1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * DSA topology and switch handling
4 *
5 * Copyright (c) 2008-2009 Marvell Semiconductor
6 * Copyright (c) 2013 Florian Fainelli <florian@openwrt.org>
7 * Copyright (c) 2016 Andrew Lunn <andrew@lunn.ch>
8 */
9
10#include <linux/device.h>
11#include <linux/err.h>
12#include <linux/list.h>
13#include <linux/module.h>
14#include <linux/netdevice.h>
15#include <linux/slab.h>
16#include <linux/rtnetlink.h>
17#include <linux/of.h>
18#include <linux/of_mdio.h>
19#include <linux/of_net.h>
20#include <net/dsa_stubs.h>
21#include <net/sch_generic.h>
22
23#include "conduit.h"
24#include "devlink.h"
25#include "dsa.h"
26#include "netlink.h"
27#include "port.h"
28#include "switch.h"
29#include "tag.h"
30#include "user.h"
31
32#define DSA_MAX_NUM_OFFLOADING_BRIDGES BITS_PER_LONG
33
34static DEFINE_MUTEX(dsa2_mutex);
35LIST_HEAD(dsa_tree_list);
36
37static struct workqueue_struct *dsa_owq;
38
39/* Track the bridges with forwarding offload enabled */
40static unsigned long dsa_fwd_offloading_bridges;
41
42bool dsa_schedule_work(struct work_struct *work)
43{
44 return queue_work(wq: dsa_owq, work);
45}
46
47void dsa_flush_workqueue(void)
48{
49 flush_workqueue(dsa_owq);
50}
51EXPORT_SYMBOL_GPL(dsa_flush_workqueue);
52
53/**
54 * dsa_lag_map() - Map LAG structure to a linear LAG array
55 * @dst: Tree in which to record the mapping.
56 * @lag: LAG structure that is to be mapped to the tree's array.
57 *
58 * dsa_lag_id/dsa_lag_by_id can then be used to translate between the
59 * two spaces. The size of the mapping space is determined by the
60 * driver by setting ds->num_lag_ids. It is perfectly legal to leave
61 * it unset if it is not needed, in which case these functions become
62 * no-ops.
63 */
64void dsa_lag_map(struct dsa_switch_tree *dst, struct dsa_lag *lag)
65{
66 unsigned int id;
67
68 for (id = 1; id <= dst->lags_len; id++) {
69 if (!dsa_lag_by_id(dst, id)) {
70 dst->lags[id - 1] = lag;
71 lag->id = id;
72 return;
73 }
74 }
75
76 /* No IDs left, which is OK. Some drivers do not need it. The
77 * ones that do, e.g. mv88e6xxx, will discover that dsa_lag_id
78 * returns an error for this device when joining the LAG. The
79 * driver can then return -EOPNOTSUPP back to DSA, which will
80 * fall back to a software LAG.
81 */
82}
83
84/**
85 * dsa_lag_unmap() - Remove a LAG ID mapping
86 * @dst: Tree in which the mapping is recorded.
87 * @lag: LAG structure that was mapped.
88 *
89 * As there may be multiple users of the mapping, it is only removed
90 * if there are no other references to it.
91 */
92void dsa_lag_unmap(struct dsa_switch_tree *dst, struct dsa_lag *lag)
93{
94 unsigned int id;
95
96 dsa_lags_foreach_id(id, dst) {
97 if (dsa_lag_by_id(dst, id) == lag) {
98 dst->lags[id - 1] = NULL;
99 lag->id = 0;
100 break;
101 }
102 }
103}
104
105struct dsa_lag *dsa_tree_lag_find(struct dsa_switch_tree *dst,
106 const struct net_device *lag_dev)
107{
108 struct dsa_port *dp;
109
110 list_for_each_entry(dp, &dst->ports, list)
111 if (dsa_port_lag_dev_get(dp) == lag_dev)
112 return dp->lag;
113
114 return NULL;
115}
116
117struct dsa_bridge *dsa_tree_bridge_find(struct dsa_switch_tree *dst,
118 const struct net_device *br)
119{
120 struct dsa_port *dp;
121
122 list_for_each_entry(dp, &dst->ports, list)
123 if (dsa_port_bridge_dev_get(dp) == br)
124 return dp->bridge;
125
126 return NULL;
127}
128
129static int dsa_bridge_num_find(const struct net_device *bridge_dev)
130{
131 struct dsa_switch_tree *dst;
132
133 list_for_each_entry(dst, &dsa_tree_list, list) {
134 struct dsa_bridge *bridge;
135
136 bridge = dsa_tree_bridge_find(dst, br: bridge_dev);
137 if (bridge)
138 return bridge->num;
139 }
140
141 return 0;
142}
143
144unsigned int dsa_bridge_num_get(const struct net_device *bridge_dev, int max)
145{
146 unsigned int bridge_num = dsa_bridge_num_find(bridge_dev);
147
148 /* Switches without FDB isolation support don't get unique
149 * bridge numbering
150 */
151 if (!max)
152 return 0;
153
154 if (!bridge_num) {
155 /* First port that requests FDB isolation or TX forwarding
156 * offload for this bridge
157 */
158 bridge_num = find_next_zero_bit(addr: &dsa_fwd_offloading_bridges,
159 DSA_MAX_NUM_OFFLOADING_BRIDGES,
160 offset: 1);
161 if (bridge_num >= max)
162 return 0;
163
164 set_bit(nr: bridge_num, addr: &dsa_fwd_offloading_bridges);
165 }
166
167 return bridge_num;
168}
169
170void dsa_bridge_num_put(const struct net_device *bridge_dev,
171 unsigned int bridge_num)
172{
173 /* Since we refcount bridges, we know that when we call this function
174 * it is no longer in use, so we can just go ahead and remove it from
175 * the bit mask.
