Warning: That file was not part of the compilation database. It may have many parsing errors.
1 | // SPDX-License-Identifier: GPL-2.0 |
---|---|
2 | /* |
3 | * SLOB Allocator: Simple List Of Blocks |
4 | * |
5 | * Matt Mackall <mpm@selenic.com> 12/30/03 |
6 | * |
7 | * NUMA support by Paul Mundt, 2007. |
8 | * |
9 | * How SLOB works: |
10 | * |
11 | * The core of SLOB is a traditional K&R style heap allocator, with |
12 | * support for returning aligned objects. The granularity of this |
13 | * allocator is as little as 2 bytes, however typically most architectures |
14 | * will require 4 bytes on 32-bit and 8 bytes on 64-bit. |
15 | * |
16 | * The slob heap is a set of linked list of pages from alloc_pages(), |
17 | * and within each page, there is a singly-linked list of free blocks |
18 | * (slob_t). The heap is grown on demand. To reduce fragmentation, |
19 | * heap pages are segregated into three lists, with objects less than |
20 | * 256 bytes, objects less than 1024 bytes, and all other objects. |
21 | * |
22 | * Allocation from heap involves first searching for a page with |
23 | * sufficient free blocks (using a next-fit-like approach) followed by |
24 | * a first-fit scan of the page. Deallocation inserts objects back |
25 | * into the free list in address order, so this is effectively an |
26 | * address-ordered first fit. |
27 | * |
28 | * Above this is an implementation of kmalloc/kfree. Blocks returned |
29 | * from kmalloc are prepended with a 4-byte header with the kmalloc size. |
30 | * If kmalloc is asked for objects of PAGE_SIZE or larger, it calls |
31 | * alloc_pages() directly, allocating compound pages so the page order |
32 | * does not have to be separately tracked. |
33 | * These objects are detected in kfree() because PageSlab() |
34 | * is false for them. |
35 | * |
36 | * SLAB is emulated on top of SLOB by simply calling constructors and |
37 | * destructors for every SLAB allocation. Objects are returned with the |
38 | * 4-byte alignment unless the SLAB_HWCACHE_ALIGN flag is set, in which |
39 | * case the low-level allocator will fragment blocks to create the proper |
40 | * alignment. Again, objects of page-size or greater are allocated by |
41 | * calling alloc_pages(). As SLAB objects know their size, no separate |
42 | * size bookkeeping is necessary and there is essentially no allocation |
43 | * space overhead, and compound pages aren't needed for multi-page |
44 | * allocations. |
45 | * |
46 | * NUMA support in SLOB is fairly simplistic, pushing most of the real |
47 | * logic down to the page allocator, and simply doing the node accounting |
48 | * on the upper levels. In the event that a node id is explicitly |
49 | * provided, __alloc_pages_node() with the specified node id is used |
50 | * instead. The common case (or when the node id isn't explicitly provided) |
51 | * will default to the current node, as per numa_node_id(). |
52 | * |
53 | * Node aware pages are still inserted in to the global freelist, and |
54 | * these are scanned for by matching against the node id encoded in the |
55 | * page flags. As a result, block allocations that can be satisfied from |
56 | * the freelist will only be done so on pages residing on the same node, |
57 | * in order to prevent random node placement. |
58 | */ |
59 | |
60 | #include <linux/kernel.h> |
61 | #include <linux/slab.h> |
62 | |
63 | #include <linux/mm.h> |
64 | #include <linux/swap.h> /* struct reclaim_state */ |
65 | #include <linux/cache.h> |
66 | #include <linux/init.h> |
