1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
4 *
5 * Swap reorganised 29.12.95, Stephen Tweedie.
6 * kswapd added: 7.1.96 sct
7 * Removed kswapd_ctl limits, and swap out as many pages as needed
8 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
9 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
10 * Multiqueue VM started 5.8.00, Rik van Riel.
11 */
12
13#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15#include <linux/mm.h>
16#include <linux/sched/mm.h>
17#include <linux/module.h>
18#include <linux/gfp.h>
19#include <linux/kernel_stat.h>
20#include <linux/swap.h>
21#include <linux/pagemap.h>
22#include <linux/init.h>
23#include <linux/highmem.h>
24#include <linux/vmpressure.h>
25#include <linux/vmstat.h>
26#include <linux/file.h>
27#include <linux/writeback.h>
28#include <linux/blkdev.h>
29#include <linux/buffer_head.h> /* for buffer_heads_over_limit */
30#include <linux/mm_inline.h>
31#include <linux/backing-dev.h>
32#include <linux/rmap.h>
33#include <linux/topology.h>
34#include <linux/cpu.h>
35#include <linux/cpuset.h>
36#include <linux/compaction.h>
37#include <linux/notifier.h>
38#include <linux/delay.h>
39#include <linux/kthread.h>
40#include <linux/freezer.h>
41#include <linux/memcontrol.h>
42#include <linux/migrate.h>
43#include <linux/delayacct.h>
44#include <linux/sysctl.h>
45#include <linux/memory-tiers.h>
46#include <linux/oom.h>
47#include <linux/pagevec.h>
48#include <linux/prefetch.h>
49#include <linux/printk.h>
50#include <linux/dax.h>
51#include <linux/psi.h>
52#include <linux/pagewalk.h>
53#include <linux/shmem_fs.h>
54#include <linux/ctype.h>
55#include <linux/debugfs.h>
56#include <linux/khugepaged.h>
57#include <linux/rculist_nulls.h>
58#include <linux/random.h>
59
60#include <asm/tlbflush.h>
61#include <asm/div64.h>
62
63#include <linux/swapops.h>
64#include <linux/balloon_compaction.h>
65#include <linux/sched/sysctl.h>
66
67#include "internal.h"
68#include "swap.h"
69
70#define CREATE_TRACE_POINTS
71#include <trace/events/vmscan.h>
72
73struct scan_control {
74 /* How many pages shrink_list() should reclaim */
75 unsigned long nr_to_reclaim;
76
77 /*
78 * Nodemask of nodes allowed by the caller. If NULL, all nodes
79 * are scanned.
80 */
81 nodemask_t *nodemask;
82
83 /*
84 * The memory cgroup that hit its limit and as a result is the
85 * primary target of this reclaim invocation.
86 */
87 struct mem_cgroup *target_mem_cgroup;
88
89 /*
90 * Scan pressure balancing between anon and file LRUs
91 */
92 unsigned long anon_cost;
93 unsigned long file_cost;
94
95 /* Can active folios be deactivated as part of reclaim? */
96#define DEACTIVATE_ANON 1
97#define DEACTIVATE_FILE 2
98 unsigned int may_deactivate:2;
99 unsigned int force_deactivate:1;
100 unsigned int skipped_deactivate:1;
101
102 /* Writepage batching in laptop mode; RECLAIM_WRITE */
103 unsigned int may_writepage:1;
104
105 /* Can mapped folios be reclaimed? */
106 unsigned int may_unmap:1;
107
108 /* Can folios be swapped as part of reclaim? */
109 unsigned int may_swap:1;
110
111 /* Proactive reclaim invoked by userspace through memory.reclaim */
112 unsigned int proactive:1;
113
114 /*
115 * Cgroup memory below memory.low is protected as long as we
116 * don't threaten to OOM. If any cgroup is reclaimed at
117 * reduced force or passed over entirely due to its memory.low
118 * setting (memcg_low_skipped), and nothing is reclaimed as a
119 * result, then go back for one more cycle that reclaims the protected
120 * memory (memcg_low_reclaim) to avert OOM.
121 */
122 unsigned int memcg_low_reclaim:1;
123 unsigned int memcg_low_skipped:1;
124
125 unsigned int hibernation_mode:1;
126
127 /* One of the zones is ready for compaction */
128 unsigned int compaction_ready:1;
129
130 /* There is easily reclaimable cold cache in the current node */
131 unsigned int cache_trim_mode:1;
132
133 /* The file folios on the current node are dangerously low */
134 unsigned int file_is_tiny:1;
135
136 /* Always discard instead of demoting to lower tier memory */
137 unsigned int no_demotion:1;
138
139 /* Allocation order */
140 s8 order;
141
142 /* Scan (total_size >> priority) pages at once */
143 s8 priority;
144
145 /* The highest zone to isolate folios for reclaim from */
146 s8 reclaim_idx;
147
148 /* This context's GFP mask */
149 gfp_t gfp_mask;
150
151 /* Incremented by the number of inactive pages that were scanned */
152 unsigned long nr_scanned;
153
154 /* Number of pages freed so far during a call to shrink_zones() */
155 unsigned long nr_reclaimed;
156
157 struct {
158 unsigned int dirty;
159 unsigned int unqueued_dirty;
160 unsigned int congested;
161 unsigned int writeback;
162 unsigned int immediate;
163 unsigned int file_taken;
164 unsigned int taken;
165 } nr;
166
167 /* for recording the reclaimed slab by now */
168 struct reclaim_state reclaim_state;
169};
170
171#ifdef ARCH_HAS_PREFETCHW
172#define prefetchw_prev_lru_folio(_folio, _base, _field) \
173 do { \
174 if ((_folio)->lru.prev != _base) { \
175 struct folio *prev; \
176 \
177 prev = lru_to_folio(&(_folio->lru)); \
178 prefetchw(&prev->_field); \
179 } \
180 } while (0)
181#else
182#define prefetchw_prev_lru_folio(_folio, _base, _field) do { } while (0)
183#endif
184
185/*
186 * From 0 .. 200. Higher means more swappy.
187 */
188int vm_swappiness = 60;
189
190#ifdef CONFIG_MEMCG
191
192/* Returns true for reclaim through cgroup limits or cgroup interfaces. */
193static bool cgroup_reclaim(struct scan_control *sc)
194{
195 return sc->target_mem_cgroup;
196}
197
198/*
199 * Returns true for reclaim on the root cgroup. This is true for direct
200 * allocator reclaim and reclaim through cgroup interfaces on the root cgroup.
201 */
202static bool root_reclaim(struct scan_control *sc)
203{
204 return !sc->target_mem_cgroup || mem_cgroup_is_root(memcg: sc->target_mem_cgroup);
205}
206
207/**
208 * writeback_throttling_sane - is the usual dirty throttling mechanism available?
209 * @sc: scan_control in question
210 *
211 * The normal page dirty throttling mechanism in balance_dirty_pages() is
212 * completely broken with the legacy memcg and direct stalling in
213 * shrink_folio_list() is used for throttling instead, which lacks all the
214 * niceties such as fairness, adaptive pausing, bandwidth proportional
215 * allocation and configurability.
216 *
217 * This function tests whether the vmscan currently in progress can assume
218 * that the normal dirty throttling mechanism is operational.
219 */
220static bool writeback_throttling_sane(struct scan_control *sc)
221{
222 if (!cgroup_reclaim(sc))
223 return true;
224#ifdef CONFIG_CGROUP_WRITEBACK
225 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
226 return true;
227#endif
228 return false;
229}
230#else
231static bool cgroup_reclaim(struct scan_control *sc)
232{
233 return false;
234}
235
236static bool root_reclaim(struct scan_control *sc)
237{
238 return true;
239}
240
241static bool writeback_throttling_sane(struct scan_control *sc)
242{
243 return true;
244}
245#endif
246
247static void set_task_reclaim_state(struct task_struct *task,
248 struct reclaim_state *rs)
249{
250 /* Check for an overwrite */
251 WARN_ON_ONCE(rs && task->reclaim_state);
252
253 /* Check for the nulling of an already-nulled member */
254 WARN_ON_ONCE(!rs && !task->reclaim_state);
255
256 task->reclaim_state = rs;
257}
258
259/*
260 * flush_reclaim_state(): add pages reclaimed outside of LRU-based reclaim to
261 * scan_control->nr_reclaimed.
262 */
263static void flush_reclaim_state(struct scan_control *sc)
264{
265 /*
266 * Currently, reclaim_state->reclaimed includes three types of pages
267 * freed outside of vmscan:
268 * (1) Slab pages.
269 * (2) Clean file pages from pruned inodes (on highmem systems).
270 * (3) XFS freed buffer pages.
271 *
272 * For all of these cases, we cannot universally link the pages to a
273 * single memcg. For example, a memcg-aware shrinker can free one object
274 * charged to the target memcg, causing an entire page to be freed.
275 * If we count the entire page as reclaimed from the memcg, we end up
276 * overestimating the reclaimed amount (potentially under-reclaiming).
277 *
278 * Only count such pages for global reclaim to prevent under-reclaiming
279 * from the target memcg; preventing unnecessary retries during memcg
280 * charging and false positives from proactive reclaim.
281 *
282 * For uncommon cases where the freed pages were actually mostly
283 * charged to the target memcg, we end up underestimating the reclaimed
284 * amount. This should be fine. The freed pages will be uncharged
285 * anyway, even if they are not counted here properly, and we will be
286 * able to make forward progress in charging (which is usually in a
287 * retry loop).
288 *
289 * We can go one step further, and report the uncharged objcg pages in
290 * memcg reclaim, to make reporting more accurate and reduce
291 * underestimation, but it's probably not worth the complexity for now.
292 */
293 if (current->reclaim_state && root_reclaim(sc)) {
294 sc->nr_reclaimed += current->reclaim_state->reclaimed;
295 current->reclaim_state->reclaimed = 0;
296 }
297}
298
299static bool can_demote(int nid, struct scan_control *sc)
300{
301 if (!numa_demotion_enabled)
302 return false;
303 if (sc && sc->no_demotion)
304 return false;
305 if (next_demotion_node(node: nid) == NUMA_NO_NODE)
306 return false;
307
308 return true;
309}
310
311static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg,
312 int nid,
313 struct scan_control *sc)
314{
315 if (memcg == NULL) {
316 /*
317 * For non-memcg reclaim, is there
318 * space in any swap device?
319 */
320 if (get_nr_swap_pages() > 0)
321 return true;
322 } else {
323 /* Is the memcg below its swap limit? */
324 if (mem_cgroup_get_nr_swap_pages(memcg) > 0)
325 return true;
326 }
327
328 /*
329 * The page can not be swapped.
330 *
331 * Can it be reclaimed from this node via demotion?
332 */
333 return can_demote(nid, sc);
334}
335
336/*
337 * This misses isolated folios which are not accounted for to save counters.
338 * As the data only determines if reclaim or compaction continues, it is
339 * not expected that isolated folios will be a dominating factor.
340 */
341unsigned long zone_reclaimable_pages(struct zone *zone)
342{
343 unsigned long nr;
344
345 nr = zone_page_state_snapshot(zone, item: NR_ZONE_INACTIVE_FILE) +
346 zone_page_state_snapshot(zone, item: NR_ZONE_ACTIVE_FILE);
347 if (can_reclaim_anon_pages(NULL, nid: zone_to_nid(zone), NULL))
348 nr += zone_page_state_snapshot(zone, item: NR_ZONE_INACTIVE_ANON) +
349 zone_page_state_snapshot(zone, item: NR_ZONE_ACTIVE_ANON);
350
351 return nr;
352}
353
354/**
355 * lruvec_lru_size - Returns the number of pages on the given LRU list.
356 * @lruvec: lru vector
357 * @lru: lru to use
358 * @zone_idx: zones to consider (use MAX_NR_ZONES - 1 for the whole LRU list)
359 */
360static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru,
361 int zone_idx)
362{
363 unsigned long size = 0;
364 int zid;
365
366 for (zid = 0; zid <= zone_idx; zid++) {
367 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
368
369 if (!managed_zone(zone))
370 continue;
371
372 if (!mem_cgroup_disabled())
373 size += mem_cgroup_get_zone_lru_size(lruvec, lru, zone_idx: zid);
374 else
375 size += zone_page_state(zone, item: NR_ZONE_LRU_BASE + lru);
376 }
377 return size;
378}
379
380static unsigned long drop_slab_node(int nid)
381{
382 unsigned long freed = 0;
383 struct mem_cgroup *memcg = NULL;
384
385 memcg = mem_cgroup_iter(NULL, NULL, NULL);
386 do {
387 freed += shrink_slab(GFP_KERNEL, nid, memcg, priority: 0);
388 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
389
390 return freed;
391}
392
393void drop_slab(void)
394{
395 int nid;
396 int shift = 0;
397 unsigned long freed;
398
399 do {
400 freed = 0;
401 for_each_online_node(nid) {
402 if (fatal_signal_pending(current))
403 return;
404
405 freed += drop_slab_node(nid);
406 }
407 } while ((freed >> shift++) > 1);
408}
409
410static int reclaimer_offset(void)
411{
412 BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD !=
413 PGDEMOTE_DIRECT - PGDEMOTE_KSWAPD);
414 BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD !=
415 PGSCAN_DIRECT - PGSCAN_KSWAPD);
416 BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD !=
417 PGDEMOTE_KHUGEPAGED - PGDEMOTE_KSWAPD);
418 BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD !=
419 PGSCAN_KHUGEPAGED - PGSCAN_KSWAPD);
420
421 if (current_is_kswapd())
422 return 0;
423 if (current_is_khugepaged())
424 return PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD;
425 return PGSTEAL_DIRECT - PGSTEAL_KSWAPD;
426}
427
428static inline int is_page_cache_freeable(struct folio *folio)
429{
430 /*
431 * A freeable page cache folio is referenced only by the caller
432 * that isolated the folio, the page cache and optional filesystem
433 * private data at folio->private.
434 */
435 return folio_ref_count(folio) - folio_test_private(folio) ==
436 1 + folio_nr_pages(folio);
437}
438
439/*
440 * We detected a synchronous write error writing a folio out. Probably
441 * -ENOSPC. We need to propagate that into the address_space for a subsequent
442 * fsync(), msync() or close().
443 *
444 * The tricky part is that after writepage we cannot touch the mapping: nothing
445 * prevents it from being freed up. But we have a ref on the folio and once
446 * that folio is locked, the mapping is pinned.
447 *
448 * We're allowed to run sleeping folio_lock() here because we know the caller has
449 * __GFP_FS.
450 */
451static void handle_write_error(struct address_space *mapping,
452 struct folio *folio, int error)
453{
454 folio_lock(folio);
455 if (folio_mapping(folio) == mapping)
456 mapping_set_error(mapping, error);
457 folio_unlock(folio);
458}
459
460static bool skip_throttle_noprogress(pg_data_t *pgdat)
461{
462 int reclaimable = 0, write_pending = 0;
463 int i;
464
465 /*
466 * If kswapd is disabled, reschedule if necessary but do not
467 * throttle as the system is likely near OOM.
468 */
469 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
470 return true;
471
472 /*
473 * If there are a lot of dirty/writeback folios then do not
474 * throttle as throttling will occur when the folios cycle
475 * towards the end of the LRU if still under writeback.
476 */
477 for (i = 0; i < MAX_NR_ZONES; i++) {
478 struct zone *zone = pgdat->node_zones + i;
479
480 if (!managed_zone(zone))
481 continue;
482
483 reclaimable += zone_reclaimable_pages(zone);
484 write_pending += zone_page_state_snapshot(zone,
485 item: NR_ZONE_WRITE_PENDING);
486 }
487 if (2 * write_pending <= reclaimable)
488 return true;
489
490 return false;
491}
492
493void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason)
494{
495 wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason];
496 long timeout, ret;
497 DEFINE_WAIT(wait);
498
499 /*
500 * Do not throttle user workers, kthreads other than kswapd or
501 * workqueues. They may be required for reclaim to make
502 * forward progress (e.g. journalling workqueues or kthreads).
503 */
504 if (!current_is_kswapd() &&
505 current->flags & (PF_USER_WORKER|PF_KTHREAD)) {
506 cond_resched();
507 return;
508 }
509
510 /*
511 * These figures are pulled out of thin air.
512 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many
513 * parallel reclaimers which is a short-lived event so the timeout is
514 * short. Failing to make progress or waiting on writeback are
515 * potentially long-lived events so use a longer timeout. This is shaky
516 * logic as a failure to make progress could be due to anything from
517 * writeback to a slow device to excessive referenced folios at the tail
518 * of the inactive LRU.
519 */
520 switch(reason) {
521 case VMSCAN_THROTTLE_WRITEBACK:
522 timeout = HZ/10;
523
524 if (atomic_inc_return(v: &pgdat->nr_writeback_throttled) == 1) {
525 WRITE_ONCE(pgdat->nr_reclaim_start,
526 node_page_state(pgdat, NR_THROTTLED_WRITTEN));
527 }
528
529 break;
530 case VMSCAN_THROTTLE_CONGESTED:
531 fallthrough;
532 case VMSCAN_THROTTLE_NOPROGRESS:
533 if (skip_throttle_noprogress(pgdat)) {
534 cond_resched();
535 return;
536 }
537
538 timeout = 1;
539
540 break;
541 case VMSCAN_THROTTLE_ISOLATED:
542 timeout = HZ/50;
543 break;
544 default:
545 WARN_ON_ONCE(1);
546 timeout = HZ;
547 break;
548 }
549
550 prepare_to_wait(wq_head: wqh, wq_entry: &wait, TASK_UNINTERRUPTIBLE);
551 ret = schedule_timeout(timeout);
552 finish_wait(wq_head: wqh, wq_entry: &wait);
553
554 if (reason == VMSCAN_THROTTLE_WRITEBACK)
555 atomic_dec(v: &pgdat->nr_writeback_throttled);
556
557 trace_mm_vmscan_throttled(nid: pgdat->node_id, usec_timeout: jiffies_to_usecs(j: timeout),
558 usec_delayed: jiffies_to_usecs(j: timeout - ret),
559 reason);
560}
561
562/*
563 * Account for folios written if tasks are throttled waiting on dirty
564 * folios to clean. If enough folios have been cleaned since throttling
565 * started then wakeup the throttled tasks.
566 */
567void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
568 int nr_throttled)
569{
570 unsigned long nr_written;
571
572 node_stat_add_folio(folio, item: NR_THROTTLED_WRITTEN);
573
574 /*
575 * This is an inaccurate read as the per-cpu deltas may not
576 * be synchronised. However, given that the system is
577 * writeback throttled, it is not worth taking the penalty
578 * of getting an accurate count. At worst, the throttle
579 * timeout guarantees forward progress.
580 */
581 nr_written = node_page_state(pgdat, item: NR_THROTTLED_WRITTEN) -
582 READ_ONCE(pgdat->nr_reclaim_start);
583
584 if (nr_written > SWAP_CLUSTER_MAX * nr_throttled)
585 wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]);
586}
587
588/* possible outcome of pageout() */
589typedef enum {
590 /* failed to write folio out, folio is locked */
591 PAGE_KEEP,
592 /* move folio to the active list, folio is locked */
593 PAGE_ACTIVATE,
594 /* folio has been sent to the disk successfully, folio is unlocked */
595 PAGE_SUCCESS,
596 /* folio is clean and locked */
597 PAGE_CLEAN,
598} pageout_t;
599
600/*
601 * pageout is called by shrink_folio_list() for each dirty folio.
602 * Calls ->writepage().
603 */
604static pageout_t pageout(struct folio *folio, struct address_space *mapping,
605 struct swap_iocb **plug)
606{
607 /*
608 * If the folio is dirty, only perform writeback if that write
609 * will be non-blocking. To prevent this allocation from being
610 * stalled by pagecache activity. But note that there may be
611 * stalls if we need to run get_block(). We could test
612 * PagePrivate for that.
613 *
614 * If this process is currently in __generic_file_write_iter() against
615 * this folio's queue, we can perform writeback even if that
616 * will block.
617 *
618 * If the folio is swapcache, write it back even if that would
619 * block, for some throttling. This happens by accident, because
620 * swap_backing_dev_info is bust: it doesn't reflect the
621 * congestion state of the swapdevs. Easy to fix, if needed.
622 */
623 if (!is_page_cache_freeable(folio))
624 return PAGE_KEEP;
625 if (!mapping) {
626 /*
627 * Some data journaling orphaned folios can have
628 * folio->mapping == NULL while being dirty with clean buffers.
629 */
630 if (folio_test_private(folio)) {
631 if (try_to_free_buffers(folio)) {
632 folio_clear_dirty(folio);
633 pr_info("%s: orphaned folio\n", __func__);
634 return PAGE_CLEAN;
635 }
636 }
637 return PAGE_KEEP;
638 }
639 if (mapping->a_ops->writepage == NULL)
640 return PAGE_ACTIVATE;
641
642 if (folio_clear_dirty_for_io(folio)) {
643 int res;
644 struct writeback_control wbc = {
645 .sync_mode = WB_SYNC_NONE,
646 .nr_to_write = SWAP_CLUSTER_MAX,
647 .range_start = 0,
648 .range_end = LLONG_MAX,
649 .for_reclaim = 1,
650 .swap_plug = plug,
651 };
652
653 folio_set_reclaim(folio);
654 res = mapping->a_ops->writepage(&folio->page, &wbc);
655 if (res < 0)
656 handle_write_error(mapping, folio, error: res);
657 if (res == AOP_WRITEPAGE_ACTIVATE) {
658 folio_clear_reclaim(folio);
659 return PAGE_ACTIVATE;
660 }
661
662 if (!folio_test_writeback(folio)) {
663 /* synchronous write or broken a_ops? */
664 folio_clear_reclaim(folio);
665 }
666 trace_mm_vmscan_write_folio(folio);
667 node_stat_add_folio(folio, item: NR_VMSCAN_WRITE);
668 return PAGE_SUCCESS;
669 }
670
671 return PAGE_CLEAN;
672}
673
674/*
675 * Same as remove_mapping, but if the folio is removed from the mapping, it
676 * gets returned with a refcount of 0.
677 */
678static int __remove_mapping(struct address_space *mapping, struct folio *folio,
679 bool reclaimed, struct mem_cgroup *target_memcg)
680{
681 int refcount;
682 void *shadow = NULL;
683
684 BUG_ON(!folio_test_locked(folio));
685 BUG_ON(mapping != folio_mapping(folio));
686
687 if (!folio_test_swapcache(folio))
688 spin_lock(lock: &mapping->host->i_lock);
689 xa_lock_irq(&mapping->i_pages);
690 /*
691 * The non racy check for a busy folio.
692 *
693 * Must be careful with the order of the tests. When someone has
694 * a ref to the folio, it may be possible that they dirty it then
695 * drop the reference. So if the dirty flag is tested before the
696 * refcount here, then the following race may occur:
697 *
698 * get_user_pages(&page);
699 * [user mapping goes away]
700 * write_to(page);
701 * !folio_test_dirty(folio) [good]
702 * folio_set_dirty(folio);
703 * folio_put(folio);
704 * !refcount(folio) [good, discard it]
705 *
706 * [oops, our write_to data is lost]
707 *
708 * Reversing the order of the tests ensures such a situation cannot
709 * escape unnoticed. The smp_rmb is needed to ensure the folio->flags
710 * load is not satisfied before that of folio->_refcount.
711 *
712 * Note that if the dirty flag is always set via folio_mark_dirty,
713 * and thus under the i_pages lock, then this ordering is not required.
714 */
715 refcount = 1 + folio_nr_pages(folio);
716 if (!folio_ref_freeze(folio, count: refcount))
717 goto cannot_free;
718 /* note: atomic_cmpxchg in folio_ref_freeze provides the smp_rmb */
719 if (unlikely(folio_test_dirty(folio))) {
720 folio_ref_unfreeze(folio, count: refcount);
721 goto cannot_free;
722 }
723
724 if (folio_test_swapcache(folio)) {
725 swp_entry_t swap = folio->swap;
726
727 if (reclaimed && !mapping_exiting(mapping))
728 shadow = workingset_eviction(folio, target_memcg);
729 __delete_from_swap_cache(folio, entry: swap, shadow);
730 mem_cgroup_swapout(folio, entry: swap);
731 xa_unlock_irq(&mapping->i_pages);
732 put_swap_folio(folio, entry: swap);
733 } else {
734 void (*free_folio)(struct folio *);
735
736 free_folio = mapping->a_ops->free_folio;
737 /*
738 * Remember a shadow entry for reclaimed file cache in
739 * order to detect refaults, thus thrashing, later on.
740 *
741 * But don't store shadows in an address space that is
742 * already exiting. This is not just an optimization,
743 * inode reclaim needs to empty out the radix tree or
744 * the nodes are lost. Don't plant shadows behind its
745 * back.
746 *
747 * We also don't store shadows for DAX mappings because the
748 * only page cache folios found in these are zero pages
749 * covering holes, and because we don't want to mix DAX
750 * exceptional entries and shadow exceptional entries in the
751 * same address_space.
752 */
753 if (reclaimed && folio_is_file_lru(folio) &&
754 !mapping_exiting(mapping) && !dax_mapping(mapping))
755 shadow = workingset_eviction(folio, target_memcg);
756 __filemap_remove_folio(folio, shadow);
757 xa_unlock_irq(&mapping->i_pages);
758 if (mapping_shrinkable(mapping))
759 inode_add_lru(inode: mapping->host);
760 spin_unlock(lock: &mapping->host->i_lock);
761
762 if (free_folio)
763 free_folio(folio);
764 }
765
766 return 1;
767
768cannot_free:
769 xa_unlock_irq(&mapping->i_pages);
770 if (!folio_test_swapcache(folio))
771 spin_unlock(lock: &mapping->host->i_lock);
772 return 0;
773}
774
775/**
776 * remove_mapping() - Attempt to remove a folio from its mapping.
777 * @mapping: The address space.
778 * @folio: The folio to remove.
779 *
780 * If the folio is dirty, under writeback or if someone else has a ref
781 * on it, removal will fail.
782 * Return: The number of pages removed from the mapping. 0 if the folio
783 * could not be removed.
784 * Context: The caller should have a single refcount on the folio and
785 * hold its lock.
786 */
787long remove_mapping(struct address_space *mapping, struct folio *folio)
788{
789 if (__remove_mapping(mapping, folio, reclaimed: false, NULL)) {
790 /*
791 * Unfreezing the refcount with 1 effectively
792 * drops the pagecache ref for us without requiring another
793 * atomic operation.
794 */
795 folio_ref_unfreeze(folio, count: 1);
796 return folio_nr_pages(folio);
797 }
798 return 0;
799}
800
801/**
802 * folio_putback_lru - Put previously isolated folio onto appropriate LRU list.
803 * @folio: Folio to be returned to an LRU list.
804 *
805 * Add previously isolated @folio to appropriate LRU list.
806 * The folio may still be unevictable for other reasons.
807 *
808 * Context: lru_lock must not be held, interrupts must be enabled.
809 */
810void folio_putback_lru(struct folio *folio)
811{
812 folio_add_lru(folio);
813 folio_put(folio); /* drop ref from isolate */
814}
815
816enum folio_references {
817 FOLIOREF_RECLAIM,
818 FOLIOREF_RECLAIM_CLEAN,
819 FOLIOREF_KEEP,
820 FOLIOREF_ACTIVATE,
821};
822
823static enum folio_references folio_check_references(struct folio *folio,
824 struct scan_control *sc)
825{
826 int referenced_ptes, referenced_folio;
827 unsigned long vm_flags;
828
829 referenced_ptes = folio_referenced(folio, is_locked: 1, memcg: sc->target_mem_cgroup,
830 vm_flags: &vm_flags);
831 referenced_folio = folio_test_clear_referenced(folio);
832
833 /*
834 * The supposedly reclaimable folio was found to be in a VM_LOCKED vma.
835 * Let the folio, now marked Mlocked, be moved to the unevictable list.
836 */
837 if (vm_flags & VM_LOCKED)
838 return FOLIOREF_ACTIVATE;
839
840 /* rmap lock contention: rotate */
841 if (referenced_ptes == -1)
842 return FOLIOREF_KEEP;
843
844 if (referenced_ptes) {
845 /*
846 * All mapped folios start out with page table
847 * references from the instantiating fault, so we need
848 * to look twice if a mapped file/anon folio is used more
849 * than once.
850 *
851 * Mark it and spare it for another trip around the
852 * inactive list. Another page table reference will
853 * lead to its activation.
854 *
855 * Note: the mark is set for activated folios as well
856 * so that recently deactivated but used folios are
857 * quickly recovered.
858 */
859 folio_set_referenced(folio);
860
861 if (referenced_folio || referenced_ptes > 1)
862 return FOLIOREF_ACTIVATE;
863
864 /*
865 * Activate file-backed executable folios after first usage.
866 */
867 if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio))
868 return FOLIOREF_ACTIVATE;
869
870 return FOLIOREF_KEEP;
871 }
872
873 /* Reclaim if clean, defer dirty folios to writeback */
874 if (referenced_folio && folio_is_file_lru(folio))
875 return FOLIOREF_RECLAIM_CLEAN;
876
877 return FOLIOREF_RECLAIM;
878}
879
880/* Check if a folio is dirty or under writeback */
881static void folio_check_dirty_writeback(struct folio *folio,
882 bool *dirty, bool *writeback)
883{
884 struct address_space *mapping;
885
886 /*
887 * Anonymous folios are not handled by flushers and must be written
888 * from reclaim context. Do not stall reclaim based on them.
889 * MADV_FREE anonymous folios are put into inactive file list too.
890 * They could be mistakenly treated as file lru. So further anon
891 * test is needed.
892 */
893 if (!folio_is_file_lru(folio) ||
894 (folio_test_anon(folio) && !folio_test_swapbacked(folio))) {
895 *dirty = false;
896 *writeback = false;
897 return;
898 }
899
900 /* By default assume that the folio flags are accurate */
901 *dirty = folio_test_dirty(folio);
902 *writeback = folio_test_writeback(folio);
903
904 /* Verify dirty/writeback state if the filesystem supports it */
905 if (!folio_test_private(folio))
906 return;
907
908 mapping = folio_mapping(folio);
909 if (mapping && mapping->a_ops->is_dirty_writeback)
910 mapping->a_ops->is_dirty_writeback(folio, dirty, writeback);
911}
912
913static struct folio *alloc_demote_folio(struct folio *src,
914 unsigned long private)
915{
916 struct folio *dst;
917 nodemask_t *allowed_mask;
918 struct migration_target_control *mtc;
919
920 mtc = (struct migration_target_control *)private;
921
922 allowed_mask = mtc->nmask;
923 /*
924 * make sure we allocate from the target node first also trying to
925 * demote or reclaim pages from the target node via kswapd if we are
926 * low on free memory on target node. If we don't do this and if
927 * we have free memory on the slower(lower) memtier, we would start
928 * allocating pages from slower(lower) memory tiers without even forcing
929 * a demotion of cold pages from the target memtier. This can result
930 * in the kernel placing hot pages in slower(lower) memory tiers.
931 */
932 mtc->nmask = NULL;
933 mtc->gfp_mask |= __GFP_THISNODE;
934 dst = alloc_migration_target(src, private: (unsigned long)mtc);
935 if (dst)
936 return dst;
937
938 mtc->gfp_mask &= ~__GFP_THISNODE;
939 mtc->nmask = allowed_mask;
940
941 return alloc_migration_target(src, private: (unsigned long)mtc);
942}
943
944/*
945 * Take folios on @demote_folios and attempt to demote them to another node.
946 * Folios which are not demoted are left on @demote_folios.
947 */
948static unsigned int demote_folio_list(struct list_head *demote_folios,
949 struct pglist_data *pgdat)
950{
951 int target_nid = next_demotion_node(node: pgdat->node_id);
952 unsigned int nr_succeeded;
953 nodemask_t allowed_mask;
954
955 struct migration_target_control mtc = {
956 /*
957 * Allocate from 'node', or fail quickly and quietly.
958 * When this happens, 'page' will likely just be discarded
959 * instead of migrated.
960 */
961 .gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) | __GFP_NOWARN |
962 __GFP_NOMEMALLOC | GFP_NOWAIT,
963 .nid = target_nid,
964 .nmask = &allowed_mask
965 };
966
967 if (list_empty(head: demote_folios))
968 return 0;
969
970 if (target_nid == NUMA_NO_NODE)
971 return 0;
972
973 node_get_allowed_targets(pgdat, targets: &allowed_mask);
974
975 /* Demotion ignores all cpuset and mempolicy settings */
976 migrate_pages(l: demote_folios, new: alloc_demote_folio, NULL,
977 private: (unsigned long)&mtc, mode: MIGRATE_ASYNC, reason: MR_DEMOTION,
978 ret_succeeded: &nr_succeeded);
979
980 __count_vm_events(item: PGDEMOTE_KSWAPD + reclaimer_offset(), delta: nr_succeeded);
981
982 return nr_succeeded;
983}
984
985static bool may_enter_fs(struct folio *folio, gfp_t gfp_mask)
986{
987 if (gfp_mask & __GFP_FS)
988 return true;
989 if (!folio_test_swapcache(folio) || !(gfp_mask & __GFP_IO))
990 return false;
991 /*
992 * We can "enter_fs" for swap-cache with only __GFP_IO
993 * providing this isn't SWP_FS_OPS.
994 * ->flags can be updated non-atomicially (scan_swap_map_slots),
995 * but that will never affect SWP_FS_OPS, so the data_race
996 * is safe.