176 */
177 clear_bit(nr: bridge_num, addr: &dsa_fwd_offloading_bridges);
178}
179
180struct dsa_switch *dsa_switch_find(int tree_index, int sw_index)
181{
182 struct dsa_switch_tree *dst;
183 struct dsa_port *dp;
184
185 list_for_each_entry(dst, &dsa_tree_list, list) {
186 if (dst->index != tree_index)
187 continue;
188
189 list_for_each_entry(dp, &dst->ports, list) {
190 if (dp->ds->index != sw_index)
191 continue;
192
193 return dp->ds;
194 }
195 }
196
197 return NULL;
198}
199EXPORT_SYMBOL_GPL(dsa_switch_find);
200
201static struct dsa_switch_tree *dsa_tree_find(int index)
202{
203 struct dsa_switch_tree *dst;
204
205 list_for_each_entry(dst, &dsa_tree_list, list)
206 if (dst->index == index)
207 return dst;
208
209 return NULL;
210}
211
212static struct dsa_switch_tree *dsa_tree_alloc(int index)
213{
214 struct dsa_switch_tree *dst;
215
216 dst = kzalloc(size: sizeof(*dst), GFP_KERNEL);
217 if (!dst)
218 return NULL;
219
220 dst->index = index;
221
222 INIT_LIST_HEAD(list: &dst->rtable);
223
224 INIT_LIST_HEAD(list: &dst->ports);
225
226 INIT_LIST_HEAD(list: &dst->list);
227 list_add_tail(new: &dst->list, head: &dsa_tree_list);
228
229 kref_init(kref: &dst->refcount);
230
231 return dst;
232}
233
234static void dsa_tree_free(struct dsa_switch_tree *dst)
235{
236 if (dst->tag_ops)
237 dsa_tag_driver_put(ops: dst->tag_ops);
238 list_del(entry: &dst->list);
239 kfree(objp: dst);
240}
241
242static struct dsa_switch_tree *dsa_tree_get(struct dsa_switch_tree *dst)
243{
244 if (dst)
245 kref_get(kref: &dst->refcount);
246
247 return dst;
248}
249
250static struct dsa_switch_tree *dsa_tree_touch(int index)
251{
252 struct dsa_switch_tree *dst;
253
254 dst = dsa_tree_find(index);
255 if (dst)
256 return dsa_tree_get(dst);
257 else
258 return dsa_tree_alloc(index);
259}
260
261static void dsa_tree_release(struct kref *ref)
262{
263 struct dsa_switch_tree *dst;
264
265 dst = container_of(ref, struct dsa_switch_tree, refcount);
266
267 dsa_tree_free(dst);
268}
269
270static void dsa_tree_put(struct dsa_switch_tree *dst)
271{
272 if (dst)
273 kref_put(kref: &dst->refcount, release: dsa_tree_release);
274}
275
276static struct dsa_port *dsa_tree_find_port_by_node(struct dsa_switch_tree *dst,
277 struct device_node *dn)
278{
279 struct dsa_port *dp;
280
281 list_for_each_entry(dp, &dst->ports, list)
282 if (dp->dn == dn)
283 return dp;
284
285 return NULL;
286}
287
288static struct dsa_link *dsa_link_touch(struct dsa_port *dp,
289 struct dsa_port *link_dp)
290{
291 struct dsa_switch *ds = dp->ds;
292 struct dsa_switch_tree *dst;
293 struct dsa_link *dl;
294
295 dst = ds->dst;
296
297 list_for_each_entry(dl, &dst->rtable, list)
298 if (dl->dp == dp && dl->link_dp == link_dp)
299 return dl;
300
301 dl = kzalloc(size: sizeof(*dl), GFP_KERNEL);
302 if (!dl)
303 return NULL;
304
305 dl->dp = dp;
306 dl->link_dp = link_dp;
307
308 INIT_LIST_HEAD(list: &dl->list);
309 list_add_tail(new: &dl->list, head: &dst->rtable);
310
311 return dl;
312}
313
314static bool dsa_port_setup_routing_table(struct dsa_port *dp)
315{
316 struct dsa_switch *ds = dp->ds;
317 struct dsa_switch_tree *dst = ds->dst;
318 struct device_node *dn = dp->dn;
319 struct of_phandle_iterator it;
320 struct dsa_port *link_dp;
321 struct dsa_link *dl;
322 int err;
323
324 of_for_each_phandle(&it, err, dn, "link", NULL, 0) {
325 link_dp = dsa_tree_find_port_by_node(dst, dn: it.node);
326 if (!link_dp) {
327 of_node_put(node: it.node);
328 return false;
329 }
330
331 dl = dsa_link_touch(dp, link_dp);
332 if (!dl) {
333 of_node_put(node: it.node);
334 return false;
335 }
336 }
337
338 return true;
339}
340
341static bool dsa_tree_setup_routing_table(struct dsa_switch_tree *dst)
342{
343 bool complete = true;
344 struct dsa_port *dp;
345
346 list_for_each_entry(dp, &dst->ports, list) {
347 if (dsa_port_is_dsa(port: dp)) {
348 complete = dsa_port_setup_routing_table(dp);
349 if (!complete)
350 break;
351 }
352 }
353
354 return complete;
355}
356
357static struct dsa_port *dsa_tree_find_first_cpu(struct dsa_switch_tree *dst)
358{
359 struct dsa_port *dp;
360
361 list_for_each_entry(dp, &dst->ports, list)
362 if (dsa_port_is_cpu(port: dp))
363 return dp;
364
365 return NULL;
366}
367
368struct net_device *dsa_tree_find_first_conduit(struct dsa_switch_tree *dst)
369{
370 struct device_node *ethernet;
371 struct net_device *conduit;
372 struct dsa_port *cpu_dp;
373
374 cpu_dp = dsa_tree_find_first_cpu(dst);
375 ethernet = of_parse_phandle(np: cpu_dp->dn, phandle_name: "ethernet", index: 0);
376 conduit = of_find_net_device_by_node(np: ethernet);
377 of_node_put(node: ethernet);
378
379 return conduit;
380}
381
382/* Assign the default CPU port (the first one in the tree) to all ports of the
383 * fabric which don't already have one as part of their own switch.
384 */
385static int dsa_tree_setup_default_cpu(struct dsa_switch_tree *dst)
386{
387 struct dsa_port *cpu_dp, *dp;
388
389 cpu_dp = dsa_tree_find_first_cpu(dst);
390 if (!cpu_dp) {
391 pr_err("DSA: tree %d has no CPU port\n", dst->index);
392 return -EINVAL;
393 }
394
395 list_for_each_entry(dp, &dst->ports, list) {
396 if (dp->cpu_dp)
397 continue;
398
399 if (dsa_port_is_user(dp) || dsa_port_is_dsa(port: dp))
400 dp->cpu_dp = cpu_dp;
401 }
402
403 return 0;
404}
405
406static struct dsa_port *
407dsa_switch_preferred_default_local_cpu_port(struct dsa_switch *ds)
408{
409 struct dsa_port *cpu_dp;
410
411 if (!ds->ops->preferred_default_local_cpu_port)
412 return NULL;
413
414 cpu_dp = ds->ops->preferred_default_local_cpu_port(ds);
415 if (!cpu_dp)
416 return NULL;
417
418 if (WARN_ON(!dsa_port_is_cpu(cpu_dp) || cpu_dp->ds != ds))
419 return NULL;
420
421 return cpu_dp;
422}
423
424/* Perform initial assignment of CPU ports to user ports and DSA links in the
425 * fabric, giving preference to CPU ports local to each switch. Default to
426 * using the first CPU port in the switch tree if the port does not have a CPU
427 * port local to this switch.