67 | #include <linux/export.h> |
68 | #include <linux/rcupdate.h> |
69 | #include <linux/list.h> |
70 | #include <linux/kmemleak.h> |
71 | |
72 | #include <trace/events/kmem.h> |
73 | |
74 | #include <linux/atomic.h> |
75 | |
76 | #include "slab.h" |
77 | /* |
78 | * slob_block has a field 'units', which indicates size of block if +ve, |
79 | * or offset of next block if -ve (in SLOB_UNITs). |
80 | * |
81 | * Free blocks of size 1 unit simply contain the offset of the next block. |
82 | * Those with larger size contain their size in the first SLOB_UNIT of |
83 | * memory, and the offset of the next free block in the second SLOB_UNIT. |
84 | */ |
85 | #if PAGE_SIZE <= (32767 * 2) |
86 | typedef s16 slobidx_t; |
87 | #else |
88 | typedef s32 slobidx_t; |
89 | #endif |
90 | |
91 | struct slob_block { |
92 | slobidx_t units; |
93 | }; |
94 | typedef struct slob_block slob_t; |
95 | |
96 | /* |
97 | * All partially free slob pages go on these lists. |
98 | */ |
99 | #define SLOB_BREAK1 256 |
100 | #define SLOB_BREAK2 1024 |
101 | static LIST_HEAD(free_slob_small); |
102 | static LIST_HEAD(free_slob_medium); |
103 | static LIST_HEAD(free_slob_large); |
104 | |
105 | /* |
106 | * slob_page_free: true for pages on free_slob_pages list. |
107 | */ |
108 | static inline int slob_page_free(struct page *sp) |
109 | { |
110 | return PageSlobFree(sp); |
111 | } |
112 | |
113 | static void set_slob_page_free(struct page *sp, struct list_head *list) |
114 | { |
115 | list_add(&sp->lru, list); |
116 | __SetPageSlobFree(sp); |
117 | } |
118 | |
119 | static inline void clear_slob_page_free(struct page *sp) |
120 | { |
121 | list_del(&sp->lru); |
122 | __ClearPageSlobFree(sp); |
123 | } |
124 | |
125 | #define SLOB_UNIT sizeof(slob_t) |
126 | #define SLOB_UNITS(size) DIV_ROUND_UP(size, SLOB_UNIT) |
127 | |
128 | /* |
129 | * struct slob_rcu is inserted at the tail of allocated slob blocks, which |
130 | * were created with a SLAB_TYPESAFE_BY_RCU slab. slob_rcu is used to free |
131 | * the block using call_rcu. |
132 | */ |
133 | struct slob_rcu { |
134 | struct rcu_head head; |
135 | int size; |
136 | }; |
137 | |
138 | /* |
139 | * slob_lock protects all slob allocator structures. |
140 | */ |
141 | static DEFINE_SPINLOCK(slob_lock); |
142 | |
143 | /* |
144 | * Encode the given size and next info into a free slob block s. |
145 | */ |
146 | static void set_slob(slob_t *s, slobidx_t size, slob_t *next) |
147 | { |
148 | slob_t *base = (slob_t *)((unsigned long)s & PAGE_MASK); |
149 | slobidx_t offset = next - base; |
150 | |
151 | if (size > 1) { |
152 | s[0].units = size; |
153 | s[1].units = offset; |
154 | } else |
155 | s[0].units = -offset; |
156 | } |
157 | |
158 | /* |
159 | * Return the size of a slob block. |
160 | */ |
161 | static slobidx_t slob_units(slob_t *s) |
162 | { |
163 | if (s->units > 0) |
164 | return s->units; |
165 | return 1; |
166 | } |
167 | |
168 | /* |
169 | * Return the next free slob block pointer after this one. |
170 | */ |
171 | static slob_t *slob_next(slob_t *s) |
172 | { |
173 | slob_t *base = (slob_t *)((unsigned long)s & PAGE_MASK); |
174 | slobidx_t next; |
175 | |
176 | if (s[0].units < 0) |
177 | next = -s[0].units; |
178 | else |
179 | next = s[1].units; |
180 | return base+next; |
181 | } |
182 | |
183 | /* |
184 | * Returns true if s is the last free block in its page. |
185 | */ |
186 | static int slob_last(slob_t *s) |
187 | { |
188 | return !((unsigned long)slob_next(s) & ~PAGE_MASK); |
189 | } |
190 | |
