before pushing it out.
3356 */
3357 if (!*bytes) {
3358 *bytes = nr;
3359 nr = 0;
3360 } else {
3361 *bytes += nr;
3362 if (abs(*bytes) > PAGE_SIZE) {
3363 nr = *bytes;
3364 *bytes = 0;
3365 } else {
3366 nr = 0;
3367 }
3368 }
3369 if (nr)
3370 mod_objcg_mlstate(objcg, pgdat, idx, nr);
3371
3372 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3373 if (old)
3374 obj_cgroup_put(objcg: old);
3375}
3376
3377static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3378{
3379 struct memcg_stock_pcp *stock;
3380 unsigned long flags;
3381 bool ret = false;
3382
3383 local_lock_irqsave(&memcg_stock.stock_lock, flags);
3384
3385 stock = this_cpu_ptr(&memcg_stock);
3386 if (objcg == READ_ONCE(stock->cached_objcg) && stock->nr_bytes >= nr_bytes) {
3387 stock->nr_bytes -= nr_bytes;
3388 ret = true;
3389 }
3390
3391 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3392
3393 return ret;
3394}
3395
3396static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
3397{
3398 struct obj_cgroup *old = READ_ONCE(stock->cached_objcg);
3399
3400 if (!old)
3401 return NULL;
3402
3403 if (stock->nr_bytes) {
3404 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3405 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3406
3407 if (nr_pages) {
3408 struct mem_cgroup *memcg;
3409
3410 memcg = get_mem_cgroup_from_objcg(objcg: old);
3411
3412 memcg_account_kmem(memcg, nr_pages: -nr_pages);
3413 __refill_stock(memcg, nr_pages);
3414
3415 css_put(css: &memcg->css);
3416 }
3417
3418 /*
3419 * The leftover is flushed to the centralized per-memcg value.
3420 * On the next attempt to refill obj stock it will be moved
3421 * to a per-cpu stock (probably, on an other CPU), see
3422 * refill_obj_stock().
3423 *
3424 * How often it's flushed is a trade-off between the memory
3425 * limit enforcement accuracy and potential CPU contention,
3426 * so it might be changed in the future.
3427 */
3428 atomic_add(i: nr_bytes, v: &old->nr_charged_bytes);
3429 stock->nr_bytes = 0;
3430 }
3431
3432 /*
3433 * Flush the vmstat data in current stock
3434 */
3435 if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
3436 if (stock->nr_slab_reclaimable_b) {
3437 mod_objcg_mlstate(objcg: old, pgdat: stock->cached_pgdat,
3438 idx: NR_SLAB_RECLAIMABLE_B,
3439 nr: stock->nr_slab_reclaimable_b);
3440 stock->nr_slab_reclaimable_b = 0;
3441 }
3442 if (stock->nr_slab_unreclaimable_b) {
3443 mod_objcg_mlstate(objcg: old, pgdat: stock->cached_pgdat,
3444 idx: NR_SLAB_UNRECLAIMABLE_B,
3445 nr: stock->nr_slab_unreclaimable_b);
3446 stock->nr_slab_unreclaimable_b = 0;
3447 }
3448 stock->cached_pgdat = NULL;
3449 }
3450
3451 WRITE_ONCE(stock->cached_objcg, NULL);
3452 /*
3453 * The `old' objects needs to be released by the caller via
3454 * obj_cgroup_put() outside of memcg_stock_pcp::stock_lock.
3455 */
3456 return old;
3457}
3458
3459static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3460 struct mem_cgroup *root_memcg)
3461{
3462 struct obj_cgroup *objcg = READ_ONCE(stock->cached_objcg);
3463 struct mem_cgroup *memcg;
3464
3465 if (objcg) {
3466 memcg = obj_cgroup_memcg(objcg);
3467 if (memcg && mem_cgroup_is_descendant(memcg, root: root_memcg))
3468 return true;
3469 }
3470
3471 return false;
3472}
3473
3474static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
3475 bool allow_uncharge)
3476{
3477 struct memcg_stock_pcp *stock;
3478 struct obj_cgroup *old = NULL;
3479 unsigned long flags;
3480 unsigned int nr_pages = 0;
3481
3482 local_lock_irqsave(&memcg_stock.stock_lock, flags);
3483
3484 stock = this_cpu_ptr(&memcg_stock);
3485 if (READ_ONCE(stock->cached_objcg) != objcg) { /* reset if necessary */
3486 old = drain_obj_stock(stock);
3487 obj_cgroup_get(objcg);
3488 WRITE_ONCE(stock->cached_objcg, objcg);
3489 stock->nr_bytes = atomic_read(v: &objcg->nr_charged_bytes)
3490 ? atomic_xchg(v: &objcg->nr_charged_bytes, new: 0) : 0;
3491 allow_uncharge = true; /* Allow uncharge when objcg changes */
3492 }
3493 stock->nr_bytes += nr_bytes;
3494
3495 if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
3496 nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3497 stock->nr_bytes &= (PAGE_SIZE - 1);
3498 }
3499
3500 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3501 if (old)
3502 obj_cgroup_put(objcg: old);
3503
3504 if (nr_pages)
3505 obj_cgroup_uncharge_pages(objcg, nr_pages);
3506}
3507
3508int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3509{
3510 unsigned int nr_pages, nr_bytes;
3511 int ret;
3512
3513 if (consume_obj_stock(objcg, nr_bytes: size))
3514 return 0;
3515
3516 /*
3517 * In theory, objcg->nr_charged_bytes can have enough
3518 * pre-charged bytes to satisfy the allocation. However,
3519 * flushing objcg->nr_charged_bytes requires two atomic
3520 * operations, and objcg->nr_charged_bytes can't be big.
3521 * The shared objcg->nr_charged_bytes can also become a
3522 * performance bottleneck if all tasks of the same memcg are
3523 * trying to update it. So it's better to ignore it and try
3524 * grab some new pages. The stock's nr_bytes will be flushed to
3525 * objcg->nr_charged_bytes later on when objcg changes.
3526 *
3527 * The stock's nr_bytes may contain enough pre-charged bytes
3528 * to allow one less page from being charged, but we can't rely
3529 * on the pre-charged bytes not being changed outside of
3530 * consume_obj_stock() or refill_obj_stock(). So ignore those
3531 * pre-charged bytes as well when charging pages. To avoid a
3532 * page uncharge right after a page charge, we set the
3533 * allow_uncharge flag to false when calling refill_obj_stock()
3534 * to temporarily allow the pre-charged bytes to exceed the page
3535 * size limit. The maximum reachable value of the pre-charged
3536 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
3537 * race.
3538 */
3539 nr_pages = size >> PAGE_SHIFT;
3540 nr_bytes = size & (PAGE_SIZE - 1);
3541
3542 if (nr_bytes)
3543 nr_pages += 1;
3544
3545 ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
3546 if (!ret && nr_bytes)
3547 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, allow_uncharge: false);
3548
3549 return ret;
3550}
3551
3552void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3553{
3554 refill_obj_stock(objcg, nr_bytes: size, allow_uncharge: true);
3555}
3556
3557#endif /* CONFIG_MEMCG_KMEM */
3558
3559/*
3560 * Because page_memcg(head) is not set on tails, set it now.
3561 */
3562void split_page_memcg(struct page *head, unsigned int nr)
3563{
3564 struct folio *folio = page_folio(head);
3565 struct mem_cgroup *memcg = folio_memcg(folio);
3566 int i;
3567
3568 if (mem_cgroup_disabled() || !memcg)
3569 return;
3570
3571 for (i = 1; i < nr; i++)
3572 folio_page(folio, i)->memcg_data = folio->memcg_data;
3573
3574 if (folio_memcg_kmem(folio))
3575 obj_cgroup_get_many(objcg: __folio_objcg(folio), nr: nr - 1);
3576 else
3577 css_get_many(css: &memcg->css, n: nr - 1);
3578}
3579
3580#ifdef CONFIG_SWAP
3581/**
3582 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3583 * @entry: swap entry to be moved
3584 * @from: mem_cgroup which the entry is moved from
3585 * @to: mem_cgroup which the entry is moved to
3586 *
3587 * It succeeds only when the swap_cgroup's record for this entry is the same
3588 * as the mem_cgroup's id of @from.
3589 *
3590 * Returns 0 on success, -EINVAL on failure.
3591 *
3592 * The caller must have charged to @to, IOW, called page_counter_charge() about
3593 * both res and memsw, and called css_get().
3594 */
3595static int mem_cgroup_move_swap_account(swp_entry_t entry,
3596 struct mem_cgroup *from, struct mem_cgroup *to)
3597{
3598 unsigned short old_id, new_id;
3599
3600 old_id = mem_cgroup_id(memcg: from);
3601 new_id = mem_cgroup_id(memcg: to);
3602
3603 if (swap_cgroup_cmpxchg(ent: entry, old: old_id, new: new_id) == old_id) {
3604 mod_memcg_state(memcg: from, idx: MEMCG_SWAP, val: -1);
3605 mod_memcg_state(memcg: to, idx: MEMCG_SWAP, val: 1);
3606 return 0;
3607 }
3608 return -EINVAL;
3609}
3610#else
3611static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3612 struct mem_cgroup *from, struct mem_cgroup *to)
3613{
3614 return -EINVAL;
3615}
3616#endif
3617
3618static DEFINE_MUTEX(memcg_max_mutex);
3619
3620static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3621 unsigned long max, bool memsw)
3622{
3623 bool enlarge = false;
3624 bool drained = false;
3625 int ret;
3626 bool limits_invariant;
3627 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3628
3629 do {
3630 if (signal_pending(current)) {
3631 ret = -EINTR;
3632 break;
3633 }
3634
3635 mutex_lock(&memcg_max_mutex);
3636 /*
3637 * Make sure that the new limit (memsw or memory limit) doesn't
3638 * break our basic invariant rule memory.max <= memsw.max.
3639 */
3640 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3641 max <= memcg->memsw.max;
3642 if (!limits_invariant) {
3643 mutex_unlock(lock: &memcg_max_mutex);
3644 ret = -EINVAL;
3645 break;
3646 }
3647 if (max > counter->max)
3648 enlarge = true;
3649 ret = page_counter_set_max(counter, nr_pages: max);
3650 mutex_unlock(lock: &memcg_max_mutex);
3651
3652 if (!ret)
3653 break;
3654
3655 if (!drained) {
3656 drain_all_stock(root_memcg: memcg);
3657 drained = true;
3658 continue;
3659 }
3660
3661 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages: 1, GFP_KERNEL,
3662 reclaim_options: memsw ? 0 : MEMCG_RECLAIM_MAY_SWAP)) {
3663 ret = -EBUSY;
3664 break;
3665 }
3666 } while (true);
3667
3668 if (!ret && enlarge)
3669 memcg_oom_recover(memcg);
3670
3671 return ret;
3672}
3673
3674unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3675 gfp_t gfp_mask,
3676 unsigned long *total_scanned)
3677{
3678 unsigned long nr_reclaimed = 0;
3679 struct mem_cgroup_per_node *mz, *next_mz = NULL;
3680 unsigned long reclaimed;
3681 int loop = 0;
3682 struct mem_cgroup_tree_per_node *mctz;
3683 unsigned long excess;
3684
3685 if (lru_gen_enabled())
3686 return 0;
3687
3688 if (order > 0)
3689 return 0;
3690
3691 mctz = soft_limit_tree.rb_tree_per_node[pgdat->node_id];
3692
3693 /*
3694 * Do not even bother to check the largest node if the root
3695 * is empty. Do it lockless to prevent lock bouncing. Races
3696 * are acceptable as soft limit is best effort anyway.
3697 */
3698 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3699 return 0;
3700
3701 /*
3702 * This loop can run a while, specially if mem_cgroup's continuously
3703 * keep exceeding their soft limit and putting the system under
3704 * pressure
3705 */
3706 do {
3707 if (next_mz)
3708 mz = next_mz;
3709 else
3710 mz = mem_cgroup_largest_soft_limit_node(mctz);
3711 if (!mz)
3712 break;
3713
3714 reclaimed = mem_cgroup_soft_reclaim(root_memcg: mz->memcg, pgdat,
3715 gfp_mask, total_scanned);
3716 nr_reclaimed += reclaimed;
3717 spin_lock_irq(lock: &mctz->lock);
3718
3719 /*
3720 * If we failed to reclaim anything from this memory cgroup
3721 * it is time to move on to the next cgroup
3722 */
3723 next_mz = NULL;
3724 if (!reclaimed)
3725 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3726
3727 excess = soft_limit_excess(memcg: mz->memcg);
3728 /*
3729 * One school of thought says that we should not add
3730 * back the node to the tree if reclaim returns 0.
3731 * But our reclaim could return 0, simply because due
3732 * to priority we are exposing a smaller subset of
3733 * memory to reclaim from. Consider this as a longer
3734 * term TODO.
3735 */
3736 /* If excess == 0, no tree ops */
3737 __mem_cgroup_insert_exceeded(mz, mctz, new_usage_in_excess: excess);
3738 spin_unlock_irq(lock: &mctz->lock);
3739 css_put(css: &mz->memcg->css);
3740 loop++;
3741 /*
3742 * Could not reclaim anything and there are no more
3743 * mem cgroups to try or we seem to be looping without
3744 * reclaiming anything.
3745 */
3746 if (!nr_reclaimed &&
3747 (next_mz == NULL ||
3748 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3749 break;
3750 } while (!nr_reclaimed);
3751 if (next_mz)
3752 css_put(css: &next_mz->memcg->css);
3753 return nr_reclaimed;
3754}
3755
3756/*
3757 * Reclaims as many pages from the given memcg as possible.
3758 *
3759 * Caller is responsible for holding css reference for memcg.
3760 */
3761static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3762{
3763 int nr_retries = MAX_RECLAIM_RETRIES;
3764
3765 /* we call try-to-free pages for make this cgroup empty */
3766 lru_add_drain_all();
3767
3768 drain_all_stock(root_memcg: memcg);
3769
3770 /* try to free all pages in this cgroup */
3771 while (nr_retries && page_counter_read(counter: &memcg->memory)) {
3772 if (signal_pending(current))
3773 return -EINTR;
3774
3775 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages: 1, GFP_KERNEL,
3776 MEMCG_RECLAIM_MAY_SWAP))
3777 nr_retries--;
3778 }
3779
3780 return 0;
3781}
3782
3783static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3784 char *buf, size_t nbytes,
3785 loff_t off)
3786{
3787 struct mem_cgroup *memcg = mem_cgroup_from_css(css: of_css(of));
3788
3789 if (mem_cgroup_is_root(memcg))
3790 return -EINVAL;
3791 return mem_cgroup_force_empty(memcg) ?: nbytes;
3792}
3793
3794static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3795 struct cftype *cft)
3796{
3797 return 1;
3798}
3799
3800static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3801 struct cftype *cft, u64 val)
3802{
3803 if (val == 1)
3804 return 0;
3805
3806 pr_warn_once("Non-hierarchical mode is deprecated. "
3807 "Please report your usecase to linux-mm@kvack.org if you "
3808 "depend on this functionality.\n");
3809
3810 return -EINVAL;
3811}
3812
3813static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3814{
3815 unsigned long val;
3816
3817 if (mem_cgroup_is_root(memcg)) {
3818 /*
3819 * Approximate root's usage from global state. This isn't
3820 * perfect, but the root usage was always an approximation.
3821 */
3822 val = global_node_page_state(item: NR_FILE_PAGES) +
3823 global_node_page_state(item: NR_ANON_MAPPED);
3824 if (swap)
3825 val += total_swap_pages - get_nr_swap_pages();
3826 } else {
3827 if (!swap)
3828 val = page_counter_read(counter: &memcg->memory);
3829 else
3830 val = page_counter_read(counter: &memcg->memsw);
3831 }
3832 return val;
3833}
3834
3835enum {
3836 RES_USAGE,
3837 RES_LIMIT,
3838 RES_MAX_USAGE,
3839 RES_FAILCNT,
3840 RES_SOFT_LIMIT,
3841};
3842
3843static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3844 struct cftype *cft)
3845{
3846 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3847 struct page_counter *counter;
3848
3849 switch (MEMFILE_TYPE(cft->private)) {
3850 case _MEM:
3851 counter = &memcg->memory;
3852 break;
3853 case _MEMSWAP:
3854 counter = &memcg->memsw;
3855 break;
3856 case _KMEM:
3857 counter = &memcg->kmem;
3858 break;
3859 case _TCP:
3860 counter = &memcg->tcpmem;
3861 break;
3862 default:
3863 BUG();
3864 }
3865
3866 switch (MEMFILE_ATTR(cft->private)) {
3867 case RES_USAGE:
3868 if (counter == &memcg->memory)
3869 return (u64)mem_cgroup_usage(memcg, swap: false) * PAGE_SIZE;
3870 if (counter == &memcg->memsw)
3871 return (u64)mem_cgroup_usage(memcg, swap: true) * PAGE_SIZE;
3872 return (u64)page_counter_read(counter) * PAGE_SIZE;
3873 case RES_LIMIT:
3874 return (u64)counter->max * PAGE_SIZE;
3875 case RES_MAX_USAGE:
3876 return (u64)counter->watermark * PAGE_SIZE;
3877 case RES_FAILCNT:
3878 return counter->failcnt;
3879 case RES_SOFT_LIMIT:
3880 return (u64)READ_ONCE(memcg->soft_limit) * PAGE_SIZE;
3881 default:
3882 BUG();
3883 }
3884}
3885
3886/*
3887 * This function doesn't do anything useful. Its only job is to provide a read
3888 * handler for a file so that cgroup_file_mode() will add read permissions.
3889 */
3890static int mem_cgroup_dummy_seq_show(__always_unused struct seq_file *m,
3891 __always_unused void *v)
3892{
3893 return -EINVAL;
3894}
3895
3896#ifdef CONFIG_MEMCG_KMEM
3897static int memcg_online_kmem(struct mem_cgroup *memcg)
3898{
3899 struct obj_cgroup *objcg;
3900
3901 if (mem_cgroup_kmem_disabled())
3902 return 0;
3903
3904 if (unlikely(mem_cgroup_is_root(memcg)))
3905 return 0;
3906
3907 objcg = obj_cgroup_alloc();
3908 if (!objcg)
3909 return -ENOMEM;
3910
3911 objcg->memcg = memcg;
3912 rcu_assign_pointer(memcg->objcg, objcg);
3913 obj_cgroup_get(objcg);
3914 memcg->orig_objcg = objcg;
3915
3916 static_branch_enable(&memcg_kmem_online_key);
3917
3918 memcg->kmemcg_id = memcg->id.id;
3919
3920 return 0;
3921}
3922
3923static void memcg_offline_kmem(struct mem_cgroup *memcg)
3924{
3925 struct mem_cgroup *parent;
3926
3927 if (mem_cgroup_kmem_disabled())
3928 return;
3929
3930 if (unlikely(mem_cgroup_is_root(memcg)))
3931 return;
3932
3933 parent = parent_mem_cgroup(memcg);
3934 if (!parent)
3935 parent = root_mem_cgroup;
3936
3937 memcg_reparent_objcgs(memcg, parent);
3938
3939 /*
3940 * After we have finished memcg_reparent_objcgs(), all list_lrus
3941 * corresponding to this cgroup are guaranteed to remain empty.
3942 * The ordering is imposed by list_lru_node->lock taken by
3943 * memcg_reparent_list_lrus().
3944 */
3945 memcg_reparent_list_lrus(memcg, parent);
3946}
3947#else
3948static int memcg_online_kmem(struct mem_cgroup *memcg)
3949{
3950 return 0;
3951}
3952static void memcg_offline_kmem(struct mem_cgroup *memcg)
3953{
3954}
3955#endif /* CONFIG_MEMCG_KMEM */
3956
3957static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3958{
3959 int ret;
3960
3961 mutex_lock(&memcg_max_mutex);
3962
3963 ret = page_counter_set_max(counter: &memcg->tcpmem, nr_pages: max);
3964 if (ret)
3965 goto out;
3966
3967 if (!memcg->tcpmem_active) {
3968 /*
3969 * The active flag needs to be written after the static_key
3970 * update. This is what guarantees that the socket activation
3971 * function is the last one to run. See mem_cgroup_sk_alloc()
3972 * for details, and note that we don't mark any socket as
3973 * belonging to this memcg until that flag is up.
3974 *
3975 * We need to do this, because static_keys will span multiple
3976 * sites, but we can't control their order. If we mark a socket
3977 * as accounted, but the accounting functions are not patched in
3978 * yet, we'll lose accounting.