428 */
429static int dsa_tree_setup_cpu_ports(struct dsa_switch_tree *dst)
430{
431 struct dsa_port *preferred_cpu_dp, *cpu_dp, *dp;
432
433 list_for_each_entry(cpu_dp, &dst->ports, list) {
434 if (!dsa_port_is_cpu(port: cpu_dp))
435 continue;
436
437 preferred_cpu_dp = dsa_switch_preferred_default_local_cpu_port(ds: cpu_dp->ds);
438 if (preferred_cpu_dp && preferred_cpu_dp != cpu_dp)
439 continue;
440
441 /* Prefer a local CPU port */
442 dsa_switch_for_each_port(dp, cpu_dp->ds) {
443 /* Prefer the first local CPU port found */
444 if (dp->cpu_dp)
445 continue;
446
447 if (dsa_port_is_user(dp) || dsa_port_is_dsa(port: dp))
448 dp->cpu_dp = cpu_dp;
449 }
450 }
451
452 return dsa_tree_setup_default_cpu(dst);
453}
454
455static void dsa_tree_teardown_cpu_ports(struct dsa_switch_tree *dst)
456{
457 struct dsa_port *dp;
458
459 list_for_each_entry(dp, &dst->ports, list)
460 if (dsa_port_is_user(dp) || dsa_port_is_dsa(port: dp))
461 dp->cpu_dp = NULL;
462}
463
464static int dsa_port_setup(struct dsa_port *dp)
465{
466 bool dsa_port_link_registered = false;
467 struct dsa_switch *ds = dp->ds;
468 bool dsa_port_enabled = false;
469 int err = 0;
470
471 if (dp->setup)
472 return 0;
473
474 err = dsa_port_devlink_setup(dp);
475 if (err)
476 return err;
477
478 switch (dp->type) {
479 case DSA_PORT_TYPE_UNUSED:
480 dsa_port_disable(dp);
481 break;
482 case DSA_PORT_TYPE_CPU:
483 if (dp->dn) {
484 err = dsa_shared_port_link_register_of(dp);
485 if (err)
486 break;
487 dsa_port_link_registered = true;
488 } else {
489 dev_warn(ds->dev,
490 "skipping link registration for CPU port %d\n",
491 dp->index);
492 }
493
494 err = dsa_port_enable(dp, NULL);
495 if (err)
496 break;
497 dsa_port_enabled = true;
498
499 break;
500 case DSA_PORT_TYPE_DSA:
501 if (dp->dn) {
502 err = dsa_shared_port_link_register_of(dp);
503 if (err)
504 break;
505 dsa_port_link_registered = true;
506 } else {
507 dev_warn(ds->dev,
508 "skipping link registration for DSA port %d\n",
509 dp->index);
510 }
511
512 err = dsa_port_enable(dp, NULL);
513 if (err)
514 break;
515 dsa_port_enabled = true;
516
517 break;
518 case DSA_PORT_TYPE_USER:
519 of_get_mac_address(np: dp->dn, mac: dp->mac);
520 err = dsa_user_create(dp);
521 break;
522 }
523
524 if (err && dsa_port_enabled)
525 dsa_port_disable(dp);
526 if (err && dsa_port_link_registered)
527 dsa_shared_port_link_unregister_of(dp);
528 if (err) {
529 dsa_port_devlink_teardown(dp);
530 return err;
531 }
532
533 dp->setup = true;
534
535 return 0;
536}
537
538static void dsa_port_teardown(struct dsa_port *dp)
539{
540 if (!dp->setup)
541 return;
542
543 switch (dp->type) {
544 case DSA_PORT_TYPE_UNUSED:
545 break;
546 case DSA_PORT_TYPE_CPU:
547 dsa_port_disable(dp);
548 if (dp->dn)
549 dsa_shared_port_link_unregister_of(dp);
550 break;
551 case DSA_PORT_TYPE_DSA:
552 dsa_port_disable(dp);
553 if (dp->dn)
554 dsa_shared_port_link_unregister_of(dp);
555 break;
556 case DSA_PORT_TYPE_USER:
557 if (dp->user) {
558 dsa_user_destroy(user_dev: dp->user);
559 dp->user = NULL;
560 }
561 break;
562 }
563
564 dsa_port_devlink_teardown(dp);
565
566 dp->setup = false;
567}
568
569static int dsa_port_setup_as_unused(struct dsa_port *dp)
570{
571 dp->type = DSA_PORT_TYPE_UNUSED;
572 return dsa_port_setup(dp);
573}
574
575static int dsa_switch_setup_tag_protocol(struct dsa_switch *ds)
576{
577 const struct dsa_device_ops *tag_ops = ds->dst->tag_ops;
578 struct dsa_switch_tree *dst = ds->dst;
579 int err;
580
581 if (tag_ops->proto == dst->default_proto)
582 goto connect;
583
584 rtnl_lock();
585 err = ds->ops->change_tag_protocol(ds, tag_ops->proto);
586 rtnl_unlock();
587 if (err) {
588 dev_err(ds->dev, "Unable to use tag protocol \"%s\": %pe\n",
589 tag_ops->name, ERR_PTR(err));
590 return err;
591 }
592
593connect:
594 if (tag_ops->connect) {
595 err = tag_ops->connect(ds);
596 if (err)
597 return err;
598 }
599
600 if (ds->ops->connect_tag_protocol) {
601 err = ds->ops->connect_tag_protocol(ds, tag_ops->proto);
602 if (err) {
603 dev_err(ds->dev,
604 "Unable to connect to tag protocol \"%s\": %pe\n",
605 tag_ops->name, ERR_PTR(err));
606 goto disconnect;
607 }
608 }
609
610 return 0;
611
612disconnect:
613 if (tag_ops->disconnect)
614 tag_ops->disconnect(ds);
615
616 return err;
617}
618
619static void dsa_switch_teardown_tag_protocol(struct dsa_switch *ds)
620{
621 const struct dsa_device_ops *tag_ops = ds->dst->tag_ops;
622
623 if (tag_ops->disconnect)
624 tag_ops->disconnect(ds);
625}
626
627static int dsa_switch_setup(struct dsa_switch *ds)
628{
629 struct device_node *dn;
630 int err;
631
632 if (ds->setup)
633 return 0;
634
635 /* Initialize ds->phys_mii_mask before registering the user MDIO bus
636 * driver and before ops->setup() has run, since the switch drivers and
637 * the user MDIO bus driver rely on these values for probing PHY
638 * devices or not
639 */
640 ds->phys_mii_mask |= dsa_user_ports(ds);
641
642 err = dsa_switch_devlink_alloc(ds);
643 if (err)
644 return err;
645
646 err = dsa_switch_register_notifier(ds);
647 if (err)
648 goto devlink_free;
649
650 ds->configure_vlan_while_not_filtering = true;
651
652 err = ds->ops->setup(ds);
653 if (err < 0)
654 goto unregister_notifier;
655
656 err = dsa_switch_setup_tag_protocol(ds);
657 if (err)
658 goto teardown;
659
660 if (!ds->user_mii_bus && ds->ops->phy_read) {
661 ds->user_mii_bus = mdiobus_alloc();
662 if (!ds->user_mii_bus) {
663 err = -ENOMEM;
664 goto teardown;
665 }
666
667 dsa_user_mii_bus_init(ds);
668
669 dn = of_get_child_by_name(node: ds->dev->of_node, name: "mdio");
670
671 err = of_mdiobus_register(mdio: ds->user_mii_bus, np: dn);
672 of_node_put(node: dn);
673 if (err < 0)
674 goto free_user_mii_bus;
675 }
676
677 dsa_switch_devlink_register(ds);
678
679 ds->setup = true;
680 return 0;
681
682free_user_mii_bus:
683 if (ds->user_mii_bus && ds->ops->phy_read)
684 mdiobus_free(bus: ds->user_mii_bus);
685teardown:
686 if (ds->ops->teardown)
687 ds->ops->teardown(ds);
688unregister_notifier:
689 dsa_switch_unregister_notifier(ds);
690devlink_free:
691 dsa_switch_devlink_free(ds);
692 return err;
693}
694
695static void dsa_switch_teardown(struct dsa_switch *ds)
696{
697 if (!ds->setup)
698 return;
699
700 dsa_switch_devlink_unregister(ds);
701
702 if (ds->user_mii_bus && ds->ops->phy_read) {
703 mdiobus_unregister(bus: ds->user_mii_bus);
704 mdiobus_free(bus: ds->user_mii_bus);
705 ds->user_mii_bus = NULL;
706 }
707
708 dsa_switch_teardown_tag_protocol(ds);
709
710 if (ds->ops->teardown)
711 ds->ops->teardown(ds);
712
713 dsa_switch_unregister_notifier(ds);
714
715 dsa_switch_devlink_free(ds);
716
717 ds->setup = false;
718}
719
720/* First tear down the non-shared, then the shared ports. This ensures that
721 * all work items scheduled by our switchdev handlers for user ports have
722 * completed before we destroy the refcounting kept on the shared ports.