191 | static void *slob_new_pages(gfp_t gfp, int order, int node) |
192 | { |
193 | void *page; |
194 | |
195 | #ifdef CONFIG_NUMA |
196 | if (node != NUMA_NO_NODE) |
197 | page = __alloc_pages_node(node, gfp, order); |
198 | else |
199 | #endif |
200 | page = alloc_pages(gfp, order); |
201 | |
202 | if (!page) |
203 | return NULL; |
204 | |
205 | return page_address(page); |
206 | } |
207 | |
208 | static void slob_free_pages(void *b, int order) |
209 | { |
210 | if (current->reclaim_state) |
211 | current->reclaim_state->reclaimed_slab += 1 << order; |
212 | free_pages((unsigned long)b, order); |
213 | } |
214 | |
215 | /* |
216 | * Allocate a slob block within a given slob_page sp. |
217 | */ |
218 | static void *slob_page_alloc(struct page *sp, size_t size, int align) |
219 | { |
220 | slob_t *prev, *cur, *aligned = NULL; |
221 | int delta = 0, units = SLOB_UNITS(size); |
222 | |
223 | for (prev = NULL, cur = sp->freelist; ; prev = cur, cur = slob_next(cur)) { |
224 | slobidx_t avail = slob_units(cur); |
225 | |
226 | if (align) { |
227 | aligned = (slob_t *)ALIGN((unsigned long)cur, align); |
228 | delta = aligned - cur; |
229 | } |
230 | if (avail >= units + delta) { /* room enough? */ |
231 | slob_t *next; |
232 | |
233 | if (delta) { /* need to fragment head to align? */ |
234 | next = slob_next(cur); |
235 | set_slob(aligned, avail - delta, next); |
236 | set_slob(cur, delta, aligned); |
237 | prev = cur; |
238 | cur = aligned; |
239 | avail = slob_units(cur); |
240 | } |
241 | |
242 | next = slob_next(cur); |
243 | if (avail == units) { /* exact fit? unlink. */ |
244 | if (prev) |
245 | set_slob(prev, slob_units(prev), next); |
246 | else |
247 | sp->freelist = next; |
248 | } else { /* fragment */ |
249 | if (prev) |
250 | set_slob(prev, slob_units(prev), cur + units); |
251 | else |
252 | sp->freelist = cur + units; |
253 | set_slob(cur + units, avail - units, next); |
254 | } |
255 | |
256 | sp->units -= units; |
257 | if (!sp->units) |
258 | clear_slob_page_free(sp); |
259 | return cur; |
260 | } |
261 | if (slob_last(cur)) |
262 | return NULL; |
263 | } |
264 | } |
265 | |
266 | /* |
267 | * slob_alloc: entry point into the slob allocator. |
268 | */ |
269 | static void *slob_alloc(size_t size, gfp_t gfp, int align, int node) |
270 | { |
271 | struct page *sp; |
272 | struct list_head *prev; |
273 | struct list_head *slob_list; |
274 | slob_t *b = NULL; |
275 | unsigned long flags; |
276 | |
277 | if (size < SLOB_BREAK1) |
278 | slob_list = &free_slob_small; |
279 | else if (size < SLOB_BREAK2) |
280 | slob_list = &free_slob_medium; |
281 | else |
282 | slob_list = &free_slob_large; |
283 | |
284 | spin_lock_irqsave(&slob_lock, flags); |
285 | /* Iterate through each partially free page, try to find room */ |
286 | list_for_each_entry(sp, slob_list, lru) { |
287 | #ifdef CONFIG_NUMA |
288 | /* |
289 | * If there's a node specification, search for a partial |
290 | * page with a matching node id in the freelist. |
291 | */ |
292 | if (node != NUMA_NO_NODE && page_to_nid(sp) != node) |
293 | continue; |
294 | #endif |
295 | /* Enough room on this page? */ |
296 | if (sp->units < SLOB_UNITS(size)) |
297 | continue; |
298 | |
299 | /* Attempt to alloc */ |
300 | prev = sp->lru.prev; |
301 | b = slob_page_alloc(sp, size, align); |
302 | if (!b) |
303 | continue; |
304 | |
305 | /* Improve fragment distribution and reduce our average |
306 | * search time by starting our next search here. (see |
307 | * Knuth vol 1, sec 2.5, pg 449) */ |
308 | if (prev != slob_list->prev && |
