1// SPDX-License-Identifier: GPL-2.0
2
3#include <linux/ceph/ceph_debug.h>
4
5#include <linux/module.h>
6#include <linux/slab.h>
7
8#include <linux/ceph/libceph.h>
9#include <linux/ceph/osdmap.h>
10#include <linux/ceph/decode.h>
11#include <linux/crush/hash.h>
12#include <linux/crush/mapper.h>
13
14static __printf(2, 3)
15void osdmap_info(const struct ceph_osdmap *map, const char *fmt, ...)
16{
17 struct va_format vaf;
18 va_list args;
19
20 va_start(args, fmt);
21 vaf.fmt = fmt;
22 vaf.va = &args;
23
24 printk(KERN_INFO "%s (%pU e%u): %pV", KBUILD_MODNAME, &map->fsid,
25 map->epoch, &vaf);
26
27 va_end(args);
28}
29
30char *ceph_osdmap_state_str(char *str, int len, u32 state)
31{
32 if (!len)
33 return str;
34
35 if ((state & CEPH_OSD_EXISTS) && (state & CEPH_OSD_UP))
36 snprintf(buf: str, size: len, fmt: "exists, up");
37 else if (state & CEPH_OSD_EXISTS)
38 snprintf(buf: str, size: len, fmt: "exists");
39 else if (state & CEPH_OSD_UP)
40 snprintf(buf: str, size: len, fmt: "up");
41 else
42 snprintf(buf: str, size: len, fmt: "doesn't exist");
43
44 return str;
45}
46
47/* maps */
48
49static int calc_bits_of(unsigned int t)
50{
51 int b = 0;
52 while (t) {
53 t = t >> 1;
54 b++;
55 }
56 return b;
57}
58
59/*
60 * the foo_mask is the smallest value 2^n-1 that is >= foo.
61 */
62static void calc_pg_masks(struct ceph_pg_pool_info *pi)
63{
64 pi->pg_num_mask = (1 << calc_bits_of(t: pi->pg_num-1)) - 1;
65 pi->pgp_num_mask = (1 << calc_bits_of(t: pi->pgp_num-1)) - 1;
66}
67
68/*
69 * decode crush map
70 */
71static int crush_decode_uniform_bucket(void **p, void *end,
72 struct crush_bucket_uniform *b)
73{
74 dout("crush_decode_uniform_bucket %p to %p\n", *p, end);
75 ceph_decode_need(p, end, (1+b->h.size) * sizeof(u32), bad);
76 b->item_weight = ceph_decode_32(p);
77 return 0;
78bad:
79 return -EINVAL;
80}
81
82static int crush_decode_list_bucket(void **p, void *end,
83 struct crush_bucket_list *b)
84{
85 int j;
86 dout("crush_decode_list_bucket %p to %p\n", *p, end);
87 b->item_weights = kcalloc(n: b->h.size, size: sizeof(u32), GFP_NOFS);
88 if (b->item_weights == NULL)
89 return -ENOMEM;
90 b->sum_weights = kcalloc(n: b->h.size, size: sizeof(u32), GFP_NOFS);
91 if (b->sum_weights == NULL)
92 return -ENOMEM;
93 ceph_decode_need(p, end, 2 * b->h.size * sizeof(u32), bad);
94 for (j = 0; j < b->h.size; j++) {
95 b->item_weights[j] = ceph_decode_32(p);
96 b->sum_weights[j] = ceph_decode_32(p);
97 }
98 return 0;
99bad:
100 return -EINVAL;
101}
102
103static int crush_decode_tree_bucket(void **p, void *end,
104 struct crush_bucket_tree *b)
105{
106 int j;
107 dout("crush_decode_tree_bucket %p to %p\n", *p, end);
108 ceph_decode_8_safe(p, end, b->num_nodes, bad);
109 b->node_weights = kcalloc(n: b->num_nodes, size: sizeof(u32), GFP_NOFS);
110 if (b->node_weights == NULL)
111 return -ENOMEM;
112 ceph_decode_need(p, end, b->num_nodes * sizeof(u32), bad);
113 for (j = 0; j < b->num_nodes; j++)
114 b->node_weights[j] = ceph_decode_32(p);
115 return 0;
116bad:
117 return -EINVAL;
118}
119
120static int crush_decode_straw_bucket(void **p, void *end,
121 struct crush_bucket_straw *b)
122{
123 int j;
124 dout("crush_decode_straw_bucket %p to %p\n", *p, end);
125 b->item_weights = kcalloc(n: b->h.size, size: sizeof(u32), GFP_NOFS);
126 if (b->item_weights == NULL)
127 return -ENOMEM;
128 b->straws = kcalloc(n: b->h.size, size: sizeof(u32), GFP_NOFS);
129 if (b->straws == NULL)
130 return -ENOMEM;
131 ceph_decode_need(p, end, 2 * b->h.size * sizeof(u32), bad);
132 for (j = 0; j < b->h.size; j++) {
133 b->item_weights[j] = ceph_decode_32(p);
134 b->straws[j] = ceph_decode_32(p);
135 }
136 return 0;
137bad:
138 return -EINVAL;
139}
140
141static int crush_decode_straw2_bucket(void **p, void *end,
142 struct crush_bucket_straw2 *b)
143{
144 int j;
145 dout("crush_decode_straw2_bucket %p to %p\n", *p, end);
146 b->item_weights = kcalloc(n: b->h.size, size: sizeof(u32), GFP_NOFS);
147 if (b->item_weights == NULL)
148 return -ENOMEM;
149 ceph_decode_need(p, end, b->h.size * sizeof(u32), bad);
150 for (j = 0; j < b->h.size; j++)
151 b->item_weights[j] = ceph_decode_32(p);
152 return 0;
153bad:
154 return -EINVAL;
155}
156
157struct crush_name_node {
158 struct rb_node cn_node;
159 int cn_id;
160 char cn_name[];
161};
162
163static struct crush_name_node *alloc_crush_name(size_t name_len)
164{
165 struct crush_name_node *cn;
166
167 cn = kmalloc(size: sizeof(*cn) + name_len + 1, GFP_NOIO);
168 if (!cn)
169 return NULL;
170
171 RB_CLEAR_NODE(&cn->cn_node);
172 return cn;
173}
174
175static void free_crush_name(struct crush_name_node *cn)
176{
177 WARN_ON(!RB_EMPTY_NODE(&cn->cn_node));
178
179 kfree(objp: cn);
180}
181
182DEFINE_RB_FUNCS(crush_name, struct crush_name_node, cn_id, cn_node)
183
184static int decode_crush_names(void **p, void *end, struct rb_root *root)
185{
186 u32 n;
187
188 ceph_decode_32_safe(p, end, n, e_inval);
189 while (n--) {
190 struct crush_name_node *cn;
191 int id;
192 u32 name_len;
193
194 ceph_decode_32_safe(p, end, id, e_inval);
195 ceph_decode_32_safe(p, end, name_len, e_inval);
196 ceph_decode_need(p, end, name_len, e_inval);
197
198 cn = alloc_crush_name(name_len);
199 if (!cn)
200 return -ENOMEM;
201
202 cn->cn_id = id;
203 memcpy(cn->cn_name, *p, name_len);
204 cn->cn_name[name_len] = '\0';
205 *p += name_len;
206
207 if (!__insert_crush_name(root, t: cn)) {
208 free_crush_name(cn);
209 return -EEXIST;
210 }
211 }
212
213 return 0;
214
215e_inval:
216 return -EINVAL;
217}
218
219void clear_crush_names(struct rb_root *root)
220{
221 while (!RB_EMPTY_ROOT(root)) {
222 struct crush_name_node *cn =
223 rb_entry(rb_first(root), struct crush_name_node, cn_node);
224
225 erase_crush_name(root, t: cn);
226 free_crush_name(cn);
227 }
228}
229
230static struct crush_choose_arg_map *alloc_choose_arg_map(void)
231{
232 struct crush_choose_arg_map *arg_map;
233
234 arg_map = kzalloc(size: sizeof(*arg_map), GFP_NOIO);
235 if (!arg_map)
236 return NULL;
237
238 RB_CLEAR_NODE(&arg_map->node);
239 return arg_map;
240}
241
242static void free_choose_arg_map(struct crush_choose_arg_map *arg_map)
243{
244 if (arg_map) {
245 int i, j;
246
247 WARN_ON(!RB_EMPTY_NODE(&arg_map->node));
248
249 for (i = 0; i < arg_map->size; i++) {
250 struct crush_choose_arg *arg = &arg_map->args[i];
251
252 for (j = 0; j < arg->weight_set_size; j++)
253 kfree(objp: arg->weight_set[j].weights);
254 kfree(objp: arg->weight_set);
255 kfree(objp: arg->ids);
256 }
257 kfree(objp: arg_map->args);
258 kfree(objp: arg_map);
259 }
260}
261
262DEFINE_RB_FUNCS(choose_arg_map, struct crush_choose_arg_map, choose_args_index,
263 node);
264
265void clear_choose_args(struct crush_map *c)
266{
267 while (!RB_EMPTY_ROOT(&c->choose_args)) {
268 struct crush_choose_arg_map *arg_map =
269 rb_entry(rb_first(&c->choose_args),
270 struct crush_choose_arg_map, node);
271
272 erase_choose_arg_map(root: &c->choose_args, t: arg_map);
273 free_choose_arg_map(arg_map);
274 }
275}
276
277static u32 *decode_array_32_alloc(void **p, void *end, u32 *plen)
278{
279 u32 *a = NULL;
280 u32 len;
281 int ret;
282
283 ceph_decode_32_safe(p, end, len, e_inval);
284 if (len) {
285 u32 i;
286
287 a = kmalloc_array(n: len, size: sizeof(u32), GFP_NOIO);
288 if (!a) {
289 ret = -ENOMEM;
290 goto fail;
291 }
292
293 ceph_decode_need(p, end, len * sizeof(u32), e_inval);
294 for (i = 0; i < len; i++)
295 a[i] = ceph_decode_32(p);
296 }
297
298 *plen = len;
299 return a;
300
301e_inval:
302 ret = -EINVAL;
303fail:
304 kfree(objp: a);
305 return ERR_PTR(error: ret);
306}
307
308/*
309 * Assumes @arg is zero-initialized.
310 */
311static int decode_choose_arg(void **p, void *end, struct crush_choose_arg *arg)
312{
313 int ret;
314
315 ceph_decode_32_safe(p, end, arg->weight_set_size, e_inval);
316 if (arg->weight_set_size) {
317 u32 i;
318
319 arg->weight_set = kmalloc_array(n: arg->weight_set_size,
320 size: sizeof(*arg->weight_set),
321 GFP_NOIO);
322 if (!arg->weight_set)
323 return -ENOMEM;
324
325 for (i = 0; i < arg->weight_set_size; i++) {
326 struct crush_weight_set *w = &arg->weight_set[i];
327
328 w->weights = decode_array_32_alloc(p, end, plen: &w->size);
329 if (IS_ERR(ptr: w->weights)) {
330 ret = PTR_ERR(ptr: w->weights);
331 w->weights = NULL;
332 return ret;
333 }
334 }
335 }
336
337 arg->ids = decode_array_32_alloc(p, end, plen: &arg->ids_size);
338 if (IS_ERR(ptr: arg->ids)) {
339 ret = PTR_ERR(ptr: arg->ids);
340 arg->ids = NULL;
341 return ret;
342 }
343
344 return 0;
345
346e_inval:
347 return -EINVAL;
348}
349
350static int decode_choose_args(void **p, void *end, struct crush_map *c)
351{
352 struct crush_choose_arg_map *arg_map = NULL;
353 u32 num_choose_arg_maps, num_buckets;
354 int ret;
355
356 ceph_decode_32_safe(p, end, num_choose_arg_maps, e_inval);
357 while (num_choose_arg_maps--) {
358 arg_map = alloc_choose_arg_map();
359 if (!arg_map) {
360 ret = -ENOMEM;
361 goto fail;
362 }
363
364 ceph_decode_64_safe(p, end, arg_map->choose_args_index,
365 e_inval);
366 arg_map->size = c->max_buckets;
367 arg_map->args = kcalloc(n: arg_map->size, size: sizeof(*arg_map->args),
368 GFP_NOIO);
369 if (!arg_map->args) {
370 ret = -ENOMEM;
371 goto fail;
372 }
373
374 ceph_decode_32_safe(p, end, num_buckets, e_inval);
375 while (num_buckets--) {
376 struct crush_choose_arg *arg;
377 u32 bucket_index;
378
379 ceph_decode_32_safe(p, end, bucket_index, e_inval);
380 if (bucket_index >= arg_map->size)
381 goto e_inval;
382
383 arg = &arg_map->args[bucket_index];
384 ret = decode_choose_arg(p, end, arg);
385 if (ret)
386 goto fail;
387
388 if (arg->ids_size &&
389 arg->ids_size != c->buckets[bucket_index]->size)
390 goto e_inval;
391 }
392
393 insert_choose_arg_map(root: &c->choose_args, t: arg_map);
394 }
395
396 return 0;
397
398e_inval:
399 ret = -EINVAL;
400fail:
401 free_choose_arg_map(arg_map);
402 return ret;
403}
404
405static void crush_finalize(struct crush_map *c)
406{
407 __s32 b;
408
409 /* Space for the array of pointers to per-bucket workspace */
410 c->working_size = sizeof(struct crush_work) +
411 c->max_buckets * sizeof(struct crush_work_bucket *);
412
413 for (b = 0; b < c->max_buckets; b++) {
414 if (!c->buckets[b])
415 continue;
416
417 switch (c->buckets[b]->alg) {
418 default:
419 /*
420 * The base case, permutation variables and
421 * the pointer to the permutation array.