3979 *
3980 * We never race with the readers in mem_cgroup_sk_alloc(),
3981 * because when this value change, the code to process it is not
3982 * patched in yet.
3983 */
3984 static_branch_inc(&memcg_sockets_enabled_key);
3985 memcg->tcpmem_active = true;
3986 }
3987out:
3988 mutex_unlock(lock: &memcg_max_mutex);
3989 return ret;
3990}
3991
3992/*
3993 * The user of this function is...
3994 * RES_LIMIT.
3995 */
3996static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3997 char *buf, size_t nbytes, loff_t off)
3998{
3999 struct mem_cgroup *memcg = mem_cgroup_from_css(css: of_css(of));
4000 unsigned long nr_pages;
4001 int ret;
4002
4003 buf = strstrip(str: buf);
4004 ret = page_counter_memparse(buf, max: "-1", nr_pages: &nr_pages);
4005 if (ret)
4006 return ret;
4007
4008 switch (MEMFILE_ATTR(of_cft(of)->private)) {
4009 case RES_LIMIT:
4010 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
4011 ret = -EINVAL;
4012 break;
4013 }
4014 switch (MEMFILE_TYPE(of_cft(of)->private)) {
4015 case _MEM:
4016 ret = mem_cgroup_resize_max(memcg, max: nr_pages, memsw: false);
4017 break;
4018 case _MEMSWAP:
4019 ret = mem_cgroup_resize_max(memcg, max: nr_pages, memsw: true);
4020 break;
4021 case _KMEM:
4022 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
4023 "Writing any value to this file has no effect. "
4024 "Please report your usecase to linux-mm@kvack.org if you "
4025 "depend on this functionality.\n");
4026 ret = 0;
4027 break;
4028 case _TCP:
4029 ret = memcg_update_tcp_max(memcg, max: nr_pages);
4030 break;
4031 }
4032 break;
4033 case RES_SOFT_LIMIT:
4034 if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
4035 ret = -EOPNOTSUPP;
4036 } else {
4037 WRITE_ONCE(memcg->soft_limit, nr_pages);
4038 ret = 0;
4039 }
4040 break;
4041 }
4042 return ret ?: nbytes;
4043}
4044
4045static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
4046 size_t nbytes, loff_t off)
4047{
4048 struct mem_cgroup *memcg = mem_cgroup_from_css(css: of_css(of));
4049 struct page_counter *counter;
4050
4051 switch (MEMFILE_TYPE(of_cft(of)->private)) {
4052 case _MEM:
4053 counter = &memcg->memory;
4054 break;
4055 case _MEMSWAP:
4056 counter = &memcg->memsw;
4057 break;
4058 case _KMEM:
4059 counter = &memcg->kmem;
4060 break;
4061 case _TCP:
4062 counter = &memcg->tcpmem;
4063 break;
4064 default:
4065 BUG();
4066 }
4067
4068 switch (MEMFILE_ATTR(of_cft(of)->private)) {
4069 case RES_MAX_USAGE:
4070 page_counter_reset_watermark(counter);
4071 break;
4072 case RES_FAILCNT:
4073 counter->failcnt = 0;
4074 break;
4075 default:
4076 BUG();
4077 }
4078
4079 return nbytes;
4080}
4081
4082static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
4083 struct cftype *cft)
4084{
4085 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
4086}
4087
4088#ifdef CONFIG_MMU
4089static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
4090 struct cftype *cft, u64 val)
4091{
4092 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4093
4094 pr_warn_once("Cgroup memory moving (move_charge_at_immigrate) is deprecated. "
4095 "Please report your usecase to linux-mm@kvack.org if you "
4096 "depend on this functionality.\n");
4097
4098 if (val & ~MOVE_MASK)
4099 return -EINVAL;
4100
4101 /*
4102 * No kind of locking is needed in here, because ->can_attach() will
4103 * check this value once in the beginning of the process, and then carry
4104 * on with stale data. This means that changes to this value will only
4105 * affect task migrations starting after the change.
4106 */
4107 memcg->move_charge_at_immigrate = val;
4108 return 0;
4109}
4110#else
4111static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
4112 struct cftype *cft, u64 val)
4113{
4114 return -ENOSYS;
4115}
4116#endif
4117
4118#ifdef CONFIG_NUMA
4119
4120#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
4121#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
4122#define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
4123
4124static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
4125 int nid, unsigned int lru_mask, bool tree)
4126{
4127 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
4128 unsigned long nr = 0;
4129 enum lru_list lru;
4130
4131 VM_BUG_ON((unsigned)nid >= nr_node_ids);
4132
4133 for_each_lru(lru) {
4134 if (!(BIT(lru) & lru_mask))
4135 continue;
4136 if (tree)
4137 nr += lruvec_page_state(lruvec, idx: NR_LRU_BASE + lru);
4138 else
4139 nr += lruvec_page_state_local(lruvec, idx: NR_LRU_BASE + lru);
4140 }
4141 return nr;
4142}
4143
4144static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
4145 unsigned int lru_mask,
4146 bool tree)
4147{
4148 unsigned long nr = 0;
4149 enum lru_list lru;
4150
4151 for_each_lru(lru) {
4152 if (!(BIT(lru) & lru_mask))
4153 continue;
4154 if (tree)
4155 nr += memcg_page_state(memcg, idx: NR_LRU_BASE + lru);
4156 else
4157 nr += memcg_page_state_local(memcg, idx: NR_LRU_BASE + lru);
4158 }
4159 return nr;
4160}
4161
4162static int memcg_numa_stat_show(struct seq_file *m, void *v)
4163{
4164 struct numa_stat {
4165 const char *name;
4166 unsigned int lru_mask;
4167 };
4168
4169 static const struct numa_stat stats[] = {
4170 { "total", LRU_ALL },
4171 { "file", LRU_ALL_FILE },
4172 { "anon", LRU_ALL_ANON },
4173 { "unevictable", BIT(LRU_UNEVICTABLE) },
4174 };
4175 const struct numa_stat *stat;
4176 int nid;
4177 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4178
4179 mem_cgroup_flush_stats();
4180
4181 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4182 seq_printf(m, fmt: "%s=%lu", stat->name,
4183 mem_cgroup_nr_lru_pages(memcg, lru_mask: stat->lru_mask,
4184 tree: false));
4185 for_each_node_state(nid, N_MEMORY)
4186 seq_printf(m, fmt: " N%d=%lu", nid,
4187 mem_cgroup_node_nr_lru_pages(memcg, nid,
4188 lru_mask: stat->lru_mask, tree: false));
4189 seq_putc(m, c: '\n');
4190 }
4191
4192 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4193
4194 seq_printf(m, fmt: "hierarchical_%s=%lu", stat->name,
4195 mem_cgroup_nr_lru_pages(memcg, lru_mask: stat->lru_mask,
4196 tree: true));
4197 for_each_node_state(nid, N_MEMORY)
4198 seq_printf(m, fmt: " N%d=%lu", nid,
4199 mem_cgroup_node_nr_lru_pages(memcg, nid,
4200 lru_mask: stat->lru_mask, tree: true));
4201 seq_putc(m, c: '\n');
4202 }
4203
4204 return 0;
4205}
4206#endif /* CONFIG_NUMA */
4207
4208static const unsigned int memcg1_stats[] = {
4209 NR_FILE_PAGES,
4210 NR_ANON_MAPPED,
4211#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4212 NR_ANON_THPS,
4213#endif
4214 NR_SHMEM,
4215 NR_FILE_MAPPED,
4216 NR_FILE_DIRTY,
4217 NR_WRITEBACK,
4218 WORKINGSET_REFAULT_ANON,
4219 WORKINGSET_REFAULT_FILE,
4220#ifdef CONFIG_SWAP
4221 MEMCG_SWAP,
4222 NR_SWAPCACHE,
4223#endif
4224};
4225
4226static const char *const memcg1_stat_names[] = {
4227 "cache",
4228 "rss",
4229#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4230 "rss_huge",
4231#endif
4232 "shmem",
4233 "mapped_file",
4234 "dirty",
4235 "writeback",
4236 "workingset_refault_anon",
4237 "workingset_refault_file",
4238#ifdef CONFIG_SWAP
4239 "swap",
4240 "swapcached",
4241#endif
4242};
4243
4244/* Universal VM events cgroup1 shows, original sort order */
4245static const unsigned int memcg1_events[] = {
4246 PGPGIN,
4247 PGPGOUT,
4248 PGFAULT,
4249 PGMAJFAULT,
4250};
4251
4252static void memcg1_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
4253{
4254 unsigned long memory, memsw;
4255 struct mem_cgroup *mi;
4256 unsigned int i;
4257
4258 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
4259
4260 mem_cgroup_flush_stats();
4261
4262 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4263 unsigned long nr;
4264
4265 nr = memcg_page_state_local_output(memcg, item: memcg1_stats[i]);
4266 seq_buf_printf(s, fmt: "%s %lu\n", memcg1_stat_names[i], nr);
4267 }
4268
4269 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4270 seq_buf_printf(s, fmt: "%s %lu\n", vm_event_name(item: memcg1_events[i]),
4271 memcg_events_local(memcg, event: memcg1_events[i]));
4272
4273 for (i = 0; i < NR_LRU_LISTS; i++)
4274 seq_buf_printf(s, fmt: "%s %lu\n", lru_list_name(lru: i),
4275 memcg_page_state_local(memcg, idx: NR_LRU_BASE + i) *
4276 PAGE_SIZE);
4277
4278 /* Hierarchical information */
4279 memory = memsw = PAGE_COUNTER_MAX;
4280 for (mi = memcg; mi; mi = parent_mem_cgroup(memcg: mi)) {
4281 memory = min(memory, READ_ONCE(mi->memory.max));
4282 memsw = min(memsw, READ_ONCE(mi->memsw.max));
4283 }
4284 seq_buf_printf(s, fmt: "hierarchical_memory_limit %llu\n",
4285 (u64)memory * PAGE_SIZE);
4286 seq_buf_printf(s, fmt: "hierarchical_memsw_limit %llu\n",
4287 (u64)memsw * PAGE_SIZE);
4288
4289 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4290 unsigned long nr;
4291
4292 nr = memcg_page_state_output(memcg, item: memcg1_stats[i]);
4293 seq_buf_printf(s, fmt: "total_%s %llu\n", memcg1_stat_names[i],
4294 (u64)nr);
4295 }
4296
4297 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4298 seq_buf_printf(s, fmt: "total_%s %llu\n",
4299 vm_event_name(item: memcg1_events[i]),
4300 (u64)memcg_events(memcg, event: memcg1_events[i]));
4301
4302 for (i = 0; i < NR_LRU_LISTS; i++)
4303 seq_buf_printf(s, fmt: "total_%s %llu\n", lru_list_name(lru: i),
4304 (u64)memcg_page_state(memcg, idx: NR_LRU_BASE + i) *
4305 PAGE_SIZE);
4306
4307#ifdef CONFIG_DEBUG_VM
4308 {
4309 pg_data_t *pgdat;
4310 struct mem_cgroup_per_node *mz;
4311 unsigned long anon_cost = 0;
4312 unsigned long file_cost = 0;
4313
4314 for_each_online_pgdat(pgdat) {
4315 mz = memcg->nodeinfo[pgdat->node_id];
4316
4317 anon_cost += mz->lruvec.anon_cost;
4318 file_cost += mz->lruvec.file_cost;
4319 }
4320 seq_buf_printf(s, fmt: "anon_cost %lu\n", anon_cost);
4321 seq_buf_printf(s, fmt: "file_cost %lu\n", file_cost);
4322 }
4323#endif
4324}
4325
4326static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4327 struct cftype *cft)
4328{
4329 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4330
4331 return mem_cgroup_swappiness(memcg);
4332}
4333
4334static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4335 struct cftype *cft, u64 val)
4336{
4337 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4338
4339 if (val > 200)
4340 return -EINVAL;
4341
4342 if (!mem_cgroup_is_root(memcg))
4343 WRITE_ONCE(memcg->swappiness, val);
4344 else
4345 WRITE_ONCE(vm_swappiness, val);
4346
4347 return 0;
4348}
4349
4350static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4351{
4352 struct mem_cgroup_threshold_ary *t;
4353 unsigned long usage;
4354 int i;
4355
4356 rcu_read_lock();
4357 if (!swap)
4358 t = rcu_dereference(memcg->thresholds.primary);
4359 else
4360 t = rcu_dereference(memcg->memsw_thresholds.primary);
4361
4362 if (!t)
4363 goto unlock;
4364
4365 usage = mem_cgroup_usage(memcg, swap);
4366
4367 /*
4368 * current_threshold points to threshold just below or equal to usage.
4369 * If it's not true, a threshold was crossed after last
4370 * call of __mem_cgroup_threshold().
4371 */
4372 i = t->current_threshold;
4373
4374 /*
4375 * Iterate backward over array of thresholds starting from
4376 * current_threshold and check if a threshold is crossed.
4377 * If none of thresholds below usage is crossed, we read
4378 * only one element of the array here.
4379 */
4380 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4381 eventfd_signal(ctx: t->entries[i].eventfd, n: 1);
4382
4383 /* i = current_threshold + 1 */
4384 i++;
4385
4386 /*
4387 * Iterate forward over array of thresholds starting from
4388 * current_threshold+1 and check if a threshold is crossed.
4389 * If none of thresholds above usage is crossed, we read
4390 * only one element of the array here.
4391 */
4392 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4393 eventfd_signal(ctx: t->entries[i].eventfd, n: 1);
4394
4395 /* Update current_threshold */
4396 t->current_threshold = i - 1;
4397unlock:
4398 rcu_read_unlock();
4399}
4400
4401static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4402{
4403 while (memcg) {
4404 __mem_cgroup_threshold(memcg, swap: false);
4405 if (do_memsw_account())
4406 __mem_cgroup_threshold(memcg, swap: true);
4407
4408 memcg = parent_mem_cgroup(memcg);
4409 }
4410}
4411
4412static int compare_thresholds(const void *a, const void *b)
4413{
4414 const struct mem_cgroup_threshold *_a = a;
4415 const struct mem_cgroup_threshold *_b = b;
4416
4417 if (_a->threshold > _b->threshold)
4418 return 1;
4419
4420 if (_a->threshold < _b->threshold)
4421 return -1;
4422
4423 return 0;
4424}
4425
4426static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4427{
4428 struct mem_cgroup_eventfd_list *ev;
4429
4430 spin_lock(lock: &memcg_oom_lock);
4431
4432 list_for_each_entry(ev, &memcg->oom_notify, list)
4433 eventfd_signal(ctx: ev->eventfd, n: 1);
4434
4435 spin_unlock(lock: &memcg_oom_lock);
4436 return 0;
4437}
4438
4439static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4440{
4441 struct mem_cgroup *iter;
4442
4443 for_each_mem_cgroup_tree(iter, memcg)
4444 mem_cgroup_oom_notify_cb(memcg: iter);
4445}
4446
4447static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4448 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4449{
4450 struct mem_cgroup_thresholds *thresholds;
4451 struct mem_cgroup_threshold_ary *new;
4452 unsigned long threshold;
4453 unsigned long usage;
4454 int i, size, ret;
4455
4456 ret = page_counter_memparse(buf: args, max: "-1", nr_pages: &threshold);
4457 if (ret)
4458 return ret;
4459
4460 mutex_lock(&memcg->thresholds_lock);
4461
4462 if (type == _MEM) {
4463 thresholds = &memcg->thresholds;
4464 usage = mem_cgroup_usage(memcg, swap: false);
4465 } else if (type == _MEMSWAP) {
4466 thresholds = &memcg->memsw_thresholds;
4467 usage = mem_cgroup_usage(memcg, swap: true);
4468 } else
4469 BUG();
4470
4471 /* Check if a threshold crossed before adding a new one */
4472 if (thresholds->primary)
4473 __mem_cgroup_threshold(memcg, swap: type == _MEMSWAP);
4474
4475 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4476
4477 /* Allocate memory for new array of thresholds */
4478 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4479 if (!new) {
4480 ret = -ENOMEM;
4481 goto unlock;
4482 }
4483 new->size = size;
4484
4485 /* Copy thresholds (if any) to new array */
4486 if (thresholds->primary)
4487 memcpy(new->entries, thresholds->primary->entries,
4488 flex_array_size(new, entries, size - 1));
4489
4490 /* Add new threshold */
4491 new->entries[size - 1].eventfd = eventfd;
4492 new->entries[size - 1].threshold = threshold;
4493
4494 /* Sort thresholds. Registering of new threshold isn't time-critical */
4495 sort(base: new->entries, num: size, size: sizeof(*new->entries),
4496 cmp_func: compare_thresholds, NULL);
4497
4498 /* Find current threshold */
4499 new->current_threshold = -1;
4500 for (i = 0; i < size; i++) {
4501 if (new->entries[i].threshold <= usage) {
4502 /*
4503 * new->current_threshold will not be used until
4504 * rcu_assign_pointer(), so it's safe to increment
4505 * it here.
4506 */
4507 ++new->current_threshold;
4508 } else
4509 break;
4510 }
4511
4512 /* Free old spare buffer and save old primary buffer as spare */
4513 kfree(objp: thresholds->spare);
4514 thresholds->spare = thresholds->primary;
4515
4516 rcu_assign_pointer(thresholds->primary, new);
4517
4518 /* To be sure that nobody uses thresholds */
4519 synchronize_rcu();
4520
4521unlock:
4522 mutex_unlock(lock: &memcg->thresholds_lock);
4523
4524 return ret;
4525}
4526
4527static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4528 struct eventfd_ctx *eventfd, const char *args)
4529{
4530 return __mem_cgroup_usage_register_event(memcg, eventfd, args, type: _MEM);
4531}
4532
4533static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4534 struct eventfd_ctx *eventfd, const char *args)
4535{
4536 return __mem_cgroup_usage_register_event(memcg, eventfd, args, type: _MEMSWAP);
4537}
4538
4539static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4540 struct eventfd_ctx *eventfd, enum res_type type)
4541{
4542 struct mem_cgroup_thresholds *thresholds;
4543 struct mem_cgroup_threshold_ary *new;
4544 unsigned long usage;
4545 int i, j, size, entries;
4546
4547 mutex_lock(&memcg->thresholds_lock);
4548
4549 if (type == _MEM) {
4550 thresholds = &memcg->thresholds;
4551 usage = mem_cgroup_usage(memcg, swap: false);
4552 } else if (type == _MEMSWAP) {
4553 thresholds = &memcg->memsw_thresholds;
4554 usage = mem_cgroup_usage(memcg, swap: true);
4555 } else
4556 BUG();
4557
4558 if (!thresholds->primary)
4559 goto unlock;
4560
4561 /* Check if a threshold crossed before removing */
4562 __mem_cgroup_threshold(memcg, swap: type == _MEMSWAP);
4563
4564 /* Calculate new number of threshold */
4565 size = entries = 0;
4566 for (i = 0; i < thresholds->primary->size; i++) {
4567 if (thresholds->primary->entries[i].eventfd != eventfd)
4568 size++;
4569 else
4570 entries++;
4571 }
4572
4573 new = thresholds->spare;
4574
4575 /* If no items related to eventfd have been cleared, nothing to do */
4576 if (!entries)
4577 goto unlock;
4578
4579 /* Set thresholds array to NULL if we don't have thresholds */
4580 if (!size) {
4581 kfree(objp: new);
4582 new = NULL;
4583 goto swap_buffers;
4584 }
4585
4586 new->size = size;
4587
4588 /* Copy thresholds and find current threshold */
4589 new->current_threshold = -1;
4590 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4591 if (thresholds->primary->entries[i].eventfd == eventfd)
4592 continue;
4593
4594 new->entries[j] = thresholds->primary->entries[i];
4595 if (new->entries[j].threshold <= usage) {
4596 /*
4597 * new->current_threshold will not be used
4598 * until rcu_assign_pointer(), so it's safe to increment
4599 * it here.
