1 | /* |
2 | * INET An implementation of the TCP/IP protocol suite for the LINUX |
3 | * operating system. INET is implemented using the BSD Socket |
4 | * interface as the means of communication with the user level. |
5 | * |
6 | * PF_INET protocol family socket handler. |
7 | * |
8 | * Authors: Ross Biro |
9 | * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> |
10 | * Florian La Roche, <flla@stud.uni-sb.de> |
11 | * Alan Cox, <A.Cox@swansea.ac.uk> |
12 | * |
13 | * Changes (see also sock.c) |
14 | * |
15 | * piggy, |
16 | * Karl Knutson : Socket protocol table |
17 | * A.N.Kuznetsov : Socket death error in accept(). |
18 | * John Richardson : Fix non blocking error in connect() |
19 | * so sockets that fail to connect |
20 | * don't return -EINPROGRESS. |
21 | * Alan Cox : Asynchronous I/O support |
22 | * Alan Cox : Keep correct socket pointer on sock |
23 | * structures |
24 | * when accept() ed |
25 | * Alan Cox : Semantics of SO_LINGER aren't state |
26 | * moved to close when you look carefully. |
27 | * With this fixed and the accept bug fixed |
28 | * some RPC stuff seems happier. |
29 | * Niibe Yutaka : 4.4BSD style write async I/O |
30 | * Alan Cox, |
31 | * Tony Gale : Fixed reuse semantics. |
32 | * Alan Cox : bind() shouldn't abort existing but dead |
33 | * sockets. Stops FTP netin:.. I hope. |
34 | * Alan Cox : bind() works correctly for RAW sockets. |
35 | * Note that FreeBSD at least was broken |
36 | * in this respect so be careful with |
37 | * compatibility tests... |
38 | * Alan Cox : routing cache support |
39 | * Alan Cox : memzero the socket structure for |
40 | * compactness. |
41 | * Matt Day : nonblock connect error handler |
42 | * Alan Cox : Allow large numbers of pending sockets |
43 | * (eg for big web sites), but only if |
44 | * specifically application requested. |
45 | * Alan Cox : New buffering throughout IP. Used |
46 | * dumbly. |
47 | * Alan Cox : New buffering now used smartly. |
48 | * Alan Cox : BSD rather than common sense |
49 | * interpretation of listen. |
50 | * Germano Caronni : Assorted small races. |
51 | * Alan Cox : sendmsg/recvmsg basic support. |
52 | * Alan Cox : Only sendmsg/recvmsg now supported. |
53 | * Alan Cox : Locked down bind (see security list). |
54 | * Alan Cox : Loosened bind a little. |
55 | * Mike McLagan : ADD/DEL DLCI Ioctls |
56 | * Willy Konynenberg : Transparent proxying support. |
57 | * David S. Miller : New socket lookup architecture. |
58 | * Some other random speedups. |
59 | * Cyrus Durgin : Cleaned up file for kmod hacks. |
60 | * Andi Kleen : Fix inet_stream_connect TCP race. |
61 | * |
62 | * This program is free software; you can redistribute it and/or |
63 | * modify it under the terms of the GNU General Public License |
64 | * as published by the Free Software Foundation; either version |
65 | * 2 of the License, or (at your option) any later version. |
66 | */ |
67 | |
68 | #define pr_fmt(fmt) "IPv4: " fmt |
69 | |
70 | #include <linux/err.h> |
71 | #include <linux/errno.h> |
72 | #include <linux/types.h> |
73 | #include <linux/socket.h> |
74 | #include <linux/in.h> |
75 | #include <linux/kernel.h> |
76 | #include <linux/kmod.h> |
77 | #include <linux/sched.h> |
78 | #include <linux/timer.h> |
79 | #include <linux/string.h> |
80 | #include <linux/sockios.h> |
81 | #include <linux/net.h> |
82 | #include <linux/capability.h> |
83 | #include <linux/fcntl.h> |
84 | #include <linux/mm.h> |
85 | #include <linux/interrupt.h> |
86 | #include <linux/stat.h> |
87 | #include <linux/init.h> |
88 | #include <linux/poll.h> |
89 | #include <linux/netfilter_ipv4.h> |
90 | #include <linux/random.h> |
91 | #include <linux/slab.h> |
92 | |
93 | #include <linux/uaccess.h> |
94 | |
95 | #include <linux/inet.h> |
96 | #include <linux/igmp.h> |
97 | #include <linux/inetdevice.h> |
98 | #include <linux/netdevice.h> |
99 | #include <net/checksum.h> |
100 | #include <net/ip.h> |
101 | #include <net/protocol.h> |
102 | #include <net/arp.h> |
103 | #include <net/route.h> |
104 | #include <net/ip_fib.h> |
105 | #include <net/inet_connection_sock.h> |
106 | #include <net/tcp.h> |
107 | #include <net/udp.h> |
108 | #include <net/udplite.h> |
109 | #include <net/ping.h> |
110 | #include <linux/skbuff.h> |
111 | #include <net/sock.h> |
112 | #include <net/raw.h> |
113 | #include <net/icmp.h> |
114 | #include <net/inet_common.h> |
115 | #include <net/ip_tunnels.h> |
116 | #include <net/xfrm.h> |
117 | #include <net/net_namespace.h> |
118 | #include <net/secure_seq.h> |
119 | #ifdef CONFIG_IP_MROUTE |
120 | #include <linux/mroute.h> |
121 | #endif |
122 | #include <net/l3mdev.h> |
123 | |
124 | #include <trace/events/sock.h> |
125 | |
126 | /* The inetsw table contains everything that inet_create needs to |
127 | * build a new socket. |
128 | */ |
129 | static struct list_head inetsw[SOCK_MAX]; |
130 | static DEFINE_SPINLOCK(inetsw_lock); |
131 | |
132 | /* New destruction routine */ |
133 | |
134 | void inet_sock_destruct(struct sock *sk) |
135 | { |
136 | struct inet_sock *inet = inet_sk(sk); |
137 | |
138 | __skb_queue_purge(&sk->sk_receive_queue); |
139 | __skb_queue_purge(&sk->sk_error_queue); |
140 | |
141 | sk_mem_reclaim(sk); |
142 | |
143 | if (sk->sk_type == SOCK_STREAM && sk->sk_state != TCP_CLOSE) { |
144 | pr_err("Attempt to release TCP socket in state %d %p\n" , |
145 | sk->sk_state, sk); |
146 | return; |
147 | } |
148 | if (!sock_flag(sk, SOCK_DEAD)) { |
149 | pr_err("Attempt to release alive inet socket %p\n" , sk); |
150 | return; |
151 | } |
152 | |
153 | WARN_ON(atomic_read(&sk->sk_rmem_alloc)); |
154 | WARN_ON(refcount_read(&sk->sk_wmem_alloc)); |
155 | WARN_ON(sk->sk_wmem_queued); |
156 | WARN_ON(sk->sk_forward_alloc); |
157 | |
158 | kfree(rcu_dereference_protected(inet->inet_opt, 1)); |
159 | dst_release(rcu_dereference_check(sk->sk_dst_cache, 1)); |
160 | dst_release(sk->sk_rx_dst); |
161 | sk_refcnt_debug_dec(sk); |
162 | } |
163 | EXPORT_SYMBOL(inet_sock_destruct); |
164 | |
165 | /* |
166 | * The routines beyond this point handle the behaviour of an AF_INET |
167 | * socket object. Mostly it punts to the subprotocols of IP to do |
168 | * the work. |
169 | */ |
170 | |
171 | /* |
172 | * Automatically bind an unbound socket. |
173 | */ |
174 | |
175 | static int inet_autobind(struct sock *sk) |
176 | { |
177 | struct inet_sock *inet; |
178 | /* We may need to bind the socket. */ |
179 | lock_sock(sk); |
180 | inet = inet_sk(sk); |
181 | if (!inet->inet_num) { |
182 | if (sk->sk_prot->get_port(sk, 0)) { |
183 | release_sock(sk); |
184 | return -EAGAIN; |
185 | } |
186 | inet->inet_sport = htons(inet->inet_num); |
187 | } |
188 | release_sock(sk); |
189 | return 0; |
190 | } |
191 | |
192 | /* |
193 | * Move a socket into listening state. |
194 | */ |
195 | int inet_listen(struct socket *sock, int backlog) |
196 | { |
197 | struct sock *sk = sock->sk; |
198 | unsigned char old_state; |
199 | int err, tcp_fastopen; |
200 | |
201 | lock_sock(sk); |
202 | |
203 | err = -EINVAL; |
204 | if (sock->state != SS_UNCONNECTED || sock->type != SOCK_STREAM) |
205 | goto out; |
206 | |
207 | old_state = sk->sk_state; |
208 | if (!((1 << old_state) & (TCPF_CLOSE | TCPF_LISTEN))) |
209 | goto out; |
210 | |
211 | sk->sk_max_ack_backlog = backlog; |
212 | /* Really, if the socket is already in listen state |
213 | * we can only allow the backlog to be adjusted. |
214 | */ |
215 | if (old_state != TCP_LISTEN) { |
216 | /* Enable TFO w/o requiring TCP_FASTOPEN socket option. |
217 | * Note that only TCP sockets (SOCK_STREAM) will reach here. |
218 | * Also fastopen backlog may already been set via the option |
219 | * because the socket was in TCP_LISTEN state previously but |
220 | * was shutdown() rather than close(). |
221 | */ |
222 | tcp_fastopen = sock_net(sk)->ipv4.sysctl_tcp_fastopen; |
223 | if ((tcp_fastopen & TFO_SERVER_WO_SOCKOPT1) && |
224 | (tcp_fastopen & TFO_SERVER_ENABLE) && |
225 | !inet_csk(sk)->icsk_accept_queue.fastopenq.max_qlen) { |
226 | fastopen_queue_tune(sk, backlog); |
227 | tcp_fastopen_init_key_once(sock_net(sk)); |
228 | } |
229 | |
230 | err = inet_csk_listen_start(sk, backlog); |
231 | if (err) |
232 | goto out; |
233 | tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_LISTEN_CB, 0, NULL); |
234 | } |
235 | err = 0; |
236 | |
237 | out: |