422 */
423 c->working_size += sizeof(struct crush_work_bucket);
424 break;
425 }
426 /* Every bucket has a permutation array. */
427 c->working_size += c->buckets[b]->size * sizeof(__u32);
428 }
429}
430
431static struct crush_map *crush_decode(void *pbyval, void *end)
432{
433 struct crush_map *c;
434 int err;
435 int i, j;
436 void **p = &pbyval;
437 void *start = pbyval;
438 u32 magic;
439
440 dout("crush_decode %p to %p len %d\n", *p, end, (int)(end - *p));
441
442 c = kzalloc(size: sizeof(*c), GFP_NOFS);
443 if (c == NULL)
444 return ERR_PTR(error: -ENOMEM);
445
446 c->type_names = RB_ROOT;
447 c->names = RB_ROOT;
448 c->choose_args = RB_ROOT;
449
450 /* set tunables to default values */
451 c->choose_local_tries = 2;
452 c->choose_local_fallback_tries = 5;
453 c->choose_total_tries = 19;
454 c->chooseleaf_descend_once = 0;
455
456 ceph_decode_need(p, end, 4*sizeof(u32), bad);
457 magic = ceph_decode_32(p);
458 if (magic != CRUSH_MAGIC) {
459 pr_err("crush_decode magic %x != current %x\n",
460 (unsigned int)magic, (unsigned int)CRUSH_MAGIC);
461 goto bad;
462 }
463 c->max_buckets = ceph_decode_32(p);
464 c->max_rules = ceph_decode_32(p);
465 c->max_devices = ceph_decode_32(p);
466
467 c->buckets = kcalloc(n: c->max_buckets, size: sizeof(*c->buckets), GFP_NOFS);
468 if (c->buckets == NULL)
469 goto badmem;
470 c->rules = kcalloc(n: c->max_rules, size: sizeof(*c->rules), GFP_NOFS);
471 if (c->rules == NULL)
472 goto badmem;
473
474 /* buckets */
475 for (i = 0; i < c->max_buckets; i++) {
476 int size = 0;
477 u32 alg;
478 struct crush_bucket *b;
479
480 ceph_decode_32_safe(p, end, alg, bad);
481 if (alg == 0) {
482 c->buckets[i] = NULL;
483 continue;
484 }
485 dout("crush_decode bucket %d off %x %p to %p\n",
486 i, (int)(*p-start), *p, end);
487
488 switch (alg) {
489 case CRUSH_BUCKET_UNIFORM:
490 size = sizeof(struct crush_bucket_uniform);
491 break;
492 case CRUSH_BUCKET_LIST:
493 size = sizeof(struct crush_bucket_list);
494 break;
495 case CRUSH_BUCKET_TREE:
496 size = sizeof(struct crush_bucket_tree);
497 break;
498 case CRUSH_BUCKET_STRAW:
499 size = sizeof(struct crush_bucket_straw);
500 break;
501 case CRUSH_BUCKET_STRAW2:
502 size = sizeof(struct crush_bucket_straw2);
503 break;
504 default:
505 goto bad;
506 }
507 BUG_ON(size == 0);
508 b = c->buckets[i] = kzalloc(size, GFP_NOFS);
509 if (b == NULL)
510 goto badmem;
511
512 ceph_decode_need(p, end, 4*sizeof(u32), bad);
513 b->id = ceph_decode_32(p);
514 b->type = ceph_decode_16(p);
515 b->alg = ceph_decode_8(p);
516 b->hash = ceph_decode_8(p);
517 b->weight = ceph_decode_32(p);
518 b->size = ceph_decode_32(p);
519
520 dout("crush_decode bucket size %d off %x %p to %p\n",
521 b->size, (int)(*p-start), *p, end);
522
523 b->items = kcalloc(n: b->size, size: sizeof(__s32), GFP_NOFS);
524 if (b->items == NULL)
525 goto badmem;
526
527 ceph_decode_need(p, end, b->size*sizeof(u32), bad);
528 for (j = 0; j < b->size; j++)
529 b->items[j] = ceph_decode_32(p);
530
531 switch (b->alg) {
532 case CRUSH_BUCKET_UNIFORM:
533 err = crush_decode_uniform_bucket(p, end,
534 b: (struct crush_bucket_uniform *)b);
535 if (err < 0)
536 goto fail;
537 break;
538 case CRUSH_BUCKET_LIST:
539 err = crush_decode_list_bucket(p, end,
540 b: (struct crush_bucket_list *)b);
541 if (err < 0)
542 goto fail;
543 break;
544 case CRUSH_BUCKET_TREE:
545 err = crush_decode_tree_bucket(p, end,
546 b: (struct crush_bucket_tree *)b);
547 if (err < 0)
548 goto fail;
549 break;
550 case CRUSH_BUCKET_STRAW:
551 err = crush_decode_straw_bucket(p, end,
552 b: (struct crush_bucket_straw *)b);
553 if (err < 0)
554 goto fail;
555 break;
556 case CRUSH_BUCKET_STRAW2:
557 err = crush_decode_straw2_bucket(p, end,
558 b: (struct crush_bucket_straw2 *)b);
559 if (err < 0)
560 goto fail;
561 break;
562 }
563 }
564
565 /* rules */
566 dout("rule vec is %p\n", c->rules);
567 for (i = 0; i < c->max_rules; i++) {
568 u32 yes;
569 struct crush_rule *r;
570
571 ceph_decode_32_safe(p, end, yes, bad);
572 if (!yes) {
573 dout("crush_decode NO rule %d off %x %p to %p\n",
574 i, (int)(*p-start), *p, end);
575 c->rules[i] = NULL;
576 continue;
577 }
578
579 dout("crush_decode rule %d off %x %p to %p\n",
580 i, (int)(*p-start), *p, end);
581
582 /* len */
583 ceph_decode_32_safe(p, end, yes, bad);
584#if BITS_PER_LONG == 32
585 if (yes > (ULONG_MAX - sizeof(*r))
586 / sizeof(struct crush_rule_step))
587 goto bad;
588#endif
589 r = kmalloc(struct_size(r, steps, yes), GFP_NOFS);
590 if (r == NULL)
591 goto badmem;
592 dout(" rule %d is at %p\n", i, r);
593 c->rules[i] = r;
594 r->len = yes;
595 ceph_decode_copy_safe(p, end, &r->mask, 4, bad); /* 4 u8's */
596 ceph_decode_need(p, end, r->len*3*sizeof(u32), bad);
597 for (j = 0; j < r->len; j++) {
598 r->steps[j].op = ceph_decode_32(p);
599 r->steps[j].arg1 = ceph_decode_32(p);
600 r->steps[j].arg2 = ceph_decode_32(p);
601 }
602 }
603
604 err = decode_crush_names(p, end, root: &c->type_names);
605 if (err)
606 goto fail;
607
608 err = decode_crush_names(p, end, root: &c->names);
609 if (err)
610 goto fail;
611
612 ceph_decode_skip_map(p, end, 32, string, bad); /* rule_name_map */
613
614 /* tunables */
615 ceph_decode_need(p, end, 3*sizeof(u32), done);
616 c->choose_local_tries = ceph_decode_32(p);
617 c->choose_local_fallback_tries = ceph_decode_32(p);
618 c->choose_total_tries = ceph_decode_32(p);
619 dout("crush decode tunable choose_local_tries = %d\n",
620 c->choose_local_tries);
621 dout("crush decode tunable choose_local_fallback_tries = %d\n",
622 c->choose_local_fallback_tries);
623 dout("crush decode tunable choose_total_tries = %d\n",
624 c->choose_total_tries);
625
626 ceph_decode_need(p, end, sizeof(u32), done);
627 c->chooseleaf_descend_once = ceph_decode_32(p);
628 dout("crush decode tunable chooseleaf_descend_once = %d\n",
629 c->chooseleaf_descend_once);
630
631 ceph_decode_need(p, end, sizeof(u8), done);
632 c->chooseleaf_vary_r = ceph_decode_8(p);
633 dout("crush decode tunable chooseleaf_vary_r = %d\n",
634 c->chooseleaf_vary_r);
635
636 /* skip straw_calc_version, allowed_bucket_algs */
637 ceph_decode_need(p, end, sizeof(u8) + sizeof(u32), done);
638 *p += sizeof(u8) + sizeof(u32);
639
640 ceph_decode_need(p, end, sizeof(u8), done);
641 c->chooseleaf_stable = ceph_decode_8(p);
642 dout("crush decode tunable chooseleaf_stable = %d\n",
643 c->chooseleaf_stable);
644
645 if (*p != end) {
646 /* class_map */
647 ceph_decode_skip_map(p, end, 32, 32, bad);
648 /* class_name */
649 ceph_decode_skip_map(p, end, 32, string, bad);
650 /* class_bucket */
651 ceph_decode_skip_map_of_map(p, end, 32, 32, 32, bad);
652 }
653
654 if (*p != end) {
655 err = decode_choose_args(p, end, c);
656 if (err)
657 goto fail;
658 }
659
660done:
661 crush_finalize(c);
662 dout("crush_decode success\n");
663 return c;
664
665badmem:
666 err = -ENOMEM;
667fail:
668 dout("crush_decode fail %d\n", err);
669 crush_destroy(map: c);
670 return ERR_PTR(error: err);
671
672bad:
673 err = -EINVAL;
674 goto fail;
675}
676
677int ceph_pg_compare(const struct ceph_pg *lhs, const struct ceph_pg *rhs)
678{
679 if (lhs->pool < rhs->pool)
680 return -1;
681 if (lhs->pool > rhs->pool)
682 return 1;
683 if (lhs->seed < rhs->seed)
684 return -1;
685 if (lhs->seed > rhs->seed)
686 return 1;
687
688 return 0;
689}
690
691int ceph_spg_compare(const struct ceph_spg *lhs, const struct ceph_spg *rhs)
692{
693 int ret;
694
695 ret = ceph_pg_compare(lhs: &lhs->pgid, rhs: &rhs->pgid);
696 if (ret)
697 return ret;
698
699 if (lhs->shard < rhs->shard)
700 return -1;
701 if (lhs->shard > rhs->shard)
702 return 1;
703
704 return 0;
705}
706
707static struct ceph_pg_mapping *alloc_pg_mapping(size_t payload_len)
708{
709 struct ceph_pg_mapping *pg;
710
711 pg = kmalloc(size: sizeof(*pg) + payload_len, GFP_NOIO);
712 if (!pg)
713 return NULL;
714
715 RB_CLEAR_NODE(&pg->node);
716 return pg;
717}
718
719static void free_pg_mapping(struct ceph_pg_mapping *pg)
720{
721 WARN_ON(!RB_EMPTY_NODE(&pg->node));
722
723 kfree(objp: pg);
724}
725
726/*
727 * rbtree of pg_mapping for handling pg_temp (explicit mapping of pgid
728 * to a set of osds) and primary_temp (explicit primary setting)
729 */
730DEFINE_RB_FUNCS2(pg_mapping, struct ceph_pg_mapping, pgid, ceph_pg_compare,
731 RB_BYPTR, const struct ceph_pg *, node)
732
733/*
734 * rbtree of pg pool info
735 */
736DEFINE_RB_FUNCS(pg_pool, struct ceph_pg_pool_info, id, node)
737
738struct ceph_pg_pool_info *ceph_pg_pool_by_id(struct ceph_osdmap *map, u64 id)
739{
740 return lookup_pg_pool(root: &map->pg_pools, key: id);
741}
742
743const char *ceph_pg_pool_name_by_id(struct ceph_osdmap *map, u64 id)
744{
745 struct ceph_pg_pool_info *pi;
746
747 if (id == CEPH_NOPOOL)
748 return NULL;
749
750 if (WARN_ON_ONCE(id > (u64) INT_MAX))
751 return NULL;
752
753 pi = lookup_pg_pool(root: &map->pg_pools, key: id);
754 return pi ? pi->name : NULL;
755}
756EXPORT_SYMBOL(ceph_pg_pool_name_by_id);
757
758int ceph_pg_poolid_by_name(struct ceph_osdmap *map, const char *name)
759{
760 struct rb_node *rbp;
761
762 for (rbp = rb_first(&map->pg_pools); rbp; rbp = rb_next(rbp)) {
763 struct ceph_pg_pool_info *pi =
764 rb_entry(rbp, struct ceph_pg_pool_info, node);
765 if (pi->name && strcmp(pi->name, name) == 0)
766 return pi->id;
767 }
768 return -ENOENT;
769}
770EXPORT_SYMBOL(ceph_pg_poolid_by_name);
771
772u64 ceph_pg_pool_flags(struct ceph_osdmap *map, u64 id)
773{
774 struct ceph_pg_pool_info *pi;
775
776 pi = lookup_pg_pool(root: &map->pg_pools, key: id);
777 return pi ? pi->flags : 0;
778}
779EXPORT_SYMBOL(ceph_pg_pool_flags);
780
781static void __remove_pg_pool(struct rb_root *root, struct ceph_pg_pool_info *pi)
782{
783 erase_pg_pool(root, t: pi);
784 kfree(objp: pi->name);
785 kfree(objp: pi);
786}
787
788static int decode_pool(void **p, void *end, struct ceph_pg_pool_info *pi)
789{
790 u8 ev, cv;
791 unsigned len, num;
792 void *pool_end;
793
794 ceph_decode_need(p, end, 2 + 4, bad);
795 ev = ceph_decode_8(p); /* encoding version */
796 cv = ceph_decode_8(p); /* compat version */
797 if (ev < 5) {
798 pr_warn("got v %d < 5 cv %d of ceph_pg_pool\n", ev, cv);
799 return -EINVAL;
800 }
801 if (cv > 9) {
802 pr_warn("got v %d cv %d > 9 of ceph_pg_pool\n", ev, cv);
803 return -EINVAL;