4600 */
4601 ++new->current_threshold;
4602 }
4603 j++;
4604 }
4605
4606swap_buffers:
4607 /* Swap primary and spare array */
4608 thresholds->spare = thresholds->primary;
4609
4610 rcu_assign_pointer(thresholds->primary, new);
4611
4612 /* To be sure that nobody uses thresholds */
4613 synchronize_rcu();
4614
4615 /* If all events are unregistered, free the spare array */
4616 if (!new) {
4617 kfree(objp: thresholds->spare);
4618 thresholds->spare = NULL;
4619 }
4620unlock:
4621 mutex_unlock(lock: &memcg->thresholds_lock);
4622}
4623
4624static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4625 struct eventfd_ctx *eventfd)
4626{
4627 return __mem_cgroup_usage_unregister_event(memcg, eventfd, type: _MEM);
4628}
4629
4630static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4631 struct eventfd_ctx *eventfd)
4632{
4633 return __mem_cgroup_usage_unregister_event(memcg, eventfd, type: _MEMSWAP);
4634}
4635
4636static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4637 struct eventfd_ctx *eventfd, const char *args)
4638{
4639 struct mem_cgroup_eventfd_list *event;
4640
4641 event = kmalloc(size: sizeof(*event), GFP_KERNEL);
4642 if (!event)
4643 return -ENOMEM;
4644
4645 spin_lock(lock: &memcg_oom_lock);
4646
4647 event->eventfd = eventfd;
4648 list_add(new: &event->list, head: &memcg->oom_notify);
4649
4650 /* already in OOM ? */
4651 if (memcg->under_oom)
4652 eventfd_signal(ctx: eventfd, n: 1);
4653 spin_unlock(lock: &memcg_oom_lock);
4654
4655 return 0;
4656}
4657
4658static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4659 struct eventfd_ctx *eventfd)
4660{
4661 struct mem_cgroup_eventfd_list *ev, *tmp;
4662
4663 spin_lock(lock: &memcg_oom_lock);
4664
4665 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4666 if (ev->eventfd == eventfd) {
4667 list_del(entry: &ev->list);
4668 kfree(objp: ev);
4669 }
4670 }
4671
4672 spin_unlock(lock: &memcg_oom_lock);
4673}
4674
4675static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4676{
4677 struct mem_cgroup *memcg = mem_cgroup_from_seq(m: sf);
4678
4679 seq_printf(m: sf, fmt: "oom_kill_disable %d\n", READ_ONCE(memcg->oom_kill_disable));
4680 seq_printf(m: sf, fmt: "under_oom %d\n", (bool)memcg->under_oom);
4681 seq_printf(m: sf, fmt: "oom_kill %lu\n",
4682 atomic_long_read(v: &memcg->memory_events[MEMCG_OOM_KILL]));
4683 return 0;
4684}
4685
4686static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4687 struct cftype *cft, u64 val)
4688{
4689 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4690
4691 /* cannot set to root cgroup and only 0 and 1 are allowed */
4692 if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
4693 return -EINVAL;
4694
4695 WRITE_ONCE(memcg->oom_kill_disable, val);
4696 if (!val)
4697 memcg_oom_recover(memcg);
4698
4699 return 0;
4700}
4701
4702#ifdef CONFIG_CGROUP_WRITEBACK
4703
4704#include <trace/events/writeback.h>
4705
4706static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4707{
4708 return wb_domain_init(dom: &memcg->cgwb_domain, gfp);
4709}
4710
4711static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4712{
4713 wb_domain_exit(dom: &memcg->cgwb_domain);
4714}
4715
4716static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4717{
4718 wb_domain_size_changed(dom: &memcg->cgwb_domain);
4719}
4720
4721struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4722{
4723 struct mem_cgroup *memcg = mem_cgroup_from_css(css: wb->memcg_css);
4724
4725 if (!memcg->css.parent)
4726 return NULL;
4727
4728 return &memcg->cgwb_domain;
4729}
4730
4731/**
4732 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4733 * @wb: bdi_writeback in question
4734 * @pfilepages: out parameter for number of file pages
4735 * @pheadroom: out parameter for number of allocatable pages according to memcg
4736 * @pdirty: out parameter for number of dirty pages
4737 * @pwriteback: out parameter for number of pages under writeback
4738 *
4739 * Determine the numbers of file, headroom, dirty, and writeback pages in
4740 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4741 * is a bit more involved.
4742 *
4743 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4744 * headroom is calculated as the lowest headroom of itself and the
4745 * ancestors. Note that this doesn't consider the actual amount of
4746 * available memory in the system. The caller should further cap
4747 * *@pheadroom accordingly.
4748 */
4749void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4750 unsigned long *pheadroom, unsigned long *pdirty,
4751 unsigned long *pwriteback)
4752{
4753 struct mem_cgroup *memcg = mem_cgroup_from_css(css: wb->memcg_css);
4754 struct mem_cgroup *parent;
4755
4756 mem_cgroup_flush_stats();
4757
4758 *pdirty = memcg_page_state(memcg, idx: NR_FILE_DIRTY);
4759 *pwriteback = memcg_page_state(memcg, idx: NR_WRITEBACK);
4760 *pfilepages = memcg_page_state(memcg, idx: NR_INACTIVE_FILE) +
4761 memcg_page_state(memcg, idx: NR_ACTIVE_FILE);
4762
4763 *pheadroom = PAGE_COUNTER_MAX;
4764 while ((parent = parent_mem_cgroup(memcg))) {
4765 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4766 READ_ONCE(memcg->memory.high));
4767 unsigned long used = page_counter_read(counter: &memcg->memory);
4768
4769 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4770 memcg = parent;
4771 }
4772}
4773
4774/*
4775 * Foreign dirty flushing
4776 *
4777 * There's an inherent mismatch between memcg and writeback. The former
4778 * tracks ownership per-page while the latter per-inode. This was a
4779 * deliberate design decision because honoring per-page ownership in the
4780 * writeback path is complicated, may lead to higher CPU and IO overheads
4781 * and deemed unnecessary given that write-sharing an inode across
4782 * different cgroups isn't a common use-case.
4783 *
4784 * Combined with inode majority-writer ownership switching, this works well
4785 * enough in most cases but there are some pathological cases. For
4786 * example, let's say there are two cgroups A and B which keep writing to
4787 * different but confined parts of the same inode. B owns the inode and
4788 * A's memory is limited far below B's. A's dirty ratio can rise enough to
4789 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4790 * triggering background writeback. A will be slowed down without a way to
4791 * make writeback of the dirty pages happen.
4792 *
4793 * Conditions like the above can lead to a cgroup getting repeatedly and
4794 * severely throttled after making some progress after each
4795 * dirty_expire_interval while the underlying IO device is almost
4796 * completely idle.
4797 *
4798 * Solving this problem completely requires matching the ownership tracking
4799 * granularities between memcg and writeback in either direction. However,
4800 * the more egregious behaviors can be avoided by simply remembering the
4801 * most recent foreign dirtying events and initiating remote flushes on
4802 * them when local writeback isn't enough to keep the memory clean enough.
4803 *
4804 * The following two functions implement such mechanism. When a foreign
4805 * page - a page whose memcg and writeback ownerships don't match - is
4806 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4807 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
4808 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4809 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4810 * foreign bdi_writebacks which haven't expired. Both the numbers of
4811 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4812 * limited to MEMCG_CGWB_FRN_CNT.
4813 *
4814 * The mechanism only remembers IDs and doesn't hold any object references.
4815 * As being wrong occasionally doesn't matter, updates and accesses to the
4816 * records are lockless and racy.
4817 */
4818void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
4819 struct bdi_writeback *wb)
4820{
4821 struct mem_cgroup *memcg = folio_memcg(folio);
4822 struct memcg_cgwb_frn *frn;
4823 u64 now = get_jiffies_64();
4824 u64 oldest_at = now;
4825 int oldest = -1;
4826 int i;
4827
4828 trace_track_foreign_dirty(folio, wb);
4829
4830 /*
4831 * Pick the slot to use. If there is already a slot for @wb, keep
4832 * using it. If not replace the oldest one which isn't being
4833 * written out.
4834 */
4835 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4836 frn = &memcg->cgwb_frn[i];
4837 if (frn->bdi_id == wb->bdi->id &&
4838 frn->memcg_id == wb->memcg_css->id)
4839 break;
4840 if (time_before64(frn->at, oldest_at) &&
4841 atomic_read(v: &frn->done.cnt) == 1) {
4842 oldest = i;
4843 oldest_at = frn->at;
4844 }
4845 }
4846
4847 if (i < MEMCG_CGWB_FRN_CNT) {
4848 /*
4849 * Re-using an existing one. Update timestamp lazily to
4850 * avoid making the cacheline hot. We want them to be
4851 * reasonably up-to-date and significantly shorter than
4852 * dirty_expire_interval as that's what expires the record.
4853 * Use the shorter of 1s and dirty_expire_interval / 8.
4854 */
4855 unsigned long update_intv =
4856 min_t(unsigned long, HZ,
4857 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4858
4859 if (time_before64(frn->at, now - update_intv))
4860 frn->at = now;
4861 } else if (oldest >= 0) {
4862 /* replace the oldest free one */
4863 frn = &memcg->cgwb_frn[oldest];
4864 frn->bdi_id = wb->bdi->id;
4865 frn->memcg_id = wb->memcg_css->id;
4866 frn->at = now;
4867 }
4868}
4869
4870/* issue foreign writeback flushes for recorded foreign dirtying events */
4871void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4872{
4873 struct mem_cgroup *memcg = mem_cgroup_from_css(css: wb->memcg_css);
4874 unsigned long intv = msecs_to_jiffies(m: dirty_expire_interval * 10);
4875 u64 now = jiffies_64;
4876 int i;
4877
4878 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4879 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4880
4881 /*
4882 * If the record is older than dirty_expire_interval,
4883 * writeback on it has already started. No need to kick it
4884 * off again. Also, don't start a new one if there's
4885 * already one in flight.
4886 */
4887 if (time_after64(frn->at, now - intv) &&
4888 atomic_read(v: &frn->done.cnt) == 1) {
4889 frn->at = 0;
4890 trace_flush_foreign(wb, frn_bdi_id: frn->bdi_id, frn_memcg_id: frn->memcg_id);
4891 cgroup_writeback_by_id(bdi_id: frn->bdi_id, memcg_id: frn->memcg_id,
4892 reason: WB_REASON_FOREIGN_FLUSH,
4893 done: &frn->done);
4894 }
4895 }
4896}
4897
4898#else /* CONFIG_CGROUP_WRITEBACK */
4899
4900static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4901{
4902 return 0;
4903}
4904
4905static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4906{
4907}
4908
4909static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4910{
4911}
4912
4913#endif /* CONFIG_CGROUP_WRITEBACK */
4914
4915/*
4916 * DO NOT USE IN NEW FILES.
4917 *
4918 * "cgroup.event_control" implementation.
4919 *
4920 * This is way over-engineered. It tries to support fully configurable
4921 * events for each user. Such level of flexibility is completely
4922 * unnecessary especially in the light of the planned unified hierarchy.
4923 *
4924 * Please deprecate this and replace with something simpler if at all
4925 * possible.
4926 */
4927
4928/*
4929 * Unregister event and free resources.
4930 *
4931 * Gets called from workqueue.
4932 */
4933static void memcg_event_remove(struct work_struct *work)
4934{
4935 struct mem_cgroup_event *event =
4936 container_of(work, struct mem_cgroup_event, remove);
4937 struct mem_cgroup *memcg = event->memcg;
4938
4939 remove_wait_queue(wq_head: event->wqh, wq_entry: &event->wait);
4940
4941 event->unregister_event(memcg, event->eventfd);
4942
4943 /* Notify userspace the event is going away. */
4944 eventfd_signal(ctx: event->eventfd, n: 1);
4945
4946 eventfd_ctx_put(ctx: event->eventfd);
4947 kfree(objp: event);
4948 css_put(css: &memcg->css);
4949}
4950
4951/*
4952 * Gets called on EPOLLHUP on eventfd when user closes it.
4953 *
4954 * Called with wqh->lock held and interrupts disabled.
4955 */
4956static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4957 int sync, void *key)
4958{
4959 struct mem_cgroup_event *event =
4960 container_of(wait, struct mem_cgroup_event, wait);
4961 struct mem_cgroup *memcg = event->memcg;
4962 __poll_t flags = key_to_poll(key);
4963
4964 if (flags & EPOLLHUP) {
4965 /*
4966 * If the event has been detached at cgroup removal, we
4967 * can simply return knowing the other side will cleanup
4968 * for us.
4969 *
4970 * We can't race against event freeing since the other
4971 * side will require wqh->lock via remove_wait_queue(),
4972 * which we hold.
4973 */
4974 spin_lock(lock: &memcg->event_list_lock);
4975 if (!list_empty(head: &event->list)) {
4976 list_del_init(entry: &event->list);
4977 /*
4978 * We are in atomic context, but cgroup_event_remove()
4979 * may sleep, so we have to call it in workqueue.
4980 */
4981 schedule_work(work: &event->remove);
4982 }
4983 spin_unlock(lock: &memcg->event_list_lock);
4984 }
4985
4986 return 0;
4987}
4988
4989static void memcg_event_ptable_queue_proc(struct file *file,
4990 wait_queue_head_t *wqh, poll_table *pt)
4991{
4992 struct mem_cgroup_event *event =
4993 container_of(pt, struct mem_cgroup_event, pt);
4994
4995 event->wqh = wqh;
4996 add_wait_queue(wq_head: wqh, wq_entry: &event->wait);
4997}
4998
4999/*
5000 * DO NOT USE IN NEW FILES.
5001 *
5002 * Parse input and register new cgroup event handler.
5003 *
5004 * Input must be in format '<event_fd> <control_fd> <args>'.
5005 * Interpretation of args is defined by control file implementation.
5006 */
5007static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
5008 char *buf, size_t nbytes, loff_t off)
5009{
5010 struct cgroup_subsys_state *css = of_css(of);
5011 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5012 struct mem_cgroup_event *event;
5013 struct cgroup_subsys_state *cfile_css;
5014 unsigned int efd, cfd;
5015 struct fd efile;
5016 struct fd cfile;
5017 struct dentry *cdentry;
5018 const char *name;
5019 char *endp;
5020 int ret;
5021
5022 if (IS_ENABLED(CONFIG_PREEMPT_RT))
5023 return -EOPNOTSUPP;
5024
5025 buf = strstrip(str: buf);
5026
5027 efd = simple_strtoul(buf, &endp, 10);
5028 if (*endp != ' ')
5029 return -EINVAL;
5030 buf = endp + 1;
5031
5032 cfd = simple_strtoul(buf, &endp, 10);
5033 if ((*endp != ' ') && (*endp != '\0'))
5034 return -EINVAL;
5035 buf = endp + 1;
5036
5037 event = kzalloc(size: sizeof(*event), GFP_KERNEL);
5038 if (!event)
5039 return -ENOMEM;
5040
5041 event->memcg = memcg;
5042 INIT_LIST_HEAD(list: &event->list);
5043 init_poll_funcptr(pt: &event->pt, qproc: memcg_event_ptable_queue_proc);
5044 init_waitqueue_func_entry(wq_entry: &event->wait, func: memcg_event_wake);
5045 INIT_WORK(&event->remove, memcg_event_remove);
5046
5047 efile = fdget(fd: efd);
5048 if (!efile.file) {
5049 ret = -EBADF;
5050 goto out_kfree;
5051 }
5052
5053 event->eventfd = eventfd_ctx_fileget(file: efile.file);
5054 if (IS_ERR(ptr: event->eventfd)) {
5055 ret = PTR_ERR(ptr: event->eventfd);
5056 goto out_put_efile;
5057 }
5058
5059 cfile = fdget(fd: cfd);
5060 if (!cfile.file) {
5061 ret = -EBADF;
5062 goto out_put_eventfd;
5063 }
5064
5065 /* the process need read permission on control file */
5066 /* AV: shouldn't we check that it's been opened for read instead? */
5067 ret = file_permission(file: cfile.file, MAY_READ);
5068 if (ret < 0)
5069 goto out_put_cfile;
5070
5071 /*
5072 * The control file must be a regular cgroup1 file. As a regular cgroup
5073 * file can't be renamed, it's safe to access its name afterwards.
5074 */
5075 cdentry = cfile.file->f_path.dentry;
5076 if (cdentry->d_sb->s_type != &cgroup_fs_type || !d_is_reg(dentry: cdentry)) {
5077 ret = -EINVAL;
5078 goto out_put_cfile;
5079 }
5080
5081 /*
5082 * Determine the event callbacks and set them in @event. This used
5083 * to be done via struct cftype but cgroup core no longer knows
5084 * about these events. The following is crude but the whole thing
5085 * is for compatibility anyway.
5086 *
5087 * DO NOT ADD NEW FILES.
5088 */
5089 name = cdentry->d_name.name;
5090
5091 if (!strcmp(name, "memory.usage_in_bytes")) {
5092 event->register_event = mem_cgroup_usage_register_event;
5093 event->unregister_event = mem_cgroup_usage_unregister_event;
5094 } else if (!strcmp(name, "memory.oom_control")) {
5095 event->register_event = mem_cgroup_oom_register_event;
5096 event->unregister_event = mem_cgroup_oom_unregister_event;
5097 } else if (!strcmp(name, "memory.pressure_level")) {
5098 event->register_event = vmpressure_register_event;
5099 event->unregister_event = vmpressure_unregister_event;
5100 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
5101 event->register_event = memsw_cgroup_usage_register_event;
5102 event->unregister_event = memsw_cgroup_usage_unregister_event;
5103 } else {
5104 ret = -EINVAL;
5105 goto out_put_cfile;
5106 }
5107
5108 /*
5109 * Verify @cfile should belong to @css. Also, remaining events are
5110 * automatically removed on cgroup destruction but the removal is
5111 * asynchronous, so take an extra ref on @css.
5112 */
5113 cfile_css = css_tryget_online_from_dir(dentry: cdentry->d_parent,
5114 ss: &memory_cgrp_subsys);
5115 ret = -EINVAL;
5116 if (IS_ERR(ptr: cfile_css))
5117 goto out_put_cfile;
5118 if (cfile_css != css) {
5119 css_put(css: cfile_css);
5120 goto out_put_cfile;
5121 }
5122
5123 ret = event->register_event(memcg, event->eventfd, buf);
5124 if (ret)
5125 goto out_put_css;
5126
5127 vfs_poll(file: efile.file, pt: &event->pt);
5128
5129 spin_lock_irq(lock: &memcg->event_list_lock);
5130 list_add(new: &event->list, head: &memcg->event_list);
5131 spin_unlock_irq(lock: &memcg->event_list_lock);
5132
5133 fdput(fd: cfile);
5134 fdput(fd: efile);
5135
5136 return nbytes;
5137
5138out_put_css:
5139 css_put(css);
5140out_put_cfile:
5141 fdput(fd: cfile);
5142out_put_eventfd:
5143 eventfd_ctx_put(ctx: event->eventfd);
5144out_put_efile:
5145 fdput(fd: efile);
5146out_kfree:
5147 kfree(objp: event);
5148
5149 return ret;
5150}
5151
5152#if defined(CONFIG_MEMCG_KMEM) && (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
5153static int mem_cgroup_slab_show(struct seq_file *m, void *p)
5154{
5155 /*
5156 * Deprecated.
5157 * Please, take a look at tools/cgroup/memcg_slabinfo.py .