997 */
998 return !data_race(folio_swap_flags(folio) & SWP_FS_OPS);
999}
1000
1001/*
1002 * shrink_folio_list() returns the number of reclaimed pages
1003 */
1004static unsigned int shrink_folio_list(struct list_head *folio_list,
1005 struct pglist_data *pgdat, struct scan_control *sc,
1006 struct reclaim_stat *stat, bool ignore_references)
1007{
1008 LIST_HEAD(ret_folios);
1009 LIST_HEAD(free_folios);
1010 LIST_HEAD(demote_folios);
1011 unsigned int nr_reclaimed = 0;
1012 unsigned int pgactivate = 0;
1013 bool do_demote_pass;
1014 struct swap_iocb *plug = NULL;
1015
1016 memset(stat, 0, sizeof(*stat));
1017 cond_resched();
1018 do_demote_pass = can_demote(nid: pgdat->node_id, sc);
1019
1020retry:
1021 while (!list_empty(head: folio_list)) {
1022 struct address_space *mapping;
1023 struct folio *folio;
1024 enum folio_references references = FOLIOREF_RECLAIM;
1025 bool dirty, writeback;
1026 unsigned int nr_pages;
1027
1028 cond_resched();
1029
1030 folio = lru_to_folio(head: folio_list);
1031 list_del(entry: &folio->lru);
1032
1033 if (!folio_trylock(folio))
1034 goto keep;
1035
1036 VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
1037
1038 nr_pages = folio_nr_pages(folio);
1039
1040 /* Account the number of base pages */
1041 sc->nr_scanned += nr_pages;
1042
1043 if (unlikely(!folio_evictable(folio)))
1044 goto activate_locked;
1045
1046 if (!sc->may_unmap && folio_mapped(folio))
1047 goto keep_locked;
1048
1049 /* folio_update_gen() tried to promote this page? */
1050 if (lru_gen_enabled() && !ignore_references &&
1051 folio_mapped(folio) && folio_test_referenced(folio))
1052 goto keep_locked;
1053
1054 /*
1055 * The number of dirty pages determines if a node is marked
1056 * reclaim_congested. kswapd will stall and start writing
1057 * folios if the tail of the LRU is all dirty unqueued folios.
1058 */
1059 folio_check_dirty_writeback(folio, dirty: &dirty, writeback: &writeback);
1060 if (dirty || writeback)
1061 stat->nr_dirty += nr_pages;
1062
1063 if (dirty && !writeback)
1064 stat->nr_unqueued_dirty += nr_pages;
1065
1066 /*
1067 * Treat this folio as congested if folios are cycling
1068 * through the LRU so quickly that the folios marked
1069 * for immediate reclaim are making it to the end of
1070 * the LRU a second time.
1071 */
1072 if (writeback && folio_test_reclaim(folio))
1073 stat->nr_congested += nr_pages;
1074
1075 /*
1076 * If a folio at the tail of the LRU is under writeback, there
1077 * are three cases to consider.
1078 *
1079 * 1) If reclaim is encountering an excessive number
1080 * of folios under writeback and this folio has both
1081 * the writeback and reclaim flags set, then it
1082 * indicates that folios are being queued for I/O but
1083 * are being recycled through the LRU before the I/O
1084 * can complete. Waiting on the folio itself risks an
1085 * indefinite stall if it is impossible to writeback
1086 * the folio due to I/O error or disconnected storage
1087 * so instead note that the LRU is being scanned too
1088 * quickly and the caller can stall after the folio
1089 * list has been processed.
1090 *
1091 * 2) Global or new memcg reclaim encounters a folio that is
1092 * not marked for immediate reclaim, or the caller does not
1093 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1094 * not to fs). In this case mark the folio for immediate
1095 * reclaim and continue scanning.
1096 *
1097 * Require may_enter_fs() because we would wait on fs, which
1098 * may not have submitted I/O yet. And the loop driver might
1099 * enter reclaim, and deadlock if it waits on a folio for
1100 * which it is needed to do the write (loop masks off
1101 * __GFP_IO|__GFP_FS for this reason); but more thought
1102 * would probably show more reasons.
1103 *
1104 * 3) Legacy memcg encounters a folio that already has the
1105 * reclaim flag set. memcg does not have any dirty folio
1106 * throttling so we could easily OOM just because too many
1107 * folios are in writeback and there is nothing else to
1108 * reclaim. Wait for the writeback to complete.
1109 *
1110 * In cases 1) and 2) we activate the folios to get them out of
1111 * the way while we continue scanning for clean folios on the
1112 * inactive list and refilling from the active list. The
1113 * observation here is that waiting for disk writes is more
1114 * expensive than potentially causing reloads down the line.
1115 * Since they're marked for immediate reclaim, they won't put
1116 * memory pressure on the cache working set any longer than it
1117 * takes to write them to disk.
1118 */
1119 if (folio_test_writeback(folio)) {
1120 /* Case 1 above */
1121 if (current_is_kswapd() &&
1122 folio_test_reclaim(folio) &&
1123 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1124 stat->nr_immediate += nr_pages;
1125 goto activate_locked;
1126
1127 /* Case 2 above */
1128 } else if (writeback_throttling_sane(sc) ||
1129 !folio_test_reclaim(folio) ||
1130 !may_enter_fs(folio, gfp_mask: sc->gfp_mask)) {
1131 /*
1132 * This is slightly racy -
1133 * folio_end_writeback() might have
1134 * just cleared the reclaim flag, then
1135 * setting the reclaim flag here ends up
1136 * interpreted as the readahead flag - but
1137 * that does not matter enough to care.
1138 * What we do want is for this folio to
1139 * have the reclaim flag set next time
1140 * memcg reclaim reaches the tests above,
1141 * so it will then wait for writeback to
1142 * avoid OOM; and it's also appropriate
1143 * in global reclaim.
1144 */
1145 folio_set_reclaim(folio);
1146 stat->nr_writeback += nr_pages;
1147 goto activate_locked;
1148
1149 /* Case 3 above */
1150 } else {
1151 folio_unlock(folio);
1152 folio_wait_writeback(folio);
1153 /* then go back and try same folio again */
1154 list_add_tail(new: &folio->lru, head: folio_list);
1155 continue;
1156 }
1157 }
1158
1159 if (!ignore_references)
1160 references = folio_check_references(folio, sc);
1161
1162 switch (references) {
1163 case FOLIOREF_ACTIVATE:
1164 goto activate_locked;
1165 case FOLIOREF_KEEP:
1166 stat->nr_ref_keep += nr_pages;
1167 goto keep_locked;
1168 case FOLIOREF_RECLAIM:
1169 case FOLIOREF_RECLAIM_CLEAN:
1170 ; /* try to reclaim the folio below */
1171 }
1172
1173 /*
1174 * Before reclaiming the folio, try to relocate
1175 * its contents to another node.
1176 */
1177 if (do_demote_pass &&
1178 (thp_migration_supported() || !folio_test_large(folio))) {
1179 list_add(new: &folio->lru, head: &demote_folios);
1180 folio_unlock(folio);
1181 continue;
1182 }
1183
1184 /*
1185 * Anonymous process memory has backing store?
1186 * Try to allocate it some swap space here.
1187 * Lazyfree folio could be freed directly
1188 */
1189 if (folio_test_anon(folio) && folio_test_swapbacked(folio)) {
1190 if (!folio_test_swapcache(folio)) {
1191 if (!(sc->gfp_mask & __GFP_IO))
1192 goto keep_locked;
1193 if (folio_maybe_dma_pinned(folio))
1194 goto keep_locked;
1195 if (folio_test_large(folio)) {
1196 /* cannot split folio, skip it */
1197 if (!can_split_folio(folio, NULL))
1198 goto activate_locked;
1199 /*
1200 * Split folios without a PMD map right
1201 * away. Chances are some or all of the
1202 * tail pages can be freed without IO.
1203 */
1204 if (!folio_entire_mapcount(folio) &&
1205 split_folio_to_list(folio,
1206 list: folio_list))
1207 goto activate_locked;
1208 }
1209 if (!add_to_swap(folio)) {
1210 if (!folio_test_large(folio))
1211 goto activate_locked_split;
1212 /* Fallback to swap normal pages */
1213 if (split_folio_to_list(folio,
1214 list: folio_list))
1215 goto activate_locked;
1216#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1217 count_memcg_folio_events(folio, idx: THP_SWPOUT_FALLBACK, nr: 1);
1218 count_vm_event(item: THP_SWPOUT_FALLBACK);
1219#endif
1220 if (!add_to_swap(folio))
1221 goto activate_locked_split;
1222 }
1223 }
1224 } else if (folio_test_swapbacked(folio) &&
1225 folio_test_large(folio)) {
1226 /* Split shmem folio */
1227 if (split_folio_to_list(folio, list: folio_list))
1228 goto keep_locked;
1229 }
1230
1231 /*
1232 * If the folio was split above, the tail pages will make
1233 * their own pass through this function and be accounted
1234 * then.
1235 */
1236 if ((nr_pages > 1) && !folio_test_large(folio)) {
1237 sc->nr_scanned -= (nr_pages - 1);
1238 nr_pages = 1;
1239 }
1240
1241 /*
1242 * The folio is mapped into the page tables of one or more
1243 * processes. Try to unmap it here.
1244 */
1245 if (folio_mapped(folio)) {
1246 enum ttu_flags flags = TTU_BATCH_FLUSH;
1247 bool was_swapbacked = folio_test_swapbacked(folio);
1248
1249 if (folio_test_pmd_mappable(folio))
1250 flags |= TTU_SPLIT_HUGE_PMD;
1251
1252 try_to_unmap(folio, flags);
1253 if (folio_mapped(folio)) {
1254 stat->nr_unmap_fail += nr_pages;
1255 if (!was_swapbacked &&
1256 folio_test_swapbacked(folio))
1257 stat->nr_lazyfree_fail += nr_pages;
1258 goto activate_locked;
1259 }
1260 }
1261
1262 /*
1263 * Folio is unmapped now so it cannot be newly pinned anymore.
1264 * No point in trying to reclaim folio if it is pinned.
1265 * Furthermore we don't want to reclaim underlying fs metadata
1266 * if the folio is pinned and thus potentially modified by the
1267 * pinning process as that may upset the filesystem.
1268 */
1269 if (folio_maybe_dma_pinned(folio))
1270 goto activate_locked;
1271
1272 mapping = folio_mapping(folio);
1273 if (folio_test_dirty(folio)) {
1274 /*
1275 * Only kswapd can writeback filesystem folios
1276 * to avoid risk of stack overflow. But avoid
1277 * injecting inefficient single-folio I/O into
1278 * flusher writeback as much as possible: only
1279 * write folios when we've encountered many
1280 * dirty folios, and when we've already scanned
1281 * the rest of the LRU for clean folios and see
1282 * the same dirty folios again (with the reclaim
1283 * flag set).
1284 */
1285 if (folio_is_file_lru(folio) &&
1286 (!current_is_kswapd() ||
1287 !folio_test_reclaim(folio) ||
1288 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1289 /*
1290 * Immediately reclaim when written back.
1291 * Similar in principle to folio_deactivate()
1292 * except we already have the folio isolated
1293 * and know it's dirty
1294 */
1295 node_stat_mod_folio(folio, item: NR_VMSCAN_IMMEDIATE,
1296 nr: nr_pages);
1297 folio_set_reclaim(folio);
1298
1299 goto activate_locked;
1300 }
1301
1302 if (references == FOLIOREF_RECLAIM_CLEAN)
1303 goto keep_locked;
1304 if (!may_enter_fs(folio, gfp_mask: sc->gfp_mask))
1305 goto keep_locked;
1306 if (!sc->may_writepage)
1307 goto keep_locked;
1308
1309 /*
1310 * Folio is dirty. Flush the TLB if a writable entry
1311 * potentially exists to avoid CPU writes after I/O
1312 * starts and then write it out here.
1313 */
1314 try_to_unmap_flush_dirty();
1315 switch (pageout(folio, mapping, plug: &plug)) {
1316 case PAGE_KEEP:
1317 goto keep_locked;
1318 case PAGE_ACTIVATE:
1319 goto activate_locked;
1320 case PAGE_SUCCESS:
1321 stat->nr_pageout += nr_pages;
1322
1323 if (folio_test_writeback(folio))
1324 goto keep;
1325 if (folio_test_dirty(folio))
1326 goto keep;
1327
1328 /*
1329 * A synchronous write - probably a ramdisk. Go
1330 * ahead and try to reclaim the folio.
1331 */
1332 if (!folio_trylock(folio))
1333 goto keep;
1334 if (folio_test_dirty(folio) ||
1335 folio_test_writeback(folio))
1336 goto keep_locked;
1337 mapping = folio_mapping(folio);
1338 fallthrough;
1339 case PAGE_CLEAN:
1340 ; /* try to free the folio below */
1341 }
1342 }
1343
1344 /*
1345 * If the folio has buffers, try to free the buffer
1346 * mappings associated with this folio. If we succeed
1347 * we try to free the folio as well.
1348 *
1349 * We do this even if the folio is dirty.
1350 * filemap_release_folio() does not perform I/O, but it
1351 * is possible for a folio to have the dirty flag set,
1352 * but it is actually clean (all its buffers are clean).
1353 * This happens if the buffers were written out directly,
1354 * with submit_bh(). ext3 will do this, as well as
1355 * the blockdev mapping. filemap_release_folio() will
1356 * discover that cleanness and will drop the buffers
1357 * and mark the folio clean - it can be freed.
1358 *
1359 * Rarely, folios can have buffers and no ->mapping.
1360 * These are the folios which were not successfully
1361 * invalidated in truncate_cleanup_folio(). We try to
1362 * drop those buffers here and if that worked, and the
1363 * folio is no longer mapped into process address space
1364 * (refcount == 1) it can be freed. Otherwise, leave
1365 * the folio on the LRU so it is swappable.
1366 */
1367 if (folio_needs_release(folio)) {
1368 if (!filemap_release_folio(folio, gfp: sc->gfp_mask))
1369 goto activate_locked;
1370 if (!mapping && folio_ref_count(folio) == 1) {
1371 folio_unlock(folio);
1372 if (folio_put_testzero(folio))
1373 goto free_it;
1374 else {
1375 /*
1376 * rare race with speculative reference.
1377 * the speculative reference will free
1378 * this folio shortly, so we may
1379 * increment nr_reclaimed here (and
1380 * leave it off the LRU).
1381 */
1382 nr_reclaimed += nr_pages;
1383 continue;
1384 }
1385 }
1386 }
1387
1388 if (folio_test_anon(folio) && !folio_test_swapbacked(folio)) {
1389 /* follow __remove_mapping for reference */
1390 if (!folio_ref_freeze(folio, count: 1))
1391 goto keep_locked;
1392 /*
1393 * The folio has only one reference left, which is
1394 * from the isolation. After the caller puts the
1395 * folio back on the lru and drops the reference, the
1396 * folio will be freed anyway. It doesn't matter
1397 * which lru it goes on. So we don't bother checking
1398 * the dirty flag here.
1399 */
1400 count_vm_events(item: PGLAZYFREED, delta: nr_pages);
1401 count_memcg_folio_events(folio, idx: PGLAZYFREED, nr: nr_pages);
1402 } else if (!mapping || !__remove_mapping(mapping, folio, reclaimed: true,
1403 target_memcg: sc->target_mem_cgroup))
1404 goto keep_locked;
1405
1406 folio_unlock(folio);
1407free_it:
1408 /*
1409 * Folio may get swapped out as a whole, need to account
1410 * all pages in it.
1411 */
1412 nr_reclaimed += nr_pages;
1413
1414 /*
1415 * Is there need to periodically free_folio_list? It would
1416 * appear not as the counts should be low
1417 */
1418 if (unlikely(folio_test_large(folio)))
1419 destroy_large_folio(folio);
1420 else
1421 list_add(new: &folio->lru, head: &free_folios);
1422 continue;
1423
1424activate_locked_split:
1425 /*
1426 * The tail pages that are failed to add into swap cache
1427 * reach here. Fixup nr_scanned and nr_pages.
1428 */
1429 if (nr_pages > 1) {
1430 sc->nr_scanned -= (nr_pages - 1);
1431 nr_pages = 1;
1432 }
1433activate_locked:
1434 /* Not a candidate for swapping, so reclaim swap space. */
1435 if (folio_test_swapcache(folio) &&
1436 (mem_cgroup_swap_full(folio) || folio_test_mlocked(folio)))
1437 folio_free_swap(folio);
1438 VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
1439 if (!folio_test_mlocked(folio)) {
1440 int type = folio_is_file_lru(folio);
1441 folio_set_active(folio);
1442 stat->nr_activate[type] += nr_pages;
1443 count_memcg_folio_events(folio, idx: PGACTIVATE, nr: nr_pages);
1444 }
1445keep_locked:
1446 folio_unlock(folio);
1447keep:
1448 list_add(new: &folio->lru, head: &ret_folios);
1449 VM_BUG_ON_FOLIO(folio_test_lru(folio) ||
1450 folio_test_unevictable(folio), folio);
1451 }
1452 /* 'folio_list' is always empty here */
1453
1454 /* Migrate folios selected for demotion */
1455 nr_reclaimed += demote_folio_list(demote_folios: &demote_folios, pgdat);
1456 /* Folios that could not be demoted are still in @demote_folios */
1457 if (!list_empty(head: &demote_folios)) {
1458 /* Folios which weren't demoted go back on @folio_list */
1459 list_splice_init(list: &demote_folios, head: folio_list);
1460
1461 /*
1462 * goto retry to reclaim the undemoted folios in folio_list if
1463 * desired.
1464 *
1465 * Reclaiming directly from top tier nodes is not often desired
1466 * due to it breaking the LRU ordering: in general memory
1467 * should be reclaimed from lower tier nodes and demoted from
1468 * top tier nodes.
1469 *
1470 * However, disabling reclaim from top tier nodes entirely
1471 * would cause ooms in edge scenarios where lower tier memory
1472 * is unreclaimable for whatever reason, eg memory being
1473 * mlocked or too hot to reclaim. We can disable reclaim
1474 * from top tier nodes in proactive reclaim though as that is
1475 * not real memory pressure.
1476 */
1477 if (!sc->proactive) {
1478 do_demote_pass = false;
1479 goto retry;
1480 }
1481 }
1482
1483 pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
1484
1485 mem_cgroup_uncharge_list(page_list: &free_folios);
1486 try_to_unmap_flush();
1487 free_unref_page_list(list: &free_folios);
1488
1489 list_splice(list: &ret_folios, head: folio_list);
1490 count_vm_events(item: PGACTIVATE, delta: pgactivate);
1491
1492 if (plug)
1493 swap_write_unplug(sio: plug);
1494 return nr_reclaimed;
1495}
1496
1497unsigned int reclaim_clean_pages_from_list(struct zone *zone,
1498 struct list_head *folio_list)
1499{
1500 struct scan_control sc = {
1501 .gfp_mask = GFP_KERNEL,
1502 .may_unmap = 1,
1503 };
1504 struct reclaim_stat stat;
1505 unsigned int nr_reclaimed;
1506 struct folio *folio, *next;
1507 LIST_HEAD(clean_folios);
1508 unsigned int noreclaim_flag;
1509
1510 list_for_each_entry_safe(folio, next, folio_list, lru) {
1511 if (!folio_test_hugetlb(folio) && folio_is_file_lru(folio) &&
1512 !folio_test_dirty(folio) && !__folio_test_movable(folio) &&
1513 !folio_test_unevictable(folio)) {
1514 folio_clear_active(folio);
1515 list_move(list: &folio->lru, head: &clean_folios);
1516 }
1517 }
1518
1519 /*
1520 * We should be safe here since we are only dealing with file pages and
1521 * we are not kswapd and therefore cannot write dirty file pages. But
1522 * call memalloc_noreclaim_save() anyway, just in case these conditions
1523 * change in the future.
1524 */
1525 noreclaim_flag = memalloc_noreclaim_save();
1526 nr_reclaimed = shrink_folio_list(folio_list: &clean_folios, pgdat: zone->zone_pgdat, sc: &sc,
1527 stat: &stat, ignore_references: true);
1528 memalloc_noreclaim_restore(flags: noreclaim_flag);
1529
1530 list_splice(list: &clean_folios, head: folio_list);
1531 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1532 -(long)nr_reclaimed);
1533 /*
1534 * Since lazyfree pages are isolated from file LRU from the beginning,
1535 * they will rotate back to anonymous LRU in the end if it failed to
1536 * discard so isolated count will be mismatched.
1537 * Compensate the isolated count for both LRU lists.
1538 */
1539 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
1540 stat.nr_lazyfree_fail);
1541 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1542 -(long)stat.nr_lazyfree_fail);
1543 return nr_reclaimed;
1544}
1545
1546/*
1547 * Update LRU sizes after isolating pages. The LRU size updates must
1548 * be complete before mem_cgroup_update_lru_size due to a sanity check.
1549 */
1550static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1551 enum lru_list lru, unsigned long *nr_zone_taken)
1552{
1553 int zid;
1554
1555 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1556 if (!nr_zone_taken[zid])
1557 continue;
1558
1559 update_lru_size(lruvec, lru, zid, nr_pages: -nr_zone_taken[zid]);
1560 }
1561
1562}
1563
1564#ifdef CONFIG_CMA
1565/*
1566 * It is waste of effort to scan and reclaim CMA pages if it is not available
1567 * for current allocation context. Kswapd can not be enrolled as it can not
1568 * distinguish this scenario by using sc->gfp_mask = GFP_KERNEL
1569 */
1570static bool skip_cma(struct folio *folio, struct scan_control *sc)
1571{
1572 return !current_is_kswapd() &&
1573 gfp_migratetype(gfp_flags: sc->gfp_mask) != MIGRATE_MOVABLE &&
1574 folio_migratetype(folio) == MIGRATE_CMA;
1575}
1576#else
1577static bool skip_cma(struct folio *folio, struct scan_control *sc)
1578{
1579 return false;
1580}
1581#endif
1582
1583/*
1584 * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
1585 *
1586 * lruvec->lru_lock is heavily contended. Some of the functions that
1587 * shrink the lists perform better by taking out a batch of pages
1588 * and working on them outside the LRU lock.
1589 *
1590 * For pagecache intensive workloads, this function is the hottest
1591 * spot in the kernel (apart from copy_*_user functions).
1592 *
1593 * Lru_lock must be held before calling this function.
1594 *
1595 * @nr_to_scan: The number of eligible pages to look through on the list.
1596 * @lruvec: The LRU vector to pull pages from.
1597 * @dst: The temp list to put pages on to.
1598 * @nr_scanned: The number of pages that were scanned.
1599 * @sc: The scan_control struct for this reclaim session
1600 * @lru: LRU list id for isolating
1601 *
1602 * returns how many pages were moved onto *@dst.
1603 */
1604static unsigned long isolate_lru_folios(unsigned long nr_to_scan,
1605 struct lruvec *lruvec, struct list_head *dst,
1606 unsigned long *nr_scanned, struct scan_control *sc,
1607 enum lru_list lru)
1608{
1609 struct list_head *src = &lruvec->lists[lru];
1610 unsigned long nr_taken = 0;
1611 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1612 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1613 unsigned long skipped = 0;
1614 unsigned long scan, total_scan, nr_pages;
1615 LIST_HEAD(folios_skipped);
1616
1617 total_scan = 0;
1618 scan = 0;
1619 while (scan < nr_to_scan && !list_empty(head: src)) {
1620 struct list_head *move_to = src;
1621 struct folio *folio;
1622
1623 folio = lru_to_folio(head: src);
1624 prefetchw_prev_lru_folio(folio, src, flags);
1625
1626 nr_pages = folio_nr_pages(folio);
1627 total_scan += nr_pages;
1628
1629 if (folio_zonenum(folio) > sc->reclaim_idx ||
1630 skip_cma(folio, sc)) {
1631 nr_skipped[folio_zonenum(folio)] += nr_pages;
1632 move_to = &folios_skipped;
1633 goto move;
1634 }
1635
1636 /*
1637 * Do not count skipped folios because that makes the function
1638 * return with no isolated folios if the LRU mostly contains
1639 * ineligible folios. This causes the VM to not reclaim any
1640 * folios, triggering a premature OOM.
1641 * Account all pages in a folio.
1642 */
1643 scan += nr_pages;
1644
1645 if (!folio_test_lru(folio))
1646 goto move;
1647 if (!sc->may_unmap && folio_mapped(folio))
1648 goto move;
1649
1650 /*
1651 * Be careful not to clear the lru flag until after we're
1652 * sure the folio is not being freed elsewhere -- the
1653 * folio release code relies on it.
1654 */
1655 if (unlikely(!folio_try_get(folio)))
1656 goto move;
1657
1658 if (!folio_test_clear_lru(folio)) {
1659 /* Another thread is already isolating this folio */
1660 folio_put(folio);
1661 goto move;
1662 }
1663
1664 nr_taken += nr_pages;
1665 nr_zone_taken[folio_zonenum(folio)] += nr_pages;
1666 move_to = dst;
1667move:
1668 list_move(list: &folio->lru, head: move_to);
1669 }
1670
1671 /*
1672 * Splice any skipped folios to the start of the LRU list. Note that
1673 * this disrupts the LRU order when reclaiming for lower zones but
1674 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1675 * scanning would soon rescan the same folios to skip and waste lots
1676 * of cpu cycles.
1677 */
1678 if (!list_empty(head: &folios_skipped)) {
1679 int zid;
1680
1681 list_splice(list: &folios_skipped, head: src);
1682 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1683 if (!nr_skipped[zid])
1684 continue;
1685
1686 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1687 skipped += nr_skipped[zid];
1688 }
1689 }
1690 *nr_scanned = total_scan;
1691 trace_mm_vmscan_lru_isolate(highest_zoneidx: sc->reclaim_idx, order: sc->order, nr_requested: nr_to_scan,
1692 nr_scanned: total_scan, nr_skipped: skipped, nr_taken, lru);
1693 update_lru_sizes(lruvec, lru, nr_zone_taken);
1694 return nr_taken;
1695}
1696
1697/**
1698 * folio_isolate_lru() - Try to isolate a folio from its LRU list.
1699 * @folio: Folio to isolate from its LRU list.
1700 *
1701 * Isolate a @folio from an LRU list and adjust the vmstat statistic
1702 * corresponding to whatever LRU list the folio was on.
1703 *
1704 * The folio will have its LRU flag cleared. If it was found on the
1705 * active list, it will have the Active flag set. If it was found on the
1706 * unevictable list, it will have the Unevictable flag set. These flags
1707 * may need to be cleared by the caller before letting the page go.
1708 *
1709 * Context:
1710 *
1711 * (1) Must be called with an elevated refcount on the folio. This is a
1712 * fundamental difference from isolate_lru_folios() (which is called
1713 * without a stable reference).
1714 * (2) The lru_lock must not be held.
1715 * (3) Interrupts must be enabled.
1716 *
1717 * Return: true if the folio was removed from an LRU list.
1718 * false if the folio was not on an LRU list.
1719 */
1720bool folio_isolate_lru(struct folio *folio)
1721{
1722 bool ret = false;
1723
1724 VM_BUG_ON_FOLIO(!folio_ref_count(folio), folio);
1725
1726 if (folio_test_clear_lru(folio)) {
1727 struct lruvec *lruvec;
1728
1729 folio_get(folio);
1730 lruvec = folio_lruvec_lock_irq(folio);
1731 lruvec_del_folio(lruvec, folio);
1732 unlock_page_lruvec_irq(lruvec);
1733 ret = true;
1734 }
1735
1736 return ret;
1737}
1738
1739/*
1740 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1741 * then get rescheduled. When there are massive number of tasks doing page
1742 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1743 * the LRU list will go small and be scanned faster than necessary, leading to
1744 * unnecessary swapping, thrashing and OOM.
1745 */
1746static int too_many_isolated(struct pglist_data *pgdat, int file,
1747 struct scan_control *sc)
1748{
1749 unsigned long inactive, isolated;
1750 bool too_many;
1751
1752 if (current_is_kswapd())
1753 return 0;
1754
1755 if (!writeback_throttling_sane(sc))
1756 return 0;
1757
1758 if (file) {
1759 inactive = node_page_state(pgdat, item: NR_INACTIVE_FILE);
1760 isolated = node_page_state(pgdat, item: NR_ISOLATED_FILE);
1761 } else {
1762 inactive = node_page_state(pgdat, item: NR_INACTIVE_ANON);
1763 isolated = node_page_state(pgdat, item: NR_ISOLATED_ANON);
1764 }
1765
1766 /*
1767 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1768 * won't get blocked by normal direct-reclaimers, forming a circular
1769 * deadlock.
1770 */
1771 if (gfp_has_io_fs(gfp: sc->gfp_mask))
1772 inactive >>= 3;
1773
1774 too_many = isolated > inactive;
1775
1776 /* Wake up tasks throttled due to too_many_isolated. */
1777 if (!too_many)
1778 wake_throttle_isolated(pgdat);
1779
1780 return too_many;
1781}
1782
1783/*
1784 * move_folios_to_lru() moves folios from private @list to appropriate LRU list.
1785 * On return, @list is reused as a list of folios to be freed by the caller.
1786 *
1787 * Returns the number of pages moved to the given lruvec.
1788 */
1789static unsigned int move_folios_to_lru(struct lruvec *lruvec,
1790 struct list_head *list)
1791{
1792 int nr_pages, nr_moved = 0;
1793 LIST_HEAD(folios_to_free);
1794
1795 while (!list_empty(head: list)) {
1796 struct folio *folio = lru_to_folio(head: list);
1797
1798 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
1799 list_del(entry: &folio->lru);
1800 if (unlikely(!folio_evictable(folio))) {
1801 spin_unlock_irq(lock: &lruvec->lru_lock);
1802 folio_putback_lru(folio);
1803 spin_lock_irq(lock: &lruvec->lru_lock);
1804 continue;
1805 }
1806
1807 /*
1808 * The folio_set_lru needs to be kept here for list integrity.
1809 * Otherwise:
1810 * #0 move_folios_to_lru #1 release_pages
1811 * if (!folio_put_testzero())
1812 * if (folio_put_testzero())
1813 * !lru //skip lru_lock
1814 * folio_set_lru()
1815 * list_add(&folio->lru,)
1816 * list_add(&folio->lru,)
1817 */
1818 folio_set_lru(folio);
1819
1820 if (unlikely(folio_put_testzero(folio))) {
1821 __folio_clear_lru_flags(folio);
1822
1823 if (unlikely(folio_test_large(folio))) {
1824 spin_unlock_irq(lock: &lruvec->lru_lock);
1825 destroy_large_folio(folio);
1826 spin_lock_irq(lock: &lruvec->lru_lock);
1827 } else
1828 list_add(new: &folio->lru, head: &folios_to_free);
1829
1830 continue;
1831 }
1832
1833 /*
1834 * All pages were isolated from the same lruvec (and isolation
1835 * inhibits memcg migration).
1836 */
1837 VM_BUG_ON_FOLIO(!folio_matches_lruvec(folio, lruvec), folio);
1838 lruvec_add_folio(lruvec, folio);
1839 nr_pages = folio_nr_pages(folio);
1840 nr_moved += nr_pages;
1841 if (folio_test_active(folio))
1842 workingset_age_nonresident(lruvec, nr_pages);
1843 }
1844
1845 /*
1846 * To save our caller's stack, now use input list for pages to free.
1847 */
1848 list_splice(list: &folios_to_free, head: list);
1849
1850 return nr_moved;
1851}
1852
1853/*
1854 * If a kernel thread (such as nfsd for loop-back mounts) services a backing
1855 * device by writing to the page cache it sets PF_LOCAL_THROTTLE. In this case
1856 * we should not throttle. Otherwise it is safe to do so.
1857 */
1858static int current_may_throttle(void)
1859{
1860 return !(current->flags & PF_LOCAL_THROTTLE);
1861}
1862
1863/*
1864 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1865 * of reclaimed pages
1866 */
1867static unsigned long shrink_inactive_list(unsigned long nr_to_scan,
1868 struct lruvec *lruvec, struct scan_control *sc,
1869 enum lru_list lru)
1870{
1871 LIST_HEAD(folio_list);
1872 unsigned long nr_scanned;
1873 unsigned int nr_reclaimed = 0;
1874 unsigned long nr_taken;
1875 struct reclaim_stat stat;
1876 bool file = is_file_lru(lru);
1877 enum vm_event_item item;
1878 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1879 bool stalled = false;
1880
1881 while (unlikely(too_many_isolated(pgdat, file, sc))) {
1882 if (stalled)
1883 return 0;
1884
1885 /* wait a bit for the reclaimer. */
1886 stalled = true;
1887 reclaim_throttle(pgdat, reason: VMSCAN_THROTTLE_ISOLATED);
1888
1889 /* We are about to die and free our memory. Return now. */
1890 if (fatal_signal_pending(current))
1891 return SWAP_CLUSTER_MAX;
1892 }
1893
1894 lru_add_drain();
1895
1896 spin_lock_irq(lock: &lruvec->lru_lock);
1897
1898 nr_taken = isolate_lru_folios(nr_to_scan, lruvec, dst: &folio_list,
1899 nr_scanned: &nr_scanned, sc, lru);
1900
1901 __mod_node_page_state(pgdat, item: NR_ISOLATED_ANON + file, nr_taken);
1902 item = PGSCAN_KSWAPD + reclaimer_offset();
1903 if (!cgroup_reclaim(sc))
1904 __count_vm_events(item, delta: nr_scanned);
1905 __count_memcg_events(memcg: lruvec_memcg(lruvec), idx: item, count: nr_scanned);
1906 __count_vm_events(item: PGSCAN_ANON + file, delta: nr_scanned);
1907
1908 spin_unlock_irq(lock: &lruvec->lru_lock);
1909
1910 if (nr_taken == 0)
1911 return 0;
1912
1913 nr_reclaimed = shrink_folio_list(folio_list: &folio_list, pgdat, sc, stat: &stat, ignore_references: false);
1914
1915 spin_lock_irq(lock: &lruvec->lru_lock);
1916 move_folios_to_lru(lruvec, list: &folio_list);
1917
1918 __mod_node_page_state(pgdat, item: NR_ISOLATED_ANON + file, -nr_taken);
1919 item = PGSTEAL_KSWAPD + reclaimer_offset();
1920 if (!cgroup_reclaim(sc))
1921 __count_vm_events(item, delta: nr_reclaimed);
1922 __count_memcg_events(memcg: lruvec_memcg(lruvec), idx: item, count: nr_reclaimed);
1923 __count_vm_events(item: PGSTEAL_ANON + file, delta: nr_reclaimed);
1924 spin_unlock_irq(lock: &lruvec->lru_lock);
1925
1926 lru_note_cost(lruvec, file, nr_io: stat.nr_pageout, nr_rotated: nr_scanned - nr_reclaimed);
1927 mem_cgroup_uncharge_list(page_list: &folio_list);
1928 free_unref_page_list(list: &folio_list);
1929
1930 /*
1931 * If dirty folios are scanned that are not queued for IO, it
1932 * implies that flushers are not doing their job. This can
1933 * happen when memory pressure pushes dirty folios to the end of
1934 * the LRU before the dirty limits are breached and the dirty
1935 * data has expired. It can also happen when the proportion of
1936 * dirty folios grows not through writes but through memory
1937 * pressure reclaiming all the clean cache. And in some cases,
1938 * the flushers simply cannot keep up with the allocation
1939 * rate. Nudge the flusher threads in case they are asleep.
