1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 *
4 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
5 * & Swedish University of Agricultural Sciences.
6 *
7 * Jens Laas <jens.laas@data.slu.se> Swedish University of
8 * Agricultural Sciences.
9 *
10 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
11 *
12 * This work is based on the LPC-trie which is originally described in:
13 *
14 * An experimental study of compression methods for dynamic tries
15 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
16 * https://www.csc.kth.se/~snilsson/software/dyntrie2/
17 *
18 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
19 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
20 *
21 * Code from fib_hash has been reused which includes the following header:
22 *
23 * INET An implementation of the TCP/IP protocol suite for the LINUX
24 * operating system. INET is implemented using the BSD Socket
25 * interface as the means of communication with the user level.
26 *
27 * IPv4 FIB: lookup engine and maintenance routines.
28 *
29 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
30 *
31 * Substantial contributions to this work comes from:
32 *
33 * David S. Miller, <davem@davemloft.net>
34 * Stephen Hemminger <shemminger@osdl.org>
35 * Paul E. McKenney <paulmck@us.ibm.com>
36 * Patrick McHardy <kaber@trash.net>
37 */
38#include <linux/cache.h>
39#include <linux/uaccess.h>
40#include <linux/bitops.h>
41#include <linux/types.h>
42#include <linux/kernel.h>
43#include <linux/mm.h>
44#include <linux/string.h>
45#include <linux/socket.h>
46#include <linux/sockios.h>
47#include <linux/errno.h>
48#include <linux/in.h>
49#include <linux/inet.h>
50#include <linux/inetdevice.h>
51#include <linux/netdevice.h>
52#include <linux/if_arp.h>
53#include <linux/proc_fs.h>
54#include <linux/rcupdate.h>
55#include <linux/skbuff.h>
56#include <linux/netlink.h>
57#include <linux/init.h>
58#include <linux/list.h>
59#include <linux/slab.h>
60#include <linux/export.h>
61#include <linux/vmalloc.h>
62#include <linux/notifier.h>
63#include <net/net_namespace.h>
64#include <net/inet_dscp.h>
65#include <net/ip.h>
66#include <net/protocol.h>
67#include <net/route.h>
68#include <net/tcp.h>
69#include <net/sock.h>
70#include <net/ip_fib.h>
71#include <net/fib_notifier.h>
72#include <trace/events/fib.h>
73#include "fib_lookup.h"
74
75static int call_fib_entry_notifier(struct notifier_block *nb,
76 enum fib_event_type event_type, u32 dst,
77 int dst_len, struct fib_alias *fa,
78 struct netlink_ext_ack *extack)
79{
80 struct fib_entry_notifier_info info = {
81 .info.extack = extack,
82 .dst = dst,
83 .dst_len = dst_len,
84 .fi = fa->fa_info,
85 .dscp = fa->fa_dscp,
86 .type = fa->fa_type,
87 .tb_id = fa->tb_id,
88 };
89 return call_fib4_notifier(nb, event_type, info: &info.info);
90}
91
92static int call_fib_entry_notifiers(struct net *net,
93 enum fib_event_type event_type, u32 dst,
94 int dst_len, struct fib_alias *fa,
95 struct netlink_ext_ack *extack)
96{
97 struct fib_entry_notifier_info info = {
98 .info.extack = extack,
99 .dst = dst,
100 .dst_len = dst_len,
101 .fi = fa->fa_info,
102 .dscp = fa->fa_dscp,
103 .type = fa->fa_type,
104 .tb_id = fa->tb_id,
105 };
106 return call_fib4_notifiers(net, event_type, info: &info.info);
107}
108
109#define MAX_STAT_DEPTH 32
110
111#define KEYLENGTH (8*sizeof(t_key))
112#define KEY_MAX ((t_key)~0)
113
114typedef unsigned int t_key;
115
116#define IS_TRIE(n) ((n)->pos >= KEYLENGTH)
117#define IS_TNODE(n) ((n)->bits)
118#define IS_LEAF(n) (!(n)->bits)
119
120struct key_vector {
121 t_key key;
122 unsigned char pos; /* 2log(KEYLENGTH) bits needed */
123 unsigned char bits; /* 2log(KEYLENGTH) bits needed */
124 unsigned char slen;
125 union {
126 /* This list pointer if valid if (pos | bits) == 0 (LEAF) */
127 struct hlist_head leaf;
128 /* This array is valid if (pos | bits) > 0 (TNODE) */
129 DECLARE_FLEX_ARRAY(struct key_vector __rcu *, tnode);
130 };
131};
132
133struct tnode {
134 struct rcu_head rcu;
135 t_key empty_children; /* KEYLENGTH bits needed */
136 t_key full_children; /* KEYLENGTH bits needed */
137 struct key_vector __rcu *parent;
138 struct key_vector kv[1];
139#define tn_bits kv[0].bits
140};
141
142#define TNODE_SIZE(n) offsetof(struct tnode, kv[0].tnode[n])
143#define LEAF_SIZE TNODE_SIZE(1)
144
145#ifdef CONFIG_IP_FIB_TRIE_STATS
146struct trie_use_stats {
147 unsigned int gets;
148 unsigned int backtrack;
149 unsigned int semantic_match_passed;
150 unsigned int semantic_match_miss;
151 unsigned int null_node_hit;
152 unsigned int resize_node_skipped;
153};
154#endif
155
156struct trie_stat {
157 unsigned int totdepth;
158 unsigned int maxdepth;
159 unsigned int tnodes;
160 unsigned int leaves;
161 unsigned int nullpointers;
162 unsigned int prefixes;
163 unsigned int nodesizes[MAX_STAT_DEPTH];
164};
165
166struct trie {
167 struct key_vector kv[1];
168#ifdef CONFIG_IP_FIB_TRIE_STATS
169 struct trie_use_stats __percpu *stats;
170#endif
171};
172
173static struct key_vector *resize(struct trie *t, struct key_vector *tn);
174static unsigned int tnode_free_size;
175
176/*
177 * synchronize_rcu after call_rcu for outstanding dirty memory; it should be
178 * especially useful before resizing the root node with PREEMPT_NONE configs;
179 * the value was obtained experimentally, aiming to avoid visible slowdown.
180 */
181unsigned int sysctl_fib_sync_mem = 512 * 1024;
182unsigned int sysctl_fib_sync_mem_min = 64 * 1024;
183unsigned int sysctl_fib_sync_mem_max = 64 * 1024 * 1024;
184
185static struct kmem_cache *fn_alias_kmem __ro_after_init;
186static struct kmem_cache *trie_leaf_kmem __ro_after_init;
187
188static inline struct tnode *tn_info(struct key_vector *kv)
189{
190 return container_of(kv, struct tnode, kv[0]);
191}
192
193/* caller must hold RTNL */
194#define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
195#define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
196
197/* caller must hold RCU read lock or RTNL */
198#define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
199#define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
200
201/* wrapper for rcu_assign_pointer */
202static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
203{
204 if (n)
205 rcu_assign_pointer(tn_info(n)->parent, tp);
206}
207
208#define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
209
210/* This provides us with the number of children in this node, in the case of a
211 * leaf this will return 0 meaning none of the children are accessible.
212 */
213static inline unsigned long child_length(const struct key_vector *tn)
214{
215 return (1ul << tn->bits) & ~(1ul);
216}
217
218#define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)
219
220static inline unsigned long get_index(t_key key, struct key_vector *kv)
221{
222 unsigned long index = key ^ kv->key;
223
224 if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos))
225 return 0;
226
227 return index >> kv->pos;
228}
229
230/* To understand this stuff, an understanding of keys and all their bits is
231 * necessary. Every node in the trie has a key associated with it, but not
232 * all of the bits in that key are significant.
233 *
234 * Consider a node 'n' and its parent 'tp'.
235 *
236 * If n is a leaf, every bit in its key is significant. Its presence is
237 * necessitated by path compression, since during a tree traversal (when
238 * searching for a leaf - unless we are doing an insertion) we will completely
239 * ignore all skipped bits we encounter. Thus we need to verify, at the end of
240 * a potentially successful search, that we have indeed been walking the
241 * correct key path.
242 *
243 * Note that we can never "miss" the correct key in the tree if present by
244 * following the wrong path. Path compression ensures that segments of the key
245 * that are the same for all keys with a given prefix are skipped, but the
246 * skipped part *is* identical for each node in the subtrie below the skipped
247 * bit! trie_insert() in this implementation takes care of that.
248 *
249 * if n is an internal node - a 'tnode' here, the various parts of its key
250 * have many different meanings.
251 *
252 * Example:
253 * _________________________________________________________________
254 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
255 * -----------------------------------------------------------------
256 * 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
257 *
258 * _________________________________________________________________
259 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
260 * -----------------------------------------------------------------
261 * 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
262 *
263 * tp->pos = 22
264 * tp->bits = 3
265 * n->pos = 13
266 * n->bits = 4
267 *
268 * First, let's just ignore the bits that come before the parent tp, that is
269 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
270 * point we do not use them for anything.
271 *
272 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
273 * index into the parent's child array. That is, they will be used to find
274 * 'n' among tp's children.
275 *
276 * The bits from (n->pos + n->bits) to (tp->pos - 1) - "S" - are skipped bits
277 * for the node n.
278 *
279 * All the bits we have seen so far are significant to the node n. The rest
280 * of the bits are really not needed or indeed known in n->key.
281 *
282 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
283 * n's child array, and will of course be different for each child.
284 *
285 * The rest of the bits, from 0 to (n->pos -1) - "u" - are completely unknown
286 * at this point.