5158 */
5159 return 0;
5160}
5161#endif
5162
5163static int memory_stat_show(struct seq_file *m, void *v);
5164
5165static struct cftype mem_cgroup_legacy_files[] = {
5166 {
5167 .name = "usage_in_bytes",
5168 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5169 .read_u64 = mem_cgroup_read_u64,
5170 },
5171 {
5172 .name = "max_usage_in_bytes",
5173 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5174 .write = mem_cgroup_reset,
5175 .read_u64 = mem_cgroup_read_u64,
5176 },
5177 {
5178 .name = "limit_in_bytes",
5179 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5180 .write = mem_cgroup_write,
5181 .read_u64 = mem_cgroup_read_u64,
5182 },
5183 {
5184 .name = "soft_limit_in_bytes",
5185 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5186 .write = mem_cgroup_write,
5187 .read_u64 = mem_cgroup_read_u64,
5188 },
5189 {
5190 .name = "failcnt",
5191 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5192 .write = mem_cgroup_reset,
5193 .read_u64 = mem_cgroup_read_u64,
5194 },
5195 {
5196 .name = "stat",
5197 .seq_show = memory_stat_show,
5198 },
5199 {
5200 .name = "force_empty",
5201 .write = mem_cgroup_force_empty_write,
5202 },
5203 {
5204 .name = "use_hierarchy",
5205 .write_u64 = mem_cgroup_hierarchy_write,
5206 .read_u64 = mem_cgroup_hierarchy_read,
5207 },
5208 {
5209 .name = "cgroup.event_control", /* XXX: for compat */
5210 .write = memcg_write_event_control,
5211 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
5212 },
5213 {
5214 .name = "swappiness",
5215 .read_u64 = mem_cgroup_swappiness_read,
5216 .write_u64 = mem_cgroup_swappiness_write,
5217 },
5218 {
5219 .name = "move_charge_at_immigrate",
5220 .read_u64 = mem_cgroup_move_charge_read,
5221 .write_u64 = mem_cgroup_move_charge_write,
5222 },
5223 {
5224 .name = "oom_control",
5225 .seq_show = mem_cgroup_oom_control_read,
5226 .write_u64 = mem_cgroup_oom_control_write,
5227 },
5228 {
5229 .name = "pressure_level",
5230 .seq_show = mem_cgroup_dummy_seq_show,
5231 },
5232#ifdef CONFIG_NUMA
5233 {
5234 .name = "numa_stat",
5235 .seq_show = memcg_numa_stat_show,
5236 },
5237#endif
5238 {
5239 .name = "kmem.limit_in_bytes",
5240 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5241 .write = mem_cgroup_write,
5242 .read_u64 = mem_cgroup_read_u64,
5243 },
5244 {
5245 .name = "kmem.usage_in_bytes",
5246 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5247 .read_u64 = mem_cgroup_read_u64,
5248 },
5249 {
5250 .name = "kmem.failcnt",
5251 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5252 .write = mem_cgroup_reset,
5253 .read_u64 = mem_cgroup_read_u64,
5254 },
5255 {
5256 .name = "kmem.max_usage_in_bytes",
5257 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5258 .write = mem_cgroup_reset,
5259 .read_u64 = mem_cgroup_read_u64,
5260 },
5261#if defined(CONFIG_MEMCG_KMEM) && \
5262 (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
5263 {
5264 .name = "kmem.slabinfo",
5265 .seq_show = mem_cgroup_slab_show,
5266 },
5267#endif
5268 {
5269 .name = "kmem.tcp.limit_in_bytes",
5270 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
5271 .write = mem_cgroup_write,
5272 .read_u64 = mem_cgroup_read_u64,
5273 },
5274 {
5275 .name = "kmem.tcp.usage_in_bytes",
5276 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
5277 .read_u64 = mem_cgroup_read_u64,
5278 },
5279 {
5280 .name = "kmem.tcp.failcnt",
5281 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
5282 .write = mem_cgroup_reset,
5283 .read_u64 = mem_cgroup_read_u64,
5284 },
5285 {
5286 .name = "kmem.tcp.max_usage_in_bytes",
5287 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
5288 .write = mem_cgroup_reset,
5289 .read_u64 = mem_cgroup_read_u64,
5290 },
5291 { }, /* terminate */
5292};
5293
5294/*
5295 * Private memory cgroup IDR
5296 *
5297 * Swap-out records and page cache shadow entries need to store memcg
5298 * references in constrained space, so we maintain an ID space that is
5299 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5300 * memory-controlled cgroups to 64k.
5301 *
5302 * However, there usually are many references to the offline CSS after
5303 * the cgroup has been destroyed, such as page cache or reclaimable
5304 * slab objects, that don't need to hang on to the ID. We want to keep
5305 * those dead CSS from occupying IDs, or we might quickly exhaust the
5306 * relatively small ID space and prevent the creation of new cgroups
5307 * even when there are much fewer than 64k cgroups - possibly none.
5308 *
5309 * Maintain a private 16-bit ID space for memcg, and allow the ID to
5310 * be freed and recycled when it's no longer needed, which is usually
5311 * when the CSS is offlined.
5312 *
5313 * The only exception to that are records of swapped out tmpfs/shmem
5314 * pages that need to be attributed to live ancestors on swapin. But
5315 * those references are manageable from userspace.
5316 */
5317
5318#define MEM_CGROUP_ID_MAX ((1UL << MEM_CGROUP_ID_SHIFT) - 1)
5319static DEFINE_IDR(mem_cgroup_idr);
5320
5321static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5322{
5323 if (memcg->id.id > 0) {
5324 idr_remove(&mem_cgroup_idr, id: memcg->id.id);
5325 memcg->id.id = 0;
5326 }
5327}
5328
5329static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5330 unsigned int n)
5331{
5332 refcount_add(i: n, r: &memcg->id.ref);
5333}
5334
5335static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5336{
5337 if (refcount_sub_and_test(i: n, r: &memcg->id.ref)) {
5338 mem_cgroup_id_remove(memcg);
5339
5340 /* Memcg ID pins CSS */
5341 css_put(css: &memcg->css);
5342 }
5343}
5344
5345static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5346{
5347 mem_cgroup_id_put_many(memcg, n: 1);
5348}
5349
5350/**
5351 * mem_cgroup_from_id - look up a memcg from a memcg id
5352 * @id: the memcg id to look up
5353 *
5354 * Caller must hold rcu_read_lock().
5355 */
5356struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5357{
5358 WARN_ON_ONCE(!rcu_read_lock_held());
5359 return idr_find(&mem_cgroup_idr, id);
5360}
5361
5362#ifdef CONFIG_SHRINKER_DEBUG
5363struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino)
5364{
5365 struct cgroup *cgrp;
5366 struct cgroup_subsys_state *css;
5367 struct mem_cgroup *memcg;
5368
5369 cgrp = cgroup_get_from_id(id: ino);
5370 if (IS_ERR(ptr: cgrp))
5371 return ERR_CAST(ptr: cgrp);
5372
5373 css = cgroup_get_e_css(cgroup: cgrp, ss: &memory_cgrp_subsys);
5374 if (css)
5375 memcg = container_of(css, struct mem_cgroup, css);
5376 else
5377 memcg = ERR_PTR(error: -ENOENT);
5378
5379 cgroup_put(cgrp);
5380
5381 return memcg;
5382}
5383#endif
5384
5385static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5386{
5387 struct mem_cgroup_per_node *pn;
5388
5389 pn = kzalloc_node(size: sizeof(*pn), GFP_KERNEL, node);
5390 if (!pn)
5391 return 1;
5392
5393 pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu,
5394 GFP_KERNEL_ACCOUNT);
5395 if (!pn->lruvec_stats_percpu) {
5396 kfree(objp: pn);
5397 return 1;
5398 }
5399
5400 lruvec_init(lruvec: &pn->lruvec);
5401 pn->memcg = memcg;
5402
5403 memcg->nodeinfo[node] = pn;
5404 return 0;
5405}
5406
5407static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5408{
5409 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5410
5411 if (!pn)
5412 return;
5413
5414 free_percpu(pdata: pn->lruvec_stats_percpu);
5415 kfree(objp: pn);
5416}
5417
5418static void __mem_cgroup_free(struct mem_cgroup *memcg)
5419{
5420 int node;
5421
5422 if (memcg->orig_objcg)
5423 obj_cgroup_put(objcg: memcg->orig_objcg);
5424
5425 for_each_node(node)
5426 free_mem_cgroup_per_node_info(memcg, node);
5427 kfree(objp: memcg->vmstats);
5428 free_percpu(pdata: memcg->vmstats_percpu);
5429 kfree(objp: memcg);
5430}
5431
5432static void mem_cgroup_free(struct mem_cgroup *memcg)
5433{
5434 lru_gen_exit_memcg(memcg);
5435 memcg_wb_domain_exit(memcg);
5436 __mem_cgroup_free(memcg);
5437}
5438
5439static struct mem_cgroup *mem_cgroup_alloc(void)
5440{
5441 struct mem_cgroup *memcg;
5442 int node;
5443 int __maybe_unused i;
5444 long error = -ENOMEM;
5445
5446 memcg = kzalloc(struct_size(memcg, nodeinfo, nr_node_ids), GFP_KERNEL);
5447 if (!memcg)
5448 return ERR_PTR(error);
5449
5450 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5451 start: 1, MEM_CGROUP_ID_MAX + 1, GFP_KERNEL);
5452 if (memcg->id.id < 0) {
5453 error = memcg->id.id;
5454 goto fail;
5455 }
5456
5457 memcg->vmstats = kzalloc(size: sizeof(struct memcg_vmstats), GFP_KERNEL);
5458 if (!memcg->vmstats)
5459 goto fail;
5460
5461 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5462 GFP_KERNEL_ACCOUNT);
5463 if (!memcg->vmstats_percpu)
5464 goto fail;
5465
5466 for_each_node(node)
5467 if (alloc_mem_cgroup_per_node_info(memcg, node))
5468 goto fail;
5469
5470 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5471 goto fail;
5472
5473 INIT_WORK(&memcg->high_work, high_work_func);
5474 INIT_LIST_HEAD(list: &memcg->oom_notify);
5475 mutex_init(&memcg->thresholds_lock);
5476 spin_lock_init(&memcg->move_lock);
5477 vmpressure_init(vmpr: &memcg->vmpressure);
5478 INIT_LIST_HEAD(list: &memcg->event_list);
5479 spin_lock_init(&memcg->event_list_lock);
5480 memcg->socket_pressure = jiffies;
5481#ifdef CONFIG_MEMCG_KMEM
5482 memcg->kmemcg_id = -1;
5483 INIT_LIST_HEAD(list: &memcg->objcg_list);
5484#endif
5485#ifdef CONFIG_CGROUP_WRITEBACK
5486 INIT_LIST_HEAD(list: &memcg->cgwb_list);
5487 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5488 memcg->cgwb_frn[i].done =
5489 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5490#endif
5491#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5492 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5493 INIT_LIST_HEAD(list: &memcg->deferred_split_queue.split_queue);
5494 memcg->deferred_split_queue.split_queue_len = 0;
5495#endif
5496 lru_gen_init_memcg(memcg);
5497 return memcg;
5498fail:
5499 mem_cgroup_id_remove(memcg);
5500 __mem_cgroup_free(memcg);
5501 return ERR_PTR(error);
5502}
5503
5504static struct cgroup_subsys_state * __ref
5505mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5506{
5507 struct mem_cgroup *parent = mem_cgroup_from_css(css: parent_css);
5508 struct mem_cgroup *memcg, *old_memcg;
5509
5510 old_memcg = set_active_memcg(parent);
5511 memcg = mem_cgroup_alloc();
5512 set_active_memcg(old_memcg);
5513 if (IS_ERR(ptr: memcg))
5514 return ERR_CAST(ptr: memcg);
5515
5516 page_counter_set_high(counter: &memcg->memory, PAGE_COUNTER_MAX);
5517 WRITE_ONCE(memcg->soft_limit, PAGE_COUNTER_MAX);
5518#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
5519 memcg->zswap_max = PAGE_COUNTER_MAX;
5520#endif
5521 page_counter_set_high(counter: &memcg->swap, PAGE_COUNTER_MAX);
5522 if (parent) {
5523 WRITE_ONCE(memcg->swappiness, mem_cgroup_swappiness(parent));
5524 WRITE_ONCE(memcg->oom_kill_disable, READ_ONCE(parent->oom_kill_disable));
5525
5526 page_counter_init(counter: &memcg->memory, parent: &parent->memory);
5527 page_counter_init(counter: &memcg->swap, parent: &parent->swap);
5528 page_counter_init(counter: &memcg->kmem, parent: &parent->kmem);
5529 page_counter_init(counter: &memcg->tcpmem, parent: &parent->tcpmem);
5530 } else {
5531 init_memcg_events();
5532 page_counter_init(counter: &memcg->memory, NULL);
5533 page_counter_init(counter: &memcg->swap, NULL);
5534 page_counter_init(counter: &memcg->kmem, NULL);
5535 page_counter_init(counter: &memcg->tcpmem, NULL);
5536
5537 root_mem_cgroup = memcg;
5538 return &memcg->css;
5539 }
5540
5541 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5542 static_branch_inc(&memcg_sockets_enabled_key);
5543
5544#if defined(CONFIG_MEMCG_KMEM)
5545 if (!cgroup_memory_nobpf)
5546 static_branch_inc(&memcg_bpf_enabled_key);
5547#endif
5548
5549 return &memcg->css;
5550}
5551
5552static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5553{
5554 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5555
5556 if (memcg_online_kmem(memcg))
5557 goto remove_id;
5558
5559 /*
5560 * A memcg must be visible for expand_shrinker_info()
5561 * by the time the maps are allocated. So, we allocate maps
5562 * here, when for_each_mem_cgroup() can't skip it.
5563 */
5564 if (alloc_shrinker_info(memcg))
5565 goto offline_kmem;
5566
5567 if (unlikely(mem_cgroup_is_root(memcg)))
5568 queue_delayed_work(wq: system_unbound_wq, dwork: &stats_flush_dwork,
5569 FLUSH_TIME);
5570 lru_gen_online_memcg(memcg);
5571
5572 /* Online state pins memcg ID, memcg ID pins CSS */
5573 refcount_set(r: &memcg->id.ref, n: 1);
5574 css_get(css);
5575
5576 /*
5577 * Ensure mem_cgroup_from_id() works once we're fully online.
5578 *
5579 * We could do this earlier and require callers to filter with
5580 * css_tryget_online(). But right now there are no users that
5581 * need earlier access, and the workingset code relies on the
5582 * cgroup tree linkage (mem_cgroup_get_nr_swap_pages()). So
5583 * publish it here at the end of onlining. This matches the
5584 * regular ID destruction during offlining.
5585 */
5586 idr_replace(&mem_cgroup_idr, memcg, id: memcg->id.id);
5587
5588 return 0;
5589offline_kmem:
5590 memcg_offline_kmem(memcg);
5591remove_id:
5592 mem_cgroup_id_remove(memcg);
5593 return -ENOMEM;
5594}
5595
5596static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5597{
5598 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5599 struct mem_cgroup_event *event, *tmp;
5600
5601 /*
5602 * Unregister events and notify userspace.
5603 * Notify userspace about cgroup removing only after rmdir of cgroup
5604 * directory to avoid race between userspace and kernelspace.
5605 */
5606 spin_lock_irq(lock: &memcg->event_list_lock);
5607 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5608 list_del_init(entry: &event->list);
5609 schedule_work(work: &event->remove);
5610 }
5611 spin_unlock_irq(lock: &memcg->event_list_lock);
5612
5613 page_counter_set_min(counter: &memcg->memory, nr_pages: 0);
5614 page_counter_set_low(counter: &memcg->memory, nr_pages: 0);
5615
5616 memcg_offline_kmem(memcg);
5617 reparent_shrinker_deferred(memcg);
5618 wb_memcg_offline(memcg);
5619 lru_gen_offline_memcg(memcg);
5620
5621 drain_all_stock(root_memcg: memcg);
5622
5623 mem_cgroup_id_put(memcg);
5624}
5625
5626static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5627{
5628 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5629
5630 invalidate_reclaim_iterators(dead_memcg: memcg);
5631 lru_gen_release_memcg(memcg);
5632}
5633
5634static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5635{
5636 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5637 int __maybe_unused i;
5638
5639#ifdef CONFIG_CGROUP_WRITEBACK
5640 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5641 wb_wait_for_completion(done: &memcg->cgwb_frn[i].done);
5642#endif
5643 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5644 static_branch_dec(&memcg_sockets_enabled_key);
5645
5646 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5647 static_branch_dec(&memcg_sockets_enabled_key);
5648
5649#if defined(CONFIG_MEMCG_KMEM)
5650 if (!cgroup_memory_nobpf)
5651 static_branch_dec(&memcg_bpf_enabled_key);
5652#endif
5653
5654 vmpressure_cleanup(vmpr: &memcg->vmpressure);
5655 cancel_work_sync(work: &memcg->high_work);
5656 mem_cgroup_remove_from_trees(memcg);
5657 free_shrinker_info(memcg);
5658 mem_cgroup_free(memcg);
5659}
5660
5661/**
5662 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5663 * @css: the target css
5664 *
5665 * Reset the states of the mem_cgroup associated with @css. This is
5666 * invoked when the userland requests disabling on the default hierarchy
5667 * but the memcg is pinned through dependency. The memcg should stop
5668 * applying policies and should revert to the vanilla state as it may be
5669 * made visible again.
5670 *
5671 * The current implementation only resets the essential configurations.
5672 * This needs to be expanded to cover all the visible parts.
5673 */
5674static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5675{
5676 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5677
5678 page_counter_set_max(counter: &memcg->memory, PAGE_COUNTER_MAX);
5679 page_counter_set_max(counter: &memcg->swap, PAGE_COUNTER_MAX);
5680 page_counter_set_max(counter: &memcg->kmem, PAGE_COUNTER_MAX);
5681 page_counter_set_max(counter: &memcg->tcpmem, PAGE_COUNTER_MAX);
5682 page_counter_set_min(counter: &memcg->memory, nr_pages: 0);
5683 page_counter_set_low(counter: &memcg->memory, nr_pages: 0);
5684 page_counter_set_high(counter: &memcg->memory, PAGE_COUNTER_MAX);
5685 WRITE_ONCE(memcg->soft_limit, PAGE_COUNTER_MAX);
5686 page_counter_set_high(counter: &memcg->swap, PAGE_COUNTER_MAX);
5687 memcg_wb_domain_size_changed(memcg);
5688}
5689
5690static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
5691{
5692 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5693 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5694 struct memcg_vmstats_percpu *statc;
5695 long delta, delta_cpu, v;
5696 int i, nid;
5697
5698 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
5699
5700 for (i = 0; i < MEMCG_NR_STAT; i++) {
5701 /*
5702 * Collect the aggregated propagation counts of groups
5703 * below us. We're in a per-cpu loop here and this is
5704 * a global counter, so the first cycle will get them.
5705 */
5706 delta = memcg->vmstats->state_pending[i];
5707 if (delta)
5708 memcg->vmstats->state_pending[i] = 0;
5709
5710 /* Add CPU changes on this level since the last flush */
5711 delta_cpu = 0;
5712 v = READ_ONCE(statc->state[i]);
5713 if (v != statc->state_prev[i]) {
5714 delta_cpu = v - statc->state_prev[i];
5715 delta += delta_cpu;
5716 statc->state_prev[i] = v;
5717 }
5718
5719 /* Aggregate counts on this level and propagate upwards */
5720 if (delta_cpu)
5721 memcg->vmstats->state_local[i] += delta_cpu;
5722
5723 if (delta) {
5724 memcg->vmstats->state[i] += delta;
5725 if (parent)
5726 parent->vmstats->state_pending[i] += delta;
5727 }
5728 }
5729
5730 for (i = 0; i < NR_MEMCG_EVENTS; i++) {
5731 delta = memcg->vmstats->events_pending[i];
5732 if (delta)
5733 memcg->vmstats->events_pending[i] = 0;
5734
5735 delta_cpu = 0;
5736 v = READ_ONCE(statc->events[i]);
5737 if (v != statc->events_prev[i]) {
5738 delta_cpu = v - statc->events_prev[i];
5739 delta += delta_cpu;
5740 statc->events_prev[i] = v;
5741 }
5742
5743 if (delta_cpu)
5744 memcg->vmstats->events_local[i] += delta_cpu;
5745
5746 if (delta) {
5747 memcg->vmstats->events[i] += delta;
5748 if (parent)
5749 parent->vmstats->events_pending[i] += delta;
5750 }
5751 }
5752
5753 for_each_node_state(nid, N_MEMORY) {
5754 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
5755 struct mem_cgroup_per_node *ppn = NULL;
5756 struct lruvec_stats_percpu *lstatc;
5757
5758 if (parent)
5759 ppn = parent->nodeinfo[nid];
5760
5761 lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu);
5762
5763 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
5764 delta = pn->lruvec_stats.state_pending[i];
5765 if (delta)
5766 pn->lruvec_stats.state_pending[i] = 0;
5767
5768 delta_cpu = 0;
5769 v = READ_ONCE(lstatc->state[i]);
5770 if (v != lstatc->state_prev[i]) {
5771 delta_cpu = v - lstatc->state_prev[i];
5772 delta += delta_cpu;
5773 lstatc->state_prev[i] = v;
5774 }
5775
5776 if (delta_cpu)
5777 pn->lruvec_stats.state_local[i] += delta_cpu;
5778
5779 if (delta) {
5780 pn->lruvec_stats.state[i] += delta;
5781 if (ppn)
5782 ppn->lruvec_stats.state_pending[i] += delta;
5783 }
5784 }
5785 }
5786}
5787
5788#ifdef CONFIG_MMU
5789/* Handlers for move charge at task migration. */
5790static int mem_cgroup_do_precharge(unsigned long count)
5791{
5792 int ret;
5793
5794 /* Try a single bulk charge without reclaim first, kswapd may wake */
5795 ret = try_charge(memcg: mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, nr_pages: count);
5796 if (!ret) {
5797 mc.precharge += count;
5798 return ret;
5799 }
5800
5801 /* Try charges one by one with reclaim, but do not retry */
5802 while (count--) {
5803 ret = try_charge(memcg: mc.to, GFP_KERNEL | __GFP_NORETRY, nr_pages: 1);
5804 if (ret)
5805 return ret;
5806 mc.precharge++;
5807 cond_resched();
5808 }
5809 return 0;
5810}
5811
5812union mc_target {
5813 struct page *page;
5814 swp_entry_t ent;
5815};
5816
5817enum mc_target_type {
5818 MC_TARGET_NONE = 0,
5819 MC_TARGET_PAGE,
5820 MC_TARGET_SWAP,
5821 MC_TARGET_DEVICE,
5822};
5823
5824static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5825 unsigned long addr, pte_t ptent)
5826{
5827 struct page *page = vm_normal_page(vma, addr, pte: ptent);
5828
5829 if (!page)
5830 return NULL;
5831 if (PageAnon(page)) {
5832 if (!(mc.flags & MOVE_ANON))
5833 return NULL;
5834 } else {
5835 if (!(mc.flags & MOVE_FILE))
5836 return NULL;
5837 }
5838 get_page(page);
5839
5840 return page;
5841}
5842
5843#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5844static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5845 pte_t ptent, swp_entry_t *entry)
5846{
5847 struct page *page = NULL;
5848 swp_entry_t ent = pte_to_swp_entry(pte: ptent);
5849
5850 if (!(mc.flags & MOVE_ANON))
5851 return NULL;
5852
5853 /*
5854 * Handle device private pages that are not accessible by the CPU, but
5855 * stored as special swap entries in the page table.