804 }
805 len = ceph_decode_32(p);
806 ceph_decode_need(p, end, len, bad);
807 pool_end = *p + len;
808
809 pi->type = ceph_decode_8(p);
810 pi->size = ceph_decode_8(p);
811 pi->crush_ruleset = ceph_decode_8(p);
812 pi->object_hash = ceph_decode_8(p);
813
814 pi->pg_num = ceph_decode_32(p);
815 pi->pgp_num = ceph_decode_32(p);
816
817 *p += 4 + 4; /* skip lpg* */
818 *p += 4; /* skip last_change */
819 *p += 8 + 4; /* skip snap_seq, snap_epoch */
820
821 /* skip snaps */
822 num = ceph_decode_32(p);
823 while (num--) {
824 *p += 8; /* snapid key */
825 *p += 1 + 1; /* versions */
826 len = ceph_decode_32(p);
827 *p += len;
828 }
829
830 /* skip removed_snaps */
831 num = ceph_decode_32(p);
832 *p += num * (8 + 8);
833
834 *p += 8; /* skip auid */
835 pi->flags = ceph_decode_64(p);
836 *p += 4; /* skip crash_replay_interval */
837
838 if (ev >= 7)
839 pi->min_size = ceph_decode_8(p);
840 else
841 pi->min_size = pi->size - pi->size / 2;
842
843 if (ev >= 8)
844 *p += 8 + 8; /* skip quota_max_* */
845
846 if (ev >= 9) {
847 /* skip tiers */
848 num = ceph_decode_32(p);
849 *p += num * 8;
850
851 *p += 8; /* skip tier_of */
852 *p += 1; /* skip cache_mode */
853
854 pi->read_tier = ceph_decode_64(p);
855 pi->write_tier = ceph_decode_64(p);
856 } else {
857 pi->read_tier = -1;
858 pi->write_tier = -1;
859 }
860
861 if (ev >= 10) {
862 /* skip properties */
863 num = ceph_decode_32(p);
864 while (num--) {
865 len = ceph_decode_32(p);
866 *p += len; /* key */
867 len = ceph_decode_32(p);
868 *p += len; /* val */
869 }
870 }
871
872 if (ev >= 11) {
873 /* skip hit_set_params */
874 *p += 1 + 1; /* versions */
875 len = ceph_decode_32(p);
876 *p += len;
877
878 *p += 4; /* skip hit_set_period */
879 *p += 4; /* skip hit_set_count */
880 }
881
882 if (ev >= 12)
883 *p += 4; /* skip stripe_width */
884
885 if (ev >= 13) {
886 *p += 8; /* skip target_max_bytes */
887 *p += 8; /* skip target_max_objects */
888 *p += 4; /* skip cache_target_dirty_ratio_micro */
889 *p += 4; /* skip cache_target_full_ratio_micro */
890 *p += 4; /* skip cache_min_flush_age */
891 *p += 4; /* skip cache_min_evict_age */
892 }
893
894 if (ev >= 14) {
895 /* skip erasure_code_profile */
896 len = ceph_decode_32(p);
897 *p += len;
898 }
899
900 /*
901 * last_force_op_resend_preluminous, will be overridden if the
902 * map was encoded with RESEND_ON_SPLIT
903 */
904 if (ev >= 15)
905 pi->last_force_request_resend = ceph_decode_32(p);
906 else
907 pi->last_force_request_resend = 0;
908
909 if (ev >= 16)
910 *p += 4; /* skip min_read_recency_for_promote */
911
912 if (ev >= 17)
913 *p += 8; /* skip expected_num_objects */
914
915 if (ev >= 19)
916 *p += 4; /* skip cache_target_dirty_high_ratio_micro */
917
918 if (ev >= 20)
919 *p += 4; /* skip min_write_recency_for_promote */
920
921 if (ev >= 21)
922 *p += 1; /* skip use_gmt_hitset */
923
924 if (ev >= 22)
925 *p += 1; /* skip fast_read */
926
927 if (ev >= 23) {
928 *p += 4; /* skip hit_set_grade_decay_rate */
929 *p += 4; /* skip hit_set_search_last_n */
930 }
931
932 if (ev >= 24) {
933 /* skip opts */
934 *p += 1 + 1; /* versions */
935 len = ceph_decode_32(p);
936 *p += len;
937 }
938
939 if (ev >= 25)
940 pi->last_force_request_resend = ceph_decode_32(p);
941
942 /* ignore the rest */
943
944 *p = pool_end;
945 calc_pg_masks(pi);
946 return 0;
947
948bad:
949 return -EINVAL;
950}
951
952static int decode_pool_names(void **p, void *end, struct ceph_osdmap *map)
953{
954 struct ceph_pg_pool_info *pi;
955 u32 num, len;
956 u64 pool;
957
958 ceph_decode_32_safe(p, end, num, bad);
959 dout(" %d pool names\n", num);
960 while (num--) {
961 ceph_decode_64_safe(p, end, pool, bad);
962 ceph_decode_32_safe(p, end, len, bad);
963 dout(" pool %llu len %d\n", pool, len);
964 ceph_decode_need(p, end, len, bad);
965 pi = lookup_pg_pool(root: &map->pg_pools, key: pool);
966 if (pi) {
967 char *name = kstrndup(s: *p, len, GFP_NOFS);
968
969 if (!name)
970 return -ENOMEM;
971 kfree(objp: pi->name);
972 pi->name = name;
973 dout(" name is %s\n", pi->name);
974 }
975 *p += len;
976 }
977 return 0;
978
979bad:
980 return -EINVAL;
981}
982
983/*
984 * CRUSH workspaces
985 *
986 * workspace_manager framework borrowed from fs/btrfs/compression.c.
987 * Two simplifications: there is only one type of workspace and there
988 * is always at least one workspace.
989 */
990static struct crush_work *alloc_workspace(const struct crush_map *c)
991{
992 struct crush_work *work;
993 size_t work_size;
994
995 WARN_ON(!c->working_size);
996 work_size = crush_work_size(map: c, CEPH_PG_MAX_SIZE);
997 dout("%s work_size %zu bytes\n", __func__, work_size);
998
999 work = kvmalloc(size: work_size, GFP_NOIO);
1000 if (!work)
1001 return NULL;
1002
1003 INIT_LIST_HEAD(list: &work->item);
1004 crush_init_workspace(map: c, v: work);
1005 return work;
1006}
1007
1008static void free_workspace(struct crush_work *work)
1009{
1010 WARN_ON(!list_empty(&work->item));
1011 kvfree(addr: work);
1012}
1013
1014static void init_workspace_manager(struct workspace_manager *wsm)
1015{
1016 INIT_LIST_HEAD(list: &wsm->idle_ws);
1017 spin_lock_init(&wsm->ws_lock);
1018 atomic_set(v: &wsm->total_ws, i: 0);
1019 wsm->free_ws = 0;
1020 init_waitqueue_head(&wsm->ws_wait);
1021}
1022
1023static void add_initial_workspace(struct workspace_manager *wsm,
1024 struct crush_work *work)
1025{
1026 WARN_ON(!list_empty(&wsm->idle_ws));
1027
1028 list_add(new: &work->item, head: &wsm->idle_ws);
1029 atomic_set(v: &wsm->total_ws, i: 1);
1030 wsm->free_ws = 1;
1031}
1032
1033static void cleanup_workspace_manager(struct workspace_manager *wsm)
1034{
1035 struct crush_work *work;
1036
1037 while (!list_empty(head: &wsm->idle_ws)) {
1038 work = list_first_entry(&wsm->idle_ws, struct crush_work,
1039 item);
1040 list_del_init(entry: &work->item);
1041 free_workspace(work);
1042 }
1043 atomic_set(v: &wsm->total_ws, i: 0);
1044 wsm->free_ws = 0;
1045}
1046
1047/*
1048 * Finds an available workspace or allocates a new one. If it's not
1049 * possible to allocate a new one, waits until there is one.
1050 */
1051static struct crush_work *get_workspace(struct workspace_manager *wsm,
1052 const struct crush_map *c)
1053{
1054 struct crush_work *work;
1055 int cpus = num_online_cpus();
1056
1057again:
1058 spin_lock(lock: &wsm->ws_lock);
1059 if (!list_empty(head: &wsm->idle_ws)) {
1060 work = list_first_entry(&wsm->idle_ws, struct crush_work,
1061 item);
1062 list_del_init(entry: &work->item);
1063 wsm->free_ws--;
1064 spin_unlock(lock: &wsm->ws_lock);
1065 return work;
1066
1067 }
1068 if (atomic_read(v: &wsm->total_ws) > cpus) {
1069 DEFINE_WAIT(wait);
1070
1071 spin_unlock(lock: &wsm->ws_lock);
1072 prepare_to_wait(wq_head: &wsm->ws_wait, wq_entry: &wait, TASK_UNINTERRUPTIBLE);
1073 if (atomic_read(v: &wsm->total_ws) > cpus && !wsm->free_ws)
1074 schedule();
1075 finish_wait(wq_head: &wsm->ws_wait, wq_entry: &wait);
1076 goto again;
1077 }
1078 atomic_inc(v: &wsm->total_ws);
1079 spin_unlock(lock: &wsm->ws_lock);
1080
1081 work = alloc_workspace(c);
1082 if (!work) {
1083 atomic_dec(v: &wsm->total_ws);
1084 wake_up(&wsm->ws_wait);
1085
1086 /*
1087 * Do not return the error but go back to waiting. We
1088 * have the initial workspace and the CRUSH computation
1089 * time is bounded so we will get it eventually.
1090 */
1091 WARN_ON(atomic_read(&wsm->total_ws) < 1);
1092 goto again;
1093 }
1094 return work;
1095}
1096
1097/*
1098 * Puts a workspace back on the list or frees it if we have enough
1099 * idle ones sitting around.
1100 */
1101static void put_workspace(struct workspace_manager *wsm,
1102 struct crush_work *work)
1103{
1104 spin_lock(lock: &wsm->ws_lock);
1105 if (wsm->free_ws <= num_online_cpus()) {
1106 list_add(new: &work->item, head: &wsm->idle_ws);
1107 wsm->free_ws++;
1108 spin_unlock(lock: &wsm->ws_lock);
1109 goto wake;
1110 }
1111 spin_unlock(lock: &wsm->ws_lock);
1112
1113 free_workspace(work);
1114 atomic_dec(v: &wsm->total_ws);
1115wake:
1116 if (wq_has_sleeper(wq_head: &wsm->ws_wait))
1117 wake_up(&wsm->ws_wait);
1118}
1119
1120/*
1121 * osd map
1122 */
1123struct ceph_osdmap *ceph_osdmap_alloc(void)
1124{
1125 struct ceph_osdmap *map;
1126
1127 map = kzalloc(size: sizeof(*map), GFP_NOIO);
1128 if (!map)
1129 return NULL;
1130
1131 map->pg_pools = RB_ROOT;
1132 map->pool_max = -1;
1133 map->pg_temp = RB_ROOT;
1134 map->primary_temp = RB_ROOT;
1135 map->pg_upmap = RB_ROOT;
1136 map->pg_upmap_items = RB_ROOT;
1137
1138 init_workspace_manager(wsm: &map->crush_wsm);
1139
1140 return map;
1141}
1142
1143void ceph_osdmap_destroy(struct ceph_osdmap *map)
1144{
1145 dout("osdmap_destroy %p\n", map);
1146
1147 if (map->crush)
1148 crush_destroy(map: map->crush);
1149 cleanup_workspace_manager(wsm: &map->crush_wsm);
1150
1151 while (!RB_EMPTY_ROOT(&map->pg_temp)) {
1152 struct ceph_pg_mapping *pg =
1153 rb_entry(rb_first(&map->pg_temp),
1154 struct ceph_pg_mapping, node);
1155 erase_pg_mapping(root: &map->pg_temp, t: pg);
1156 free_pg_mapping(pg);
1157 }
1158 while (!RB_EMPTY_ROOT(&map->primary_temp)) {
1159 struct ceph_pg_mapping *pg =
1160 rb_entry(rb_first(&map->primary_temp),
1161 struct ceph_pg_mapping, node);
1162 erase_pg_mapping(root: &map->primary_temp, t: pg);
1163 free_pg_mapping(pg);
1164 }
1165 while (!RB_EMPTY_ROOT(&map->pg_upmap)) {
1166 struct ceph_pg_mapping *pg =
1167 rb_entry(rb_first(&map->pg_upmap),
1168 struct ceph_pg_mapping, node);
1169 rb_erase(&pg->node, &map->pg_upmap);
1170 kfree(objp: pg);
1171 }
1172 while (!RB_EMPTY_ROOT(&map->pg_upmap_items)) {
1173 struct ceph_pg_mapping *pg =
1174 rb_entry(rb_first(&map->pg_upmap_items),
1175 struct ceph_pg_mapping, node);
1176 rb_erase(&pg->node, &map->pg_upmap_items);
1177 kfree(objp: pg);
1178 }
1179 while (!RB_EMPTY_ROOT(&map->pg_pools)) {
1180 struct ceph_pg_pool_info *pi =
1181 rb_entry(rb_first(&map->pg_pools),
1182 struct ceph_pg_pool_info, node);
1183 __remove_pg_pool(root: &map->pg_pools, pi);
1184 }
1185 kvfree(addr: map->osd_state);
1186 kvfree(addr: map->osd_weight);
1187 kvfree(addr: map->osd_addr);
1188 kvfree(addr: map->osd_primary_affinity);
1189 kfree(objp: map);
1190}
1191
1192/*
1193 * Adjust max_osd value, (re)allocate arrays.
1194 *
1195 * The new elements are properly initialized.