287 */
288
289static const int halve_threshold = 25;
290static const int inflate_threshold = 50;
291static const int halve_threshold_root = 15;
292static const int inflate_threshold_root = 30;
293
294static void __alias_free_mem(struct rcu_head *head)
295{
296 struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
297 kmem_cache_free(s: fn_alias_kmem, objp: fa);
298}
299
300static inline void alias_free_mem_rcu(struct fib_alias *fa)
301{
302 call_rcu(head: &fa->rcu, func: __alias_free_mem);
303}
304
305#define TNODE_VMALLOC_MAX \
306 ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
307
308static void __node_free_rcu(struct rcu_head *head)
309{
310 struct tnode *n = container_of(head, struct tnode, rcu);
311
312 if (!n->tn_bits)
313 kmem_cache_free(s: trie_leaf_kmem, objp: n);
314 else
315 kvfree(addr: n);
316}
317
318#define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
319
320static struct tnode *tnode_alloc(int bits)
321{
322 size_t size;
323
324 /* verify bits is within bounds */
325 if (bits > TNODE_VMALLOC_MAX)
326 return NULL;
327
328 /* determine size and verify it is non-zero and didn't overflow */
329 size = TNODE_SIZE(1ul << bits);
330
331 if (size <= PAGE_SIZE)
332 return kzalloc(size, GFP_KERNEL);
333 else
334 return vzalloc(size);
335}
336
337static inline void empty_child_inc(struct key_vector *n)
338{
339 tn_info(kv: n)->empty_children++;
340
341 if (!tn_info(kv: n)->empty_children)
342 tn_info(kv: n)->full_children++;
343}
344
345static inline void empty_child_dec(struct key_vector *n)
346{
347 if (!tn_info(kv: n)->empty_children)
348 tn_info(kv: n)->full_children--;
349
350 tn_info(kv: n)->empty_children--;
351}
352
353static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
354{
355 struct key_vector *l;
356 struct tnode *kv;
357
358 kv = kmem_cache_alloc(cachep: trie_leaf_kmem, GFP_KERNEL);
359 if (!kv)
360 return NULL;
361
362 /* initialize key vector */
363 l = kv->kv;
364 l->key = key;
365 l->pos = 0;
366 l->bits = 0;
367 l->slen = fa->fa_slen;
368
369 /* link leaf to fib alias */
370 INIT_HLIST_HEAD(&l->leaf);
371 hlist_add_head(n: &fa->fa_list, h: &l->leaf);
372
373 return l;
374}
375
376static struct key_vector *tnode_new(t_key key, int pos, int bits)
377{
378 unsigned int shift = pos + bits;
379 struct key_vector *tn;
380 struct tnode *tnode;
381
382 /* verify bits and pos their msb bits clear and values are valid */
383 BUG_ON(!bits || (shift > KEYLENGTH));
384
385 tnode = tnode_alloc(bits);
386 if (!tnode)
387 return NULL;
388
389 pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0),
390 sizeof(struct key_vector *) << bits);
391
392 if (bits == KEYLENGTH)
393 tnode->full_children = 1;
394 else
395 tnode->empty_children = 1ul << bits;
396
397 tn = tnode->kv;
398 tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
399 tn->pos = pos;
400 tn->bits = bits;
401 tn->slen = pos;
402
403 return tn;
404}
405
406/* Check whether a tnode 'n' is "full", i.e. it is an internal node
407 * and no bits are skipped. See discussion in dyntree paper p. 6
408 */
409static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
410{
411 return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
412}
413
414/* Add a child at position i overwriting the old value.
415 * Update the value of full_children and empty_children.
416 */
417static void put_child(struct key_vector *tn, unsigned long i,
418 struct key_vector *n)
419{
420 struct key_vector *chi = get_child(tn, i);
421 int isfull, wasfull;
422
423 BUG_ON(i >= child_length(tn));
424
425 /* update emptyChildren, overflow into fullChildren */
426 if (!n && chi)
427 empty_child_inc(n: tn);
428 if (n && !chi)
429 empty_child_dec(n: tn);
430
431 /* update fullChildren */
432 wasfull = tnode_full(tn, n: chi);
433 isfull = tnode_full(tn, n);
434
435 if (wasfull && !isfull)
436 tn_info(kv: tn)->full_children--;
437 else if (!wasfull && isfull)
438 tn_info(kv: tn)->full_children++;
439
440 if (n && (tn->slen < n->slen))
441 tn->slen = n->slen;
442
443 rcu_assign_pointer(tn->tnode[i], n);
444}
445
446static void update_children(struct key_vector *tn)
447{
448 unsigned long i;
449
450 /* update all of the child parent pointers */
451 for (i = child_length(tn); i;) {
452 struct key_vector *inode = get_child(tn, --i);
453
454 if (!inode)
455 continue;
456
457 /* Either update the children of a tnode that
458 * already belongs to us or update the child
459 * to point to ourselves.
460 */
461 if (node_parent(inode) == tn)
462 update_children(tn: inode);
463 else
464 node_set_parent(n: inode, tp: tn);
465 }
466}
467
468static inline void put_child_root(struct key_vector *tp, t_key key,
469 struct key_vector *n)
470{
471 if (IS_TRIE(tp))
472 rcu_assign_pointer(tp->tnode[0], n);
473 else
474 put_child(tn: tp, i: get_index(key, kv: tp), n);
475}
476
477static inline void tnode_free_init(struct key_vector *tn)
478{
479 tn_info(kv: tn)->rcu.next = NULL;
480}
481
482static inline void tnode_free_append(struct key_vector *tn,
483 struct key_vector *n)
484{
485 tn_info(kv: n)->rcu.next = tn_info(kv: tn)->rcu.next;
486 tn_info(kv: tn)->rcu.next = &tn_info(kv: n)->rcu;
487}
488
489static void tnode_free(struct key_vector *tn)
490{
491 struct callback_head *head = &tn_info(kv: tn)->rcu;
492
493 while (head) {
494 head = head->next;
495 tnode_free_size += TNODE_SIZE(1ul << tn->bits);
496 node_free(tn);
497
498 tn = container_of(head, struct tnode, rcu)->kv;
499 }
500
501 if (tnode_free_size >= READ_ONCE(sysctl_fib_sync_mem)) {
502 tnode_free_size = 0;
503 synchronize_rcu();
504 }
505}
506
507static struct key_vector *replace(struct trie *t,
508 struct key_vector *oldtnode,
509 struct key_vector *tn)
510{
511 struct key_vector *tp = node_parent(oldtnode);
512 unsigned long i;
513
514 /* setup the parent pointer out of and back into this node */
515 NODE_INIT_PARENT(tn, tp);
516 put_child_root(tp, key: tn->key, n: tn);
517
518 /* update all of the child parent pointers */
519 update_children(tn);
520
521 /* all pointers should be clean so we are done */
522 tnode_free(tn: oldtnode);
523
524 /* resize children now that oldtnode is freed */
525 for (i = child_length(tn); i;) {
526 struct key_vector *inode = get_child(tn, --i);
527
528 /* resize child node */
529 if (tnode_full(tn, n: inode))
530 tn = resize(t, tn: inode);
531 }
532
533 return tp;
534}
535
536static struct key_vector *inflate(struct trie *t,
537 struct key_vector *oldtnode)
538{
539 struct key_vector *tn;
540 unsigned long i;
541 t_key m;
542
543 pr_debug("In inflate\n");
544
545 tn = tnode_new(key: oldtnode->key, pos: oldtnode->pos - 1, bits: oldtnode->bits + 1);
546 if (!tn)
547 goto notnode;
548
549 /* prepare oldtnode to be freed */
550 tnode_free_init(tn: oldtnode);
551
552 /* Assemble all of the pointers in our cluster, in this case that
553 * represents all of the pointers out of our allocated nodes that
554 * point to existing tnodes and the links between our allocated
555 * nodes.
556 */
557 for (i = child_length(tn: oldtnode), m = 1u << tn->pos; i;) {
558 struct key_vector *inode = get_child(oldtnode, --i);
559 struct key_vector *node0, *node1;
560 unsigned long j, k;
561
562 /* An empty child */
563 if (!inode)
564 continue;
565
566 /* A leaf or an internal node with skipped bits */
567 if (!tnode_full(tn: oldtnode, n: inode)) {
568 put_child(tn, i: get_index(key: inode->key, kv: tn), n: inode);
569 continue;
570 }
571
572 /* drop the node in the old tnode free list */
573 tnode_free_append(tn: oldtnode, n: inode);
574
575 /* An internal node with two children */
576 if (inode->bits == 1) {
577 put_child(tn, i: 2 * i + 1, get_child(inode, 1));
578 put_child(tn, i: 2 * i, get_child(inode, 0));
579 continue;
580 }
581
582 /* We will replace this node 'inode' with two new
583 * ones, 'node0' and 'node1', each with half of the
584 * original children. The two new nodes will have
585 * a position one bit further down the key and this
586 * means that the "significant" part of their keys
587 * (see the discussion near the top of this file)
588 * will differ by one bit, which will be "0" in
589 * node0's key and "1" in node1's key. Since we are
590 * moving the key position by one step, the bit that
591 * we are moving away from - the bit at position
592 * (tn->pos) - is the one that will differ between
593 * node0 and node1. So... we synthesize that bit in the
594 * two new keys.