5856 */
5857 if (is_device_private_entry(entry: ent)) {
5858 page = pfn_swap_entry_to_page(entry: ent);
5859 if (!get_page_unless_zero(page))
5860 return NULL;
5861 return page;
5862 }
5863
5864 if (non_swap_entry(entry: ent))
5865 return NULL;
5866
5867 /*
5868 * Because swap_cache_get_folio() updates some statistics counter,
5869 * we call find_get_page() with swapper_space directly.
5870 */
5871 page = find_get_page(swap_address_space(ent), offset: swp_offset(entry: ent));
5872 entry->val = ent.val;
5873
5874 return page;
5875}
5876#else
5877static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5878 pte_t ptent, swp_entry_t *entry)
5879{
5880 return NULL;
5881}
5882#endif
5883
5884static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5885 unsigned long addr, pte_t ptent)
5886{
5887 unsigned long index;
5888 struct folio *folio;
5889
5890 if (!vma->vm_file) /* anonymous vma */
5891 return NULL;
5892 if (!(mc.flags & MOVE_FILE))
5893 return NULL;
5894
5895 /* folio is moved even if it's not RSS of this task(page-faulted). */
5896 /* shmem/tmpfs may report page out on swap: account for that too. */
5897 index = linear_page_index(vma, address: addr);
5898 folio = filemap_get_incore_folio(mapping: vma->vm_file->f_mapping, index);
5899 if (IS_ERR(ptr: folio))
5900 return NULL;
5901 return folio_file_page(folio, index);
5902}
5903
5904/**
5905 * mem_cgroup_move_account - move account of the page
5906 * @page: the page
5907 * @compound: charge the page as compound or small page
5908 * @from: mem_cgroup which the page is moved from.
5909 * @to: mem_cgroup which the page is moved to. @from != @to.
5910 *
5911 * The page must be locked and not on the LRU.
5912 *
5913 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5914 * from old cgroup.
5915 */
5916static int mem_cgroup_move_account(struct page *page,
5917 bool compound,
5918 struct mem_cgroup *from,
5919 struct mem_cgroup *to)
5920{
5921 struct folio *folio = page_folio(page);
5922 struct lruvec *from_vec, *to_vec;
5923 struct pglist_data *pgdat;
5924 unsigned int nr_pages = compound ? folio_nr_pages(folio) : 1;
5925 int nid, ret;
5926
5927 VM_BUG_ON(from == to);
5928 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
5929 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
5930 VM_BUG_ON(compound && !folio_test_large(folio));
5931
5932 ret = -EINVAL;
5933 if (folio_memcg(folio) != from)
5934 goto out;
5935
5936 pgdat = folio_pgdat(folio);
5937 from_vec = mem_cgroup_lruvec(memcg: from, pgdat);
5938 to_vec = mem_cgroup_lruvec(memcg: to, pgdat);
5939
5940 folio_memcg_lock(folio);
5941
5942 if (folio_test_anon(folio)) {
5943 if (folio_mapped(folio)) {
5944 __mod_lruvec_state(lruvec: from_vec, idx: NR_ANON_MAPPED, val: -nr_pages);
5945 __mod_lruvec_state(lruvec: to_vec, idx: NR_ANON_MAPPED, val: nr_pages);
5946 if (folio_test_pmd_mappable(folio)) {
5947 __mod_lruvec_state(lruvec: from_vec, idx: NR_ANON_THPS,
5948 val: -nr_pages);
5949 __mod_lruvec_state(lruvec: to_vec, idx: NR_ANON_THPS,
5950 val: nr_pages);
5951 }
5952 }
5953 } else {
5954 __mod_lruvec_state(lruvec: from_vec, idx: NR_FILE_PAGES, val: -nr_pages);
5955 __mod_lruvec_state(lruvec: to_vec, idx: NR_FILE_PAGES, val: nr_pages);
5956
5957 if (folio_test_swapbacked(folio)) {
5958 __mod_lruvec_state(lruvec: from_vec, idx: NR_SHMEM, val: -nr_pages);
5959 __mod_lruvec_state(lruvec: to_vec, idx: NR_SHMEM, val: nr_pages);
5960 }
5961
5962 if (folio_mapped(folio)) {
5963 __mod_lruvec_state(lruvec: from_vec, idx: NR_FILE_MAPPED, val: -nr_pages);
5964 __mod_lruvec_state(lruvec: to_vec, idx: NR_FILE_MAPPED, val: nr_pages);
5965 }
5966
5967 if (folio_test_dirty(folio)) {
5968 struct address_space *mapping = folio_mapping(folio);
5969
5970 if (mapping_can_writeback(mapping)) {
5971 __mod_lruvec_state(lruvec: from_vec, idx: NR_FILE_DIRTY,
5972 val: -nr_pages);
5973 __mod_lruvec_state(lruvec: to_vec, idx: NR_FILE_DIRTY,
5974 val: nr_pages);
5975 }
5976 }
5977 }
5978
5979#ifdef CONFIG_SWAP
5980 if (folio_test_swapcache(folio)) {
5981 __mod_lruvec_state(lruvec: from_vec, idx: NR_SWAPCACHE, val: -nr_pages);
5982 __mod_lruvec_state(lruvec: to_vec, idx: NR_SWAPCACHE, val: nr_pages);
5983 }
5984#endif
5985 if (folio_test_writeback(folio)) {
5986 __mod_lruvec_state(lruvec: from_vec, idx: NR_WRITEBACK, val: -nr_pages);
5987 __mod_lruvec_state(lruvec: to_vec, idx: NR_WRITEBACK, val: nr_pages);
5988 }
5989
5990 /*
5991 * All state has been migrated, let's switch to the new memcg.
5992 *
5993 * It is safe to change page's memcg here because the page
5994 * is referenced, charged, isolated, and locked: we can't race
5995 * with (un)charging, migration, LRU putback, or anything else
5996 * that would rely on a stable page's memory cgroup.
5997 *
5998 * Note that folio_memcg_lock is a memcg lock, not a page lock,
5999 * to save space. As soon as we switch page's memory cgroup to a
6000 * new memcg that isn't locked, the above state can change
6001 * concurrently again. Make sure we're truly done with it.
6002 */
6003 smp_mb();
6004
6005 css_get(css: &to->css);
6006 css_put(css: &from->css);
6007
6008 folio->memcg_data = (unsigned long)to;
6009
6010 __folio_memcg_unlock(memcg: from);
6011
6012 ret = 0;
6013 nid = folio_nid(folio);
6014
6015 local_irq_disable();
6016 mem_cgroup_charge_statistics(memcg: to, nr_pages);
6017 memcg_check_events(memcg: to, nid);
6018 mem_cgroup_charge_statistics(memcg: from, nr_pages: -nr_pages);
6019 memcg_check_events(memcg: from, nid);
6020 local_irq_enable();
6021out:
6022 return ret;
6023}
6024
6025/**
6026 * get_mctgt_type - get target type of moving charge
6027 * @vma: the vma the pte to be checked belongs
6028 * @addr: the address corresponding to the pte to be checked
6029 * @ptent: the pte to be checked
6030 * @target: the pointer the target page or swap ent will be stored(can be NULL)
6031 *
6032 * Context: Called with pte lock held.
6033 * Return:
6034 * * MC_TARGET_NONE - If the pte is not a target for move charge.
6035 * * MC_TARGET_PAGE - If the page corresponding to this pte is a target for
6036 * move charge. If @target is not NULL, the page is stored in target->page
6037 * with extra refcnt taken (Caller should release it).
6038 * * MC_TARGET_SWAP - If the swap entry corresponding to this pte is a
6039 * target for charge migration. If @target is not NULL, the entry is
6040 * stored in target->ent.
6041 * * MC_TARGET_DEVICE - Like MC_TARGET_PAGE but page is device memory and
6042 * thus not on the lru. For now such page is charged like a regular page
6043 * would be as it is just special memory taking the place of a regular page.
6044 * See Documentations/vm/hmm.txt and include/linux/hmm.h
6045 */
6046static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
6047 unsigned long addr, pte_t ptent, union mc_target *target)
6048{
6049 struct page *page = NULL;
6050 enum mc_target_type ret = MC_TARGET_NONE;
6051 swp_entry_t ent = { .val = 0 };
6052
6053 if (pte_present(a: ptent))
6054 page = mc_handle_present_pte(vma, addr, ptent);
6055 else if (pte_none_mostly(pte: ptent))
6056 /*
6057 * PTE markers should be treated as a none pte here, separated
6058 * from other swap handling below.
6059 */
6060 page = mc_handle_file_pte(vma, addr, ptent);
6061 else if (is_swap_pte(pte: ptent))
6062 page = mc_handle_swap_pte(vma, ptent, entry: &ent);
6063
6064 if (target && page) {
6065 if (!trylock_page(page)) {
6066 put_page(page);
6067 return ret;
6068 }
6069 /*
6070 * page_mapped() must be stable during the move. This
6071 * pte is locked, so if it's present, the page cannot
6072 * become unmapped. If it isn't, we have only partial
6073 * control over the mapped state: the page lock will
6074 * prevent new faults against pagecache and swapcache,
6075 * so an unmapped page cannot become mapped. However,
6076 * if the page is already mapped elsewhere, it can
6077 * unmap, and there is nothing we can do about it.
6078 * Alas, skip moving the page in this case.
6079 */
6080 if (!pte_present(a: ptent) && page_mapped(page)) {
6081 unlock_page(page);
6082 put_page(page);
6083 return ret;
6084 }
6085 }
6086
6087 if (!page && !ent.val)
6088 return ret;
6089 if (page) {
6090 /*
6091 * Do only loose check w/o serialization.
6092 * mem_cgroup_move_account() checks the page is valid or
6093 * not under LRU exclusion.
6094 */
6095 if (page_memcg(page) == mc.from) {
6096 ret = MC_TARGET_PAGE;
6097 if (is_device_private_page(page) ||
6098 is_device_coherent_page(page))
6099 ret = MC_TARGET_DEVICE;
6100 if (target)
6101 target->page = page;
6102 }
6103 if (!ret || !target) {
6104 if (target)
6105 unlock_page(page);
6106 put_page(page);
6107 }
6108 }
6109 /*
6110 * There is a swap entry and a page doesn't exist or isn't charged.
6111 * But we cannot move a tail-page in a THP.
6112 */
6113 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
6114 mem_cgroup_id(memcg: mc.from) == lookup_swap_cgroup_id(ent)) {
6115 ret = MC_TARGET_SWAP;
6116 if (target)
6117 target->ent = ent;
6118 }
6119 return ret;
6120}
6121
6122#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6123/*
6124 * We don't consider PMD mapped swapping or file mapped pages because THP does
6125 * not support them for now.
6126 * Caller should make sure that pmd_trans_huge(pmd) is true.
6127 */
6128static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6129 unsigned long addr, pmd_t pmd, union mc_target *target)
6130{
6131 struct page *page = NULL;
6132 enum mc_target_type ret = MC_TARGET_NONE;
6133
6134 if (unlikely(is_swap_pmd(pmd))) {
6135 VM_BUG_ON(thp_migration_supported() &&
6136 !is_pmd_migration_entry(pmd));
6137 return ret;
6138 }
6139 page = pmd_page(pmd);
6140 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
6141 if (!(mc.flags & MOVE_ANON))
6142 return ret;
6143 if (page_memcg(page) == mc.from) {
6144 ret = MC_TARGET_PAGE;
6145 if (target) {
6146 get_page(page);
6147 if (!trylock_page(page)) {
6148 put_page(page);
6149 return MC_TARGET_NONE;
6150 }
6151 target->page = page;
6152 }
6153 }
6154 return ret;
6155}
6156#else
6157static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6158 unsigned long addr, pmd_t pmd, union mc_target *target)
6159{
6160 return MC_TARGET_NONE;
6161}
6162#endif
6163
6164static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6165 unsigned long addr, unsigned long end,
6166 struct mm_walk *walk)
6167{
6168 struct vm_area_struct *vma = walk->vma;
6169 pte_t *pte;
6170 spinlock_t *ptl;
6171
6172 ptl = pmd_trans_huge_lock(pmd, vma);
6173 if (ptl) {
6174 /*
6175 * Note their can not be MC_TARGET_DEVICE for now as we do not
6176 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
6177 * this might change.
6178 */
6179 if (get_mctgt_type_thp(vma, addr, pmd: *pmd, NULL) == MC_TARGET_PAGE)
6180 mc.precharge += HPAGE_PMD_NR;
6181 spin_unlock(lock: ptl);
6182 return 0;
6183 }
6184
6185 pte = pte_offset_map_lock(mm: vma->vm_mm, pmd, addr, ptlp: &ptl);
6186 if (!pte)
6187 return 0;
6188 for (; addr != end; pte++, addr += PAGE_SIZE)
6189 if (get_mctgt_type(vma, addr, ptent: ptep_get(ptep: pte), NULL))
6190 mc.precharge++; /* increment precharge temporarily */
6191 pte_unmap_unlock(pte - 1, ptl);
6192 cond_resched();
6193
6194 return 0;
6195}
6196
6197static const struct mm_walk_ops precharge_walk_ops = {
6198 .pmd_entry = mem_cgroup_count_precharge_pte_range,
6199 .walk_lock = PGWALK_RDLOCK,
6200};
6201
6202static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6203{
6204 unsigned long precharge;
6205
6206 mmap_read_lock(mm);
6207 walk_page_range(mm, start: 0, ULONG_MAX, ops: &precharge_walk_ops, NULL);
6208 mmap_read_unlock(mm);
6209
6210 precharge = mc.precharge;
6211 mc.precharge = 0;
6212
6213 return precharge;
6214}
6215
6216static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6217{
6218 unsigned long precharge = mem_cgroup_count_precharge(mm);
6219
6220 VM_BUG_ON(mc.moving_task);
6221 mc.moving_task = current;
6222 return mem_cgroup_do_precharge(count: precharge);
6223}
6224
6225/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6226static void __mem_cgroup_clear_mc(void)
6227{
6228 struct mem_cgroup *from = mc.from;
6229 struct mem_cgroup *to = mc.to;
6230
6231 /* we must uncharge all the leftover precharges from mc.to */
6232 if (mc.precharge) {
6233 mem_cgroup_cancel_charge(memcg: mc.to, nr_pages: mc.precharge);
6234 mc.precharge = 0;
6235 }
6236 /*
6237 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6238 * we must uncharge here.
6239 */
6240 if (mc.moved_charge) {
6241 mem_cgroup_cancel_charge(memcg: mc.from, nr_pages: mc.moved_charge);
6242 mc.moved_charge = 0;
6243 }
6244 /* we must fixup refcnts and charges */
6245 if (mc.moved_swap) {
6246 /* uncharge swap account from the old cgroup */
6247 if (!mem_cgroup_is_root(memcg: mc.from))
6248 page_counter_uncharge(counter: &mc.from->memsw, nr_pages: mc.moved_swap);
6249
6250 mem_cgroup_id_put_many(memcg: mc.from, n: mc.moved_swap);
6251
6252 /*
6253 * we charged both to->memory and to->memsw, so we
6254 * should uncharge to->memory.
6255 */
6256 if (!mem_cgroup_is_root(memcg: mc.to))
6257 page_counter_uncharge(counter: &mc.to->memory, nr_pages: mc.moved_swap);
6258
6259 mc.moved_swap = 0;
6260 }
6261 memcg_oom_recover(memcg: from);
6262 memcg_oom_recover(memcg: to);
6263 wake_up_all(&mc.waitq);
6264}
6265
6266static void mem_cgroup_clear_mc(void)
6267{
6268 struct mm_struct *mm = mc.mm;
6269
6270 /*
6271 * we must clear moving_task before waking up waiters at the end of
6272 * task migration.
6273 */
6274 mc.moving_task = NULL;
6275 __mem_cgroup_clear_mc();
6276 spin_lock(lock: &mc.lock);
6277 mc.from = NULL;
6278 mc.to = NULL;
6279 mc.mm = NULL;
6280 spin_unlock(lock: &mc.lock);
6281
6282 mmput(mm);
6283}
6284
6285static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6286{
6287 struct cgroup_subsys_state *css;
6288 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
6289 struct mem_cgroup *from;
6290 struct task_struct *leader, *p;
6291 struct mm_struct *mm;
6292 unsigned long move_flags;
6293 int ret = 0;
6294
6295 /* charge immigration isn't supported on the default hierarchy */
6296 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6297 return 0;
6298
6299 /*
6300 * Multi-process migrations only happen on the default hierarchy
6301 * where charge immigration is not used. Perform charge
6302 * immigration if @tset contains a leader and whine if there are
6303 * multiple.
6304 */
6305 p = NULL;
6306 cgroup_taskset_for_each_leader(leader, css, tset) {
6307 WARN_ON_ONCE(p);
6308 p = leader;
6309 memcg = mem_cgroup_from_css(css);
6310 }
6311 if (!p)
6312 return 0;
6313
6314 /*
6315 * We are now committed to this value whatever it is. Changes in this
6316 * tunable will only affect upcoming migrations, not the current one.
6317 * So we need to save it, and keep it going.