1196 */
1197static int osdmap_set_max_osd(struct ceph_osdmap *map, u32 max)
1198{
1199 u32 *state;
1200 u32 *weight;
1201 struct ceph_entity_addr *addr;
1202 u32 to_copy;
1203 int i;
1204
1205 dout("%s old %u new %u\n", __func__, map->max_osd, max);
1206 if (max == map->max_osd)
1207 return 0;
1208
1209 state = kvmalloc(array_size(max, sizeof(*state)), GFP_NOFS);
1210 weight = kvmalloc(array_size(max, sizeof(*weight)), GFP_NOFS);
1211 addr = kvmalloc(array_size(max, sizeof(*addr)), GFP_NOFS);
1212 if (!state || !weight || !addr) {
1213 kvfree(addr: state);
1214 kvfree(addr: weight);
1215 kvfree(addr);
1216 return -ENOMEM;
1217 }
1218
1219 to_copy = min(map->max_osd, max);
1220 if (map->osd_state) {
1221 memcpy(state, map->osd_state, to_copy * sizeof(*state));
1222 memcpy(weight, map->osd_weight, to_copy * sizeof(*weight));
1223 memcpy(addr, map->osd_addr, to_copy * sizeof(*addr));
1224 kvfree(addr: map->osd_state);
1225 kvfree(addr: map->osd_weight);
1226 kvfree(addr: map->osd_addr);
1227 }
1228
1229 map->osd_state = state;
1230 map->osd_weight = weight;
1231 map->osd_addr = addr;
1232 for (i = map->max_osd; i < max; i++) {
1233 map->osd_state[i] = 0;
1234 map->osd_weight[i] = CEPH_OSD_OUT;
1235 memset(map->osd_addr + i, 0, sizeof(*map->osd_addr));
1236 }
1237
1238 if (map->osd_primary_affinity) {
1239 u32 *affinity;
1240
1241 affinity = kvmalloc(array_size(max, sizeof(*affinity)),
1242 GFP_NOFS);
1243 if (!affinity)
1244 return -ENOMEM;
1245
1246 memcpy(affinity, map->osd_primary_affinity,
1247 to_copy * sizeof(*affinity));
1248 kvfree(addr: map->osd_primary_affinity);
1249
1250 map->osd_primary_affinity = affinity;
1251 for (i = map->max_osd; i < max; i++)
1252 map->osd_primary_affinity[i] =
1253 CEPH_OSD_DEFAULT_PRIMARY_AFFINITY;
1254 }
1255
1256 map->max_osd = max;
1257
1258 return 0;
1259}
1260
1261static int osdmap_set_crush(struct ceph_osdmap *map, struct crush_map *crush)
1262{
1263 struct crush_work *work;
1264
1265 if (IS_ERR(ptr: crush))
1266 return PTR_ERR(ptr: crush);
1267
1268 work = alloc_workspace(c: crush);
1269 if (!work) {
1270 crush_destroy(map: crush);
1271 return -ENOMEM;
1272 }
1273
1274 if (map->crush)
1275 crush_destroy(map: map->crush);
1276 cleanup_workspace_manager(wsm: &map->crush_wsm);
1277 map->crush = crush;
1278 add_initial_workspace(wsm: &map->crush_wsm, work);
1279 return 0;
1280}
1281
1282#define OSDMAP_WRAPPER_COMPAT_VER 7
1283#define OSDMAP_CLIENT_DATA_COMPAT_VER 1
1284
1285/*
1286 * Return 0 or error. On success, *v is set to 0 for old (v6) osdmaps,
1287 * to struct_v of the client_data section for new (v7 and above)
1288 * osdmaps.
1289 */
1290static int get_osdmap_client_data_v(void **p, void *end,
1291 const char *prefix, u8 *v)
1292{
1293 u8 struct_v;
1294
1295 ceph_decode_8_safe(p, end, struct_v, e_inval);
1296 if (struct_v >= 7) {
1297 u8 struct_compat;
1298
1299 ceph_decode_8_safe(p, end, struct_compat, e_inval);
1300 if (struct_compat > OSDMAP_WRAPPER_COMPAT_VER) {
1301 pr_warn("got v %d cv %d > %d of %s ceph_osdmap\n",
1302 struct_v, struct_compat,
1303 OSDMAP_WRAPPER_COMPAT_VER, prefix);
1304 return -EINVAL;
1305 }
1306 *p += 4; /* ignore wrapper struct_len */
1307
1308 ceph_decode_8_safe(p, end, struct_v, e_inval);
1309 ceph_decode_8_safe(p, end, struct_compat, e_inval);
1310 if (struct_compat > OSDMAP_CLIENT_DATA_COMPAT_VER) {
1311 pr_warn("got v %d cv %d > %d of %s ceph_osdmap client data\n",
1312 struct_v, struct_compat,
1313 OSDMAP_CLIENT_DATA_COMPAT_VER, prefix);
1314 return -EINVAL;
1315 }
1316 *p += 4; /* ignore client data struct_len */
1317 } else {
1318 u16 version;
1319
1320 *p -= 1;
1321 ceph_decode_16_safe(p, end, version, e_inval);
1322 if (version < 6) {
1323 pr_warn("got v %d < 6 of %s ceph_osdmap\n",
1324 version, prefix);
1325 return -EINVAL;
1326 }
1327
1328 /* old osdmap encoding */
1329 struct_v = 0;
1330 }
1331
1332 *v = struct_v;
1333 return 0;
1334
1335e_inval:
1336 return -EINVAL;
1337}
1338
1339static int __decode_pools(void **p, void *end, struct ceph_osdmap *map,
1340 bool incremental)
1341{
1342 u32 n;
1343
1344 ceph_decode_32_safe(p, end, n, e_inval);
1345 while (n--) {
1346 struct ceph_pg_pool_info *pi;
1347 u64 pool;
1348 int ret;
1349
1350 ceph_decode_64_safe(p, end, pool, e_inval);
1351
1352 pi = lookup_pg_pool(root: &map->pg_pools, key: pool);
1353 if (!incremental || !pi) {
1354 pi = kzalloc(size: sizeof(*pi), GFP_NOFS);
1355 if (!pi)
1356 return -ENOMEM;
1357
1358 RB_CLEAR_NODE(&pi->node);
1359 pi->id = pool;
1360
1361 if (!__insert_pg_pool(root: &map->pg_pools, t: pi)) {
1362 kfree(objp: pi);
1363 return -EEXIST;
1364 }
1365 }
1366
1367 ret = decode_pool(p, end, pi);
1368 if (ret)
1369 return ret;
1370 }
1371
1372 return 0;
1373
1374e_inval:
1375 return -EINVAL;
1376}
1377
1378static int decode_pools(void **p, void *end, struct ceph_osdmap *map)
1379{
1380 return __decode_pools(p, end, map, incremental: false);
1381}
1382
1383static int decode_new_pools(void **p, void *end, struct ceph_osdmap *map)
1384{
1385 return __decode_pools(p, end, map, incremental: true);
1386}
1387
1388typedef struct ceph_pg_mapping *(*decode_mapping_fn_t)(void **, void *, bool);
1389
1390static int decode_pg_mapping(void **p, void *end, struct rb_root *mapping_root,
1391 decode_mapping_fn_t fn, bool incremental)
1392{
1393 u32 n;
1394
1395 WARN_ON(!incremental && !fn);
1396
1397 ceph_decode_32_safe(p, end, n, e_inval);
1398 while (n--) {
1399 struct ceph_pg_mapping *pg;
1400 struct ceph_pg pgid;
1401 int ret;
1402
1403 ret = ceph_decode_pgid(p, end, pgid: &pgid);
1404 if (ret)
1405 return ret;
1406
1407 pg = lookup_pg_mapping(root: mapping_root, key: &pgid);
1408 if (pg) {
1409 WARN_ON(!incremental);
1410 erase_pg_mapping(root: mapping_root, t: pg);
1411 free_pg_mapping(pg);
1412 }
1413
1414 if (fn) {
1415 pg = fn(p, end, incremental);
1416 if (IS_ERR(ptr: pg))
1417 return PTR_ERR(ptr: pg);
1418
1419 if (pg) {
1420 pg->pgid = pgid; /* struct */
1421 insert_pg_mapping(root: mapping_root, t: pg);
1422 }
1423 }
1424 }
1425
1426 return 0;
1427
1428e_inval:
1429 return -EINVAL;
1430}
1431
1432static struct ceph_pg_mapping *__decode_pg_temp(void **p, void *end,
1433 bool incremental)
1434{
1435 struct ceph_pg_mapping *pg;
1436 u32 len, i;
1437
1438 ceph_decode_32_safe(p, end, len, e_inval);
1439 if (len == 0 && incremental)
1440 return NULL; /* new_pg_temp: [] to remove */
1441 if (len > (SIZE_MAX - sizeof(*pg)) / sizeof(u32))
1442 return ERR_PTR(error: -EINVAL);
1443
1444 ceph_decode_need(p, end, len * sizeof(u32), e_inval);
1445 pg = alloc_pg_mapping(payload_len: len * sizeof(u32));
1446 if (!pg)
1447 return ERR_PTR(error: -ENOMEM);
1448
1449 pg->pg_temp.len = len;
1450 for (i = 0; i < len; i++)
1451 pg->pg_temp.osds[i] = ceph_decode_32(p);
1452
1453 return pg;
1454
1455e_inval:
1456 return ERR_PTR(error: -EINVAL);
1457}
1458
1459static int decode_pg_temp(void **p, void *end, struct ceph_osdmap *map)
1460{
1461 return decode_pg_mapping(p, end, mapping_root: &map->pg_temp, fn: __decode_pg_temp,
1462 incremental: false);
1463}
1464
1465static int decode_new_pg_temp(void **p, void *end, struct ceph_osdmap *map)
1466{
1467 return decode_pg_mapping(p, end, mapping_root: &map->pg_temp, fn: __decode_pg_temp,
1468 incremental: true);
1469}
1470
1471static struct ceph_pg_mapping *__decode_primary_temp(void **p, void *end,
1472 bool incremental)
1473{
1474 struct ceph_pg_mapping *pg;
1475 u32 osd;
1476
1477 ceph_decode_32_safe(p, end, osd, e_inval);
1478 if (osd == (u32)-1 && incremental)
1479 return NULL; /* new_primary_temp: -1 to remove */
1480
1481 pg = alloc_pg_mapping(payload_len: 0);
1482 if (!pg)
1483 return ERR_PTR(error: -ENOMEM);
1484
1485 pg->primary_temp.osd = osd;
1486 return pg;
1487
1488e_inval:
1489 return ERR_PTR(error: -EINVAL);
1490}
1491
1492static int decode_primary_temp(void **p, void *end, struct ceph_osdmap *map)
1493{
1494 return decode_pg_mapping(p, end, mapping_root: &map->primary_temp,
1495 fn: __decode_primary_temp, incremental: false);
1496}
1497
1498static int decode_new_primary_temp(void **p, void *end,
1499 struct ceph_osdmap *map)
1500{
1501 return decode_pg_mapping(p, end, mapping_root: &map->primary_temp,
1502 fn: __decode_primary_temp, incremental: true);
1503}
1504
1505u32 ceph_get_primary_affinity(struct ceph_osdmap *map, int osd)
1506{
1507 BUG_ON(osd >= map->max_osd);
1508
1509 if (!map->osd_primary_affinity)
1510 return CEPH_OSD_DEFAULT_PRIMARY_AFFINITY;
1511
1512 return map->osd_primary_affinity[osd];
1513}
1514
1515static int set_primary_affinity(struct ceph_osdmap *map, int osd, u32 aff)
1516{
1517 BUG_ON(osd >= map->max_osd);
1518
1519 if (!map->osd_primary_affinity) {
1520 int i;
1521
1522 map->osd_primary_affinity = kvmalloc(
1523 array_size(map->max_osd, sizeof(*map->osd_primary_affinity)),
1524 GFP_NOFS);
1525 if (!map->osd_primary_affinity)
1526 return -ENOMEM;
1527
1528 for (i = 0; i < map->max_osd; i++)
1529 map->osd_primary_affinity[i] =
1530 CEPH_OSD_DEFAULT_PRIMARY_AFFINITY;
1531 }
1532
1533 map->osd_primary_affinity[osd] = aff;
1534
1535 return 0;
1536}
1537
1538static int decode_primary_affinity(void **p, void *end,
1539 struct ceph_osdmap *map)
1540{
1541 u32 len, i;
1542
1543 ceph_decode_32_safe(p, end, len, e_inval);
1544 if (len == 0) {
1545 kvfree(addr: map->osd_primary_affinity);
1546 map->osd_primary_affinity = NULL;
1547 return 0;
1548 }
1549 if (len != map->max_osd)
1550 goto e_inval;
1551
1552 ceph_decode_need(p, end, map->max_osd*sizeof(u32), e_inval);
1553
1554 for (i = 0; i < map->max_osd; i++) {
1555 int ret;
1556
1557 ret = set_primary_affinity(map, osd: i, aff: ceph_decode_32(p));
1558 if (ret)
1559 return ret;
1560 }
1561
1562 return 0;
1563
1564e_inval:
1565 return -EINVAL;
1566}
1567
1568static int decode_new_primary_affinity(void **p, void *end,
1569 struct ceph_osdmap *map)
1570{
1571 u32 n;
1572
1573 ceph_decode_32_safe(p, end, n, e_inval);
1574 while (n--) {
1575 u32 osd, aff;
1576 int ret;
1577
1578 ceph_decode_32_safe(p, end, osd, e_inval);
1579 ceph_decode_32_safe(p, end, aff, e_inval);
1580
1581 ret = set_primary_affinity(map, osd, aff);
1582 if (ret)
1583 return ret;
1584
1585 osdmap_info(map, fmt: "osd%d primary-affinity 0x%x\n", osd, aff);
1586 }
1587
1588 return 0;
1589
1590e_inval:
1591 return -EINVAL;
1592}
1593
1594static struct ceph_pg_mapping *__decode_pg_upmap(void **p, void *end,
1595 bool __unused)
1596{
1597 return __decode_pg_temp(p, end, incremental: false);
1598}
1599
1600static int decode_pg_upmap(void **p, void *end, struct ceph_osdmap *map)
1601{
1602 return decode_pg_mapping(p, end, mapping_root: &map->pg_upmap, fn: __decode_pg_upmap,
1603 incremental: false);
1604}
1605
1606static int decode_new_pg_upmap(void **p, void *end, struct ceph_osdmap *map)
1607{
1608 return decode_pg_mapping(p, end, mapping_root: &map->pg_upmap, fn: __decode_pg_upmap,
1609 incremental: true);
1610}
1611
1612static int decode_old_pg_upmap(void **p, void *end, struct ceph_osdmap *map)
1613{
1614 return decode_pg_mapping(p, end, mapping_root: &map->pg_upmap, NULL, incremental: true);
1615}
1616
1617static struct ceph_pg_mapping *__decode_pg_upmap_items(void **p, void *end,
1618 bool __unused)
1619{
1620 struct ceph_pg_mapping *pg;
1621 u32 len, i;
1622
1623 ceph_decode_32_safe(p, end, len, e_inval);
1624 if (len > (SIZE_MAX - sizeof(*pg)) / (2 * sizeof(u32)))
1625 return ERR_PTR(error: -EINVAL);
1626
1627 ceph_decode_need(p, end, 2 * len * sizeof(u32), e_inval);
1628 pg = alloc_pg_mapping(payload_len: 2 * len * sizeof(u32));
1629 if (!pg)
1630 return ERR_PTR(error: -ENOMEM);
1631
1632 pg->pg_upmap_items.len = len;
1633 for (i = 0; i < len; i++) {
1634 pg->pg_upmap_items.from_to[i][0] = ceph_decode_32(p);
1635 pg->pg_upmap_items.from_to[i][1] = ceph_decode_32(p);
1636 }
1637
1638 return pg;
1639
1640e_inval:
1641 return ERR_PTR(error: -EINVAL);
1642}
1643
1644static int decode_pg_upmap_items(void **p, void *end, struct ceph_osdmap *map)
1645{
1646 return decode_pg_mapping(p, end, mapping_root: &map->pg_upmap_items,
1647 fn: __decode_pg_upmap_items, incremental: false);
1648}
1649
1650static int decode_new_pg_upmap_items(void **p, void *end,
1651 struct ceph_osdmap *map)
1652{
1653 return decode_pg_mapping(p, end, mapping_root: &map->pg_upmap_items,
1654 fn: __decode_pg_upmap_items, incremental: true);
1655}
1656
1657static int decode_old_pg_upmap_items(void **p, void *end,
1658 struct ceph_osdmap *map)
1659{
1660 return decode_pg_mapping(p, end, mapping_root: &map->pg_upmap_items, NULL, incremental: true);
1661}
1662
1663/*
1664 * decode a full map.