238 | release_sock(sk); |
239 | return err; |
240 | } |
241 | EXPORT_SYMBOL(inet_listen); |
242 | |
243 | /* |
244 | * Create an inet socket. |
245 | */ |
246 | |
247 | static int inet_create(struct net *net, struct socket *sock, int protocol, |
248 | int kern) |
249 | { |
250 | struct sock *sk; |
251 | struct inet_protosw *answer; |
252 | struct inet_sock *inet; |
253 | struct proto *answer_prot; |
254 | unsigned char answer_flags; |
255 | int try_loading_module = 0; |
256 | int err; |
257 | |
258 | if (protocol < 0 || protocol >= IPPROTO_MAX) |
259 | return -EINVAL; |
260 | |
261 | sock->state = SS_UNCONNECTED; |
262 | |
263 | /* Look for the requested type/protocol pair. */ |
264 | lookup_protocol: |
265 | err = -ESOCKTNOSUPPORT; |
266 | rcu_read_lock(); |
267 | list_for_each_entry_rcu(answer, &inetsw[sock->type], list) { |
268 | |
269 | err = 0; |
270 | /* Check the non-wild match. */ |
271 | if (protocol == answer->protocol) { |
272 | if (protocol != IPPROTO_IP) |
273 | break; |
274 | } else { |
275 | /* Check for the two wild cases. */ |
276 | if (IPPROTO_IP == protocol) { |
277 | protocol = answer->protocol; |
278 | break; |
279 | } |
280 | if (IPPROTO_IP == answer->protocol) |
281 | break; |
282 | } |
283 | err = -EPROTONOSUPPORT; |
284 | } |
285 | |
286 | if (unlikely(err)) { |
287 | if (try_loading_module < 2) { |
288 | rcu_read_unlock(); |
289 | /* |
290 | * Be more specific, e.g. net-pf-2-proto-132-type-1 |
291 | * (net-pf-PF_INET-proto-IPPROTO_SCTP-type-SOCK_STREAM) |
292 | */ |
293 | if (++try_loading_module == 1) |
294 | request_module("net-pf-%d-proto-%d-type-%d" , |
295 | PF_INET, protocol, sock->type); |
296 | /* |
297 | * Fall back to generic, e.g. net-pf-2-proto-132 |
298 | * (net-pf-PF_INET-proto-IPPROTO_SCTP) |
299 | */ |
300 | else |
301 | request_module("net-pf-%d-proto-%d" , |
302 | PF_INET, protocol); |
303 | goto lookup_protocol; |
304 | } else |
305 | goto out_rcu_unlock; |
306 | } |
307 | |
308 | err = -EPERM; |
309 | if (sock->type == SOCK_RAW && !kern && |
310 | !ns_capable(net->user_ns, CAP_NET_RAW)) |
311 | goto out_rcu_unlock; |
312 | |
313 | sock->ops = answer->ops; |
314 | answer_prot = answer->prot; |
315 | answer_flags = answer->flags; |
316 | rcu_read_unlock(); |
317 | |
318 | WARN_ON(!answer_prot->slab); |
319 | |
320 | err = -ENOBUFS; |
321 | sk = sk_alloc(net, PF_INET, GFP_KERNEL, answer_prot, kern); |
322 | if (!sk) |
323 | goto out; |
324 | |
325 | err = 0; |
326 | if (INET_PROTOSW_REUSE & answer_flags) |
327 | sk->sk_reuse = SK_CAN_REUSE; |
328 | |
329 | inet = inet_sk(sk); |
330 | inet->is_icsk = (INET_PROTOSW_ICSK & answer_flags) != 0; |
331 | |
332 | inet->nodefrag = 0; |
333 | |
334 | if (SOCK_RAW == sock->type) { |
335 | inet->inet_num = protocol; |
336 | if (IPPROTO_RAW == protocol) |
337 | inet->hdrincl = 1; |
338 | } |
339 | |
340 | if (net->ipv4.sysctl_ip_no_pmtu_disc) |
341 | inet->pmtudisc = IP_PMTUDISC_DONT; |
342 | else |
343 | inet->pmtudisc = IP_PMTUDISC_WANT; |
344 | |
345 | inet->inet_id = 0; |
346 | |
347 | sock_init_data(sock, sk); |
348 | |
349 | sk->sk_destruct = inet_sock_destruct; |
350 | sk->sk_protocol = protocol; |
351 | sk->sk_backlog_rcv = sk->sk_prot->backlog_rcv; |
352 | |
353 | inet->uc_ttl = -1; |
354 | inet->mc_loop = 1; |
355 | inet->mc_ttl = 1; |
356 | inet->mc_all = 1; |
357 | inet->mc_index = 0; |
358 | inet->mc_list = NULL; |
359 | inet->rcv_tos = 0; |
360 | |
361 | sk_refcnt_debug_inc(sk); |
362 | |
363 | if (inet->inet_num) { |
364 | /* It assumes that any protocol which allows |
365 | * the user to assign a number at socket |
366 | * creation time automatically |
367 | * shares. |
368 | */ |
369 | inet->inet_sport = htons(inet->inet_num); |
370 | /* Add to protocol hash chains. */ |
371 | err = sk->sk_prot->hash(sk); |
372 | if (err) { |
373 | sk_common_release(sk); |
374 | goto out; |
375 | } |
376 | } |
377 | |
378 | if (sk->sk_prot->init) { |
379 | err = sk->sk_prot->init(sk); |
380 | if (err) { |
381 | sk_common_release(sk); |
382 | goto out; |
383 | } |
384 | } |
385 | |
386 | if (!kern) { |
387 | err = BPF_CGROUP_RUN_PROG_INET_SOCK(sk); |
388 | if (err) { |
389 | sk_common_release(sk); |
390 | goto out; |
391 | } |
392 | } |
393 | out: |
394 | return err; |
395 | out_rcu_unlock: |
396 | rcu_read_unlock(); |
397 | goto out; |
398 | } |
399 | |
400 | |
401 | /* |
402 | * The peer socket should always be NULL (or else). When we call this |
403 | * function we are destroying the object and from then on nobody |
404 | * should refer to it. |
405 | */ |
406 | int inet_release(struct socket *sock) |
407 | { |
408 | struct sock *sk = sock->sk; |
409 | |
410 | if (sk) { |
411 | long timeout; |
412 | |
413 | /* Applications forget to leave groups before exiting */ |
414 | ip_mc_drop_socket(sk); |
415 | |
416 | /* If linger is set, we don't return until the close |
417 | * is complete. Otherwise we return immediately. The |
418 | * actually closing is done the same either way. |
419 | * |
420 | * If the close is due to the process exiting, we never |
421 | * linger.. |
422 | */ |
423 | timeout = 0; |
424 | if (sock_flag(sk, SOCK_LINGER) && |
425 | !(current->flags & PF_EXITING)) |
426 | timeout = sk->sk_lingertime; |
427 | sock->sk = NULL; |
428 | sk->sk_prot->close(sk, timeout); |
429 | } |
430 | return 0; |
431 | } |
432 | EXPORT_SYMBOL(inet_release); |
433 | |
434 | int inet_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) |
435 | { |
436 | struct sock *sk = sock->sk; |
437 | int err; |
438 | |
439 | /* If the socket has its own bind function then use it. (RAW) */ |
440 | if (sk->sk_prot->bind) { |
441 | return sk->sk_prot->bind(sk, uaddr, addr_len); |
442 | } |
443 | if (addr_len < sizeof(struct sockaddr_in)) |
444 | return -EINVAL; |
445 | |
446 | /* BPF prog is run before any checks are done so that if the prog |
447 | * changes context in a wrong way it will be caught. |
448 | */ |
449 | err = BPF_CGROUP_RUN_PROG_INET4_BIND(sk, uaddr); |
450 | if (err) |
451 | return err; |
452 | |
453 | return __inet_bind(sk, uaddr, addr_len, false, true); |
454 | } |
455 | EXPORT_SYMBOL(inet_bind); |
456 | |
457 | int __inet_bind(struct sock *sk, struct sockaddr *uaddr, int addr_len, |
458 | bool force_bind_address_no_port, bool with_lock) |
459 | { |
460 | struct sockaddr_in *addr = (struct sockaddr_in *)uaddr; |
461 | struct inet_sock *inet = inet_sk(sk); |
462 | struct net *net = sock_net(sk); |
463 | unsigned short snum; |
464 | int chk_addr_ret; |
465 | u32 tb_id = RT_TABLE_LOCAL; |
466 | int err; |
467 | |
468 | if (addr->sin_family != AF_INET) { |
469 | /* Compatibility games : accept AF_UNSPEC (mapped to AF_INET) |
470 | * only if s_addr is INADDR_ANY. |
471 | */ |
472 | err = -EAFNOSUPPORT; |
473 | if (addr->sin_family != AF_UNSPEC || |
474 | addr->sin_addr.s_addr != htonl(INADDR_ANY)) |
475 | goto out; |
476 | } |
477 | |
478 | tb_id = l3mdev_fib_table_by_index(net, sk->sk_bound_dev_if) ? : tb_id; |
479 | chk_addr_ret = inet_addr_type_table(net, addr->sin_addr.s_addr, tb_id); |
480 | |
481 | /* Not specified by any standard per-se, however it breaks too |
482 | * many applications when removed. It is unfortunate since |
483 | * allowing applications to make a non-local bind solves |
484 | * several problems with systems using dynamic addressing. |
485 | * (ie. your servers still start up even if your ISDN link |
486 | * is temporarily down) |
487 | */ |
488 | err = -EADDRNOTAVAIL; |
489 | if (!inet_can_nonlocal_bind(net, inet) && |
490 | addr->sin_addr.s_addr != htonl(INADDR_ANY) && |
491 | chk_addr_ret != RTN_LOCAL && |
492 | chk_addr_ret != RTN_MULTICAST && |
493 | chk_addr_ret != RTN_BROADCAST) |
494 | goto out; |
495 | |
496 | snum = ntohs(addr->sin_port); |
497 | err = -EACCES; |
498 | if (snum && snum < inet_prot_sock(net) && |
499 | !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) |
500 | goto out; |
501 | |
502 | /* We keep a pair of addresses. rcv_saddr is the one |
503 | * used by hash lookups, and saddr is used for transmit. |
504 | * |
505 | * In the BSD API these are the same except where it |
506 | * would be illegal to use them (multicast/broadcast) in |
507 | * which case the sending device address is used. |
508 | */ |
509 | if (with_lock) |
510 | lock_sock(sk); |
511 | |
512 | /* Check these errors (active socket, double bind). */ |