6318 */
6319 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
6320 if (!move_flags)
6321 return 0;
6322
6323 from = mem_cgroup_from_task(p);
6324
6325 VM_BUG_ON(from == memcg);
6326
6327 mm = get_task_mm(task: p);
6328 if (!mm)
6329 return 0;
6330 /* We move charges only when we move a owner of the mm */
6331 if (mm->owner == p) {
6332 VM_BUG_ON(mc.from);
6333 VM_BUG_ON(mc.to);
6334 VM_BUG_ON(mc.precharge);
6335 VM_BUG_ON(mc.moved_charge);
6336 VM_BUG_ON(mc.moved_swap);
6337
6338 spin_lock(lock: &mc.lock);
6339 mc.mm = mm;
6340 mc.from = from;
6341 mc.to = memcg;
6342 mc.flags = move_flags;
6343 spin_unlock(lock: &mc.lock);
6344 /* We set mc.moving_task later */
6345
6346 ret = mem_cgroup_precharge_mc(mm);
6347 if (ret)
6348 mem_cgroup_clear_mc();
6349 } else {
6350 mmput(mm);
6351 }
6352 return ret;
6353}
6354
6355static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6356{
6357 if (mc.to)
6358 mem_cgroup_clear_mc();
6359}
6360
6361static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6362 unsigned long addr, unsigned long end,
6363 struct mm_walk *walk)
6364{
6365 int ret = 0;
6366 struct vm_area_struct *vma = walk->vma;
6367 pte_t *pte;
6368 spinlock_t *ptl;
6369 enum mc_target_type target_type;
6370 union mc_target target;
6371 struct page *page;
6372
6373 ptl = pmd_trans_huge_lock(pmd, vma);
6374 if (ptl) {
6375 if (mc.precharge < HPAGE_PMD_NR) {
6376 spin_unlock(lock: ptl);
6377 return 0;
6378 }
6379 target_type = get_mctgt_type_thp(vma, addr, pmd: *pmd, target: &target);
6380 if (target_type == MC_TARGET_PAGE) {
6381 page = target.page;
6382 if (isolate_lru_page(page)) {
6383 if (!mem_cgroup_move_account(page, compound: true,
6384 from: mc.from, to: mc.to)) {
6385 mc.precharge -= HPAGE_PMD_NR;
6386 mc.moved_charge += HPAGE_PMD_NR;
6387 }
6388 putback_lru_page(page);
6389 }
6390 unlock_page(page);
6391 put_page(page);
6392 } else if (target_type == MC_TARGET_DEVICE) {
6393 page = target.page;
6394 if (!mem_cgroup_move_account(page, compound: true,
6395 from: mc.from, to: mc.to)) {
6396 mc.precharge -= HPAGE_PMD_NR;
6397 mc.moved_charge += HPAGE_PMD_NR;
6398 }
6399 unlock_page(page);
6400 put_page(page);
6401 }
6402 spin_unlock(lock: ptl);
6403 return 0;
6404 }
6405
6406retry:
6407 pte = pte_offset_map_lock(mm: vma->vm_mm, pmd, addr, ptlp: &ptl);
6408 if (!pte)
6409 return 0;
6410 for (; addr != end; addr += PAGE_SIZE) {
6411 pte_t ptent = ptep_get(ptep: pte++);
6412 bool device = false;
6413 swp_entry_t ent;
6414
6415 if (!mc.precharge)
6416 break;
6417
6418 switch (get_mctgt_type(vma, addr, ptent, target: &target)) {
6419 case MC_TARGET_DEVICE:
6420 device = true;
6421 fallthrough;
6422 case MC_TARGET_PAGE:
6423 page = target.page;
6424 /*
6425 * We can have a part of the split pmd here. Moving it
6426 * can be done but it would be too convoluted so simply
6427 * ignore such a partial THP and keep it in original
6428 * memcg. There should be somebody mapping the head.
6429 */
6430 if (PageTransCompound(page))
6431 goto put;
6432 if (!device && !isolate_lru_page(page))
6433 goto put;
6434 if (!mem_cgroup_move_account(page, compound: false,
6435 from: mc.from, to: mc.to)) {
6436 mc.precharge--;
6437 /* we uncharge from mc.from later. */
6438 mc.moved_charge++;
6439 }
6440 if (!device)
6441 putback_lru_page(page);
6442put: /* get_mctgt_type() gets & locks the page */
6443 unlock_page(page);
6444 put_page(page);
6445 break;
6446 case MC_TARGET_SWAP:
6447 ent = target.ent;
6448 if (!mem_cgroup_move_swap_account(entry: ent, from: mc.from, to: mc.to)) {
6449 mc.precharge--;
6450 mem_cgroup_id_get_many(memcg: mc.to, n: 1);
6451 /* we fixup other refcnts and charges later. */
6452 mc.moved_swap++;
6453 }
6454 break;
6455 default:
6456 break;
6457 }
6458 }
6459 pte_unmap_unlock(pte - 1, ptl);
6460 cond_resched();
6461
6462 if (addr != end) {
6463 /*
6464 * We have consumed all precharges we got in can_attach().
6465 * We try charge one by one, but don't do any additional
6466 * charges to mc.to if we have failed in charge once in attach()
6467 * phase.
6468 */
6469 ret = mem_cgroup_do_precharge(count: 1);
6470 if (!ret)
6471 goto retry;
6472 }
6473
6474 return ret;
6475}
6476
6477static const struct mm_walk_ops charge_walk_ops = {
6478 .pmd_entry = mem_cgroup_move_charge_pte_range,
6479 .walk_lock = PGWALK_RDLOCK,
6480};
6481
6482static void mem_cgroup_move_charge(void)
6483{
6484 lru_add_drain_all();
6485 /*
6486 * Signal folio_memcg_lock() to take the memcg's move_lock
6487 * while we're moving its pages to another memcg. Then wait
6488 * for already started RCU-only updates to finish.
6489 */
6490 atomic_inc(v: &mc.from->moving_account);
6491 synchronize_rcu();
6492retry:
6493 if (unlikely(!mmap_read_trylock(mc.mm))) {
6494 /*
6495 * Someone who are holding the mmap_lock might be waiting in
6496 * waitq. So we cancel all extra charges, wake up all waiters,
6497 * and retry. Because we cancel precharges, we might not be able
6498 * to move enough charges, but moving charge is a best-effort
6499 * feature anyway, so it wouldn't be a big problem.
6500 */
6501 __mem_cgroup_clear_mc();
6502 cond_resched();
6503 goto retry;
6504 }
6505 /*
6506 * When we have consumed all precharges and failed in doing
6507 * additional charge, the page walk just aborts.
6508 */
6509 walk_page_range(mm: mc.mm, start: 0, ULONG_MAX, ops: &charge_walk_ops, NULL);
6510 mmap_read_unlock(mm: mc.mm);
6511 atomic_dec(v: &mc.from->moving_account);
6512}
6513
6514static void mem_cgroup_move_task(void)
6515{
6516 if (mc.to) {
6517 mem_cgroup_move_charge();
6518 mem_cgroup_clear_mc();
6519 }
6520}
6521
6522#else /* !CONFIG_MMU */
6523static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6524{
6525 return 0;
6526}
6527static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6528{
6529}
6530static void mem_cgroup_move_task(void)
6531{
6532}
6533#endif
6534
6535#ifdef CONFIG_MEMCG_KMEM
6536static void mem_cgroup_fork(struct task_struct *task)
6537{
6538 /*
6539 * Set the update flag to cause task->objcg to be initialized lazily
6540 * on the first allocation. It can be done without any synchronization
6541 * because it's always performed on the current task, so does
6542 * current_objcg_update().
6543 */
6544 task->objcg = (struct obj_cgroup *)CURRENT_OBJCG_UPDATE_FLAG;
6545}
6546
6547static void mem_cgroup_exit(struct task_struct *task)
6548{
6549 struct obj_cgroup *objcg = task->objcg;
6550
6551 objcg = (struct obj_cgroup *)
6552 ((unsigned long)objcg & ~CURRENT_OBJCG_UPDATE_FLAG);
6553 if (objcg)
6554 obj_cgroup_put(objcg);
6555
6556 /*
6557 * Some kernel allocations can happen after this point,
6558 * but let's ignore them. It can be done without any synchronization
6559 * because it's always performed on the current task, so does
6560 * current_objcg_update().
6561 */
6562 task->objcg = NULL;
6563}
6564#endif
6565
6566#ifdef CONFIG_LRU_GEN
6567static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset)
6568{
6569 struct task_struct *task;
6570 struct cgroup_subsys_state *css;
6571
6572 /* find the first leader if there is any */
6573 cgroup_taskset_for_each_leader(task, css, tset)
6574 break;
6575
6576 if (!task)
6577 return;
6578
6579 task_lock(p: task);
6580 if (task->mm && READ_ONCE(task->mm->owner) == task)
6581 lru_gen_migrate_mm(mm: task->mm);
6582 task_unlock(p: task);
6583}
6584#else
6585static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset) {}
6586#endif /* CONFIG_LRU_GEN */
6587
6588#ifdef CONFIG_MEMCG_KMEM
6589static void mem_cgroup_kmem_attach(struct cgroup_taskset *tset)
6590{
6591 struct task_struct *task;
6592 struct cgroup_subsys_state *css;
6593
6594 cgroup_taskset_for_each(task, css, tset) {
6595 /* atomically set the update bit */
6596 set_bit(CURRENT_OBJCG_UPDATE_BIT, addr: (unsigned long *)&task->objcg);
6597 }
6598}
6599#else
6600static void mem_cgroup_kmem_attach(struct cgroup_taskset *tset) {}
6601#endif /* CONFIG_MEMCG_KMEM */
6602
6603#if defined(CONFIG_LRU_GEN) || defined(CONFIG_MEMCG_KMEM)
6604static void mem_cgroup_attach(struct cgroup_taskset *tset)
6605{
6606 mem_cgroup_lru_gen_attach(tset);
6607 mem_cgroup_kmem_attach(tset);
6608}
6609#endif
6610
6611static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6612{
6613 if (value == PAGE_COUNTER_MAX)
6614 seq_puts(m, s: "max\n");
6615 else
6616 seq_printf(m, fmt: "%llu\n", (u64)value * PAGE_SIZE);
6617
6618 return 0;
6619}
6620
6621static u64 memory_current_read(struct cgroup_subsys_state *css,
6622 struct cftype *cft)
6623{
6624 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6625
6626 return (u64)page_counter_read(counter: &memcg->memory) * PAGE_SIZE;
6627}
6628
6629static u64 memory_peak_read(struct cgroup_subsys_state *css,
6630 struct cftype *cft)
6631{
6632 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6633
6634 return (u64)memcg->memory.watermark * PAGE_SIZE;
6635}
6636
6637static int memory_min_show(struct seq_file *m, void *v)
6638{
6639 return seq_puts_memcg_tunable(m,
6640 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
6641}
6642
6643static ssize_t memory_min_write(struct kernfs_open_file *of,
6644 char *buf, size_t nbytes, loff_t off)
6645{
6646 struct mem_cgroup *memcg = mem_cgroup_from_css(css: of_css(of));
6647 unsigned long min;
6648 int err;
6649
6650 buf = strstrip(str: buf);
6651 err = page_counter_memparse(buf, max: "max", nr_pages: &min);
6652 if (err)
6653 return err;
6654
6655 page_counter_set_min(counter: &memcg->memory, nr_pages: min);
6656
6657 return nbytes;
6658}
6659
6660static int memory_low_show(struct seq_file *m, void *v)
6661{
6662 return seq_puts_memcg_tunable(m,
6663 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6664}
6665
6666static ssize_t memory_low_write(struct kernfs_open_file *of,
6667 char *buf, size_t nbytes, loff_t off)
6668{
6669 struct mem_cgroup *memcg = mem_cgroup_from_css(css: of_css(of));
6670 unsigned long low;
6671 int err;
6672
6673 buf = strstrip(str: buf);
6674 err = page_counter_memparse(buf, max: "max", nr_pages: &low);
6675 if (err)
6676 return err;
6677
6678 page_counter_set_low(counter: &memcg->memory, nr_pages: low);
6679
6680 return nbytes;
6681}
6682
6683static int memory_high_show(struct seq_file *m, void *v)
6684{
6685 return seq_puts_memcg_tunable(m,
6686 READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6687}
6688
6689static ssize_t memory_high_write(struct kernfs_open_file *of,
6690 char *buf, size_t nbytes, loff_t off)
6691{
6692 struct mem_cgroup *memcg = mem_cgroup_from_css(css: of_css(of));
6693 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6694 bool drained = false;
6695 unsigned long high;
6696 int err;
6697
6698 buf = strstrip(str: buf);
6699 err = page_counter_memparse(buf, max: "max", nr_pages: &high);
6700 if (err)
6701 return err;
6702
6703 page_counter_set_high(counter: &memcg->memory, nr_pages: high);
6704
6705 for (;;) {
6706 unsigned long nr_pages = page_counter_read(counter: &memcg->memory);
6707 unsigned long reclaimed;
6708
6709 if (nr_pages <= high)
6710 break;
6711
6712 if (signal_pending(current))
6713 break;
6714
6715 if (!drained) {
6716 drain_all_stock(root_memcg: memcg);
6717 drained = true;
6718 continue;
6719 }
6720
6721 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages: nr_pages - high,
6722 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP);
6723
6724 if (!reclaimed && !nr_retries--)
6725 break;
6726 }
6727
6728 memcg_wb_domain_size_changed(memcg);
6729 return nbytes;
6730}
6731
6732static int memory_max_show(struct seq_file *m, void *v)
6733{
6734 return seq_puts_memcg_tunable(m,
6735 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6736}
6737
6738static ssize_t memory_max_write(struct kernfs_open_file *of,
6739 char *buf, size_t nbytes, loff_t off)
6740{
6741 struct mem_cgroup *memcg = mem_cgroup_from_css(css: of_css(of));
6742 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6743 bool drained = false;
6744 unsigned long max;
6745 int err;
6746
6747 buf = strstrip(str: buf);
6748 err = page_counter_memparse(buf, max: "max", nr_pages: &max);
6749 if (err)
6750 return err;
6751
6752 xchg(&memcg->memory.max, max);
6753
6754 for (;;) {
6755 unsigned long nr_pages = page_counter_read(counter: &memcg->memory);
6756
6757 if (nr_pages <= max)
6758 break;
6759
6760 if (signal_pending(current))
6761 break;
6762
6763 if (!drained) {
6764 drain_all_stock(root_memcg: memcg);
6765 drained = true;
6766 continue;
6767 }
6768
6769 if (nr_reclaims) {
6770 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages: nr_pages - max,
6771 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP))
6772 nr_reclaims--;
6773 continue;
6774 }
6775
6776 memcg_memory_event(memcg, event: MEMCG_OOM);
6777 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, order: 0))
6778 break;
6779 }
6780
6781 memcg_wb_domain_size_changed(memcg);
6782 return nbytes;
6783}
6784
6785static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6786{
6787 seq_printf(m, fmt: "low %lu\n", atomic_long_read(v: &events[MEMCG_LOW]));
6788 seq_printf(m, fmt: "high %lu\n", atomic_long_read(v: &events[MEMCG_HIGH]));
6789 seq_printf(m, fmt: "max %lu\n", atomic_long_read(v: &events[MEMCG_MAX]));
6790 seq_printf(m, fmt: "oom %lu\n", atomic_long_read(v: &events[MEMCG_OOM]));
6791 seq_printf(m, fmt: "oom_kill %lu\n",
6792 atomic_long_read(v: &events[MEMCG_OOM_KILL]));
6793 seq_printf(m, fmt: "oom_group_kill %lu\n",
6794 atomic_long_read(v: &events[MEMCG_OOM_GROUP_KILL]));
6795}
6796
6797static int memory_events_show(struct seq_file *m, void *v)
6798{
6799 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6800
6801 __memory_events_show(m, events: memcg->memory_events);
6802 return 0;
6803}
6804
6805static int memory_events_local_show(struct seq_file *m, void *v)
6806{
6807 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6808
6809 __memory_events_show(m, events: memcg->memory_events_local);
6810 return 0;
6811}
6812
6813static int memory_stat_show(struct seq_file *m, void *v)
6814{
6815 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6816 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
6817 struct seq_buf s;
6818
6819 if (!buf)
6820 return -ENOMEM;
6821 seq_buf_init(s: &s, buf, PAGE_SIZE);
6822 memory_stat_format(memcg, s: &s);
6823 seq_puts(m, s: buf);
6824 kfree(objp: buf);
6825 return 0;
6826}
6827
6828#ifdef CONFIG_NUMA
6829static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
6830 int item)
6831{
6832 return lruvec_page_state(lruvec, idx: item) *
6833 memcg_page_state_output_unit(item);
6834}
6835
6836static int memory_numa_stat_show(struct seq_file *m, void *v)
6837{
6838 int i;
6839 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6840
6841 mem_cgroup_flush_stats();
6842
6843 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6844 int nid;
6845
6846 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6847 continue;
6848
6849 seq_printf(m, fmt: "%s", memory_stats[i].name);
6850 for_each_node_state(nid, N_MEMORY) {
6851 u64 size;
6852 struct lruvec *lruvec;
6853
6854 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
6855 size = lruvec_page_state_output(lruvec,
6856 item: memory_stats[i].idx);
6857 seq_printf(m, fmt: " N%d=%llu", nid, size);
6858 }
6859 seq_putc(m, c: '\n');
6860 }
6861
6862 return 0;
6863}
6864#endif
6865
6866static int memory_oom_group_show(struct seq_file *m, void *v)
6867{
6868 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6869
6870 seq_printf(m, fmt: "%d\n", READ_ONCE(memcg->oom_group));
6871
6872 return 0;
6873}
6874
6875static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6876 char *buf, size_t nbytes, loff_t off)
6877{
6878 struct mem_cgroup *memcg = mem_cgroup_from_css(css: of_css(of));
6879 int ret, oom_group;
6880
6881 buf = strstrip(str: buf);
6882 if (!buf)
6883 return -EINVAL;
6884
6885 ret = kstrtoint(s: buf, base: 0, res: &oom_group);
6886 if (ret)
6887 return ret;
6888
6889 if (oom_group != 0 && oom_group != 1)
6890 return -EINVAL;
6891
6892 WRITE_ONCE(memcg->oom_group, oom_group);
6893
6894 return nbytes;
6895}
6896
6897static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf,
6898 size_t nbytes, loff_t off)
6899{
6900 struct mem_cgroup *memcg = mem_cgroup_from_css(css: of_css(of));
6901 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6902 unsigned long nr_to_reclaim, nr_reclaimed = 0;
6903 unsigned int reclaim_options;
6904 int err;
6905
6906 buf = strstrip(str: buf);
6907 err = page_counter_memparse(buf, max: "", nr_pages: &nr_to_reclaim);
6908 if (err)
6909 return err;
6910
6911 reclaim_options = MEMCG_RECLAIM_MAY_SWAP | MEMCG_RECLAIM_PROACTIVE;
6912 while (nr_reclaimed < nr_to_reclaim) {
6913 unsigned long reclaimed;
6914
6915 if (signal_pending(current))
6916 return -EINTR;
6917
6918 /*
6919 * This is the final attempt, drain percpu lru caches in the
6920 * hope of introducing more evictable pages for
6921 * try_to_free_mem_cgroup_pages().
6922 */
6923 if (!nr_retries)
6924 lru_add_drain_all();
6925
6926 reclaimed = try_to_free_mem_cgroup_pages(memcg,
6927 min(nr_to_reclaim - nr_reclaimed, SWAP_CLUSTER_MAX),
6928 GFP_KERNEL, reclaim_options);
6929
6930 if (!reclaimed && !nr_retries--)
6931 return -EAGAIN;
6932
6933 nr_reclaimed += reclaimed;
6934 }
6935
6936 return nbytes;
6937}
6938
6939static struct cftype memory_files[] = {
6940 {
6941 .name = "current",
6942 .flags = CFTYPE_NOT_ON_ROOT,
6943 .read_u64 = memory_current_read,
6944 },
6945 {
6946 .name = "peak",
6947 .flags = CFTYPE_NOT_ON_ROOT,
6948 .read_u64 = memory_peak_read,
6949 },
6950 {
6951 .name = "min",
6952 .flags = CFTYPE_NOT_ON_ROOT,
6953 .seq_show = memory_min_show,
6954 .write = memory_min_write,
6955 },
6956 {
6957 .name = "low",
6958 .flags = CFTYPE_NOT_ON_ROOT,
6959 .seq_show = memory_low_show,
6960 .write = memory_low_write,
6961 },
6962 {
6963 .name = "high",
6964 .flags = CFTYPE_NOT_ON_ROOT,
6965 .seq_show = memory_high_show,
6966 .write = memory_high_write,
6967 },
6968 {
6969 .name = "max",
6970 .flags = CFTYPE_NOT_ON_ROOT,
6971 .seq_show = memory_max_show,
6972 .write = memory_max_write,
6973 },
6974 {
6975 .name = "events",
6976 .flags = CFTYPE_NOT_ON_ROOT,
6977 .file_offset = offsetof(struct mem_cgroup, events_file),
6978 .seq_show = memory_events_show,
6979 },
6980 {
6981 .name = "events.local",
6982 .flags = CFTYPE_NOT_ON_ROOT,
6983 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6984 .seq_show = memory_events_local_show,
6985 },
6986 {
6987 .name = "stat",
6988 .seq_show = memory_stat_show,
6989 },
6990#ifdef CONFIG_NUMA
6991 {
6992 .name = "numa_stat",
6993 .seq_show = memory_numa_stat_show,
6994 },
6995#endif
6996 {
6997 .name = "oom.group",
6998 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6999 .seq_show = memory_oom_group_show,
7000 .write = memory_oom_group_write,
7001 },
7002 {
7003 .name = "reclaim",
7004 .flags = CFTYPE_NS_DELEGATABLE,
7005 .write = memory_reclaim,
7006 },
7007 { } /* terminate */
7008};
7009
7010struct cgroup_subsys memory_cgrp_subsys = {
7011 .css_alloc = mem_cgroup_css_alloc,
7012 .css_online = mem_cgroup_css_online,
7013 .css_offline = mem_cgroup_css_offline,
7014 .css_released = mem_cgroup_css_released,
7015 .css_free = mem_cgroup_css_free,
7016 .css_reset = mem_cgroup_css_reset,
7017 .css_rstat_flush = mem_cgroup_css_rstat_flush,
7018 .can_attach = mem_cgroup_can_attach,
7019#if defined(CONFIG_LRU_GEN) || defined(CONFIG_MEMCG_KMEM)
7020 .attach = mem_cgroup_attach,
7021#endif
7022 .cancel_attach = mem_cgroup_cancel_attach,
7023 .post_attach = mem_cgroup_move_task,
7024#ifdef CONFIG_MEMCG_KMEM
7025 .fork = mem_cgroup_fork,
7026 .exit = mem_cgroup_exit,
7027#endif
7028 .dfl_cftypes = memory_files,
7029 .legacy_cftypes = mem_cgroup_legacy_files,
7030 .early_init = 0,
7031};
7032
7033/*
7034 * This function calculates an individual cgroup's effective
7035 * protection which is derived from its own memory.min/low, its
7036 * parent's and siblings' settings, as well as the actual memory
7037 * distribution in the tree.