1665 */
1666static int osdmap_decode(void **p, void *end, bool msgr2,
1667 struct ceph_osdmap *map)
1668{
1669 u8 struct_v;
1670 u32 epoch = 0;
1671 void *start = *p;
1672 u32 max;
1673 u32 len, i;
1674 int err;
1675
1676 dout("%s %p to %p len %d\n", __func__, *p, end, (int)(end - *p));
1677
1678 err = get_osdmap_client_data_v(p, end, prefix: "full", v: &struct_v);
1679 if (err)
1680 goto bad;
1681
1682 /* fsid, epoch, created, modified */
1683 ceph_decode_need(p, end, sizeof(map->fsid) + sizeof(u32) +
1684 sizeof(map->created) + sizeof(map->modified), e_inval);
1685 ceph_decode_copy(p, pv: &map->fsid, n: sizeof(map->fsid));
1686 epoch = map->epoch = ceph_decode_32(p);
1687 ceph_decode_copy(p, pv: &map->created, n: sizeof(map->created));
1688 ceph_decode_copy(p, pv: &map->modified, n: sizeof(map->modified));
1689
1690 /* pools */
1691 err = decode_pools(p, end, map);
1692 if (err)
1693 goto bad;
1694
1695 /* pool_name */
1696 err = decode_pool_names(p, end, map);
1697 if (err)
1698 goto bad;
1699
1700 ceph_decode_32_safe(p, end, map->pool_max, e_inval);
1701
1702 ceph_decode_32_safe(p, end, map->flags, e_inval);
1703
1704 /* max_osd */
1705 ceph_decode_32_safe(p, end, max, e_inval);
1706
1707 /* (re)alloc osd arrays */
1708 err = osdmap_set_max_osd(map, max);
1709 if (err)
1710 goto bad;
1711
1712 /* osd_state, osd_weight, osd_addrs->client_addr */
1713 ceph_decode_need(p, end, 3*sizeof(u32) +
1714 map->max_osd*(struct_v >= 5 ? sizeof(u32) :
1715 sizeof(u8)) +
1716 sizeof(*map->osd_weight), e_inval);
1717 if (ceph_decode_32(p) != map->max_osd)
1718 goto e_inval;
1719
1720 if (struct_v >= 5) {
1721 for (i = 0; i < map->max_osd; i++)
1722 map->osd_state[i] = ceph_decode_32(p);
1723 } else {
1724 for (i = 0; i < map->max_osd; i++)
1725 map->osd_state[i] = ceph_decode_8(p);
1726 }
1727
1728 if (ceph_decode_32(p) != map->max_osd)
1729 goto e_inval;
1730
1731 for (i = 0; i < map->max_osd; i++)
1732 map->osd_weight[i] = ceph_decode_32(p);
1733
1734 if (ceph_decode_32(p) != map->max_osd)
1735 goto e_inval;
1736
1737 for (i = 0; i < map->max_osd; i++) {
1738 struct ceph_entity_addr *addr = &map->osd_addr[i];
1739
1740 if (struct_v >= 8)
1741 err = ceph_decode_entity_addrvec(p, end, msgr2, addr);
1742 else
1743 err = ceph_decode_entity_addr(p, end, addr);
1744 if (err)
1745 goto bad;
1746
1747 dout("%s osd%d addr %s\n", __func__, i, ceph_pr_addr(addr));
1748 }
1749
1750 /* pg_temp */
1751 err = decode_pg_temp(p, end, map);
1752 if (err)
1753 goto bad;
1754
1755 /* primary_temp */
1756 if (struct_v >= 1) {
1757 err = decode_primary_temp(p, end, map);
1758 if (err)
1759 goto bad;
1760 }
1761
1762 /* primary_affinity */
1763 if (struct_v >= 2) {
1764 err = decode_primary_affinity(p, end, map);
1765 if (err)
1766 goto bad;
1767 } else {
1768 WARN_ON(map->osd_primary_affinity);
1769 }
1770
1771 /* crush */
1772 ceph_decode_32_safe(p, end, len, e_inval);
1773 err = osdmap_set_crush(map, crush: crush_decode(pbyval: *p, min(*p + len, end)));
1774 if (err)
1775 goto bad;
1776
1777 *p += len;
1778 if (struct_v >= 3) {
1779 /* erasure_code_profiles */
1780 ceph_decode_skip_map_of_map(p, end, string, string, string,
1781 e_inval);
1782 }
1783
1784 if (struct_v >= 4) {
1785 err = decode_pg_upmap(p, end, map);
1786 if (err)
1787 goto bad;
1788
1789 err = decode_pg_upmap_items(p, end, map);
1790 if (err)
1791 goto bad;
1792 } else {
1793 WARN_ON(!RB_EMPTY_ROOT(&map->pg_upmap));
1794 WARN_ON(!RB_EMPTY_ROOT(&map->pg_upmap_items));
1795 }
1796
1797 /* ignore the rest */
1798 *p = end;
1799
1800 dout("full osdmap epoch %d max_osd %d\n", map->epoch, map->max_osd);
1801 return 0;
1802
1803e_inval:
1804 err = -EINVAL;
1805bad:
1806 pr_err("corrupt full osdmap (%d) epoch %d off %d (%p of %p-%p)\n",
1807 err, epoch, (int)(*p - start), *p, start, end);
1808 print_hex_dump(KERN_DEBUG, prefix_str: "osdmap: ",
1809 prefix_type: DUMP_PREFIX_OFFSET, rowsize: 16, groupsize: 1,
1810 buf: start, len: end - start, ascii: true);
1811 return err;
1812}
1813
1814/*
1815 * Allocate and decode a full map.
1816 */
1817struct ceph_osdmap *ceph_osdmap_decode(void **p, void *end, bool msgr2)
1818{
1819 struct ceph_osdmap *map;
1820 int ret;
1821
1822 map = ceph_osdmap_alloc();
1823 if (!map)
1824 return ERR_PTR(error: -ENOMEM);
1825
1826 ret = osdmap_decode(p, end, msgr2, map);
1827 if (ret) {
1828 ceph_osdmap_destroy(map);
1829 return ERR_PTR(error: ret);
1830 }
1831
1832 return map;
1833}
1834
1835/*
1836 * Encoding order is (new_up_client, new_state, new_weight). Need to
1837 * apply in the (new_weight, new_state, new_up_client) order, because
1838 * an incremental map may look like e.g.
1839 *
1840 * new_up_client: { osd=6, addr=... } # set osd_state and addr
1841 * new_state: { osd=6, xorstate=EXISTS } # clear osd_state
1842 */
1843static int decode_new_up_state_weight(void **p, void *end, u8 struct_v,
1844 bool msgr2, struct ceph_osdmap *map)
1845{
1846 void *new_up_client;
1847 void *new_state;
1848 void *new_weight_end;
1849 u32 len;
1850 int ret;
1851 int i;
1852
1853 new_up_client = *p;
1854 ceph_decode_32_safe(p, end, len, e_inval);
1855 for (i = 0; i < len; ++i) {
1856 struct ceph_entity_addr addr;
1857
1858 ceph_decode_skip_32(p, end, e_inval);
1859 if (struct_v >= 7)
1860 ret = ceph_decode_entity_addrvec(p, end, msgr2, addr: &addr);
1861 else
1862 ret = ceph_decode_entity_addr(p, end, addr: &addr);
1863 if (ret)
1864 return ret;
1865 }
1866
1867 new_state = *p;
1868 ceph_decode_32_safe(p, end, len, e_inval);
1869 len *= sizeof(u32) + (struct_v >= 5 ? sizeof(u32) : sizeof(u8));
1870 ceph_decode_need(p, end, len, e_inval);
1871 *p += len;
1872
1873 /* new_weight */
1874 ceph_decode_32_safe(p, end, len, e_inval);
1875 while (len--) {
1876 s32 osd;
1877 u32 w;
1878
1879 ceph_decode_need(p, end, 2*sizeof(u32), e_inval);
1880 osd = ceph_decode_32(p);
1881 w = ceph_decode_32(p);
1882 BUG_ON(osd >= map->max_osd);
1883 osdmap_info(map, fmt: "osd%d weight 0x%x %s\n", osd, w,
1884 w == CEPH_OSD_IN ? "(in)" :
1885 (w == CEPH_OSD_OUT ? "(out)" : ""));
1886 map->osd_weight[osd] = w;
1887
1888 /*
1889 * If we are marking in, set the EXISTS, and clear the
1890 * AUTOOUT and NEW bits.
1891 */
1892 if (w) {
1893 map->osd_state[osd] |= CEPH_OSD_EXISTS;
1894 map->osd_state[osd] &= ~(CEPH_OSD_AUTOOUT |
1895 CEPH_OSD_NEW);
1896 }
1897 }
1898 new_weight_end = *p;
1899
1900 /* new_state (up/down) */
1901 *p = new_state;
1902 len = ceph_decode_32(p);
1903 while (len--) {
1904 s32 osd;
1905 u32 xorstate;
1906
1907 osd = ceph_decode_32(p);
1908 if (struct_v >= 5)
1909 xorstate = ceph_decode_32(p);
1910 else
1911 xorstate = ceph_decode_8(p);
1912 if (xorstate == 0)
1913 xorstate = CEPH_OSD_UP;
1914 BUG_ON(osd >= map->max_osd);
1915 if ((map->osd_state[osd] & CEPH_OSD_UP) &&
1916 (xorstate & CEPH_OSD_UP))
1917 osdmap_info(map, fmt: "osd%d down\n", osd);
1918 if ((map->osd_state[osd] & CEPH_OSD_EXISTS) &&
1919 (xorstate & CEPH_OSD_EXISTS)) {
1920 osdmap_info(map, fmt: "osd%d does not exist\n", osd);
1921 ret = set_primary_affinity(map, osd,
1922 CEPH_OSD_DEFAULT_PRIMARY_AFFINITY);
1923 if (ret)
1924 return ret;
1925 memset(map->osd_addr + osd, 0, sizeof(*map->osd_addr));
1926 map->osd_state[osd] = 0;
1927 } else {
1928 map->osd_state[osd] ^= xorstate;
1929 }
1930 }
1931
1932 /* new_up_client */
1933 *p = new_up_client;
1934 len = ceph_decode_32(p);
1935 while (len--) {
1936 s32 osd;
1937 struct ceph_entity_addr addr;
1938
1939 osd = ceph_decode_32(p);
1940 BUG_ON(osd >= map->max_osd);
1941 if (struct_v >= 7)
1942 ret = ceph_decode_entity_addrvec(p, end, msgr2, addr: &addr);
1943 else
1944 ret = ceph_decode_entity_addr(p, end, addr: &addr);
1945 if (ret)
1946 return ret;
1947
1948 dout("%s osd%d addr %s\n", __func__, osd, ceph_pr_addr(&addr));
1949
1950 osdmap_info(map, fmt: "osd%d up\n", osd);
1951 map->osd_state[osd] |= CEPH_OSD_EXISTS | CEPH_OSD_UP;
1952 map->osd_addr[osd] = addr;
1953 }
1954
1955 *p = new_weight_end;
1956 return 0;
1957
1958e_inval:
1959 return -EINVAL;
1960}
1961
1962/*
1963 * decode and apply an incremental map update.