513 | err = -EINVAL; |
514 | if (sk->sk_state != TCP_CLOSE || inet->inet_num) |
515 | goto out_release_sock; |
516 | |
517 | inet->inet_rcv_saddr = inet->inet_saddr = addr->sin_addr.s_addr; |
518 | if (chk_addr_ret == RTN_MULTICAST || chk_addr_ret == RTN_BROADCAST) |
519 | inet->inet_saddr = 0; /* Use device */ |
520 | |
521 | /* Make sure we are allowed to bind here. */ |
522 | if (snum || !(inet->bind_address_no_port || |
523 | force_bind_address_no_port)) { |
524 | if (sk->sk_prot->get_port(sk, snum)) { |
525 | inet->inet_saddr = inet->inet_rcv_saddr = 0; |
526 | err = -EADDRINUSE; |
527 | goto out_release_sock; |
528 | } |
529 | err = BPF_CGROUP_RUN_PROG_INET4_POST_BIND(sk); |
530 | if (err) { |
531 | inet->inet_saddr = inet->inet_rcv_saddr = 0; |
532 | goto out_release_sock; |
533 | } |
534 | } |
535 | |
536 | if (inet->inet_rcv_saddr) |
537 | sk->sk_userlocks |= SOCK_BINDADDR_LOCK; |
538 | if (snum) |
539 | sk->sk_userlocks |= SOCK_BINDPORT_LOCK; |
540 | inet->inet_sport = htons(inet->inet_num); |
541 | inet->inet_daddr = 0; |
542 | inet->inet_dport = 0; |
543 | sk_dst_reset(sk); |
544 | err = 0; |
545 | out_release_sock: |
546 | if (with_lock) |
547 | release_sock(sk); |
548 | out: |
549 | return err; |
550 | } |
551 | |
552 | int inet_dgram_connect(struct socket *sock, struct sockaddr *uaddr, |
553 | int addr_len, int flags) |
554 | { |
555 | struct sock *sk = sock->sk; |
556 | int err; |
557 | |
558 | if (addr_len < sizeof(uaddr->sa_family)) |
559 | return -EINVAL; |
560 | if (uaddr->sa_family == AF_UNSPEC) |
561 | return sk->sk_prot->disconnect(sk, flags); |
562 | |
563 | if (BPF_CGROUP_PRE_CONNECT_ENABLED(sk)) { |
564 | err = sk->sk_prot->pre_connect(sk, uaddr, addr_len); |
565 | if (err) |
566 | return err; |
567 | } |
568 | |
569 | if (!inet_sk(sk)->inet_num && inet_autobind(sk)) |
570 | return -EAGAIN; |
571 | return sk->sk_prot->connect(sk, uaddr, addr_len); |
572 | } |
573 | EXPORT_SYMBOL(inet_dgram_connect); |
574 | |
575 | static long inet_wait_for_connect(struct sock *sk, long timeo, int writebias) |
576 | { |
577 | DEFINE_WAIT_FUNC(wait, woken_wake_function); |
578 | |
579 | add_wait_queue(sk_sleep(sk), &wait); |
580 | sk->sk_write_pending += writebias; |
581 | |
582 | /* Basic assumption: if someone sets sk->sk_err, he _must_ |
583 | * change state of the socket from TCP_SYN_*. |
584 | * Connect() does not allow to get error notifications |
585 | * without closing the socket. |
586 | */ |
587 | while ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) { |
588 | release_sock(sk); |
589 | timeo = wait_woken(&wait, TASK_INTERRUPTIBLE, timeo); |
590 | lock_sock(sk); |
591 | if (signal_pending(current) || !timeo) |
592 | break; |
593 | } |
594 | remove_wait_queue(sk_sleep(sk), &wait); |
595 | sk->sk_write_pending -= writebias; |
596 | return timeo; |
597 | } |
598 | |
599 | /* |
600 | * Connect to a remote host. There is regrettably still a little |
601 | * TCP 'magic' in here. |
602 | */ |
603 | int __inet_stream_connect(struct socket *sock, struct sockaddr *uaddr, |
604 | int addr_len, int flags, int is_sendmsg) |
605 | { |
606 | struct sock *sk = sock->sk; |
607 | int err; |
608 | long timeo; |
609 | |
610 | /* |
611 | * uaddr can be NULL and addr_len can be 0 if: |
612 | * sk is a TCP fastopen active socket and |
613 | * TCP_FASTOPEN_CONNECT sockopt is set and |
614 | * we already have a valid cookie for this socket. |
615 | * In this case, user can call write() after connect(). |
616 | * write() will invoke tcp_sendmsg_fastopen() which calls |
617 | * __inet_stream_connect(). |
618 | */ |
619 | if (uaddr) { |
620 | if (addr_len < sizeof(uaddr->sa_family)) |
621 | return -EINVAL; |
622 | |
623 | if (uaddr->sa_family == AF_UNSPEC) { |
624 | err = sk->sk_prot->disconnect(sk, flags); |
625 | sock->state = err ? SS_DISCONNECTING : SS_UNCONNECTED; |
626 | goto out; |
627 | } |
628 | } |
629 | |
630 | switch (sock->state) { |
631 | default: |
632 | err = -EINVAL; |
633 | goto out; |
634 | case SS_CONNECTED: |
635 | err = -EISCONN; |
636 | goto out; |
637 | case SS_CONNECTING: |
638 | if (inet_sk(sk)->defer_connect) |
639 | err = is_sendmsg ? -EINPROGRESS : -EISCONN; |
640 | else |
641 | err = -EALREADY; |
642 | /* Fall out of switch with err, set for this state */ |
643 | break; |
644 | case SS_UNCONNECTED: |
645 | err = -EISCONN; |
646 | if (sk->sk_state != TCP_CLOSE) |
647 | goto out; |
648 | |
649 | if (BPF_CGROUP_PRE_CONNECT_ENABLED(sk)) { |
650 | err = sk->sk_prot->pre_connect(sk, uaddr, addr_len); |
651 | if (err) |
652 | goto out; |
653 | } |
654 | |
655 | err = sk->sk_prot->connect(sk, uaddr, addr_len); |
656 | if (err < 0) |
657 | goto out; |
658 | |
659 | sock->state = SS_CONNECTING; |
660 | |
661 | if (!err && inet_sk(sk)->defer_connect) |
662 | goto out; |
663 | |
664 | /* Just entered SS_CONNECTING state; the only |
665 | * difference is that return value in non-blocking |
666 | * case is EINPROGRESS, rather than EALREADY. |
667 | */ |
668 | err = -EINPROGRESS; |
669 | break; |
670 | } |
671 | |
672 | timeo = sock_sndtimeo(sk, flags & O_NONBLOCK); |
673 | |
674 | if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) { |
675 | int writebias = (sk->sk_protocol == IPPROTO_TCP) && |
676 | tcp_sk(sk)->fastopen_req && |
677 | tcp_sk(sk)->fastopen_req->data ? 1 : 0; |
678 | |
679 | /* Error code is set above */ |
680 | if (!timeo || !inet_wait_for_connect(sk, timeo, writebias)) |
681 | goto out; |
682 | |
683 | err = sock_intr_errno(timeo); |
684 | if (signal_pending(current)) |
685 | goto out; |
686 | } |
687 | |
688 | /* Connection was closed by RST, timeout, ICMP error |
689 | * or another process disconnected us. |
690 | */ |
691 | if (sk->sk_state == TCP_CLOSE) |
692 | goto sock_error; |
693 | |
694 | /* sk->sk_err may be not zero now, if RECVERR was ordered by user |
695 | * and error was received after socket entered established state. |
696 | * Hence, it is handled normally after connect() return successfully. |
697 | */ |
698 | |
699 | sock->state = SS_CONNECTED; |
700 | err = 0; |
701 | out: |
702 | return err; |
703 | |
704 | sock_error: |
705 | err = sock_error(sk) ? : -ECONNABORTED; |
706 | sock->state = SS_UNCONNECTED; |
707 | if (sk->sk_prot->disconnect(sk, flags)) |
708 | sock->state = SS_DISCONNECTING; |
709 | goto out; |
710 | } |
711 | EXPORT_SYMBOL(__inet_stream_connect); |
712 | |
713 | int inet_stream_connect(struct socket *sock, struct sockaddr *uaddr, |
714 | int addr_len, int flags) |
715 | { |
716 | int err; |
717 | |
718 | lock_sock(sock->sk); |
719 | err = __inet_stream_connect(sock, uaddr, addr_len, flags, 0); |
720 | release_sock(sock->sk); |
721 | return err; |
722 | } |
723 | EXPORT_SYMBOL(inet_stream_connect); |
724 | |
725 | /* |
726 | * Accept a pending connection. The TCP layer now gives BSD semantics. |
727 | */ |
728 | |
729 | int inet_accept(struct socket *sock, struct socket *newsock, int flags, |
730 | bool kern) |
731 | { |
732 | struct sock *sk1 = sock->sk; |
733 | int err = -EINVAL; |
734 | struct sock *sk2 = sk1->sk_prot->accept(sk1, flags, &err, kern); |
735 | |
736 | if (!sk2) |
737 | goto do_err; |
738 | |
739 | lock_sock(sk2); |
740 | |
741 | sock_rps_record_flow(sk2); |
742 | WARN_ON(!((1 << sk2->sk_state) & |
743 | (TCPF_ESTABLISHED | TCPF_SYN_RECV | |
744 | TCPF_CLOSE_WAIT | TCPF_CLOSE))); |
745 | |
746 | sock_graft(sk2, newsock); |
747 | |
748 | newsock->state = SS_CONNECTED; |
749 | err = 0; |
750 | release_sock(sk2); |
751 | do_err: |
752 | return err; |
753 | } |
754 | EXPORT_SYMBOL(inet_accept); |
755 | |
756 | |
757 | /* |
758 | * This does both peername and sockname. |
759 | */ |
760 | int inet_getname(struct socket *sock, struct sockaddr *uaddr, |
761 | int peer) |
762 | { |
763 | struct sock *sk = sock->sk; |
764 | struct inet_sock *inet = inet_sk(sk); |
765 | DECLARE_SOCKADDR(struct sockaddr_in *, sin, uaddr); |
766 | |
767 | sin->sin_family = AF_INET; |
768 | if (peer) { |
769 | if (!inet->inet_dport || |
770 | (((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_SYN_SENT)) && |
771 | peer == 1)) |
772 | return -ENOTCONN; |
773 | sin->sin_port = inet->inet_dport; |
774 | sin->sin_addr.s_addr = inet->inet_daddr; |
775 | } else { |
776 | __be32 addr = inet->inet_rcv_saddr; |
777 | if (!addr) |
778 | addr = inet->inet_saddr; |