309 | slob_list->next != prev->next) |
310 | list_move_tail(slob_list, prev->next); |
311 | break; |
312 | } |
313 | spin_unlock_irqrestore(&slob_lock, flags); |
314 | |
315 | /* Not enough space: must allocate a new page */ |
316 | if (!b) { |
317 | b = slob_new_pages(gfp & ~__GFP_ZERO, 0, node); |
318 | if (!b) |
319 | return NULL; |
320 | sp = virt_to_page(b); |
321 | __SetPageSlab(sp); |
322 | |
323 | spin_lock_irqsave(&slob_lock, flags); |
324 | sp->units = SLOB_UNITS(PAGE_SIZE); |
325 | sp->freelist = b; |
326 | INIT_LIST_HEAD(&sp->lru); |
327 | set_slob(b, SLOB_UNITS(PAGE_SIZE), b + SLOB_UNITS(PAGE_SIZE)); |
328 | set_slob_page_free(sp, slob_list); |
329 | b = slob_page_alloc(sp, size, align); |
330 | BUG_ON(!b); |
331 | spin_unlock_irqrestore(&slob_lock, flags); |
332 | } |
333 | if (unlikely(gfp & __GFP_ZERO)) |
334 | memset(b, 0, size); |
335 | return b; |
336 | } |
337 | |
338 | /* |
339 | * slob_free: entry point into the slob allocator. |
340 | */ |
341 | static void slob_free(void *block, int size) |
342 | { |
343 | struct page *sp; |
344 | slob_t *prev, *next, *b = (slob_t *)block; |
345 | slobidx_t units; |
346 | unsigned long flags; |
347 | struct list_head *slob_list; |
348 | |
349 | if (unlikely(ZERO_OR_NULL_PTR(block))) |
350 | return; |
351 | BUG_ON(!size); |
352 | |
353 | sp = virt_to_page(block); |
354 | units = SLOB_UNITS(size); |
355 | |
356 | spin_lock_irqsave(&slob_lock, flags); |
357 | |
358 | if (sp->units + units == SLOB_UNITS(PAGE_SIZE)) { |
359 | /* Go directly to page allocator. Do not pass slob allocator */ |
360 | if (slob_page_free(sp)) |
361 | clear_slob_page_free(sp); |
362 | spin_unlock_irqrestore(&slob_lock, flags); |
363 | __ClearPageSlab(sp); |
364 | page_mapcount_reset(sp); |
365 | slob_free_pages(b, 0); |
366 | return; |
367 | } |
368 | |
369 | if (!slob_page_free(sp)) { |
370 | /* This slob page is about to become partially free. Easy! */ |
371 | sp->units = units; |
372 | sp->freelist = b; |
373 | set_slob(b, units, |
374 | (void *)((unsigned long)(b + |
375 | SLOB_UNITS(PAGE_SIZE)) & PAGE_MASK)); |
376 | if (size < SLOB_BREAK1) |
377 | slob_list = &free_slob_small; |
378 | else if (size < SLOB_BREAK2) |
379 | slob_list = &free_slob_medium; |
380 | else |
381 | slob_list = &free_slob_large; |
382 | set_slob_page_free(sp, slob_list); |
383 | goto out; |
384 | } |
385 | |
386 | /* |
387 | * Otherwise the page is already partially free, so find reinsertion |
388 | * point. |
389 | */ |
390 | sp->units += units; |
391 | |
392 | if (b < (slob_t *)sp->freelist) { |
393 | if (b + units == sp->freelist) { |
394 | units += slob_units(sp->freelist); |
395 | sp->freelist = slob_next(sp->freelist); |
396 | } |
397 | set_slob(b, units, sp->freelist); |
398 | sp->freelist = b; |
399 | } else { |
400 | prev = sp->freelist; |
401 | next = slob_next(prev); |
402 | while (b > next) { |
403 | prev = next; |
404 | next = slob_next(prev); |
405 | } |
406 | |
407 | if (!slob_last(prev) && b + units == next) { |
408 | units += slob_units(next); |
409 | set_slob(b, units, slob_next(next)); |
410 | } else |
411 | set_slob(b, units, next); |
412 | |
413 | if (prev + slob_units(prev) == b) { |
414 | units = slob_units(b) + slob_units(prev); |
415 | set_slob(prev, units, slob_next(b)); |
416 | } else |
417 | set_slob(prev, slob_units(prev), b); |
418 | } |
419 | out: |
420 | spin_unlock_irqrestore(&slob_lock, flags); |
421 | } |
422 | |
423 | /* |
424 | * End of slob allocator proper. Begin kmem_cache_alloc and kmalloc frontend. |