1964 */
1965struct ceph_osdmap *osdmap_apply_incremental(void **p, void *end, bool msgr2,
1966 struct ceph_osdmap *map)
1967{
1968 struct ceph_fsid fsid;
1969 u32 epoch = 0;
1970 struct ceph_timespec modified;
1971 s32 len;
1972 u64 pool;
1973 __s64 new_pool_max;
1974 __s32 new_flags, max;
1975 void *start = *p;
1976 int err;
1977 u8 struct_v;
1978
1979 dout("%s %p to %p len %d\n", __func__, *p, end, (int)(end - *p));
1980
1981 err = get_osdmap_client_data_v(p, end, prefix: "inc", v: &struct_v);
1982 if (err)
1983 goto bad;
1984
1985 /* fsid, epoch, modified, new_pool_max, new_flags */
1986 ceph_decode_need(p, end, sizeof(fsid) + sizeof(u32) + sizeof(modified) +
1987 sizeof(u64) + sizeof(u32), e_inval);
1988 ceph_decode_copy(p, pv: &fsid, n: sizeof(fsid));
1989 epoch = ceph_decode_32(p);
1990 BUG_ON(epoch != map->epoch+1);
1991 ceph_decode_copy(p, pv: &modified, n: sizeof(modified));
1992 new_pool_max = ceph_decode_64(p);
1993 new_flags = ceph_decode_32(p);
1994
1995 /* full map? */
1996 ceph_decode_32_safe(p, end, len, e_inval);
1997 if (len > 0) {
1998 dout("apply_incremental full map len %d, %p to %p\n",
1999 len, *p, end);
2000 return ceph_osdmap_decode(p, min(*p+len, end), msgr2);
2001 }
2002
2003 /* new crush? */
2004 ceph_decode_32_safe(p, end, len, e_inval);
2005 if (len > 0) {
2006 err = osdmap_set_crush(map,
2007 crush: crush_decode(pbyval: *p, min(*p + len, end)));
2008 if (err)
2009 goto bad;
2010 *p += len;
2011 }
2012
2013 /* new flags? */
2014 if (new_flags >= 0)
2015 map->flags = new_flags;
2016 if (new_pool_max >= 0)
2017 map->pool_max = new_pool_max;
2018
2019 /* new max? */
2020 ceph_decode_32_safe(p, end, max, e_inval);
2021 if (max >= 0) {
2022 err = osdmap_set_max_osd(map, max);
2023 if (err)
2024 goto bad;
2025 }
2026
2027 map->epoch++;
2028 map->modified = modified;
2029
2030 /* new_pools */
2031 err = decode_new_pools(p, end, map);
2032 if (err)
2033 goto bad;
2034
2035 /* new_pool_names */
2036 err = decode_pool_names(p, end, map);
2037 if (err)
2038 goto bad;
2039
2040 /* old_pool */
2041 ceph_decode_32_safe(p, end, len, e_inval);
2042 while (len--) {
2043 struct ceph_pg_pool_info *pi;
2044
2045 ceph_decode_64_safe(p, end, pool, e_inval);
2046 pi = lookup_pg_pool(root: &map->pg_pools, key: pool);
2047 if (pi)
2048 __remove_pg_pool(root: &map->pg_pools, pi);
2049 }
2050
2051 /* new_up_client, new_state, new_weight */
2052 err = decode_new_up_state_weight(p, end, struct_v, msgr2, map);
2053 if (err)
2054 goto bad;
2055
2056 /* new_pg_temp */
2057 err = decode_new_pg_temp(p, end, map);
2058 if (err)
2059 goto bad;
2060
2061 /* new_primary_temp */
2062 if (struct_v >= 1) {
2063 err = decode_new_primary_temp(p, end, map);
2064 if (err)
2065 goto bad;
2066 }
2067
2068 /* new_primary_affinity */
2069 if (struct_v >= 2) {
2070 err = decode_new_primary_affinity(p, end, map);
2071 if (err)
2072 goto bad;
2073 }
2074
2075 if (struct_v >= 3) {
2076 /* new_erasure_code_profiles */
2077 ceph_decode_skip_map_of_map(p, end, string, string, string,
2078 e_inval);
2079 /* old_erasure_code_profiles */
2080 ceph_decode_skip_set(p, end, string, e_inval);
2081 }
2082
2083 if (struct_v >= 4) {
2084 err = decode_new_pg_upmap(p, end, map);
2085 if (err)
2086 goto bad;
2087
2088 err = decode_old_pg_upmap(p, end, map);
2089 if (err)
2090 goto bad;
2091
2092 err = decode_new_pg_upmap_items(p, end, map);
2093 if (err)
2094 goto bad;
2095
2096 err = decode_old_pg_upmap_items(p, end, map);
2097 if (err)
2098 goto bad;
2099 }
2100
2101 /* ignore the rest */
2102 *p = end;
2103
2104 dout("inc osdmap epoch %d max_osd %d\n", map->epoch, map->max_osd);
2105 return map;
2106
2107e_inval:
2108 err = -EINVAL;
2109bad:
2110 pr_err("corrupt inc osdmap (%d) epoch %d off %d (%p of %p-%p)\n",
2111 err, epoch, (int)(*p - start), *p, start, end);
2112 print_hex_dump(KERN_DEBUG, prefix_str: "osdmap: ",
2113 prefix_type: DUMP_PREFIX_OFFSET, rowsize: 16, groupsize: 1,
2114 buf: start, len: end - start, ascii: true);
2115 return ERR_PTR(error: err);
2116}
2117
2118void ceph_oloc_copy(struct ceph_object_locator *dest,
2119 const struct ceph_object_locator *src)
2120{
2121 ceph_oloc_destroy(oloc: dest);
2122
2123 dest->pool = src->pool;
2124 if (src->pool_ns)
2125 dest->pool_ns = ceph_get_string(str: src->pool_ns);
2126 else
2127 dest->pool_ns = NULL;
2128}
2129EXPORT_SYMBOL(ceph_oloc_copy);
2130
2131void ceph_oloc_destroy(struct ceph_object_locator *oloc)
2132{
2133 ceph_put_string(str: oloc->pool_ns);
2134}
2135EXPORT_SYMBOL(ceph_oloc_destroy);
2136
2137void ceph_oid_copy(struct ceph_object_id *dest,
2138 const struct ceph_object_id *src)
2139{
2140 ceph_oid_destroy(oid: dest);
2141
2142 if (src->name != src->inline_name) {
2143 /* very rare, see ceph_object_id definition */
2144 dest->name = kmalloc(size: src->name_len + 1,
2145 GFP_NOIO | __GFP_NOFAIL);
2146 } else {
2147 dest->name = dest->inline_name;
2148 }
2149 memcpy(dest->name, src->name, src->name_len + 1);
2150 dest->name_len = src->name_len;
2151}
2152EXPORT_SYMBOL(ceph_oid_copy);
2153
2154static __printf(2, 0)
2155int oid_printf_vargs(struct ceph_object_id *oid, const char *fmt, va_list ap)
2156{
2157 int len;
2158
2159 WARN_ON(!ceph_oid_empty(oid));
2160
2161 len = vsnprintf(buf: oid->inline_name, size: sizeof(oid->inline_name), fmt, args: ap);
2162 if (len >= sizeof(oid->inline_name))
2163 return len;
2164
2165 oid->name_len = len;
2166 return 0;
2167}
2168
2169/*
2170 * If oid doesn't fit into inline buffer, BUG.
2171 */
2172void ceph_oid_printf(struct ceph_object_id *oid, const char *fmt, ...)
2173{
2174 va_list ap;
2175
2176 va_start(ap, fmt);
2177 BUG_ON(oid_printf_vargs(oid, fmt, ap));
2178 va_end(ap);
2179}
2180EXPORT_SYMBOL(ceph_oid_printf);
2181
2182static __printf(3, 0)
2183int oid_aprintf_vargs(struct ceph_object_id *oid, gfp_t gfp,
2184 const char *fmt, va_list ap)
2185{
2186 va_list aq;
2187 int len;
2188
2189 va_copy(aq, ap);
2190 len = oid_printf_vargs(oid, fmt, ap: aq);
2191 va_end(aq);
2192
2193 if (len) {
2194 char *external_name;
2195
2196 external_name = kmalloc(size: len + 1, flags: gfp);
2197 if (!external_name)
2198 return -ENOMEM;
2199
2200 oid->name = external_name;
2201 WARN_ON(vsnprintf(oid->name, len + 1, fmt, ap) != len);
2202 oid->name_len = len;
2203 }
2204
2205 return 0;
2206}
2207
2208/*
2209 * If oid doesn't fit into inline buffer, allocate.
2210 */
2211int ceph_oid_aprintf(struct ceph_object_id *oid, gfp_t gfp,
2212 const char *fmt, ...)
2213{
2214 va_list ap;
2215 int ret;
2216
2217 va_start(ap, fmt);
2218 ret = oid_aprintf_vargs(oid, gfp, fmt, ap);
2219 va_end(ap);
2220
2221 return ret;
2222}
2223EXPORT_SYMBOL(ceph_oid_aprintf);
2224
2225void ceph_oid_destroy(struct ceph_object_id *oid)
2226{
2227 if (oid->name != oid->inline_name)
2228 kfree(objp: oid->name);
2229}
2230EXPORT_SYMBOL(ceph_oid_destroy);
2231
2232/*
2233 * osds only
2234 */
2235static bool __osds_equal(const struct ceph_osds *lhs,
2236 const struct ceph_osds *rhs)
2237{
2238 if (lhs->size == rhs->size &&
2239 !memcmp(p: lhs->osds, q: rhs->osds, size: rhs->size * sizeof(rhs->osds[0])))
2240 return true;
2241
2242 return false;
2243}
2244
2245/*
2246 * osds + primary
2247 */
2248static bool osds_equal(const struct ceph_osds *lhs,
2249 const struct ceph_osds *rhs)
2250{
2251 if (__osds_equal(lhs, rhs) &&
2252 lhs->primary == rhs->primary)
2253 return true;
2254
2255 return false;
2256}
2257
2258static bool osds_valid(const struct ceph_osds *set)
2259{
2260 /* non-empty set */
2261 if (set->size > 0 && set->primary >= 0)
2262 return true;
2263
2264 /* empty can_shift_osds set */
2265 if (!set->size && set->primary == -1)
2266 return true;
2267
2268 /* empty !can_shift_osds set - all NONE */
2269 if (set->size > 0 && set->primary == -1) {
2270 int i;
2271
2272 for (i = 0; i < set->size; i++) {
2273 if (set->osds[i] != CRUSH_ITEM_NONE)
2274 break;
2275 }
2276 if (i == set->size)
2277 return true;
2278 }
2279
2280 return false;
2281}
2282
2283void ceph_osds_copy(struct ceph_osds *dest, const struct ceph_osds *src)
2284{
2285 memcpy(dest->osds, src->osds, src->size * sizeof(src->osds[0]));
2286 dest->size = src->size;
2287 dest->primary = src->primary;
2288}
2289
2290bool ceph_pg_is_split(const struct ceph_pg *pgid, u32 old_pg_num,
2291 u32 new_pg_num)
2292{
2293 int old_bits = calc_bits_of(t: old_pg_num);
2294 int old_mask = (1 << old_bits) - 1;
2295 int n;
2296
2297 WARN_ON(pgid->seed >= old_pg_num);
2298 if (new_pg_num <= old_pg_num)
2299 return false;
2300
2301 for (n = 1; ; n++) {
2302 int next_bit = n << (old_bits - 1);
2303 u32 s = next_bit | pgid->seed;
2304
2305 if (s < old_pg_num || s == pgid->seed)
2306 continue;
2307 if (s >= new_pg_num)
2308 break;
2309
2310 s = ceph_stable_mod(x: s, b: old_pg_num, bmask: old_mask);
2311 if (s == pgid->seed)
2312 return true;
2313 }
2314
2315 return false;
2316}
2317
2318bool ceph_is_new_interval(const struct ceph_osds *old_acting,
2319 const struct ceph_osds *new_acting,
2320 const struct ceph_osds *old_up,
2321 const struct ceph_osds *new_up,
2322 int old_size,
2323 int new_size,
2324 int old_min_size,
2325 int new_min_size,
2326 u32 old_pg_num,
2327 u32 new_pg_num,
2328 bool old_sort_bitwise,
2329 bool new_sort_bitwise,
2330 bool old_recovery_deletes,
2331 bool new_recovery_deletes,
2332 const struct ceph_pg *pgid)
2333{
2334 return !osds_equal(lhs: old_acting, rhs: new_acting) ||
2335 !osds_equal(lhs: old_up, rhs: new_up) ||
2336 old_size != new_size ||
2337 old_min_size != new_min_size ||
2338 ceph_pg_is_split(pgid, old_pg_num, new_pg_num) ||
2339 old_sort_bitwise != new_sort_bitwise ||
2340 old_recovery_deletes != new_recovery_deletes;
2341}
2342
2343static int calc_pg_rank(int osd, const struct ceph_osds *acting)
2344{
2345 int i;
2346
2347 for (i = 0; i < acting->size; i++) {
2348 if (acting->osds[i] == osd)
2349 return i;
2350 }
2351
2352 return -1;
2353}
2354
2355static bool primary_changed(const struct ceph_osds *old_acting,
2356 const struct ceph_osds *new_acting)
2357{
2358 if (!old_acting->size && !new_acting->size)
2359 return false; /* both still empty */
2360
2361 if (!old_acting->size ^ !new_acting->size)
2362 return true; /* was empty, now not, or vice versa */
2363
2364 if (old_acting->primary != new_acting->primary)
2365 return true; /* primary changed */
2366
2367 if (calc_pg_rank(osd: old_acting->primary, acting: old_acting) !=
2368 calc_pg_rank(osd: new_acting->primary, acting: new_acting))
2369 return true;
2370
2371 return false; /* same primary (tho replicas may have changed) */
2372}
2373
2374bool ceph_osds_changed(const struct ceph_osds *old_acting,
2375 const struct ceph_osds *new_acting,
2376 bool any_change)
2377{
2378 if (primary_changed(old_acting, new_acting))
2379 return true;
2380
2381 if (any_change && !__osds_equal(lhs: old_acting, rhs: new_acting))
2382 return true;
2383
2384 return false;
2385}
2386
2387/*
2388 * Map an object into a PG.