595 */
596 node1 = tnode_new(key: inode->key | m, pos: inode->pos, bits: inode->bits - 1);
597 if (!node1)
598 goto nomem;
599 node0 = tnode_new(key: inode->key, pos: inode->pos, bits: inode->bits - 1);
600
601 tnode_free_append(tn, n: node1);
602 if (!node0)
603 goto nomem;
604 tnode_free_append(tn, n: node0);
605
606 /* populate child pointers in new nodes */
607 for (k = child_length(tn: inode), j = k / 2; j;) {
608 put_child(tn: node1, i: --j, get_child(inode, --k));
609 put_child(tn: node0, i: j, get_child(inode, j));
610 put_child(tn: node1, i: --j, get_child(inode, --k));
611 put_child(tn: node0, i: j, get_child(inode, j));
612 }
613
614 /* link new nodes to parent */
615 NODE_INIT_PARENT(node1, tn);
616 NODE_INIT_PARENT(node0, tn);
617
618 /* link parent to nodes */
619 put_child(tn, i: 2 * i + 1, n: node1);
620 put_child(tn, i: 2 * i, n: node0);
621 }
622
623 /* setup the parent pointers into and out of this node */
624 return replace(t, oldtnode, tn);
625nomem:
626 /* all pointers should be clean so we are done */
627 tnode_free(tn);
628notnode:
629 return NULL;
630}
631
632static struct key_vector *halve(struct trie *t,
633 struct key_vector *oldtnode)
634{
635 struct key_vector *tn;
636 unsigned long i;
637
638 pr_debug("In halve\n");
639
640 tn = tnode_new(key: oldtnode->key, pos: oldtnode->pos + 1, bits: oldtnode->bits - 1);
641 if (!tn)
642 goto notnode;
643
644 /* prepare oldtnode to be freed */
645 tnode_free_init(tn: oldtnode);
646
647 /* Assemble all of the pointers in our cluster, in this case that
648 * represents all of the pointers out of our allocated nodes that
649 * point to existing tnodes and the links between our allocated
650 * nodes.
651 */
652 for (i = child_length(tn: oldtnode); i;) {
653 struct key_vector *node1 = get_child(oldtnode, --i);
654 struct key_vector *node0 = get_child(oldtnode, --i);
655 struct key_vector *inode;
656
657 /* At least one of the children is empty */
658 if (!node1 || !node0) {
659 put_child(tn, i: i / 2, n: node1 ? : node0);
660 continue;
661 }
662
663 /* Two nonempty children */
664 inode = tnode_new(key: node0->key, pos: oldtnode->pos, bits: 1);
665 if (!inode)
666 goto nomem;
667 tnode_free_append(tn, n: inode);
668
669 /* initialize pointers out of node */
670 put_child(tn: inode, i: 1, n: node1);
671 put_child(tn: inode, i: 0, n: node0);
672 NODE_INIT_PARENT(inode, tn);
673
674 /* link parent to node */
675 put_child(tn, i: i / 2, n: inode);
676 }
677
678 /* setup the parent pointers into and out of this node */
679 return replace(t, oldtnode, tn);
680nomem:
681 /* all pointers should be clean so we are done */
682 tnode_free(tn);
683notnode:
684 return NULL;
685}
686
687static struct key_vector *collapse(struct trie *t,
688 struct key_vector *oldtnode)
689{
690 struct key_vector *n, *tp;
691 unsigned long i;
692
693 /* scan the tnode looking for that one child that might still exist */
694 for (n = NULL, i = child_length(tn: oldtnode); !n && i;)
695 n = get_child(oldtnode, --i);
696
697 /* compress one level */
698 tp = node_parent(oldtnode);
699 put_child_root(tp, key: oldtnode->key, n);
700 node_set_parent(n, tp);
701
702 /* drop dead node */
703 node_free(oldtnode);
704
705 return tp;
706}
707
708static unsigned char update_suffix(struct key_vector *tn)
709{
710 unsigned char slen = tn->pos;
711 unsigned long stride, i;
712 unsigned char slen_max;
713
714 /* only vector 0 can have a suffix length greater than or equal to
715 * tn->pos + tn->bits, the second highest node will have a suffix
716 * length at most of tn->pos + tn->bits - 1
717 */
718 slen_max = min_t(unsigned char, tn->pos + tn->bits - 1, tn->slen);
719
720 /* search though the list of children looking for nodes that might
721 * have a suffix greater than the one we currently have. This is
722 * why we start with a stride of 2 since a stride of 1 would
723 * represent the nodes with suffix length equal to tn->pos
724 */
725 for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) {
726 struct key_vector *n = get_child(tn, i);
727
728 if (!n || (n->slen <= slen))
729 continue;
730
731 /* update stride and slen based on new value */
732 stride <<= (n->slen - slen);
733 slen = n->slen;
734 i &= ~(stride - 1);
735
736 /* stop searching if we have hit the maximum possible value */
737 if (slen >= slen_max)
738 break;
739 }
740
741 tn->slen = slen;
742
743 return slen;
744}
745
746/* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
747 * the Helsinki University of Technology and Matti Tikkanen of Nokia
748 * Telecommunications, page 6:
749 * "A node is doubled if the ratio of non-empty children to all
750 * children in the *doubled* node is at least 'high'."
751 *
752 * 'high' in this instance is the variable 'inflate_threshold'. It
753 * is expressed as a percentage, so we multiply it with
754 * child_length() and instead of multiplying by 2 (since the
755 * child array will be doubled by inflate()) and multiplying
756 * the left-hand side by 100 (to handle the percentage thing) we
757 * multiply the left-hand side by 50.
758 *
759 * The left-hand side may look a bit weird: child_length(tn)
760 * - tn->empty_children is of course the number of non-null children
761 * in the current node. tn->full_children is the number of "full"
762 * children, that is non-null tnodes with a skip value of 0.
763 * All of those will be doubled in the resulting inflated tnode, so
764 * we just count them one extra time here.
765 *
766 * A clearer way to write this would be:
767 *
768 * to_be_doubled = tn->full_children;
769 * not_to_be_doubled = child_length(tn) - tn->empty_children -
770 * tn->full_children;
771 *
772 * new_child_length = child_length(tn) * 2;
773 *
774 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
775 * new_child_length;
776 * if (new_fill_factor >= inflate_threshold)
777 *
778 * ...and so on, tho it would mess up the while () loop.
779 *
780 * anyway,
781 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
782 * inflate_threshold
783 *
784 * avoid a division:
785 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
786 * inflate_threshold * new_child_length
787 *
788 * expand not_to_be_doubled and to_be_doubled, and shorten:
789 * 100 * (child_length(tn) - tn->empty_children +
790 * tn->full_children) >= inflate_threshold * new_child_length
791 *
792 * expand new_child_length:
793 * 100 * (child_length(tn) - tn->empty_children +
794 * tn->full_children) >=
795 * inflate_threshold * child_length(tn) * 2
796 *
797 * shorten again:
798 * 50 * (tn->full_children + child_length(tn) -
799 * tn->empty_children) >= inflate_threshold *
800 * child_length(tn)
801 *
802 */
803static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
804{
805 unsigned long used = child_length(tn);
806 unsigned long threshold = used;
807
808 /* Keep root node larger */
809 threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold;
810 used -= tn_info(kv: tn)->empty_children;
811 used += tn_info(kv: tn)->full_children;
812
813 /* if bits == KEYLENGTH then pos = 0, and will fail below */
814
815 return (used > 1) && tn->pos && ((50 * used) >= threshold);
816}
817
818static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
819{
820 unsigned long used = child_length(tn);
821 unsigned long threshold = used;
822
823 /* Keep root node larger */
824 threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold;
825 used -= tn_info(kv: tn)->empty_children;
826
827 /* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */
828
829 return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
830}
831
832static inline bool should_collapse(struct key_vector *tn)
833{
834 unsigned long used = child_length(tn);
835
836 used -= tn_info(kv: tn)->empty_children;
837
838 /* account for bits == KEYLENGTH case */
839 if ((tn->bits == KEYLENGTH) && tn_info(kv: tn)->full_children)
840 used -= KEY_MAX;
841
842 /* One child or none, time to drop us from the trie */
843 return used < 2;
844}
845
846#define MAX_WORK 10
847static struct key_vector *resize(struct trie *t, struct key_vector *tn)
848{
849#ifdef CONFIG_IP_FIB_TRIE_STATS
850 struct trie_use_stats __percpu *stats = t->stats;
851#endif
852 struct key_vector *tp = node_parent(tn);
853 unsigned long cindex = get_index(key: tn->key, kv: tp);
854 int max_work = MAX_WORK;
855
856 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
857 tn, inflate_threshold, halve_threshold);
858
859 /* track the tnode via the pointer from the parent instead of
860 * doing it ourselves. This way we can let RCU fully do its
861 * thing without us interfering
862 */
863 BUG_ON(tn != get_child(tp, cindex));
864
865 /* Double as long as the resulting node has a number of
866 * nonempty nodes that are above the threshold.
867 */
868 while (should_inflate(tp, tn) && max_work) {
869 tp = inflate(t, oldtnode: tn);
870 if (!tp) {
871#ifdef CONFIG_IP_FIB_TRIE_STATS
872 this_cpu_inc(stats->resize_node_skipped);
873#endif
874 break;
875 }
876
877 max_work--;
878 tn = get_child(tp, cindex);
879 }
880
881 /* update parent in case inflate failed */
882 tp = node_parent(tn);
883
884 /* Return if at least one inflate is run */
885 if (max_work != MAX_WORK)
886 return tp;
887
888 /* Halve as long as the number of empty children in this
889 * node is above threshold.