723 */
724static void dsa_tree_teardown_ports(struct dsa_switch_tree *dst)
725{
726 struct dsa_port *dp;
727
728 list_for_each_entry(dp, &dst->ports, list)
729 if (dsa_port_is_user(dp) || dsa_port_is_unused(dp))
730 dsa_port_teardown(dp);
731
732 dsa_flush_workqueue();
733
734 list_for_each_entry(dp, &dst->ports, list)
735 if (dsa_port_is_dsa(port: dp) || dsa_port_is_cpu(port: dp))
736 dsa_port_teardown(dp);
737}
738
739static void dsa_tree_teardown_switches(struct dsa_switch_tree *dst)
740{
741 struct dsa_port *dp;
742
743 list_for_each_entry(dp, &dst->ports, list)
744 dsa_switch_teardown(ds: dp->ds);
745}
746
747/* Bring shared ports up first, then non-shared ports */
748static int dsa_tree_setup_ports(struct dsa_switch_tree *dst)
749{
750 struct dsa_port *dp;
751 int err = 0;
752
753 list_for_each_entry(dp, &dst->ports, list) {
754 if (dsa_port_is_dsa(port: dp) || dsa_port_is_cpu(port: dp)) {
755 err = dsa_port_setup(dp);
756 if (err)
757 goto teardown;
758 }
759 }
760
761 list_for_each_entry(dp, &dst->ports, list) {
762 if (dsa_port_is_user(dp) || dsa_port_is_unused(dp)) {
763 err = dsa_port_setup(dp);
764 if (err) {
765 err = dsa_port_setup_as_unused(dp);
766 if (err)
767 goto teardown;
768 }
769 }
770 }
771
772 return 0;
773
774teardown:
775 dsa_tree_teardown_ports(dst);
776
777 return err;
778}
779
780static int dsa_tree_setup_switches(struct dsa_switch_tree *dst)
781{
782 struct dsa_port *dp;
783 int err = 0;
784
785 list_for_each_entry(dp, &dst->ports, list) {
786 err = dsa_switch_setup(ds: dp->ds);
787 if (err) {
788 dsa_tree_teardown_switches(dst);
789 break;
790 }
791 }
792
793 return err;
794}
795
796static int dsa_tree_setup_conduit(struct dsa_switch_tree *dst)
797{
798 struct dsa_port *cpu_dp;
799 int err = 0;
800
801 rtnl_lock();
802
803 dsa_tree_for_each_cpu_port(cpu_dp, dst) {
804 struct net_device *conduit = cpu_dp->conduit;
805 bool admin_up = (conduit->flags & IFF_UP) &&
806 !qdisc_tx_is_noop(dev: conduit);
807
808 err = dsa_conduit_setup(dev: conduit, cpu_dp);
809 if (err)
810 break;
811
812 /* Replay conduit state event */
813 dsa_tree_conduit_admin_state_change(dst, conduit, up: admin_up);
814 dsa_tree_conduit_oper_state_change(dst, conduit,
815 up: netif_oper_up(dev: conduit));
816 }
817
818 rtnl_unlock();
819
820 return err;
821}
822
823static void dsa_tree_teardown_conduit(struct dsa_switch_tree *dst)
824{
825 struct dsa_port *cpu_dp;
826
827 rtnl_lock();
828
829 dsa_tree_for_each_cpu_port(cpu_dp, dst) {
830 struct net_device *conduit = cpu_dp->conduit;
831
832 /* Synthesizing an "admin down" state is sufficient for
833 * the switches to get a notification if the conduit is
834 * currently up and running.
835 */
836 dsa_tree_conduit_admin_state_change(dst, conduit, up: false);
837
838 dsa_conduit_teardown(dev: conduit);
839 }
840
841 rtnl_unlock();
842}
843
844static int dsa_tree_setup_lags(struct dsa_switch_tree *dst)
845{
846 unsigned int len = 0;
847 struct dsa_port *dp;
848
849 list_for_each_entry(dp, &dst->ports, list) {
850 if (dp->ds->num_lag_ids > len)
851 len = dp->ds->num_lag_ids;
852 }
853
854 if (!len)
855 return 0;
856
857 dst->lags = kcalloc(n: len, size: sizeof(*dst->lags), GFP_KERNEL);
858 if (!dst->lags)
859 return -ENOMEM;
860
861 dst->lags_len = len;
862 return 0;
863}
864
865static void dsa_tree_teardown_lags(struct dsa_switch_tree *dst)
866{
867 kfree(objp: dst->lags);
868}
869
870static int dsa_tree_setup(struct dsa_switch_tree *dst)
871{
872 bool complete;
873 int err;
874
875 if (dst->setup) {
876 pr_err("DSA: tree %d already setup! Disjoint trees?\n",
877 dst->index);
878 return -EEXIST;
879 }
880
881 complete = dsa_tree_setup_routing_table(dst);
882 if (!complete)
883 return 0;
884
885 err = dsa_tree_setup_cpu_ports(dst);
886 if (err)
887 return err;
888
889 err = dsa_tree_setup_switches(dst);
890 if (err)
891 goto teardown_cpu_ports;
892
893 err = dsa_tree_setup_ports(dst);
894 if (err)
895 goto teardown_switches;
896
897 err = dsa_tree_setup_conduit(dst);
898 if (err)
899 goto teardown_ports;
900
901 err = dsa_tree_setup_lags(dst);
902 if (err)
903 goto teardown_conduit;
904
905 dst->setup = true;
906
907 pr_info("DSA: tree %d setup\n", dst->index);
908
909 return 0;
910
911teardown_conduit:
912 dsa_tree_teardown_conduit(dst);
913teardown_ports:
914 dsa_tree_teardown_ports(dst);
915teardown_switches:
916 dsa_tree_teardown_switches(dst);
917teardown_cpu_ports:
918 dsa_tree_teardown_cpu_ports(dst);
919
920 return err;
921}
922
923static void dsa_tree_teardown(struct dsa_switch_tree *dst)
924{
925 struct dsa_link *dl, *next;
926
927 if (!dst->setup)
928 return;
929
930 dsa_tree_teardown_lags(dst);
931
932 dsa_tree_teardown_conduit(dst);
933
934 dsa_tree_teardown_ports(dst);
935
936 dsa_tree_teardown_switches(dst);
937
938 dsa_tree_teardown_cpu_ports(dst);
939
940 list_for_each_entry_safe(dl, next, &dst->rtable, list) {
941 list_del(entry: &dl->list);
942 kfree(objp: dl);
943 }
944
945 pr_info("DSA: tree %d torn down\n", dst->index);
946
947 dst->setup = false;
948}
949
950static int dsa_tree_bind_tag_proto(struct dsa_switch_tree *dst,
951 const struct dsa_device_ops *tag_ops)
952{
953 const struct dsa_device_ops *old_tag_ops = dst->tag_ops;
954 struct dsa_notifier_tag_proto_info info;
955 int err;
956
957 dst->tag_ops = tag_ops;
958
959 /* Notify the switches from this tree about the connection
960 * to the new tagger
961 */
962 info.tag_ops = tag_ops;
963 err = dsa_tree_notify(dst, e: DSA_NOTIFIER_TAG_PROTO_CONNECT, v: &info);
964 if (err && err != -EOPNOTSUPP)
965 goto out_disconnect;
966
967 /* Notify the old tagger about the disconnection from this tree */
968 info.tag_ops = old_tag_ops;
969 dsa_tree_notify(dst, e: DSA_NOTIFIER_TAG_PROTO_DISCONNECT, v: &info);
970
971 return 0;
972
973out_disconnect:
974 info.tag_ops = tag_ops;
975 dsa_tree_notify(dst, e: DSA_NOTIFIER_TAG_PROTO_DISCONNECT, v: &info);
976 dst->tag_ops = old_tag_ops;
977
978 return err;
979}
980
981/* Since the dsa/tagging sysfs device attribute is per conduit, the assumption
982 * is that all DSA switches within a tree share the same tagger, otherwise
983 * they would have formed disjoint trees (different "dsa,member" values).