779 | sin->sin_port = inet->inet_sport; |
780 | sin->sin_addr.s_addr = addr; |
781 | } |
782 | memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); |
783 | return sizeof(*sin); |
784 | } |
785 | EXPORT_SYMBOL(inet_getname); |
786 | |
787 | int inet_sendmsg(struct socket *sock, struct msghdr *msg, size_t size) |
788 | { |
789 | struct sock *sk = sock->sk; |
790 | |
791 | sock_rps_record_flow(sk); |
792 | |
793 | /* We may need to bind the socket. */ |
794 | if (!inet_sk(sk)->inet_num && !sk->sk_prot->no_autobind && |
795 | inet_autobind(sk)) |
796 | return -EAGAIN; |
797 | |
798 | return sk->sk_prot->sendmsg(sk, msg, size); |
799 | } |
800 | EXPORT_SYMBOL(inet_sendmsg); |
801 | |
802 | ssize_t inet_sendpage(struct socket *sock, struct page *page, int offset, |
803 | size_t size, int flags) |
804 | { |
805 | struct sock *sk = sock->sk; |
806 | |
807 | sock_rps_record_flow(sk); |
808 | |
809 | /* We may need to bind the socket. */ |
810 | if (!inet_sk(sk)->inet_num && !sk->sk_prot->no_autobind && |
811 | inet_autobind(sk)) |
812 | return -EAGAIN; |
813 | |
814 | if (sk->sk_prot->sendpage) |
815 | return sk->sk_prot->sendpage(sk, page, offset, size, flags); |
816 | return sock_no_sendpage(sock, page, offset, size, flags); |
817 | } |
818 | EXPORT_SYMBOL(inet_sendpage); |
819 | |
820 | int inet_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, |
821 | int flags) |
822 | { |
823 | struct sock *sk = sock->sk; |
824 | int addr_len = 0; |
825 | int err; |
826 | |
827 | if (likely(!(flags & MSG_ERRQUEUE))) |
828 | sock_rps_record_flow(sk); |
829 | |
830 | err = sk->sk_prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT, |
831 | flags & ~MSG_DONTWAIT, &addr_len); |
832 | if (err >= 0) |
833 | msg->msg_namelen = addr_len; |
834 | return err; |
835 | } |
836 | EXPORT_SYMBOL(inet_recvmsg); |
837 | |
838 | int inet_shutdown(struct socket *sock, int how) |
839 | { |
840 | struct sock *sk = sock->sk; |
841 | int err = 0; |
842 | |
843 | /* This should really check to make sure |
844 | * the socket is a TCP socket. (WHY AC...) |
845 | */ |
846 | how++; /* maps 0->1 has the advantage of making bit 1 rcvs and |
847 | 1->2 bit 2 snds. |
848 | 2->3 */ |
849 | if ((how & ~SHUTDOWN_MASK) || !how) /* MAXINT->0 */ |
850 | return -EINVAL; |
851 | |
852 | lock_sock(sk); |
853 | if (sock->state == SS_CONNECTING) { |
854 | if ((1 << sk->sk_state) & |
855 | (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE)) |
856 | sock->state = SS_DISCONNECTING; |
857 | else |
858 | sock->state = SS_CONNECTED; |
859 | } |
860 | |
861 | switch (sk->sk_state) { |
862 | case TCP_CLOSE: |
863 | err = -ENOTCONN; |
864 | /* Hack to wake up other listeners, who can poll for |
865 | EPOLLHUP, even on eg. unconnected UDP sockets -- RR */ |
866 | /* fall through */ |
867 | default: |
868 | sk->sk_shutdown |= how; |
869 | if (sk->sk_prot->shutdown) |
870 | sk->sk_prot->shutdown(sk, how); |
871 | break; |
872 | |
873 | /* Remaining two branches are temporary solution for missing |
874 | * close() in multithreaded environment. It is _not_ a good idea, |
875 | * but we have no choice until close() is repaired at VFS level. |
876 | */ |
877 | case TCP_LISTEN: |
878 | if (!(how & RCV_SHUTDOWN)) |
879 | break; |
880 | /* fall through */ |
881 | case TCP_SYN_SENT: |
882 | err = sk->sk_prot->disconnect(sk, O_NONBLOCK); |
883 | sock->state = err ? SS_DISCONNECTING : SS_UNCONNECTED; |
884 | break; |
885 | } |
886 | |
887 | /* Wake up anyone sleeping in poll. */ |
888 | sk->sk_state_change(sk); |
889 | release_sock(sk); |
890 | return err; |
891 | } |
892 | EXPORT_SYMBOL(inet_shutdown); |
893 | |
894 | /* |
895 | * ioctl() calls you can issue on an INET socket. Most of these are |
896 | * device configuration and stuff and very rarely used. Some ioctls |
897 | * pass on to the socket itself. |
898 | * |
899 | * NOTE: I like the idea of a module for the config stuff. ie ifconfig |
900 | * loads the devconfigure module does its configuring and unloads it. |
901 | * There's a good 20K of config code hanging around the kernel. |
902 | */ |
903 | |
904 | int inet_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) |
905 | { |
906 | struct sock *sk = sock->sk; |
907 | int err = 0; |
908 | struct net *net = sock_net(sk); |
909 | void __user *p = (void __user *)arg; |
910 | struct ifreq ifr; |
911 | struct rtentry rt; |
912 | |
913 | switch (cmd) { |
914 | case SIOCGSTAMP: |
915 | err = sock_get_timestamp(sk, (struct timeval __user *)arg); |
916 | break; |
917 | case SIOCGSTAMPNS: |
918 | err = sock_get_timestampns(sk, (struct timespec __user *)arg); |
919 | break; |
920 | case SIOCADDRT: |
921 | case SIOCDELRT: |
922 | if (copy_from_user(&rt, p, sizeof(struct rtentry))) |
923 | return -EFAULT; |
924 | err = ip_rt_ioctl(net, cmd, &rt); |
925 | break; |
926 | case SIOCRTMSG: |
927 | err = -EINVAL; |
928 | break; |
929 | case SIOCDARP: |
930 | case SIOCGARP: |
931 | case SIOCSARP: |
932 | err = arp_ioctl(net, cmd, (void __user *)arg); |
933 | break; |
934 | case SIOCGIFADDR: |
935 | case SIOCGIFBRDADDR: |
936 | case SIOCGIFNETMASK: |
937 | case SIOCGIFDSTADDR: |
938 | case SIOCGIFPFLAGS: |
939 | if (copy_from_user(&ifr, p, sizeof(struct ifreq))) |
940 | return -EFAULT; |
941 | err = devinet_ioctl(net, cmd, &ifr); |
942 | if (!err && copy_to_user(p, &ifr, sizeof(struct ifreq))) |
943 | err = -EFAULT; |
944 | break; |
945 | |
946 | case SIOCSIFADDR: |
947 | case SIOCSIFBRDADDR: |
948 | case SIOCSIFNETMASK: |
949 | case SIOCSIFDSTADDR: |
950 | case SIOCSIFPFLAGS: |
951 | case SIOCSIFFLAGS: |
952 | if (copy_from_user(&ifr, p, sizeof(struct ifreq))) |
953 | return -EFAULT; |
954 | err = devinet_ioctl(net, cmd, &ifr); |
955 | break; |
956 | default: |
957 | if (sk->sk_prot->ioctl) |
958 | err = sk->sk_prot->ioctl(sk, cmd, arg); |
959 | else |
960 | err = -ENOIOCTLCMD; |
961 | break; |
962 | } |
963 | return err; |
964 | } |
965 | EXPORT_SYMBOL(inet_ioctl); |
966 | |
967 | #ifdef CONFIG_COMPAT |
968 | static int inet_compat_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) |
969 | { |
970 | struct sock *sk = sock->sk; |
971 | int err = -ENOIOCTLCMD; |
972 | |
973 | if (sk->sk_prot->compat_ioctl) |
974 | err = sk->sk_prot->compat_ioctl(sk, cmd, arg); |
975 | |
976 | return err; |
977 | } |
978 | #endif |
979 | |
980 | const struct proto_ops inet_stream_ops = { |
981 | .family = PF_INET, |
982 | .owner = THIS_MODULE, |
983 | .release = inet_release, |
984 | .bind = inet_bind, |
985 | .connect = inet_stream_connect, |
986 | .socketpair = sock_no_socketpair, |
987 | .accept = inet_accept, |
988 | .getname = inet_getname, |
989 | .poll = tcp_poll, |
990 | .ioctl = inet_ioctl, |
991 | .listen = inet_listen, |
992 | .shutdown = inet_shutdown, |
993 | .setsockopt = sock_common_setsockopt, |
994 | .getsockopt = sock_common_getsockopt, |
995 | .sendmsg = inet_sendmsg, |
996 | .recvmsg = inet_recvmsg, |
997 | #ifdef CONFIG_MMU |
998 | .mmap = tcp_mmap, |
999 | #endif |
1000 | .sendpage = inet_sendpage, |
1001 | .splice_read = tcp_splice_read, |
1002 | .read_sock = tcp_read_sock, |
1003 | .sendmsg_locked = tcp_sendmsg_locked, |
1004 | .sendpage_locked = tcp_sendpage_locked, |
1005 | .peek_len = tcp_peek_len, |
1006 | #ifdef CONFIG_COMPAT |
1007 | .compat_setsockopt = compat_sock_common_setsockopt, |
1008 | .compat_getsockopt = compat_sock_common_getsockopt, |
1009 | .compat_ioctl = inet_compat_ioctl, |
1010 | #endif |
1011 | .set_rcvlowat = tcp_set_rcvlowat, |
1012 | }; |
1013 | EXPORT_SYMBOL(inet_stream_ops); |
1014 | |
1015 | const struct proto_ops inet_dgram_ops = { |
1016 | .family = PF_INET, |
1017 | .owner = THIS_MODULE, |
1018 | .release = inet_release, |
1019 | .bind = inet_bind, |
1020 | .connect = inet_dgram_connect, |
1021 | .socketpair = sock_no_socketpair, |
1022 | .accept = sock_no_accept, |
1023 | .getname = inet_getname, |
1024 | .poll = udp_poll, |
1025 | .ioctl = inet_ioctl, |
1026 | .listen = sock_no_listen, |
1027 | .shutdown = inet_shutdown, |
1028 | .setsockopt = sock_common_setsockopt, |
1029 | .getsockopt = sock_common_getsockopt, |
1030 | .sendmsg = inet_sendmsg, |
1031 | .recvmsg = inet_recvmsg, |
1032 | .mmap = sock_no_mmap, |
1033 | .sendpage = inet_sendpage, |
1034 | .set_peek_off = sk_set_peek_off, |
1035 | #ifdef CONFIG_COMPAT |
1036 | .compat_setsockopt = compat_sock_common_setsockopt, |