890 */
891 while (should_halve(tp, tn) && max_work) {
892 tp = halve(t, oldtnode: tn);
893 if (!tp) {
894#ifdef CONFIG_IP_FIB_TRIE_STATS
895 this_cpu_inc(stats->resize_node_skipped);
896#endif
897 break;
898 }
899
900 max_work--;
901 tn = get_child(tp, cindex);
902 }
903
904 /* Only one child remains */
905 if (should_collapse(tn))
906 return collapse(t, oldtnode: tn);
907
908 /* update parent in case halve failed */
909 return node_parent(tn);
910}
911
912static void node_pull_suffix(struct key_vector *tn, unsigned char slen)
913{
914 unsigned char node_slen = tn->slen;
915
916 while ((node_slen > tn->pos) && (node_slen > slen)) {
917 slen = update_suffix(tn);
918 if (node_slen == slen)
919 break;
920
921 tn = node_parent(tn);
922 node_slen = tn->slen;
923 }
924}
925
926static void node_push_suffix(struct key_vector *tn, unsigned char slen)
927{
928 while (tn->slen < slen) {
929 tn->slen = slen;
930 tn = node_parent(tn);
931 }
932}
933
934/* rcu_read_lock needs to be hold by caller from readside */
935static struct key_vector *fib_find_node(struct trie *t,
936 struct key_vector **tp, u32 key)
937{
938 struct key_vector *pn, *n = t->kv;
939 unsigned long index = 0;
940
941 do {
942 pn = n;
943 n = get_child_rcu(n, index);
944
945 if (!n)
946 break;
947
948 index = get_cindex(key, n);
949
950 /* This bit of code is a bit tricky but it combines multiple
951 * checks into a single check. The prefix consists of the
952 * prefix plus zeros for the bits in the cindex. The index
953 * is the difference between the key and this value. From
954 * this we can actually derive several pieces of data.
955 * if (index >= (1ul << bits))
956 * we have a mismatch in skip bits and failed
957 * else
958 * we know the value is cindex
959 *
960 * This check is safe even if bits == KEYLENGTH due to the
961 * fact that we can only allocate a node with 32 bits if a
962 * long is greater than 32 bits.
963 */
964 if (index >= (1ul << n->bits)) {
965 n = NULL;
966 break;
967 }
968
969 /* keep searching until we find a perfect match leaf or NULL */
970 } while (IS_TNODE(n));
971
972 *tp = pn;
973
974 return n;
975}
976
977/* Return the first fib alias matching DSCP with
978 * priority less than or equal to PRIO.
979 * If 'find_first' is set, return the first matching
980 * fib alias, regardless of DSCP and priority.
981 */
982static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
983 dscp_t dscp, u32 prio, u32 tb_id,
984 bool find_first)
985{
986 struct fib_alias *fa;
987
988 if (!fah)
989 return NULL;
990
991 hlist_for_each_entry(fa, fah, fa_list) {
992 /* Avoid Sparse warning when using dscp_t in inequalities */
993 u8 __fa_dscp = inet_dscp_to_dsfield(dscp: fa->fa_dscp);
994 u8 __dscp = inet_dscp_to_dsfield(dscp);
995
996 if (fa->fa_slen < slen)
997 continue;
998 if (fa->fa_slen != slen)
999 break;
1000 if (fa->tb_id > tb_id)
1001 continue;
1002 if (fa->tb_id != tb_id)
1003 break;
1004 if (find_first)
1005 return fa;
1006 if (__fa_dscp > __dscp)
1007 continue;
1008 if (fa->fa_info->fib_priority >= prio || __fa_dscp < __dscp)
1009 return fa;
1010 }
1011
1012 return NULL;
1013}
1014
1015static struct fib_alias *
1016fib_find_matching_alias(struct net *net, const struct fib_rt_info *fri)
1017{
1018 u8 slen = KEYLENGTH - fri->dst_len;
1019 struct key_vector *l, *tp;
1020 struct fib_table *tb;
1021 struct fib_alias *fa;
1022 struct trie *t;
1023
1024 tb = fib_get_table(net, id: fri->tb_id);
1025 if (!tb)
1026 return NULL;
1027
1028 t = (struct trie *)tb->tb_data;
1029 l = fib_find_node(t, tp: &tp, be32_to_cpu(fri->dst));
1030 if (!l)
1031 return NULL;
1032
1033 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1034 if (fa->fa_slen == slen && fa->tb_id == fri->tb_id &&
1035 fa->fa_dscp == fri->dscp && fa->fa_info == fri->fi &&
1036 fa->fa_type == fri->type)
1037 return fa;
1038 }
1039
1040 return NULL;
1041}
1042
1043void fib_alias_hw_flags_set(struct net *net, const struct fib_rt_info *fri)
1044{
1045 u8 fib_notify_on_flag_change;
1046 struct fib_alias *fa_match;
1047 struct sk_buff *skb;
1048 int err;
1049
1050 rcu_read_lock();
1051
1052 fa_match = fib_find_matching_alias(net, fri);
1053 if (!fa_match)
1054 goto out;
1055
1056 /* These are paired with the WRITE_ONCE() happening in this function.
1057 * The reason is that we are only protected by RCU at this point.
1058 */
1059 if (READ_ONCE(fa_match->offload) == fri->offload &&
1060 READ_ONCE(fa_match->trap) == fri->trap &&
1061 READ_ONCE(fa_match->offload_failed) == fri->offload_failed)
1062 goto out;
1063
1064 WRITE_ONCE(fa_match->offload, fri->offload);
1065 WRITE_ONCE(fa_match->trap, fri->trap);
1066
1067 fib_notify_on_flag_change = READ_ONCE(net->ipv4.sysctl_fib_notify_on_flag_change);
1068
1069 /* 2 means send notifications only if offload_failed was changed. */
1070 if (fib_notify_on_flag_change == 2 &&
1071 READ_ONCE(fa_match->offload_failed) == fri->offload_failed)
1072 goto out;
1073
1074 WRITE_ONCE(fa_match->offload_failed, fri->offload_failed);
1075
1076 if (!fib_notify_on_flag_change)
1077 goto out;
1078
1079 skb = nlmsg_new(payload: fib_nlmsg_size(fi: fa_match->fa_info), GFP_ATOMIC);
1080 if (!skb) {
1081 err = -ENOBUFS;
1082 goto errout;
1083 }
1084
1085 err = fib_dump_info(skb, pid: 0, seq: 0, RTM_NEWROUTE, fri, flags: 0);
1086 if (err < 0) {
1087 /* -EMSGSIZE implies BUG in fib_nlmsg_size() */
1088 WARN_ON(err == -EMSGSIZE);
1089 kfree_skb(skb);
1090 goto errout;
1091 }
1092
1093 rtnl_notify(skb, net, pid: 0, RTNLGRP_IPV4_ROUTE, NULL, GFP_ATOMIC);
1094 goto out;
1095
1096errout:
1097 rtnl_set_sk_err(net, RTNLGRP_IPV4_ROUTE, error: err);
1098out:
1099 rcu_read_unlock();
1100}
1101EXPORT_SYMBOL_GPL(fib_alias_hw_flags_set);
1102
1103static void trie_rebalance(struct trie *t, struct key_vector *tn)
1104{
1105 while (!IS_TRIE(tn))
1106 tn = resize(t, tn);
1107}
1108
1109static int fib_insert_node(struct trie *t, struct key_vector *tp,
1110 struct fib_alias *new, t_key key)
1111{
1112 struct key_vector *n, *l;
1113
1114 l = leaf_new(key, fa: new);
1115 if (!l)
1116 goto noleaf;
1117
1118 /* retrieve child from parent node */
1119 n = get_child(tp, get_index(key, tp));
1120
1121 /* Case 2: n is a LEAF or a TNODE and the key doesn't match.