2389 *
2390 * Should only be called with target_oid and target_oloc (as opposed to
2391 * base_oid and base_oloc), since tiering isn't taken into account.
2392 */
2393void __ceph_object_locator_to_pg(struct ceph_pg_pool_info *pi,
2394 const struct ceph_object_id *oid,
2395 const struct ceph_object_locator *oloc,
2396 struct ceph_pg *raw_pgid)
2397{
2398 WARN_ON(pi->id != oloc->pool);
2399
2400 if (!oloc->pool_ns) {
2401 raw_pgid->pool = oloc->pool;
2402 raw_pgid->seed = ceph_str_hash(type: pi->object_hash, s: oid->name,
2403 len: oid->name_len);
2404 dout("%s %s -> raw_pgid %llu.%x\n", __func__, oid->name,
2405 raw_pgid->pool, raw_pgid->seed);
2406 } else {
2407 char stack_buf[256];
2408 char *buf = stack_buf;
2409 int nsl = oloc->pool_ns->len;
2410 size_t total = nsl + 1 + oid->name_len;
2411
2412 if (total > sizeof(stack_buf))
2413 buf = kmalloc(size: total, GFP_NOIO | __GFP_NOFAIL);
2414 memcpy(buf, oloc->pool_ns->str, nsl);
2415 buf[nsl] = '\037';
2416 memcpy(buf + nsl + 1, oid->name, oid->name_len);
2417 raw_pgid->pool = oloc->pool;
2418 raw_pgid->seed = ceph_str_hash(type: pi->object_hash, s: buf, len: total);
2419 if (buf != stack_buf)
2420 kfree(objp: buf);
2421 dout("%s %s ns %.*s -> raw_pgid %llu.%x\n", __func__,
2422 oid->name, nsl, oloc->pool_ns->str,
2423 raw_pgid->pool, raw_pgid->seed);
2424 }
2425}
2426
2427int ceph_object_locator_to_pg(struct ceph_osdmap *osdmap,
2428 const struct ceph_object_id *oid,
2429 const struct ceph_object_locator *oloc,
2430 struct ceph_pg *raw_pgid)
2431{
2432 struct ceph_pg_pool_info *pi;
2433
2434 pi = ceph_pg_pool_by_id(map: osdmap, id: oloc->pool);
2435 if (!pi)
2436 return -ENOENT;
2437
2438 __ceph_object_locator_to_pg(pi, oid, oloc, raw_pgid);
2439 return 0;
2440}
2441EXPORT_SYMBOL(ceph_object_locator_to_pg);
2442
2443/*
2444 * Map a raw PG (full precision ps) into an actual PG.
2445 */
2446static void raw_pg_to_pg(struct ceph_pg_pool_info *pi,
2447 const struct ceph_pg *raw_pgid,
2448 struct ceph_pg *pgid)
2449{
2450 pgid->pool = raw_pgid->pool;
2451 pgid->seed = ceph_stable_mod(x: raw_pgid->seed, b: pi->pg_num,
2452 bmask: pi->pg_num_mask);
2453}
2454
2455/*
2456 * Map a raw PG (full precision ps) into a placement ps (placement
2457 * seed). Include pool id in that value so that different pools don't
2458 * use the same seeds.
2459 */
2460static u32 raw_pg_to_pps(struct ceph_pg_pool_info *pi,
2461 const struct ceph_pg *raw_pgid)
2462{
2463 if (pi->flags & CEPH_POOL_FLAG_HASHPSPOOL) {
2464 /* hash pool id and seed so that pool PGs do not overlap */
2465 return crush_hash32_2(CRUSH_HASH_RJENKINS1,
2466 a: ceph_stable_mod(x: raw_pgid->seed,
2467 b: pi->pgp_num,
2468 bmask: pi->pgp_num_mask),
2469 b: raw_pgid->pool);
2470 } else {
2471 /*
2472 * legacy behavior: add ps and pool together. this is
2473 * not a great approach because the PGs from each pool
2474 * will overlap on top of each other: 0.5 == 1.4 ==
2475 * 2.3 == ...
2476 */
2477 return ceph_stable_mod(x: raw_pgid->seed, b: pi->pgp_num,
2478 bmask: pi->pgp_num_mask) +
2479 (unsigned)raw_pgid->pool;
2480 }
2481}
2482
2483/*
2484 * Magic value used for a "default" fallback choose_args, used if the
2485 * crush_choose_arg_map passed to do_crush() does not exist. If this
2486 * also doesn't exist, fall back to canonical weights.
2487 */
2488#define CEPH_DEFAULT_CHOOSE_ARGS -1
2489
2490static int do_crush(struct ceph_osdmap *map, int ruleno, int x,
2491 int *result, int result_max,
2492 const __u32 *weight, int weight_max,
2493 s64 choose_args_index)
2494{
2495 struct crush_choose_arg_map *arg_map;
2496 struct crush_work *work;
2497 int r;
2498
2499 BUG_ON(result_max > CEPH_PG_MAX_SIZE);
2500
2501 arg_map = lookup_choose_arg_map(root: &map->crush->choose_args,
2502 key: choose_args_index);
2503 if (!arg_map)
2504 arg_map = lookup_choose_arg_map(root: &map->crush->choose_args,
2505 CEPH_DEFAULT_CHOOSE_ARGS);
2506
2507 work = get_workspace(wsm: &map->crush_wsm, c: map->crush);
2508 r = crush_do_rule(map: map->crush, ruleno, x, result, result_max,
2509 weight, weight_max, cwin: work,
2510 choose_args: arg_map ? arg_map->args : NULL);
2511 put_workspace(wsm: &map->crush_wsm, work);
2512 return r;
2513}
2514
2515static void remove_nonexistent_osds(struct ceph_osdmap *osdmap,
2516 struct ceph_pg_pool_info *pi,
2517 struct ceph_osds *set)
2518{
2519 int i;
2520
2521 if (ceph_can_shift_osds(pool: pi)) {
2522 int removed = 0;
2523
2524 /* shift left */
2525 for (i = 0; i < set->size; i++) {
2526 if (!ceph_osd_exists(map: osdmap, osd: set->osds[i])) {
2527 removed++;
2528 continue;
2529 }
2530 if (removed)
2531 set->osds[i - removed] = set->osds[i];
2532 }
2533 set->size -= removed;
2534 } else {
2535 /* set dne devices to NONE */
2536 for (i = 0; i < set->size; i++) {
2537 if (!ceph_osd_exists(map: osdmap, osd: set->osds[i]))
2538 set->osds[i] = CRUSH_ITEM_NONE;
2539 }
2540 }
2541}
2542
2543/*
2544 * Calculate raw set (CRUSH output) for given PG and filter out
2545 * nonexistent OSDs. ->primary is undefined for a raw set.
2546 *
2547 * Placement seed (CRUSH input) is returned through @ppps.
2548 */
2549static void pg_to_raw_osds(struct ceph_osdmap *osdmap,
2550 struct ceph_pg_pool_info *pi,
2551 const struct ceph_pg *raw_pgid,
2552 struct ceph_osds *raw,
2553 u32 *ppps)
2554{
2555 u32 pps = raw_pg_to_pps(pi, raw_pgid);
2556 int ruleno;
2557 int len;
2558
2559 ceph_osds_init(set: raw);
2560 if (ppps)
2561 *ppps = pps;
2562
2563 ruleno = crush_find_rule(map: osdmap->crush, ruleset: pi->crush_ruleset, type: pi->type,
2564 size: pi->size);
2565 if (ruleno < 0) {
2566 pr_err("no crush rule: pool %lld ruleset %d type %d size %d\n",
2567 pi->id, pi->crush_ruleset, pi->type, pi->size);
2568 return;
2569 }
2570
2571 if (pi->size > ARRAY_SIZE(raw->osds)) {
2572 pr_err_ratelimited("pool %lld ruleset %d type %d too wide: size %d > %zu\n",
2573 pi->id, pi->crush_ruleset, pi->type, pi->size,
2574 ARRAY_SIZE(raw->osds));
2575 return;
2576 }
2577
2578 len = do_crush(map: osdmap, ruleno, x: pps, result: raw->osds, result_max: pi->size,
2579 weight: osdmap->osd_weight, weight_max: osdmap->max_osd, choose_args_index: pi->id);
2580 if (len < 0) {
2581 pr_err("error %d from crush rule %d: pool %lld ruleset %d type %d size %d\n",
2582 len, ruleno, pi->id, pi->crush_ruleset, pi->type,
2583 pi->size);
2584 return;
2585 }
2586
2587 raw->size = len;
2588 remove_nonexistent_osds(osdmap, pi, set: raw);
2589}
2590
2591/* apply pg_upmap[_items] mappings */
2592static void apply_upmap(struct ceph_osdmap *osdmap,
2593 const struct ceph_pg *pgid,
2594 struct ceph_osds *raw)
2595{
2596 struct ceph_pg_mapping *pg;
2597 int i, j;
2598
2599 pg = lookup_pg_mapping(root: &osdmap->pg_upmap, key: pgid);
2600 if (pg) {
2601 /* make sure targets aren't marked out */
2602 for (i = 0; i < pg->pg_upmap.len; i++) {
2603 int osd = pg->pg_upmap.osds[i];
2604
2605 if (osd != CRUSH_ITEM_NONE &&
2606 osd < osdmap->max_osd &&
2607 osdmap->osd_weight[osd] == 0) {
2608 /* reject/ignore explicit mapping */
2609 return;
2610 }
2611 }
2612 for (i = 0; i < pg->pg_upmap.len; i++)
2613 raw->osds[i] = pg->pg_upmap.osds[i];
2614 raw->size = pg->pg_upmap.len;
2615 /* check and apply pg_upmap_items, if any */
2616 }
2617
2618 pg = lookup_pg_mapping(root: &osdmap->pg_upmap_items, key: pgid);
2619 if (pg) {
2620 /*
2621 * Note: this approach does not allow a bidirectional swap,
2622 * e.g., [[1,2],[2,1]] applied to [0,1,2] -> [0,2,1].
2623 */
2624 for (i = 0; i < pg->pg_upmap_items.len; i++) {
2625 int from = pg->pg_upmap_items.from_to[i][0];
2626 int to = pg->pg_upmap_items.from_to[i][1];
2627 int pos = -1;
2628 bool exists = false;
2629
2630 /* make sure replacement doesn't already appear */
2631 for (j = 0; j < raw->size; j++) {
2632 int osd = raw->osds[j];
2633
2634 if (osd == to) {
2635 exists = true;
2636 break;
2637 }
2638 /* ignore mapping if target is marked out */
2639 if (osd == from && pos < 0 &&
2640 !(to != CRUSH_ITEM_NONE &&
2641 to < osdmap->max_osd &&
2642 osdmap->osd_weight[to] == 0)) {
2643 pos = j;
2644 }
2645 }
2646 if (!exists && pos >= 0)
2647 raw->osds[pos] = to;
2648 }
2649 }
2650}
2651
2652/*
2653 * Given raw set, calculate up set and up primary. By definition of an
2654 * up set, the result won't contain nonexistent or down OSDs.
2655 *
2656 * This is done in-place - on return @set is the up set. If it's
2657 * empty, ->primary will remain undefined.
2658 */
2659static void raw_to_up_osds(struct ceph_osdmap *osdmap,
2660 struct ceph_pg_pool_info *pi,
2661 struct ceph_osds *set)
2662{
2663 int i;
2664
2665 /* ->primary is undefined for a raw set */
2666 BUG_ON(set->primary != -1);
2667
2668 if (ceph_can_shift_osds(pool: pi)) {
2669 int removed = 0;
2670
2671 /* shift left */
2672 for (i = 0; i < set->size; i++) {
2673 if (ceph_osd_is_down(map: osdmap, osd: set->osds[i])) {
2674 removed++;
2675 continue;
2676 }
2677 if (removed)
2678 set->osds[i - removed] = set->osds[i];
2679 }
2680 set->size -= removed;
2681 if (set->size > 0)
2682 set->primary = set->osds[0];
2683 } else {
2684 /* set down/dne devices to NONE */
2685 for (i = set->size - 1; i >= 0; i--) {
2686 if (ceph_osd_is_down(map: osdmap, osd: set->osds[i]))
2687 set->osds[i] = CRUSH_ITEM_NONE;
2688 else
2689 set->primary = set->osds[i];
2690 }
2691 }
2692}
2693
2694static void apply_primary_affinity(struct ceph_osdmap *osdmap,
2695 struct ceph_pg_pool_info *pi,
2696 u32 pps,
2697 struct ceph_osds *up)
2698{
2699 int i;
2700 int pos = -1;
2701
2702 /*
2703 * Do we have any non-default primary_affinity values for these
2704 * osds?
2705 */
2706 if (!osdmap->osd_primary_affinity)
2707 return;
2708
2709 for (i = 0; i < up->size; i++) {
2710 int osd = up->osds[i];
2711
2712 if (osd != CRUSH_ITEM_NONE &&
2713 osdmap->osd_primary_affinity[osd] !=
2714 CEPH_OSD_DEFAULT_PRIMARY_AFFINITY) {
2715 break;
2716 }
2717 }
2718 if (i == up->size)
2719 return;
2720
2721 /*
2722 * Pick the primary. Feed both the seed (for the pg) and the
2723 * osd into the hash/rng so that a proportional fraction of an
2724 * osd's pgs get rejected as primary.
2725 */
2726 for (i = 0; i < up->size; i++) {
2727 int osd = up->osds[i];
2728 u32 aff;
2729
2730 if (osd == CRUSH_ITEM_NONE)
2731 continue;
2732
2733 aff = osdmap->osd_primary_affinity[osd];
2734 if (aff < CEPH_OSD_MAX_PRIMARY_AFFINITY &&
2735 (crush_hash32_2(CRUSH_HASH_RJENKINS1,
2736 a: pps, b: osd) >> 16) >= aff) {
2737 /*
2738 * We chose not to use this primary. Note it
2739 * anyway as a fallback in case we don't pick
2740 * anyone else, but keep looking.