1037 | .compat_getsockopt = compat_sock_common_getsockopt, |
1038 | .compat_ioctl = inet_compat_ioctl, |
1039 | #endif |
1040 | }; |
1041 | EXPORT_SYMBOL(inet_dgram_ops); |
1042 | |
1043 | /* |
1044 | * For SOCK_RAW sockets; should be the same as inet_dgram_ops but without |
1045 | * udp_poll |
1046 | */ |
1047 | static const struct proto_ops inet_sockraw_ops = { |
1048 | .family = PF_INET, |
1049 | .owner = THIS_MODULE, |
1050 | .release = inet_release, |
1051 | .bind = inet_bind, |
1052 | .connect = inet_dgram_connect, |
1053 | .socketpair = sock_no_socketpair, |
1054 | .accept = sock_no_accept, |
1055 | .getname = inet_getname, |
1056 | .poll = datagram_poll, |
1057 | .ioctl = inet_ioctl, |
1058 | .listen = sock_no_listen, |
1059 | .shutdown = inet_shutdown, |
1060 | .setsockopt = sock_common_setsockopt, |
1061 | .getsockopt = sock_common_getsockopt, |
1062 | .sendmsg = inet_sendmsg, |
1063 | .recvmsg = inet_recvmsg, |
1064 | .mmap = sock_no_mmap, |
1065 | .sendpage = inet_sendpage, |
1066 | #ifdef CONFIG_COMPAT |
1067 | .compat_setsockopt = compat_sock_common_setsockopt, |
1068 | .compat_getsockopt = compat_sock_common_getsockopt, |
1069 | .compat_ioctl = inet_compat_ioctl, |
1070 | #endif |
1071 | }; |
1072 | |
1073 | static const struct net_proto_family inet_family_ops = { |
1074 | .family = PF_INET, |
1075 | .create = inet_create, |
1076 | .owner = THIS_MODULE, |
1077 | }; |
1078 | |
1079 | /* Upon startup we insert all the elements in inetsw_array[] into |
1080 | * the linked list inetsw. |
1081 | */ |
1082 | static struct inet_protosw inetsw_array[] = |
1083 | { |
1084 | { |
1085 | .type = SOCK_STREAM, |
1086 | .protocol = IPPROTO_TCP, |
1087 | .prot = &tcp_prot, |
1088 | .ops = &inet_stream_ops, |
1089 | .flags = INET_PROTOSW_PERMANENT | |
1090 | INET_PROTOSW_ICSK, |
1091 | }, |
1092 | |
1093 | { |
1094 | .type = SOCK_DGRAM, |
1095 | .protocol = IPPROTO_UDP, |
1096 | .prot = &udp_prot, |
1097 | .ops = &inet_dgram_ops, |
1098 | .flags = INET_PROTOSW_PERMANENT, |
1099 | }, |
1100 | |
1101 | { |
1102 | .type = SOCK_DGRAM, |
1103 | .protocol = IPPROTO_ICMP, |
1104 | .prot = &ping_prot, |
1105 | .ops = &inet_sockraw_ops, |
1106 | .flags = INET_PROTOSW_REUSE, |
1107 | }, |
1108 | |
1109 | { |
1110 | .type = SOCK_RAW, |
1111 | .protocol = IPPROTO_IP, /* wild card */ |
1112 | .prot = &raw_prot, |
1113 | .ops = &inet_sockraw_ops, |
1114 | .flags = INET_PROTOSW_REUSE, |
1115 | } |
1116 | }; |
1117 | |
1118 | #define INETSW_ARRAY_LEN ARRAY_SIZE(inetsw_array) |
1119 | |
1120 | void inet_register_protosw(struct inet_protosw *p) |
1121 | { |
1122 | struct list_head *lh; |
1123 | struct inet_protosw *answer; |
1124 | int protocol = p->protocol; |
1125 | struct list_head *last_perm; |
1126 | |
1127 | spin_lock_bh(&inetsw_lock); |
1128 | |
1129 | if (p->type >= SOCK_MAX) |
1130 | goto out_illegal; |
1131 | |
1132 | /* If we are trying to override a permanent protocol, bail. */ |
1133 | last_perm = &inetsw[p->type]; |
1134 | list_for_each(lh, &inetsw[p->type]) { |
1135 | answer = list_entry(lh, struct inet_protosw, list); |
1136 | /* Check only the non-wild match. */ |
1137 | if ((INET_PROTOSW_PERMANENT & answer->flags) == 0) |
1138 | break; |
1139 | if (protocol == answer->protocol) |
1140 | goto out_permanent; |
1141 | last_perm = lh; |
1142 | } |
1143 | |
1144 | /* Add the new entry after the last permanent entry if any, so that |
1145 | * the new entry does not override a permanent entry when matched with |
1146 | * a wild-card protocol. But it is allowed to override any existing |
1147 | * non-permanent entry. This means that when we remove this entry, the |
1148 | * system automatically returns to the old behavior. |
1149 | */ |
1150 | list_add_rcu(&p->list, last_perm); |
1151 | out: |
1152 | spin_unlock_bh(&inetsw_lock); |
1153 | |
1154 | return; |
1155 | |
1156 | out_permanent: |
1157 | pr_err("Attempt to override permanent protocol %d\n" , protocol); |
1158 | goto out; |
1159 | |
1160 | out_illegal: |
1161 | pr_err("Ignoring attempt to register invalid socket type %d\n" , |
1162 | p->type); |
1163 | goto out; |
1164 | } |
1165 | EXPORT_SYMBOL(inet_register_protosw); |
1166 | |
1167 | void inet_unregister_protosw(struct inet_protosw *p) |
1168 | { |
1169 | if (INET_PROTOSW_PERMANENT & p->flags) { |
1170 | pr_err("Attempt to unregister permanent protocol %d\n" , |
1171 | p->protocol); |
1172 | } else { |
1173 | spin_lock_bh(&inetsw_lock); |
1174 | list_del_rcu(&p->list); |
1175 | spin_unlock_bh(&inetsw_lock); |
1176 | |
1177 | synchronize_net(); |
1178 | } |
1179 | } |
1180 | EXPORT_SYMBOL(inet_unregister_protosw); |
1181 | |
1182 | static int inet_sk_reselect_saddr(struct sock *sk) |
1183 | { |
1184 | struct inet_sock *inet = inet_sk(sk); |
1185 | __be32 old_saddr = inet->inet_saddr; |
1186 | __be32 daddr = inet->inet_daddr; |
1187 | struct flowi4 *fl4; |
1188 | struct rtable *rt; |
1189 | __be32 new_saddr; |
1190 | struct ip_options_rcu *inet_opt; |
1191 | |
1192 | inet_opt = rcu_dereference_protected(inet->inet_opt, |
1193 | lockdep_sock_is_held(sk)); |
1194 | if (inet_opt && inet_opt->opt.srr) |
1195 | daddr = inet_opt->opt.faddr; |
1196 | |
1197 | /* Query new route. */ |
1198 | fl4 = &inet->cork.fl.u.ip4; |
1199 | rt = ip_route_connect(fl4, daddr, 0, RT_CONN_FLAGS(sk), |
1200 | sk->sk_bound_dev_if, sk->sk_protocol, |
1201 | inet->inet_sport, inet->inet_dport, sk); |
1202 | if (IS_ERR(rt)) |
1203 | return PTR_ERR(rt); |
1204 | |
1205 | sk_setup_caps(sk, &rt->dst); |
1206 | |
1207 | new_saddr = fl4->saddr; |
1208 | |
1209 | if (new_saddr == old_saddr) |
1210 | return 0; |
1211 | |
1212 | if (sock_net(sk)->ipv4.sysctl_ip_dynaddr > 1) { |
1213 | pr_info("%s(): shifting inet->saddr from %pI4 to %pI4\n" , |
1214 | __func__, &old_saddr, &new_saddr); |
1215 | } |
1216 | |
1217 | inet->inet_saddr = inet->inet_rcv_saddr = new_saddr; |
1218 | |
1219 | /* |
1220 | * XXX The only one ugly spot where we need to |
1221 | * XXX really change the sockets identity after |
1222 | * XXX it has entered the hashes. -DaveM |
1223 | * |
1224 | * Besides that, it does not check for connection |
1225 | * uniqueness. Wait for troubles. |
1226 | */ |
1227 | return __sk_prot_rehash(sk); |
1228 | } |
1229 | |
1230 | int (struct sock *sk) |
1231 | { |
1232 | struct inet_sock *inet = inet_sk(sk); |
1233 | struct rtable *rt = (struct rtable *)__sk_dst_check(sk, 0); |
1234 | __be32 daddr; |
1235 | struct ip_options_rcu *inet_opt; |
1236 | struct flowi4 *fl4; |
1237 | int err; |
1238 | |
1239 | /* Route is OK, nothing to do. */ |
1240 | if (rt) |
1241 | return 0; |
1242 | |
1243 | /* Reroute. */ |
1244 | rcu_read_lock(); |
1245 | inet_opt = rcu_dereference(inet->inet_opt); |
1246 | daddr = inet->inet_daddr; |
1247 | if (inet_opt && inet_opt->opt.srr) |
1248 | daddr = inet_opt->opt.faddr; |
1249 | rcu_read_unlock(); |
1250 | fl4 = &inet->cork.fl.u.ip4; |
1251 | rt = ip_route_output_ports(sock_net(sk), fl4, sk, daddr, inet->inet_saddr, |
1252 | inet->inet_dport, inet->inet_sport, |
1253 | sk->sk_protocol, RT_CONN_FLAGS(sk), |
1254 | sk->sk_bound_dev_if); |
1255 | if (!IS_ERR(rt)) { |
1256 | err = 0; |
1257 | sk_setup_caps(sk, &rt->dst); |
1258 | } else { |
1259 | err = PTR_ERR(rt); |
1260 | |
1261 | /* Routing failed... */ |
1262 | sk->sk_route_caps = 0; |
1263 | /* |
1264 | * Other protocols have to map its equivalent state to TCP_SYN_SENT. |
1265 | * DCCP maps its DCCP_REQUESTING state to TCP_SYN_SENT. -acme |
1266 | */ |
1267 | if (!sock_net(sk)->ipv4.sysctl_ip_dynaddr || |
1268 | sk->sk_state != TCP_SYN_SENT || |
1269 | (sk->sk_userlocks & SOCK_BINDADDR_LOCK) || |
1270 | (err = inet_sk_reselect_saddr(sk)) != 0) |
1271 | sk->sk_err_soft = -err; |
1272 | } |
1273 | |
1274 | return err; |
1275 | } |
1276 | EXPORT_SYMBOL(inet_sk_rebuild_header); |
1277 | |
1278 | void inet_sk_set_state(struct sock *sk, int state) |
1279 | { |
1280 | trace_inet_sock_set_state(sk, sk->sk_state, state); |
1281 | sk->sk_state = state; |
1282 | } |
1283 | EXPORT_SYMBOL(inet_sk_set_state); |
1284 | |
1285 | void inet_sk_state_store(struct sock *sk, int newstate) |
1286 | { |
1287 | trace_inet_sock_set_state(sk, sk->sk_state, newstate); |
1288 | smp_store_release(&sk->sk_state, newstate); |
1289 | } |
1290 | |
1291 | struct sk_buff *inet_gso_segment(struct sk_buff *skb, |
1292 | netdev_features_t features) |