1122 *
1123 * Add a new tnode here
1124 * first tnode need some special handling
1125 * leaves us in position for handling as case 3
1126 */
1127 if (n) {
1128 struct key_vector *tn;
1129
1130 tn = tnode_new(key, pos: __fls(word: key ^ n->key), bits: 1);
1131 if (!tn)
1132 goto notnode;
1133
1134 /* initialize routes out of node */
1135 NODE_INIT_PARENT(tn, tp);
1136 put_child(tn, i: get_index(key, kv: tn) ^ 1, n);
1137
1138 /* start adding routes into the node */
1139 put_child_root(tp, key, n: tn);
1140 node_set_parent(n, tp: tn);
1141
1142 /* parent now has a NULL spot where the leaf can go */
1143 tp = tn;
1144 }
1145
1146 /* Case 3: n is NULL, and will just insert a new leaf */
1147 node_push_suffix(tn: tp, slen: new->fa_slen);
1148 NODE_INIT_PARENT(l, tp);
1149 put_child_root(tp, key, n: l);
1150 trie_rebalance(t, tn: tp);
1151
1152 return 0;
1153notnode:
1154 node_free(l);
1155noleaf:
1156 return -ENOMEM;
1157}
1158
1159static int fib_insert_alias(struct trie *t, struct key_vector *tp,
1160 struct key_vector *l, struct fib_alias *new,
1161 struct fib_alias *fa, t_key key)
1162{
1163 if (!l)
1164 return fib_insert_node(t, tp, new, key);
1165
1166 if (fa) {
1167 hlist_add_before_rcu(n: &new->fa_list, next: &fa->fa_list);
1168 } else {
1169 struct fib_alias *last;
1170
1171 hlist_for_each_entry(last, &l->leaf, fa_list) {
1172 if (new->fa_slen < last->fa_slen)
1173 break;
1174 if ((new->fa_slen == last->fa_slen) &&
1175 (new->tb_id > last->tb_id))
1176 break;
1177 fa = last;
1178 }
1179
1180 if (fa)
1181 hlist_add_behind_rcu(n: &new->fa_list, prev: &fa->fa_list);
1182 else
1183 hlist_add_head_rcu(n: &new->fa_list, h: &l->leaf);
1184 }
1185
1186 /* if we added to the tail node then we need to update slen */
1187 if (l->slen < new->fa_slen) {
1188 l->slen = new->fa_slen;
1189 node_push_suffix(tn: tp, slen: new->fa_slen);
1190 }
1191
1192 return 0;
1193}
1194
1195static bool fib_valid_key_len(u32 key, u8 plen, struct netlink_ext_ack *extack)
1196{
1197 if (plen > KEYLENGTH) {
1198 NL_SET_ERR_MSG(extack, "Invalid prefix length");
1199 return false;
1200 }
1201
1202 if ((plen < KEYLENGTH) && (key << plen)) {
1203 NL_SET_ERR_MSG(extack,
1204 "Invalid prefix for given prefix length");
1205 return false;
1206 }
1207
1208 return true;
1209}
1210
1211static void fib_remove_alias(struct trie *t, struct key_vector *tp,
1212 struct key_vector *l, struct fib_alias *old);
1213
1214/* Caller must hold RTNL. */
1215int fib_table_insert(struct net *net, struct fib_table *tb,
1216 struct fib_config *cfg, struct netlink_ext_ack *extack)
1217{
1218 struct trie *t = (struct trie *)tb->tb_data;
1219 struct fib_alias *fa, *new_fa;
1220 struct key_vector *l, *tp;
1221 u16 nlflags = NLM_F_EXCL;
1222 struct fib_info *fi;
1223 u8 plen = cfg->fc_dst_len;
1224 u8 slen = KEYLENGTH - plen;
1225 dscp_t dscp;
1226 u32 key;
1227 int err;
1228
1229 key = ntohl(cfg->fc_dst);
1230
1231 if (!fib_valid_key_len(key, plen, extack))
1232 return -EINVAL;
1233
1234 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1235
1236 fi = fib_create_info(cfg, extack);
1237 if (IS_ERR(ptr: fi)) {
1238 err = PTR_ERR(ptr: fi);
1239 goto err;
1240 }
1241
1242 dscp = cfg->fc_dscp;
1243 l = fib_find_node(t, tp: &tp, key);
1244 fa = l ? fib_find_alias(fah: &l->leaf, slen, dscp, prio: fi->fib_priority,
1245 tb_id: tb->tb_id, find_first: false) : NULL;
1246
1247 /* Now fa, if non-NULL, points to the first fib alias
1248 * with the same keys [prefix,dscp,priority], if such key already
1249 * exists or to the node before which we will insert new one.
1250 *
1251 * If fa is NULL, we will need to allocate a new one and
1252 * insert to the tail of the section matching the suffix length
1253 * of the new alias.
1254 */
1255
1256 if (fa && fa->fa_dscp == dscp &&
1257 fa->fa_info->fib_priority == fi->fib_priority) {
1258 struct fib_alias *fa_first, *fa_match;
1259
1260 err = -EEXIST;
1261 if (cfg->fc_nlflags & NLM_F_EXCL)
1262 goto out;
1263
1264 nlflags &= ~NLM_F_EXCL;
1265
1266 /* We have 2 goals:
1267 * 1. Find exact match for type, scope, fib_info to avoid
1268 * duplicate routes
1269 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1270 */
1271 fa_match = NULL;
1272 fa_first = fa;
1273 hlist_for_each_entry_from(fa, fa_list) {
1274 if ((fa->fa_slen != slen) ||
1275 (fa->tb_id != tb->tb_id) ||
1276 (fa->fa_dscp != dscp))
1277 break;
1278 if (fa->fa_info->fib_priority != fi->fib_priority)
1279 break;
1280 if (fa->fa_type == cfg->fc_type &&
1281 fa->fa_info == fi) {
1282 fa_match = fa;
1283 break;
1284 }
1285 }
1286
1287 if (cfg->fc_nlflags & NLM_F_REPLACE) {
1288 struct fib_info *fi_drop;
1289 u8 state;
1290
1291 nlflags |= NLM_F_REPLACE;
1292 fa = fa_first;
1293 if (fa_match) {
1294 if (fa == fa_match)
1295 err = 0;
1296 goto out;
1297 }
1298 err = -ENOBUFS;
1299 new_fa = kmem_cache_alloc(cachep: fn_alias_kmem, GFP_KERNEL);
1300 if (!new_fa)
1301 goto out;
1302
1303 fi_drop = fa->fa_info;
1304 new_fa->fa_dscp = fa->fa_dscp;
1305 new_fa->fa_info = fi;
1306 new_fa->fa_type = cfg->fc_type;
1307 state = fa->fa_state;
1308 new_fa->fa_state = state & ~FA_S_ACCESSED;
1309 new_fa->fa_slen = fa->fa_slen;
1310 new_fa->tb_id = tb->tb_id;
1311 new_fa->fa_default = -1;
1312 new_fa->offload = 0;
1313 new_fa->trap = 0;
1314 new_fa->offload_failed = 0;
1315
1316 hlist_replace_rcu(old: &fa->fa_list, new: &new_fa->fa_list);
1317
1318 if (fib_find_alias(fah: &l->leaf, slen: fa->fa_slen, dscp: 0, prio: 0,
1319 tb_id: tb->tb_id, find_first: true) == new_fa) {
1320 enum fib_event_type fib_event;
1321
1322 fib_event = FIB_EVENT_ENTRY_REPLACE;
1323 err = call_fib_entry_notifiers(net, event_type: fib_event,
1324 dst: key, dst_len: plen,
1325 fa: new_fa, extack);
1326 if (err) {
1327 hlist_replace_rcu(old: &new_fa->fa_list,
1328 new: &fa->fa_list);
1329 goto out_free_new_fa;
1330 }
1331 }
1332
1333 rtmsg_fib(RTM_NEWROUTE, htonl(key), fa: new_fa, dst_len: plen,
1334 tb_id: tb->tb_id, info: &cfg->fc_nlinfo, nlm_flags: nlflags);
1335
1336 alias_free_mem_rcu(fa);
1337
1338 fib_release_info(fi_drop);
1339 if (state & FA_S_ACCESSED)
1340 rt_cache_flush(net: cfg->fc_nlinfo.nl_net);
1341
1342 goto succeeded;
1343 }
1344 /* Error if we find a perfect match which
1345 * uses the same scope, type, and nexthop
1346 * information.
1347 */
1348 if (fa_match)
1349 goto out;
1350
1351 if (cfg->fc_nlflags & NLM_F_APPEND)
1352 nlflags |= NLM_F_APPEND;
1353 else
1354 fa = fa_first;
1355 }
1356 err = -ENOENT;
1357 if (!(cfg->fc_nlflags & NLM_F_CREATE))
1358 goto out;
1359
1360 nlflags |= NLM_F_CREATE;
1361 err = -ENOBUFS;
1362 new_fa = kmem_cache_alloc(cachep: fn_alias_kmem, GFP_KERNEL);
1363 if (!new_fa)
1364 goto out;
1365
1366 new_fa->fa_info = fi;
1367 new_fa->fa_dscp = dscp;
1368 new_fa->fa_type = cfg->fc_type;
1369 new_fa->fa_state = 0;
1370 new_fa->fa_slen = slen;
1371 new_fa->tb_id = tb->tb_id;
1372 new_fa->fa_default = -1;
1373 new_fa->offload = 0;
1374 new_fa->trap = 0;
1375 new_fa->offload_failed = 0;
1376
1377 /* Insert new entry to the list. */
1378 err = fib_insert_alias(t, tp, l, new: new_fa, fa, key);
1379 if (err)
1380 goto out_free_new_fa;
1381
1382 /* The alias was already inserted, so the node must exist. */
1383 l = l ? l : fib_find_node(t, tp: &tp, key);
1384 if (WARN_ON_ONCE(!l)) {
1385 err = -ENOENT;
1386 goto out_free_new_fa;
1387 }
1388
1389 if (fib_find_alias(fah: &l->leaf, slen: new_fa->fa_slen, dscp: 0, prio: 0, tb_id: tb->tb_id, find_first: true) ==
1390 new_fa) {
1391 enum fib_event_type fib_event;
1392
1393 fib_event = FIB_EVENT_ENTRY_REPLACE;
1394 err = call_fib_entry_notifiers(net, event_type: fib_event, dst: key, dst_len: plen,
1395 fa: new_fa, extack);
1396 if (err)
1397 goto out_remove_new_fa;
1398 }
1399
1400 if (!plen)
1401 tb->tb_num_default++;
1402
1403 rt_cache_flush(net: cfg->fc_nlinfo.nl_net);
1404 rtmsg_fib(RTM_NEWROUTE, htonl(key), fa: new_fa, dst_len: plen, tb_id: new_fa->tb_id,
1405 info: &cfg->fc_nlinfo, nlm_flags: nlflags);
1406succeeded:
1407 return 0;
1408
1409out_remove_new_fa:
1410 fib_remove_alias(t, tp, l, old: new_fa);
1411out_free_new_fa:
1412 kmem_cache_free(s: fn_alias_kmem, objp: new_fa);
1413out:
1414 fib_release_info(fi);
1415err:
1416 return err;
1417}
1418
1419static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
1420{
1421 t_key prefix = n->key;
1422
1423 return (key ^ prefix) & (prefix | -prefix);
1424}
1425
1426bool fib_lookup_good_nhc(const struct fib_nh_common *nhc, int fib_flags,
1427 const struct flowi4 *flp)
1428{
1429 if (nhc->nhc_flags & RTNH_F_DEAD)
1430 return false;
1431
1432 if (ip_ignore_linkdown(dev: nhc->nhc_dev) &&
1433 nhc->nhc_flags & RTNH_F_LINKDOWN &&
1434 !(fib_flags & FIB_LOOKUP_IGNORE_LINKSTATE))
1435 return false;
1436
1437 if (flp->flowi4_oif && flp->flowi4_oif != nhc->nhc_oif)
1438 return false;
1439
1440 return true;
1441}
1442
1443/* should be called with rcu_read_lock */
1444int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
1445 struct fib_result *res, int fib_flags)
1446{
1447 struct trie *t = (struct trie *) tb->tb_data;
1448#ifdef CONFIG_IP_FIB_TRIE_STATS
1449 struct trie_use_stats __percpu *stats = t->stats;
1450#endif
1451 const t_key key = ntohl(flp->daddr);
1452 struct key_vector *n, *pn;
1453 struct fib_alias *fa;
1454 unsigned long index;
1455 t_key cindex;
1456
1457 pn = t->kv;
1458 cindex = 0;
1459
1460 n = get_child_rcu(pn, cindex);
1461 if (!n) {
1462 trace_fib_table_lookup(tb_id: tb->tb_id, flp, NULL, err: -EAGAIN);
1463 return -EAGAIN;
1464 }
1465
1466#ifdef CONFIG_IP_FIB_TRIE_STATS
1467 this_cpu_inc(stats->gets);
1468#endif
1469
1470 /* Step 1: Travel to the longest prefix match in the trie */
1471 for (;;) {
1472 index = get_cindex(key, n);
1473
1474 /* This bit of code is a bit tricky but it combines multiple
1475 * checks into a single check. The prefix consists of the
1476 * prefix plus zeros for the "bits" in the prefix. The index
1477 * is the difference between the key and this value. From
1478 * this we can actually derive several pieces of data.
