1// SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
2/* af_can.c - Protocol family CAN core module
3 * (used by different CAN protocol modules)
4 *
5 * Copyright (c) 2002-2017 Volkswagen Group Electronic Research
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of Volkswagen nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * Alternatively, provided that this notice is retained in full, this
21 * software may be distributed under the terms of the GNU General
22 * Public License ("GPL") version 2, in which case the provisions of the
23 * GPL apply INSTEAD OF those given above.
24 *
25 * The provided data structures and external interfaces from this code
26 * are not restricted to be used by modules with a GPL compatible license.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
39 * DAMAGE.
40 *
41 */
42
43#include <linux/module.h>
44#include <linux/stddef.h>
45#include <linux/init.h>
46#include <linux/kmod.h>
47#include <linux/slab.h>
48#include <linux/list.h>
49#include <linux/spinlock.h>
50#include <linux/rcupdate.h>
51#include <linux/uaccess.h>
52#include <linux/net.h>
53#include <linux/netdevice.h>
54#include <linux/socket.h>
55#include <linux/if_ether.h>
56#include <linux/if_arp.h>
57#include <linux/skbuff.h>
58#include <linux/can.h>
59#include <linux/can/core.h>
60#include <linux/can/skb.h>
61#include <linux/can/can-ml.h>
62#include <linux/ratelimit.h>
63#include <net/net_namespace.h>
64#include <net/sock.h>
65
66#include "af_can.h"
67
68MODULE_DESCRIPTION("Controller Area Network PF_CAN core");
69MODULE_LICENSE("Dual BSD/GPL");
70MODULE_AUTHOR("Urs Thuermann <urs.thuermann@volkswagen.de>, "
71 "Oliver Hartkopp <oliver.hartkopp@volkswagen.de>");
72
73MODULE_ALIAS_NETPROTO(PF_CAN);
74
75static int stats_timer __read_mostly = 1;
76module_param(stats_timer, int, 0444);
77MODULE_PARM_DESC(stats_timer, "enable timer for statistics (default:on)");
78
79static struct kmem_cache *rcv_cache __read_mostly;
80
81/* table of registered CAN protocols */
82static const struct can_proto __rcu *proto_tab[CAN_NPROTO] __read_mostly;
83static DEFINE_MUTEX(proto_tab_lock);
84
85static atomic_t skbcounter = ATOMIC_INIT(0);
86
87/* af_can socket functions */
88
89void can_sock_destruct(struct sock *sk)
90{
91 skb_queue_purge(list: &sk->sk_receive_queue);
92 skb_queue_purge(list: &sk->sk_error_queue);
93}
94EXPORT_SYMBOL(can_sock_destruct);
95
96static const struct can_proto *can_get_proto(int protocol)
97{
98 const struct can_proto *cp;
99
100 rcu_read_lock();
101 cp = rcu_dereference(proto_tab[protocol]);
102 if (cp && !try_module_get(module: cp->prot->owner))
103 cp = NULL;
104 rcu_read_unlock();
105
106 return cp;
107}
108
109static inline void can_put_proto(const struct can_proto *cp)
110{
111 module_put(module: cp->prot->owner);
112}
113
114static int can_create(struct net *net, struct socket *sock, int protocol,
115 int kern)
116{
117 struct sock *sk;
118 const struct can_proto *cp;
119 int err = 0;
120
121 sock->state = SS_UNCONNECTED;
122
123 if (protocol < 0 || protocol >= CAN_NPROTO)
124 return -EINVAL;
125
126 cp = can_get_proto(protocol);
127
128#ifdef CONFIG_MODULES
129 if (!cp) {
130 /* try to load protocol module if kernel is modular */
131
132 err = request_module("can-proto-%d", protocol);
133
134 /* In case of error we only print a message but don't
135 * return the error code immediately. Below we will
136 * return -EPROTONOSUPPORT
137 */
138 if (err)
139 pr_err_ratelimited("can: request_module (can-proto-%d) failed.\n",
140 protocol);
141
142 cp = can_get_proto(protocol);
143 }
144#endif
145
146 /* check for available protocol and correct usage */
147
148 if (!cp)
149 return -EPROTONOSUPPORT;
150
151 if (cp->type != sock->type) {
152 err = -EPROTOTYPE;
153 goto errout;
154 }
155
156 sock->ops = cp->ops;
157
158 sk = sk_alloc(net, PF_CAN, GFP_KERNEL, prot: cp->prot, kern);
159 if (!sk) {
160 err = -ENOMEM;
161 goto errout;
162 }
163
164 sock_init_data(sock, sk);
165 sk->sk_destruct = can_sock_destruct;
166
167 if (sk->sk_prot->init)
168 err = sk->sk_prot->init(sk);
169
170 if (err) {
171 /* release sk on errors */
172 sock_orphan(sk);
173 sock_put(sk);
174 }
175
176 errout:
177 can_put_proto(cp);
178 return err;
179}
180
181/* af_can tx path */
182
183/**
184 * can_send - transmit a CAN frame (optional with local loopback)
185 * @skb: pointer to socket buffer with CAN frame in data section
186 * @loop: loopback for listeners on local CAN sockets (recommended default!)