984 */
985int dsa_tree_change_tag_proto(struct dsa_switch_tree *dst,
986 const struct dsa_device_ops *tag_ops,
987 const struct dsa_device_ops *old_tag_ops)
988{
989 struct dsa_notifier_tag_proto_info info;
990 struct dsa_port *dp;
991 int err = -EBUSY;
992
993 if (!rtnl_trylock())
994 return restart_syscall();
995
996 /* At the moment we don't allow changing the tag protocol under
997 * traffic. The rtnl_mutex also happens to serialize concurrent
998 * attempts to change the tagging protocol. If we ever lift the IFF_UP
999 * restriction, there needs to be another mutex which serializes this.
1000 */
1001 dsa_tree_for_each_user_port(dp, dst) {
1002 if (dsa_port_to_conduit(dp)->flags & IFF_UP)
1003 goto out_unlock;
1004
1005 if (dp->user->flags & IFF_UP)
1006 goto out_unlock;
1007 }
1008
1009 /* Notify the tag protocol change */
1010 info.tag_ops = tag_ops;
1011 err = dsa_tree_notify(dst, e: DSA_NOTIFIER_TAG_PROTO, v: &info);
1012 if (err)
1013 goto out_unwind_tagger;
1014
1015 err = dsa_tree_bind_tag_proto(dst, tag_ops);
1016 if (err)
1017 goto out_unwind_tagger;
1018
1019 rtnl_unlock();
1020
1021 return 0;
1022
1023out_unwind_tagger:
1024 info.tag_ops = old_tag_ops;
1025 dsa_tree_notify(dst, e: DSA_NOTIFIER_TAG_PROTO, v: &info);
1026out_unlock:
1027 rtnl_unlock();
1028 return err;
1029}
1030
1031static void dsa_tree_conduit_state_change(struct dsa_switch_tree *dst,
1032 struct net_device *conduit)
1033{
1034 struct dsa_notifier_conduit_state_info info;
1035 struct dsa_port *cpu_dp = conduit->dsa_ptr;
1036
1037 info.conduit = conduit;
1038 info.operational = dsa_port_conduit_is_operational(dp: cpu_dp);
1039
1040 dsa_tree_notify(dst, e: DSA_NOTIFIER_CONDUIT_STATE_CHANGE, v: &info);
1041}
1042
1043void dsa_tree_conduit_admin_state_change(struct dsa_switch_tree *dst,
1044 struct net_device *conduit,
1045 bool up)
1046{
1047 struct dsa_port *cpu_dp = conduit->dsa_ptr;
1048 bool notify = false;
1049
1050 /* Don't keep track of admin state on LAG DSA conduits,
1051 * but rather just of physical DSA conduits
1052 */
1053 if (netif_is_lag_master(dev: conduit))
1054 return;
1055
1056 if ((dsa_port_conduit_is_operational(dp: cpu_dp)) !=
1057 (up && cpu_dp->conduit_oper_up))
1058 notify = true;
1059
1060 cpu_dp->conduit_admin_up = up;
1061
1062 if (notify)
1063 dsa_tree_conduit_state_change(dst, conduit);
1064}
1065
1066void dsa_tree_conduit_oper_state_change(struct dsa_switch_tree *dst,
1067 struct net_device *conduit,
1068 bool up)
1069{
1070 struct dsa_port *cpu_dp = conduit->dsa_ptr;
1071 bool notify = false;
1072
1073 /* Don't keep track of oper state on LAG DSA conduits,
1074 * but rather just of physical DSA conduits
1075 */
1076 if (netif_is_lag_master(dev: conduit))
1077 return;
1078
1079 if ((dsa_port_conduit_is_operational(dp: cpu_dp)) !=
1080 (cpu_dp->conduit_admin_up && up))
1081 notify = true;
1082
1083 cpu_dp->conduit_oper_up = up;
1084
1085 if (notify)
1086 dsa_tree_conduit_state_change(dst, conduit);
1087}
1088
1089static struct dsa_port *dsa_port_touch(struct dsa_switch *ds, int index)
1090{
1091 struct dsa_switch_tree *dst = ds->dst;
1092 struct dsa_port *dp;
1093
1094 dsa_switch_for_each_port(dp, ds)
1095 if (dp->index == index)
1096 return dp;
1097
1098 dp = kzalloc(size: sizeof(*dp), GFP_KERNEL);
1099 if (!dp)
1100 return NULL;
1101
1102 dp->ds = ds;
1103 dp->index = index;
1104
1105 mutex_init(&dp->addr_lists_lock);
1106 mutex_init(&dp->vlans_lock);
1107 INIT_LIST_HEAD(list: &dp->fdbs);
1108 INIT_LIST_HEAD(list: &dp->mdbs);
1109 INIT_LIST_HEAD(list: &dp->vlans); /* also initializes &dp->user_vlans */
1110 INIT_LIST_HEAD(list: &dp->list);
1111 list_add_tail(new: &dp->list, head: &dst->ports);
1112
1113 return dp;
1114}
1115
1116static int dsa_port_parse_user(struct dsa_port *dp, const char *name)
1117{
1118 dp->type = DSA_PORT_TYPE_USER;
1119 dp->name = name;
1120
1121 return 0;
1122}
1123
1124static int dsa_port_parse_dsa(struct dsa_port *dp)
1125{
1126 dp->type = DSA_PORT_TYPE_DSA;
1127
1128 return 0;
1129}
1130
1131static enum dsa_tag_protocol dsa_get_tag_protocol(struct dsa_port *dp,
1132 struct net_device *conduit)
1133{
1134 enum dsa_tag_protocol tag_protocol = DSA_TAG_PROTO_NONE;
1135 struct dsa_switch *mds, *ds = dp->ds;
1136 unsigned int mdp_upstream;
1137 struct dsa_port *mdp;
1138
1139 /* It is possible to stack DSA switches onto one another when that
1140 * happens the switch driver may want to know if its tagging protocol
1141 * is going to work in such a configuration.