1940 */
1941 if (stat.nr_unqueued_dirty == nr_taken) {
1942 wakeup_flusher_threads(reason: WB_REASON_VMSCAN);
1943 /*
1944 * For cgroupv1 dirty throttling is achieved by waking up
1945 * the kernel flusher here and later waiting on folios
1946 * which are in writeback to finish (see shrink_folio_list()).
1947 *
1948 * Flusher may not be able to issue writeback quickly
1949 * enough for cgroupv1 writeback throttling to work
1950 * on a large system.
1951 */
1952 if (!writeback_throttling_sane(sc))
1953 reclaim_throttle(pgdat, reason: VMSCAN_THROTTLE_WRITEBACK);
1954 }
1955
1956 sc->nr.dirty += stat.nr_dirty;
1957 sc->nr.congested += stat.nr_congested;
1958 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
1959 sc->nr.writeback += stat.nr_writeback;
1960 sc->nr.immediate += stat.nr_immediate;
1961 sc->nr.taken += nr_taken;
1962 if (file)
1963 sc->nr.file_taken += nr_taken;
1964
1965 trace_mm_vmscan_lru_shrink_inactive(nid: pgdat->node_id,
1966 nr_scanned, nr_reclaimed, stat: &stat, priority: sc->priority, file);
1967 return nr_reclaimed;
1968}
1969
1970/*
1971 * shrink_active_list() moves folios from the active LRU to the inactive LRU.
1972 *
1973 * We move them the other way if the folio is referenced by one or more
1974 * processes.
1975 *
1976 * If the folios are mostly unmapped, the processing is fast and it is
1977 * appropriate to hold lru_lock across the whole operation. But if
1978 * the folios are mapped, the processing is slow (folio_referenced()), so
1979 * we should drop lru_lock around each folio. It's impossible to balance
1980 * this, so instead we remove the folios from the LRU while processing them.
1981 * It is safe to rely on the active flag against the non-LRU folios in here
1982 * because nobody will play with that bit on a non-LRU folio.
1983 *
1984 * The downside is that we have to touch folio->_refcount against each folio.
1985 * But we had to alter folio->flags anyway.
1986 */
1987static void shrink_active_list(unsigned long nr_to_scan,
1988 struct lruvec *lruvec,
1989 struct scan_control *sc,
1990 enum lru_list lru)
1991{
1992 unsigned long nr_taken;
1993 unsigned long nr_scanned;
1994 unsigned long vm_flags;
1995 LIST_HEAD(l_hold); /* The folios which were snipped off */
1996 LIST_HEAD(l_active);
1997 LIST_HEAD(l_inactive);
1998 unsigned nr_deactivate, nr_activate;
1999 unsigned nr_rotated = 0;
2000 int file = is_file_lru(lru);
2001 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2002
2003 lru_add_drain();
2004
2005 spin_lock_irq(lock: &lruvec->lru_lock);
2006
2007 nr_taken = isolate_lru_folios(nr_to_scan, lruvec, dst: &l_hold,
2008 nr_scanned: &nr_scanned, sc, lru);
2009
2010 __mod_node_page_state(pgdat, item: NR_ISOLATED_ANON + file, nr_taken);
2011
2012 if (!cgroup_reclaim(sc))
2013 __count_vm_events(item: PGREFILL, delta: nr_scanned);
2014 __count_memcg_events(memcg: lruvec_memcg(lruvec), idx: PGREFILL, count: nr_scanned);
2015
2016 spin_unlock_irq(lock: &lruvec->lru_lock);
2017
2018 while (!list_empty(head: &l_hold)) {
2019 struct folio *folio;
2020
2021 cond_resched();
2022 folio = lru_to_folio(head: &l_hold);
2023 list_del(entry: &folio->lru);
2024
2025 if (unlikely(!folio_evictable(folio))) {
2026 folio_putback_lru(folio);
2027 continue;
2028 }
2029
2030 if (unlikely(buffer_heads_over_limit)) {
2031 if (folio_needs_release(folio) &&
2032 folio_trylock(folio)) {
2033 filemap_release_folio(folio, gfp: 0);
2034 folio_unlock(folio);
2035 }
2036 }
2037
2038 /* Referenced or rmap lock contention: rotate */
2039 if (folio_referenced(folio, is_locked: 0, memcg: sc->target_mem_cgroup,
2040 vm_flags: &vm_flags) != 0) {
2041 /*
2042 * Identify referenced, file-backed active folios and
2043 * give them one more trip around the active list. So
2044 * that executable code get better chances to stay in
2045 * memory under moderate memory pressure. Anon folios
2046 * are not likely to be evicted by use-once streaming
2047 * IO, plus JVM can create lots of anon VM_EXEC folios,
2048 * so we ignore them here.
2049 */
2050 if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) {
2051 nr_rotated += folio_nr_pages(folio);
2052 list_add(new: &folio->lru, head: &l_active);
2053 continue;
2054 }
2055 }
2056
2057 folio_clear_active(folio); /* we are de-activating */
2058 folio_set_workingset(folio);
2059 list_add(new: &folio->lru, head: &l_inactive);
2060 }
2061
2062 /*
2063 * Move folios back to the lru list.
2064 */
2065 spin_lock_irq(lock: &lruvec->lru_lock);
2066
2067 nr_activate = move_folios_to_lru(lruvec, list: &l_active);
2068 nr_deactivate = move_folios_to_lru(lruvec, list: &l_inactive);
2069 /* Keep all free folios in l_active list */
2070 list_splice(list: &l_inactive, head: &l_active);
2071
2072 __count_vm_events(item: PGDEACTIVATE, delta: nr_deactivate);
2073 __count_memcg_events(memcg: lruvec_memcg(lruvec), idx: PGDEACTIVATE, count: nr_deactivate);
2074
2075 __mod_node_page_state(pgdat, item: NR_ISOLATED_ANON + file, -nr_taken);
2076 spin_unlock_irq(lock: &lruvec->lru_lock);
2077
2078 if (nr_rotated)
2079 lru_note_cost(lruvec, file, nr_io: 0, nr_rotated);
2080 mem_cgroup_uncharge_list(page_list: &l_active);
2081 free_unref_page_list(list: &l_active);
2082 trace_mm_vmscan_lru_shrink_active(nid: pgdat->node_id, nr_taken, nr_active: nr_activate,
2083 nr_deactivated: nr_deactivate, nr_referenced: nr_rotated, priority: sc->priority, file);
2084}
2085
2086static unsigned int reclaim_folio_list(struct list_head *folio_list,
2087 struct pglist_data *pgdat)
2088{
2089 struct reclaim_stat dummy_stat;
2090 unsigned int nr_reclaimed;
2091 struct folio *folio;
2092 struct scan_control sc = {
2093 .gfp_mask = GFP_KERNEL,
2094 .may_writepage = 1,
2095 .may_unmap = 1,
2096 .may_swap = 1,
2097 .no_demotion = 1,
2098 };
2099
2100 nr_reclaimed = shrink_folio_list(folio_list, pgdat, sc: &sc, stat: &dummy_stat, ignore_references: false);
2101 while (!list_empty(head: folio_list)) {
2102 folio = lru_to_folio(head: folio_list);
2103 list_del(entry: &folio->lru);
2104 folio_putback_lru(folio);
2105 }
2106
2107 return nr_reclaimed;
2108}
2109
2110unsigned long reclaim_pages(struct list_head *folio_list)
2111{
2112 int nid;
2113 unsigned int nr_reclaimed = 0;
2114 LIST_HEAD(node_folio_list);
2115 unsigned int noreclaim_flag;
2116
2117 if (list_empty(head: folio_list))
2118 return nr_reclaimed;
2119
2120 noreclaim_flag = memalloc_noreclaim_save();
2121
2122 nid = folio_nid(folio: lru_to_folio(head: folio_list));
2123 do {
2124 struct folio *folio = lru_to_folio(head: folio_list);
2125
2126 if (nid == folio_nid(folio)) {
2127 folio_clear_active(folio);
2128 list_move(list: &folio->lru, head: &node_folio_list);
2129 continue;
2130 }
2131
2132 nr_reclaimed += reclaim_folio_list(folio_list: &node_folio_list, NODE_DATA(nid));
2133 nid = folio_nid(folio: lru_to_folio(head: folio_list));
2134 } while (!list_empty(head: folio_list));
2135
2136 nr_reclaimed += reclaim_folio_list(folio_list: &node_folio_list, NODE_DATA(nid));
2137
2138 memalloc_noreclaim_restore(flags: noreclaim_flag);
2139
2140 return nr_reclaimed;
2141}
2142
2143static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2144 struct lruvec *lruvec, struct scan_control *sc)
2145{
2146 if (is_active_lru(lru)) {
2147 if (sc->may_deactivate & (1 << is_file_lru(lru)))
2148 shrink_active_list(nr_to_scan, lruvec, sc, lru);
2149 else
2150 sc->skipped_deactivate = 1;
2151 return 0;
2152 }
2153
2154 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2155}
2156
2157/*
2158 * The inactive anon list should be small enough that the VM never has
2159 * to do too much work.
2160 *
2161 * The inactive file list should be small enough to leave most memory
2162 * to the established workingset on the scan-resistant active list,
2163 * but large enough to avoid thrashing the aggregate readahead window.
2164 *
2165 * Both inactive lists should also be large enough that each inactive
2166 * folio has a chance to be referenced again before it is reclaimed.
2167 *
2168 * If that fails and refaulting is observed, the inactive list grows.
2169 *
2170 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE folios
2171 * on this LRU, maintained by the pageout code. An inactive_ratio
2172 * of 3 means 3:1 or 25% of the folios are kept on the inactive list.
2173 *
2174 * total target max
2175 * memory ratio inactive
2176 * -------------------------------------
2177 * 10MB 1 5MB
2178 * 100MB 1 50MB
2179 * 1GB 3 250MB
2180 * 10GB 10 0.9GB
2181 * 100GB 31 3GB
2182 * 1TB 101 10GB
2183 * 10TB 320 32GB
2184 */
2185static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
2186{
2187 enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2188 unsigned long inactive, active;
2189 unsigned long inactive_ratio;
2190 unsigned long gb;
2191
2192 inactive = lruvec_page_state(lruvec, idx: NR_LRU_BASE + inactive_lru);
2193 active = lruvec_page_state(lruvec, idx: NR_LRU_BASE + active_lru);
2194
2195 gb = (inactive + active) >> (30 - PAGE_SHIFT);
2196 if (gb)
2197 inactive_ratio = int_sqrt(10 * gb);
2198 else
2199 inactive_ratio = 1;
2200
2201 return inactive * inactive_ratio < active;
2202}
2203
2204enum scan_balance {
2205 SCAN_EQUAL,
2206 SCAN_FRACT,
2207 SCAN_ANON,
2208 SCAN_FILE,
2209};
2210
2211static void prepare_scan_control(pg_data_t *pgdat, struct scan_control *sc)
2212{
2213 unsigned long file;
2214 struct lruvec *target_lruvec;
2215
2216 if (lru_gen_enabled())
2217 return;
2218
2219 target_lruvec = mem_cgroup_lruvec(memcg: sc->target_mem_cgroup, pgdat);
2220
2221 /*
2222 * Flush the memory cgroup stats, so that we read accurate per-memcg
2223 * lruvec stats for heuristics.
2224 */
2225 mem_cgroup_flush_stats();
2226
2227 /*
2228 * Determine the scan balance between anon and file LRUs.
2229 */
2230 spin_lock_irq(lock: &target_lruvec->lru_lock);
2231 sc->anon_cost = target_lruvec->anon_cost;
2232 sc->file_cost = target_lruvec->file_cost;
2233 spin_unlock_irq(lock: &target_lruvec->lru_lock);
2234
2235 /*
2236 * Target desirable inactive:active list ratios for the anon
2237 * and file LRU lists.
2238 */
2239 if (!sc->force_deactivate) {
2240 unsigned long refaults;
2241
2242 /*
2243 * When refaults are being observed, it means a new
2244 * workingset is being established. Deactivate to get
2245 * rid of any stale active pages quickly.
2246 */
2247 refaults = lruvec_page_state(lruvec: target_lruvec,
2248 idx: WORKINGSET_ACTIVATE_ANON);
2249 if (refaults != target_lruvec->refaults[WORKINGSET_ANON] ||
2250 inactive_is_low(lruvec: target_lruvec, inactive_lru: LRU_INACTIVE_ANON))
2251 sc->may_deactivate |= DEACTIVATE_ANON;
2252 else
2253 sc->may_deactivate &= ~DEACTIVATE_ANON;
2254
2255 refaults = lruvec_page_state(lruvec: target_lruvec,
2256 idx: WORKINGSET_ACTIVATE_FILE);
2257 if (refaults != target_lruvec->refaults[WORKINGSET_FILE] ||
2258 inactive_is_low(lruvec: target_lruvec, inactive_lru: LRU_INACTIVE_FILE))
2259 sc->may_deactivate |= DEACTIVATE_FILE;
2260 else
2261 sc->may_deactivate &= ~DEACTIVATE_FILE;
2262 } else
2263 sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
2264
2265 /*
2266 * If we have plenty of inactive file pages that aren't
2267 * thrashing, try to reclaim those first before touching
2268 * anonymous pages.
2269 */
2270 file = lruvec_page_state(lruvec: target_lruvec, idx: NR_INACTIVE_FILE);
2271 if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
2272 sc->cache_trim_mode = 1;
2273 else
2274 sc->cache_trim_mode = 0;
2275
2276 /*
2277 * Prevent the reclaimer from falling into the cache trap: as
2278 * cache pages start out inactive, every cache fault will tip
2279 * the scan balance towards the file LRU. And as the file LRU
2280 * shrinks, so does the window for rotation from references.
2281 * This means we have a runaway feedback loop where a tiny
2282 * thrashing file LRU becomes infinitely more attractive than
2283 * anon pages. Try to detect this based on file LRU size.
2284 */
2285 if (!cgroup_reclaim(sc)) {
2286 unsigned long total_high_wmark = 0;
2287 unsigned long free, anon;
2288 int z;
2289
2290 free = sum_zone_node_page_state(node: pgdat->node_id, item: NR_FREE_PAGES);
2291 file = node_page_state(pgdat, item: NR_ACTIVE_FILE) +
2292 node_page_state(pgdat, item: NR_INACTIVE_FILE);
2293
2294 for (z = 0; z < MAX_NR_ZONES; z++) {
2295 struct zone *zone = &pgdat->node_zones[z];
2296
2297 if (!managed_zone(zone))
2298 continue;
2299
2300 total_high_wmark += high_wmark_pages(zone);
2301 }
2302
2303 /*
2304 * Consider anon: if that's low too, this isn't a
2305 * runaway file reclaim problem, but rather just
2306 * extreme pressure. Reclaim as per usual then.
2307 */
2308 anon = node_page_state(pgdat, item: NR_INACTIVE_ANON);
2309
2310 sc->file_is_tiny =
2311 file + free <= total_high_wmark &&
2312 !(sc->may_deactivate & DEACTIVATE_ANON) &&
2313 anon >> sc->priority;
2314 }
2315}
2316
2317/*
2318 * Determine how aggressively the anon and file LRU lists should be
2319 * scanned.
2320 *
2321 * nr[0] = anon inactive folios to scan; nr[1] = anon active folios to scan
2322 * nr[2] = file inactive folios to scan; nr[3] = file active folios to scan
2323 */
2324static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2325 unsigned long *nr)
2326{
2327 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2328 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2329 unsigned long anon_cost, file_cost, total_cost;
2330 int swappiness = mem_cgroup_swappiness(memcg);
2331 u64 fraction[ANON_AND_FILE];
2332 u64 denominator = 0; /* gcc */
2333 enum scan_balance scan_balance;
2334 unsigned long ap, fp;
2335 enum lru_list lru;
2336
2337 /* If we have no swap space, do not bother scanning anon folios. */
2338 if (!sc->may_swap || !can_reclaim_anon_pages(memcg, nid: pgdat->node_id, sc)) {
2339 scan_balance = SCAN_FILE;
2340 goto out;
2341 }
2342
2343 /*
2344 * Global reclaim will swap to prevent OOM even with no
2345 * swappiness, but memcg users want to use this knob to
2346 * disable swapping for individual groups completely when
2347 * using the memory controller's swap limit feature would be
2348 * too expensive.
2349 */
2350 if (cgroup_reclaim(sc) && !swappiness) {
2351 scan_balance = SCAN_FILE;
2352 goto out;
2353 }
2354
2355 /*
2356 * Do not apply any pressure balancing cleverness when the
2357 * system is close to OOM, scan both anon and file equally
2358 * (unless the swappiness setting disagrees with swapping).
2359 */
2360 if (!sc->priority && swappiness) {
2361 scan_balance = SCAN_EQUAL;
2362 goto out;
2363 }
2364
2365 /*
2366 * If the system is almost out of file pages, force-scan anon.
2367 */
2368 if (sc->file_is_tiny) {
2369 scan_balance = SCAN_ANON;
2370 goto out;
2371 }
2372
2373 /*
2374 * If there is enough inactive page cache, we do not reclaim
2375 * anything from the anonymous working right now.
2376 */
2377 if (sc->cache_trim_mode) {
2378 scan_balance = SCAN_FILE;
2379 goto out;
2380 }
2381
2382 scan_balance = SCAN_FRACT;
2383 /*
2384 * Calculate the pressure balance between anon and file pages.
2385 *
2386 * The amount of pressure we put on each LRU is inversely
2387 * proportional to the cost of reclaiming each list, as
2388 * determined by the share of pages that are refaulting, times
2389 * the relative IO cost of bringing back a swapped out
2390 * anonymous page vs reloading a filesystem page (swappiness).
2391 *
2392 * Although we limit that influence to ensure no list gets
2393 * left behind completely: at least a third of the pressure is
2394 * applied, before swappiness.
2395 *
2396 * With swappiness at 100, anon and file have equal IO cost.
2397 */
2398 total_cost = sc->anon_cost + sc->file_cost;
2399 anon_cost = total_cost + sc->anon_cost;
2400 file_cost = total_cost + sc->file_cost;
2401 total_cost = anon_cost + file_cost;
2402
2403 ap = swappiness * (total_cost + 1);
2404 ap /= anon_cost + 1;
2405
2406 fp = (200 - swappiness) * (total_cost + 1);
2407 fp /= file_cost + 1;
2408
2409 fraction[0] = ap;
2410 fraction[1] = fp;
2411 denominator = ap + fp;
2412out:
2413 for_each_evictable_lru(lru) {
2414 int file = is_file_lru(lru);
2415 unsigned long lruvec_size;
2416 unsigned long low, min;
2417 unsigned long scan;
2418
2419 lruvec_size = lruvec_lru_size(lruvec, lru, zone_idx: sc->reclaim_idx);
2420 mem_cgroup_protection(root: sc->target_mem_cgroup, memcg,
2421 min: &min, low: &low);
2422
2423 if (min || low) {
2424 /*
2425 * Scale a cgroup's reclaim pressure by proportioning
2426 * its current usage to its memory.low or memory.min
2427 * setting.
2428 *
2429 * This is important, as otherwise scanning aggression
2430 * becomes extremely binary -- from nothing as we
2431 * approach the memory protection threshold, to totally
2432 * nominal as we exceed it. This results in requiring
2433 * setting extremely liberal protection thresholds. It
2434 * also means we simply get no protection at all if we
2435 * set it too low, which is not ideal.
2436 *
2437 * If there is any protection in place, we reduce scan
2438 * pressure by how much of the total memory used is
2439 * within protection thresholds.
2440 *
2441 * There is one special case: in the first reclaim pass,
2442 * we skip over all groups that are within their low
2443 * protection. If that fails to reclaim enough pages to
2444 * satisfy the reclaim goal, we come back and override
2445 * the best-effort low protection. However, we still
2446 * ideally want to honor how well-behaved groups are in
2447 * that case instead of simply punishing them all
2448 * equally. As such, we reclaim them based on how much
2449 * memory they are using, reducing the scan pressure
2450 * again by how much of the total memory used is under
2451 * hard protection.
2452 */
2453 unsigned long cgroup_size = mem_cgroup_size(memcg);
2454 unsigned long protection;
2455
2456 /* memory.low scaling, make sure we retry before OOM */
2457 if (!sc->memcg_low_reclaim && low > min) {
2458 protection = low;
2459 sc->memcg_low_skipped = 1;
2460 } else {
2461 protection = min;
2462 }
2463
2464 /* Avoid TOCTOU with earlier protection check */
2465 cgroup_size = max(cgroup_size, protection);
2466
2467 scan = lruvec_size - lruvec_size * protection /
2468 (cgroup_size + 1);
2469
2470 /*
2471 * Minimally target SWAP_CLUSTER_MAX pages to keep
2472 * reclaim moving forwards, avoiding decrementing
2473 * sc->priority further than desirable.
2474 */
2475 scan = max(scan, SWAP_CLUSTER_MAX);
2476 } else {
2477 scan = lruvec_size;
2478 }
2479
2480 scan >>= sc->priority;
2481
2482 /*
2483 * If the cgroup's already been deleted, make sure to
2484 * scrape out the remaining cache.
2485 */
2486 if (!scan && !mem_cgroup_online(memcg))
2487 scan = min(lruvec_size, SWAP_CLUSTER_MAX);
2488
2489 switch (scan_balance) {
2490 case SCAN_EQUAL:
2491 /* Scan lists relative to size */
2492 break;
2493 case SCAN_FRACT:
2494 /*
2495 * Scan types proportional to swappiness and
2496 * their relative recent reclaim efficiency.
2497 * Make sure we don't miss the last page on
2498 * the offlined memory cgroups because of a
2499 * round-off error.
2500 */
2501 scan = mem_cgroup_online(memcg) ?
2502 div64_u64(dividend: scan * fraction[file], divisor: denominator) :
2503 DIV64_U64_ROUND_UP(scan * fraction[file],
2504 denominator);
2505 break;
2506 case SCAN_FILE:
2507 case SCAN_ANON:
2508 /* Scan one type exclusively */
2509 if ((scan_balance == SCAN_FILE) != file)
2510 scan = 0;
2511 break;
2512 default:
2513 /* Look ma, no brain */
2514 BUG();
2515 }
2516
2517 nr[lru] = scan;
2518 }
2519}
2520
2521/*
2522 * Anonymous LRU management is a waste if there is
2523 * ultimately no way to reclaim the memory.
2524 */
2525static bool can_age_anon_pages(struct pglist_data *pgdat,
2526 struct scan_control *sc)
2527{
2528 /* Aging the anon LRU is valuable if swap is present: */
2529 if (total_swap_pages > 0)
2530 return true;
2531
2532 /* Also valuable if anon pages can be demoted: */
2533 return can_demote(nid: pgdat->node_id, sc);
2534}
2535
2536#ifdef CONFIG_LRU_GEN
2537
2538#ifdef CONFIG_LRU_GEN_ENABLED
2539DEFINE_STATIC_KEY_ARRAY_TRUE(lru_gen_caps, NR_LRU_GEN_CAPS);
2540#define get_cap(cap) static_branch_likely(&lru_gen_caps[cap])
2541#else
2542DEFINE_STATIC_KEY_ARRAY_FALSE(lru_gen_caps, NR_LRU_GEN_CAPS);
2543#define get_cap(cap) static_branch_unlikely(&lru_gen_caps[cap])
2544#endif
2545
2546static bool should_walk_mmu(void)
2547{
2548 return arch_has_hw_pte_young() && get_cap(LRU_GEN_MM_WALK);
2549}
2550
2551static bool should_clear_pmd_young(void)
2552{
2553 return arch_has_hw_nonleaf_pmd_young() && get_cap(LRU_GEN_NONLEAF_YOUNG);
2554}
2555
2556/******************************************************************************
2557 * shorthand helpers
2558 ******************************************************************************/
2559
2560#define LRU_REFS_FLAGS (BIT(PG_referenced) | BIT(PG_workingset))
2561
2562#define DEFINE_MAX_SEQ(lruvec) \
2563 unsigned long max_seq = READ_ONCE((lruvec)->lrugen.max_seq)
2564
2565#define DEFINE_MIN_SEQ(lruvec) \
2566 unsigned long min_seq[ANON_AND_FILE] = { \
2567 READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_ANON]), \
2568 READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_FILE]), \
2569 }
2570
2571#define for_each_gen_type_zone(gen, type, zone) \
2572 for ((gen) = 0; (gen) < MAX_NR_GENS; (gen)++) \
2573 for ((type) = 0; (type) < ANON_AND_FILE; (type)++) \
2574 for ((zone) = 0; (zone) < MAX_NR_ZONES; (zone)++)
2575
2576#define get_memcg_gen(seq) ((seq) % MEMCG_NR_GENS)
2577#define get_memcg_bin(bin) ((bin) % MEMCG_NR_BINS)
2578
2579static struct lruvec *get_lruvec(struct mem_cgroup *memcg, int nid)
2580{
2581 struct pglist_data *pgdat = NODE_DATA(nid);
2582
2583#ifdef CONFIG_MEMCG
2584 if (memcg) {
2585 struct lruvec *lruvec = &memcg->nodeinfo[nid]->lruvec;
2586
2587 /* see the comment in mem_cgroup_lruvec() */
2588 if (!lruvec->pgdat)
2589 lruvec->pgdat = pgdat;
2590
2591 return lruvec;
2592 }
2593#endif
2594 VM_WARN_ON_ONCE(!mem_cgroup_disabled());
2595
2596 return &pgdat->__lruvec;
2597}
2598
2599static int get_swappiness(struct lruvec *lruvec, struct scan_control *sc)
2600{
2601 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2602 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2603
2604 if (!sc->may_swap)
2605 return 0;
2606
2607 if (!can_demote(nid: pgdat->node_id, sc) &&
2608 mem_cgroup_get_nr_swap_pages(memcg) < MIN_LRU_BATCH)
2609 return 0;
2610
2611 return mem_cgroup_swappiness(memcg);
2612}
2613
2614static int get_nr_gens(struct lruvec *lruvec, int type)
2615{
2616 return lruvec->lrugen.max_seq - lruvec->lrugen.min_seq[type] + 1;
2617}
2618
2619static bool __maybe_unused seq_is_valid(struct lruvec *lruvec)
2620{
2621 /* see the comment on lru_gen_folio */
2622 return get_nr_gens(lruvec, type: LRU_GEN_FILE) >= MIN_NR_GENS &&
2623 get_nr_gens(lruvec, type: LRU_GEN_FILE) <= get_nr_gens(lruvec, type: LRU_GEN_ANON) &&
2624 get_nr_gens(lruvec, type: LRU_GEN_ANON) <= MAX_NR_GENS;
2625}
2626
2627/******************************************************************************
2628 * Bloom filters
2629 ******************************************************************************/
2630
2631/*
2632 * Bloom filters with m=1<<15, k=2 and the false positive rates of ~1/5 when
2633 * n=10,000 and ~1/2 when n=20,000, where, conventionally, m is the number of
2634 * bits in a bitmap, k is the number of hash functions and n is the number of
2635 * inserted items.
2636 *
2637 * Page table walkers use one of the two filters to reduce their search space.
2638 * To get rid of non-leaf entries that no longer have enough leaf entries, the
2639 * aging uses the double-buffering technique to flip to the other filter each
2640 * time it produces a new generation. For non-leaf entries that have enough
2641 * leaf entries, the aging carries them over to the next generation in
2642 * walk_pmd_range(); the eviction also report them when walking the rmap
2643 * in lru_gen_look_around().
2644 *
2645 * For future optimizations:
2646 * 1. It's not necessary to keep both filters all the time. The spare one can be
2647 * freed after the RCU grace period and reallocated if needed again.
2648 * 2. And when reallocating, it's worth scaling its size according to the number
2649 * of inserted entries in the other filter, to reduce the memory overhead on
2650 * small systems and false positives on large systems.
2651 * 3. Jenkins' hash function is an alternative to Knuth's.
2652 */
2653#define BLOOM_FILTER_SHIFT 15
2654
2655static inline int filter_gen_from_seq(unsigned long seq)
2656{
2657 return seq % NR_BLOOM_FILTERS;
2658}
2659
2660static void get_item_key(void *item, int *key)
2661{
2662 u32 hash = hash_ptr(ptr: item, BLOOM_FILTER_SHIFT * 2);
2663
2664 BUILD_BUG_ON(BLOOM_FILTER_SHIFT * 2 > BITS_PER_TYPE(u32));
2665
2666 key[0] = hash & (BIT(BLOOM_FILTER_SHIFT) - 1);
2667 key[1] = hash >> BLOOM_FILTER_SHIFT;
2668}
2669
2670static bool test_bloom_filter(struct lruvec *lruvec, unsigned long seq, void *item)
2671{
2672 int key[2];
2673 unsigned long *filter;
2674 int gen = filter_gen_from_seq(seq);
2675
2676 filter = READ_ONCE(lruvec->mm_state.filters[gen]);
2677 if (!filter)
2678 return true;
2679
2680 get_item_key(item, key);
2681
2682 return test_bit(key[0], filter) && test_bit(key[1], filter);
2683}
2684
2685static void update_bloom_filter(struct lruvec *lruvec, unsigned long seq, void *item)
2686{
2687 int key[2];
2688 unsigned long *filter;
2689 int gen = filter_gen_from_seq(seq);
2690
2691 filter = READ_ONCE(lruvec->mm_state.filters[gen]);
2692 if (!filter)
2693 return;
2694
2695 get_item_key(item, key);
2696
2697 if (!test_bit(key[0], filter))
2698 set_bit(nr: key[0], addr: filter);
2699 if (!test_bit(key[1], filter))
2700 set_bit(nr: key[1], addr: filter);
2701}
2702
2703static void reset_bloom_filter(struct lruvec *lruvec, unsigned long seq)
2704{
2705 unsigned long *filter;
2706 int gen = filter_gen_from_seq(seq);
2707
2708 filter = lruvec->mm_state.filters[gen];
2709 if (filter) {
2710 bitmap_clear(map: filter, start: 0, BIT(BLOOM_FILTER_SHIFT));
2711 return;
2712 }
2713
2714 filter = bitmap_zalloc(BIT(BLOOM_FILTER_SHIFT),
2715 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
2716 WRITE_ONCE(lruvec->mm_state.filters[gen], filter);
2717}
2718
2719/******************************************************************************
2720 * mm_struct list
2721 ******************************************************************************/
2722
2723static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg)
2724{
2725 static struct lru_gen_mm_list mm_list = {
2726 .fifo = LIST_HEAD_INIT(mm_list.fifo),
2727 .lock = __SPIN_LOCK_UNLOCKED(mm_list.lock),
2728 };
2729
2730#ifdef CONFIG_MEMCG
2731 if (memcg)
2732 return &memcg->mm_list;
2733#endif
2734 VM_WARN_ON_ONCE(!mem_cgroup_disabled());
2735
2736 return &mm_list;
2737}
2738
2739void lru_gen_add_mm(struct mm_struct *mm)
2740{
2741 int nid;
2742 struct mem_cgroup *memcg = get_mem_cgroup_from_mm(mm);
2743 struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
2744
2745 VM_WARN_ON_ONCE(!list_empty(&mm->lru_gen.list));
2746#ifdef CONFIG_MEMCG
2747 VM_WARN_ON_ONCE(mm->lru_gen.memcg);
2748 mm->lru_gen.memcg = memcg;
2749#endif
2750 spin_lock(lock: &mm_list->lock);
2751
2752 for_each_node_state(nid, N_MEMORY) {
2753 struct lruvec *lruvec = get_lruvec(memcg, nid);
2754
2755 /* the first addition since the last iteration */
2756 if (lruvec->mm_state.tail == &mm_list->fifo)
2757 lruvec->mm_state.tail = &mm->lru_gen.list;
2758 }
2759
2760 list_add_tail(new: &mm->lru_gen.list, head: &mm_list->fifo);
2761
2762 spin_unlock(lock: &mm_list->lock);
2763}
2764
2765void lru_gen_del_mm(struct mm_struct *mm)
2766{
2767 int nid;
2768 struct lru_gen_mm_list *mm_list;
2769 struct mem_cgroup *memcg = NULL;
2770
2771 if (list_empty(head: &mm->lru_gen.list))
2772 return;
2773
2774#ifdef CONFIG_MEMCG
2775 memcg = mm->lru_gen.memcg;
2776#endif
2777 mm_list = get_mm_list(memcg);
2778
2779 spin_lock(lock: &mm_list->lock);
2780
2781 for_each_node(nid) {
2782 struct lruvec *lruvec = get_lruvec(memcg, nid);
2783
2784 /* where the current iteration continues after */
2785 if (lruvec->mm_state.head == &mm->lru_gen.list)
2786 lruvec->mm_state.head = lruvec->mm_state.head->prev;
2787
2788 /* where the last iteration ended before */
2789 if (lruvec->mm_state.tail == &mm->lru_gen.list)
2790 lruvec->mm_state.tail = lruvec->mm_state.tail->next;
2791 }
2792
2793 list_del_init(entry: &mm->lru_gen.list);
2794
2795 spin_unlock(lock: &mm_list->lock);
2796
2797#ifdef CONFIG_MEMCG
2798 mem_cgroup_put(memcg: mm->lru_gen.memcg);
2799 mm->lru_gen.memcg = NULL;
2800#endif
2801}
2802
2803#ifdef CONFIG_MEMCG
2804void lru_gen_migrate_mm(struct mm_struct *mm)
2805{
2806 struct mem_cgroup *memcg;
2807 struct task_struct *task = rcu_dereference_protected(mm->owner, true);
2808
2809 VM_WARN_ON_ONCE(task->mm != mm);
2810 lockdep_assert_held(&task->alloc_lock);
2811
2812 /* for mm_update_next_owner() */
2813 if (mem_cgroup_disabled())
2814 return;
2815
2816 /* migration can happen before addition */
2817 if (!mm->lru_gen.memcg)
2818 return;
2819
2820 rcu_read_lock();
2821 memcg = mem_cgroup_from_task(p: task);
2822 rcu_read_unlock();
2823 if (memcg == mm->lru_gen.memcg)
2824 return;
2825
2826 VM_WARN_ON_ONCE(list_empty(&mm->lru_gen.list));
2827
2828 lru_gen_del_mm(mm);
2829 lru_gen_add_mm(mm);
2830}
2831#endif
2832
2833static void reset_mm_stats(struct lruvec *lruvec, struct lru_gen_mm_walk *walk, bool last)
2834{
2835 int i;
2836 int hist;
2837
2838 lockdep_assert_held(&get_mm_list(lruvec_memcg(lruvec))->lock);
2839
2840 if (walk) {
2841 hist = lru_hist_from_seq(seq: walk->max_seq);
2842
2843 for (i = 0; i < NR_MM_STATS; i++) {
2844 WRITE_ONCE(lruvec->mm_state.stats[hist][i],
2845 lruvec->mm_state.stats[hist][i] + walk->mm_stats[i]);
2846 walk->mm_stats[i] = 0;
2847 }
2848 }
2849
2850 if (NR_HIST_GENS > 1 && last) {
2851 hist = lru_hist_from_seq(seq: lruvec->mm_state.seq + 1);
2852
2853 for (i = 0; i < NR_MM_STATS; i++)
2854 WRITE_ONCE(lruvec->mm_state.stats[hist][i], 0);
2855 }
2856}
2857
2858static bool should_skip_mm(struct mm_struct *mm, struct lru_gen_mm_walk *walk)
2859{
2860 int type;
2861 unsigned long size = 0;
2862 struct pglist_data *pgdat = lruvec_pgdat(lruvec: walk->lruvec);
2863 int key = pgdat->node_id % BITS_PER_TYPE(mm->lru_gen.bitmap);
2864
2865 if (!walk->force_scan && !test_bit(key, &mm->lru_gen.bitmap))
2866 return true;
2867
2868 clear_bit(nr: key, addr: &mm->lru_gen.bitmap);
2869
2870 for (type = !walk->can_swap; type < ANON_AND_FILE; type++) {
2871 size += type ? get_mm_counter(mm, member: MM_FILEPAGES) :
2872 get_mm_counter(mm, member: MM_ANONPAGES) +
2873 get_mm_counter(mm, member: MM_SHMEMPAGES);
2874 }
2875
2876 if (size < MIN_LRU_BATCH)
2877 return true;
2878
2879 return !mmget_not_zero(mm);
2880}
2881
2882static bool iterate_mm_list(struct lruvec *lruvec, struct lru_gen_mm_walk *walk,
2883 struct mm_struct **iter)
2884{
2885 bool first = false;
2886 bool last = false;
2887 struct mm_struct *mm = NULL;
2888 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2889 struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
2890 struct lru_gen_mm_state *mm_state = &lruvec->mm_state;
2891
2892 /*
2893 * mm_state->seq is incremented after each iteration of mm_list. There
2894 * are three interesting cases for this page table walker:
2895 * 1. It tries to start a new iteration with a stale max_seq: there is
2896 * nothing left to do.