1479 * if (index >= (1ul << bits))
1480 * we have a mismatch in skip bits and failed
1481 * else
1482 * we know the value is cindex
1483 *
1484 * This check is safe even if bits == KEYLENGTH due to the
1485 * fact that we can only allocate a node with 32 bits if a
1486 * long is greater than 32 bits.
1487 */
1488 if (index >= (1ul << n->bits))
1489 break;
1490
1491 /* we have found a leaf. Prefixes have already been compared */
1492 if (IS_LEAF(n))
1493 goto found;
1494
1495 /* only record pn and cindex if we are going to be chopping
1496 * bits later. Otherwise we are just wasting cycles.
1497 */
1498 if (n->slen > n->pos) {
1499 pn = n;
1500 cindex = index;
1501 }
1502
1503 n = get_child_rcu(n, index);
1504 if (unlikely(!n))
1505 goto backtrace;
1506 }
1507
1508 /* Step 2: Sort out leaves and begin backtracing for longest prefix */
1509 for (;;) {
1510 /* record the pointer where our next node pointer is stored */
1511 struct key_vector __rcu **cptr = n->tnode;
1512
1513 /* This test verifies that none of the bits that differ
1514 * between the key and the prefix exist in the region of
1515 * the lsb and higher in the prefix.
1516 */
1517 if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
1518 goto backtrace;
1519
1520 /* exit out and process leaf */
1521 if (unlikely(IS_LEAF(n)))
1522 break;
1523
1524 /* Don't bother recording parent info. Since we are in
1525 * prefix match mode we will have to come back to wherever
1526 * we started this traversal anyway
1527 */
1528
1529 while ((n = rcu_dereference(*cptr)) == NULL) {
1530backtrace:
1531#ifdef CONFIG_IP_FIB_TRIE_STATS
1532 if (!n)
1533 this_cpu_inc(stats->null_node_hit);
1534#endif
1535 /* If we are at cindex 0 there are no more bits for
1536 * us to strip at this level so we must ascend back
1537 * up one level to see if there are any more bits to
1538 * be stripped there.
1539 */
1540 while (!cindex) {
1541 t_key pkey = pn->key;
1542
1543 /* If we don't have a parent then there is
1544 * nothing for us to do as we do not have any
1545 * further nodes to parse.
1546 */
1547 if (IS_TRIE(pn)) {
1548 trace_fib_table_lookup(tb_id: tb->tb_id, flp,
1549 NULL, err: -EAGAIN);
1550 return -EAGAIN;
1551 }
1552#ifdef CONFIG_IP_FIB_TRIE_STATS
1553 this_cpu_inc(stats->backtrack);
1554#endif
1555 /* Get Child's index */
1556 pn = node_parent_rcu(pn);
1557 cindex = get_index(key: pkey, kv: pn);
1558 }
1559
1560 /* strip the least significant bit from the cindex */
1561 cindex &= cindex - 1;
1562
1563 /* grab pointer for next child node */
1564 cptr = &pn->tnode[cindex];
1565 }
1566 }
1567
1568found:
1569 /* this line carries forward the xor from earlier in the function */
1570 index = key ^ n->key;
1571
1572 /* Step 3: Process the leaf, if that fails fall back to backtracing */
1573 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
1574 struct fib_info *fi = fa->fa_info;
1575 struct fib_nh_common *nhc;
1576 int nhsel, err;
1577
1578 if ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen < KEYLENGTH)) {
1579 if (index >= (1ul << fa->fa_slen))
1580 continue;
1581 }
1582 if (fa->fa_dscp &&
1583 inet_dscp_to_dsfield(dscp: fa->fa_dscp) != flp->flowi4_tos)
1584 continue;
1585 /* Paired with WRITE_ONCE() in fib_release_info() */
1586 if (READ_ONCE(fi->fib_dead))
1587 continue;
1588 if (fa->fa_info->fib_scope < flp->flowi4_scope)
1589 continue;
1590 fib_alias_accessed(fa);
1591 err = fib_props[fa->fa_type].error;
1592 if (unlikely(err < 0)) {
1593out_reject:
1594#ifdef CONFIG_IP_FIB_TRIE_STATS
1595 this_cpu_inc(stats->semantic_match_passed);
1596#endif
1597 trace_fib_table_lookup(tb_id: tb->tb_id, flp, NULL, err);
1598 return err;
1599 }
1600 if (fi->fib_flags & RTNH_F_DEAD)
1601 continue;
1602
1603 if (unlikely(fi->nh)) {
1604 if (nexthop_is_blackhole(nh: fi->nh)) {
1605 err = fib_props[RTN_BLACKHOLE].error;
1606 goto out_reject;
1607 }
1608
1609 nhc = nexthop_get_nhc_lookup(nh: fi->nh, fib_flags, flp,
1610 nhsel: &nhsel);
1611 if (nhc)
1612 goto set_result;
1613 goto miss;
1614 }
1615
1616 for (nhsel = 0; nhsel < fib_info_num_path(fi); nhsel++) {
1617 nhc = fib_info_nhc(fi, nhsel);
1618
1619 if (!fib_lookup_good_nhc(nhc, fib_flags, flp))
1620 continue;
1621set_result:
1622 if (!(fib_flags & FIB_LOOKUP_NOREF))
1623 refcount_inc(r: &fi->fib_clntref);
1624
1625 res->prefix = htonl(n->key);
1626 res->prefixlen = KEYLENGTH - fa->fa_slen;
1627 res->nh_sel = nhsel;
1628 res->nhc = nhc;
1629 res->type = fa->fa_type;
1630 res->scope = fi->fib_scope;
1631 res->fi = fi;
1632 res->table = tb;
1633 res->fa_head = &n->leaf;
1634#ifdef CONFIG_IP_FIB_TRIE_STATS
1635 this_cpu_inc(stats->semantic_match_passed);
1636#endif
1637 trace_fib_table_lookup(tb_id: tb->tb_id, flp, nhc, err);
1638
1639 return err;
1640 }
1641 }
1642miss:
1643#ifdef CONFIG_IP_FIB_TRIE_STATS
1644 this_cpu_inc(stats->semantic_match_miss);
1645#endif
1646 goto backtrace;
1647}
1648EXPORT_SYMBOL_GPL(fib_table_lookup);
1649
1650static void fib_remove_alias(struct trie *t, struct key_vector *tp,
1651 struct key_vector *l, struct fib_alias *old)
1652{
1653 /* record the location of the previous list_info entry */
1654 struct hlist_node **pprev = old->fa_list.pprev;
1655 struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);
1656
1657 /* remove the fib_alias from the list */
1658 hlist_del_rcu(n: &old->fa_list);
1659
1660 /* if we emptied the list this leaf will be freed and we can sort
1661 * out parent suffix lengths as a part of trie_rebalance
1662 */
1663 if (hlist_empty(h: &l->leaf)) {
1664 if (tp->slen == l->slen)
1665 node_pull_suffix(tn: tp, slen: tp->pos);
1666 put_child_root(tp, key: l->key, NULL);
1667 node_free(l);
1668 trie_rebalance(t, tn: tp);
1669 return;
1670 }
1671
1672 /* only access fa if it is pointing at the last valid hlist_node */
1673 if (*pprev)
1674 return;
1675
1676 /* update the trie with the latest suffix length */
1677 l->slen = fa->fa_slen;
1678 node_pull_suffix(tn: tp, slen: fa->fa_slen);
1679}
1680
1681static void fib_notify_alias_delete(struct net *net, u32 key,
1682 struct hlist_head *fah,
1683 struct fib_alias *fa_to_delete,
1684 struct netlink_ext_ack *extack)
1685{
1686 struct fib_alias *fa_next, *fa_to_notify;
1687 u32 tb_id = fa_to_delete->tb_id;
1688 u8 slen = fa_to_delete->fa_slen;
1689 enum fib_event_type fib_event;
1690
1691 /* Do not notify if we do not care about the route. */
1692 if (fib_find_alias(fah, slen, dscp: 0, prio: 0, tb_id, find_first: true) != fa_to_delete)
1693 return;
1694
1695 /* Determine if the route should be replaced by the next route in the
1696 * list.