1142 */
1143 if (dsa_user_dev_check(dev: conduit)) {
1144 mdp = dsa_user_to_port(dev: conduit);
1145 mds = mdp->ds;
1146 mdp_upstream = dsa_upstream_port(ds: mds, port: mdp->index);
1147 tag_protocol = mds->ops->get_tag_protocol(mds, mdp_upstream,
1148 DSA_TAG_PROTO_NONE);
1149 }
1150
1151 /* If the conduit device is not itself a DSA user in a disjoint DSA
1152 * tree, then return immediately.
1153 */
1154 return ds->ops->get_tag_protocol(ds, dp->index, tag_protocol);
1155}
1156
1157static int dsa_port_parse_cpu(struct dsa_port *dp, struct net_device *conduit,
1158 const char *user_protocol)
1159{
1160 const struct dsa_device_ops *tag_ops = NULL;
1161 struct dsa_switch *ds = dp->ds;
1162 struct dsa_switch_tree *dst = ds->dst;
1163 enum dsa_tag_protocol default_proto;
1164
1165 /* Find out which protocol the switch would prefer. */
1166 default_proto = dsa_get_tag_protocol(dp, conduit);
1167 if (dst->default_proto) {
1168 if (dst->default_proto != default_proto) {
1169 dev_err(ds->dev,
1170 "A DSA switch tree can have only one tagging protocol\n");
1171 return -EINVAL;
1172 }
1173 } else {
1174 dst->default_proto = default_proto;
1175 }
1176
1177 /* See if the user wants to override that preference. */
1178 if (user_protocol) {
1179 if (!ds->ops->change_tag_protocol) {
1180 dev_err(ds->dev, "Tag protocol cannot be modified\n");
1181 return -EINVAL;
1182 }
1183
1184 tag_ops = dsa_tag_driver_get_by_name(name: user_protocol);
1185 if (IS_ERR(ptr: tag_ops)) {
1186 dev_warn(ds->dev,
1187 "Failed to find a tagging driver for protocol %s, using default\n",
1188 user_protocol);
1189 tag_ops = NULL;
1190 }
1191 }
1192
1193 if (!tag_ops)
1194 tag_ops = dsa_tag_driver_get_by_id(tag_protocol: default_proto);
1195
1196 if (IS_ERR(ptr: tag_ops)) {
1197 if (PTR_ERR(ptr: tag_ops) == -ENOPROTOOPT)
1198 return -EPROBE_DEFER;
1199
1200 dev_warn(ds->dev, "No tagger for this switch\n");
1201 return PTR_ERR(ptr: tag_ops);
1202 }
1203
1204 if (dst->tag_ops) {
1205 if (dst->tag_ops != tag_ops) {
1206 dev_err(ds->dev,
1207 "A DSA switch tree can have only one tagging protocol\n");
1208
1209 dsa_tag_driver_put(ops: tag_ops);
1210 return -EINVAL;
1211 }
1212
1213 /* In the case of multiple CPU ports per switch, the tagging
1214 * protocol is still reference-counted only per switch tree.
1215 */
1216 dsa_tag_driver_put(ops: tag_ops);
1217 } else {
1218 dst->tag_ops = tag_ops;
1219 }
1220
1221 dp->conduit = conduit;
1222 dp->type = DSA_PORT_TYPE_CPU;
1223 dsa_port_set_tag_protocol(cpu_dp: dp, tag_ops: dst->tag_ops);
1224 dp->dst = dst;
1225
1226 /* At this point, the tree may be configured to use a different
1227 * tagger than the one chosen by the switch driver during
1228 * .setup, in the case when a user selects a custom protocol
1229 * through the DT.
1230 *
1231 * This is resolved by syncing the driver with the tree in
1232 * dsa_switch_setup_tag_protocol once .setup has run and the
1233 * driver is ready to accept calls to .change_tag_protocol. If
1234 * the driver does not support the custom protocol at that
1235 * point, the tree is wholly rejected, thereby ensuring that the
1236 * tree and driver are always in agreement on the protocol to
1237 * use.
1238 */
1239 return 0;
1240}
1241
1242static int dsa_port_parse_of(struct dsa_port *dp, struct device_node *dn)
1243{
1244 struct device_node *ethernet = of_parse_phandle(np: dn, phandle_name: "ethernet", index: 0);
1245 const char *name = of_get_property(node: dn, name: "label", NULL);
1246 bool link = of_property_read_bool(np: dn, propname: "link");
1247
1248 dp->dn = dn;
1249
1250 if (ethernet) {
1251 struct net_device *conduit;
1252 const char *user_protocol;
1253
1254 conduit = of_find_net_device_by_node(np: ethernet);
1255 of_node_put(node: ethernet);
1256 if (!conduit)
1257 return -EPROBE_DEFER;
1258
1259 user_protocol = of_get_property(node: dn, name: "dsa-tag-protocol", NULL);
1260 return dsa_port_parse_cpu(dp, conduit, user_protocol);
1261 }
1262
1263 if (link)
1264 return dsa_port_parse_dsa(dp);
1265
1266 return dsa_port_parse_user(dp, name);
1267}
1268
1269static int dsa_switch_parse_ports_of(struct dsa_switch *ds,
1270 struct device_node *dn)
1271{
1272 struct device_node *ports, *port;
1273 struct dsa_port *dp;
1274 int err = 0;
1275 u32 reg;
1276
1277 ports = of_get_child_by_name(node: dn, name: "ports");
1278 if (!ports) {
1279 /* The second possibility is "ethernet-ports" */
1280 ports = of_get_child_by_name(node: dn, name: "ethernet-ports");
1281 if (!ports) {
1282 dev_err(ds->dev, "no ports child node found\n");
1283 return -EINVAL;
1284 }
1285 }
1286
1287 for_each_available_child_of_node(ports, port) {
1288 err = of_property_read_u32(np: port, propname: "reg", out_value: &reg);
1289 if (err) {
1290 of_node_put(node: port);
1291 goto out_put_node;
1292 }
1293
1294 if (reg >= ds->num_ports) {
1295 dev_err(ds->dev, "port %pOF index %u exceeds num_ports (%u)\n",
1296 port, reg, ds->num_ports);
1297 of_node_put(node: port);
1298 err = -EINVAL;
1299 goto out_put_node;
1300 }
1301
1302 dp = dsa_to_port(ds, p: reg);
1303
1304 err = dsa_port_parse_of(dp, dn: port);
1305 if (err) {
1306 of_node_put(node: port);
1307 goto out_put_node;
1308 }
1309 }
1310
1311out_put_node:
1312 of_node_put(node: ports);
1313 return err;
1314}
1315
1316static int dsa_switch_parse_member_of(struct dsa_switch *ds,
1317 struct device_node *dn)
1318{
1319 u32 m[2] = { 0, 0 };
1320 int sz;
1321
1322 /* Don't error out if this optional property isn't found */
1323 sz = of_property_read_variable_u32_array(np: dn, propname: "dsa,member", out_values: m, sz_min: 2, sz_max: 2);
1324 if (sz < 0 && sz != -EINVAL)
1325 return sz;
1326
1327 ds->index = m[1];
1328