1293 | { |
1294 | bool udpfrag = false, fixedid = false, gso_partial, encap; |
1295 | struct sk_buff *segs = ERR_PTR(-EINVAL); |
1296 | const struct net_offload *ops; |
1297 | unsigned int offset = 0; |
1298 | struct iphdr *iph; |
1299 | int proto, tot_len; |
1300 | int nhoff; |
1301 | int ihl; |
1302 | int id; |
1303 | |
1304 | skb_reset_network_header(skb); |
1305 | nhoff = skb_network_header(skb) - skb_mac_header(skb); |
1306 | if (unlikely(!pskb_may_pull(skb, sizeof(*iph)))) |
1307 | goto out; |
1308 | |
1309 | iph = ip_hdr(skb); |
1310 | ihl = iph->ihl * 4; |
1311 | if (ihl < sizeof(*iph)) |
1312 | goto out; |
1313 | |
1314 | id = ntohs(iph->id); |
1315 | proto = iph->protocol; |
1316 | |
1317 | /* Warning: after this point, iph might be no longer valid */ |
1318 | if (unlikely(!pskb_may_pull(skb, ihl))) |
1319 | goto out; |
1320 | __skb_pull(skb, ihl); |
1321 | |
1322 | encap = SKB_GSO_CB(skb)->encap_level > 0; |
1323 | if (encap) |
1324 | features &= skb->dev->hw_enc_features; |
1325 | SKB_GSO_CB(skb)->encap_level += ihl; |
1326 | |
1327 | skb_reset_transport_header(skb); |
1328 | |
1329 | segs = ERR_PTR(-EPROTONOSUPPORT); |
1330 | |
1331 | if (!skb->encapsulation || encap) { |
1332 | udpfrag = !!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP); |
1333 | fixedid = !!(skb_shinfo(skb)->gso_type & SKB_GSO_TCP_FIXEDID); |
1334 | |
1335 | /* fixed ID is invalid if DF bit is not set */ |
1336 | if (fixedid && !(ip_hdr(skb)->frag_off & htons(IP_DF))) |
1337 | goto out; |
1338 | } |
1339 | |
1340 | ops = rcu_dereference(inet_offloads[proto]); |
1341 | if (likely(ops && ops->callbacks.gso_segment)) |
1342 | segs = ops->callbacks.gso_segment(skb, features); |
1343 | |
1344 | if (IS_ERR_OR_NULL(segs)) |
1345 | goto out; |
1346 | |
1347 | gso_partial = !!(skb_shinfo(segs)->gso_type & SKB_GSO_PARTIAL); |
1348 | |
1349 | skb = segs; |
1350 | do { |
1351 | iph = (struct iphdr *)(skb_mac_header(skb) + nhoff); |
1352 | if (udpfrag) { |
1353 | iph->frag_off = htons(offset >> 3); |
1354 | if (skb->next) |
1355 | iph->frag_off |= htons(IP_MF); |
1356 | offset += skb->len - nhoff - ihl; |
1357 | tot_len = skb->len - nhoff; |
1358 | } else if (skb_is_gso(skb)) { |
1359 | if (!fixedid) { |
1360 | iph->id = htons(id); |
1361 | id += skb_shinfo(skb)->gso_segs; |
1362 | } |
1363 | |
1364 | if (gso_partial) |
1365 | tot_len = skb_shinfo(skb)->gso_size + |
1366 | SKB_GSO_CB(skb)->data_offset + |
1367 | skb->head - (unsigned char *)iph; |
1368 | else |
1369 | tot_len = skb->len - nhoff; |
1370 | } else { |
1371 | if (!fixedid) |
1372 | iph->id = htons(id++); |
1373 | tot_len = skb->len - nhoff; |
1374 | } |
1375 | iph->tot_len = htons(tot_len); |
1376 | ip_send_check(iph); |
1377 | if (encap) |
1378 | skb_reset_inner_headers(skb); |
1379 | skb->network_header = (u8 *)iph - skb->head; |
1380 | skb_reset_mac_len(skb); |
1381 | } while ((skb = skb->next)); |
1382 | |
1383 | out: |
1384 | return segs; |
1385 | } |
1386 | EXPORT_SYMBOL(inet_gso_segment); |
1387 | |
1388 | static struct sk_buff *ipip_gso_segment(struct sk_buff *skb, |
1389 | netdev_features_t features) |
1390 | { |
1391 | if (!(skb_shinfo(skb)->gso_type & SKB_GSO_IPXIP4)) |
1392 | return ERR_PTR(-EINVAL); |
1393 | |
1394 | return inet_gso_segment(skb, features); |
1395 | } |
1396 | |
1397 | INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp4_gro_receive(struct list_head *, |
1398 | struct sk_buff *)); |
1399 | INDIRECT_CALLABLE_DECLARE(struct sk_buff *udp4_gro_receive(struct list_head *, |
1400 | struct sk_buff *)); |
1401 | struct sk_buff *inet_gro_receive(struct list_head *head, struct sk_buff *skb) |
1402 | { |
1403 | const struct net_offload *ops; |
1404 | struct sk_buff *pp = NULL; |
1405 | const struct iphdr *iph; |
1406 | struct sk_buff *p; |
1407 | unsigned int hlen; |
1408 | unsigned int off; |
1409 | unsigned int id; |
1410 | int flush = 1; |
1411 | int proto; |
1412 | |
1413 | off = skb_gro_offset(skb); |
1414 | hlen = off + sizeof(*iph); |
1415 | iph = skb_gro_header_fast(skb, off); |
1416 | if (skb_gro_header_hard(skb, hlen)) { |
1417 | iph = skb_gro_header_slow(skb, hlen, off); |
1418 | if (unlikely(!iph)) |
1419 | goto out; |
1420 | } |
1421 | |
1422 | proto = iph->protocol; |
1423 | |
1424 | rcu_read_lock(); |
1425 | ops = rcu_dereference(inet_offloads[proto]); |
1426 | if (!ops || !ops->callbacks.gro_receive) |
1427 | goto out_unlock; |
1428 | |
1429 | if (*(u8 *)iph != 0x45) |
1430 | goto out_unlock; |
1431 | |
1432 | if (ip_is_fragment(iph)) |
1433 | goto out_unlock; |
1434 | |
1435 | if (unlikely(ip_fast_csum((u8 *)iph, 5))) |
1436 | goto out_unlock; |
1437 | |
1438 | id = ntohl(*(__be32 *)&iph->id); |
1439 | flush = (u16)((ntohl(*(__be32 *)iph) ^ skb_gro_len(skb)) | (id & ~IP_DF)); |
1440 | id >>= 16; |
1441 | |
1442 | list_for_each_entry(p, head, list) { |
1443 | struct iphdr *iph2; |
1444 | u16 flush_id; |
1445 | |
1446 | if (!NAPI_GRO_CB(p)->same_flow) |
1447 | continue; |
1448 | |
1449 | iph2 = (struct iphdr *)(p->data + off); |
1450 | /* The above works because, with the exception of the top |
1451 | * (inner most) layer, we only aggregate pkts with the same |
1452 | * hdr length so all the hdrs we'll need to verify will start |
1453 | * at the same offset. |
1454 | */ |
1455 | if ((iph->protocol ^ iph2->protocol) | |
1456 | ((__force u32)iph->saddr ^ (__force u32)iph2->saddr) | |
1457 | ((__force u32)iph->daddr ^ (__force u32)iph2->daddr)) { |
1458 | NAPI_GRO_CB(p)->same_flow = 0; |
1459 | continue; |
1460 | } |
1461 | |
1462 | /* All fields must match except length and checksum. */ |
1463 | NAPI_GRO_CB(p)->flush |= |
1464 | (iph->ttl ^ iph2->ttl) | |
1465 | (iph->tos ^ iph2->tos) | |
1466 | ((iph->frag_off ^ iph2->frag_off) & htons(IP_DF)); |
1467 | |
1468 | NAPI_GRO_CB(p)->flush |= flush; |
1469 | |
1470 | /* We need to store of the IP ID check to be included later |
1471 | * when we can verify that this packet does in fact belong |
1472 | * to a given flow. |
1473 | */ |
1474 | flush_id = (u16)(id - ntohs(iph2->id)); |
1475 | |
1476 | /* This bit of code makes it much easier for us to identify |
1477 | * the cases where we are doing atomic vs non-atomic IP ID |
1478 | * checks. Specifically an atomic check can return IP ID |
1479 | * values 0 - 0xFFFF, while a non-atomic check can only |
1480 | * return 0 or 0xFFFF. |
1481 | */ |
1482 | if (!NAPI_GRO_CB(p)->is_atomic || |
1483 | !(iph->frag_off & htons(IP_DF))) { |
1484 | flush_id ^= NAPI_GRO_CB(p)->count; |
1485 | flush_id = flush_id ? 0xFFFF : 0; |
1486 | } |
1487 | |
1488 | /* If the previous IP ID value was based on an atomic |
1489 | * datagram we can overwrite the value and ignore it. |
1490 | */ |
1491 | if (NAPI_GRO_CB(skb)->is_atomic) |
1492 | NAPI_GRO_CB(p)->flush_id = flush_id; |
1493 | else |
1494 | NAPI_GRO_CB(p)->flush_id |= flush_id; |
1495 | } |
1496 | |
1497 | NAPI_GRO_CB(skb)->is_atomic = !!(iph->frag_off & htons(IP_DF)); |
1498 | NAPI_GRO_CB(skb)->flush |= flush; |
1499 | skb_set_network_header(skb, off); |
1500 | /* The above will be needed by the transport layer if there is one |
1501 | * immediately following this IP hdr. |
1502 | */ |
1503 | |
1504 | /* Note : No need to call skb_gro_postpull_rcsum() here, |
1505 | * as we already checked checksum over ipv4 header was 0 |
1506 | */ |
1507 | skb_gro_pull(skb, sizeof(*iph)); |
1508 | skb_set_transport_header(skb, skb_gro_offset(skb)); |
1509 | |
1510 | pp = indirect_call_gro_receive(tcp4_gro_receive, udp4_gro_receive, |
1511 | ops->callbacks.gro_receive, head, skb); |
1512 | |
1513 | out_unlock: |
1514 | rcu_read_unlock(); |
1515 | |
1516 | out: |
1517 | skb_gro_flush_final(skb, pp, flush); |
1518 | |
1519 | return pp; |
1520 | } |
1521 | EXPORT_SYMBOL(inet_gro_receive); |
1522 | |
1523 | static struct sk_buff *ipip_gro_receive(struct list_head *head, |
1524 | struct sk_buff *skb) |
1525 | { |
1526 | if (NAPI_GRO_CB(skb)->encap_mark) { |
1527 | NAPI_GRO_CB(skb)->flush = 1; |
1528 | return NULL; |
1529 | } |
1530 | |
1531 | NAPI_GRO_CB(skb)->encap_mark = 1; |
1532 | |
1533 | return inet_gro_receive(head, skb); |
1534 | } |
1535 | |
1536 | #define SECONDS_PER_DAY 86400 |
1537 | |
1538 | /* inet_current_timestamp - Return IP network timestamp |
1539 | * |
1540 | * Return milliseconds since midnight in network byte order. |