187 *
188 * Due to the loopback this routine must not be called from hardirq context.
189 *
190 * Return:
191 * 0 on success
192 * -ENETDOWN when the selected interface is down
193 * -ENOBUFS on full driver queue (see net_xmit_errno())
194 * -ENOMEM when local loopback failed at calling skb_clone()
195 * -EPERM when trying to send on a non-CAN interface
196 * -EMSGSIZE CAN frame size is bigger than CAN interface MTU
197 * -EINVAL when the skb->data does not contain a valid CAN frame
198 */
199int can_send(struct sk_buff *skb, int loop)
200{
201 struct sk_buff *newskb = NULL;
202 struct can_pkg_stats *pkg_stats = dev_net(dev: skb->dev)->can.pkg_stats;
203 int err = -EINVAL;
204
205 if (can_is_canxl_skb(skb)) {
206 skb->protocol = htons(ETH_P_CANXL);
207 } else if (can_is_can_skb(skb)) {
208 skb->protocol = htons(ETH_P_CAN);
209 } else if (can_is_canfd_skb(skb)) {
210 struct canfd_frame *cfd = (struct canfd_frame *)skb->data;
211
212 skb->protocol = htons(ETH_P_CANFD);
213
214 /* set CAN FD flag for CAN FD frames by default */
215 cfd->flags |= CANFD_FDF;
216 } else {
217 goto inval_skb;
218 }
219
220 /* Make sure the CAN frame can pass the selected CAN netdevice. */
221 if (unlikely(skb->len > skb->dev->mtu)) {
222 err = -EMSGSIZE;
223 goto inval_skb;
224 }
225
226 if (unlikely(skb->dev->type != ARPHRD_CAN)) {
227 err = -EPERM;
228 goto inval_skb;
229 }
230
231 if (unlikely(!(skb->dev->flags & IFF_UP))) {
232 err = -ENETDOWN;
233 goto inval_skb;
234 }
235
236 skb->ip_summed = CHECKSUM_UNNECESSARY;
237
238 skb_reset_mac_header(skb);
239 skb_reset_network_header(skb);
240 skb_reset_transport_header(skb);
241
242 if (loop) {
243 /* local loopback of sent CAN frames */
244
245 /* indication for the CAN driver: do loopback */
246 skb->pkt_type = PACKET_LOOPBACK;
247
248 /* The reference to the originating sock may be required
249 * by the receiving socket to check whether the frame is
250 * its own. Example: can_raw sockopt CAN_RAW_RECV_OWN_MSGS
251 * Therefore we have to ensure that skb->sk remains the
252 * reference to the originating sock by restoring skb->sk
253 * after each skb_clone() or skb_orphan() usage.
254 */
255
256 if (!(skb->dev->flags & IFF_ECHO)) {
257 /* If the interface is not capable to do loopback
258 * itself, we do it here.