1329 ds->dst = dsa_tree_touch(index: m[0]);
1330 if (!ds->dst)
1331 return -ENOMEM;
1332
1333 if (dsa_switch_find(ds->dst->index, ds->index)) {
1334 dev_err(ds->dev,
1335 "A DSA switch with index %d already exists in tree %d\n",
1336 ds->index, ds->dst->index);
1337 return -EEXIST;
1338 }
1339
1340 if (ds->dst->last_switch < ds->index)
1341 ds->dst->last_switch = ds->index;
1342
1343 return 0;
1344}
1345
1346static int dsa_switch_touch_ports(struct dsa_switch *ds)
1347{
1348 struct dsa_port *dp;
1349 int port;
1350
1351 for (port = 0; port < ds->num_ports; port++) {
1352 dp = dsa_port_touch(ds, index: port);
1353 if (!dp)
1354 return -ENOMEM;
1355 }
1356
1357 return 0;
1358}
1359
1360static int dsa_switch_parse_of(struct dsa_switch *ds, struct device_node *dn)
1361{
1362 int err;
1363
1364 err = dsa_switch_parse_member_of(ds, dn);
1365 if (err)
1366 return err;
1367
1368 err = dsa_switch_touch_ports(ds);
1369 if (err)
1370 return err;
1371
1372 return dsa_switch_parse_ports_of(ds, dn);
1373}
1374
1375static int dev_is_class(struct device *dev, void *class)
1376{
1377 if (dev->class != NULL && !strcmp(dev->class->name, class))
1378 return 1;
1379
1380 return 0;
1381}
1382
1383static struct device *dev_find_class(struct device *parent, char *class)
1384{
1385 if (dev_is_class(dev: parent, class)) {
1386 get_device(dev: parent);
1387 return parent;
1388 }
1389
1390 return device_find_child(dev: parent, data: class, match: dev_is_class);
1391}
1392
1393static struct net_device *dsa_dev_to_net_device(struct device *dev)
1394{
1395 struct device *d;
1396
1397 d = dev_find_class(parent: dev, class: "net");
1398 if (d != NULL) {
1399 struct net_device *nd;
1400
1401 nd = to_net_dev(d);
1402 dev_hold(dev: nd);
1403 put_device(dev: d);
1404
1405 return nd;
1406 }
1407
1408 return NULL;
1409}
1410
1411static int dsa_port_parse(struct dsa_port *dp, const char *name,
1412 struct device *dev)
1413{
1414 if (!strcmp(name, "cpu")) {
1415 struct net_device *conduit;
1416
1417 conduit = dsa_dev_to_net_device(dev);
1418 if (!conduit)
1419 return -EPROBE_DEFER;
1420
1421 dev_put(dev: conduit);
1422
1423 return dsa_port_parse_cpu(dp, conduit, NULL);
1424 }
1425
1426 if (!strcmp(name, "dsa"))
1427 return dsa_port_parse_dsa(dp);
1428
1429 return dsa_port_parse_user(dp, name);
1430}
1431
1432static int dsa_switch_parse_ports(struct dsa_switch *ds,
1433 struct dsa_chip_data *cd)
1434{
1435 bool valid_name_found = false;
1436 struct dsa_port *dp;
1437 struct device *dev;
1438 const char *name;
1439 unsigned int i;
1440 int err;
1441
1442 for (i = 0; i < DSA_MAX_PORTS; i++) {
1443 name = cd->port_names[i];
1444 dev = cd->netdev[i];
1445 dp = dsa_to_port(ds, p: i);
1446
1447 if (!name)
1448 continue;
1449
1450 err = dsa_port_parse(dp, name, dev);
1451 if (err)
1452 return err;
1453
1454 valid_name_found = true;
1455 }
1456
1457 if (!valid_name_found && i == DSA_MAX_PORTS)
1458 return -EINVAL;
1459
1460 return 0;
1461}
1462
1463static int dsa_switch_parse(struct dsa_switch *ds, struct dsa_chip_data *cd)
1464{
1465 int err;
1466
1467 ds->cd = cd;
1468
1469 /* We don't support interconnected switches nor multiple trees via
1470 * platform data, so this is the unique switch of the tree.
1471 */
1472 ds->index = 0;
1473 ds->dst = dsa_tree_touch(index: 0);
1474 if (!ds->dst)
1475 return -ENOMEM;
1476
1477 err = dsa_switch_touch_ports(ds);
1478 if (err)
1479 return err;
1480
1481 return dsa_switch_parse_ports(ds, cd);
1482}
1483
1484static void dsa_switch_release_ports(struct dsa_switch *ds)
1485{
1486 struct dsa_port *dp, *next;
1487
1488 dsa_switch_for_each_port_safe(dp, next, ds) {
1489 WARN_ON(!list_empty(&dp->fdbs));
1490 WARN_ON(!list_empty(&dp->mdbs));
1491 WARN_ON(!list_empty(&dp->vlans));
1492 list_del(entry: &dp->list);
1493 kfree(objp: dp);
1494 }
1495}
1496
1497static int dsa_switch_probe(struct dsa_switch *ds)
1498{
1499 struct dsa_switch_tree *dst;
1500 struct dsa_chip_data *pdata;
1501 struct device_node *np;
1502 int err;
1503
1504 if (!ds->dev)
1505 return -ENODEV;
1506
1507 pdata = ds->dev->platform_data;
1508 np = ds->dev->of_node;
1509
1510 if (!ds->num_ports)
1511 return -EINVAL;
1512
1513 if (np) {
1514 err = dsa_switch_parse_of(ds, dn: np);
1515 if (err)
1516 dsa_switch_release_ports(ds);
1517 } else if (pdata) {
1518 err = dsa_switch_parse(ds, cd: pdata);
1519 if (err)
1520 dsa_switch_release_ports(ds);
1521 } else {
1522 err = -ENODEV;
1523 }
1524
1525 if (err)
1526 return err;
1527
1528 dst = ds->dst;
1529 dsa_tree_get(dst);
1530 err = dsa_tree_setup(dst);
1531 if (err) {
1532 dsa_switch_release_ports(ds);
1533 dsa_tree_put(dst);
1534 }
1535
1536 return err;
1537}
1538
1539int dsa_register_switch(struct dsa_switch *ds)
1540{
1541 int err;
1542
1543 mutex_lock(&dsa2_mutex);
1544 err = dsa_switch_probe(ds);
1545 dsa_tree_put(dst: ds->dst);
1546 mutex_unlock(lock: &dsa2_mutex);
1547
1548 return err;
1549}
1550EXPORT_SYMBOL_GPL(dsa_register_switch);
1551
1552static void dsa_switch_remove(struct dsa_switch *ds)
1553{
1554 struct dsa_switch_tree *dst = ds->dst;
1555
1556 dsa_tree_teardown(dst);
1557 dsa_switch_release_ports(ds);
1558 dsa_tree_put(dst);
1559}
1560
1561void dsa_unregister_switch(struct dsa_switch *ds)
1562{
1563 mutex_lock(&dsa2_mutex);
1564 dsa_switch_remove(ds);
1565 mutex_unlock(lock: &dsa2_mutex);
1566}
1567EXPORT_SYMBOL_GPL(dsa_unregister_switch);
1568
1569/* If the DSA conduit chooses to unregister its net_device on .shutdown, DSA is
1570 * blocking that operation from completion, due to the dev_hold taken inside
1571 * netdev_upper_dev_link. Unlink the DSA user interfaces from being uppers of
1572 * the DSA conduit, so that the system can reboot successfully.