7038 *
7039 * The following rules apply to the effective protection values:
7040 *
7041 * 1. At the first level of reclaim, effective protection is equal to
7042 * the declared protection in memory.min and memory.low.
7043 *
7044 * 2. To enable safe delegation of the protection configuration, at
7045 * subsequent levels the effective protection is capped to the
7046 * parent's effective protection.
7047 *
7048 * 3. To make complex and dynamic subtrees easier to configure, the
7049 * user is allowed to overcommit the declared protection at a given
7050 * level. If that is the case, the parent's effective protection is
7051 * distributed to the children in proportion to how much protection
7052 * they have declared and how much of it they are utilizing.
7053 *
7054 * This makes distribution proportional, but also work-conserving:
7055 * if one cgroup claims much more protection than it uses memory,
7056 * the unused remainder is available to its siblings.
7057 *
7058 * 4. Conversely, when the declared protection is undercommitted at a
7059 * given level, the distribution of the larger parental protection
7060 * budget is NOT proportional. A cgroup's protection from a sibling
7061 * is capped to its own memory.min/low setting.
7062 *
7063 * 5. However, to allow protecting recursive subtrees from each other
7064 * without having to declare each individual cgroup's fixed share
7065 * of the ancestor's claim to protection, any unutilized -
7066 * "floating" - protection from up the tree is distributed in
7067 * proportion to each cgroup's *usage*. This makes the protection
7068 * neutral wrt sibling cgroups and lets them compete freely over
7069 * the shared parental protection budget, but it protects the
7070 * subtree as a whole from neighboring subtrees.
7071 *
7072 * Note that 4. and 5. are not in conflict: 4. is about protecting
7073 * against immediate siblings whereas 5. is about protecting against
7074 * neighboring subtrees.
7075 */
7076static unsigned long effective_protection(unsigned long usage,
7077 unsigned long parent_usage,
7078 unsigned long setting,
7079 unsigned long parent_effective,
7080 unsigned long siblings_protected)
7081{
7082 unsigned long protected;
7083 unsigned long ep;
7084
7085 protected = min(usage, setting);
7086 /*
7087 * If all cgroups at this level combined claim and use more
7088 * protection than what the parent affords them, distribute
7089 * shares in proportion to utilization.
7090 *
7091 * We are using actual utilization rather than the statically
7092 * claimed protection in order to be work-conserving: claimed
7093 * but unused protection is available to siblings that would
7094 * otherwise get a smaller chunk than what they claimed.
7095 */
7096 if (siblings_protected > parent_effective)
7097 return protected * parent_effective / siblings_protected;
7098
7099 /*
7100 * Ok, utilized protection of all children is within what the
7101 * parent affords them, so we know whatever this child claims
7102 * and utilizes is effectively protected.
7103 *
7104 * If there is unprotected usage beyond this value, reclaim
7105 * will apply pressure in proportion to that amount.
7106 *
7107 * If there is unutilized protection, the cgroup will be fully
7108 * shielded from reclaim, but we do return a smaller value for
7109 * protection than what the group could enjoy in theory. This
7110 * is okay. With the overcommit distribution above, effective
7111 * protection is always dependent on how memory is actually
7112 * consumed among the siblings anyway.
7113 */
7114 ep = protected;
7115
7116 /*
7117 * If the children aren't claiming (all of) the protection
7118 * afforded to them by the parent, distribute the remainder in
7119 * proportion to the (unprotected) memory of each cgroup. That
7120 * way, cgroups that aren't explicitly prioritized wrt each
7121 * other compete freely over the allowance, but they are
7122 * collectively protected from neighboring trees.
7123 *
7124 * We're using unprotected memory for the weight so that if
7125 * some cgroups DO claim explicit protection, we don't protect
7126 * the same bytes twice.
7127 *
7128 * Check both usage and parent_usage against the respective
7129 * protected values. One should imply the other, but they
7130 * aren't read atomically - make sure the division is sane.
7131 */
7132 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
7133 return ep;
7134 if (parent_effective > siblings_protected &&
7135 parent_usage > siblings_protected &&
7136 usage > protected) {
7137 unsigned long unclaimed;
7138
7139 unclaimed = parent_effective - siblings_protected;
7140 unclaimed *= usage - protected;
7141 unclaimed /= parent_usage - siblings_protected;
7142
7143 ep += unclaimed;
7144 }
7145
7146 return ep;
7147}
7148
7149/**
7150 * mem_cgroup_calculate_protection - check if memory consumption is in the normal range
7151 * @root: the top ancestor of the sub-tree being checked
7152 * @memcg: the memory cgroup to check
7153 *
7154 * WARNING: This function is not stateless! It can only be used as part
7155 * of a top-down tree iteration, not for isolated queries.
7156 */
7157void mem_cgroup_calculate_protection(struct mem_cgroup *root,
7158 struct mem_cgroup *memcg)
7159{
7160 unsigned long usage, parent_usage;
7161 struct mem_cgroup *parent;
7162
7163 if (mem_cgroup_disabled())
7164 return;
7165
7166 if (!root)
7167 root = root_mem_cgroup;
7168
7169 /*
7170 * Effective values of the reclaim targets are ignored so they
7171 * can be stale. Have a look at mem_cgroup_protection for more
7172 * details.
7173 * TODO: calculation should be more robust so that we do not need
7174 * that special casing.
7175 */
7176 if (memcg == root)
7177 return;
7178
7179 usage = page_counter_read(counter: &memcg->memory);
7180 if (!usage)
7181 return;
7182
7183 parent = parent_mem_cgroup(memcg);
7184
7185 if (parent == root) {
7186 memcg->memory.emin = READ_ONCE(memcg->memory.min);
7187 memcg->memory.elow = READ_ONCE(memcg->memory.low);
7188 return;
7189 }
7190
7191 parent_usage = page_counter_read(counter: &parent->memory);
7192
7193 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
7194 READ_ONCE(memcg->memory.min),
7195 READ_ONCE(parent->memory.emin),
7196 atomic_long_read(&parent->memory.children_min_usage)));
7197
7198 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
7199 READ_ONCE(memcg->memory.low),
7200 READ_ONCE(parent->memory.elow),
7201 atomic_long_read(&parent->memory.children_low_usage)));
7202}
7203
7204static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg,
7205 gfp_t gfp)
7206{
7207 int ret;
7208
7209 ret = try_charge(memcg, gfp_mask: gfp, nr_pages: folio_nr_pages(folio));
7210 if (ret)
7211 goto out;
7212
7213 mem_cgroup_commit_charge(folio, memcg);
7214out:
7215 return ret;
7216}
7217
7218int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp)
7219{
7220 struct mem_cgroup *memcg;
7221 int ret;
7222
7223 memcg = get_mem_cgroup_from_mm(mm);
7224 ret = charge_memcg(folio, memcg, gfp);
7225 css_put(css: &memcg->css);
7226
7227 return ret;
7228}
7229
7230/**
7231 * mem_cgroup_hugetlb_try_charge - try to charge the memcg for a hugetlb folio
7232 * @memcg: memcg to charge.
7233 * @gfp: reclaim mode.
7234 * @nr_pages: number of pages to charge.
7235 *
7236 * This function is called when allocating a huge page folio to determine if
7237 * the memcg has the capacity for it. It does not commit the charge yet,
7238 * as the hugetlb folio itself has not been obtained from the hugetlb pool.
7239 *
7240 * Once we have obtained the hugetlb folio, we can call
7241 * mem_cgroup_commit_charge() to commit the charge. If we fail to obtain the
7242 * folio, we should instead call mem_cgroup_cancel_charge() to undo the effect
7243 * of try_charge().
7244 *
7245 * Returns 0 on success. Otherwise, an error code is returned.
7246 */
7247int mem_cgroup_hugetlb_try_charge(struct mem_cgroup *memcg, gfp_t gfp,
7248 long nr_pages)
7249{
7250 /*
7251 * If hugetlb memcg charging is not enabled, do not fail hugetlb allocation,
7252 * but do not attempt to commit charge later (or cancel on error) either.
7253 */
7254 if (mem_cgroup_disabled() || !memcg ||
7255 !cgroup_subsys_on_dfl(memory_cgrp_subsys) ||
7256 !(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING))
7257 return -EOPNOTSUPP;
7258
7259 if (try_charge(memcg, gfp_mask: gfp, nr_pages))
7260 return -ENOMEM;
7261
7262 return 0;
7263}
7264
7265/**
7266 * mem_cgroup_swapin_charge_folio - Charge a newly allocated folio for swapin.
7267 * @folio: folio to charge.
7268 * @mm: mm context of the victim
7269 * @gfp: reclaim mode
7270 * @entry: swap entry for which the folio is allocated
7271 *
7272 * This function charges a folio allocated for swapin. Please call this before
7273 * adding the folio to the swapcache.
7274 *
7275 * Returns 0 on success. Otherwise, an error code is returned.
7276 */
7277int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm,
7278 gfp_t gfp, swp_entry_t entry)
7279{
7280 struct mem_cgroup *memcg;
7281 unsigned short id;
7282 int ret;
7283
7284 if (mem_cgroup_disabled())
7285 return 0;
7286
7287 id = lookup_swap_cgroup_id(ent: entry);
7288 rcu_read_lock();
7289 memcg = mem_cgroup_from_id(id);
7290 if (!memcg || !css_tryget_online(css: &memcg->css))
7291 memcg = get_mem_cgroup_from_mm(mm);
7292 rcu_read_unlock();
7293
7294 ret = charge_memcg(folio, memcg, gfp);
7295
7296 css_put(css: &memcg->css);
7297 return ret;
7298}
7299
7300/*
7301 * mem_cgroup_swapin_uncharge_swap - uncharge swap slot
7302 * @entry: swap entry for which the page is charged
7303 *
7304 * Call this function after successfully adding the charged page to swapcache.
7305 *
7306 * Note: This function assumes the page for which swap slot is being uncharged
7307 * is order 0 page.
7308 */
7309void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
7310{
7311 /*
7312 * Cgroup1's unified memory+swap counter has been charged with the
7313 * new swapcache page, finish the transfer by uncharging the swap
7314 * slot. The swap slot would also get uncharged when it dies, but
7315 * it can stick around indefinitely and we'd count the page twice
7316 * the entire time.
7317 *
7318 * Cgroup2 has separate resource counters for memory and swap,
7319 * so this is a non-issue here. Memory and swap charge lifetimes
7320 * correspond 1:1 to page and swap slot lifetimes: we charge the
7321 * page to memory here, and uncharge swap when the slot is freed.
7322 */
7323 if (!mem_cgroup_disabled() && do_memsw_account()) {
7324 /*
7325 * The swap entry might not get freed for a long time,
7326 * let's not wait for it. The page already received a
7327 * memory+swap charge, drop the swap entry duplicate.
7328 */
7329 mem_cgroup_uncharge_swap(entry, nr_pages: 1);
7330 }
7331}
7332
7333struct uncharge_gather {
7334 struct mem_cgroup *memcg;
7335 unsigned long nr_memory;
7336 unsigned long pgpgout;
7337 unsigned long nr_kmem;
7338 int nid;
7339};
7340
7341static inline void uncharge_gather_clear(struct uncharge_gather *ug)
7342{
7343 memset(ug, 0, sizeof(*ug));
7344}
7345
7346static void uncharge_batch(const struct uncharge_gather *ug)
7347{
7348 unsigned long flags;
7349
7350 if (ug->nr_memory) {
7351 page_counter_uncharge(counter: &ug->memcg->memory, nr_pages: ug->nr_memory);
7352 if (do_memsw_account())
7353 page_counter_uncharge(counter: &ug->memcg->memsw, nr_pages: ug->nr_memory);
7354 if (ug->nr_kmem)
7355 memcg_account_kmem(memcg: ug->memcg, nr_pages: -ug->nr_kmem);
7356 memcg_oom_recover(memcg: ug->memcg);
7357 }
7358
7359 local_irq_save(flags);
7360 __count_memcg_events(memcg: ug->memcg, idx: PGPGOUT, count: ug->pgpgout);
7361 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory);
7362 memcg_check_events(memcg: ug->memcg, nid: ug->nid);
7363 local_irq_restore(flags);
7364
7365 /* drop reference from uncharge_folio */
7366 css_put(css: &ug->memcg->css);
7367}
7368
7369static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug)
7370{
7371 long nr_pages;
7372 struct mem_cgroup *memcg;
7373 struct obj_cgroup *objcg;
7374
7375 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
7376
7377 /*
7378 * Nobody should be changing or seriously looking at
7379 * folio memcg or objcg at this point, we have fully
7380 * exclusive access to the folio.
7381 */
7382 if (folio_memcg_kmem(folio)) {
7383 objcg = __folio_objcg(folio);
7384 /*
7385 * This get matches the put at the end of the function and
7386 * kmem pages do not hold memcg references anymore.
7387 */
7388 memcg = get_mem_cgroup_from_objcg(objcg);
7389 } else {
7390 memcg = __folio_memcg(folio);
7391 }
7392
7393 if (!memcg)
7394 return;
7395
7396 if (ug->memcg != memcg) {
7397 if (ug->memcg) {
7398 uncharge_batch(ug);
7399 uncharge_gather_clear(ug);
7400 }
7401 ug->memcg = memcg;
7402 ug->nid = folio_nid(folio);
7403
7404 /* pairs with css_put in uncharge_batch */
7405 css_get(css: &memcg->css);
7406 }
7407
7408 nr_pages = folio_nr_pages(folio);
7409
7410 if (folio_memcg_kmem(folio)) {
7411 ug->nr_memory += nr_pages;
7412 ug->nr_kmem += nr_pages;
7413
7414 folio->memcg_data = 0;
7415 obj_cgroup_put(objcg);
7416 } else {
7417 /* LRU pages aren't accounted at the root level */
7418 if (!mem_cgroup_is_root(memcg))
7419 ug->nr_memory += nr_pages;
7420 ug->pgpgout++;
7421
7422 folio->memcg_data = 0;
7423 }
7424
7425 css_put(css: &memcg->css);
7426}
7427
7428void __mem_cgroup_uncharge(struct folio *folio)
7429{
7430 struct uncharge_gather ug;
7431
7432 /* Don't touch folio->lru of any random page, pre-check: */
7433 if (!folio_memcg(folio))
7434 return;
7435
7436 uncharge_gather_clear(ug: &ug);
7437 uncharge_folio(folio, ug: &ug);
7438 uncharge_batch(ug: &ug);
7439}
7440
7441/**
7442 * __mem_cgroup_uncharge_list - uncharge a list of page
7443 * @page_list: list of pages to uncharge
7444 *
7445 * Uncharge a list of pages previously charged with
7446 * __mem_cgroup_charge().
7447 */
7448void __mem_cgroup_uncharge_list(struct list_head *page_list)
7449{
7450 struct uncharge_gather ug;
7451 struct folio *folio;
7452
7453 uncharge_gather_clear(ug: &ug);
7454 list_for_each_entry(folio, page_list, lru)
7455 uncharge_folio(folio, ug: &ug);
7456 if (ug.memcg)
7457 uncharge_batch(ug: &ug);
7458}
7459
7460/**
7461 * mem_cgroup_replace_folio - Charge a folio's replacement.
7462 * @old: Currently circulating folio.
7463 * @new: Replacement folio.
7464 *
7465 * Charge @new as a replacement folio for @old. @old will
7466 * be uncharged upon free. This is only used by the page cache
7467 * (in replace_page_cache_folio()).
7468 *
7469 * Both folios must be locked, @new->mapping must be set up.
7470 */
7471void mem_cgroup_replace_folio(struct folio *old, struct folio *new)
7472{
7473 struct mem_cgroup *memcg;
7474 long nr_pages = folio_nr_pages(folio: new);
7475 unsigned long flags;
7476
7477 VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
7478 VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
7479 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
7480 VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new);
7481
7482 if (mem_cgroup_disabled())
7483 return;
7484
7485 /* Page cache replacement: new folio already charged? */
7486 if (folio_memcg(folio: new))
7487 return;
7488
7489 memcg = folio_memcg(folio: old);
7490 VM_WARN_ON_ONCE_FOLIO(!memcg, old);
7491 if (!memcg)
7492 return;
7493
7494 /* Force-charge the new page. The old one will be freed soon */
7495 if (!mem_cgroup_is_root(memcg)) {
7496 page_counter_charge(counter: &memcg->memory, nr_pages);
7497 if (do_memsw_account())
7498 page_counter_charge(counter: &memcg->memsw, nr_pages);
7499 }
7500
7501 css_get(css: &memcg->css);
7502 commit_charge(folio: new, memcg);
7503
7504 local_irq_save(flags);
7505 mem_cgroup_charge_statistics(memcg, nr_pages);
7506 memcg_check_events(memcg, nid: folio_nid(folio: new));
7507 local_irq_restore(flags);
7508}
7509
7510/**
7511 * mem_cgroup_migrate - Transfer the memcg data from the old to the new folio.
7512 * @old: Currently circulating folio.
7513 * @new: Replacement folio.
7514 *
7515 * Transfer the memcg data from the old folio to the new folio for migration.
7516 * The old folio's data info will be cleared. Note that the memory counters
7517 * will remain unchanged throughout the process.
7518 *
7519 * Both folios must be locked, @new->mapping must be set up.
7520 */
7521void mem_cgroup_migrate(struct folio *old, struct folio *new)
7522{
7523 struct mem_cgroup *memcg;
7524
7525 VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
7526 VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
7527 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
7528 VM_BUG_ON_FOLIO(folio_nr_pages(old) != folio_nr_pages(new), new);
7529
7530 if (mem_cgroup_disabled())
7531 return;
7532
7533 memcg = folio_memcg(folio: old);
7534 /*
7535 * Note that it is normal to see !memcg for a hugetlb folio.
7536 * For e.g, itt could have been allocated when memory_hugetlb_accounting
7537 * was not selected.
7538 */
7539 VM_WARN_ON_ONCE_FOLIO(!folio_test_hugetlb(old) && !memcg, old);
7540 if (!memcg)
7541 return;
7542
7543 /* Transfer the charge and the css ref */
7544 commit_charge(folio: new, memcg);
7545 old->memcg_data = 0;
7546}
7547
7548DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
7549EXPORT_SYMBOL(memcg_sockets_enabled_key);
7550
7551void mem_cgroup_sk_alloc(struct sock *sk)
7552{
7553 struct mem_cgroup *memcg;
7554
7555 if (!mem_cgroup_sockets_enabled)
7556 return;
7557
7558 /* Do not associate the sock with unrelated interrupted task's memcg. */
7559 if (!in_task())
7560 return;
7561
7562 rcu_read_lock();
7563 memcg = mem_cgroup_from_task(current);
7564 if (mem_cgroup_is_root(memcg))
7565 goto out;
7566 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
7567 goto out;
7568 if (css_tryget(css: &memcg->css))
7569 sk->sk_memcg = memcg;
7570out:
7571 rcu_read_unlock();
7572}
7573
7574void mem_cgroup_sk_free(struct sock *sk)
7575{
7576 if (sk->sk_memcg)
7577 css_put(css: &sk->sk_memcg->css);
7578}
7579
7580/**
7581 * mem_cgroup_charge_skmem - charge socket memory
7582 * @memcg: memcg to charge
7583 * @nr_pages: number of pages to charge
7584 * @gfp_mask: reclaim mode
7585 *
7586 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
7587 * @memcg's configured limit, %false if it doesn't.