259 */
260 newskb = skb_clone(skb, GFP_ATOMIC);
261 if (!newskb) {
262 kfree_skb(skb);
263 return -ENOMEM;
264 }
265
266 can_skb_set_owner(skb: newskb, sk: skb->sk);
267 newskb->ip_summed = CHECKSUM_UNNECESSARY;
268 newskb->pkt_type = PACKET_BROADCAST;
269 }
270 } else {
271 /* indication for the CAN driver: no loopback required */
272 skb->pkt_type = PACKET_HOST;
273 }
274
275 /* send to netdevice */
276 err = dev_queue_xmit(skb);
277 if (err > 0)
278 err = net_xmit_errno(err);
279
280 if (err) {
281 kfree_skb(skb: newskb);
282 return err;
283 }
284
285 if (newskb)
286 netif_rx(skb: newskb);
287
288 /* update statistics */
289 pkg_stats->tx_frames++;
290 pkg_stats->tx_frames_delta++;
291
292 return 0;
293
294inval_skb:
295 kfree_skb(skb);
296 return err;
297}
298EXPORT_SYMBOL(can_send);
299
300/* af_can rx path */
301
302static struct can_dev_rcv_lists *can_dev_rcv_lists_find(struct net *net,
303 struct net_device *dev)
304{
305 if (dev) {
306 struct can_ml_priv *can_ml = can_get_ml_priv(dev);
307 return &can_ml->dev_rcv_lists;
308 } else {
309 return net->can.rx_alldev_list;
310 }
311}
312
313/**
314 * effhash - hash function for 29 bit CAN identifier reduction
315 * @can_id: 29 bit CAN identifier
316 *
317 * Description:
318 * To reduce the linear traversal in one linked list of _single_ EFF CAN
319 * frame subscriptions the 29 bit identifier is mapped to 10 bits.
320 * (see CAN_EFF_RCV_HASH_BITS definition)
321 *
322 * Return:
323 * Hash value from 0x000 - 0x3FF ( enforced by CAN_EFF_RCV_HASH_BITS mask )
324 */
325static unsigned int effhash(canid_t can_id)
326{
327 unsigned int hash;
328
329 hash = can_id;
330 hash ^= can_id >> CAN_EFF_RCV_HASH_BITS;
331 hash ^= can_id >> (2 * CAN_EFF_RCV_HASH_BITS);
332
333 return hash & ((1 << CAN_EFF_RCV_HASH_BITS) - 1);
334}
335
336/**
337 * can_rcv_list_find - determine optimal filterlist inside device filter struct
338 * @can_id: pointer to CAN identifier of a given can_filter
339 * @mask: pointer to CAN mask of a given can_filter
340 * @dev_rcv_lists: pointer to the device filter struct
341 *
342 * Description:
343 * Returns the optimal filterlist to reduce the filter handling in the
344 * receive path. This function is called by service functions that need
345 * to register or unregister a can_filter in the filter lists.
346 *
347 * A filter matches in general, when
348 *
349 * <received_can_id> & mask == can_id & mask
350 *
351 * so every bit set in the mask (even CAN_EFF_FLAG, CAN_RTR_FLAG) describe
352 * relevant bits for the filter.
353 *
354 * The filter can be inverted (CAN_INV_FILTER bit set in can_id) or it can
355 * filter for error messages (CAN_ERR_FLAG bit set in mask). For error msg
356 * frames there is a special filterlist and a special rx path filter handling.
357 *
358 * Return:
359 * Pointer to optimal filterlist for the given can_id/mask pair.
360 * Consistency checked mask.
361 * Reduced can_id to have a preprocessed filter compare value.