1541 | */ |
1542 | __be32 inet_current_timestamp(void) |
1543 | { |
1544 | u32 secs; |
1545 | u32 msecs; |
1546 | struct timespec64 ts; |
1547 | |
1548 | ktime_get_real_ts64(&ts); |
1549 | |
1550 | /* Get secs since midnight. */ |
1551 | (void)div_u64_rem(ts.tv_sec, SECONDS_PER_DAY, &secs); |
1552 | /* Convert to msecs. */ |
1553 | msecs = secs * MSEC_PER_SEC; |
1554 | /* Convert nsec to msec. */ |
1555 | msecs += (u32)ts.tv_nsec / NSEC_PER_MSEC; |
1556 | |
1557 | /* Convert to network byte order. */ |
1558 | return htonl(msecs); |
1559 | } |
1560 | EXPORT_SYMBOL(inet_current_timestamp); |
1561 | |
1562 | int inet_recv_error(struct sock *sk, struct msghdr *msg, int len, int *addr_len) |
1563 | { |
1564 | if (sk->sk_family == AF_INET) |
1565 | return ip_recv_error(sk, msg, len, addr_len); |
1566 | #if IS_ENABLED(CONFIG_IPV6) |
1567 | if (sk->sk_family == AF_INET6) |
1568 | return pingv6_ops.ipv6_recv_error(sk, msg, len, addr_len); |
1569 | #endif |
1570 | return -EINVAL; |
1571 | } |
1572 | |
1573 | INDIRECT_CALLABLE_DECLARE(int tcp4_gro_complete(struct sk_buff *, int)); |
1574 | INDIRECT_CALLABLE_DECLARE(int udp4_gro_complete(struct sk_buff *, int)); |
1575 | int inet_gro_complete(struct sk_buff *skb, int nhoff) |
1576 | { |
1577 | __be16 newlen = htons(skb->len - nhoff); |
1578 | struct iphdr *iph = (struct iphdr *)(skb->data + nhoff); |
1579 | const struct net_offload *ops; |
1580 | int proto = iph->protocol; |
1581 | int err = -ENOSYS; |
1582 | |
1583 | if (skb->encapsulation) { |
1584 | skb_set_inner_protocol(skb, cpu_to_be16(ETH_P_IP)); |
1585 | skb_set_inner_network_header(skb, nhoff); |
1586 | } |
1587 | |
1588 | csum_replace2(&iph->check, iph->tot_len, newlen); |
1589 | iph->tot_len = newlen; |
1590 | |
1591 | rcu_read_lock(); |
1592 | ops = rcu_dereference(inet_offloads[proto]); |
1593 | if (WARN_ON(!ops || !ops->callbacks.gro_complete)) |
1594 | goto out_unlock; |
1595 | |
1596 | /* Only need to add sizeof(*iph) to get to the next hdr below |
1597 | * because any hdr with option will have been flushed in |
1598 | * inet_gro_receive(). |
1599 | */ |
1600 | err = INDIRECT_CALL_2(ops->callbacks.gro_complete, |
1601 | tcp4_gro_complete, udp4_gro_complete, |
1602 | skb, nhoff + sizeof(*iph)); |
1603 | |
1604 | out_unlock: |
1605 | rcu_read_unlock(); |
1606 | |
1607 | return err; |
1608 | } |
1609 | EXPORT_SYMBOL(inet_gro_complete); |
1610 | |
1611 | static int ipip_gro_complete(struct sk_buff *skb, int nhoff) |
1612 | { |
1613 | skb->encapsulation = 1; |
1614 | skb_shinfo(skb)->gso_type |= SKB_GSO_IPXIP4; |
1615 | return inet_gro_complete(skb, nhoff); |
1616 | } |
1617 | |
1618 | int inet_ctl_sock_create(struct sock **sk, unsigned short family, |
1619 | unsigned short type, unsigned char protocol, |
1620 | struct net *net) |
1621 | { |
1622 | struct socket *sock; |
1623 | int rc = sock_create_kern(net, family, type, protocol, &sock); |
1624 | |
1625 | if (rc == 0) { |
1626 | *sk = sock->sk; |
1627 | (*sk)->sk_allocation = GFP_ATOMIC; |
1628 | /* |
1629 | * Unhash it so that IP input processing does not even see it, |
1630 | * we do not wish this socket to see incoming packets. |
1631 | */ |
1632 | (*sk)->sk_prot->unhash(*sk); |
1633 | } |
1634 | return rc; |
1635 | } |
1636 | EXPORT_SYMBOL_GPL(inet_ctl_sock_create); |
1637 | |
1638 | u64 snmp_get_cpu_field(void __percpu *mib, int cpu, int offt) |
1639 | { |
1640 | return *(((unsigned long *)per_cpu_ptr(mib, cpu)) + offt); |
1641 | } |
1642 | EXPORT_SYMBOL_GPL(snmp_get_cpu_field); |
1643 | |
1644 | unsigned long snmp_fold_field(void __percpu *mib, int offt) |
1645 | { |
1646 | unsigned long res = 0; |
1647 | int i; |
1648 | |
1649 | for_each_possible_cpu(i) |
1650 | res += snmp_get_cpu_field(mib, i, offt); |
1651 | return res; |
1652 | } |
1653 | EXPORT_SYMBOL_GPL(snmp_fold_field); |
1654 | |
1655 | #if BITS_PER_LONG==32 |
1656 | |
1657 | u64 snmp_get_cpu_field64(void __percpu *mib, int cpu, int offt, |
1658 | size_t syncp_offset) |
1659 | { |
1660 | void *bhptr; |
1661 | struct u64_stats_sync *syncp; |
1662 | u64 v; |
1663 | unsigned int start; |
1664 | |
1665 | bhptr = per_cpu_ptr(mib, cpu); |
1666 | syncp = (struct u64_stats_sync *)(bhptr + syncp_offset); |
1667 | do { |
1668 | start = u64_stats_fetch_begin_irq(syncp); |
1669 | v = *(((u64 *)bhptr) + offt); |
1670 | } while (u64_stats_fetch_retry_irq(syncp, start)); |
1671 | |
1672 | return v; |
1673 | } |
1674 | EXPORT_SYMBOL_GPL(snmp_get_cpu_field64); |
1675 | |
1676 | u64 snmp_fold_field64(void __percpu *mib, int offt, size_t syncp_offset) |
1677 | { |
1678 | u64 res = 0; |
1679 | int cpu; |
1680 | |
1681 | for_each_possible_cpu(cpu) { |
1682 | res += snmp_get_cpu_field64(mib, cpu, offt, syncp_offset); |
1683 | } |
1684 | return res; |
1685 | } |
1686 | EXPORT_SYMBOL_GPL(snmp_fold_field64); |
1687 | #endif |
1688 | |
1689 | #ifdef CONFIG_IP_MULTICAST |
1690 | static const struct net_protocol igmp_protocol = { |
1691 | .handler = igmp_rcv, |
1692 | .netns_ok = 1, |
1693 | }; |
1694 | #endif |
1695 | |
1696 | /* thinking of making this const? Don't. |
1697 | * early_demux can change based on sysctl. |
1698 | */ |
1699 | static struct net_protocol tcp_protocol = { |
1700 | .early_demux = tcp_v4_early_demux, |
1701 | .early_demux_handler = tcp_v4_early_demux, |
1702 | .handler = tcp_v4_rcv, |
1703 | .err_handler = tcp_v4_err, |
1704 | .no_policy = 1, |
1705 | .netns_ok = 1, |
1706 | .icmp_strict_tag_validation = 1, |
1707 | }; |
1708 | |
1709 | /* thinking of making this const? Don't. |
1710 | * early_demux can change based on sysctl. |
1711 | */ |
1712 | static struct net_protocol udp_protocol = { |
1713 | .early_demux = udp_v4_early_demux, |
1714 | .early_demux_handler = udp_v4_early_demux, |
1715 | .handler = udp_rcv, |
1716 | .err_handler = udp_err, |
1717 | .no_policy = 1, |
1718 | .netns_ok = 1, |
1719 | }; |
1720 | |
1721 | static const struct net_protocol icmp_protocol = { |
1722 | .handler = icmp_rcv, |
1723 | .err_handler = icmp_err, |
1724 | .no_policy = 1, |
1725 | .netns_ok = 1, |
1726 | }; |
1727 | |
1728 | static __net_init int ipv4_mib_init_net(struct net *net) |
1729 | { |
1730 | int i; |
1731 | |
1732 | net->mib.tcp_statistics = alloc_percpu(struct tcp_mib); |
1733 | if (!net->mib.tcp_statistics) |
1734 | goto err_tcp_mib; |
1735 | net->mib.ip_statistics = alloc_percpu(struct ipstats_mib); |
1736 | if (!net->mib.ip_statistics) |
1737 | goto err_ip_mib; |
1738 | |
1739 | for_each_possible_cpu(i) { |
1740 | struct ipstats_mib *af_inet_stats; |
1741 | af_inet_stats = per_cpu_ptr(net->mib.ip_statistics, i); |
1742 | u64_stats_init(&af_inet_stats->syncp); |
1743 | } |
1744 | |
1745 | net->mib.net_statistics = alloc_percpu(struct linux_mib); |
1746 | if (!net->mib.net_statistics) |
1747 | goto err_net_mib; |
1748 | net->mib.udp_statistics = alloc_percpu(struct udp_mib); |
1749 | if (!net->mib.udp_statistics) |
1750 | goto err_udp_mib; |
1751 | net->mib.udplite_statistics = alloc_percpu(struct udp_mib); |
1752 | if (!net->mib.udplite_statistics) |
1753 | goto err_udplite_mib; |
1754 | net->mib.icmp_statistics = alloc_percpu(struct icmp_mib); |
1755 | if (!net->mib.icmp_statistics) |
1756 | goto err_icmp_mib; |
1757 | net->mib.icmpmsg_statistics = kzalloc(sizeof(struct icmpmsg_mib), |
1758 | GFP_KERNEL); |
1759 | if (!net->mib.icmpmsg_statistics) |
1760 | goto err_icmpmsg_mib; |
1761 | |
1762 | tcp_mib_init(net); |
1763 | return 0; |
1764 | |
1765 | err_icmpmsg_mib: |
1766 | free_percpu(net->mib.icmp_statistics); |
1767 | err_icmp_mib: |
1768 | free_percpu(net->mib.udplite_statistics); |
1769 | err_udplite_mib: |
1770 | free_percpu(net->mib.udp_statistics); |
1771 | err_udp_mib: |
1772 | free_percpu(net->mib.net_statistics); |
1773 | err_net_mib: |
1774 | free_percpu(net->mib.ip_statistics); |
1775 | err_ip_mib: |
1776 | free_percpu(net->mib.tcp_statistics); |
1777 | err_tcp_mib: |
1778 | return -ENOMEM; |
1779 | } |
1780 | |
1781 | static __net_exit void ipv4_mib_exit_net(struct net *net) |
1782 | { |
1783 | kfree(net->mib.icmpmsg_statistics); |
1784 | free_percpu(net->mib.icmp_statistics); |
1785 | free_percpu(net->mib.udplite_statistics); |
1786 | free_percpu(net->mib.udp_statistics); |
1787 | free_percpu(net->mib.net_statistics); |
1788 | free_percpu(net->mib.ip_statistics); |
1789 | free_percpu(net->mib.tcp_statistics); |