425 | */ |
426 | |
427 | static __always_inline void * |
428 | __do_kmalloc_node(size_t size, gfp_t gfp, int node, unsigned long caller) |
429 | { |
430 | unsigned int *m; |
431 | int align = max_t(size_t, ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN); |
432 | void *ret; |
433 | |
434 | gfp &= gfp_allowed_mask; |
435 | |
436 | fs_reclaim_acquire(gfp); |
437 | fs_reclaim_release(gfp); |
438 | |
439 | if (size < PAGE_SIZE - align) { |
440 | if (!size) |
441 | return ZERO_SIZE_PTR; |
442 | |
443 | m = slob_alloc(size + align, gfp, align, node); |
444 | |
445 | if (!m) |
446 | return NULL; |
447 | *m = size; |
448 | ret = (void *)m + align; |
449 | |
450 | trace_kmalloc_node(caller, ret, |
451 | size, size + align, gfp, node); |
452 | } else { |
453 | unsigned int order = get_order(size); |
454 | |
455 | if (likely(order)) |
456 | gfp |= __GFP_COMP; |
457 | ret = slob_new_pages(gfp, order, node); |
458 | |
459 | trace_kmalloc_node(caller, ret, |
460 | size, PAGE_SIZE << order, gfp, node); |
461 | } |
462 | |
463 | kmemleak_alloc(ret, size, 1, gfp); |
464 | return ret; |
465 | } |
466 | |
467 | void *__kmalloc(size_t size, gfp_t gfp) |
468 | { |
469 | return __do_kmalloc_node(size, gfp, NUMA_NO_NODE, _RET_IP_); |
470 | } |
471 | EXPORT_SYMBOL(__kmalloc); |
472 | |
473 | void *__kmalloc_track_caller(size_t size, gfp_t gfp, unsigned long caller) |
474 | { |
475 | return __do_kmalloc_node(size, gfp, NUMA_NO_NODE, caller); |
476 | } |
477 | |
478 | #ifdef CONFIG_NUMA |
479 | void *__kmalloc_node_track_caller(size_t size, gfp_t gfp, |
480 | int node, unsigned long caller) |
481 | { |
482 | return __do_kmalloc_node(size, gfp, node, caller); |
483 | } |
484 | #endif |
485 | |
486 | void kfree(const void *block) |
487 | { |
488 | struct page *sp; |
489 | |
490 | trace_kfree(_RET_IP_, block); |
491 | |
492 | if (unlikely(ZERO_OR_NULL_PTR(block))) |
493 | return; |
494 | kmemleak_free(block); |
495 | |
496 | sp = virt_to_page(block); |
497 | if (PageSlab(sp)) { |
498 | int align = max_t(size_t, ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN); |
499 | unsigned int *m = (unsigned int *)(block - align); |
500 | slob_free(m, *m + align); |
501 | } else |
502 | __free_pages(sp, compound_order(sp)); |
503 | } |
504 | EXPORT_SYMBOL(kfree); |
505 | |
506 | /* can't use ksize for kmem_cache_alloc memory, only kmalloc */ |
507 | size_t ksize(const void *block) |
508 | { |
509 | struct page *sp; |
510 | int align; |
511 | unsigned int *m; |
512 | |
513 | BUG_ON(!block); |
514 | if (unlikely(block == ZERO_SIZE_PTR)) |
515 | return 0; |
516 | |
517 | sp = virt_to_page(block); |
518 | if (unlikely(!PageSlab(sp))) |
519 | return PAGE_SIZE << compound_order(sp); |
520 | |
521 | align = max_t(size_t, ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN); |
522 | m = (unsigned int *)(block - align); |
523 | return SLOB_UNITS(*m) * SLOB_UNIT; |
524 | } |
525 | EXPORT_SYMBOL(ksize); |
526 | |
527 | int __kmem_cache_create(struct kmem_cache *c, slab_flags_t flags) |
528 | { |
529 | if (flags & SLAB_TYPESAFE_BY_RCU) { |
530 | /* leave room for rcu footer at the end of object */ |
531 | c->size += sizeof(struct slob_rcu); |
532 | } |
533 | c->flags = flags; |
534 | return 0; |
535 | } |
536 | |
537 | static void *slob_alloc_node(struct kmem_cache *c, gfp_t flags, int node) |
538 | { |
539 | void *b; |
540 | |
541 | flags &= gfp_allowed_mask; |
542 | |
543 | fs_reclaim_acquire(flags); |
544 | fs_reclaim_release(flags); |
545 | |
546 | if (c->size < PAGE_SIZE) { |