362 */
363static struct hlist_head *can_rcv_list_find(canid_t *can_id, canid_t *mask,
364 struct can_dev_rcv_lists *dev_rcv_lists)
365{
366 canid_t inv = *can_id & CAN_INV_FILTER; /* save flag before masking */
367
368 /* filter for error message frames in extra filterlist */
369 if (*mask & CAN_ERR_FLAG) {
370 /* clear CAN_ERR_FLAG in filter entry */
371 *mask &= CAN_ERR_MASK;
372 return &dev_rcv_lists->rx[RX_ERR];
373 }
374
375 /* with cleared CAN_ERR_FLAG we have a simple mask/value filterpair */
376
377#define CAN_EFF_RTR_FLAGS (CAN_EFF_FLAG | CAN_RTR_FLAG)
378
379 /* ensure valid values in can_mask for 'SFF only' frame filtering */
380 if ((*mask & CAN_EFF_FLAG) && !(*can_id & CAN_EFF_FLAG))
381 *mask &= (CAN_SFF_MASK | CAN_EFF_RTR_FLAGS);
382
383 /* reduce condition testing at receive time */
384 *can_id &= *mask;
385
386 /* inverse can_id/can_mask filter */
387 if (inv)
388 return &dev_rcv_lists->rx[RX_INV];
389
390 /* mask == 0 => no condition testing at receive time */
391 if (!(*mask))
392 return &dev_rcv_lists->rx[RX_ALL];
393
394 /* extra filterlists for the subscription of a single non-RTR can_id */
395 if (((*mask & CAN_EFF_RTR_FLAGS) == CAN_EFF_RTR_FLAGS) &&
396 !(*can_id & CAN_RTR_FLAG)) {
397 if (*can_id & CAN_EFF_FLAG) {
398 if (*mask == (CAN_EFF_MASK | CAN_EFF_RTR_FLAGS))
399 return &dev_rcv_lists->rx_eff[effhash(can_id: *can_id)];
400 } else {
401 if (*mask == (CAN_SFF_MASK | CAN_EFF_RTR_FLAGS))
402 return &dev_rcv_lists->rx_sff[*can_id];
403 }
404 }
405
406 /* default: filter via can_id/can_mask */
407 return &dev_rcv_lists->rx[RX_FIL];
408}
409
410/**
411 * can_rx_register - subscribe CAN frames from a specific interface
412 * @net: the applicable net namespace
413 * @dev: pointer to netdevice (NULL => subscribe from 'all' CAN devices list)
414 * @can_id: CAN identifier (see description)
415 * @mask: CAN mask (see description)
416 * @func: callback function on filter match
417 * @data: returned parameter for callback function
418 * @ident: string for calling module identification
419 * @sk: socket pointer (might be NULL)
420 *
421 * Description:
422 * Invokes the callback function with the received sk_buff and the given
423 * parameter 'data' on a matching receive filter. A filter matches, when
424 *
425 * <received_can_id> & mask == can_id & mask
426 *
427 * The filter can be inverted (CAN_INV_FILTER bit set in can_id) or it can
428 * filter for error message frames (CAN_ERR_FLAG bit set in mask).
429 *
430 * The provided pointer to the sk_buff is guaranteed to be valid as long as
431 * the callback function is running. The callback function must *not* free
432 * the given sk_buff while processing it's task. When the given sk_buff is
433 * needed after the end of the callback function it must be cloned inside
434 * the callback function with skb_clone().
435 *
436 * Return:
437 * 0 on success
438 * -ENOMEM on missing cache mem to create subscription entry
439 * -ENODEV unknown device
440 */
441int can_rx_register(struct net *net, struct net_device *dev, canid_t can_id,
442 canid_t mask, void (*func)(struct sk_buff *, void *),
443 void *data, char *ident, struct sock *sk)
444{
445 struct receiver *rcv;
446 struct hlist_head *rcv_list;
447 struct can_dev_rcv_lists *dev_rcv_lists;