1697 */
1698 fa_next = hlist_entry_safe(fa_to_delete->fa_list.next,
1699 struct fib_alias, fa_list);
1700 if (fa_next && fa_next->fa_slen == slen && fa_next->tb_id == tb_id) {
1701 fib_event = FIB_EVENT_ENTRY_REPLACE;
1702 fa_to_notify = fa_next;
1703 } else {
1704 fib_event = FIB_EVENT_ENTRY_DEL;
1705 fa_to_notify = fa_to_delete;
1706 }
1707 call_fib_entry_notifiers(net, event_type: fib_event, dst: key, KEYLENGTH - slen,
1708 fa: fa_to_notify, extack);
1709}
1710
1711/* Caller must hold RTNL. */
1712int fib_table_delete(struct net *net, struct fib_table *tb,
1713 struct fib_config *cfg, struct netlink_ext_ack *extack)
1714{
1715 struct trie *t = (struct trie *) tb->tb_data;
1716 struct fib_alias *fa, *fa_to_delete;
1717 struct key_vector *l, *tp;
1718 u8 plen = cfg->fc_dst_len;
1719 u8 slen = KEYLENGTH - plen;
1720 dscp_t dscp;
1721 u32 key;
1722
1723 key = ntohl(cfg->fc_dst);
1724
1725 if (!fib_valid_key_len(key, plen, extack))
1726 return -EINVAL;
1727
1728 l = fib_find_node(t, tp: &tp, key);
1729 if (!l)
1730 return -ESRCH;
1731
1732 dscp = cfg->fc_dscp;
1733 fa = fib_find_alias(fah: &l->leaf, slen, dscp, prio: 0, tb_id: tb->tb_id, find_first: false);
1734 if (!fa)
1735 return -ESRCH;
1736
1737 pr_debug("Deleting %08x/%d dsfield=0x%02x t=%p\n", key, plen,
1738 inet_dscp_to_dsfield(dscp), t);
1739
1740 fa_to_delete = NULL;
1741 hlist_for_each_entry_from(fa, fa_list) {
1742 struct fib_info *fi = fa->fa_info;
1743
1744 if ((fa->fa_slen != slen) ||
1745 (fa->tb_id != tb->tb_id) ||
1746 (fa->fa_dscp != dscp))
1747 break;
1748
1749 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1750 (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1751 fa->fa_info->fib_scope == cfg->fc_scope) &&
1752 (!cfg->fc_prefsrc ||
1753 fi->fib_prefsrc == cfg->fc_prefsrc) &&
1754 (!cfg->fc_protocol ||
1755 fi->fib_protocol == cfg->fc_protocol) &&
1756 fib_nh_match(net, cfg, fi, extack) == 0 &&
1757 fib_metrics_match(cfg, fi)) {
1758 fa_to_delete = fa;
1759 break;
1760 }
1761 }
1762
1763 if (!fa_to_delete)
1764 return -ESRCH;
1765
1766 fib_notify_alias_delete(net, key, fah: &l->leaf, fa_to_delete, extack);
1767 rtmsg_fib(RTM_DELROUTE, htonl(key), fa: fa_to_delete, dst_len: plen, tb_id: tb->tb_id,
1768 info: &cfg->fc_nlinfo, nlm_flags: 0);
1769
1770 if (!plen)
1771 tb->tb_num_default--;
1772
1773 fib_remove_alias(t, tp, l, old: fa_to_delete);
1774
1775 if (fa_to_delete->fa_state & FA_S_ACCESSED)
1776 rt_cache_flush(net: cfg->fc_nlinfo.nl_net);
1777
1778 fib_release_info(fa_to_delete->fa_info);
1779 alias_free_mem_rcu(fa: fa_to_delete);
1780 return 0;
1781}
1782
1783/* Scan for the next leaf starting at the provided key value */
1784static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
1785{
1786 struct key_vector *pn, *n = *tn;
1787 unsigned long cindex;
1788
1789 /* this loop is meant to try and find the key in the trie */
1790 do {
1791 /* record parent and next child index */
1792 pn = n;
1793 cindex = (key > pn->key) ? get_index(key, kv: pn) : 0;
1794
1795 if (cindex >> pn->bits)
1796 break;
1797
1798 /* descend into the next child */
1799 n = get_child_rcu(pn, cindex++);
1800 if (!n)
1801 break;
1802
1803 /* guarantee forward progress on the keys */
1804 if (IS_LEAF(n) && (n->key >= key))
1805 goto found;
1806 } while (IS_TNODE(n));
1807
1808 /* this loop will search for the next leaf with a greater key */
1809 while (!IS_TRIE(pn)) {
1810 /* if we exhausted the parent node we will need to climb */
1811 if (cindex >= (1ul << pn->bits)) {
1812 t_key pkey = pn->key;
1813
1814 pn = node_parent_rcu(pn);
1815 cindex = get_index(key: pkey, kv: pn) + 1;
1816 continue;
1817 }
1818
1819 /* grab the next available node */
1820 n = get_child_rcu(pn, cindex++);
1821 if (!n)
1822 continue;
1823
1824 /* no need to compare keys since we bumped the index */
1825 if (IS_LEAF(n))
1826 goto found;
1827
1828 /* Rescan start scanning in new node */
1829 pn = n;
1830 cindex = 0;
1831 }
1832
1833 *tn = pn;
1834 return NULL; /* Root of trie */
1835found:
1836 /* if we are at the limit for keys just return NULL for the tnode */
1837 *tn = pn;
1838 return n;
1839}
1840
1841static void fib_trie_free(struct fib_table *tb)
1842{
1843 struct trie *t = (struct trie *)tb->tb_data;
1844 struct key_vector *pn = t->kv;
1845 unsigned long cindex = 1;
1846 struct hlist_node *tmp;
1847 struct fib_alias *fa;
1848
1849 /* walk trie in reverse order and free everything */
1850 for (;;) {
1851 struct key_vector *n;
1852
1853 if (!(cindex--)) {
1854 t_key pkey = pn->key;
1855
1856 if (IS_TRIE(pn))
1857 break;
1858
1859 n = pn;
1860 pn = node_parent(pn);
1861
1862 /* drop emptied tnode */
1863 put_child_root(tp: pn, key: n->key, NULL);
1864 node_free(n);
1865
1866 cindex = get_index(key: pkey, kv: pn);
1867
1868 continue;
1869 }
1870
1871 /* grab the next available node */
1872 n = get_child(pn, cindex);
1873 if (!n)
1874 continue;
1875
1876 if (IS_TNODE(n)) {
1877 /* record pn and cindex for leaf walking */
1878 pn = n;
1879 cindex = 1ul << n->bits;
1880
1881 continue;
1882 }
1883
1884 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1885 hlist_del_rcu(n: &fa->fa_list);
1886 alias_free_mem_rcu(fa);
1887 }
1888
1889 put_child_root(tp: pn, key: n->key, NULL);
1890 node_free(n);
1891 }
1892
1893#ifdef CONFIG_IP_FIB_TRIE_STATS
1894 free_percpu(pdata: t->stats);
1895#endif
1896 kfree(objp: tb);
1897}
1898
1899struct fib_table *fib_trie_unmerge(struct fib_table *oldtb)
1900{
1901 struct trie *ot = (struct trie *)oldtb->tb_data;
1902 struct key_vector *l, *tp = ot->kv;
1903 struct fib_table *local_tb;
1904 struct fib_alias *fa;
1905 struct trie *lt;
1906 t_key key = 0;
1907
1908 if (oldtb->tb_data == oldtb->__data)
1909 return oldtb;
1910
1911 local_tb = fib_trie_table(id: RT_TABLE_LOCAL, NULL);
1912 if (!local_tb)
1913 return NULL;
1914
1915 lt = (struct trie *)local_tb->tb_data;
1916
1917 while ((l = leaf_walk_rcu(tn: &tp, key)) != NULL) {
1918 struct key_vector *local_l = NULL, *local_tp;
1919
1920 hlist_for_each_entry(fa, &l->leaf, fa_list) {
1921 struct fib_alias *new_fa;
1922
1923 if (local_tb->tb_id != fa->tb_id)
1924 continue;
1925
1926 /* clone fa for new local table */
1927 new_fa = kmem_cache_alloc(cachep: fn_alias_kmem, GFP_KERNEL);
1928 if (!new_fa)
1929 goto out;
1930
1931 memcpy(new_fa, fa, sizeof(*fa));
1932
1933 /* insert clone into table */
1934 if (!local_l)
1935 local_l = fib_find_node(t: lt, tp: &local_tp, key: l->key);
1936
1937 if (fib_insert_alias(t: lt, tp: local_tp, l: local_l, new: new_fa,
1938 NULL, key: l->key)) {
1939 kmem_cache_free(s: fn_alias_kmem, objp: new_fa);
1940 goto out;
1941 }
1942 }
1943
1944 /* stop loop if key wrapped back to 0 */
1945 key = l->key + 1;
1946 if (key < l->key)
1947 break;
1948 }
1949
1950 return local_tb;
1951out:
1952 fib_trie_free(tb: local_tb);
1953
1954 return NULL;
1955}
1956
1957/* Caller must hold RTNL */
1958void fib_table_flush_external(struct fib_table *tb)
1959{
1960 struct trie *t = (struct trie *)tb->tb_data;
1961 struct key_vector *pn = t->kv;
1962 unsigned long cindex = 1;