7588 */
7589bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
7590 gfp_t gfp_mask)
7591{
7592 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7593 struct page_counter *fail;
7594
7595 if (page_counter_try_charge(counter: &memcg->tcpmem, nr_pages, fail: &fail)) {
7596 memcg->tcpmem_pressure = 0;
7597 return true;
7598 }
7599 memcg->tcpmem_pressure = 1;
7600 if (gfp_mask & __GFP_NOFAIL) {
7601 page_counter_charge(counter: &memcg->tcpmem, nr_pages);
7602 return true;
7603 }
7604 return false;
7605 }
7606
7607 if (try_charge(memcg, gfp_mask, nr_pages) == 0) {
7608 mod_memcg_state(memcg, idx: MEMCG_SOCK, val: nr_pages);
7609 return true;
7610 }
7611
7612 return false;
7613}
7614
7615/**
7616 * mem_cgroup_uncharge_skmem - uncharge socket memory
7617 * @memcg: memcg to uncharge
7618 * @nr_pages: number of pages to uncharge
7619 */
7620void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7621{
7622 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7623 page_counter_uncharge(counter: &memcg->tcpmem, nr_pages);
7624 return;
7625 }
7626
7627 mod_memcg_state(memcg, idx: MEMCG_SOCK, val: -nr_pages);
7628
7629 refill_stock(memcg, nr_pages);
7630}
7631
7632static int __init cgroup_memory(char *s)
7633{
7634 char *token;
7635
7636 while ((token = strsep(&s, ",")) != NULL) {
7637 if (!*token)
7638 continue;
7639 if (!strcmp(token, "nosocket"))
7640 cgroup_memory_nosocket = true;
7641 if (!strcmp(token, "nokmem"))
7642 cgroup_memory_nokmem = true;
7643 if (!strcmp(token, "nobpf"))
7644 cgroup_memory_nobpf = true;
7645 }
7646 return 1;
7647}
7648__setup("cgroup.memory=", cgroup_memory);
7649
7650/*
7651 * subsys_initcall() for memory controller.
7652 *
7653 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7654 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7655 * basically everything that doesn't depend on a specific mem_cgroup structure
7656 * should be initialized from here.
7657 */
7658static int __init mem_cgroup_init(void)
7659{
7660 int cpu, node;
7661
7662 /*
7663 * Currently s32 type (can refer to struct batched_lruvec_stat) is
7664 * used for per-memcg-per-cpu caching of per-node statistics. In order
7665 * to work fine, we should make sure that the overfill threshold can't
7666 * exceed S32_MAX / PAGE_SIZE.
7667 */
7668 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
7669
7670 cpuhp_setup_state_nocalls(state: CPUHP_MM_MEMCQ_DEAD, name: "mm/memctrl:dead", NULL,
7671 teardown: memcg_hotplug_cpu_dead);
7672
7673 for_each_possible_cpu(cpu)
7674 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7675 drain_local_stock);
7676
7677 for_each_node(node) {
7678 struct mem_cgroup_tree_per_node *rtpn;
7679
7680 rtpn = kzalloc_node(size: sizeof(*rtpn), GFP_KERNEL, node);
7681
7682 rtpn->rb_root = RB_ROOT;
7683 rtpn->rb_rightmost = NULL;
7684 spin_lock_init(&rtpn->lock);
7685 soft_limit_tree.rb_tree_per_node[node] = rtpn;
7686 }
7687
7688 return 0;
7689}
7690subsys_initcall(mem_cgroup_init);
7691
7692#ifdef CONFIG_SWAP
7693static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7694{
7695 while (!refcount_inc_not_zero(r: &memcg->id.ref)) {
7696 /*
7697 * The root cgroup cannot be destroyed, so it's refcount must
7698 * always be >= 1.
7699 */
7700 if (WARN_ON_ONCE(mem_cgroup_is_root(memcg))) {
7701 VM_BUG_ON(1);
7702 break;
7703 }
7704 memcg = parent_mem_cgroup(memcg);
7705 if (!memcg)
7706 memcg = root_mem_cgroup;
7707 }
7708 return memcg;
7709}
7710
7711/**
7712 * mem_cgroup_swapout - transfer a memsw charge to swap
7713 * @folio: folio whose memsw charge to transfer
7714 * @entry: swap entry to move the charge to
7715 *
7716 * Transfer the memsw charge of @folio to @entry.
7717 */
7718void mem_cgroup_swapout(struct folio *folio, swp_entry_t entry)
7719{
7720 struct mem_cgroup *memcg, *swap_memcg;
7721 unsigned int nr_entries;
7722 unsigned short oldid;
7723
7724 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
7725 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
7726
7727 if (mem_cgroup_disabled())
7728 return;
7729
7730 if (!do_memsw_account())
7731 return;
7732
7733 memcg = folio_memcg(folio);
7734
7735 VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
7736 if (!memcg)
7737 return;
7738
7739 /*
7740 * In case the memcg owning these pages has been offlined and doesn't
7741 * have an ID allocated to it anymore, charge the closest online
7742 * ancestor for the swap instead and transfer the memory+swap charge.
7743 */
7744 swap_memcg = mem_cgroup_id_get_online(memcg);
7745 nr_entries = folio_nr_pages(folio);
7746 /* Get references for the tail pages, too */
7747 if (nr_entries > 1)
7748 mem_cgroup_id_get_many(memcg: swap_memcg, n: nr_entries - 1);
7749 oldid = swap_cgroup_record(ent: entry, id: mem_cgroup_id(memcg: swap_memcg),
7750 nr_ents: nr_entries);
7751 VM_BUG_ON_FOLIO(oldid, folio);
7752 mod_memcg_state(memcg: swap_memcg, idx: MEMCG_SWAP, val: nr_entries);
7753
7754 folio->memcg_data = 0;
7755
7756 if (!mem_cgroup_is_root(memcg))
7757 page_counter_uncharge(counter: &memcg->memory, nr_pages: nr_entries);
7758
7759 if (memcg != swap_memcg) {
7760 if (!mem_cgroup_is_root(memcg: swap_memcg))
7761 page_counter_charge(counter: &swap_memcg->memsw, nr_pages: nr_entries);
7762 page_counter_uncharge(counter: &memcg->memsw, nr_pages: nr_entries);
7763 }
7764
7765 /*
7766 * Interrupts should be disabled here because the caller holds the
7767 * i_pages lock which is taken with interrupts-off. It is
7768 * important here to have the interrupts disabled because it is the
7769 * only synchronisation we have for updating the per-CPU variables.
7770 */
7771 memcg_stats_lock();
7772 mem_cgroup_charge_statistics(memcg, nr_pages: -nr_entries);
7773 memcg_stats_unlock();
7774 memcg_check_events(memcg, nid: folio_nid(folio));
7775
7776 css_put(css: &memcg->css);
7777}
7778
7779/**
7780 * __mem_cgroup_try_charge_swap - try charging swap space for a folio
7781 * @folio: folio being added to swap
7782 * @entry: swap entry to charge
7783 *
7784 * Try to charge @folio's memcg for the swap space at @entry.
7785 *
7786 * Returns 0 on success, -ENOMEM on failure.
7787 */
7788int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry)
7789{
7790 unsigned int nr_pages = folio_nr_pages(folio);
7791 struct page_counter *counter;
7792 struct mem_cgroup *memcg;
7793 unsigned short oldid;
7794
7795 if (do_memsw_account())
7796 return 0;
7797
7798 memcg = folio_memcg(folio);
7799
7800 VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
7801 if (!memcg)
7802 return 0;
7803
7804 if (!entry.val) {
7805 memcg_memory_event(memcg, event: MEMCG_SWAP_FAIL);
7806 return 0;
7807 }
7808
7809 memcg = mem_cgroup_id_get_online(memcg);
7810
7811 if (!mem_cgroup_is_root(memcg) &&
7812 !page_counter_try_charge(counter: &memcg->swap, nr_pages, fail: &counter)) {
7813 memcg_memory_event(memcg, event: MEMCG_SWAP_MAX);
7814 memcg_memory_event(memcg, event: MEMCG_SWAP_FAIL);
7815 mem_cgroup_id_put(memcg);
7816 return -ENOMEM;
7817 }
7818
7819 /* Get references for the tail pages, too */
7820 if (nr_pages > 1)
7821 mem_cgroup_id_get_many(memcg, n: nr_pages - 1);
7822 oldid = swap_cgroup_record(ent: entry, id: mem_cgroup_id(memcg), nr_ents: nr_pages);
7823 VM_BUG_ON_FOLIO(oldid, folio);
7824 mod_memcg_state(memcg, idx: MEMCG_SWAP, val: nr_pages);
7825
7826 return 0;
7827}
7828
7829/**
7830 * __mem_cgroup_uncharge_swap - uncharge swap space
7831 * @entry: swap entry to uncharge
7832 * @nr_pages: the amount of swap space to uncharge
7833 */
7834void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7835{
7836 struct mem_cgroup *memcg;
7837 unsigned short id;
7838
7839 id = swap_cgroup_record(ent: entry, id: 0, nr_ents: nr_pages);
7840 rcu_read_lock();
7841 memcg = mem_cgroup_from_id(id);
7842 if (memcg) {
7843 if (!mem_cgroup_is_root(memcg)) {
7844 if (do_memsw_account())
7845 page_counter_uncharge(counter: &memcg->memsw, nr_pages);
7846 else
7847 page_counter_uncharge(counter: &memcg->swap, nr_pages);
7848 }
7849 mod_memcg_state(memcg, idx: MEMCG_SWAP, val: -nr_pages);
7850 mem_cgroup_id_put_many(memcg, n: nr_pages);
7851 }
7852 rcu_read_unlock();
7853}
7854
7855long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7856{
7857 long nr_swap_pages = get_nr_swap_pages();
7858
7859 if (mem_cgroup_disabled() || do_memsw_account())
7860 return nr_swap_pages;
7861 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg))
7862 nr_swap_pages = min_t(long, nr_swap_pages,
7863 READ_ONCE(memcg->swap.max) -
7864 page_counter_read(&memcg->swap));
7865 return nr_swap_pages;
7866}
7867
7868bool mem_cgroup_swap_full(struct folio *folio)
7869{
7870 struct mem_cgroup *memcg;
7871
7872 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
7873
7874 if (vm_swap_full())
7875 return true;
7876 if (do_memsw_account())
7877 return false;
7878
7879 memcg = folio_memcg(folio);
7880 if (!memcg)
7881 return false;
7882
7883 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
7884 unsigned long usage = page_counter_read(counter: &memcg->swap);
7885
7886 if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7887 usage * 2 >= READ_ONCE(memcg->swap.max))
7888 return true;
7889 }
7890
7891 return false;
7892}
7893
7894static int __init setup_swap_account(char *s)
7895{
7896 pr_warn_once("The swapaccount= commandline option is deprecated. "
7897 "Please report your usecase to linux-mm@kvack.org if you "
7898 "depend on this functionality.\n");
7899 return 1;
7900}
7901__setup("swapaccount=", setup_swap_account);
7902
7903static u64 swap_current_read(struct cgroup_subsys_state *css,
7904 struct cftype *cft)
7905{
7906 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7907
7908 return (u64)page_counter_read(counter: &memcg->swap) * PAGE_SIZE;
7909}
7910
7911static u64 swap_peak_read(struct cgroup_subsys_state *css,
7912 struct cftype *cft)
7913{
7914 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7915
7916 return (u64)memcg->swap.watermark * PAGE_SIZE;
7917}
7918
7919static int swap_high_show(struct seq_file *m, void *v)
7920{
7921 return seq_puts_memcg_tunable(m,
7922 READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7923}
7924
7925static ssize_t swap_high_write(struct kernfs_open_file *of,
7926 char *buf, size_t nbytes, loff_t off)
7927{
7928 struct mem_cgroup *memcg = mem_cgroup_from_css(css: of_css(of));
7929 unsigned long high;
7930 int err;
7931
7932 buf = strstrip(str: buf);
7933 err = page_counter_memparse(buf, max: "max", nr_pages: &high);
7934 if (err)
7935 return err;
7936
7937 page_counter_set_high(counter: &memcg->swap, nr_pages: high);
7938
7939 return nbytes;
7940}
7941
7942static int swap_max_show(struct seq_file *m, void *v)
7943{
7944 return seq_puts_memcg_tunable(m,
7945 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7946}
7947
7948static ssize_t swap_max_write(struct kernfs_open_file *of,
7949 char *buf, size_t nbytes, loff_t off)
7950{
7951 struct mem_cgroup *memcg = mem_cgroup_from_css(css: of_css(of));
7952 unsigned long max;
7953 int err;
7954
7955 buf = strstrip(str: buf);
7956 err = page_counter_memparse(buf, max: "max", nr_pages: &max);
7957 if (err)
7958 return err;
7959
7960 xchg(&memcg->swap.max, max);
7961
7962 return nbytes;
7963}
7964
7965static int swap_events_show(struct seq_file *m, void *v)
7966{
7967 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7968
7969 seq_printf(m, fmt: "high %lu\n",
7970 atomic_long_read(v: &memcg->memory_events[MEMCG_SWAP_HIGH]));
7971 seq_printf(m, fmt: "max %lu\n",
7972 atomic_long_read(v: &memcg->memory_events[MEMCG_SWAP_MAX]));
7973 seq_printf(m, fmt: "fail %lu\n",
7974 atomic_long_read(v: &memcg->memory_events[MEMCG_SWAP_FAIL]));
7975
7976 return 0;
7977}
7978
7979static struct cftype swap_files[] = {
7980 {
7981 .name = "swap.current",
7982 .flags = CFTYPE_NOT_ON_ROOT,
7983 .read_u64 = swap_current_read,
7984 },
7985 {
7986 .name = "swap.high",
7987 .flags = CFTYPE_NOT_ON_ROOT,
7988 .seq_show = swap_high_show,
7989 .write = swap_high_write,
7990 },
7991 {
7992 .name = "swap.max",
7993 .flags = CFTYPE_NOT_ON_ROOT,
7994 .seq_show = swap_max_show,
7995 .write = swap_max_write,
7996 },
7997 {
7998 .name = "swap.peak",
7999 .flags = CFTYPE_NOT_ON_ROOT,
8000 .read_u64 = swap_peak_read,
8001 },
8002 {
8003 .name = "swap.events",
8004 .flags = CFTYPE_NOT_ON_ROOT,
8005 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
8006 .seq_show = swap_events_show,
8007 },
8008 { } /* terminate */
8009};
8010
8011static struct cftype memsw_files[] = {
8012 {
8013 .name = "memsw.usage_in_bytes",
8014 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
8015 .read_u64 = mem_cgroup_read_u64,
8016 },
8017 {
8018 .name = "memsw.max_usage_in_bytes",
8019 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
8020 .write = mem_cgroup_reset,
8021 .read_u64 = mem_cgroup_read_u64,
8022 },
8023 {
8024 .name = "memsw.limit_in_bytes",
8025 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
8026 .write = mem_cgroup_write,
8027 .read_u64 = mem_cgroup_read_u64,
8028 },
8029 {
8030 .name = "memsw.failcnt",
8031 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
8032 .write = mem_cgroup_reset,
8033 .read_u64 = mem_cgroup_read_u64,
8034 },
8035 { }, /* terminate */
8036};
8037
8038#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
8039/**
8040 * obj_cgroup_may_zswap - check if this cgroup can zswap
8041 * @objcg: the object cgroup
8042 *
8043 * Check if the hierarchical zswap limit has been reached.
8044 *
8045 * This doesn't check for specific headroom, and it is not atomic
8046 * either. But with zswap, the size of the allocation is only known
8047 * once compression has occurred, and this optimistic pre-check avoids
8048 * spending cycles on compression when there is already no room left
8049 * or zswap is disabled altogether somewhere in the hierarchy.
8050 */
8051bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
8052{
8053 struct mem_cgroup *memcg, *original_memcg;
8054 bool ret = true;
8055
8056 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
8057 return true;
8058
8059 original_memcg = get_mem_cgroup_from_objcg(objcg);
8060 for (memcg = original_memcg; !mem_cgroup_is_root(memcg);
8061 memcg = parent_mem_cgroup(memcg)) {
8062 unsigned long max = READ_ONCE(memcg->zswap_max);
8063 unsigned long pages;
8064
8065 if (max == PAGE_COUNTER_MAX)
8066 continue;
8067 if (max == 0) {
8068 ret = false;
8069 break;
8070 }
8071
8072 cgroup_rstat_flush(cgrp: memcg->css.cgroup);
8073 pages = memcg_page_state(memcg, idx: MEMCG_ZSWAP_B) / PAGE_SIZE;
8074 if (pages < max)
8075 continue;
8076 ret = false;
8077 break;
8078 }
8079 mem_cgroup_put(memcg: original_memcg);
8080 return ret;
8081}
8082
8083/**
8084 * obj_cgroup_charge_zswap - charge compression backend memory
8085 * @objcg: the object cgroup
8086 * @size: size of compressed object
8087 *
8088 * This forces the charge after obj_cgroup_may_zswap() allowed
8089 * compression and storage in zwap for this cgroup to go ahead.
8090 */
8091void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size)
8092{
8093 struct mem_cgroup *memcg;
8094
8095 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
8096 return;
8097
8098 VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC));
8099
8100 /* PF_MEMALLOC context, charging must succeed */
8101 if (obj_cgroup_charge(objcg, GFP_KERNEL, size))
8102 VM_WARN_ON_ONCE(1);
8103
8104 rcu_read_lock();
8105 memcg = obj_cgroup_memcg(objcg);
8106 mod_memcg_state(memcg, idx: MEMCG_ZSWAP_B, val: size);
8107 mod_memcg_state(memcg, idx: MEMCG_ZSWAPPED, val: 1);
8108 rcu_read_unlock();
8109}
8110
8111/**
8112 * obj_cgroup_uncharge_zswap - uncharge compression backend memory
8113 * @objcg: the object cgroup
8114 * @size: size of compressed object
8115 *
8116 * Uncharges zswap memory on page in.
8117 */
8118void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size)
8119{
8120 struct mem_cgroup *memcg;
8121
8122 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
8123 return;
8124
8125 obj_cgroup_uncharge(objcg, size);
8126
8127 rcu_read_lock();
8128 memcg = obj_cgroup_memcg(objcg);
8129 mod_memcg_state(memcg, idx: MEMCG_ZSWAP_B, val: -size);
8130 mod_memcg_state(memcg, idx: MEMCG_ZSWAPPED, val: -1);
8131 rcu_read_unlock();
8132}
8133
8134static u64 zswap_current_read(struct cgroup_subsys_state *css,
8135 struct cftype *cft)
8136{
8137 cgroup_rstat_flush(cgrp: css->cgroup);
8138 return memcg_page_state(memcg: mem_cgroup_from_css(css), idx: MEMCG_ZSWAP_B);
8139}
8140
8141static int zswap_max_show(struct seq_file *m, void *v)
8142{
8143 return seq_puts_memcg_tunable(m,
8144 READ_ONCE(mem_cgroup_from_seq(m)->zswap_max));
8145}
8146
8147static ssize_t zswap_max_write(struct kernfs_open_file *of,
8148 char *buf, size_t nbytes, loff_t off)
8149{
8150 struct mem_cgroup *memcg = mem_cgroup_from_css(css: of_css(of));
8151 unsigned long max;
8152 int err;
8153
8154 buf = strstrip(str: buf);
8155 err = page_counter_memparse(buf, max: "max", nr_pages: &max);
8156 if (err)
8157 return err;
8158
8159 xchg(&memcg->zswap_max, max);
8160
8161 return nbytes;
8162}
8163
8164static struct cftype zswap_files[] = {
8165 {
8166 .name = "zswap.current",
8167 .flags = CFTYPE_NOT_ON_ROOT,
8168 .read_u64 = zswap_current_read,
8169 },
8170 {
8171 .name = "zswap.max",
8172 .flags = CFTYPE_NOT_ON_ROOT,
8173 .seq_show = zswap_max_show,
8174 .write = zswap_max_write,
8175 },
8176 { } /* terminate */
8177};
8178#endif /* CONFIG_MEMCG_KMEM && CONFIG_ZSWAP */
8179
8180static int __init mem_cgroup_swap_init(void)
8181{
8182 if (mem_cgroup_disabled())
8183 return 0;
8184
8185 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
8186 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
8187#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
8188 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files));
8189#endif
8190 return 0;
8191}
8192subsys_initcall(mem_cgroup_swap_init);
8193
8194#endif /* CONFIG_SWAP */
8195

source code of linux/mm/memcontrol.c