2897 * 2. It started the next iteration: it needs to reset the Bloom filter
2898 * so that a fresh set of PTE tables can be recorded.
2899 * 3. It ended the current iteration: it needs to reset the mm stats
2900 * counters and tell its caller to increment max_seq.
2901 */
2902 spin_lock(lock: &mm_list->lock);
2903
2904 VM_WARN_ON_ONCE(mm_state->seq + 1 < walk->max_seq);
2905
2906 if (walk->max_seq <= mm_state->seq)
2907 goto done;
2908
2909 if (!mm_state->head)
2910 mm_state->head = &mm_list->fifo;
2911
2912 if (mm_state->head == &mm_list->fifo)
2913 first = true;
2914
2915 do {
2916 mm_state->head = mm_state->head->next;
2917 if (mm_state->head == &mm_list->fifo) {
2918 WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
2919 last = true;
2920 break;
2921 }
2922
2923 /* force scan for those added after the last iteration */
2924 if (!mm_state->tail || mm_state->tail == mm_state->head) {
2925 mm_state->tail = mm_state->head->next;
2926 walk->force_scan = true;
2927 }
2928
2929 mm = list_entry(mm_state->head, struct mm_struct, lru_gen.list);
2930 if (should_skip_mm(mm, walk))
2931 mm = NULL;
2932 } while (!mm);
2933done:
2934 if (*iter || last)
2935 reset_mm_stats(lruvec, walk, last);
2936
2937 spin_unlock(lock: &mm_list->lock);
2938
2939 if (mm && first)
2940 reset_bloom_filter(lruvec, seq: walk->max_seq + 1);
2941
2942 if (*iter)
2943 mmput_async(*iter);
2944
2945 *iter = mm;
2946
2947 return last;
2948}
2949
2950static bool iterate_mm_list_nowalk(struct lruvec *lruvec, unsigned long max_seq)
2951{
2952 bool success = false;
2953 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2954 struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
2955 struct lru_gen_mm_state *mm_state = &lruvec->mm_state;
2956
2957 spin_lock(lock: &mm_list->lock);
2958
2959 VM_WARN_ON_ONCE(mm_state->seq + 1 < max_seq);
2960
2961 if (max_seq > mm_state->seq) {
2962 mm_state->head = NULL;
2963 mm_state->tail = NULL;
2964 WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
2965 reset_mm_stats(lruvec, NULL, last: true);
2966 success = true;
2967 }
2968
2969 spin_unlock(lock: &mm_list->lock);
2970
2971 return success;
2972}
2973
2974/******************************************************************************
2975 * PID controller
2976 ******************************************************************************/
2977
2978/*
2979 * A feedback loop based on Proportional-Integral-Derivative (PID) controller.
2980 *
2981 * The P term is refaulted/(evicted+protected) from a tier in the generation
2982 * currently being evicted; the I term is the exponential moving average of the
2983 * P term over the generations previously evicted, using the smoothing factor
2984 * 1/2; the D term isn't supported.
2985 *
2986 * The setpoint (SP) is always the first tier of one type; the process variable
2987 * (PV) is either any tier of the other type or any other tier of the same
2988 * type.
2989 *
2990 * The error is the difference between the SP and the PV; the correction is to
2991 * turn off protection when SP>PV or turn on protection when SP<PV.
2992 *
2993 * For future optimizations:
2994 * 1. The D term may discount the other two terms over time so that long-lived
2995 * generations can resist stale information.
2996 */
2997struct ctrl_pos {
2998 unsigned long refaulted;
2999 unsigned long total;
3000 int gain;
3001};
3002
3003static void read_ctrl_pos(struct lruvec *lruvec, int type, int tier, int gain,
3004 struct ctrl_pos *pos)
3005{
3006 struct lru_gen_folio *lrugen = &lruvec->lrugen;
3007 int hist = lru_hist_from_seq(seq: lrugen->min_seq[type]);
3008
3009 pos->refaulted = lrugen->avg_refaulted[type][tier] +
3010 atomic_long_read(v: &lrugen->refaulted[hist][type][tier]);
3011 pos->total = lrugen->avg_total[type][tier] +
3012 atomic_long_read(v: &lrugen->evicted[hist][type][tier]);
3013 if (tier)
3014 pos->total += lrugen->protected[hist][type][tier - 1];
3015 pos->gain = gain;
3016}
3017
3018static void reset_ctrl_pos(struct lruvec *lruvec, int type, bool carryover)
3019{
3020 int hist, tier;
3021 struct lru_gen_folio *lrugen = &lruvec->lrugen;
3022 bool clear = carryover ? NR_HIST_GENS == 1 : NR_HIST_GENS > 1;
3023 unsigned long seq = carryover ? lrugen->min_seq[type] : lrugen->max_seq + 1;
3024
3025 lockdep_assert_held(&lruvec->lru_lock);
3026
3027 if (!carryover && !clear)
3028 return;
3029
3030 hist = lru_hist_from_seq(seq);
3031
3032 for (tier = 0; tier < MAX_NR_TIERS; tier++) {
3033 if (carryover) {
3034 unsigned long sum;
3035
3036 sum = lrugen->avg_refaulted[type][tier] +
3037 atomic_long_read(v: &lrugen->refaulted[hist][type][tier]);
3038 WRITE_ONCE(lrugen->avg_refaulted[type][tier], sum / 2);
3039
3040 sum = lrugen->avg_total[type][tier] +
3041 atomic_long_read(v: &lrugen->evicted[hist][type][tier]);
3042 if (tier)
3043 sum += lrugen->protected[hist][type][tier - 1];
3044 WRITE_ONCE(lrugen->avg_total[type][tier], sum / 2);
3045 }
3046
3047 if (clear) {
3048 atomic_long_set(v: &lrugen->refaulted[hist][type][tier], i: 0);
3049 atomic_long_set(v: &lrugen->evicted[hist][type][tier], i: 0);
3050 if (tier)
3051 WRITE_ONCE(lrugen->protected[hist][type][tier - 1], 0);
3052 }
3053 }
3054}
3055
3056static bool positive_ctrl_err(struct ctrl_pos *sp, struct ctrl_pos *pv)
3057{
3058 /*
3059 * Return true if the PV has a limited number of refaults or a lower
3060 * refaulted/total than the SP.
3061 */
3062 return pv->refaulted < MIN_LRU_BATCH ||
3063 pv->refaulted * (sp->total + MIN_LRU_BATCH) * sp->gain <=
3064 (sp->refaulted + 1) * pv->total * pv->gain;
3065}
3066
3067/******************************************************************************
3068 * the aging
3069 ******************************************************************************/
3070
3071/* promote pages accessed through page tables */
3072static int folio_update_gen(struct folio *folio, int gen)
3073{
3074 unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
3075
3076 VM_WARN_ON_ONCE(gen >= MAX_NR_GENS);
3077 VM_WARN_ON_ONCE(!rcu_read_lock_held());
3078
3079 do {
3080 /* lru_gen_del_folio() has isolated this page? */
3081 if (!(old_flags & LRU_GEN_MASK)) {
3082 /* for shrink_folio_list() */
3083 new_flags = old_flags | BIT(PG_referenced);
3084 continue;
3085 }
3086
3087 new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS);
3088 new_flags |= (gen + 1UL) << LRU_GEN_PGOFF;
3089 } while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
3090
3091 return ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3092}
3093
3094/* protect pages accessed multiple times through file descriptors */
3095static int folio_inc_gen(struct lruvec *lruvec, struct folio *folio, bool reclaiming)
3096{
3097 int type = folio_is_file_lru(folio);
3098 struct lru_gen_folio *lrugen = &lruvec->lrugen;
3099 int new_gen, old_gen = lru_gen_from_seq(seq: lrugen->min_seq[type]);
3100 unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
3101
3102 VM_WARN_ON_ONCE_FOLIO(!(old_flags & LRU_GEN_MASK), folio);
3103
3104 do {
3105 new_gen = ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3106 /* folio_update_gen() has promoted this page? */
3107 if (new_gen >= 0 && new_gen != old_gen)
3108 return new_gen;
3109
3110 new_gen = (old_gen + 1) % MAX_NR_GENS;
3111
3112 new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS);
3113 new_flags |= (new_gen + 1UL) << LRU_GEN_PGOFF;
3114 /* for folio_end_writeback() */
3115 if (reclaiming)
3116 new_flags |= BIT(PG_reclaim);
3117 } while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
3118
3119 lru_gen_update_size(lruvec, folio, old_gen, new_gen);
3120
3121 return new_gen;
3122}
3123
3124static void update_batch_size(struct lru_gen_mm_walk *walk, struct folio *folio,
3125 int old_gen, int new_gen)
3126{
3127 int type = folio_is_file_lru(folio);
3128 int zone = folio_zonenum(folio);
3129 int delta = folio_nr_pages(folio);
3130
3131 VM_WARN_ON_ONCE(old_gen >= MAX_NR_GENS);
3132 VM_WARN_ON_ONCE(new_gen >= MAX_NR_GENS);
3133
3134 walk->batched++;
3135
3136 walk->nr_pages[old_gen][type][zone] -= delta;
3137 walk->nr_pages[new_gen][type][zone] += delta;
3138}
3139
3140static void reset_batch_size(struct lruvec *lruvec, struct lru_gen_mm_walk *walk)
3141{
3142 int gen, type, zone;
3143 struct lru_gen_folio *lrugen = &lruvec->lrugen;
3144
3145 walk->batched = 0;
3146
3147 for_each_gen_type_zone(gen, type, zone) {
3148 enum lru_list lru = type * LRU_INACTIVE_FILE;
3149 int delta = walk->nr_pages[gen][type][zone];
3150
3151 if (!delta)
3152 continue;
3153
3154 walk->nr_pages[gen][type][zone] = 0;
3155 WRITE_ONCE(lrugen->nr_pages[gen][type][zone],
3156 lrugen->nr_pages[gen][type][zone] + delta);
3157
3158 if (lru_gen_is_active(lruvec, gen))
3159 lru += LRU_ACTIVE;
3160 __update_lru_size(lruvec, lru, zone, delta);
3161 }
3162}
3163
3164static int should_skip_vma(unsigned long start, unsigned long end, struct mm_walk *args)
3165{
3166 struct address_space *mapping;
3167 struct vm_area_struct *vma = args->vma;
3168 struct lru_gen_mm_walk *walk = args->private;
3169
3170 if (!vma_is_accessible(vma))
3171 return true;
3172
3173 if (is_vm_hugetlb_page(vma))
3174 return true;
3175
3176 if (!vma_has_recency(vma))
3177 return true;
3178
3179 if (vma->vm_flags & (VM_LOCKED | VM_SPECIAL))
3180 return true;
3181
3182 if (vma == get_gate_vma(mm: vma->vm_mm))
3183 return true;
3184
3185 if (vma_is_anonymous(vma))
3186 return !walk->can_swap;
3187
3188 if (WARN_ON_ONCE(!vma->vm_file || !vma->vm_file->f_mapping))
3189 return true;
3190
3191 mapping = vma->vm_file->f_mapping;
3192 if (mapping_unevictable(mapping))
3193 return true;
3194
3195 if (shmem_mapping(mapping))
3196 return !walk->can_swap;
3197
3198 /* to exclude special mappings like dax, etc. */
3199 return !mapping->a_ops->read_folio;
3200}
3201
3202/*
3203 * Some userspace memory allocators map many single-page VMAs. Instead of
3204 * returning back to the PGD table for each of such VMAs, finish an entire PMD
3205 * table to reduce zigzags and improve cache performance.
3206 */
3207static bool get_next_vma(unsigned long mask, unsigned long size, struct mm_walk *args,
3208 unsigned long *vm_start, unsigned long *vm_end)
3209{
3210 unsigned long start = round_up(*vm_end, size);
3211 unsigned long end = (start | ~mask) + 1;
3212 VMA_ITERATOR(vmi, args->mm, start);
3213
3214 VM_WARN_ON_ONCE(mask & size);
3215 VM_WARN_ON_ONCE((start & mask) != (*vm_start & mask));
3216
3217 for_each_vma(vmi, args->vma) {
3218 if (end && end <= args->vma->vm_start)
3219 return false;
3220
3221 if (should_skip_vma(start: args->vma->vm_start, end: args->vma->vm_end, args))
3222 continue;
3223
3224 *vm_start = max(start, args->vma->vm_start);
3225 *vm_end = min(end - 1, args->vma->vm_end - 1) + 1;
3226
3227 return true;
3228 }
3229
3230 return false;
3231}
3232
3233static unsigned long get_pte_pfn(pte_t pte, struct vm_area_struct *vma, unsigned long addr)
3234{
3235 unsigned long pfn = pte_pfn(pte);
3236
3237 VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3238
3239 if (!pte_present(a: pte) || is_zero_pfn(pfn))
3240 return -1;
3241
3242 if (WARN_ON_ONCE(pte_devmap(pte) || pte_special(pte)))
3243 return -1;
3244
3245 if (WARN_ON_ONCE(!pfn_valid(pfn)))
3246 return -1;
3247
3248 return pfn;
3249}
3250
3251#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
3252static unsigned long get_pmd_pfn(pmd_t pmd, struct vm_area_struct *vma, unsigned long addr)
3253{
3254 unsigned long pfn = pmd_pfn(pmd);
3255
3256 VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3257
3258 if (!pmd_present(pmd) || is_huge_zero_pmd(pmd))
3259 return -1;
3260
3261 if (WARN_ON_ONCE(pmd_devmap(pmd)))
3262 return -1;
3263
3264 if (WARN_ON_ONCE(!pfn_valid(pfn)))
3265 return -1;
3266
3267 return pfn;
3268}
3269#endif
3270
3271static struct folio *get_pfn_folio(unsigned long pfn, struct mem_cgroup *memcg,
3272 struct pglist_data *pgdat, bool can_swap)
3273{
3274 struct folio *folio;
3275
3276 /* try to avoid unnecessary memory loads */
3277 if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
3278 return NULL;
3279
3280 folio = pfn_folio(pfn);
3281 if (folio_nid(folio) != pgdat->node_id)
3282 return NULL;
3283
3284 if (folio_memcg_rcu(folio) != memcg)
3285 return NULL;
3286
3287 /* file VMAs can contain anon pages from COW */
3288 if (!folio_is_file_lru(folio) && !can_swap)
3289 return NULL;
3290
3291 return folio;
3292}
3293
3294static bool suitable_to_scan(int total, int young)
3295{
3296 int n = clamp_t(int, cache_line_size() / sizeof(pte_t), 2, 8);
3297
3298 /* suitable if the average number of young PTEs per cacheline is >=1 */
3299 return young * n >= total;
3300}
3301
3302static bool walk_pte_range(pmd_t *pmd, unsigned long start, unsigned long end,
3303 struct mm_walk *args)
3304{
3305 int i;
3306 pte_t *pte;
3307 spinlock_t *ptl;
3308 unsigned long addr;
3309 int total = 0;
3310 int young = 0;
3311 struct lru_gen_mm_walk *walk = args->private;
3312 struct mem_cgroup *memcg = lruvec_memcg(lruvec: walk->lruvec);
3313 struct pglist_data *pgdat = lruvec_pgdat(lruvec: walk->lruvec);
3314 int old_gen, new_gen = lru_gen_from_seq(seq: walk->max_seq);
3315
3316 pte = pte_offset_map_nolock(mm: args->mm, pmd, addr: start & PMD_MASK, ptlp: &ptl);
3317 if (!pte)
3318 return false;
3319 if (!spin_trylock(lock: ptl)) {
3320 pte_unmap(pte);
3321 return false;
3322 }
3323
3324 arch_enter_lazy_mmu_mode();
3325restart:
3326 for (i = pte_index(address: start), addr = start; addr != end; i++, addr += PAGE_SIZE) {
3327 unsigned long pfn;
3328 struct folio *folio;
3329 pte_t ptent = ptep_get(ptep: pte + i);
3330
3331 total++;
3332 walk->mm_stats[MM_LEAF_TOTAL]++;
3333
3334 pfn = get_pte_pfn(pte: ptent, vma: args->vma, addr);
3335 if (pfn == -1)
3336 continue;
3337
3338 if (!pte_young(pte: ptent)) {
3339 walk->mm_stats[MM_LEAF_OLD]++;
3340 continue;
3341 }
3342
3343 folio = get_pfn_folio(pfn, memcg, pgdat, can_swap: walk->can_swap);
3344 if (!folio)
3345 continue;
3346
3347 if (!ptep_test_and_clear_young(vma: args->vma, addr, ptep: pte + i))
3348 VM_WARN_ON_ONCE(true);
3349
3350 young++;
3351 walk->mm_stats[MM_LEAF_YOUNG]++;
3352
3353 if (pte_dirty(pte: ptent) && !folio_test_dirty(folio) &&
3354 !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
3355 !folio_test_swapcache(folio)))
3356 folio_mark_dirty(folio);
3357
3358 old_gen = folio_update_gen(folio, gen: new_gen);
3359 if (old_gen >= 0 && old_gen != new_gen)
3360 update_batch_size(walk, folio, old_gen, new_gen);
3361 }
3362
3363 if (i < PTRS_PER_PTE && get_next_vma(PMD_MASK, PAGE_SIZE, args, vm_start: &start, vm_end: &end))
3364 goto restart;
3365
3366 arch_leave_lazy_mmu_mode();
3367 pte_unmap_unlock(pte, ptl);
3368
3369 return suitable_to_scan(total, young);
3370}
3371
3372#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
3373static void walk_pmd_range_locked(pud_t *pud, unsigned long addr, struct vm_area_struct *vma,
3374 struct mm_walk *args, unsigned long *bitmap, unsigned long *first)
3375{
3376 int i;
3377 pmd_t *pmd;
3378 spinlock_t *ptl;
3379 struct lru_gen_mm_walk *walk = args->private;
3380 struct mem_cgroup *memcg = lruvec_memcg(lruvec: walk->lruvec);
3381 struct pglist_data *pgdat = lruvec_pgdat(lruvec: walk->lruvec);
3382 int old_gen, new_gen = lru_gen_from_seq(seq: walk->max_seq);
3383
3384 VM_WARN_ON_ONCE(pud_leaf(*pud));
3385
3386 /* try to batch at most 1+MIN_LRU_BATCH+1 entries */
3387 if (*first == -1) {
3388 *first = addr;
3389 bitmap_zero(dst: bitmap, MIN_LRU_BATCH);
3390 return;
3391 }
3392
3393 i = addr == -1 ? 0 : pmd_index(address: addr) - pmd_index(address: *first);
3394 if (i && i <= MIN_LRU_BATCH) {
3395 __set_bit(i - 1, bitmap);
3396 return;
3397 }
3398
3399 pmd = pmd_offset(pud, address: *first);
3400
3401 ptl = pmd_lockptr(mm: args->mm, pmd);
3402 if (!spin_trylock(lock: ptl))
3403 goto done;
3404
3405 arch_enter_lazy_mmu_mode();
3406
3407 do {
3408 unsigned long pfn;
3409 struct folio *folio;
3410
3411 /* don't round down the first address */
3412 addr = i ? (*first & PMD_MASK) + i * PMD_SIZE : *first;
3413
3414 pfn = get_pmd_pfn(pmd: pmd[i], vma, addr);
3415 if (pfn == -1)
3416 goto next;
3417
3418 if (!pmd_trans_huge(pmd: pmd[i])) {
3419 if (should_clear_pmd_young())
3420 pmdp_test_and_clear_young(vma, addr, pmdp: pmd + i);
3421 goto next;
3422 }
3423
3424 folio = get_pfn_folio(pfn, memcg, pgdat, can_swap: walk->can_swap);
3425 if (!folio)
3426 goto next;
3427
3428 if (!pmdp_test_and_clear_young(vma, addr, pmdp: pmd + i))
3429 goto next;
3430
3431 walk->mm_stats[MM_LEAF_YOUNG]++;
3432
3433 if (pmd_dirty(pmd: pmd[i]) && !folio_test_dirty(folio) &&
3434 !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
3435 !folio_test_swapcache(folio)))
3436 folio_mark_dirty(folio);
3437
3438 old_gen = folio_update_gen(folio, gen: new_gen);
3439 if (old_gen >= 0 && old_gen != new_gen)
3440 update_batch_size(walk, folio, old_gen, new_gen);
3441next:
3442 i = i > MIN_LRU_BATCH ? 0 : find_next_bit(addr: bitmap, MIN_LRU_BATCH, offset: i) + 1;
3443 } while (i <= MIN_LRU_BATCH);
3444
3445 arch_leave_lazy_mmu_mode();
3446 spin_unlock(lock: ptl);
3447done:
3448 *first = -1;
3449}
3450#else
3451static void walk_pmd_range_locked(pud_t *pud, unsigned long addr, struct vm_area_struct *vma,
3452 struct mm_walk *args, unsigned long *bitmap, unsigned long *first)
3453{
3454}
3455#endif
3456
3457static void walk_pmd_range(pud_t *pud, unsigned long start, unsigned long end,
3458 struct mm_walk *args)
3459{
3460 int i;
3461 pmd_t *pmd;
3462 unsigned long next;
3463 unsigned long addr;
3464 struct vm_area_struct *vma;
3465 DECLARE_BITMAP(bitmap, MIN_LRU_BATCH);
3466 unsigned long first = -1;
3467 struct lru_gen_mm_walk *walk = args->private;
3468
3469 VM_WARN_ON_ONCE(pud_leaf(*pud));
3470
3471 /*
3472 * Finish an entire PMD in two passes: the first only reaches to PTE
3473 * tables to avoid taking the PMD lock; the second, if necessary, takes
3474 * the PMD lock to clear the accessed bit in PMD entries.
3475 */
3476 pmd = pmd_offset(pud, address: start & PUD_MASK);
3477restart:
3478 /* walk_pte_range() may call get_next_vma() */
3479 vma = args->vma;
3480 for (i = pmd_index(address: start), addr = start; addr != end; i++, addr = next) {
3481 pmd_t val = pmdp_get_lockless(pmdp: pmd + i);
3482
3483 next = pmd_addr_end(addr, end);
3484
3485 if (!pmd_present(pmd: val) || is_huge_zero_pmd(pmd: val)) {
3486 walk->mm_stats[MM_LEAF_TOTAL]++;
3487 continue;
3488 }
3489
3490#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3491 if (pmd_trans_huge(pmd: val)) {
3492 unsigned long pfn = pmd_pfn(pmd: val);
3493 struct pglist_data *pgdat = lruvec_pgdat(lruvec: walk->lruvec);
3494
3495 walk->mm_stats[MM_LEAF_TOTAL]++;
3496
3497 if (!pmd_young(pmd: val)) {
3498 walk->mm_stats[MM_LEAF_OLD]++;
3499 continue;
3500 }
3501
3502 /* try to avoid unnecessary memory loads */
3503 if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
3504 continue;
3505
3506 walk_pmd_range_locked(pud, addr, vma, args, bitmap, first: &first);
3507 continue;
3508 }
3509#endif
3510 walk->mm_stats[MM_NONLEAF_TOTAL]++;
3511
3512 if (should_clear_pmd_young()) {
3513 if (!pmd_young(pmd: val))
3514 continue;
3515
3516 walk_pmd_range_locked(pud, addr, vma, args, bitmap, first: &first);
3517 }
3518
3519 if (!walk->force_scan && !test_bloom_filter(lruvec: walk->lruvec, seq: walk->max_seq, item: pmd + i))
3520 continue;
3521
3522 walk->mm_stats[MM_NONLEAF_FOUND]++;
3523
3524 if (!walk_pte_range(pmd: &val, start: addr, end: next, args))
3525 continue;
3526
3527 walk->mm_stats[MM_NONLEAF_ADDED]++;
3528
3529 /* carry over to the next generation */
3530 update_bloom_filter(lruvec: walk->lruvec, seq: walk->max_seq + 1, item: pmd + i);
3531 }
3532
3533 walk_pmd_range_locked(pud, addr: -1, vma, args, bitmap, first: &first);
3534
3535 if (i < PTRS_PER_PMD && get_next_vma(PUD_MASK, PMD_SIZE, args, vm_start: &start, vm_end: &end))
3536 goto restart;
3537}
3538
3539static int walk_pud_range(p4d_t *p4d, unsigned long start, unsigned long end,
3540 struct mm_walk *args)
3541{
3542 int i;
3543 pud_t *pud;
3544 unsigned long addr;
3545 unsigned long next;
3546 struct lru_gen_mm_walk *walk = args->private;
3547
3548 VM_WARN_ON_ONCE(p4d_leaf(*p4d));
3549
3550 pud = pud_offset(p4d, address: start & P4D_MASK);
3551restart:
3552 for (i = pud_index(address: start), addr = start; addr != end; i++, addr = next) {
3553 pud_t val = READ_ONCE(pud[i]);
3554
3555 next = pud_addr_end(addr, end);
3556
3557 if (!pud_present(pud: val) || WARN_ON_ONCE(pud_leaf(val)))
3558 continue;
3559
3560 walk_pmd_range(pud: &val, start: addr, end: next, args);
3561
3562 if (need_resched() || walk->batched >= MAX_LRU_BATCH) {
3563 end = (addr | ~PUD_MASK) + 1;
3564 goto done;
3565 }
3566 }
3567
3568 if (i < PTRS_PER_PUD && get_next_vma(P4D_MASK, PUD_SIZE, args, vm_start: &start, vm_end: &end))
3569 goto restart;
3570
3571 end = round_up(end, P4D_SIZE);
3572done:
3573 if (!end || !args->vma)
3574 return 1;
3575
3576 walk->next_addr = max(end, args->vma->vm_start);
3577
3578 return -EAGAIN;
3579}
3580
3581static void walk_mm(struct lruvec *lruvec, struct mm_struct *mm, struct lru_gen_mm_walk *walk)
3582{
3583 static const struct mm_walk_ops mm_walk_ops = {
3584 .test_walk = should_skip_vma,
3585 .p4d_entry = walk_pud_range,
3586 .walk_lock = PGWALK_RDLOCK,
3587 };
3588
3589 int err;
3590 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3591
3592 walk->next_addr = FIRST_USER_ADDRESS;
3593
3594 do {
3595 DEFINE_MAX_SEQ(lruvec);
3596
3597 err = -EBUSY;
3598
3599 /* another thread might have called inc_max_seq() */
3600 if (walk->max_seq != max_seq)
3601 break;
3602
3603 /* folio_update_gen() requires stable folio_memcg() */
3604 if (!mem_cgroup_trylock_pages(memcg))
3605 break;
3606
3607 /* the caller might be holding the lock for write */
3608 if (mmap_read_trylock(mm)) {
3609 err = walk_page_range(mm, start: walk->next_addr, ULONG_MAX, ops: &mm_walk_ops, private: walk);
3610
3611 mmap_read_unlock(mm);
3612 }
3613
3614 mem_cgroup_unlock_pages();
3615
3616 if (walk->batched) {
3617 spin_lock_irq(lock: &lruvec->lru_lock);
3618 reset_batch_size(lruvec, walk);
3619 spin_unlock_irq(lock: &lruvec->lru_lock);
3620 }
3621
3622 cond_resched();
3623 } while (err == -EAGAIN);
3624}
3625
3626static struct lru_gen_mm_walk *set_mm_walk(struct pglist_data *pgdat, bool force_alloc)
3627{
3628 struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
3629
3630 if (pgdat && current_is_kswapd()) {
3631 VM_WARN_ON_ONCE(walk);
3632
3633 walk = &pgdat->mm_walk;
3634 } else if (!walk && force_alloc) {
3635 VM_WARN_ON_ONCE(current_is_kswapd());
3636
3637 walk = kzalloc(size: sizeof(*walk), __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
3638 }
3639
3640 current->reclaim_state->mm_walk = walk;
3641
3642 return walk;
3643}
3644
3645static void clear_mm_walk(void)
3646{
3647 struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
3648
3649 VM_WARN_ON_ONCE(walk && memchr_inv(walk->nr_pages, 0, sizeof(walk->nr_pages)));
3650 VM_WARN_ON_ONCE(walk && memchr_inv(walk->mm_stats, 0, sizeof(walk->mm_stats)));
3651
3652 current->reclaim_state->mm_walk = NULL;
3653
3654 if (!current_is_kswapd())
3655 kfree(objp: walk);
3656}
3657
3658static bool inc_min_seq(struct lruvec *lruvec, int type, bool can_swap)
3659{
3660 int zone;
3661 int remaining = MAX_LRU_BATCH;
3662 struct lru_gen_folio *lrugen = &lruvec->lrugen;
3663 int new_gen, old_gen = lru_gen_from_seq(seq: lrugen->min_seq[type]);
3664
3665 if (type == LRU_GEN_ANON && !can_swap)
3666 goto done;
3667
3668 /* prevent cold/hot inversion if force_scan is true */
3669 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3670 struct list_head *head = &lrugen->folios[old_gen][type][zone];
3671
3672 while (!list_empty(head)) {
3673 struct folio *folio = lru_to_folio(head);
3674
3675 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
3676 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
3677 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
3678 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
3679
3680 new_gen = folio_inc_gen(lruvec, folio, false);
3681 list_move_tail(&folio->lru, &lrugen->folios[new_gen][type][zone]);
3682
3683 if (!--remaining)
3684 return false;
3685 }
3686 }
3687done:
3688 reset_ctrl_pos(lruvec, type, carryover: true);
3689 WRITE_ONCE(lrugen->min_seq[type], lrugen->min_seq[type] + 1);
3690
3691 return true;
3692}
3693
3694static bool try_to_inc_min_seq(struct lruvec *lruvec, bool can_swap)
3695{
3696 int gen, type, zone;
3697 bool success = false;
3698 struct lru_gen_folio *lrugen = &lruvec->lrugen;
3699 DEFINE_MIN_SEQ(lruvec);
3700
3701 VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
3702
3703 /* find the oldest populated generation */
3704 for (type = !can_swap; type < ANON_AND_FILE; type++) {
3705 while (min_seq[type] + MIN_NR_GENS <= lrugen->max_seq) {
3706 gen = lru_gen_from_seq(seq: min_seq[type]);
3707
3708 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3709 if (!list_empty(&lrugen->folios[gen][type][zone]))
3710 goto next;
3711 }
3712
3713 min_seq[type]++;
3714 }
3715next:
3716 ;
3717 }
3718
3719 /* see the comment on lru_gen_folio */
3720 if (can_swap) {
3721 min_seq[LRU_GEN_ANON] = min(min_seq[LRU_GEN_ANON], min_seq[LRU_GEN_FILE]);
3722 min_seq[LRU_GEN_FILE] = max(min_seq[LRU_GEN_ANON], lrugen->min_seq[LRU_GEN_FILE]);
3723 }
3724
3725 for (type = !can_swap; type < ANON_AND_FILE; type++) {
3726 if (min_seq[type] == lrugen->min_seq[type])
3727 continue;
3728
3729 reset_ctrl_pos(lruvec, type, carryover: true);
3730 WRITE_ONCE(lrugen->min_seq[type], min_seq[type]);
3731 success = true;
3732 }
3733
3734 return success;
3735}
3736
3737static void inc_max_seq(struct lruvec *lruvec, bool can_swap, bool force_scan)
3738{
3739 int prev, next;
3740 int type, zone;
3741 struct lru_gen_folio *lrugen = &lruvec->lrugen;
3742restart:
3743 spin_lock_irq(lock: &lruvec->lru_lock);
3744
3745 VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
3746
3747 for (type = ANON_AND_FILE - 1; type >= 0; type--) {
3748 if (get_nr_gens(lruvec, type) != MAX_NR_GENS)
3749 continue;
3750
3751 VM_WARN_ON_ONCE(!force_scan && (type == LRU_GEN_FILE || can_swap));
3752
3753 if (inc_min_seq(lruvec, type, can_swap))
3754 continue;
3755
3756 spin_unlock_irq(lock: &lruvec->lru_lock);
3757 cond_resched();
3758 goto restart;
3759 }
3760
3761 /*
3762 * Update the active/inactive LRU sizes for compatibility. Both sides of
3763 * the current max_seq need to be covered, since max_seq+1 can overlap
3764 * with min_seq[LRU_GEN_ANON] if swapping is constrained. And if they do
3765 * overlap, cold/hot inversion happens.