448 struct can_rcv_lists_stats *rcv_lists_stats = net->can.rcv_lists_stats;
449
450 /* insert new receiver (dev,canid,mask) -> (func,data) */
451
452 if (dev && (dev->type != ARPHRD_CAN || !can_get_ml_priv(dev)))
453 return -ENODEV;
454
455 if (dev && !net_eq(net1: net, net2: dev_net(dev)))
456 return -ENODEV;
457
458 rcv = kmem_cache_alloc(cachep: rcv_cache, GFP_KERNEL);
459 if (!rcv)
460 return -ENOMEM;
461
462 spin_lock_bh(lock: &net->can.rcvlists_lock);
463
464 dev_rcv_lists = can_dev_rcv_lists_find(net, dev);
465 rcv_list = can_rcv_list_find(can_id: &can_id, mask: &mask, dev_rcv_lists);
466
467 rcv->can_id = can_id;
468 rcv->mask = mask;
469 rcv->matches = 0;
470 rcv->func = func;
471 rcv->data = data;
472 rcv->ident = ident;
473 rcv->sk = sk;
474
475 hlist_add_head_rcu(n: &rcv->list, h: rcv_list);
476 dev_rcv_lists->entries++;
477
478 rcv_lists_stats->rcv_entries++;
479 rcv_lists_stats->rcv_entries_max = max(rcv_lists_stats->rcv_entries_max,
480 rcv_lists_stats->rcv_entries);
481 spin_unlock_bh(lock: &net->can.rcvlists_lock);
482
483 return 0;
484}
485EXPORT_SYMBOL(can_rx_register);
486
487/* can_rx_delete_receiver - rcu callback for single receiver entry removal */
488static void can_rx_delete_receiver(struct rcu_head *rp)
489{
490 struct receiver *rcv = container_of(rp, struct receiver, rcu);
491 struct sock *sk = rcv->sk;
492
493 kmem_cache_free(s: rcv_cache, objp: rcv);
494 if (sk)
495 sock_put(sk);
496}
497
498/**
499 * can_rx_unregister - unsubscribe CAN frames from a specific interface
500 * @net: the applicable net namespace
501 * @dev: pointer to netdevice (NULL => unsubscribe from 'all' CAN devices list)
502 * @can_id: CAN identifier
503 * @mask: CAN mask
504 * @func: callback function on filter match
505 * @data: returned parameter for callback function
506 *
507 * Description:
508 * Removes subscription entry depending on given (subscription) values.
509 */
510void can_rx_unregister(struct net *net, struct net_device *dev, canid_t can_id,
511 canid_t mask, void (*func)(struct sk_buff *, void *),
512 void *data)
513{
514 struct receiver *rcv = NULL;
515 struct hlist_head *rcv_list;
516 struct can_rcv_lists_stats *rcv_lists_stats = net->can.rcv_lists_stats;
517 struct can_dev_rcv_lists *dev_rcv_lists;
518
519 if (dev && dev->type != ARPHRD_CAN)
520 return;
521
522 if (dev && !net_eq(net1: net, net2: dev_net(dev)))
523 return;
524
525 spin_lock_bh(lock: &net->can.rcvlists_lock);
526
527 dev_rcv_lists = can_dev_rcv_lists_find(net, dev);
528 rcv_list = can_rcv_list_find(can_id: &can_id, mask: &mask, dev_rcv_lists);
529
530 /* Search the receiver list for the item to delete. This should
531 * exist, since no receiver may be unregistered that hasn't
532 * been registered before.
533 */
534 hlist_for_each_entry_rcu(rcv, rcv_list, list) {
535 if (rcv->can_id == can_id && rcv->mask == mask &&
536 rcv->func == func && rcv->data == data)
537 break;
538 }
539
540 /* Check for bugs in CAN protocol implementations using af_can.c:
541 * 'rcv' will be NULL if no matching list item was found for removal.
542 * As this case may potentially happen when closing a socket while
543 * the notifier for removing the CAN netdev is running we just print
544 * a warning here.