1790 | } |
1791 | |
1792 | static __net_initdata struct pernet_operations ipv4_mib_ops = { |
1793 | .init = ipv4_mib_init_net, |
1794 | .exit = ipv4_mib_exit_net, |
1795 | }; |
1796 | |
1797 | static int __init init_ipv4_mibs(void) |
1798 | { |
1799 | return register_pernet_subsys(&ipv4_mib_ops); |
1800 | } |
1801 | |
1802 | static __net_init int inet_init_net(struct net *net) |
1803 | { |
1804 | /* |
1805 | * Set defaults for local port range |
1806 | */ |
1807 | seqlock_init(&net->ipv4.ip_local_ports.lock); |
1808 | net->ipv4.ip_local_ports.range[0] = 32768; |
1809 | net->ipv4.ip_local_ports.range[1] = 60999; |
1810 | |
1811 | seqlock_init(&net->ipv4.ping_group_range.lock); |
1812 | /* |
1813 | * Sane defaults - nobody may create ping sockets. |
1814 | * Boot scripts should set this to distro-specific group. |
1815 | */ |
1816 | net->ipv4.ping_group_range.range[0] = make_kgid(&init_user_ns, 1); |
1817 | net->ipv4.ping_group_range.range[1] = make_kgid(&init_user_ns, 0); |
1818 | |
1819 | /* Default values for sysctl-controlled parameters. |
1820 | * We set them here, in case sysctl is not compiled. |
1821 | */ |
1822 | net->ipv4.sysctl_ip_default_ttl = IPDEFTTL; |
1823 | net->ipv4.sysctl_ip_fwd_update_priority = 1; |
1824 | net->ipv4.sysctl_ip_dynaddr = 0; |
1825 | net->ipv4.sysctl_ip_early_demux = 1; |
1826 | net->ipv4.sysctl_udp_early_demux = 1; |
1827 | net->ipv4.sysctl_tcp_early_demux = 1; |
1828 | #ifdef CONFIG_SYSCTL |
1829 | net->ipv4.sysctl_ip_prot_sock = PROT_SOCK; |
1830 | #endif |
1831 | |
1832 | /* Some igmp sysctl, whose values are always used */ |
1833 | net->ipv4.sysctl_igmp_max_memberships = 20; |
1834 | net->ipv4.sysctl_igmp_max_msf = 10; |
1835 | /* IGMP reports for link-local multicast groups are enabled by default */ |
1836 | net->ipv4.sysctl_igmp_llm_reports = 1; |
1837 | net->ipv4.sysctl_igmp_qrv = 2; |
1838 | |
1839 | return 0; |
1840 | } |
1841 | |
1842 | static __net_exit void inet_exit_net(struct net *net) |
1843 | { |
1844 | } |
1845 | |
1846 | static __net_initdata struct pernet_operations af_inet_ops = { |
1847 | .init = inet_init_net, |
1848 | .exit = inet_exit_net, |
1849 | }; |
1850 | |
1851 | static int __init init_inet_pernet_ops(void) |
1852 | { |
1853 | return register_pernet_subsys(&af_inet_ops); |
1854 | } |
1855 | |
1856 | static int ipv4_proc_init(void); |
1857 | |
1858 | /* |
1859 | * IP protocol layer initialiser |
1860 | */ |
1861 | |
1862 | static struct packet_offload ip_packet_offload __read_mostly = { |
1863 | .type = cpu_to_be16(ETH_P_IP), |
1864 | .callbacks = { |
1865 | .gso_segment = inet_gso_segment, |
1866 | .gro_receive = inet_gro_receive, |
1867 | .gro_complete = inet_gro_complete, |
1868 | }, |
1869 | }; |
1870 | |
1871 | static const struct net_offload ipip_offload = { |
1872 | .callbacks = { |
1873 | .gso_segment = ipip_gso_segment, |
1874 | .gro_receive = ipip_gro_receive, |
1875 | .gro_complete = ipip_gro_complete, |
1876 | }, |
1877 | }; |
1878 | |
1879 | static int __init ipip_offload_init(void) |
1880 | { |
1881 | return inet_add_offload(&ipip_offload, IPPROTO_IPIP); |
1882 | } |
1883 | |
1884 | static int __init ipv4_offload_init(void) |
1885 | { |
1886 | /* |
1887 | * Add offloads |
1888 | */ |
1889 | if (udpv4_offload_init() < 0) |
1890 | pr_crit("%s: Cannot add UDP protocol offload\n" , __func__); |
1891 | if (tcpv4_offload_init() < 0) |
1892 | pr_crit("%s: Cannot add TCP protocol offload\n" , __func__); |
1893 | if (ipip_offload_init() < 0) |
1894 | pr_crit("%s: Cannot add IPIP protocol offload\n" , __func__); |
1895 | |
1896 | dev_add_offload(&ip_packet_offload); |
1897 | return 0; |
1898 | } |
1899 | |
1900 | fs_initcall(ipv4_offload_init); |
1901 | |
1902 | static struct packet_type ip_packet_type __read_mostly = { |
1903 | .type = cpu_to_be16(ETH_P_IP), |
1904 | .func = ip_rcv, |
1905 | .list_func = ip_list_rcv, |
1906 | }; |
1907 | |
1908 | static int __init inet_init(void) |
1909 | { |
1910 | struct inet_protosw *q; |
1911 | struct list_head *r; |
1912 | int rc = -EINVAL; |
1913 | |
1914 | sock_skb_cb_check_size(sizeof(struct inet_skb_parm)); |
1915 | |
1916 | rc = proto_register(&tcp_prot, 1); |
1917 | if (rc) |
1918 | goto out; |
1919 | |
1920 | rc = proto_register(&udp_prot, 1); |
1921 | if (rc) |
1922 | goto out_unregister_tcp_proto; |
1923 | |
1924 | rc = proto_register(&raw_prot, 1); |
1925 | if (rc) |
1926 | goto out_unregister_udp_proto; |
1927 | |
1928 | rc = proto_register(&ping_prot, 1); |
1929 | if (rc) |
1930 | goto out_unregister_raw_proto; |
1931 | |
1932 | /* |
1933 | * Tell SOCKET that we are alive... |
1934 | */ |
1935 | |
1936 | (void)sock_register(&inet_family_ops); |
1937 | |
1938 | #ifdef CONFIG_SYSCTL |
1939 | ip_static_sysctl_init(); |
1940 | #endif |
1941 | |
1942 | /* |
1943 | * Add all the base protocols. |
1944 | */ |
1945 | |
1946 | if (inet_add_protocol(&icmp_protocol, IPPROTO_ICMP) < 0) |
1947 | pr_crit("%s: Cannot add ICMP protocol\n" , __func__); |
1948 | if (inet_add_protocol(&udp_protocol, IPPROTO_UDP) < 0) |
1949 | pr_crit("%s: Cannot add UDP protocol\n" , __func__); |
1950 | if (inet_add_protocol(&tcp_protocol, IPPROTO_TCP) < 0) |
1951 | pr_crit("%s: Cannot add TCP protocol\n" , __func__); |
1952 | #ifdef CONFIG_IP_MULTICAST |
1953 | if (inet_add_protocol(&igmp_protocol, IPPROTO_IGMP) < 0) |
1954 | pr_crit("%s: Cannot add IGMP protocol\n" , __func__); |
1955 | #endif |
1956 | |
1957 | /* Register the socket-side information for inet_create. */ |
1958 | for (r = &inetsw[0]; r < &inetsw[SOCK_MAX]; ++r) |
1959 | INIT_LIST_HEAD(r); |
1960 | |
1961 | for (q = inetsw_array; q < &inetsw_array[INETSW_ARRAY_LEN]; ++q) |
1962 | inet_register_protosw(q); |
1963 | |
1964 | /* |
1965 | * Set the ARP module up |
1966 | */ |
1967 | |
1968 | arp_init(); |
1969 | |
1970 | /* |
1971 | * Set the IP module up |
1972 | */ |
1973 | |
1974 | ip_init(); |
1975 | |
1976 | /* Setup TCP slab cache for open requests. */ |
1977 | tcp_init(); |
1978 | |
1979 | /* Setup UDP memory threshold */ |
1980 | udp_init(); |
1981 | |
1982 | /* Add UDP-Lite (RFC 3828) */ |
1983 | udplite4_register(); |
1984 | |
1985 | raw_init(); |
1986 | |
1987 | ping_init(); |
1988 | |
1989 | /* |
1990 | * Set the ICMP layer up |
1991 | */ |
1992 | |
1993 | if (icmp_init() < 0) |
1994 | panic("Failed to create the ICMP control socket.\n" ); |
1995 | |
1996 | /* |
1997 | * Initialise the multicast router |
1998 | */ |
1999 | #if defined(CONFIG_IP_MROUTE) |
2000 | if (ip_mr_init()) |
2001 | pr_crit("%s: Cannot init ipv4 mroute\n" , __func__); |
2002 | #endif |
2003 | |
2004 | if (init_inet_pernet_ops()) |
2005 | pr_crit("%s: Cannot init ipv4 inet pernet ops\n" , __func__); |
2006 | /* |
2007 | * Initialise per-cpu ipv4 mibs |
2008 | */ |
2009 | |
2010 | if (init_ipv4_mibs()) |
2011 | pr_crit("%s: Cannot init ipv4 mibs\n" , __func__); |
2012 | |
2013 | ipv4_proc_init(); |
2014 | |
2015 | ipfrag_init(); |
2016 | |
2017 | dev_add_pack(&ip_packet_type); |
2018 | |
2019 | ip_tunnel_core_init(); |
2020 | |
2021 | rc = 0; |
2022 | out: |
2023 | return rc; |
2024 | out_unregister_raw_proto: |
2025 | proto_unregister(&raw_prot); |
2026 | out_unregister_udp_proto: |
2027 | proto_unregister(&udp_prot); |
2028 | out_unregister_tcp_proto: |
2029 | proto_unregister(&tcp_prot); |
2030 | goto out; |
2031 | } |
2032 | |
2033 | fs_initcall(inet_init); |
2034 | |
2035 | /* ------------------------------------------------------------------------ */ |
2036 | |
2037 | #ifdef CONFIG_PROC_FS |
2038 | static int __init ipv4_proc_init(void) |
2039 | { |
2040 | int rc = 0; |
2041 | |
2042 | if (raw_proc_init()) |
2043 | goto out_raw; |
2044 | if (tcp4_proc_init()) |
2045 | goto out_tcp; |
2046 | if (udp4_proc_init()) |
2047 | goto out_udp; |
2048 | if (ping_proc_init()) |
2049 | goto out_ping; |
2050 | if (ip_misc_proc_init()) |
2051 | goto out_misc; |
2052 | out: |
2053 | return rc; |
2054 | out_misc: |
2055 | ping_proc_exit(); |
2056 | out_ping: |
2057 | udp4_proc_exit(); |
2058 | out_udp: |
2059 | tcp4_proc_exit(); |
2060 | out_tcp: |
2061 | raw_proc_exit(); |
2062 | out_raw: |
2063 | rc = -ENOMEM; |
2064 | goto out; |
2065 | } |
2066 | |
2067 | #else /* CONFIG_PROC_FS */ |
2068 | static int __init ipv4_proc_init(void) |
2069 | { |
2070 | return 0; |
2071 | } |
2072 | #endif /* CONFIG_PROC_FS */ |
2073 | |