3766 */
3767 prev = lru_gen_from_seq(seq: lrugen->max_seq - 1);
3768 next = lru_gen_from_seq(seq: lrugen->max_seq + 1);
3769
3770 for (type = 0; type < ANON_AND_FILE; type++) {
3771 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3772 enum lru_list lru = type * LRU_INACTIVE_FILE;
3773 long delta = lrugen->nr_pages[prev][type][zone] -
3774 lrugen->nr_pages[next][type][zone];
3775
3776 if (!delta)
3777 continue;
3778
3779 __update_lru_size(lruvec, lru, zone, delta);
3780 __update_lru_size(lruvec, lru + LRU_ACTIVE, zone, -delta);
3781 }
3782 }
3783
3784 for (type = 0; type < ANON_AND_FILE; type++)
3785 reset_ctrl_pos(lruvec, type, carryover: false);
3786
3787 WRITE_ONCE(lrugen->timestamps[next], jiffies);
3788 /* make sure preceding modifications appear */
3789 smp_store_release(&lrugen->max_seq, lrugen->max_seq + 1);
3790
3791 spin_unlock_irq(lock: &lruvec->lru_lock);
3792}
3793
3794static bool try_to_inc_max_seq(struct lruvec *lruvec, unsigned long max_seq,
3795 struct scan_control *sc, bool can_swap, bool force_scan)
3796{
3797 bool success;
3798 struct lru_gen_mm_walk *walk;
3799 struct mm_struct *mm = NULL;
3800 struct lru_gen_folio *lrugen = &lruvec->lrugen;
3801
3802 VM_WARN_ON_ONCE(max_seq > READ_ONCE(lrugen->max_seq));
3803
3804 /* see the comment in iterate_mm_list() */
3805 if (max_seq <= READ_ONCE(lruvec->mm_state.seq)) {
3806 success = false;
3807 goto done;
3808 }
3809
3810 /*
3811 * If the hardware doesn't automatically set the accessed bit, fallback
3812 * to lru_gen_look_around(), which only clears the accessed bit in a
3813 * handful of PTEs. Spreading the work out over a period of time usually
3814 * is less efficient, but it avoids bursty page faults.
3815 */
3816 if (!should_walk_mmu()) {
3817 success = iterate_mm_list_nowalk(lruvec, max_seq);
3818 goto done;
3819 }
3820
3821 walk = set_mm_walk(NULL, force_alloc: true);
3822 if (!walk) {
3823 success = iterate_mm_list_nowalk(lruvec, max_seq);
3824 goto done;
3825 }
3826
3827 walk->lruvec = lruvec;
3828 walk->max_seq = max_seq;
3829 walk->can_swap = can_swap;
3830 walk->force_scan = force_scan;
3831
3832 do {
3833 success = iterate_mm_list(lruvec, walk, iter: &mm);
3834 if (mm)
3835 walk_mm(lruvec, mm, walk);
3836 } while (mm);
3837done:
3838 if (success)
3839 inc_max_seq(lruvec, can_swap, force_scan);
3840
3841 return success;
3842}
3843
3844/******************************************************************************
3845 * working set protection
3846 ******************************************************************************/
3847
3848static bool lruvec_is_sizable(struct lruvec *lruvec, struct scan_control *sc)
3849{
3850 int gen, type, zone;
3851 unsigned long total = 0;
3852 bool can_swap = get_swappiness(lruvec, sc);
3853 struct lru_gen_folio *lrugen = &lruvec->lrugen;
3854 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3855 DEFINE_MAX_SEQ(lruvec);
3856 DEFINE_MIN_SEQ(lruvec);
3857
3858 for (type = !can_swap; type < ANON_AND_FILE; type++) {
3859 unsigned long seq;
3860
3861 for (seq = min_seq[type]; seq <= max_seq; seq++) {
3862 gen = lru_gen_from_seq(seq);
3863
3864 for (zone = 0; zone < MAX_NR_ZONES; zone++)
3865 total += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
3866 }
3867 }
3868
3869 /* whether the size is big enough to be helpful */
3870 return mem_cgroup_online(memcg) ? (total >> sc->priority) : total;
3871}
3872
3873static bool lruvec_is_reclaimable(struct lruvec *lruvec, struct scan_control *sc,
3874 unsigned long min_ttl)
3875{
3876 int gen;
3877 unsigned long birth;
3878 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3879 DEFINE_MIN_SEQ(lruvec);
3880
3881 /* see the comment on lru_gen_folio */
3882 gen = lru_gen_from_seq(seq: min_seq[LRU_GEN_FILE]);
3883 birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
3884
3885 if (time_is_after_jiffies(birth + min_ttl))
3886 return false;
3887
3888 if (!lruvec_is_sizable(lruvec, sc))
3889 return false;
3890
3891 mem_cgroup_calculate_protection(NULL, memcg);
3892
3893 return !mem_cgroup_below_min(NULL, memcg);
3894}
3895
3896/* to protect the working set of the last N jiffies */
3897static unsigned long lru_gen_min_ttl __read_mostly;
3898
3899static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
3900{
3901 struct mem_cgroup *memcg;
3902 unsigned long min_ttl = READ_ONCE(lru_gen_min_ttl);
3903
3904 VM_WARN_ON_ONCE(!current_is_kswapd());
3905
3906 /* check the order to exclude compaction-induced reclaim */
3907 if (!min_ttl || sc->order || sc->priority == DEF_PRIORITY)
3908 return;
3909
3910 memcg = mem_cgroup_iter(NULL, NULL, NULL);
3911 do {
3912 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
3913
3914 if (lruvec_is_reclaimable(lruvec, sc, min_ttl)) {
3915 mem_cgroup_iter_break(NULL, memcg);
3916 return;
3917 }
3918
3919 cond_resched();
3920 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
3921
3922 /*
3923 * The main goal is to OOM kill if every generation from all memcgs is
3924 * younger than min_ttl. However, another possibility is all memcgs are
3925 * either too small or below min.
3926 */
3927 if (mutex_trylock(lock: &oom_lock)) {
3928 struct oom_control oc = {
3929 .gfp_mask = sc->gfp_mask,
3930 };
3931
3932 out_of_memory(oc: &oc);
3933
3934 mutex_unlock(lock: &oom_lock);
3935 }
3936}
3937
3938/******************************************************************************
3939 * rmap/PT walk feedback
3940 ******************************************************************************/
3941
3942/*
3943 * This function exploits spatial locality when shrink_folio_list() walks the
3944 * rmap. It scans the adjacent PTEs of a young PTE and promotes hot pages. If
3945 * the scan was done cacheline efficiently, it adds the PMD entry pointing to
3946 * the PTE table to the Bloom filter. This forms a feedback loop between the
3947 * eviction and the aging.
3948 */
3949void lru_gen_look_around(struct page_vma_mapped_walk *pvmw)
3950{
3951 int i;
3952 unsigned long start;
3953 unsigned long end;
3954 struct lru_gen_mm_walk *walk;
3955 int young = 0;
3956 pte_t *pte = pvmw->pte;
3957 unsigned long addr = pvmw->address;
3958 struct folio *folio = pfn_folio(pfn: pvmw->pfn);
3959 bool can_swap = !folio_is_file_lru(folio);
3960 struct mem_cgroup *memcg = folio_memcg(folio);
3961 struct pglist_data *pgdat = folio_pgdat(folio);
3962 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
3963 DEFINE_MAX_SEQ(lruvec);
3964 int old_gen, new_gen = lru_gen_from_seq(seq: max_seq);
3965
3966 lockdep_assert_held(pvmw->ptl);
3967 VM_WARN_ON_ONCE_FOLIO(folio_test_lru(folio), folio);
3968
3969 if (spin_is_contended(lock: pvmw->ptl))
3970 return;
3971
3972 /* avoid taking the LRU lock under the PTL when possible */
3973 walk = current->reclaim_state ? current->reclaim_state->mm_walk : NULL;
3974
3975 start = max(addr & PMD_MASK, pvmw->vma->vm_start);
3976 end = min(addr | ~PMD_MASK, pvmw->vma->vm_end - 1) + 1;
3977
3978 if (end - start > MIN_LRU_BATCH * PAGE_SIZE) {
3979 if (addr - start < MIN_LRU_BATCH * PAGE_SIZE / 2)
3980 end = start + MIN_LRU_BATCH * PAGE_SIZE;
3981 else if (end - addr < MIN_LRU_BATCH * PAGE_SIZE / 2)
3982 start = end - MIN_LRU_BATCH * PAGE_SIZE;
3983 else {
3984 start = addr - MIN_LRU_BATCH * PAGE_SIZE / 2;
3985 end = addr + MIN_LRU_BATCH * PAGE_SIZE / 2;
3986 }
3987 }
3988
3989 /* folio_update_gen() requires stable folio_memcg() */
3990 if (!mem_cgroup_trylock_pages(memcg))
3991 return;
3992
3993 arch_enter_lazy_mmu_mode();
3994
3995 pte -= (addr - start) / PAGE_SIZE;
3996
3997 for (i = 0, addr = start; addr != end; i++, addr += PAGE_SIZE) {
3998 unsigned long pfn;
3999 pte_t ptent = ptep_get(ptep: pte + i);
4000
4001 pfn = get_pte_pfn(pte: ptent, vma: pvmw->vma, addr);
4002 if (pfn == -1)
4003 continue;
4004
4005 if (!pte_young(pte: ptent))
4006 continue;
4007
4008 folio = get_pfn_folio(pfn, memcg, pgdat, can_swap);
4009 if (!folio)
4010 continue;
4011
4012 if (!ptep_test_and_clear_young(vma: pvmw->vma, addr, ptep: pte + i))
4013 VM_WARN_ON_ONCE(true);
4014
4015 young++;
4016
4017 if (pte_dirty(pte: ptent) && !folio_test_dirty(folio) &&
4018 !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
4019 !folio_test_swapcache(folio)))
4020 folio_mark_dirty(folio);
4021
4022 if (walk) {
4023 old_gen = folio_update_gen(folio, gen: new_gen);
4024 if (old_gen >= 0 && old_gen != new_gen)
4025 update_batch_size(walk, folio, old_gen, new_gen);
4026
4027 continue;
4028 }
4029
4030 old_gen = folio_lru_gen(folio);
4031 if (old_gen < 0)
4032 folio_set_referenced(folio);
4033 else if (old_gen != new_gen)
4034 folio_activate(folio);
4035 }
4036
4037 arch_leave_lazy_mmu_mode();
4038 mem_cgroup_unlock_pages();
4039
4040 /* feedback from rmap walkers to page table walkers */
4041 if (suitable_to_scan(total: i, young))
4042 update_bloom_filter(lruvec, seq: max_seq, item: pvmw->pmd);
4043}
4044
4045/******************************************************************************
4046 * memcg LRU
4047 ******************************************************************************/
4048
4049/* see the comment on MEMCG_NR_GENS */
4050enum {
4051 MEMCG_LRU_NOP,
4052 MEMCG_LRU_HEAD,
4053 MEMCG_LRU_TAIL,
4054 MEMCG_LRU_OLD,
4055 MEMCG_LRU_YOUNG,
4056};
4057
4058#ifdef CONFIG_MEMCG
4059
4060static int lru_gen_memcg_seg(struct lruvec *lruvec)
4061{
4062 return READ_ONCE(lruvec->lrugen.seg);
4063}
4064
4065static void lru_gen_rotate_memcg(struct lruvec *lruvec, int op)
4066{
4067 int seg;
4068 int old, new;
4069 unsigned long flags;
4070 int bin = get_random_u32_below(MEMCG_NR_BINS);
4071 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4072
4073 spin_lock_irqsave(&pgdat->memcg_lru.lock, flags);
4074
4075 VM_WARN_ON_ONCE(hlist_nulls_unhashed(&lruvec->lrugen.list));
4076
4077 seg = 0;
4078 new = old = lruvec->lrugen.gen;
4079
4080 /* see the comment on MEMCG_NR_GENS */
4081 if (op == MEMCG_LRU_HEAD)
4082 seg = MEMCG_LRU_HEAD;
4083 else if (op == MEMCG_LRU_TAIL)
4084 seg = MEMCG_LRU_TAIL;
4085 else if (op == MEMCG_LRU_OLD)
4086 new = get_memcg_gen(pgdat->memcg_lru.seq);
4087 else if (op == MEMCG_LRU_YOUNG)
4088 new = get_memcg_gen(pgdat->memcg_lru.seq + 1);
4089 else
4090 VM_WARN_ON_ONCE(true);
4091
4092 hlist_nulls_del_rcu(n: &lruvec->lrugen.list);
4093
4094 if (op == MEMCG_LRU_HEAD || op == MEMCG_LRU_OLD)
4095 hlist_nulls_add_head_rcu(n: &lruvec->lrugen.list, h: &pgdat->memcg_lru.fifo[new][bin]);
4096 else
4097 hlist_nulls_add_tail_rcu(n: &lruvec->lrugen.list, h: &pgdat->memcg_lru.fifo[new][bin]);
4098
4099 pgdat->memcg_lru.nr_memcgs[old]--;
4100 pgdat->memcg_lru.nr_memcgs[new]++;
4101
4102 lruvec->lrugen.gen = new;
4103 WRITE_ONCE(lruvec->lrugen.seg, seg);
4104
4105 if (!pgdat->memcg_lru.nr_memcgs[old] && old == get_memcg_gen(pgdat->memcg_lru.seq))
4106 WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1);
4107
4108 spin_unlock_irqrestore(lock: &pgdat->memcg_lru.lock, flags);
4109}
4110
4111void lru_gen_online_memcg(struct mem_cgroup *memcg)
4112{
4113 int gen;
4114 int nid;
4115 int bin = get_random_u32_below(MEMCG_NR_BINS);
4116
4117 for_each_node(nid) {
4118 struct pglist_data *pgdat = NODE_DATA(nid);
4119 struct lruvec *lruvec = get_lruvec(memcg, nid);
4120
4121 spin_lock_irq(lock: &pgdat->memcg_lru.lock);
4122
4123 VM_WARN_ON_ONCE(!hlist_nulls_unhashed(&lruvec->lrugen.list));
4124
4125 gen = get_memcg_gen(pgdat->memcg_lru.seq);
4126
4127 hlist_nulls_add_tail_rcu(n: &lruvec->lrugen.list, h: &pgdat->memcg_lru.fifo[gen][bin]);
4128 pgdat->memcg_lru.nr_memcgs[gen]++;
4129
4130 lruvec->lrugen.gen = gen;
4131
4132 spin_unlock_irq(lock: &pgdat->memcg_lru.lock);
4133 }
4134}
4135
4136void lru_gen_offline_memcg(struct mem_cgroup *memcg)
4137{
4138 int nid;
4139
4140 for_each_node(nid) {
4141 struct lruvec *lruvec = get_lruvec(memcg, nid);
4142
4143 lru_gen_rotate_memcg(lruvec, op: MEMCG_LRU_OLD);
4144 }
4145}
4146
4147void lru_gen_release_memcg(struct mem_cgroup *memcg)
4148{
4149 int gen;
4150 int nid;
4151
4152 for_each_node(nid) {
4153 struct pglist_data *pgdat = NODE_DATA(nid);
4154 struct lruvec *lruvec = get_lruvec(memcg, nid);
4155
4156 spin_lock_irq(lock: &pgdat->memcg_lru.lock);
4157
4158 if (hlist_nulls_unhashed(h: &lruvec->lrugen.list))
4159 goto unlock;
4160
4161 gen = lruvec->lrugen.gen;
4162
4163 hlist_nulls_del_init_rcu(n: &lruvec->lrugen.list);
4164 pgdat->memcg_lru.nr_memcgs[gen]--;
4165
4166 if (!pgdat->memcg_lru.nr_memcgs[gen] && gen == get_memcg_gen(pgdat->memcg_lru.seq))
4167 WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1);
4168unlock:
4169 spin_unlock_irq(lock: &pgdat->memcg_lru.lock);
4170 }
4171}
4172
4173void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid)
4174{
4175 struct lruvec *lruvec = get_lruvec(memcg, nid);
4176
4177 /* see the comment on MEMCG_NR_GENS */
4178 if (lru_gen_memcg_seg(lruvec) != MEMCG_LRU_HEAD)
4179 lru_gen_rotate_memcg(lruvec, op: MEMCG_LRU_HEAD);
4180}
4181
4182#else /* !CONFIG_MEMCG */
4183
4184static int lru_gen_memcg_seg(struct lruvec *lruvec)
4185{
4186 return 0;
4187}
4188
4189#endif
4190
4191/******************************************************************************
4192 * the eviction
4193 ******************************************************************************/
4194
4195static bool sort_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc,
4196 int tier_idx)
4197{
4198 bool success;
4199 int gen = folio_lru_gen(folio);
4200 int type = folio_is_file_lru(folio);
4201 int zone = folio_zonenum(folio);
4202 int delta = folio_nr_pages(folio);
4203 int refs = folio_lru_refs(folio);
4204 int tier = lru_tier_from_refs(refs);
4205 struct lru_gen_folio *lrugen = &lruvec->lrugen;
4206
4207 VM_WARN_ON_ONCE_FOLIO(gen >= MAX_NR_GENS, folio);
4208
4209 /* unevictable */
4210 if (!folio_evictable(folio)) {
4211 success = lru_gen_del_folio(lruvec, folio, reclaiming: true);
4212 VM_WARN_ON_ONCE_FOLIO(!success, folio);
4213 folio_set_unevictable(folio);
4214 lruvec_add_folio(lruvec, folio);
4215 __count_vm_events(item: UNEVICTABLE_PGCULLED, delta);
4216 return true;
4217 }
4218
4219 /* dirty lazyfree */
4220 if (type == LRU_GEN_FILE && folio_test_anon(folio) && folio_test_dirty(folio)) {
4221 success = lru_gen_del_folio(lruvec, folio, reclaiming: true);
4222 VM_WARN_ON_ONCE_FOLIO(!success, folio);
4223 folio_set_swapbacked(folio);
4224 lruvec_add_folio_tail(lruvec, folio);
4225 return true;
4226 }
4227
4228 /* promoted */
4229 if (gen != lru_gen_from_seq(seq: lrugen->min_seq[type])) {
4230 list_move(list: &folio->lru, head: &lrugen->folios[gen][type][zone]);
4231 return true;
4232 }
4233
4234 /* protected */
4235 if (tier > tier_idx) {
4236 int hist = lru_hist_from_seq(seq: lrugen->min_seq[type]);
4237
4238 gen = folio_inc_gen(lruvec, folio, reclaiming: false);
4239 list_move_tail(list: &folio->lru, head: &lrugen->folios[gen][type][zone]);
4240
4241 WRITE_ONCE(lrugen->protected[hist][type][tier - 1],
4242 lrugen->protected[hist][type][tier - 1] + delta);
4243 return true;
4244 }
4245
4246 /* ineligible */
4247 if (zone > sc->reclaim_idx || skip_cma(folio, sc)) {
4248 gen = folio_inc_gen(lruvec, folio, reclaiming: false);
4249 list_move_tail(list: &folio->lru, head: &lrugen->folios[gen][type][zone]);
4250 return true;
4251 }
4252
4253 /* waiting for writeback */
4254 if (folio_test_locked(folio) || folio_test_writeback(folio) ||
4255 (type == LRU_GEN_FILE && folio_test_dirty(folio))) {
4256 gen = folio_inc_gen(lruvec, folio, reclaiming: true);
4257 list_move(list: &folio->lru, head: &lrugen->folios[gen][type][zone]);
4258 return true;
4259 }
4260
4261 return false;
4262}
4263
4264static bool isolate_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc)
4265{
4266 bool success;
4267
4268 /* swapping inhibited */
4269 if (!(sc->gfp_mask & __GFP_IO) &&
4270 (folio_test_dirty(folio) ||
4271 (folio_test_anon(folio) && !folio_test_swapcache(folio))))
4272 return false;
4273
4274 /* raced with release_pages() */
4275 if (!folio_try_get(folio))
4276 return false;
4277
4278 /* raced with another isolation */
4279 if (!folio_test_clear_lru(folio)) {
4280 folio_put(folio);
4281 return false;
4282 }
4283
4284 /* see the comment on MAX_NR_TIERS */
4285 if (!folio_test_referenced(folio))
4286 set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS, 0);
4287
4288 /* for shrink_folio_list() */
4289 folio_clear_reclaim(folio);
4290 folio_clear_referenced(folio);
4291
4292 success = lru_gen_del_folio(lruvec, folio, reclaiming: true);
4293 VM_WARN_ON_ONCE_FOLIO(!success, folio);
4294
4295 return true;
4296}
4297
4298static int scan_folios(struct lruvec *lruvec, struct scan_control *sc,
4299 int type, int tier, struct list_head *list)
4300{
4301 int i;
4302 int gen;
4303 enum vm_event_item item;
4304 int sorted = 0;
4305 int scanned = 0;
4306 int isolated = 0;
4307 int skipped = 0;
4308 int remaining = MAX_LRU_BATCH;
4309 struct lru_gen_folio *lrugen = &lruvec->lrugen;
4310 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4311
4312 VM_WARN_ON_ONCE(!list_empty(list));
4313
4314 if (get_nr_gens(lruvec, type) == MIN_NR_GENS)
4315 return 0;
4316
4317 gen = lru_gen_from_seq(seq: lrugen->min_seq[type]);
4318
4319 for (i = MAX_NR_ZONES; i > 0; i--) {
4320 LIST_HEAD(moved);
4321 int skipped_zone = 0;
4322 int zone = (sc->reclaim_idx + i) % MAX_NR_ZONES;
4323 struct list_head *head = &lrugen->folios[gen][type][zone];
4324
4325 while (!list_empty(head)) {
4326 struct folio *folio = lru_to_folio(head);
4327 int delta = folio_nr_pages(folio);
4328
4329 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
4330 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
4331 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
4332 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
4333
4334 scanned += delta;
4335
4336 if (sort_folio(lruvec, folio, sc, tier_idx: tier))
4337 sorted += delta;
4338 else if (isolate_folio(lruvec, folio, sc)) {
4339 list_add(new: &folio->lru, head: list);
4340 isolated += delta;
4341 } else {
4342 list_move(list: &folio->lru, head: &moved);
4343 skipped_zone += delta;
4344 }
4345
4346 if (!--remaining || max(isolated, skipped_zone) >= MIN_LRU_BATCH)
4347 break;
4348 }
4349
4350 if (skipped_zone) {
4351 list_splice(list: &moved, head);
4352 __count_zid_vm_events(PGSCAN_SKIP, zone, skipped_zone);
4353 skipped += skipped_zone;
4354 }
4355
4356 if (!remaining || isolated >= MIN_LRU_BATCH)
4357 break;
4358 }
4359
4360 item = PGSCAN_KSWAPD + reclaimer_offset();
4361 if (!cgroup_reclaim(sc)) {
4362 __count_vm_events(item, delta: isolated);
4363 __count_vm_events(item: PGREFILL, delta: sorted);
4364 }
4365 __count_memcg_events(memcg, idx: item, count: isolated);
4366 __count_memcg_events(memcg, idx: PGREFILL, count: sorted);
4367 __count_vm_events(item: PGSCAN_ANON + type, delta: isolated);
4368 trace_mm_vmscan_lru_isolate(highest_zoneidx: sc->reclaim_idx, order: sc->order, MAX_LRU_BATCH,
4369 nr_scanned: scanned, nr_skipped: skipped, nr_taken: isolated,
4370 lru: type ? LRU_INACTIVE_FILE : LRU_INACTIVE_ANON);
4371
4372 /*
4373 * There might not be eligible folios due to reclaim_idx. Check the
4374 * remaining to prevent livelock if it's not making progress.
4375 */
4376 return isolated || !remaining ? scanned : 0;
4377}
4378
4379static int get_tier_idx(struct lruvec *lruvec, int type)
4380{
4381 int tier;
4382 struct ctrl_pos sp, pv;
4383
4384 /*
4385 * To leave a margin for fluctuations, use a larger gain factor (1:2).
4386 * This value is chosen because any other tier would have at least twice
4387 * as many refaults as the first tier.
4388 */
4389 read_ctrl_pos(lruvec, type, tier: 0, gain: 1, pos: &sp);
4390 for (tier = 1; tier < MAX_NR_TIERS; tier++) {
4391 read_ctrl_pos(lruvec, type, tier, gain: 2, pos: &pv);
4392 if (!positive_ctrl_err(sp: &sp, pv: &pv))
4393 break;
4394 }
4395
4396 return tier - 1;
4397}
4398
4399static int get_type_to_scan(struct lruvec *lruvec, int swappiness, int *tier_idx)
4400{
4401 int type, tier;
4402 struct ctrl_pos sp, pv;
4403 int gain[ANON_AND_FILE] = { swappiness, 200 - swappiness };
4404
4405 /*
4406 * Compare the first tier of anon with that of file to determine which
4407 * type to scan. Also need to compare other tiers of the selected type
4408 * with the first tier of the other type to determine the last tier (of
4409 * the selected type) to evict.
4410 */
4411 read_ctrl_pos(lruvec, type: LRU_GEN_ANON, tier: 0, gain: gain[LRU_GEN_ANON], pos: &sp);
4412 read_ctrl_pos(lruvec, type: LRU_GEN_FILE, tier: 0, gain: gain[LRU_GEN_FILE], pos: &pv);
4413 type = positive_ctrl_err(sp: &sp, pv: &pv);
4414
4415 read_ctrl_pos(lruvec, type: !type, tier: 0, gain: gain[!type], pos: &sp);
4416 for (tier = 1; tier < MAX_NR_TIERS; tier++) {
4417 read_ctrl_pos(lruvec, type, tier, gain: gain[type], pos: &pv);
4418 if (!positive_ctrl_err(sp: &sp, pv: &pv))
4419 break;
4420 }
4421
4422 *tier_idx = tier - 1;
4423
4424 return type;
4425}
4426
4427static int isolate_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness,
4428 int *type_scanned, struct list_head *list)
4429{
4430 int i;
4431 int type;
4432 int scanned;
4433 int tier = -1;
4434 DEFINE_MIN_SEQ(lruvec);
4435
4436 /*
4437 * Try to make the obvious choice first. When anon and file are both
4438 * available from the same generation, interpret swappiness 1 as file
4439 * first and 200 as anon first.
4440 */
4441 if (!swappiness)
4442 type = LRU_GEN_FILE;
4443 else if (min_seq[LRU_GEN_ANON] < min_seq[LRU_GEN_FILE])
4444 type = LRU_GEN_ANON;
4445 else if (swappiness == 1)
4446 type = LRU_GEN_FILE;
4447 else if (swappiness == 200)
4448 type = LRU_GEN_ANON;
4449 else
4450 type = get_type_to_scan(lruvec, swappiness, tier_idx: &tier);
4451
4452 for (i = !swappiness; i < ANON_AND_FILE; i++) {
4453 if (tier < 0)
4454 tier = get_tier_idx(lruvec, type);
4455
4456 scanned = scan_folios(lruvec, sc, type, tier, list);
4457 if (scanned)
4458 break;
4459
4460 type = !type;
4461 tier = -1;
4462 }
4463
4464 *type_scanned = type;
4465
4466 return scanned;
4467}
4468
4469static int evict_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness)
4470{
4471 int type;
4472 int scanned;
4473 int reclaimed;
4474 LIST_HEAD(list);
4475 LIST_HEAD(clean);
4476 struct folio *folio;
4477 struct folio *next;
4478 enum vm_event_item item;
4479 struct reclaim_stat stat;
4480 struct lru_gen_mm_walk *walk;
4481 bool skip_retry = false;
4482 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4483 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4484
4485 spin_lock_irq(lock: &lruvec->lru_lock);
4486
4487 scanned = isolate_folios(lruvec, sc, swappiness, type_scanned: &type, list: &list);
4488
4489 scanned += try_to_inc_min_seq(lruvec, can_swap: swappiness);
4490
4491 if (get_nr_gens(lruvec, type: !swappiness) == MIN_NR_GENS)
4492 scanned = 0;
4493
4494 spin_unlock_irq(lock: &lruvec->lru_lock);
4495
4496 if (list_empty(head: &list))
4497 return scanned;
4498retry:
4499 reclaimed = shrink_folio_list(folio_list: &list, pgdat, sc, stat: &stat, ignore_references: false);
4500 sc->nr_reclaimed += reclaimed;
4501 trace_mm_vmscan_lru_shrink_inactive(nid: pgdat->node_id,
4502 nr_scanned: scanned, nr_reclaimed: reclaimed, stat: &stat, priority: sc->priority,
4503 file: type ? LRU_INACTIVE_FILE : LRU_INACTIVE_ANON);
4504
4505 list_for_each_entry_safe_reverse(folio, next, &list, lru) {
4506 if (!folio_evictable(folio)) {
4507 list_del(entry: &folio->lru);
4508 folio_putback_lru(folio);
4509 continue;
4510 }
4511
4512 if (folio_test_reclaim(folio) &&
4513 (folio_test_dirty(folio) || folio_test_writeback(folio))) {
4514 /* restore LRU_REFS_FLAGS cleared by isolate_folio() */
4515 if (folio_test_workingset(folio))
4516 folio_set_referenced(folio);
4517 continue;
4518 }
4519
4520 if (skip_retry || folio_test_active(folio) || folio_test_referenced(folio) ||
4521 folio_mapped(folio) || folio_test_locked(folio) ||
4522 folio_test_dirty(folio) || folio_test_writeback(folio)) {
4523 /* don't add rejected folios to the oldest generation */
4524 set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS,
4525 BIT(PG_active));
4526 continue;
4527 }
4528
4529 /* retry folios that may have missed folio_rotate_reclaimable() */
4530 list_move(list: &folio->lru, head: &clean);
4531 sc->nr_scanned -= folio_nr_pages(folio);
4532 }
4533
4534 spin_lock_irq(lock: &lruvec->lru_lock);
4535
4536 move_folios_to_lru(lruvec, list: &list);
4537
4538 walk = current->reclaim_state->mm_walk;
4539 if (walk && walk->batched)
4540 reset_batch_size(lruvec, walk);
4541
4542 item = PGSTEAL_KSWAPD + reclaimer_offset();
4543 if (!cgroup_reclaim(sc))
4544 __count_vm_events(item, delta: reclaimed);
4545 __count_memcg_events(memcg, idx: item, count: reclaimed);
4546 __count_vm_events(item: PGSTEAL_ANON + type, delta: reclaimed);
4547
4548 spin_unlock_irq(lock: &lruvec->lru_lock);
4549
4550 mem_cgroup_uncharge_list(page_list: &list);
4551 free_unref_page_list(list: &list);
4552
4553 INIT_LIST_HEAD(list: &list);
4554 list_splice_init(list: &clean, head: &list);
4555
4556 if (!list_empty(head: &list)) {
4557 skip_retry = true;
4558 goto retry;
4559 }
4560
4561 return scanned;
4562}
4563
4564static bool should_run_aging(struct lruvec *lruvec, unsigned long max_seq,
4565 struct scan_control *sc, bool can_swap, unsigned long *nr_to_scan)
4566{
4567 int gen, type, zone;
4568 unsigned long old = 0;
4569 unsigned long young = 0;
4570 unsigned long total = 0;
4571 struct lru_gen_folio *lrugen = &lruvec->lrugen;
4572 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4573 DEFINE_MIN_SEQ(lruvec);
4574
4575 /* whether this lruvec is completely out of cold folios */
4576 if (min_seq[!can_swap] + MIN_NR_GENS > max_seq) {
4577 *nr_to_scan = 0;
4578 return true;
4579 }
4580
4581 for (type = !can_swap; type < ANON_AND_FILE; type++) {
4582 unsigned long seq;
4583
4584 for (seq = min_seq[type]; seq <= max_seq; seq++) {
4585 unsigned long size = 0;
4586
4587 gen = lru_gen_from_seq(seq);
4588
4589 for (zone = 0; zone < MAX_NR_ZONES; zone++)
4590 size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
4591
4592 total += size;
4593 if (seq == max_seq)
4594 young += size;
4595 else if (seq + MIN_NR_GENS == max_seq)
4596 old += size;
4597 }
4598 }
4599
4600 /* try to scrape all its memory if this memcg was deleted */
4601 *nr_to_scan = mem_cgroup_online(memcg) ? (total >> sc->priority) : total;
4602
4603 /*
4604 * The aging tries to be lazy to reduce the overhead, while the eviction
4605 * stalls when the number of generations reaches MIN_NR_GENS. Hence, the
4606 * ideal number of generations is MIN_NR_GENS+1.