545 */
546 if (!rcv) {
547 pr_warn("can: receive list entry not found for dev %s, id %03X, mask %03X\n",
548 DNAME(dev), can_id, mask);
549 goto out;
550 }
551
552 hlist_del_rcu(n: &rcv->list);
553 dev_rcv_lists->entries--;
554
555 if (rcv_lists_stats->rcv_entries > 0)
556 rcv_lists_stats->rcv_entries--;
557
558 out:
559 spin_unlock_bh(lock: &net->can.rcvlists_lock);
560
561 /* schedule the receiver item for deletion */
562 if (rcv) {
563 if (rcv->sk)
564 sock_hold(sk: rcv->sk);
565 call_rcu(head: &rcv->rcu, func: can_rx_delete_receiver);
566 }
567}
568EXPORT_SYMBOL(can_rx_unregister);
569
570static inline void deliver(struct sk_buff *skb, struct receiver *rcv)
571{
572 rcv->func(skb, rcv->data);
573 rcv->matches++;
574}
575
576static int can_rcv_filter(struct can_dev_rcv_lists *dev_rcv_lists, struct sk_buff *skb)
577{
578 struct receiver *rcv;
579 int matches = 0;
580 struct can_frame *cf = (struct can_frame *)skb->data;
581 canid_t can_id = cf->can_id;
582
583 if (dev_rcv_lists->entries == 0)
584 return 0;
585
586 if (can_id & CAN_ERR_FLAG) {
587 /* check for error message frame entries only */
588 hlist_for_each_entry_rcu(rcv, &dev_rcv_lists->rx[RX_ERR], list) {
589 if (can_id & rcv->mask) {
590 deliver(skb, rcv);
591 matches++;
592 }
593 }
594 return matches;
595 }
596
597 /* check for unfiltered entries */
598 hlist_for_each_entry_rcu(rcv, &dev_rcv_lists->rx[RX_ALL], list) {
599 deliver(skb, rcv);
600 matches++;
601 }
602
603 /* check for can_id/mask entries */
604 hlist_for_each_entry_rcu(rcv, &dev_rcv_lists->rx[RX_FIL], list) {
605 if ((can_id & rcv->mask) == rcv->can_id) {
606 deliver(skb, rcv);
607 matches++;
608 }
609 }
610
611 /* check for inverted can_id/mask entries */
612 hlist_for_each_entry_rcu(rcv, &dev_rcv_lists->rx[RX_INV], list) {
613 if ((can_id & rcv->mask) != rcv->can_id) {
614 deliver(skb, rcv);
615 matches++;
616 }
617 }
618
619 /* check filterlists for single non-RTR can_ids */
620 if (can_id & CAN_RTR_FLAG)
621 return matches;
622
623 if (can_id & CAN_EFF_FLAG) {
624 hlist_for_each_entry_rcu(rcv, &dev_rcv_lists->rx_eff[effhash(can_id)], list) {
625 if (rcv->can_id == can_id) {
626 deliver(skb, rcv);
627 matches++;
628 }
629 }
630 } else {
631 can_id &= CAN_SFF_MASK;
632 hlist_for_each_entry_rcu(rcv, &dev_rcv_lists->rx_sff[can_id], list) {
633 deliver(skb, rcv);
634 matches++;
635 }
636 }
637
638 return matches;
639}
640
641static void can_receive(struct sk_buff *skb, struct net_device *dev)
642{
643 struct can_dev_rcv_lists *dev_rcv_lists;
644 struct net *net = dev_net(dev);
645 struct can_pkg_stats *pkg_stats = net->can.pkg_stats;
646 int matches;
647
648 /* update statistics */
649 pkg_stats->rx_frames++;
650 pkg_stats->rx_frames_delta++;
651
652 /* create non-zero unique skb identifier together with *skb */
653 while (!(can_skb_prv(skb)->skbcnt))
654 can_skb_prv(skb)->skbcnt = atomic_inc_return(v: &skbcounter);
655
656 rcu_read_lock();
657
658 /* deliver the packet to sockets listening on all devices */
659 matches = can_rcv_filter(dev_rcv_lists: net->can.rx_alldev_list, skb);
660
661 /* find receive list for this device */
662 dev_rcv_lists = can_dev_rcv_lists_find(net, dev);
663 matches += can_rcv_filter(dev_rcv_lists, skb);
664
665 rcu_read_unlock();
666
667 /* consume the skbuff allocated by the netdevice driver */
668 consume_skb(skb);