2741 */
2742 if (pos < 0)
2743 pos = i;
2744 } else {
2745 pos = i;
2746 break;
2747 }
2748 }
2749 if (pos < 0)
2750 return;
2751
2752 up->primary = up->osds[pos];
2753
2754 if (ceph_can_shift_osds(pool: pi) && pos > 0) {
2755 /* move the new primary to the front */
2756 for (i = pos; i > 0; i--)
2757 up->osds[i] = up->osds[i - 1];
2758 up->osds[0] = up->primary;
2759 }
2760}
2761
2762/*
2763 * Get pg_temp and primary_temp mappings for given PG.
2764 *
2765 * Note that a PG may have none, only pg_temp, only primary_temp or
2766 * both pg_temp and primary_temp mappings. This means @temp isn't
2767 * always a valid OSD set on return: in the "only primary_temp" case,
2768 * @temp will have its ->primary >= 0 but ->size == 0.
2769 */
2770static void get_temp_osds(struct ceph_osdmap *osdmap,
2771 struct ceph_pg_pool_info *pi,
2772 const struct ceph_pg *pgid,
2773 struct ceph_osds *temp)
2774{
2775 struct ceph_pg_mapping *pg;
2776 int i;
2777
2778 ceph_osds_init(set: temp);
2779
2780 /* pg_temp? */
2781 pg = lookup_pg_mapping(root: &osdmap->pg_temp, key: pgid);
2782 if (pg) {
2783 for (i = 0; i < pg->pg_temp.len; i++) {
2784 if (ceph_osd_is_down(map: osdmap, osd: pg->pg_temp.osds[i])) {
2785 if (ceph_can_shift_osds(pool: pi))
2786 continue;
2787
2788 temp->osds[temp->size++] = CRUSH_ITEM_NONE;
2789 } else {
2790 temp->osds[temp->size++] = pg->pg_temp.osds[i];
2791 }
2792 }
2793
2794 /* apply pg_temp's primary */
2795 for (i = 0; i < temp->size; i++) {
2796 if (temp->osds[i] != CRUSH_ITEM_NONE) {
2797 temp->primary = temp->osds[i];
2798 break;
2799 }
2800 }
2801 }
2802
2803 /* primary_temp? */
2804 pg = lookup_pg_mapping(root: &osdmap->primary_temp, key: pgid);
2805 if (pg)
2806 temp->primary = pg->primary_temp.osd;
2807}
2808
2809/*
2810 * Map a PG to its acting set as well as its up set.
2811 *
2812 * Acting set is used for data mapping purposes, while up set can be
2813 * recorded for detecting interval changes and deciding whether to
2814 * resend a request.
2815 */
2816void ceph_pg_to_up_acting_osds(struct ceph_osdmap *osdmap,
2817 struct ceph_pg_pool_info *pi,
2818 const struct ceph_pg *raw_pgid,
2819 struct ceph_osds *up,
2820 struct ceph_osds *acting)
2821{
2822 struct ceph_pg pgid;
2823 u32 pps;
2824
2825 WARN_ON(pi->id != raw_pgid->pool);
2826 raw_pg_to_pg(pi, raw_pgid, pgid: &pgid);
2827
2828 pg_to_raw_osds(osdmap, pi, raw_pgid, raw: up, ppps: &pps);
2829 apply_upmap(osdmap, pgid: &pgid, raw: up);
2830 raw_to_up_osds(osdmap, pi, set: up);
2831 apply_primary_affinity(osdmap, pi, pps, up);
2832 get_temp_osds(osdmap, pi, pgid: &pgid, temp: acting);
2833 if (!acting->size) {
2834 memcpy(acting->osds, up->osds, up->size * sizeof(up->osds[0]));
2835 acting->size = up->size;
2836 if (acting->primary == -1)
2837 acting->primary = up->primary;
2838 }
2839 WARN_ON(!osds_valid(up) || !osds_valid(acting));
2840}
2841
2842bool ceph_pg_to_primary_shard(struct ceph_osdmap *osdmap,
2843 struct ceph_pg_pool_info *pi,
2844 const struct ceph_pg *raw_pgid,
2845 struct ceph_spg *spgid)
2846{
2847 struct ceph_pg pgid;
2848 struct ceph_osds up, acting;
2849 int i;
2850
2851 WARN_ON(pi->id != raw_pgid->pool);
2852 raw_pg_to_pg(pi, raw_pgid, pgid: &pgid);
2853
2854 if (ceph_can_shift_osds(pool: pi)) {
2855 spgid->pgid = pgid; /* struct */
2856 spgid->shard = CEPH_SPG_NOSHARD;
2857 return true;
2858 }
2859
2860 ceph_pg_to_up_acting_osds(osdmap, pi, raw_pgid: &pgid, up: &up, acting: &acting);
2861 for (i = 0; i < acting.size; i++) {
2862 if (acting.osds[i] == acting.primary) {
2863 spgid->pgid = pgid; /* struct */
2864 spgid->shard = i;
2865 return true;
2866 }
2867 }
2868
2869 return false;
2870}
2871
2872/*
2873 * Return acting primary for given PG, or -1 if none.
2874 */
2875int ceph_pg_to_acting_primary(struct ceph_osdmap *osdmap,
2876 const struct ceph_pg *raw_pgid)
2877{
2878 struct ceph_pg_pool_info *pi;
2879 struct ceph_osds up, acting;
2880
2881 pi = ceph_pg_pool_by_id(map: osdmap, id: raw_pgid->pool);
2882 if (!pi)
2883 return -1;
2884
2885 ceph_pg_to_up_acting_osds(osdmap, pi, raw_pgid, up: &up, acting: &acting);
2886 return acting.primary;
2887}
2888EXPORT_SYMBOL(ceph_pg_to_acting_primary);
2889
2890static struct crush_loc_node *alloc_crush_loc(size_t type_name_len,
2891 size_t name_len)
2892{
2893 struct crush_loc_node *loc;
2894
2895 loc = kmalloc(size: sizeof(*loc) + type_name_len + name_len + 2, GFP_NOIO);
2896 if (!loc)
2897 return NULL;
2898
2899 RB_CLEAR_NODE(&loc->cl_node);
2900 return loc;
2901}
2902
2903static void free_crush_loc(struct crush_loc_node *loc)
2904{
2905 WARN_ON(!RB_EMPTY_NODE(&loc->cl_node));
2906
2907 kfree(objp: loc);
2908}
2909
2910static int crush_loc_compare(const struct crush_loc *loc1,
2911 const struct crush_loc *loc2)
2912{
2913 return strcmp(loc1->cl_type_name, loc2->cl_type_name) ?:
2914 strcmp(loc1->cl_name, loc2->cl_name);
2915}
2916
2917DEFINE_RB_FUNCS2(crush_loc, struct crush_loc_node, cl_loc, crush_loc_compare,
2918 RB_BYPTR, const struct crush_loc *, cl_node)
2919
2920/*
2921 * Parses a set of <bucket type name>':'<bucket name> pairs separated
2922 * by '|', e.g. "rack:foo1|rack:foo2|datacenter:bar".
2923 *
2924 * Note that @crush_location is modified by strsep().
2925 */
2926int ceph_parse_crush_location(char *crush_location, struct rb_root *locs)
2927{
2928 struct crush_loc_node *loc;
2929 const char *type_name, *name, *colon;
2930 size_t type_name_len, name_len;
2931
2932 dout("%s '%s'\n", __func__, crush_location);
2933 while ((type_name = strsep(&crush_location, "|"))) {
2934 colon = strchr(type_name, ':');
2935 if (!colon)
2936 return -EINVAL;
2937
2938 type_name_len = colon - type_name;
2939 if (type_name_len == 0)
2940 return -EINVAL;
2941
2942 name = colon + 1;
2943 name_len = strlen(name);
2944 if (name_len == 0)
2945 return -EINVAL;
2946
2947 loc = alloc_crush_loc(type_name_len, name_len);
2948 if (!loc)
2949 return -ENOMEM;
2950
2951 loc->cl_loc.cl_type_name = loc->cl_data;
2952 memcpy(loc->cl_loc.cl_type_name, type_name, type_name_len);
2953 loc->cl_loc.cl_type_name[type_name_len] = '\0';
2954
2955 loc->cl_loc.cl_name = loc->cl_data + type_name_len + 1;
2956 memcpy(loc->cl_loc.cl_name, name, name_len);
2957 loc->cl_loc.cl_name[name_len] = '\0';
2958
2959 if (!__insert_crush_loc(root: locs, t: loc)) {
2960 free_crush_loc(loc);
2961 return -EEXIST;
2962 }
2963
2964 dout("%s type_name '%s' name '%s'\n", __func__,
2965 loc->cl_loc.cl_type_name, loc->cl_loc.cl_name);
2966 }
2967
2968 return 0;
2969}
2970
2971int ceph_compare_crush_locs(struct rb_root *locs1, struct rb_root *locs2)
2972{
2973 struct rb_node *n1 = rb_first(locs1);
2974 struct rb_node *n2 = rb_first(locs2);
2975 int ret;
2976
2977 for ( ; n1 && n2; n1 = rb_next(n1), n2 = rb_next(n2)) {
2978 struct crush_loc_node *loc1 =
2979 rb_entry(n1, struct crush_loc_node, cl_node);
2980 struct crush_loc_node *loc2 =
2981 rb_entry(n2, struct crush_loc_node, cl_node);
2982
2983 ret = crush_loc_compare(loc1: &loc1->cl_loc, loc2: &loc2->cl_loc);
2984 if (ret)
2985 return ret;
2986 }
2987
2988 if (!n1 && n2)
2989 return -1;
2990 if (n1 && !n2)
2991 return 1;
2992 return 0;
2993}
2994
2995void ceph_clear_crush_locs(struct rb_root *locs)
2996{
2997 while (!RB_EMPTY_ROOT(locs)) {
2998 struct crush_loc_node *loc =
2999 rb_entry(rb_first(locs), struct crush_loc_node, cl_node);
3000
3001 erase_crush_loc(root: locs, t: loc);
3002 free_crush_loc(loc);
3003 }
3004}
3005
3006/*
3007 * [a-zA-Z0-9-_.]+
3008 */
3009static bool is_valid_crush_name(const char *name)
3010{
3011 do {
3012 if (!('a' <= *name && *name <= 'z') &&
3013 !('A' <= *name && *name <= 'Z') &&
3014 !('0' <= *name && *name <= '9') &&
3015 *name != '-' && *name != '_' && *name != '.')
3016 return false;
3017 } while (*++name != '\0');
3018
3019 return true;
3020}
3021
3022/*
3023 * Gets the parent of an item. Returns its id (<0 because the
3024 * parent is always a bucket), type id (>0 for the same reason,
3025 * via @parent_type_id) and location (via @parent_loc). If no
3026 * parent, returns 0.
3027 *
3028 * Does a linear search, as there are no parent pointers of any
3029 * kind. Note that the result is ambiguous for items that occur
3030 * multiple times in the map.
3031 */
3032static int get_immediate_parent(struct crush_map *c, int id,
3033 u16 *parent_type_id,
3034 struct crush_loc *parent_loc)
3035{
3036 struct crush_bucket *b;
3037 struct crush_name_node *type_cn, *cn;
3038 int i, j;
3039
3040 for (i = 0; i < c->max_buckets; i++) {
3041 b = c->buckets[i];
3042 if (!b)
3043 continue;
3044
3045 /* ignore per-class shadow hierarchy */
3046 cn = lookup_crush_name(root: &c->names, key: b->id);
3047 if (!cn || !is_valid_crush_name(name: cn->cn_name))
3048 continue;
3049
3050 for (j = 0; j < b->size; j++) {
3051 if (b->items[j] != id)
3052 continue;
3053
3054 *parent_type_id = b->type;
3055 type_cn = lookup_crush_name(root: &c->type_names, key: b->type);
3056 parent_loc->cl_type_name = type_cn->cn_name;
3057 parent_loc->cl_name = cn->cn_name;
3058 return b->id;
3059 }
3060 }
3061
3062 return 0; /* no parent */
3063}
3064
3065/*
3066 * Calculates the locality/distance from an item to a client
3067 * location expressed in terms of CRUSH hierarchy as a set of
3068 * (bucket type name, bucket name) pairs. Specifically, looks
3069 * for the lowest-valued bucket type for which the location of
3070 * @id matches one of the locations in @locs, so for standard
3071 * bucket types (host = 1, rack = 3, datacenter = 8, zone = 9)
3072 * a matching host is closer than a matching rack and a matching
3073 * data center is closer than a matching zone.
3074 *
3075 * Specifying multiple locations (a "multipath" location) such
3076 * as "rack=foo1 rack=foo2 datacenter=bar" is allowed -- @locs
3077 * is a multimap. The locality will be:
3078 *
3079 * - 3 for OSDs in racks foo1 and foo2
3080 * - 8 for OSDs in data center bar
3081 * - -1 for all other OSDs
3082 *
3083 * The lowest possible bucket type is 1, so the best locality
3084 * for an OSD is 1 (i.e. a matching host). Locality 0 would be
3085 * the OSD itself.
3086 */
3087int ceph_get_crush_locality(struct ceph_osdmap *osdmap, int id,
3088 struct rb_root *locs)
3089{
3090 struct crush_loc loc;
3091 u16 type_id;
3092
3093 /*
3094 * Instead of repeated get_immediate_parent() calls,
3095 * the location of @id could be obtained with a single
3096 * depth-first traversal.
3097 */
3098 for (;;) {
3099 id = get_immediate_parent(c: osdmap->crush, id, parent_type_id: &type_id, parent_loc: &loc);
3100 if (id >= 0)
3101 return -1; /* not local */
3102
3103 if (lookup_crush_loc(root: locs, key: &loc))
3104 return type_id;
3105 }
3106}
3107

source code of linux/net/ceph/osdmap.c