4607 */
4608 if (min_seq[!can_swap] + MIN_NR_GENS < max_seq)
4609 return false;
4610
4611 /*
4612 * It's also ideal to spread pages out evenly, i.e., 1/(MIN_NR_GENS+1)
4613 * of the total number of pages for each generation. A reasonable range
4614 * for this average portion is [1/MIN_NR_GENS, 1/(MIN_NR_GENS+2)]. The
4615 * aging cares about the upper bound of hot pages, while the eviction
4616 * cares about the lower bound of cold pages.
4617 */
4618 if (young * MIN_NR_GENS > total)
4619 return true;
4620 if (old * (MIN_NR_GENS + 2) < total)
4621 return true;
4622
4623 return false;
4624}
4625
4626/*
4627 * For future optimizations:
4628 * 1. Defer try_to_inc_max_seq() to workqueues to reduce latency for memcg
4629 * reclaim.
4630 */
4631static long get_nr_to_scan(struct lruvec *lruvec, struct scan_control *sc, bool can_swap)
4632{
4633 unsigned long nr_to_scan;
4634 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4635 DEFINE_MAX_SEQ(lruvec);
4636
4637 if (mem_cgroup_below_min(target: sc->target_mem_cgroup, memcg))
4638 return 0;
4639
4640 if (!should_run_aging(lruvec, max_seq, sc, can_swap, nr_to_scan: &nr_to_scan))
4641 return nr_to_scan;
4642
4643 /* skip the aging path at the default priority */
4644 if (sc->priority == DEF_PRIORITY)
4645 return nr_to_scan;
4646
4647 /* skip this lruvec as it's low on cold folios */
4648 return try_to_inc_max_seq(lruvec, max_seq, sc, can_swap, force_scan: false) ? -1 : 0;
4649}
4650
4651static unsigned long get_nr_to_reclaim(struct scan_control *sc)
4652{
4653 /* don't abort memcg reclaim to ensure fairness */
4654 if (!root_reclaim(sc))
4655 return -1;
4656
4657 return max(sc->nr_to_reclaim, compact_gap(sc->order));
4658}
4659
4660static bool try_to_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
4661{
4662 long nr_to_scan;
4663 unsigned long scanned = 0;
4664 unsigned long nr_to_reclaim = get_nr_to_reclaim(sc);
4665 int swappiness = get_swappiness(lruvec, sc);
4666
4667 /* clean file folios are more likely to exist */
4668 if (swappiness && !(sc->gfp_mask & __GFP_IO))
4669 swappiness = 1;
4670
4671 while (true) {
4672 int delta;
4673
4674 nr_to_scan = get_nr_to_scan(lruvec, sc, can_swap: swappiness);
4675 if (nr_to_scan <= 0)
4676 break;
4677
4678 delta = evict_folios(lruvec, sc, swappiness);
4679 if (!delta)
4680 break;
4681
4682 scanned += delta;
4683 if (scanned >= nr_to_scan)
4684 break;
4685
4686 if (sc->nr_reclaimed >= nr_to_reclaim)
4687 break;
4688
4689 cond_resched();
4690 }
4691
4692 /* whether try_to_inc_max_seq() was successful */
4693 return nr_to_scan < 0;
4694}
4695
4696static int shrink_one(struct lruvec *lruvec, struct scan_control *sc)
4697{
4698 bool success;
4699 unsigned long scanned = sc->nr_scanned;
4700 unsigned long reclaimed = sc->nr_reclaimed;
4701 int seg = lru_gen_memcg_seg(lruvec);
4702 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4703 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4704
4705 /* see the comment on MEMCG_NR_GENS */
4706 if (!lruvec_is_sizable(lruvec, sc))
4707 return seg != MEMCG_LRU_TAIL ? MEMCG_LRU_TAIL : MEMCG_LRU_YOUNG;
4708
4709 mem_cgroup_calculate_protection(NULL, memcg);
4710
4711 if (mem_cgroup_below_min(NULL, memcg))
4712 return MEMCG_LRU_YOUNG;
4713
4714 if (mem_cgroup_below_low(NULL, memcg)) {
4715 /* see the comment on MEMCG_NR_GENS */
4716 if (seg != MEMCG_LRU_TAIL)
4717 return MEMCG_LRU_TAIL;
4718
4719 memcg_memory_event(memcg, event: MEMCG_LOW);
4720 }
4721
4722 success = try_to_shrink_lruvec(lruvec, sc);
4723
4724 shrink_slab(gfp_mask: sc->gfp_mask, nid: pgdat->node_id, memcg, priority: sc->priority);
4725
4726 if (!sc->proactive)
4727 vmpressure(gfp: sc->gfp_mask, memcg, tree: false, scanned: sc->nr_scanned - scanned,
4728 reclaimed: sc->nr_reclaimed - reclaimed);
4729
4730 flush_reclaim_state(sc);
4731
4732 return success ? MEMCG_LRU_YOUNG : 0;
4733}
4734
4735#ifdef CONFIG_MEMCG
4736
4737static void shrink_many(struct pglist_data *pgdat, struct scan_control *sc)
4738{
4739 int op;
4740 int gen;
4741 int bin;
4742 int first_bin;
4743 struct lruvec *lruvec;
4744 struct lru_gen_folio *lrugen;
4745 struct mem_cgroup *memcg;
4746 const struct hlist_nulls_node *pos;
4747 unsigned long nr_to_reclaim = get_nr_to_reclaim(sc);
4748
4749 bin = first_bin = get_random_u32_below(MEMCG_NR_BINS);
4750restart:
4751 op = 0;
4752 memcg = NULL;
4753 gen = get_memcg_gen(READ_ONCE(pgdat->memcg_lru.seq));
4754
4755 rcu_read_lock();
4756
4757 hlist_nulls_for_each_entry_rcu(lrugen, pos, &pgdat->memcg_lru.fifo[gen][bin], list) {
4758 if (op) {
4759 lru_gen_rotate_memcg(lruvec, op);
4760 op = 0;
4761 }
4762
4763 mem_cgroup_put(memcg);
4764
4765 lruvec = container_of(lrugen, struct lruvec, lrugen);
4766 memcg = lruvec_memcg(lruvec);
4767
4768 if (!mem_cgroup_tryget(memcg)) {
4769 lru_gen_release_memcg(memcg);
4770 memcg = NULL;
4771 continue;
4772 }
4773
4774 rcu_read_unlock();
4775
4776 op = shrink_one(lruvec, sc);
4777
4778 rcu_read_lock();
4779
4780 if (sc->nr_reclaimed >= nr_to_reclaim)
4781 break;
4782 }
4783
4784 rcu_read_unlock();
4785
4786 if (op)
4787 lru_gen_rotate_memcg(lruvec, op);
4788
4789 mem_cgroup_put(memcg);
4790
4791 if (sc->nr_reclaimed >= nr_to_reclaim)
4792 return;
4793
4794 /* restart if raced with lru_gen_rotate_memcg() */
4795 if (gen != get_nulls_value(ptr: pos))
4796 goto restart;
4797
4798 /* try the rest of the bins of the current generation */
4799 bin = get_memcg_bin(bin + 1);
4800 if (bin != first_bin)
4801 goto restart;
4802}
4803
4804static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
4805{
4806 struct blk_plug plug;
4807
4808 VM_WARN_ON_ONCE(root_reclaim(sc));
4809 VM_WARN_ON_ONCE(!sc->may_writepage || !sc->may_unmap);
4810
4811 lru_add_drain();
4812
4813 blk_start_plug(&plug);
4814
4815 set_mm_walk(NULL, force_alloc: sc->proactive);
4816
4817 if (try_to_shrink_lruvec(lruvec, sc))
4818 lru_gen_rotate_memcg(lruvec, op: MEMCG_LRU_YOUNG);
4819
4820 clear_mm_walk();
4821
4822 blk_finish_plug(&plug);
4823}
4824
4825#else /* !CONFIG_MEMCG */
4826
4827static void shrink_many(struct pglist_data *pgdat, struct scan_control *sc)
4828{
4829 BUILD_BUG();
4830}
4831
4832static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
4833{
4834 BUILD_BUG();
4835}
4836
4837#endif
4838
4839static void set_initial_priority(struct pglist_data *pgdat, struct scan_control *sc)
4840{
4841 int priority;
4842 unsigned long reclaimable;
4843 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
4844
4845 if (sc->priority != DEF_PRIORITY || sc->nr_to_reclaim < MIN_LRU_BATCH)
4846 return;
4847 /*
4848 * Determine the initial priority based on ((total / MEMCG_NR_GENS) >>
4849 * priority) * reclaimed_to_scanned_ratio = nr_to_reclaim, where the
4850 * estimated reclaimed_to_scanned_ratio = inactive / total.
4851 */
4852 reclaimable = node_page_state(pgdat, item: NR_INACTIVE_FILE);
4853 if (get_swappiness(lruvec, sc))
4854 reclaimable += node_page_state(pgdat, item: NR_INACTIVE_ANON);
4855
4856 reclaimable /= MEMCG_NR_GENS;
4857
4858 /* round down reclaimable and round up sc->nr_to_reclaim */
4859 priority = fls_long(l: reclaimable) - 1 - fls_long(l: sc->nr_to_reclaim - 1);
4860
4861 sc->priority = clamp(priority, 0, DEF_PRIORITY);
4862}
4863
4864static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc)
4865{
4866 struct blk_plug plug;
4867 unsigned long reclaimed = sc->nr_reclaimed;
4868
4869 VM_WARN_ON_ONCE(!root_reclaim(sc));
4870
4871 /*
4872 * Unmapped clean folios are already prioritized. Scanning for more of
4873 * them is likely futile and can cause high reclaim latency when there
4874 * is a large number of memcgs.
4875 */
4876 if (!sc->may_writepage || !sc->may_unmap)
4877 goto done;
4878
4879 lru_add_drain();
4880
4881 blk_start_plug(&plug);
4882
4883 set_mm_walk(pgdat, force_alloc: sc->proactive);
4884
4885 set_initial_priority(pgdat, sc);
4886
4887 if (current_is_kswapd())
4888 sc->nr_reclaimed = 0;
4889
4890 if (mem_cgroup_disabled())
4891 shrink_one(lruvec: &pgdat->__lruvec, sc);
4892 else
4893 shrink_many(pgdat, sc);
4894
4895 if (current_is_kswapd())
4896 sc->nr_reclaimed += reclaimed;
4897
4898 clear_mm_walk();
4899
4900 blk_finish_plug(&plug);
4901done:
4902 /* kswapd should never fail */
4903 pgdat->kswapd_failures = 0;
4904}
4905
4906/******************************************************************************
4907 * state change
4908 ******************************************************************************/
4909
4910static bool __maybe_unused state_is_valid(struct lruvec *lruvec)
4911{
4912 struct lru_gen_folio *lrugen = &lruvec->lrugen;
4913
4914 if (lrugen->enabled) {
4915 enum lru_list lru;
4916
4917 for_each_evictable_lru(lru) {
4918 if (!list_empty(head: &lruvec->lists[lru]))
4919 return false;
4920 }
4921 } else {
4922 int gen, type, zone;
4923
4924 for_each_gen_type_zone(gen, type, zone) {
4925 if (!list_empty(&lrugen->folios[gen][type][zone]))
4926 return false;
4927 }
4928 }
4929
4930 return true;
4931}
4932
4933static bool fill_evictable(struct lruvec *lruvec)
4934{
4935 enum lru_list lru;
4936 int remaining = MAX_LRU_BATCH;
4937
4938 for_each_evictable_lru(lru) {
4939 int type = is_file_lru(lru);
4940 bool active = is_active_lru(lru);
4941 struct list_head *head = &lruvec->lists[lru];
4942
4943 while (!list_empty(head)) {
4944 bool success;
4945 struct folio *folio = lru_to_folio(head);
4946
4947 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
4948 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio) != active, folio);
4949 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
4950 VM_WARN_ON_ONCE_FOLIO(folio_lru_gen(folio) != -1, folio);
4951
4952 lruvec_del_folio(lruvec, folio);
4953 success = lru_gen_add_folio(lruvec, folio, reclaiming: false);
4954 VM_WARN_ON_ONCE(!success);
4955
4956 if (!--remaining)
4957 return false;
4958 }
4959 }
4960
4961 return true;
4962}
4963
4964static bool drain_evictable(struct lruvec *lruvec)
4965{
4966 int gen, type, zone;
4967 int remaining = MAX_LRU_BATCH;
4968
4969 for_each_gen_type_zone(gen, type, zone) {
4970 struct list_head *head = &lruvec->lrugen.folios[gen][type][zone];
4971
4972 while (!list_empty(head)) {
4973 bool success;
4974 struct folio *folio = lru_to_folio(head);
4975
4976 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
4977 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
4978 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
4979 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
4980
4981 success = lru_gen_del_folio(lruvec, folio, false);
4982 VM_WARN_ON_ONCE(!success);
4983 lruvec_add_folio(lruvec, folio);
4984
4985 if (!--remaining)
4986 return false;
4987 }
4988 }
4989
4990 return true;
4991}
4992
4993static void lru_gen_change_state(bool enabled)
4994{
4995 static DEFINE_MUTEX(state_mutex);
4996
4997 struct mem_cgroup *memcg;
4998
4999 cgroup_lock();
5000 cpus_read_lock();
5001 get_online_mems();
5002 mutex_lock(&state_mutex);
5003
5004 if (enabled == lru_gen_enabled())
5005 goto unlock;
5006
5007 if (enabled)
5008 static_branch_enable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5009 else
5010 static_branch_disable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5011
5012 memcg = mem_cgroup_iter(NULL, NULL, NULL);
5013 do {
5014 int nid;
5015
5016 for_each_node(nid) {
5017 struct lruvec *lruvec = get_lruvec(memcg, nid);
5018
5019 spin_lock_irq(lock: &lruvec->lru_lock);
5020
5021 VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
5022 VM_WARN_ON_ONCE(!state_is_valid(lruvec));
5023
5024 lruvec->lrugen.enabled = enabled;
5025
5026 while (!(enabled ? fill_evictable(lruvec) : drain_evictable(lruvec))) {
5027 spin_unlock_irq(lock: &lruvec->lru_lock);
5028 cond_resched();
5029 spin_lock_irq(lock: &lruvec->lru_lock);
5030 }
5031
5032 spin_unlock_irq(lock: &lruvec->lru_lock);
5033 }
5034
5035 cond_resched();
5036 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5037unlock:
5038 mutex_unlock(lock: &state_mutex);
5039 put_online_mems();
5040 cpus_read_unlock();
5041 cgroup_unlock();
5042}
5043
5044/******************************************************************************
5045 * sysfs interface
5046 ******************************************************************************/
5047
5048static ssize_t min_ttl_ms_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5049{
5050 return sysfs_emit(buf, fmt: "%u\n", jiffies_to_msecs(READ_ONCE(lru_gen_min_ttl)));
5051}
5052
5053/* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5054static ssize_t min_ttl_ms_store(struct kobject *kobj, struct kobj_attribute *attr,
5055 const char *buf, size_t len)
5056{
5057 unsigned int msecs;
5058
5059 if (kstrtouint(s: buf, base: 0, res: &msecs))
5060 return -EINVAL;
5061
5062 WRITE_ONCE(lru_gen_min_ttl, msecs_to_jiffies(msecs));
5063
5064 return len;
5065}
5066
5067static struct kobj_attribute lru_gen_min_ttl_attr = __ATTR_RW(min_ttl_ms);
5068
5069static ssize_t enabled_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5070{
5071 unsigned int caps = 0;
5072
5073 if (get_cap(LRU_GEN_CORE))
5074 caps |= BIT(LRU_GEN_CORE);
5075
5076 if (should_walk_mmu())
5077 caps |= BIT(LRU_GEN_MM_WALK);
5078
5079 if (should_clear_pmd_young())
5080 caps |= BIT(LRU_GEN_NONLEAF_YOUNG);
5081
5082 return sysfs_emit(buf, fmt: "0x%04x\n", caps);
5083}
5084
5085/* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5086static ssize_t enabled_store(struct kobject *kobj, struct kobj_attribute *attr,
5087 const char *buf, size_t len)
5088{
5089 int i;
5090 unsigned int caps;
5091
5092 if (tolower(*buf) == 'n')
5093 caps = 0;
5094 else if (tolower(*buf) == 'y')
5095 caps = -1;
5096 else if (kstrtouint(s: buf, base: 0, res: &caps))
5097 return -EINVAL;
5098
5099 for (i = 0; i < NR_LRU_GEN_CAPS; i++) {
5100 bool enabled = caps & BIT(i);
5101
5102 if (i == LRU_GEN_CORE)
5103 lru_gen_change_state(enabled);
5104 else if (enabled)
5105 static_branch_enable(&lru_gen_caps[i]);
5106 else
5107 static_branch_disable(&lru_gen_caps[i]);
5108 }
5109
5110 return len;
5111}
5112
5113static struct kobj_attribute lru_gen_enabled_attr = __ATTR_RW(enabled);
5114
5115static struct attribute *lru_gen_attrs[] = {
5116 &lru_gen_min_ttl_attr.attr,
5117 &lru_gen_enabled_attr.attr,
5118 NULL
5119};
5120
5121static const struct attribute_group lru_gen_attr_group = {
5122 .name = "lru_gen",
5123 .attrs = lru_gen_attrs,
5124};
5125
5126/******************************************************************************
5127 * debugfs interface
5128 ******************************************************************************/
5129
5130static void *lru_gen_seq_start(struct seq_file *m, loff_t *pos)
5131{
5132 struct mem_cgroup *memcg;
5133 loff_t nr_to_skip = *pos;
5134
5135 m->private = kvmalloc(PATH_MAX, GFP_KERNEL);
5136 if (!m->private)
5137 return ERR_PTR(error: -ENOMEM);
5138
5139 memcg = mem_cgroup_iter(NULL, NULL, NULL);
5140 do {
5141 int nid;
5142
5143 for_each_node_state(nid, N_MEMORY) {
5144 if (!nr_to_skip--)
5145 return get_lruvec(memcg, nid);
5146 }
5147 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5148
5149 return NULL;
5150}
5151
5152static void lru_gen_seq_stop(struct seq_file *m, void *v)
5153{
5154 if (!IS_ERR_OR_NULL(ptr: v))
5155 mem_cgroup_iter_break(NULL, lruvec_memcg(lruvec: v));
5156
5157 kvfree(addr: m->private);
5158 m->private = NULL;
5159}
5160
5161static void *lru_gen_seq_next(struct seq_file *m, void *v, loff_t *pos)
5162{
5163 int nid = lruvec_pgdat(lruvec: v)->node_id;
5164 struct mem_cgroup *memcg = lruvec_memcg(lruvec: v);
5165
5166 ++*pos;
5167
5168 nid = next_memory_node(nid);
5169 if (nid == MAX_NUMNODES) {
5170 memcg = mem_cgroup_iter(NULL, memcg, NULL);
5171 if (!memcg)
5172 return NULL;
5173
5174 nid = first_memory_node;
5175 }
5176
5177 return get_lruvec(memcg, nid);
5178}
5179
5180static void lru_gen_seq_show_full(struct seq_file *m, struct lruvec *lruvec,
5181 unsigned long max_seq, unsigned long *min_seq,
5182 unsigned long seq)
5183{
5184 int i;
5185 int type, tier;
5186 int hist = lru_hist_from_seq(seq);
5187 struct lru_gen_folio *lrugen = &lruvec->lrugen;
5188
5189 for (tier = 0; tier < MAX_NR_TIERS; tier++) {
5190 seq_printf(m, fmt: " %10d", tier);
5191 for (type = 0; type < ANON_AND_FILE; type++) {
5192 const char *s = " ";
5193 unsigned long n[3] = {};
5194
5195 if (seq == max_seq) {
5196 s = "RT ";
5197 n[0] = READ_ONCE(lrugen->avg_refaulted[type][tier]);
5198 n[1] = READ_ONCE(lrugen->avg_total[type][tier]);
5199 } else if (seq == min_seq[type] || NR_HIST_GENS > 1) {
5200 s = "rep";
5201 n[0] = atomic_long_read(v: &lrugen->refaulted[hist][type][tier]);
5202 n[1] = atomic_long_read(v: &lrugen->evicted[hist][type][tier]);
5203 if (tier)
5204 n[2] = READ_ONCE(lrugen->protected[hist][type][tier - 1]);
5205 }
5206
5207 for (i = 0; i < 3; i++)
5208 seq_printf(m, fmt: " %10lu%c", n[i], s[i]);
5209 }
5210 seq_putc(m, c: '\n');
5211 }
5212
5213 seq_puts(m, s: " ");
5214 for (i = 0; i < NR_MM_STATS; i++) {
5215 const char *s = " ";
5216 unsigned long n = 0;
5217
5218 if (seq == max_seq && NR_HIST_GENS == 1) {
5219 s = "LOYNFA";
5220 n = READ_ONCE(lruvec->mm_state.stats[hist][i]);
5221 } else if (seq != max_seq && NR_HIST_GENS > 1) {
5222 s = "loynfa";
5223 n = READ_ONCE(lruvec->mm_state.stats[hist][i]);
5224 }
5225
5226 seq_printf(m, fmt: " %10lu%c", n, s[i]);
5227 }
5228 seq_putc(m, c: '\n');
5229}
5230
5231/* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5232static int lru_gen_seq_show(struct seq_file *m, void *v)
5233{
5234 unsigned long seq;
5235 bool full = !debugfs_real_fops(filp: m->file)->write;
5236 struct lruvec *lruvec = v;
5237 struct lru_gen_folio *lrugen = &lruvec->lrugen;
5238 int nid = lruvec_pgdat(lruvec)->node_id;
5239 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5240 DEFINE_MAX_SEQ(lruvec);
5241 DEFINE_MIN_SEQ(lruvec);
5242
5243 if (nid == first_memory_node) {
5244 const char *path = memcg ? m->private : "";
5245
5246#ifdef CONFIG_MEMCG
5247 if (memcg)
5248 cgroup_path(cgrp: memcg->css.cgroup, buf: m->private, PATH_MAX);
5249#endif
5250 seq_printf(m, fmt: "memcg %5hu %s\n", mem_cgroup_id(memcg), path);
5251 }
5252
5253 seq_printf(m, fmt: " node %5d\n", nid);
5254
5255 if (!full)
5256 seq = min_seq[LRU_GEN_ANON];
5257 else if (max_seq >= MAX_NR_GENS)
5258 seq = max_seq - MAX_NR_GENS + 1;
5259 else
5260 seq = 0;
5261
5262 for (; seq <= max_seq; seq++) {
5263 int type, zone;
5264 int gen = lru_gen_from_seq(seq);
5265 unsigned long birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
5266
5267 seq_printf(m, fmt: " %10lu %10u", seq, jiffies_to_msecs(j: jiffies - birth));
5268
5269 for (type = 0; type < ANON_AND_FILE; type++) {
5270 unsigned long size = 0;
5271 char mark = full && seq < min_seq[type] ? 'x' : ' ';
5272
5273 for (zone = 0; zone < MAX_NR_ZONES; zone++)
5274 size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
5275
5276 seq_printf(m, fmt: " %10lu%c", size, mark);
5277 }
5278
5279 seq_putc(m, c: '\n');
5280
5281 if (full)
5282 lru_gen_seq_show_full(m, lruvec, max_seq, min_seq, seq);
5283 }
5284
5285 return 0;
5286}
5287
5288static const struct seq_operations lru_gen_seq_ops = {
5289 .start = lru_gen_seq_start,
5290 .stop = lru_gen_seq_stop,
5291 .next = lru_gen_seq_next,
5292 .show = lru_gen_seq_show,
5293};
5294
5295static int run_aging(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc,
5296 bool can_swap, bool force_scan)
5297{
5298 DEFINE_MAX_SEQ(lruvec);
5299 DEFINE_MIN_SEQ(lruvec);
5300
5301 if (seq < max_seq)
5302 return 0;
5303
5304 if (seq > max_seq)
5305 return -EINVAL;
5306
5307 if (!force_scan && min_seq[!can_swap] + MAX_NR_GENS - 1 <= max_seq)
5308 return -ERANGE;
5309
5310 try_to_inc_max_seq(lruvec, max_seq, sc, can_swap, force_scan);
5311
5312 return 0;
5313}
5314
5315static int run_eviction(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc,
5316 int swappiness, unsigned long nr_to_reclaim)
5317{
5318 DEFINE_MAX_SEQ(lruvec);
5319
5320 if (seq + MIN_NR_GENS > max_seq)
5321 return -EINVAL;
5322
5323 sc->nr_reclaimed = 0;
5324
5325 while (!signal_pending(current)) {
5326 DEFINE_MIN_SEQ(lruvec);
5327
5328 if (seq < min_seq[!swappiness])
5329 return 0;
5330
5331 if (sc->nr_reclaimed >= nr_to_reclaim)
5332 return 0;
5333
5334 if (!evict_folios(lruvec, sc, swappiness))
5335 return 0;
5336
5337 cond_resched();
5338 }
5339
5340 return -EINTR;
5341}
5342
5343static int run_cmd(char cmd, int memcg_id, int nid, unsigned long seq,
5344 struct scan_control *sc, int swappiness, unsigned long opt)
5345{
5346 struct lruvec *lruvec;
5347 int err = -EINVAL;
5348 struct mem_cgroup *memcg = NULL;
5349
5350 if (nid < 0 || nid >= MAX_NUMNODES || !node_state(node: nid, state: N_MEMORY))
5351 return -EINVAL;
5352
5353 if (!mem_cgroup_disabled()) {
5354 rcu_read_lock();
5355
5356 memcg = mem_cgroup_from_id(id: memcg_id);
5357 if (!mem_cgroup_tryget(memcg))
5358 memcg = NULL;
5359
5360 rcu_read_unlock();
5361
5362 if (!memcg)
5363 return -EINVAL;
5364 }
5365
5366 if (memcg_id != mem_cgroup_id(memcg))
5367 goto done;
5368
5369 lruvec = get_lruvec(memcg, nid);
5370
5371 if (swappiness < 0)
5372 swappiness = get_swappiness(lruvec, sc);
5373 else if (swappiness > 200)
5374 goto done;
5375
5376 switch (cmd) {
5377 case '+':
5378 err = run_aging(lruvec, seq, sc, can_swap: swappiness, force_scan: opt);
5379 break;
5380 case '-':
5381 err = run_eviction(lruvec, seq, sc, swappiness, nr_to_reclaim: opt);
5382 break;
5383 }
5384done:
5385 mem_cgroup_put(memcg);
5386
5387 return err;
5388}
5389
5390/* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5391static ssize_t lru_gen_seq_write(struct file *file, const char __user *src,
5392 size_t len, loff_t *pos)
5393{
5394 void *buf;
5395 char *cur, *next;
5396 unsigned int flags;
5397 struct blk_plug plug;
5398 int err = -EINVAL;
5399 struct scan_control sc = {
5400 .may_writepage = true,
5401 .may_unmap = true,
5402 .may_swap = true,
5403 .reclaim_idx = MAX_NR_ZONES - 1,
5404 .gfp_mask = GFP_KERNEL,
5405 };
5406
5407 buf = kvmalloc(size: len + 1, GFP_KERNEL);
5408 if (!buf)
5409 return -ENOMEM;
5410
5411 if (copy_from_user(to: buf, from: src, n: len)) {
5412 kvfree(addr: buf);
5413 return -EFAULT;
5414 }
5415
5416 set_task_reclaim_state(current, rs: &sc.reclaim_state);
5417 flags = memalloc_noreclaim_save();
5418 blk_start_plug(&plug);
5419 if (!set_mm_walk(NULL, force_alloc: true)) {
5420 err = -ENOMEM;
5421 goto done;
5422 }
5423
5424 next = buf;
5425 next[len] = '\0';
5426
5427 while ((cur = strsep(&next, ",;\n"))) {
5428 int n;
5429 int end;
5430 char cmd;
5431 unsigned int memcg_id;
5432 unsigned int nid;
5433 unsigned long seq;
5434 unsigned int swappiness = -1;
5435 unsigned long opt = -1;
5436
5437 cur = skip_spaces(cur);
5438 if (!*cur)
5439 continue;
5440
5441 n = sscanf(cur, "%c %u %u %lu %n %u %n %lu %n", &cmd, &memcg_id, &nid,
5442 &seq, &end, &swappiness, &end, &opt, &end);
5443 if (n < 4 || cur[end]) {
5444 err = -EINVAL;
5445 break;
5446 }
5447
5448 err = run_cmd(cmd, memcg_id, nid, seq, sc: &sc, swappiness, opt);
5449 if (err)
5450 break;
5451 }
5452done:
5453 clear_mm_walk();
5454 blk_finish_plug(&plug);
5455 memalloc_noreclaim_restore(flags);
5456 set_task_reclaim_state(current, NULL);
5457
5458 kvfree(addr: buf);
5459
5460 return err ? : len;
5461}
5462
5463static int lru_gen_seq_open(struct inode *inode, struct file *file)
5464{
5465 return seq_open(file, &lru_gen_seq_ops);
5466}
5467
5468static const struct file_operations lru_gen_rw_fops = {
5469 .open = lru_gen_seq_open,
5470 .read = seq_read,
5471 .write = lru_gen_seq_write,
5472 .llseek = seq_lseek,
5473 .release = seq_release,
5474};
5475
5476static const struct file_operations lru_gen_ro_fops = {
5477 .open = lru_gen_seq_open,
5478 .read = seq_read,
5479 .llseek = seq_lseek,
5480 .release = seq_release,
5481};
5482
5483/******************************************************************************
5484 * initialization
5485 ******************************************************************************/
5486
5487void lru_gen_init_lruvec(struct lruvec *lruvec)
5488{
5489 int i;
5490 int gen, type, zone;
5491 struct lru_gen_folio *lrugen = &lruvec->lrugen;
5492
5493 lrugen->max_seq = MIN_NR_GENS + 1;
5494 lrugen->enabled = lru_gen_enabled();
5495
5496 for (i = 0; i <= MIN_NR_GENS + 1; i++)
5497 lrugen->timestamps[i] = jiffies;
5498
5499 for_each_gen_type_zone(gen, type, zone)
5500 INIT_LIST_HEAD(&lrugen->folios[gen][type][zone]);
5501
5502 lruvec->mm_state.seq = MIN_NR_GENS;
5503}
5504
5505#ifdef CONFIG_MEMCG
5506
5507void lru_gen_init_pgdat(struct pglist_data *pgdat)
5508{
5509 int i, j;
5510
5511 spin_lock_init(&pgdat->memcg_lru.lock);
5512
5513 for (i = 0; i < MEMCG_NR_GENS; i++) {
5514 for (j = 0; j < MEMCG_NR_BINS; j++)
5515 INIT_HLIST_NULLS_HEAD(&pgdat->memcg_lru.fifo[i][j], i);
5516 }
5517}
5518
5519void lru_gen_init_memcg(struct mem_cgroup *memcg)
5520{
5521 INIT_LIST_HEAD(list: &memcg->mm_list.fifo);
5522 spin_lock_init(&memcg->mm_list.lock);
5523}
5524
5525void lru_gen_exit_memcg(struct mem_cgroup *memcg)
5526{
5527 int i;
5528 int nid;
5529
5530 VM_WARN_ON_ONCE(!list_empty(&memcg->mm_list.fifo));
5531
5532 for_each_node(nid) {
5533 struct lruvec *lruvec = get_lruvec(memcg, nid);
5534
5535 VM_WARN_ON_ONCE(memchr_inv(lruvec->lrugen.nr_pages, 0,
5536 sizeof(lruvec->lrugen.nr_pages)));
5537
5538 lruvec->lrugen.list.next = LIST_POISON1;
5539
5540 for (i = 0; i < NR_BLOOM_FILTERS; i++) {
5541 bitmap_free(bitmap: lruvec->mm_state.filters[i]);
5542 lruvec->mm_state.filters[i] = NULL;
5543 }
5544 }
5545}
5546
5547#endif /* CONFIG_MEMCG */
5548
5549static int __init init_lru_gen(void)
5550{
5551 BUILD_BUG_ON(MIN_NR_GENS + 1 >= MAX_NR_GENS);
5552 BUILD_BUG_ON(BIT(LRU_GEN_WIDTH) <= MAX_NR_GENS);
5553
5554 if (sysfs_create_group(kobj: mm_kobj, grp: &lru_gen_attr_group))
5555 pr_err("lru_gen: failed to create sysfs group\n");
5556
5557 debugfs_create_file(name: "lru_gen", mode: 0644, NULL, NULL, fops: &lru_gen_rw_fops);
5558 debugfs_create_file(name: "lru_gen_full", mode: 0444, NULL, NULL, fops: &lru_gen_ro_fops);
5559
5560 return 0;
5561};
5562late_initcall(init_lru_gen);
5563
5564#else /* !CONFIG_LRU_GEN */
5565
5566static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
5567{
5568}
5569
5570static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5571{
5572}
5573
5574static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc)
5575{
5576}
5577
5578#endif /* CONFIG_LRU_GEN */
5579
5580static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5581{
5582 unsigned long nr[NR_LRU_LISTS];
5583 unsigned long targets[NR_LRU_LISTS];
5584 unsigned long nr_to_scan;
5585 enum lru_list lru;
5586 unsigned long nr_reclaimed = 0;
5587 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
5588 bool proportional_reclaim;
5589 struct blk_plug plug;
5590
5591 if (lru_gen_enabled() && !root_reclaim(sc)) {
5592 lru_gen_shrink_lruvec(lruvec, sc);
5593 return;
5594 }
5595
5596 get_scan_count(lruvec, sc, nr);
5597
5598 /* Record the original scan target for proportional adjustments later */
5599 memcpy(targets, nr, sizeof(nr));
5600
5601 /*
5602 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
5603 * event that can occur when there is little memory pressure e.g.