669
670 if (matches > 0) {
671 pkg_stats->matches++;
672 pkg_stats->matches_delta++;
673 }
674}
675
676static int can_rcv(struct sk_buff *skb, struct net_device *dev,
677 struct packet_type *pt, struct net_device *orig_dev)
678{
679 if (unlikely(dev->type != ARPHRD_CAN || !can_get_ml_priv(dev) || !can_is_can_skb(skb))) {
680 pr_warn_once("PF_CAN: dropped non conform CAN skbuff: dev type %d, len %d\n",
681 dev->type, skb->len);
682
683 kfree_skb(skb);
684 return NET_RX_DROP;
685 }
686
687 can_receive(skb, dev);
688 return NET_RX_SUCCESS;
689}
690
691static int canfd_rcv(struct sk_buff *skb, struct net_device *dev,
692 struct packet_type *pt, struct net_device *orig_dev)
693{
694 if (unlikely(dev->type != ARPHRD_CAN || !can_get_ml_priv(dev) || !can_is_canfd_skb(skb))) {
695 pr_warn_once("PF_CAN: dropped non conform CAN FD skbuff: dev type %d, len %d\n",
696 dev->type, skb->len);
697
698 kfree_skb(skb);
699 return NET_RX_DROP;
700 }
701
702 can_receive(skb, dev);
703 return NET_RX_SUCCESS;
704}
705
706static int canxl_rcv(struct sk_buff *skb, struct net_device *dev,
707 struct packet_type *pt, struct net_device *orig_dev)
708{
709 if (unlikely(dev->type != ARPHRD_CAN || !can_get_ml_priv(dev) || !can_is_canxl_skb(skb))) {
710 pr_warn_once("PF_CAN: dropped non conform CAN XL skbuff: dev type %d, len %d\n",
711 dev->type, skb->len);
712
713 kfree_skb(skb);
714 return NET_RX_DROP;
715 }
716
717 can_receive(skb, dev);
718 return NET_RX_SUCCESS;
719}
720
721/* af_can protocol functions */
722
723/**
724 * can_proto_register - register CAN transport protocol
725 * @cp: pointer to CAN protocol structure
726 *
727 * Return:
728 * 0 on success
729 * -EINVAL invalid (out of range) protocol number
730 * -EBUSY protocol already in use
731 * -ENOBUF if proto_register() fails
732 */
733int can_proto_register(const struct can_proto *cp)
734{
735 int proto = cp->protocol;
736 int err = 0;
737
738 if (proto < 0 || proto >= CAN_NPROTO) {
739 pr_err("can: protocol number %d out of range\n", proto);
740 return -EINVAL;
741 }
742
743 err = proto_register(prot: cp->prot, alloc_slab: 0);
744 if (err < 0)
745 return err;
746
747 mutex_lock(&proto_tab_lock);
748
749 if (rcu_access_pointer(proto_tab[proto])) {
750 pr_err("can: protocol %d already registered\n", proto);
751 err = -EBUSY;
752 } else {
753 RCU_INIT_POINTER(proto_tab[proto], cp);
754 }
755
756 mutex_unlock(lock: &proto_tab_lock);
757
758 if (err < 0)
759 proto_unregister(prot: cp->prot);
760
761 return err;
762}
763EXPORT_SYMBOL(can_proto_register);
764
765/**
766 * can_proto_unregister - unregister CAN transport protocol
767 * @cp: pointer to CAN protocol structure
768 */
769void can_proto_unregister(const struct can_proto *cp)
770{
771 int proto = cp->protocol;
772
773 mutex_lock(&proto_tab_lock);
774 BUG_ON(rcu_access_pointer(proto_tab[proto]) != cp);
775 RCU_INIT_POINTER(proto_tab[proto], NULL);
776 mutex_unlock(lock: &proto_tab_lock);
777
778 synchronize_rcu();
779
780 proto_unregister(prot: cp->prot);
781}
782EXPORT_SYMBOL(can_proto_unregister);
783
784static int can_pernet_init(struct net *net)
785{
786 spin_lock_init(&net->can.rcvlists_lock);
787 net->can.rx_alldev_list =
788 kzalloc(size: sizeof(*net->can.rx_alldev_list), GFP_KERNEL);
789 if (!net->can.rx_alldev_list)
790 goto out;
791 net->can.pkg_stats = kzalloc(size: sizeof(*net->can.pkg_stats), GFP_KERNEL);