1573 */
1574void dsa_switch_shutdown(struct dsa_switch *ds)
1575{
1576 struct net_device *conduit, *user_dev;
1577 struct dsa_port *dp;
1578
1579 mutex_lock(&dsa2_mutex);
1580
1581 if (!ds->setup)
1582 goto out;
1583
1584 rtnl_lock();
1585
1586 dsa_switch_for_each_user_port(dp, ds) {
1587 conduit = dsa_port_to_conduit(dp);
1588 user_dev = dp->user;
1589
1590 netdev_upper_dev_unlink(dev: conduit, upper_dev: user_dev);
1591 }
1592
1593 /* Disconnect from further netdevice notifiers on the conduit,
1594 * since netdev_uses_dsa() will now return false.
1595 */
1596 dsa_switch_for_each_cpu_port(dp, ds)
1597 dp->conduit->dsa_ptr = NULL;
1598
1599 rtnl_unlock();
1600out:
1601 mutex_unlock(lock: &dsa2_mutex);
1602}
1603EXPORT_SYMBOL_GPL(dsa_switch_shutdown);
1604
1605#ifdef CONFIG_PM_SLEEP
1606static bool dsa_port_is_initialized(const struct dsa_port *dp)
1607{
1608 return dp->type == DSA_PORT_TYPE_USER && dp->user;
1609}
1610
1611int dsa_switch_suspend(struct dsa_switch *ds)
1612{
1613 struct dsa_port *dp;
1614 int ret = 0;
1615
1616 /* Suspend user network devices */
1617 dsa_switch_for_each_port(dp, ds) {
1618 if (!dsa_port_is_initialized(dp))
1619 continue;
1620
1621 ret = dsa_user_suspend(user_dev: dp->user);
1622 if (ret)
1623 return ret;
1624 }
1625
1626 if (ds->ops->suspend)
1627 ret = ds->ops->suspend(ds);
1628
1629 return ret;
1630}
1631EXPORT_SYMBOL_GPL(dsa_switch_suspend);
1632
1633int dsa_switch_resume(struct dsa_switch *ds)
1634{
1635 struct dsa_port *dp;
1636 int ret = 0;
1637
1638 if (ds->ops->resume)
1639 ret = ds->ops->resume(ds);
1640
1641 if (ret)
1642 return ret;
1643
1644 /* Resume user network devices */
1645 dsa_switch_for_each_port(dp, ds) {
1646 if (!dsa_port_is_initialized(dp))
1647 continue;
1648
1649 ret = dsa_user_resume(user_dev: dp->user);
1650 if (ret)
1651 return ret;
1652 }
1653
1654 return 0;
1655}
1656EXPORT_SYMBOL_GPL(dsa_switch_resume);
1657#endif
1658
1659struct dsa_port *dsa_port_from_netdev(struct net_device *netdev)
1660{
1661 if (!netdev || !dsa_user_dev_check(dev: netdev))
1662 return ERR_PTR(error: -ENODEV);
1663
1664 return dsa_user_to_port(dev: netdev);
1665}
1666EXPORT_SYMBOL_GPL(dsa_port_from_netdev);
1667
1668bool dsa_db_equal(const struct dsa_db *a, const struct dsa_db *b)
1669{
1670 if (a->type != b->type)
1671 return false;
1672
1673 switch (a->type) {
1674 case DSA_DB_PORT:
1675 return a->dp == b->dp;
1676 case DSA_DB_LAG:
1677 return a->lag.dev == b->lag.dev;
1678 case DSA_DB_BRIDGE:
1679 return a->bridge.num == b->bridge.num;
1680 default:
1681 WARN_ON(1);
1682 return false;
1683 }
1684}
1685
1686bool dsa_fdb_present_in_other_db(struct dsa_switch *ds, int port,
1687 const unsigned char *addr, u16 vid,
1688 struct dsa_db db)
1689{
1690 struct dsa_port *dp = dsa_to_port(ds, p: port);
1691 struct dsa_mac_addr *a;
1692
1693 lockdep_assert_held(&dp->addr_lists_lock);
1694
1695 list_for_each_entry(a, &dp->fdbs, list) {
1696 if (!ether_addr_equal(addr1: a->addr, addr2: addr) || a->vid != vid)
1697 continue;
1698
1699 if (a->db.type == db.type && !dsa_db_equal(a: &a->db, b: &db))
1700 return true;
1701 }
1702
1703 return false;
1704}
1705EXPORT_SYMBOL_GPL(dsa_fdb_present_in_other_db);
1706
1707bool dsa_mdb_present_in_other_db(struct dsa_switch *ds, int port,
1708 const struct switchdev_obj_port_mdb *mdb,
1709 struct dsa_db db)
1710{
1711 struct dsa_port *dp = dsa_to_port(ds, p: port);
1712 struct dsa_mac_addr *a;
1713
1714 lockdep_assert_held(&dp->addr_lists_lock);
1715
1716 list_for_each_entry(a, &dp->mdbs, list) {
1717 if (!ether_addr_equal(addr1: a->addr, addr2: mdb->addr) || a->vid != mdb->vid)
1718 continue;
1719
1720 if (a->db.type == db.type && !dsa_db_equal(a: &a->db, b: &db))
1721 return true;
1722 }
1723
1724 return false;
1725}
1726EXPORT_SYMBOL_GPL(dsa_mdb_present_in_other_db);
1727
1728static const struct dsa_stubs __dsa_stubs = {
1729 .conduit_hwtstamp_validate = __dsa_conduit_hwtstamp_validate,
1730};
1731
1732static void dsa_register_stubs(void)
1733{
1734 dsa_stubs = &__dsa_stubs;
1735}
1736
1737static void dsa_unregister_stubs(void)
1738{
1739 dsa_stubs = NULL;
1740}
1741
1742static int __init dsa_init_module(void)
1743{
1744 int rc;
1745
1746 dsa_owq = alloc_ordered_workqueue("dsa_ordered",
1747 WQ_MEM_RECLAIM);
1748 if (!dsa_owq)
1749 return -ENOMEM;
1750
1751 rc = dsa_user_register_notifier();
1752 if (rc)
1753 goto register_notifier_fail;
1754
1755 dev_add_pack(pt: &dsa_pack_type);
1756
1757 rc = rtnl_link_register(ops: &dsa_link_ops);
1758 if (rc)
1759 goto netlink_register_fail;
1760
1761 dsa_register_stubs();
1762
1763 return 0;
1764
1765netlink_register_fail:
1766 dsa_user_unregister_notifier();
1767 dev_remove_pack(pt: &dsa_pack_type);
1768register_notifier_fail:
1769 destroy_workqueue(wq: dsa_owq);
1770
1771 return rc;
1772}
1773module_init(dsa_init_module);
1774
1775static void __exit dsa_cleanup_module(void)
1776{
1777 dsa_unregister_stubs();
1778
1779 rtnl_link_unregister(ops: &dsa_link_ops);
1780
1781 dsa_user_unregister_notifier();
1782 dev_remove_pack(pt: &dsa_pack_type);
1783 destroy_workqueue(wq: dsa_owq);
1784}
1785module_exit(dsa_cleanup_module);
1786
1787MODULE_AUTHOR("Lennert Buytenhek <buytenh@wantstofly.org>");
1788MODULE_DESCRIPTION("Driver for Distributed Switch Architecture switch chips");
1789MODULE_LICENSE("GPL");
1790MODULE_ALIAS("platform:dsa");
1791

source code of linux/net/dsa/dsa.c