547 | b = slob_alloc(c->size, flags, c->align, node); |
548 | trace_kmem_cache_alloc_node(_RET_IP_, b, c->object_size, |
549 | SLOB_UNITS(c->size) * SLOB_UNIT, |
550 | flags, node); |
551 | } else { |
552 | b = slob_new_pages(flags, get_order(c->size), node); |
553 | trace_kmem_cache_alloc_node(_RET_IP_, b, c->object_size, |
554 | PAGE_SIZE << get_order(c->size), |
555 | flags, node); |
556 | } |
557 | |
558 | if (b && c->ctor) { |
559 | WARN_ON_ONCE(flags & __GFP_ZERO); |
560 | c->ctor(b); |
561 | } |
562 | |
563 | kmemleak_alloc_recursive(b, c->size, 1, c->flags, flags); |
564 | return b; |
565 | } |
566 | |
567 | void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags) |
568 | { |
569 | return slob_alloc_node(cachep, flags, NUMA_NO_NODE); |
570 | } |
571 | EXPORT_SYMBOL(kmem_cache_alloc); |
572 | |
573 | #ifdef CONFIG_NUMA |
574 | void *__kmalloc_node(size_t size, gfp_t gfp, int node) |
575 | { |
576 | return __do_kmalloc_node(size, gfp, node, _RET_IP_); |
577 | } |
578 | EXPORT_SYMBOL(__kmalloc_node); |
579 | |
580 | void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t gfp, int node) |
581 | { |
582 | return slob_alloc_node(cachep, gfp, node); |
583 | } |
584 | EXPORT_SYMBOL(kmem_cache_alloc_node); |
585 | #endif |
586 | |
587 | static void __kmem_cache_free(void *b, int size) |
588 | { |
589 | if (size < PAGE_SIZE) |
590 | slob_free(b, size); |
591 | else |
592 | slob_free_pages(b, get_order(size)); |
593 | } |
594 | |
595 | static void kmem_rcu_free(struct rcu_head *head) |
596 | { |
597 | struct slob_rcu *slob_rcu = (struct slob_rcu *)head; |
598 | void *b = (void *)slob_rcu - (slob_rcu->size - sizeof(struct slob_rcu)); |
599 | |
600 | __kmem_cache_free(b, slob_rcu->size); |
601 | } |
602 | |
603 | void kmem_cache_free(struct kmem_cache *c, void *b) |
604 | { |
605 | kmemleak_free_recursive(b, c->flags); |
606 | if (unlikely(c->flags & SLAB_TYPESAFE_BY_RCU)) { |
607 | struct slob_rcu *slob_rcu; |
608 | slob_rcu = b + (c->size - sizeof(struct slob_rcu)); |
609 | slob_rcu->size = c->size; |
610 | call_rcu(&slob_rcu->head, kmem_rcu_free); |
611 | } else { |
612 | __kmem_cache_free(b, c->size); |
613 | } |
614 | |
615 | trace_kmem_cache_free(_RET_IP_, b); |
616 | } |
617 | EXPORT_SYMBOL(kmem_cache_free); |
618 | |
619 | void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p) |
620 | { |
621 | __kmem_cache_free_bulk(s, size, p); |
622 | } |
623 | EXPORT_SYMBOL(kmem_cache_free_bulk); |
624 | |
625 | int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, |
626 | void **p) |
627 | { |
628 | return __kmem_cache_alloc_bulk(s, flags, size, p); |
629 | } |
630 | EXPORT_SYMBOL(kmem_cache_alloc_bulk); |
631 | |
632 | int __kmem_cache_shutdown(struct kmem_cache *c) |
633 | { |
634 | /* No way to check for remaining objects */ |
635 | return 0; |
636 | } |
637 | |
638 | void __kmem_cache_release(struct kmem_cache *c) |
639 | { |
640 | } |
641 | |
642 | int __kmem_cache_shrink(struct kmem_cache *d) |
643 | { |
644 | return 0; |
645 | } |
646 | |
647 | struct kmem_cache kmem_cache_boot = { |
648 | .name = "kmem_cache", |
649 | .size = sizeof(struct kmem_cache), |
650 | .flags = SLAB_PANIC, |
651 | .align = ARCH_KMALLOC_MINALIGN, |
652 | }; |
653 | |
654 | void __init kmem_cache_init(void) |
655 | { |
656 | kmem_cache = &kmem_cache_boot; |
657 | slab_state = UP; |
658 | } |
659 | |
660 | void __init kmem_cache_init_late(void) |
661 | { |
662 | slab_state = FULL; |
663 | } |
664 |
Warning: That file was not part of the compilation database. It may have many parsing errors.