792 if (!net->can.pkg_stats)
793 goto out_free_rx_alldev_list;
794 net->can.rcv_lists_stats = kzalloc(size: sizeof(*net->can.rcv_lists_stats), GFP_KERNEL);
795 if (!net->can.rcv_lists_stats)
796 goto out_free_pkg_stats;
797
798 if (IS_ENABLED(CONFIG_PROC_FS)) {
799 /* the statistics are updated every second (timer triggered) */
800 if (stats_timer) {
801 timer_setup(&net->can.stattimer, can_stat_update,
802 0);
803 mod_timer(timer: &net->can.stattimer,
804 expires: round_jiffies(j: jiffies + HZ));
805 }
806 net->can.pkg_stats->jiffies_init = jiffies;
807 can_init_proc(net);
808 }
809
810 return 0;
811
812 out_free_pkg_stats:
813 kfree(objp: net->can.pkg_stats);
814 out_free_rx_alldev_list:
815 kfree(objp: net->can.rx_alldev_list);
816 out:
817 return -ENOMEM;
818}
819
820static void can_pernet_exit(struct net *net)
821{
822 if (IS_ENABLED(CONFIG_PROC_FS)) {
823 can_remove_proc(net);
824 if (stats_timer)
825 del_timer_sync(timer: &net->can.stattimer);
826 }
827
828 kfree(objp: net->can.rx_alldev_list);
829 kfree(objp: net->can.pkg_stats);
830 kfree(objp: net->can.rcv_lists_stats);
831}
832
833/* af_can module init/exit functions */
834
835static struct packet_type can_packet __read_mostly = {
836 .type = cpu_to_be16(ETH_P_CAN),
837 .func = can_rcv,
838};
839
840static struct packet_type canfd_packet __read_mostly = {
841 .type = cpu_to_be16(ETH_P_CANFD),
842 .func = canfd_rcv,
843};
844
845static struct packet_type canxl_packet __read_mostly = {
846 .type = cpu_to_be16(ETH_P_CANXL),
847 .func = canxl_rcv,
848};
849
850static const struct net_proto_family can_family_ops = {
851 .family = PF_CAN,
852 .create = can_create,
853 .owner = THIS_MODULE,
854};
855
856static struct pernet_operations can_pernet_ops __read_mostly = {
857 .init = can_pernet_init,
858 .exit = can_pernet_exit,
859};
860
861static __init int can_init(void)
862{
863 int err;
864
865 /* check for correct padding to be able to use the structs similarly */
866 BUILD_BUG_ON(offsetof(struct can_frame, len) !=
867 offsetof(struct canfd_frame, len) ||
868 offsetof(struct can_frame, data) !=
869 offsetof(struct canfd_frame, data));
870
871 pr_info("can: controller area network core\n");
872
873 rcv_cache = kmem_cache_create(name: "can_receiver", size: sizeof(struct receiver),
874 align: 0, flags: 0, NULL);
875 if (!rcv_cache)
876 return -ENOMEM;
877
878 err = register_pernet_subsys(&can_pernet_ops);
879 if (err)
880 goto out_pernet;
881
882 /* protocol register */
883 err = sock_register(fam: &can_family_ops);
884 if (err)
885 goto out_sock;
886
887 dev_add_pack(pt: &can_packet);
888 dev_add_pack(pt: &canfd_packet);
889 dev_add_pack(pt: &canxl_packet);
890
891 return 0;
892
893out_sock:
894 unregister_pernet_subsys(&can_pernet_ops);
895out_pernet:
896 kmem_cache_destroy(s: rcv_cache);
897
898 return err;
899}
900
901static __exit void can_exit(void)
902{
903 /* protocol unregister */
904 dev_remove_pack(pt: &canxl_packet);
905 dev_remove_pack(pt: &canfd_packet);
906 dev_remove_pack(pt: &can_packet);
907 sock_unregister(PF_CAN);
908
909 unregister_pernet_subsys(&can_pernet_ops);
910
911 rcu_barrier(); /* Wait for completion of call_rcu()'s */
912
913 kmem_cache_destroy(s: rcv_cache);
914}
915
916module_init(can_init);
917module_exit(can_exit);
918

source code of linux/net/can/af_can.c