5604 * multiple streaming readers/writers. Hence, we do not abort scanning
5605 * when the requested number of pages are reclaimed when scanning at
5606 * DEF_PRIORITY on the assumption that the fact we are direct
5607 * reclaiming implies that kswapd is not keeping up and it is best to
5608 * do a batch of work at once. For memcg reclaim one check is made to
5609 * abort proportional reclaim if either the file or anon lru has already
5610 * dropped to zero at the first pass.
5611 */
5612 proportional_reclaim = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
5613 sc->priority == DEF_PRIORITY);
5614
5615 blk_start_plug(&plug);
5616 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
5617 nr[LRU_INACTIVE_FILE]) {
5618 unsigned long nr_anon, nr_file, percentage;
5619 unsigned long nr_scanned;
5620
5621 for_each_evictable_lru(lru) {
5622 if (nr[lru]) {
5623 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
5624 nr[lru] -= nr_to_scan;
5625
5626 nr_reclaimed += shrink_list(lru, nr_to_scan,
5627 lruvec, sc);
5628 }
5629 }
5630
5631 cond_resched();
5632
5633 if (nr_reclaimed < nr_to_reclaim || proportional_reclaim)
5634 continue;
5635
5636 /*
5637 * For kswapd and memcg, reclaim at least the number of pages
5638 * requested. Ensure that the anon and file LRUs are scanned
5639 * proportionally what was requested by get_scan_count(). We
5640 * stop reclaiming one LRU and reduce the amount scanning
5641 * proportional to the original scan target.
5642 */
5643 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
5644 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
5645
5646 /*
5647 * It's just vindictive to attack the larger once the smaller
5648 * has gone to zero. And given the way we stop scanning the
5649 * smaller below, this makes sure that we only make one nudge
5650 * towards proportionality once we've got nr_to_reclaim.
5651 */
5652 if (!nr_file || !nr_anon)
5653 break;
5654
5655 if (nr_file > nr_anon) {
5656 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
5657 targets[LRU_ACTIVE_ANON] + 1;
5658 lru = LRU_BASE;
5659 percentage = nr_anon * 100 / scan_target;
5660 } else {
5661 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
5662 targets[LRU_ACTIVE_FILE] + 1;
5663 lru = LRU_FILE;
5664 percentage = nr_file * 100 / scan_target;
5665 }
5666
5667 /* Stop scanning the smaller of the LRU */
5668 nr[lru] = 0;
5669 nr[lru + LRU_ACTIVE] = 0;
5670
5671 /*
5672 * Recalculate the other LRU scan count based on its original
5673 * scan target and the percentage scanning already complete
5674 */
5675 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
5676 nr_scanned = targets[lru] - nr[lru];
5677 nr[lru] = targets[lru] * (100 - percentage) / 100;
5678 nr[lru] -= min(nr[lru], nr_scanned);
5679
5680 lru += LRU_ACTIVE;
5681 nr_scanned = targets[lru] - nr[lru];
5682 nr[lru] = targets[lru] * (100 - percentage) / 100;
5683 nr[lru] -= min(nr[lru], nr_scanned);
5684 }
5685 blk_finish_plug(&plug);
5686 sc->nr_reclaimed += nr_reclaimed;
5687
5688 /*
5689 * Even if we did not try to evict anon pages at all, we want to
5690 * rebalance the anon lru active/inactive ratio.
5691 */
5692 if (can_age_anon_pages(pgdat: lruvec_pgdat(lruvec), sc) &&
5693 inactive_is_low(lruvec, inactive_lru: LRU_INACTIVE_ANON))
5694 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
5695 sc, lru: LRU_ACTIVE_ANON);
5696}
5697
5698/* Use reclaim/compaction for costly allocs or under memory pressure */
5699static bool in_reclaim_compaction(struct scan_control *sc)
5700{
5701 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
5702 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
5703 sc->priority < DEF_PRIORITY - 2))
5704 return true;
5705
5706 return false;
5707}
5708
5709/*
5710 * Reclaim/compaction is used for high-order allocation requests. It reclaims
5711 * order-0 pages before compacting the zone. should_continue_reclaim() returns
5712 * true if more pages should be reclaimed such that when the page allocator
5713 * calls try_to_compact_pages() that it will have enough free pages to succeed.
5714 * It will give up earlier than that if there is difficulty reclaiming pages.
5715 */
5716static inline bool should_continue_reclaim(struct pglist_data *pgdat,
5717 unsigned long nr_reclaimed,
5718 struct scan_control *sc)
5719{
5720 unsigned long pages_for_compaction;
5721 unsigned long inactive_lru_pages;
5722 int z;
5723
5724 /* If not in reclaim/compaction mode, stop */
5725 if (!in_reclaim_compaction(sc))
5726 return false;
5727
5728 /*
5729 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
5730 * number of pages that were scanned. This will return to the caller
5731 * with the risk reclaim/compaction and the resulting allocation attempt
5732 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
5733 * allocations through requiring that the full LRU list has been scanned
5734 * first, by assuming that zero delta of sc->nr_scanned means full LRU
5735 * scan, but that approximation was wrong, and there were corner cases
5736 * where always a non-zero amount of pages were scanned.
5737 */
5738 if (!nr_reclaimed)
5739 return false;
5740
5741 /* If compaction would go ahead or the allocation would succeed, stop */
5742 for (z = 0; z <= sc->reclaim_idx; z++) {
5743 struct zone *zone = &pgdat->node_zones[z];
5744 if (!managed_zone(zone))
5745 continue;
5746
5747 /* Allocation can already succeed, nothing to do */
5748 if (zone_watermark_ok(z: zone, order: sc->order, min_wmark_pages(zone),
5749 highest_zoneidx: sc->reclaim_idx, alloc_flags: 0))
5750 return false;
5751
5752 if (compaction_suitable(zone, order: sc->order, highest_zoneidx: sc->reclaim_idx))
5753 return false;
5754 }
5755
5756 /*
5757 * If we have not reclaimed enough pages for compaction and the
5758 * inactive lists are large enough, continue reclaiming
5759 */
5760 pages_for_compaction = compact_gap(order: sc->order);
5761 inactive_lru_pages = node_page_state(pgdat, item: NR_INACTIVE_FILE);
5762 if (can_reclaim_anon_pages(NULL, nid: pgdat->node_id, sc))
5763 inactive_lru_pages += node_page_state(pgdat, item: NR_INACTIVE_ANON);
5764
5765 return inactive_lru_pages > pages_for_compaction;
5766}
5767
5768static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
5769{
5770 struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
5771 struct mem_cgroup *memcg;
5772
5773 memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
5774 do {
5775 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
5776 unsigned long reclaimed;
5777 unsigned long scanned;
5778
5779 /*
5780 * This loop can become CPU-bound when target memcgs
5781 * aren't eligible for reclaim - either because they
5782 * don't have any reclaimable pages, or because their
5783 * memory is explicitly protected. Avoid soft lockups.
5784 */
5785 cond_resched();
5786
5787 mem_cgroup_calculate_protection(root: target_memcg, memcg);
5788
5789 if (mem_cgroup_below_min(target: target_memcg, memcg)) {
5790 /*
5791 * Hard protection.
5792 * If there is no reclaimable memory, OOM.
5793 */
5794 continue;
5795 } else if (mem_cgroup_below_low(target: target_memcg, memcg)) {
5796 /*
5797 * Soft protection.
5798 * Respect the protection only as long as
5799 * there is an unprotected supply
5800 * of reclaimable memory from other cgroups.
5801 */
5802 if (!sc->memcg_low_reclaim) {
5803 sc->memcg_low_skipped = 1;
5804 continue;
5805 }
5806 memcg_memory_event(memcg, event: MEMCG_LOW);
5807 }
5808
5809 reclaimed = sc->nr_reclaimed;
5810 scanned = sc->nr_scanned;
5811
5812 shrink_lruvec(lruvec, sc);
5813
5814 shrink_slab(gfp_mask: sc->gfp_mask, nid: pgdat->node_id, memcg,
5815 priority: sc->priority);
5816
5817 /* Record the group's reclaim efficiency */
5818 if (!sc->proactive)
5819 vmpressure(gfp: sc->gfp_mask, memcg, tree: false,
5820 scanned: sc->nr_scanned - scanned,
5821 reclaimed: sc->nr_reclaimed - reclaimed);
5822
5823 } while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
5824}
5825
5826static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
5827{
5828 unsigned long nr_reclaimed, nr_scanned, nr_node_reclaimed;
5829 struct lruvec *target_lruvec;
5830 bool reclaimable = false;
5831
5832 if (lru_gen_enabled() && root_reclaim(sc)) {
5833 lru_gen_shrink_node(pgdat, sc);
5834 return;
5835 }
5836
5837 target_lruvec = mem_cgroup_lruvec(memcg: sc->target_mem_cgroup, pgdat);
5838
5839again:
5840 memset(&sc->nr, 0, sizeof(sc->nr));
5841
5842 nr_reclaimed = sc->nr_reclaimed;
5843 nr_scanned = sc->nr_scanned;
5844
5845 prepare_scan_control(pgdat, sc);
5846
5847 shrink_node_memcgs(pgdat, sc);
5848
5849 flush_reclaim_state(sc);
5850
5851 nr_node_reclaimed = sc->nr_reclaimed - nr_reclaimed;
5852
5853 /* Record the subtree's reclaim efficiency */
5854 if (!sc->proactive)
5855 vmpressure(gfp: sc->gfp_mask, memcg: sc->target_mem_cgroup, tree: true,
5856 scanned: sc->nr_scanned - nr_scanned, reclaimed: nr_node_reclaimed);
5857
5858 if (nr_node_reclaimed)
5859 reclaimable = true;
5860
5861 if (current_is_kswapd()) {
5862 /*
5863 * If reclaim is isolating dirty pages under writeback,
5864 * it implies that the long-lived page allocation rate
5865 * is exceeding the page laundering rate. Either the
5866 * global limits are not being effective at throttling
5867 * processes due to the page distribution throughout
5868 * zones or there is heavy usage of a slow backing
5869 * device. The only option is to throttle from reclaim
5870 * context which is not ideal as there is no guarantee
5871 * the dirtying process is throttled in the same way
5872 * balance_dirty_pages() manages.
5873 *
5874 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
5875 * count the number of pages under pages flagged for
5876 * immediate reclaim and stall if any are encountered
5877 * in the nr_immediate check below.
5878 */
5879 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
5880 set_bit(nr: PGDAT_WRITEBACK, addr: &pgdat->flags);
5881
5882 /* Allow kswapd to start writing pages during reclaim.*/
5883 if (sc->nr.unqueued_dirty == sc->nr.file_taken)
5884 set_bit(nr: PGDAT_DIRTY, addr: &pgdat->flags);
5885
5886 /*
5887 * If kswapd scans pages marked for immediate
5888 * reclaim and under writeback (nr_immediate), it
5889 * implies that pages are cycling through the LRU
5890 * faster than they are written so forcibly stall
5891 * until some pages complete writeback.
5892 */
5893 if (sc->nr.immediate)
5894 reclaim_throttle(pgdat, reason: VMSCAN_THROTTLE_WRITEBACK);
5895 }
5896
5897 /*
5898 * Tag a node/memcg as congested if all the dirty pages were marked
5899 * for writeback and immediate reclaim (counted in nr.congested).
5900 *
5901 * Legacy memcg will stall in page writeback so avoid forcibly
5902 * stalling in reclaim_throttle().
5903 */
5904 if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested) {
5905 if (cgroup_reclaim(sc) && writeback_throttling_sane(sc))
5906 set_bit(nr: LRUVEC_CGROUP_CONGESTED, addr: &target_lruvec->flags);
5907
5908 if (current_is_kswapd())
5909 set_bit(nr: LRUVEC_NODE_CONGESTED, addr: &target_lruvec->flags);
5910 }
5911
5912 /*
5913 * Stall direct reclaim for IO completions if the lruvec is
5914 * node is congested. Allow kswapd to continue until it
5915 * starts encountering unqueued dirty pages or cycling through
5916 * the LRU too quickly.
5917 */
5918 if (!current_is_kswapd() && current_may_throttle() &&
5919 !sc->hibernation_mode &&
5920 (test_bit(LRUVEC_CGROUP_CONGESTED, &target_lruvec->flags) ||
5921 test_bit(LRUVEC_NODE_CONGESTED, &target_lruvec->flags)))
5922 reclaim_throttle(pgdat, reason: VMSCAN_THROTTLE_CONGESTED);
5923
5924 if (should_continue_reclaim(pgdat, nr_reclaimed: nr_node_reclaimed, sc))
5925 goto again;
5926
5927 /*
5928 * Kswapd gives up on balancing particular nodes after too
5929 * many failures to reclaim anything from them and goes to
5930 * sleep. On reclaim progress, reset the failure counter. A
5931 * successful direct reclaim run will revive a dormant kswapd.
5932 */
5933 if (reclaimable)
5934 pgdat->kswapd_failures = 0;
5935}
5936
5937/*
5938 * Returns true if compaction should go ahead for a costly-order request, or
5939 * the allocation would already succeed without compaction. Return false if we
5940 * should reclaim first.
5941 */
5942static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
5943{
5944 unsigned long watermark;
5945
5946 /* Allocation can already succeed, nothing to do */
5947 if (zone_watermark_ok(z: zone, order: sc->order, min_wmark_pages(zone),
5948 highest_zoneidx: sc->reclaim_idx, alloc_flags: 0))
5949 return true;
5950
5951 /* Compaction cannot yet proceed. Do reclaim. */
5952 if (!compaction_suitable(zone, order: sc->order, highest_zoneidx: sc->reclaim_idx))
5953 return false;
5954
5955 /*
5956 * Compaction is already possible, but it takes time to run and there
5957 * are potentially other callers using the pages just freed. So proceed
5958 * with reclaim to make a buffer of free pages available to give
5959 * compaction a reasonable chance of completing and allocating the page.
5960 * Note that we won't actually reclaim the whole buffer in one attempt
5961 * as the target watermark in should_continue_reclaim() is lower. But if
5962 * we are already above the high+gap watermark, don't reclaim at all.
5963 */
5964 watermark = high_wmark_pages(zone) + compact_gap(order: sc->order);
5965
5966 return zone_watermark_ok_safe(z: zone, order: 0, mark: watermark, highest_zoneidx: sc->reclaim_idx);
5967}
5968
5969static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc)
5970{
5971 /*
5972 * If reclaim is making progress greater than 12% efficiency then
5973 * wake all the NOPROGRESS throttled tasks.
5974 */
5975 if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) {
5976 wait_queue_head_t *wqh;
5977
5978 wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS];
5979 if (waitqueue_active(wq_head: wqh))
5980 wake_up(wqh);
5981
5982 return;
5983 }
5984
5985 /*
5986 * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will
5987 * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages
5988 * under writeback and marked for immediate reclaim at the tail of the
5989 * LRU.
5990 */
5991 if (current_is_kswapd() || cgroup_reclaim(sc))
5992 return;
5993
5994 /* Throttle if making no progress at high prioities. */
5995 if (sc->priority == 1 && !sc->nr_reclaimed)
5996 reclaim_throttle(pgdat, reason: VMSCAN_THROTTLE_NOPROGRESS);
5997}
5998
5999/*
6000 * This is the direct reclaim path, for page-allocating processes. We only
6001 * try to reclaim pages from zones which will satisfy the caller's allocation
6002 * request.
6003 *
6004 * If a zone is deemed to be full of pinned pages then just give it a light
6005 * scan then give up on it.
6006 */
6007static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
6008{
6009 struct zoneref *z;
6010 struct zone *zone;
6011 unsigned long nr_soft_reclaimed;
6012 unsigned long nr_soft_scanned;
6013 gfp_t orig_mask;
6014 pg_data_t *last_pgdat = NULL;
6015 pg_data_t *first_pgdat = NULL;
6016
6017 /*
6018 * If the number of buffer_heads in the machine exceeds the maximum
6019 * allowed level, force direct reclaim to scan the highmem zone as
6020 * highmem pages could be pinning lowmem pages storing buffer_heads
6021 */
6022 orig_mask = sc->gfp_mask;
6023 if (buffer_heads_over_limit) {
6024 sc->gfp_mask |= __GFP_HIGHMEM;
6025 sc->reclaim_idx = gfp_zone(flags: sc->gfp_mask);
6026 }
6027
6028 for_each_zone_zonelist_nodemask(zone, z, zonelist,
6029 sc->reclaim_idx, sc->nodemask) {
6030 /*
6031 * Take care memory controller reclaiming has small influence
6032 * to global LRU.
6033 */
6034 if (!cgroup_reclaim(sc)) {
6035 if (!cpuset_zone_allowed(z: zone,
6036 GFP_KERNEL | __GFP_HARDWALL))
6037 continue;
6038
6039 /*
6040 * If we already have plenty of memory free for
6041 * compaction in this zone, don't free any more.
6042 * Even though compaction is invoked for any
6043 * non-zero order, only frequent costly order
6044 * reclamation is disruptive enough to become a
6045 * noticeable problem, like transparent huge
6046 * page allocations.
6047 */
6048 if (IS_ENABLED(CONFIG_COMPACTION) &&
6049 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
6050 compaction_ready(zone, sc)) {
6051 sc->compaction_ready = true;
6052 continue;
6053 }
6054
6055 /*
6056 * Shrink each node in the zonelist once. If the
6057 * zonelist is ordered by zone (not the default) then a
6058 * node may be shrunk multiple times but in that case
6059 * the user prefers lower zones being preserved.
6060 */
6061 if (zone->zone_pgdat == last_pgdat)
6062 continue;
6063
6064 /*
6065 * This steals pages from memory cgroups over softlimit
6066 * and returns the number of reclaimed pages and
6067 * scanned pages. This works for global memory pressure
6068 * and balancing, not for a memcg's limit.
6069 */
6070 nr_soft_scanned = 0;
6071 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat: zone->zone_pgdat,
6072 order: sc->order, gfp_mask: sc->gfp_mask,
6073 total_scanned: &nr_soft_scanned);
6074 sc->nr_reclaimed += nr_soft_reclaimed;
6075 sc->nr_scanned += nr_soft_scanned;
6076 /* need some check for avoid more shrink_zone() */
6077 }
6078
6079 if (!first_pgdat)
6080 first_pgdat = zone->zone_pgdat;
6081
6082 /* See comment about same check for global reclaim above */
6083 if (zone->zone_pgdat == last_pgdat)
6084 continue;
6085 last_pgdat = zone->zone_pgdat;
6086 shrink_node(pgdat: zone->zone_pgdat, sc);
6087 }
6088
6089 if (first_pgdat)
6090 consider_reclaim_throttle(pgdat: first_pgdat, sc);
6091
6092 /*
6093 * Restore to original mask to avoid the impact on the caller if we
6094 * promoted it to __GFP_HIGHMEM.
6095 */
6096 sc->gfp_mask = orig_mask;
6097}
6098
6099static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
6100{
6101 struct lruvec *target_lruvec;
6102 unsigned long refaults;
6103
6104 if (lru_gen_enabled())
6105 return;
6106
6107 target_lruvec = mem_cgroup_lruvec(memcg: target_memcg, pgdat);
6108 refaults = lruvec_page_state(lruvec: target_lruvec, idx: WORKINGSET_ACTIVATE_ANON);
6109 target_lruvec->refaults[WORKINGSET_ANON] = refaults;
6110 refaults = lruvec_page_state(lruvec: target_lruvec, idx: WORKINGSET_ACTIVATE_FILE);
6111 target_lruvec->refaults[WORKINGSET_FILE] = refaults;
6112}
6113
6114/*
6115 * This is the main entry point to direct page reclaim.
6116 *
6117 * If a full scan of the inactive list fails to free enough memory then we
6118 * are "out of memory" and something needs to be killed.
6119 *
6120 * If the caller is !__GFP_FS then the probability of a failure is reasonably
6121 * high - the zone may be full of dirty or under-writeback pages, which this
6122 * caller can't do much about. We kick the writeback threads and take explicit
6123 * naps in the hope that some of these pages can be written. But if the
6124 * allocating task holds filesystem locks which prevent writeout this might not
6125 * work, and the allocation attempt will fail.
6126 *
6127 * returns: 0, if no pages reclaimed
6128 * else, the number of pages reclaimed
6129 */
6130static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
6131 struct scan_control *sc)
6132{
6133 int initial_priority = sc->priority;
6134 pg_data_t *last_pgdat;
6135 struct zoneref *z;
6136 struct zone *zone;
6137retry:
6138 delayacct_freepages_start();
6139
6140 if (!cgroup_reclaim(sc))
6141 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
6142
6143 do {
6144 if (!sc->proactive)
6145 vmpressure_prio(gfp: sc->gfp_mask, memcg: sc->target_mem_cgroup,
6146 prio: sc->priority);
6147 sc->nr_scanned = 0;
6148 shrink_zones(zonelist, sc);
6149
6150 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
6151 break;
6152
6153 if (sc->compaction_ready)
6154 break;
6155
6156 /*
6157 * If we're getting trouble reclaiming, start doing
6158 * writepage even in laptop mode.
6159 */
6160 if (sc->priority < DEF_PRIORITY - 2)
6161 sc->may_writepage = 1;
6162 } while (--sc->priority >= 0);
6163
6164 last_pgdat = NULL;
6165 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
6166 sc->nodemask) {
6167 if (zone->zone_pgdat == last_pgdat)
6168 continue;
6169 last_pgdat = zone->zone_pgdat;
6170
6171 snapshot_refaults(target_memcg: sc->target_mem_cgroup, pgdat: zone->zone_pgdat);
6172
6173 if (cgroup_reclaim(sc)) {
6174 struct lruvec *lruvec;
6175
6176 lruvec = mem_cgroup_lruvec(memcg: sc->target_mem_cgroup,
6177 pgdat: zone->zone_pgdat);
6178 clear_bit(nr: LRUVEC_CGROUP_CONGESTED, addr: &lruvec->flags);
6179 }
6180 }
6181
6182 delayacct_freepages_end();
6183
6184 if (sc->nr_reclaimed)
6185 return sc->nr_reclaimed;
6186
6187 /* Aborted reclaim to try compaction? don't OOM, then */
6188 if (sc->compaction_ready)
6189 return 1;
6190
6191 /*
6192 * We make inactive:active ratio decisions based on the node's
6193 * composition of memory, but a restrictive reclaim_idx or a
6194 * memory.low cgroup setting can exempt large amounts of
6195 * memory from reclaim. Neither of which are very common, so
6196 * instead of doing costly eligibility calculations of the
6197 * entire cgroup subtree up front, we assume the estimates are
6198 * good, and retry with forcible deactivation if that fails.
6199 */
6200 if (sc->skipped_deactivate) {
6201 sc->priority = initial_priority;
6202 sc->force_deactivate = 1;
6203 sc->skipped_deactivate = 0;
6204 goto retry;
6205 }
6206
6207 /* Untapped cgroup reserves? Don't OOM, retry. */
6208 if (sc->memcg_low_skipped) {
6209 sc->priority = initial_priority;
6210 sc->force_deactivate = 0;
6211 sc->memcg_low_reclaim = 1;
6212 sc->memcg_low_skipped = 0;
6213 goto retry;
6214 }
6215
6216 return 0;
6217}
6218
6219static bool allow_direct_reclaim(pg_data_t *pgdat)
6220{
6221 struct zone *zone;
6222 unsigned long pfmemalloc_reserve = 0;
6223 unsigned long free_pages = 0;
6224 int i;
6225 bool wmark_ok;
6226
6227 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
6228 return true;
6229
6230 for (i = 0; i <= ZONE_NORMAL; i++) {
6231 zone = &pgdat->node_zones[i];
6232 if (!managed_zone(zone))
6233 continue;
6234
6235 if (!zone_reclaimable_pages(zone))
6236 continue;
6237
6238 pfmemalloc_reserve += min_wmark_pages(zone);
6239 free_pages += zone_page_state_snapshot(zone, item: NR_FREE_PAGES);
6240 }
6241
6242 /* If there are no reserves (unexpected config) then do not throttle */
6243 if (!pfmemalloc_reserve)
6244 return true;
6245
6246 wmark_ok = free_pages > pfmemalloc_reserve / 2;
6247
6248 /* kswapd must be awake if processes are being throttled */
6249 if (!wmark_ok && waitqueue_active(wq_head: &pgdat->kswapd_wait)) {
6250 if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
6251 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
6252
6253 wake_up_interruptible(&pgdat->kswapd_wait);
6254 }
6255
6256 return wmark_ok;
6257}
6258
6259/*
6260 * Throttle direct reclaimers if backing storage is backed by the network
6261 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
6262 * depleted. kswapd will continue to make progress and wake the processes
6263 * when the low watermark is reached.
6264 *
6265 * Returns true if a fatal signal was delivered during throttling. If this
6266 * happens, the page allocator should not consider triggering the OOM killer.
6267 */
6268static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
6269 nodemask_t *nodemask)
6270{
6271 struct zoneref *z;
6272 struct zone *zone;
6273 pg_data_t *pgdat = NULL;
6274
6275 /*
6276 * Kernel threads should not be throttled as they may be indirectly
6277 * responsible for cleaning pages necessary for reclaim to make forward
6278 * progress. kjournald for example may enter direct reclaim while
6279 * committing a transaction where throttling it could forcing other
6280 * processes to block on log_wait_commit().
6281 */
6282 if (current->flags & PF_KTHREAD)
6283 goto out;
6284
6285 /*
6286 * If a fatal signal is pending, this process should not throttle.
6287 * It should return quickly so it can exit and free its memory
6288 */
6289 if (fatal_signal_pending(current))
6290 goto out;
6291
6292 /*
6293 * Check if the pfmemalloc reserves are ok by finding the first node
6294 * with a usable ZONE_NORMAL or lower zone. The expectation is that
6295 * GFP_KERNEL will be required for allocating network buffers when
6296 * swapping over the network so ZONE_HIGHMEM is unusable.
6297 *
6298 * Throttling is based on the first usable node and throttled processes
6299 * wait on a queue until kswapd makes progress and wakes them. There
6300 * is an affinity then between processes waking up and where reclaim
6301 * progress has been made assuming the process wakes on the same node.
6302 * More importantly, processes running on remote nodes will not compete
6303 * for remote pfmemalloc reserves and processes on different nodes
6304 * should make reasonable progress.
6305 */
6306 for_each_zone_zonelist_nodemask(zone, z, zonelist,
6307 gfp_zone(gfp_mask), nodemask) {
6308 if (zone_idx(zone) > ZONE_NORMAL)
6309 continue;
6310
6311 /* Throttle based on the first usable node */
6312 pgdat = zone->zone_pgdat;
6313 if (allow_direct_reclaim(pgdat))
6314 goto out;
6315 break;
6316 }
6317
6318 /* If no zone was usable by the allocation flags then do not throttle */
6319 if (!pgdat)
6320 goto out;
6321
6322 /* Account for the throttling */
6323 count_vm_event(item: PGSCAN_DIRECT_THROTTLE);
6324
6325 /*
6326 * If the caller cannot enter the filesystem, it's possible that it
6327 * is due to the caller holding an FS lock or performing a journal
6328 * transaction in the case of a filesystem like ext[3|4]. In this case,
6329 * it is not safe to block on pfmemalloc_wait as kswapd could be
6330 * blocked waiting on the same lock. Instead, throttle for up to a
6331 * second before continuing.
6332 */
6333 if (!(gfp_mask & __GFP_FS))
6334 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
6335 allow_direct_reclaim(pgdat), HZ);
6336 else
6337 /* Throttle until kswapd wakes the process */
6338 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
6339 allow_direct_reclaim(pgdat));
6340
6341 if (fatal_signal_pending(current))
6342 return true;
6343
6344out:
6345 return false;
6346}
6347
6348unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
6349 gfp_t gfp_mask, nodemask_t *nodemask)
6350{
6351 unsigned long nr_reclaimed;
6352 struct scan_control sc = {
6353 .nr_to_reclaim = SWAP_CLUSTER_MAX,
6354 .gfp_mask = current_gfp_context(flags: gfp_mask),
6355 .reclaim_idx = gfp_zone(flags: gfp_mask),
6356 .order = order,
6357 .nodemask = nodemask,
6358 .priority = DEF_PRIORITY,
6359 .may_writepage = !laptop_mode,
6360 .may_unmap = 1,
6361 .may_swap = 1,
6362 };
6363
6364 /*
6365 * scan_control uses s8 fields for order, priority, and reclaim_idx.
6366 * Confirm they are large enough for max values.
6367 */
6368 BUILD_BUG_ON(MAX_ORDER >= S8_MAX);
6369 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
6370 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
6371
6372 /*
6373 * Do not enter reclaim if fatal signal was delivered while throttled.
6374 * 1 is returned so that the page allocator does not OOM kill at this
6375 * point.
6376 */
6377 if (throttle_direct_reclaim(gfp_mask: sc.gfp_mask, zonelist, nodemask))
6378 return 1;
6379
6380 set_task_reclaim_state(current, rs: &sc.reclaim_state);
6381 trace_mm_vmscan_direct_reclaim_begin(order, gfp_flags: sc.gfp_mask);
6382
6383 nr_reclaimed = do_try_to_free_pages(zonelist, sc: &sc);
6384
6385 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
6386 set_task_reclaim_state(current, NULL);
6387
6388 return nr_reclaimed;
6389}
6390
6391#ifdef CONFIG_MEMCG
6392
6393/* Only used by soft limit reclaim. Do not reuse for anything else. */
6394unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
6395 gfp_t gfp_mask, bool noswap,
6396 pg_data_t *pgdat,
6397 unsigned long *nr_scanned)
6398{
6399 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
6400 struct scan_control sc = {
6401 .nr_to_reclaim = SWAP_CLUSTER_MAX,
6402 .target_mem_cgroup = memcg,
6403 .may_writepage = !laptop_mode,
6404 .may_unmap = 1,
6405 .reclaim_idx = MAX_NR_ZONES - 1,
6406 .may_swap = !noswap,
6407 };
6408
6409 WARN_ON_ONCE(!current->reclaim_state);
6410
6411 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
6412 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
6413
6414 trace_mm_vmscan_memcg_softlimit_reclaim_begin(order: sc.order,
6415 gfp_flags: sc.gfp_mask);
6416
6417 /*
6418 * NOTE: Although we can get the priority field, using it
6419 * here is not a good idea, since it limits the pages we can scan.
6420 * if we don't reclaim here, the shrink_node from balance_pgdat
6421 * will pick up pages from other mem cgroup's as well. We hack
6422 * the priority and make it zero.
6423 */
6424 shrink_lruvec(lruvec, sc: &sc);
6425
6426 trace_mm_vmscan_memcg_softlimit_reclaim_end(nr_reclaimed: sc.nr_reclaimed);
6427
6428 *nr_scanned = sc.nr_scanned;
6429
6430 return sc.nr_reclaimed;
6431}
6432
6433unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
6434 unsigned long nr_pages,
6435 gfp_t gfp_mask,
6436 unsigned int reclaim_options)
6437{
6438 unsigned long nr_reclaimed;
6439 unsigned int noreclaim_flag;
6440 struct scan_control sc = {
6441 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
6442 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
6443 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
6444 .reclaim_idx = MAX_NR_ZONES - 1,
6445 .target_mem_cgroup = memcg,
6446 .priority = DEF_PRIORITY,
6447 .may_writepage = !laptop_mode,
6448 .may_unmap = 1,
6449 .may_swap = !!(reclaim_options & MEMCG_RECLAIM_MAY_SWAP),
6450 .proactive = !!(reclaim_options & MEMCG_RECLAIM_PROACTIVE),
6451 };
6452 /*
6453 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
6454 * equal pressure on all the nodes. This is based on the assumption that
6455 * the reclaim does not bail out early.
6456 */
6457 struct zonelist *zonelist = node_zonelist(nid: numa_node_id(), flags: sc.gfp_mask);
6458
6459 set_task_reclaim_state(current, rs: &sc.reclaim_state);
6460 trace_mm_vmscan_memcg_reclaim_begin(order: 0, gfp_flags: sc.gfp_mask);
6461 noreclaim_flag = memalloc_noreclaim_save();
6462
6463 nr_reclaimed = do_try_to_free_pages(zonelist, sc: &sc);
6464
6465 memalloc_noreclaim_restore(flags: noreclaim_flag);
6466 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
6467 set_task_reclaim_state(current, NULL);
6468
6469 return nr_reclaimed;
6470}
6471#endif
6472
6473static void kswapd_age_node(struct pglist_data *pgdat, struct scan_control *sc)
6474{
6475 struct mem_cgroup *memcg;
6476 struct lruvec *lruvec;
6477
6478 if (lru_gen_enabled()) {
6479 lru_gen_age_node(pgdat, sc);
6480 return;
6481 }
6482
6483 if (!can_age_anon_pages(pgdat, sc))
6484 return;
6485
6486 lruvec = mem_cgroup_lruvec(NULL, pgdat);
6487 if (!inactive_is_low(lruvec, inactive_lru: LRU_INACTIVE_ANON))
6488 return;
6489
6490 memcg = mem_cgroup_iter(NULL, NULL, NULL);
6491 do {
6492 lruvec = mem_cgroup_lruvec(memcg, pgdat);
6493 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
6494 sc, lru: LRU_ACTIVE_ANON);
6495 memcg = mem_cgroup_iter(NULL, memcg, NULL);
6496 } while (memcg);
6497}
6498
6499static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
6500{
6501 int i;
6502 struct zone *zone;
6503
6504 /*
6505 * Check for watermark boosts top-down as the higher zones
6506 * are more likely to be boosted. Both watermarks and boosts
6507 * should not be checked at the same time as reclaim would
6508 * start prematurely when there is no boosting and a lower
6509 * zone is balanced.
6510 */
6511 for (i = highest_zoneidx; i >= 0; i--) {
6512 zone = pgdat->node_zones + i;
6513 if (!managed_zone(zone))
6514 continue;
6515
6516 if (zone->watermark_boost)
6517 return true;
6518 }
6519
6520 return false;
6521}
6522
6523/*
6524 * Returns true if there is an eligible zone balanced for the request order
6525 * and highest_zoneidx
6526 */
6527static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
6528{
6529 int i;
6530 unsigned long mark = -1;
6531 struct zone *zone;
6532
6533 /*
6534 * Check watermarks bottom-up as lower zones are more likely to
6535 * meet watermarks.
6536 */
6537 for (i = 0; i <= highest_zoneidx; i++) {
6538 zone = pgdat->node_zones + i;
6539
6540 if (!managed_zone(zone))
6541 continue;
6542
6543 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING)
6544 mark = wmark_pages(zone, WMARK_PROMO);
6545 else
6546 mark = high_wmark_pages(zone);
6547 if (zone_watermark_ok_safe(z: zone, order, mark, highest_zoneidx))
6548 return true;
6549 }
6550
6551 /*
6552 * If a node has no managed zone within highest_zoneidx, it does not
6553 * need balancing by definition. This can happen if a zone-restricted
6554 * allocation tries to wake a remote kswapd.
6555 */
6556 if (mark == -1)
6557 return true;
6558
6559 return false;
6560}
6561
6562/* Clear pgdat state for congested, dirty or under writeback. */
6563static void clear_pgdat_congested(pg_data_t *pgdat)
6564{
6565 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
6566
6567 clear_bit(nr: LRUVEC_NODE_CONGESTED, addr: &lruvec->flags);
6568 clear_bit(nr: LRUVEC_CGROUP_CONGESTED, addr: &lruvec->flags);
6569 clear_bit(nr: PGDAT_DIRTY, addr: &pgdat->flags);
6570 clear_bit(nr: PGDAT_WRITEBACK, addr: &pgdat->flags);
6571}
6572
6573/*
6574 * Prepare kswapd for sleeping. This verifies that there are no processes
6575 * waiting in throttle_direct_reclaim() and that watermarks have been met.
6576 *
6577 * Returns true if kswapd is ready to sleep
6578 */
6579static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
6580 int highest_zoneidx)
6581{
6582 /*
6583 * The throttled processes are normally woken up in balance_pgdat() as
6584 * soon as allow_direct_reclaim() is true. But there is a potential
6585 * race between when kswapd checks the watermarks and a process gets
6586 * throttled. There is also a potential race if processes get
6587 * throttled, kswapd wakes, a large process exits thereby balancing the
6588 * zones, which causes kswapd to exit balance_pgdat() before reaching
6589 * the wake up checks. If kswapd is going to sleep, no process should
6590 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
6591 * the wake up is premature, processes will wake kswapd and get
6592 * throttled again. The difference from wake ups in balance_pgdat() is
6593 * that here we are under prepare_to_wait().
6594 */
6595 if (waitqueue_active(wq_head: &pgdat->pfmemalloc_wait))
6596 wake_up_all(&pgdat->pfmemalloc_wait);
6597
6598 /* Hopeless node, leave it to direct reclaim */
6599 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
6600 return true;
6601
6602 if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
6603 clear_pgdat_congested(pgdat);
6604 return true;
6605 }
6606
6607 return false;
6608}
6609
6610/*
6611 * kswapd shrinks a node of pages that are at or below the highest usable
6612 * zone that is currently unbalanced.
6613 *
6614 * Returns true if kswapd scanned at least the requested number of pages to
6615 * reclaim or if the lack of progress was due to pages under writeback.
6616 * This is used to determine if the scanning priority needs to be raised.
6617 */
6618static bool kswapd_shrink_node(pg_data_t *pgdat,
6619 struct scan_control *sc)
6620{
6621 struct zone *zone;
6622 int z;
6623
6624 /* Reclaim a number of pages proportional to the number of zones */
6625 sc->nr_to_reclaim = 0;
6626 for (z = 0; z <= sc->reclaim_idx; z++) {
6627 zone = pgdat->node_zones + z;
6628 if (!managed_zone(zone))
6629 continue;
6630
6631 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
6632 }
6633
6634 /*
6635 * Historically care was taken to put equal pressure on all zones but
6636 * now pressure is applied based on node LRU order.
6637 */
6638 shrink_node(pgdat, sc);
6639
6640 /*
6641 * Fragmentation may mean that the system cannot be rebalanced for
6642 * high-order allocations. If twice the allocation size has been
6643 * reclaimed then recheck watermarks only at order-0 to prevent
6644 * excessive reclaim. Assume that a process requested a high-order
6645 * can direct reclaim/compact.
6646 */
6647 if (sc->order && sc->nr_reclaimed >= compact_gap(order: sc->order))
6648 sc->order = 0;
6649
6650 return sc->nr_scanned >= sc->nr_to_reclaim;
6651}
6652
6653/* Page allocator PCP high watermark is lowered if reclaim is active. */
6654static inline void
6655update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active)
6656{
6657 int i;
6658 struct zone *zone;
6659
6660 for (i = 0; i <= highest_zoneidx; i++) {
6661 zone = pgdat->node_zones + i;
6662
6663 if (!managed_zone(zone))
6664 continue;
6665
6666 if (active)
6667 set_bit(nr: ZONE_RECLAIM_ACTIVE, addr: &zone->flags);
6668 else
6669 clear_bit(nr: ZONE_RECLAIM_ACTIVE, addr: &zone->flags);
6670 }
6671}
6672
6673static inline void
6674set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
6675{
6676 update_reclaim_active(pgdat, highest_zoneidx, active: true);
6677}
6678
6679static inline void
6680clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
6681{
6682 update_reclaim_active(pgdat, highest_zoneidx, active: false);
6683}
6684
6685/*
6686 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
6687 * that are eligible for use by the caller until at least one zone is
6688 * balanced.
6689 *
6690 * Returns the order kswapd finished reclaiming at.
6691 *
6692 * kswapd scans the zones in the highmem->normal->dma direction. It skips
6693 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
6694 * found to have free_pages <= high_wmark_pages(zone), any page in that zone
6695 * or lower is eligible for reclaim until at least one usable zone is
6696 * balanced.
6697 */
6698static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
6699{
6700 int i;
6701 unsigned long nr_soft_reclaimed;
6702 unsigned long nr_soft_scanned;
6703 unsigned long pflags;
6704 unsigned long nr_boost_reclaim;
6705 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
6706 bool boosted;
6707 struct zone *zone;
6708 struct scan_control sc = {
6709 .gfp_mask = GFP_KERNEL,
6710 .order = order,
6711 .may_unmap = 1,
6712 };
6713
6714 set_task_reclaim_state(current, rs: &sc.reclaim_state);
6715 psi_memstall_enter(flags: &pflags);
6716 __fs_reclaim_acquire(_THIS_IP_);
6717
6718 count_vm_event(item: PAGEOUTRUN);
6719
6720 /*
6721 * Account for the reclaim boost. Note that the zone boost is left in
6722 * place so that parallel allocations that are near the watermark will
6723 * stall or direct reclaim until kswapd is finished.
6724 */
6725 nr_boost_reclaim = 0;
6726 for (i = 0; i <= highest_zoneidx; i++) {
6727 zone = pgdat->node_zones + i;
6728 if (!managed_zone(zone))
6729 continue;
6730
6731 nr_boost_reclaim += zone->watermark_boost;
6732 zone_boosts[i] = zone->watermark_boost;
6733 }
6734 boosted = nr_boost_reclaim;
6735
6736restart:
6737 set_reclaim_active(pgdat, highest_zoneidx);
6738 sc.priority = DEF_PRIORITY;
6739 do {
6740 unsigned long nr_reclaimed = sc.nr_reclaimed;
6741 bool raise_priority = true;
6742 bool balanced;
6743 bool ret;
6744
6745 sc.reclaim_idx = highest_zoneidx;
6746
6747 /*
6748 * If the number of buffer_heads exceeds the maximum allowed
6749 * then consider reclaiming from all zones. This has a dual
6750 * purpose -- on 64-bit systems it is expected that
6751 * buffer_heads are stripped during active rotation. On 32-bit
6752 * systems, highmem pages can pin lowmem memory and shrinking
6753 * buffers can relieve lowmem pressure. Reclaim may still not
6754 * go ahead if all eligible zones for the original allocation
6755 * request are balanced to avoid excessive reclaim from kswapd.
6756 */
6757 if (buffer_heads_over_limit) {
6758 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
6759 zone = pgdat->node_zones + i;
6760 if (!managed_zone(zone))
6761 continue;
6762
6763 sc.reclaim_idx = i;
6764 break;
6765 }
6766 }
6767
6768 /*
6769 * If the pgdat is imbalanced then ignore boosting and preserve
6770 * the watermarks for a later time and restart. Note that the
6771 * zone watermarks will be still reset at the end of balancing
6772 * on the grounds that the normal reclaim should be enough to
6773 * re-evaluate if boosting is required when kswapd next wakes.
6774 */
6775 balanced = pgdat_balanced(pgdat, order: sc.order, highest_zoneidx);
6776 if (!balanced && nr_boost_reclaim) {
6777 nr_boost_reclaim = 0;
6778 goto restart;
6779 }
6780
6781 /*
6782 * If boosting is not active then only reclaim if there are no
6783 * eligible zones. Note that sc.reclaim_idx is not used as
6784 * buffer_heads_over_limit may have adjusted it.
6785 */
6786 if (!nr_boost_reclaim && balanced)
6787 goto out;
6788
6789 /* Limit the priority of boosting to avoid reclaim writeback */
6790 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
6791 raise_priority = false;
6792
6793 /*
6794 * Do not writeback or swap pages for boosted reclaim. The
6795 * intent is to relieve pressure not issue sub-optimal IO
6796 * from reclaim context. If no pages are reclaimed, the
6797 * reclaim will be aborted.
6798 */
6799 sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
6800 sc.may_swap = !nr_boost_reclaim;
6801
6802 /*
6803 * Do some background aging, to give pages a chance to be
6804 * referenced before reclaiming. All pages are rotated
6805 * regardless of classzone as this is about consistent aging.
6806 */
6807 kswapd_age_node(pgdat, sc: &sc);
6808
6809 /*
6810 * If we're getting trouble reclaiming, start doing writepage
6811 * even in laptop mode.
6812 */
6813 if (sc.priority < DEF_PRIORITY - 2)
6814 sc.may_writepage = 1;
6815
6816 /* Call soft limit reclaim before calling shrink_node. */
6817 sc.nr_scanned = 0;
6818 nr_soft_scanned = 0;
6819 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, order: sc.order,
6820 gfp_mask: sc.gfp_mask, total_scanned: &nr_soft_scanned);
6821 sc.nr_reclaimed += nr_soft_reclaimed;
6822
6823 /*
6824 * There should be no need to raise the scanning priority if
6825 * enough pages are already being scanned that that high
6826 * watermark would be met at 100% efficiency.
6827 */
6828 if (kswapd_shrink_node(pgdat, sc: &sc))
6829 raise_priority = false;
6830
6831 /*
6832 * If the low watermark is met there is no need for processes
6833 * to be throttled on pfmemalloc_wait as they should not be
6834 * able to safely make forward progress. Wake them
6835 */
6836 if (waitqueue_active(wq_head: &pgdat->pfmemalloc_wait) &&
6837 allow_direct_reclaim(pgdat))
6838 wake_up_all(&pgdat->pfmemalloc_wait);
6839
6840 /* Check if kswapd should be suspending */
6841 __fs_reclaim_release(_THIS_IP_);
6842 ret = try_to_freeze();
6843 __fs_reclaim_acquire(_THIS_IP_);
6844 if (ret || kthread_should_stop())
6845 break;
6846
6847 /*
6848 * Raise priority if scanning rate is too low or there was no
6849 * progress in reclaiming pages
6850 */
6851 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
6852 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
6853
6854 /*
6855 * If reclaim made no progress for a boost, stop reclaim as
6856 * IO cannot be queued and it could be an infinite loop in
6857 * extreme circumstances.
6858 */
6859 if (nr_boost_reclaim && !nr_reclaimed)
6860 break;
6861
6862 if (raise_priority || !nr_reclaimed)
6863 sc.priority--;
6864 } while (sc.priority >= 1);
6865
6866 if (!sc.nr_reclaimed)
6867 pgdat->kswapd_failures++;
6868
6869out:
6870 clear_reclaim_active(pgdat, highest_zoneidx);
6871
6872 /* If reclaim was boosted, account for the reclaim done in this pass */
6873 if (boosted) {
6874 unsigned long flags;
6875
6876 for (i = 0; i <= highest_zoneidx; i++) {
6877 if (!zone_boosts[i])
6878 continue;
6879
6880 /* Increments are under the zone lock */
6881 zone = pgdat->node_zones + i;
6882 spin_lock_irqsave(&zone->lock, flags);
6883 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
6884 spin_unlock_irqrestore(lock: &zone->lock, flags);
6885 }
6886
6887 /*
6888 * As there is now likely space, wakeup kcompact to defragment
6889 * pageblocks.
6890 */
6891 wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
6892 }
6893
6894 snapshot_refaults(NULL, pgdat);
6895 __fs_reclaim_release(_THIS_IP_);
6896 psi_memstall_leave(flags: &pflags);
6897 set_task_reclaim_state(current, NULL);
6898
6899 /*
6900 * Return the order kswapd stopped reclaiming at as
6901 * prepare_kswapd_sleep() takes it into account. If another caller
6902 * entered the allocator slow path while kswapd was awake, order will
6903 * remain at the higher level.
6904 */
6905 return sc.order;
6906}
6907
6908/*
6909 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
6910 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
6911 * not a valid index then either kswapd runs for first time or kswapd couldn't
6912 * sleep after previous reclaim attempt (node is still unbalanced). In that
6913 * case return the zone index of the previous kswapd reclaim cycle.
6914 */
6915static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
6916 enum zone_type prev_highest_zoneidx)
6917{
6918 enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
6919
6920 return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
6921}
6922
6923static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
6924 unsigned int highest_zoneidx)
6925{
6926 long remaining = 0;
6927 DEFINE_WAIT(wait);
6928
6929 if (freezing(current) || kthread_should_stop())
6930 return;
6931
6932 prepare_to_wait(wq_head: &pgdat->kswapd_wait, wq_entry: &wait, TASK_INTERRUPTIBLE);
6933
6934 /*
6935 * Try to sleep for a short interval. Note that kcompactd will only be
6936 * woken if it is possible to sleep for a short interval. This is
6937 * deliberate on the assumption that if reclaim cannot keep an
6938 * eligible zone balanced that it's also unlikely that compaction will
6939 * succeed.
6940 */
6941 if (prepare_kswapd_sleep(pgdat, order: reclaim_order, highest_zoneidx)) {
6942 /*
6943 * Compaction records what page blocks it recently failed to
6944 * isolate pages from and skips them in the future scanning.
6945 * When kswapd is going to sleep, it is reasonable to assume
6946 * that pages and compaction may succeed so reset the cache.
6947 */
6948 reset_isolation_suitable(pgdat);
6949
6950 /*
6951 * We have freed the memory, now we should compact it to make
6952 * allocation of the requested order possible.
6953 */
6954 wakeup_kcompactd(pgdat, order: alloc_order, highest_zoneidx);
6955
6956 remaining = schedule_timeout(HZ/10);
6957
6958 /*
6959 * If woken prematurely then reset kswapd_highest_zoneidx and
6960 * order. The values will either be from a wakeup request or
6961 * the previous request that slept prematurely.
6962 */
6963 if (remaining) {
6964 WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
6965 kswapd_highest_zoneidx(pgdat,
6966 highest_zoneidx));
6967
6968 if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
6969 WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
6970 }
6971
6972 finish_wait(wq_head: &pgdat->kswapd_wait, wq_entry: &wait);
6973 prepare_to_wait(wq_head: &pgdat->kswapd_wait, wq_entry: &wait, TASK_INTERRUPTIBLE);
6974 }
6975
6976 /*
6977 * After a short sleep, check if it was a premature sleep. If not, then
6978 * go fully to sleep until explicitly woken up.
6979 */
6980 if (!remaining &&
6981 prepare_kswapd_sleep(pgdat, order: reclaim_order, highest_zoneidx)) {
6982 trace_mm_vmscan_kswapd_sleep(nid: pgdat->node_id);
6983
6984 /*
6985 * vmstat counters are not perfectly accurate and the estimated
6986 * value for counters such as NR_FREE_PAGES can deviate from the
6987 * true value by nr_online_cpus * threshold. To avoid the zone
6988 * watermarks being breached while under pressure, we reduce the
6989 * per-cpu vmstat threshold while kswapd is awake and restore
6990 * them before going back to sleep.
6991 */
6992 set_pgdat_percpu_threshold(pgdat, calculate_pressure: calculate_normal_threshold);
6993
6994 if (!kthread_should_stop())
6995 schedule();
6996
6997 set_pgdat_percpu_threshold(pgdat, calculate_pressure: calculate_pressure_threshold);
6998 } else {
6999 if (remaining)
7000 count_vm_event(item: KSWAPD_LOW_WMARK_HIT_QUICKLY);
7001 else
7002 count_vm_event(item: KSWAPD_HIGH_WMARK_HIT_QUICKLY);
7003 }
7004 finish_wait(wq_head: &pgdat->kswapd_wait, wq_entry: &wait);
7005}
7006
7007/*
7008 * The background pageout daemon, started as a kernel thread
7009 * from the init process.
7010 *
7011 * This basically trickles out pages so that we have _some_
7012 * free memory available even if there is no other activity
7013 * that frees anything up. This is needed for things like routing
7014 * etc, where we otherwise might have all activity going on in
7015 * asynchronous contexts that cannot page things out.
7016 *
7017 * If there are applications that are active memory-allocators
7018 * (most normal use), this basically shouldn't matter.
7019 */
7020static int kswapd(void *p)
7021{
7022 unsigned int alloc_order, reclaim_order;
7023 unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
7024 pg_data_t *pgdat = (pg_data_t *)p;
7025 struct task_struct *tsk = current;
7026 const struct cpumask *cpumask = cpumask_of_node(node: pgdat->node_id);
7027
7028 if (!cpumask_empty(srcp: cpumask))
7029 set_cpus_allowed_ptr(p: tsk, new_mask: cpumask);
7030
7031 /*
7032 * Tell the memory management that we're a "memory allocator",
7033 * and that if we need more memory we should get access to it
7034 * regardless (see "__alloc_pages()"). "kswapd" should
7035 * never get caught in the normal page freeing logic.
7036 *
7037 * (Kswapd normally doesn't need memory anyway, but sometimes
7038 * you need a small amount of memory in order to be able to
7039 * page out something else, and this flag essentially protects
7040 * us from recursively trying to free more memory as we're
7041 * trying to free the first piece of memory in the first place).
7042 */
7043 tsk->flags |= PF_MEMALLOC | PF_KSWAPD;
7044 set_freezable();
7045
7046 WRITE_ONCE(pgdat->kswapd_order, 0);
7047 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
7048 atomic_set(v: &pgdat->nr_writeback_throttled, i: 0);
7049 for ( ; ; ) {
7050 bool ret;
7051
7052 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
7053 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7054 prev_highest_zoneidx: highest_zoneidx);
7055
7056kswapd_try_sleep:
7057 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
7058 highest_zoneidx);
7059
7060 /* Read the new order and highest_zoneidx */
7061 alloc_order = READ_ONCE(pgdat->kswapd_order);
7062 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7063 prev_highest_zoneidx: highest_zoneidx);
7064 WRITE_ONCE(pgdat->kswapd_order, 0);
7065 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
7066
7067 ret = try_to_freeze();
7068 if (kthread_should_stop())
7069 break;
7070
7071 /*
7072 * We can speed up thawing tasks if we don't call balance_pgdat
7073 * after returning from the refrigerator
7074 */
7075 if (ret)
7076 continue;
7077
7078 /*
7079 * Reclaim begins at the requested order but if a high-order
7080 * reclaim fails then kswapd falls back to reclaiming for
7081 * order-0. If that happens, kswapd will consider sleeping
7082 * for the order it finished reclaiming at (reclaim_order)
7083 * but kcompactd is woken to compact for the original
7084 * request (alloc_order).
7085 */
7086 trace_mm_vmscan_kswapd_wake(nid: pgdat->node_id, zid: highest_zoneidx,
7087 order: alloc_order);
7088 reclaim_order = balance_pgdat(pgdat, order: alloc_order,
7089 highest_zoneidx);
7090 if (reclaim_order < alloc_order)
7091 goto kswapd_try_sleep;
7092 }
7093
7094 tsk->flags &= ~(PF_MEMALLOC | PF_KSWAPD);
7095
7096 return 0;
7097}
7098
7099/*
7100 * A zone is low on free memory or too fragmented for high-order memory. If
7101 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
7102 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim
7103 * has failed or is not needed, still wake up kcompactd if only compaction is
7104 * needed.
7105 */
7106void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
7107 enum zone_type highest_zoneidx)
7108{
7109 pg_data_t *pgdat;
7110 enum zone_type curr_idx;
7111
7112 if (!managed_zone(zone))
7113 return;
7114
7115 if (!cpuset_zone_allowed(z: zone, gfp_mask: gfp_flags))
7116 return;
7117
7118 pgdat = zone->zone_pgdat;
7119 curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
7120
7121 if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
7122 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
7123
7124 if (READ_ONCE(pgdat->kswapd_order) < order)
7125 WRITE_ONCE(pgdat->kswapd_order, order);
7126
7127 if (!waitqueue_active(wq_head: &pgdat->kswapd_wait))
7128 return;
7129
7130 /* Hopeless node, leave it to direct reclaim if possible */
7131 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
7132 (pgdat_balanced(pgdat, order, highest_zoneidx) &&
7133 !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
7134 /*
7135 * There may be plenty of free memory available, but it's too
7136 * fragmented for high-order allocations. Wake up kcompactd
7137 * and rely on compaction_suitable() to determine if it's
7138 * needed. If it fails, it will defer subsequent attempts to
7139 * ratelimit its work.
7140 */
7141 if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
7142 wakeup_kcompactd(pgdat, order, highest_zoneidx);
7143 return;
7144 }
7145
7146 trace_mm_vmscan_wakeup_kswapd(nid: pgdat->node_id, zid: highest_zoneidx, order,
7147 gfp_flags);
7148 wake_up_interruptible(&pgdat->kswapd_wait);
7149}
7150
7151#ifdef CONFIG_HIBERNATION
7152/*
7153 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
7154 * freed pages.
7155 *
7156 * Rather than trying to age LRUs the aim is to preserve the overall
7157 * LRU order by reclaiming preferentially
7158 * inactive > active > active referenced > active mapped
7159 */
7160unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
7161{
7162 struct scan_control sc = {
7163 .nr_to_reclaim = nr_to_reclaim,
7164 .gfp_mask = GFP_HIGHUSER_MOVABLE,
7165 .reclaim_idx = MAX_NR_ZONES - 1,
7166 .priority = DEF_PRIORITY,
7167 .may_writepage = 1,
7168 .may_unmap = 1,
7169 .may_swap = 1,
7170 .hibernation_mode = 1,
7171 };
7172 struct zonelist *zonelist = node_zonelist(nid: numa_node_id(), flags: sc.gfp_mask);
7173 unsigned long nr_reclaimed;
7174 unsigned int noreclaim_flag;
7175
7176 fs_reclaim_acquire(gfp_mask: sc.gfp_mask);
7177 noreclaim_flag = memalloc_noreclaim_save();
7178 set_task_reclaim_state(current, rs: &sc.reclaim_state);
7179
7180 nr_reclaimed = do_try_to_free_pages(zonelist, sc: &sc);
7181
7182 set_task_reclaim_state(current, NULL);
7183 memalloc_noreclaim_restore(flags: noreclaim_flag);
7184 fs_reclaim_release(gfp_mask: sc.gfp_mask);
7185
7186 return nr_reclaimed;
7187}
7188#endif /* CONFIG_HIBERNATION */
7189
7190/*
7191 * This kswapd start function will be called by init and node-hot-add.
7192 */
7193void __meminit kswapd_run(int nid)
7194{
7195 pg_data_t *pgdat = NODE_DATA(nid);
7196
7197 pgdat_kswapd_lock(pgdat);
7198 if (!pgdat->kswapd) {
7199 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
7200 if (IS_ERR(ptr: pgdat->kswapd)) {
7201 /* failure at boot is fatal */
7202 pr_err("Failed to start kswapd on node %d,ret=%ld\n",
7203 nid, PTR_ERR(pgdat->kswapd));
7204 BUG_ON(system_state < SYSTEM_RUNNING);
7205 pgdat->kswapd = NULL;
7206 }
7207 }
7208 pgdat_kswapd_unlock(pgdat);
7209}
7210
7211/*
7212 * Called by memory hotplug when all memory in a node is offlined. Caller must
7213 * be holding mem_hotplug_begin/done().
7214 */
7215void __meminit kswapd_stop(int nid)
7216{
7217 pg_data_t *pgdat = NODE_DATA(nid);
7218 struct task_struct *kswapd;
7219
7220 pgdat_kswapd_lock(pgdat);
7221 kswapd = pgdat->kswapd;
7222 if (kswapd) {
7223 kthread_stop(k: kswapd);
7224 pgdat->kswapd = NULL;
7225 }
7226 pgdat_kswapd_unlock(pgdat);
7227}
7228
7229static int __init kswapd_init(void)
7230{
7231 int nid;
7232
7233 swap_setup();
7234 for_each_node_state(nid, N_MEMORY)
7235 kswapd_run(nid);
7236 return 0;
7237}
7238
7239module_init(kswapd_init)
7240
7241#ifdef CONFIG_NUMA
7242/*
7243 * Node reclaim mode
7244 *
7245 * If non-zero call node_reclaim when the number of free pages falls below
7246 * the watermarks.
7247 */
7248int node_reclaim_mode __read_mostly;
7249
7250/*
7251 * Priority for NODE_RECLAIM. This determines the fraction of pages
7252 * of a node considered for each zone_reclaim. 4 scans 1/16th of
7253 * a zone.
7254 */
7255#define NODE_RECLAIM_PRIORITY 4
7256
7257/*
7258 * Percentage of pages in a zone that must be unmapped for node_reclaim to
7259 * occur.
7260 */
7261int sysctl_min_unmapped_ratio = 1;
7262
7263/*
7264 * If the number of slab pages in a zone grows beyond this percentage then
7265 * slab reclaim needs to occur.
7266 */
7267int sysctl_min_slab_ratio = 5;
7268
7269static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
7270{
7271 unsigned long file_mapped = node_page_state(pgdat, item: NR_FILE_MAPPED);
7272 unsigned long file_lru = node_page_state(pgdat, item: NR_INACTIVE_FILE) +
7273 node_page_state(pgdat, item: NR_ACTIVE_FILE);
7274
7275 /*
7276 * It's possible for there to be more file mapped pages than
7277 * accounted for by the pages on the file LRU lists because
7278 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
7279 */
7280 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
7281}
7282
7283/* Work out how many page cache pages we can reclaim in this reclaim_mode */
7284static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
7285{
7286 unsigned long nr_pagecache_reclaimable;
7287 unsigned long delta = 0;
7288
7289 /*
7290 * If RECLAIM_UNMAP is set, then all file pages are considered
7291 * potentially reclaimable. Otherwise, we have to worry about
7292 * pages like swapcache and node_unmapped_file_pages() provides
7293 * a better estimate
7294 */
7295 if (node_reclaim_mode & RECLAIM_UNMAP)
7296 nr_pagecache_reclaimable = node_page_state(pgdat, item: NR_FILE_PAGES);
7297 else
7298 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
7299
7300 /* If we can't clean pages, remove dirty pages from consideration */
7301 if (!(node_reclaim_mode & RECLAIM_WRITE))
7302 delta += node_page_state(pgdat, item: NR_FILE_DIRTY);
7303
7304 /* Watch for any possible underflows due to delta */
7305 if (unlikely(delta > nr_pagecache_reclaimable))
7306 delta = nr_pagecache_reclaimable;
7307
7308 return nr_pagecache_reclaimable - delta;
7309}
7310
7311/*
7312 * Try to free up some pages from this node through reclaim.
7313 */
7314static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
7315{
7316 /* Minimum pages needed in order to stay on node */
7317 const unsigned long nr_pages = 1 << order;
7318 struct task_struct *p = current;
7319 unsigned int noreclaim_flag;
7320 struct scan_control sc = {
7321 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
7322 .gfp_mask = current_gfp_context(flags: gfp_mask),
7323 .order = order,
7324 .priority = NODE_RECLAIM_PRIORITY,
7325 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
7326 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
7327 .may_swap = 1,
7328 .reclaim_idx = gfp_zone(flags: gfp_mask),
7329 };
7330 unsigned long pflags;
7331
7332 trace_mm_vmscan_node_reclaim_begin(nid: pgdat->node_id, order,
7333 gfp_flags: sc.gfp_mask);
7334
7335 cond_resched();
7336 psi_memstall_enter(flags: &pflags);
7337 delayacct_freepages_start();
7338 fs_reclaim_acquire(gfp_mask: sc.gfp_mask);
7339 /*
7340 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
7341 */
7342 noreclaim_flag = memalloc_noreclaim_save();
7343 set_task_reclaim_state(task: p, rs: &sc.reclaim_state);
7344
7345 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages ||
7346 node_page_state_pages(pgdat, item: NR_SLAB_RECLAIMABLE_B) > pgdat->min_slab_pages) {
7347 /*
7348 * Free memory by calling shrink node with increasing
7349 * priorities until we have enough memory freed.
7350 */
7351 do {
7352 shrink_node(pgdat, sc: &sc);
7353 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
7354 }
7355
7356 set_task_reclaim_state(task: p, NULL);
7357 memalloc_noreclaim_restore(flags: noreclaim_flag);
7358 fs_reclaim_release(gfp_mask: sc.gfp_mask);
7359 psi_memstall_leave(flags: &pflags);
7360 delayacct_freepages_end();
7361
7362 trace_mm_vmscan_node_reclaim_end(nr_reclaimed: sc.nr_reclaimed);
7363
7364 return sc.nr_reclaimed >= nr_pages;
7365}
7366
7367int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
7368{
7369 int ret;
7370
7371 /*
7372 * Node reclaim reclaims unmapped file backed pages and
7373 * slab pages if we are over the defined limits.
7374 *
7375 * A small portion of unmapped file backed pages is needed for
7376 * file I/O otherwise pages read by file I/O will be immediately
7377 * thrown out if the node is overallocated. So we do not reclaim
7378 * if less than a specified percentage of the node is used by
7379 * unmapped file backed pages.
7380 */
7381 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
7382 node_page_state_pages(pgdat, item: NR_SLAB_RECLAIMABLE_B) <=
7383 pgdat->min_slab_pages)
7384 return NODE_RECLAIM_FULL;
7385
7386 /*
7387 * Do not scan if the allocation should not be delayed.
7388 */
7389 if (!gfpflags_allow_blocking(gfp_flags: gfp_mask) || (current->flags & PF_MEMALLOC))
7390 return NODE_RECLAIM_NOSCAN;
7391
7392 /*
7393 * Only run node reclaim on the local node or on nodes that do not
7394 * have associated processors. This will favor the local processor
7395 * over remote processors and spread off node memory allocations
7396 * as wide as possible.
7397 */
7398 if (node_state(node: pgdat->node_id, state: N_CPU) && pgdat->node_id != numa_node_id())
7399 return NODE_RECLAIM_NOSCAN;
7400
7401 if (test_and_set_bit(nr: PGDAT_RECLAIM_LOCKED, addr: &pgdat->flags))
7402 return NODE_RECLAIM_NOSCAN;
7403
7404 ret = __node_reclaim(pgdat, gfp_mask, order);
7405 clear_bit(nr: PGDAT_RECLAIM_LOCKED, addr: &pgdat->flags);
7406
7407 if (!ret)
7408 count_vm_event(item: PGSCAN_ZONE_RECLAIM_FAILED);
7409
7410 return ret;
7411}
7412#endif
7413
7414/**
7415 * check_move_unevictable_folios - Move evictable folios to appropriate zone
7416 * lru list
7417 * @fbatch: Batch of lru folios to check.
7418 *
7419 * Checks folios for evictability, if an evictable folio is in the unevictable
7420 * lru list, moves it to the appropriate evictable lru list. This function
7421 * should be only used for lru folios.
7422 */
7423void check_move_unevictable_folios(struct folio_batch *fbatch)
7424{
7425 struct lruvec *lruvec = NULL;
7426 int pgscanned = 0;
7427 int pgrescued = 0;
7428 int i;
7429
7430 for (i = 0; i < fbatch->nr; i++) {
7431 struct folio *folio = fbatch->folios[i];
7432 int nr_pages = folio_nr_pages(folio);
7433
7434 pgscanned += nr_pages;
7435
7436 /* block memcg migration while the folio moves between lrus */
7437 if (!folio_test_clear_lru(folio))
7438 continue;
7439
7440 lruvec = folio_lruvec_relock_irq(folio, locked_lruvec: lruvec);
7441 if (folio_evictable(folio) && folio_test_unevictable(folio)) {
7442 lruvec_del_folio(lruvec, folio);
7443 folio_clear_unevictable(folio);
7444 lruvec_add_folio(lruvec, folio);
7445 pgrescued += nr_pages;
7446 }
7447 folio_set_lru(folio);
7448 }
7449
7450 if (lruvec) {
7451 __count_vm_events(item: UNEVICTABLE_PGRESCUED, delta: pgrescued);
7452 __count_vm_events(item: UNEVICTABLE_PGSCANNED, delta: pgscanned);
7453 unlock_page_lruvec_irq(lruvec);
7454 } else if (pgscanned) {
7455 count_vm_events(item: UNEVICTABLE_PGSCANNED, delta: pgscanned);
7456 }
7457}
7458EXPORT_SYMBOL_GPL(check_move_unevictable_folios);
7459

source code of linux/mm/vmscan.c