1963 struct hlist_node *tmp;
1964 struct fib_alias *fa;
1965
1966 /* walk trie in reverse order */
1967 for (;;) {
1968 unsigned char slen = 0;
1969 struct key_vector *n;
1970
1971 if (!(cindex--)) {
1972 t_key pkey = pn->key;
1973
1974 /* cannot resize the trie vector */
1975 if (IS_TRIE(pn))
1976 break;
1977
1978 /* update the suffix to address pulled leaves */
1979 if (pn->slen > pn->pos)
1980 update_suffix(tn: pn);
1981
1982 /* resize completed node */
1983 pn = resize(t, tn: pn);
1984 cindex = get_index(key: pkey, kv: pn);
1985
1986 continue;
1987 }
1988
1989 /* grab the next available node */
1990 n = get_child(pn, cindex);
1991 if (!n)
1992 continue;
1993
1994 if (IS_TNODE(n)) {
1995 /* record pn and cindex for leaf walking */
1996 pn = n;
1997 cindex = 1ul << n->bits;
1998
1999 continue;
2000 }
2001
2002 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
2003 /* if alias was cloned to local then we just
2004 * need to remove the local copy from main
2005 */
2006 if (tb->tb_id != fa->tb_id) {
2007 hlist_del_rcu(n: &fa->fa_list);
2008 alias_free_mem_rcu(fa);
2009 continue;
2010 }
2011
2012 /* record local slen */
2013 slen = fa->fa_slen;
2014 }
2015
2016 /* update leaf slen */
2017 n->slen = slen;
2018
2019 if (hlist_empty(h: &n->leaf)) {
2020 put_child_root(tp: pn, key: n->key, NULL);
2021 node_free(n);
2022 }
2023 }
2024}
2025
2026/* Caller must hold RTNL. */
2027int fib_table_flush(struct net *net, struct fib_table *tb, bool flush_all)
2028{
2029 struct trie *t = (struct trie *)tb->tb_data;
2030 struct nl_info info = { .nl_net = net };
2031 struct key_vector *pn = t->kv;
2032 unsigned long cindex = 1;
2033 struct hlist_node *tmp;
2034 struct fib_alias *fa;
2035 int found = 0;
2036
2037 /* walk trie in reverse order */
2038 for (;;) {
2039 unsigned char slen = 0;
2040 struct key_vector *n;
2041
2042 if (!(cindex--)) {
2043 t_key pkey = pn->key;
2044
2045 /* cannot resize the trie vector */
2046 if (IS_TRIE(pn))
2047 break;
2048
2049 /* update the suffix to address pulled leaves */
2050 if (pn->slen > pn->pos)
2051 update_suffix(tn: pn);
2052
2053 /* resize completed node */
2054 pn = resize(t, tn: pn);
2055 cindex = get_index(key: pkey, kv: pn);
2056
2057 continue;
2058 }
2059
2060 /* grab the next available node */
2061 n = get_child(pn, cindex);
2062 if (!n)
2063 continue;
2064
2065 if (IS_TNODE(n)) {
2066 /* record pn and cindex for leaf walking */
2067 pn = n;
2068 cindex = 1ul << n->bits;
2069
2070 continue;
2071 }
2072
2073 hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
2074 struct fib_info *fi = fa->fa_info;
2075
2076 if (!fi || tb->tb_id != fa->tb_id ||
2077 (!(fi->fib_flags & RTNH_F_DEAD) &&
2078 !fib_props[fa->fa_type].error)) {
2079 slen = fa->fa_slen;
2080 continue;
2081 }
2082
2083 /* Do not flush error routes if network namespace is
2084 * not being dismantled
2085 */
2086 if (!flush_all && fib_props[fa->fa_type].error) {
2087 slen = fa->fa_slen;
2088 continue;
2089 }
2090
2091 fib_notify_alias_delete(net, key: n->key, fah: &n->leaf, fa_to_delete: fa,
2092 NULL);
2093 if (fi->pfsrc_removed)
2094 rtmsg_fib(RTM_DELROUTE, htonl(n->key), fa,
2095 KEYLENGTH - fa->fa_slen, tb_id: tb->tb_id, info: &info, nlm_flags: 0);
2096 hlist_del_rcu(n: &fa->fa_list);
2097 fib_release_info(fa->fa_info);
2098 alias_free_mem_rcu(fa);
2099 found++;
2100 }
2101
2102 /* update leaf slen */
2103 n->slen = slen;
2104
2105 if (hlist_empty(h: &n->leaf)) {
2106 put_child_root(tp: pn, key: n->key, NULL);
2107 node_free(n);
2108 }
2109 }
2110
2111 pr_debug("trie_flush found=%d\n", found);
2112 return found;
2113}
2114
2115/* derived from fib_trie_free */
2116static void __fib_info_notify_update(struct net *net, struct fib_table *tb,
2117 struct nl_info *info)
2118{
2119 struct trie *t = (struct trie *)tb->tb_data;
2120 struct key_vector *pn = t->kv;
2121 unsigned long cindex = 1;
2122 struct fib_alias *fa;
2123
2124 for (;;) {
2125 struct key_vector *n;
2126
2127 if (!(cindex--)) {
2128 t_key pkey = pn->key;
2129
2130 if (IS_TRIE(pn))
2131 break;
2132
2133 pn = node_parent(pn);
2134 cindex = get_index(key: pkey, kv: pn);
2135 continue;
2136 }
2137
2138 /* grab the next available node */
2139 n = get_child(pn, cindex);
2140 if (!n)
2141 continue;
2142
2143 if (IS_TNODE(n)) {
2144 /* record pn and cindex for leaf walking */
2145 pn = n;
2146 cindex = 1ul << n->bits;
2147
2148 continue;
2149 }
2150
2151 hlist_for_each_entry(fa, &n->leaf, fa_list) {
2152 struct fib_info *fi = fa->fa_info;
2153
2154 if (!fi || !fi->nh_updated || fa->tb_id != tb->tb_id)
2155 continue;
2156
2157 rtmsg_fib(RTM_NEWROUTE, htonl(n->key), fa,
2158 KEYLENGTH - fa->fa_slen, tb_id: tb->tb_id,
2159 info, NLM_F_REPLACE);
2160 }
2161 }
2162}
2163
2164void fib_info_notify_update(struct net *net, struct nl_info *info)
2165{
2166 unsigned int h;
2167
2168 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2169 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2170 struct fib_table *tb;
2171
2172 hlist_for_each_entry_rcu(tb, head, tb_hlist,
2173 lockdep_rtnl_is_held())
2174 __fib_info_notify_update(net, tb, info);
2175 }
2176}
2177
2178static int fib_leaf_notify(struct key_vector *l, struct fib_table *tb,
2179 struct notifier_block *nb,
2180 struct netlink_ext_ack *extack)
2181{
2182 struct fib_alias *fa;
2183 int last_slen = -1;
2184 int err;
2185
2186 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2187 struct fib_info *fi = fa->fa_info;
2188
2189 if (!fi)
2190 continue;
2191
2192 /* local and main table can share the same trie,
2193 * so don't notify twice for the same entry.
2194 */
2195 if (tb->tb_id != fa->tb_id)
2196 continue;
2197
2198 if (fa->fa_slen == last_slen)
2199 continue;
2200
2201 last_slen = fa->fa_slen;
2202 err = call_fib_entry_notifier(nb, event_type: FIB_EVENT_ENTRY_REPLACE,
2203 dst: l->key, KEYLENGTH - fa->fa_slen,
2204 fa, extack);
2205 if (err)
2206 return err;
2207 }
2208 return 0;
2209}
2210
2211static int fib_table_notify(struct fib_table *tb, struct notifier_block *nb,
2212 struct netlink_ext_ack *extack)
2213{
2214 struct trie *t = (struct trie *)tb->tb_data;
2215 struct key_vector *l, *tp = t->kv;
2216 t_key key = 0;
2217 int err;
2218
2219 while ((l = leaf_walk_rcu(tn: &tp, key)) != NULL) {
2220 err = fib_leaf_notify(l, tb, nb, extack);
2221 if (err)
2222 return err;
2223
2224 key = l->key + 1;
2225 /* stop in case of wrap around */
2226 if (key < l->key)
2227 break;
2228 }
2229 return 0;
2230}
2231
2232int fib_notify(struct net *net, struct notifier_block *nb,
2233 struct netlink_ext_ack *extack)
2234{
2235 unsigned int h;
2236 int err;
2237
2238 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2239 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2240 struct fib_table *tb;
2241
2242 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2243 err = fib_table_notify(tb, nb, extack);
2244 if (err)
2245 return err;
2246 }
2247 }
2248 return 0;
2249}
2250
2251static void __trie_free_rcu(struct rcu_head *head)
2252{
2253 struct fib_table *tb = container_of(head, struct fib_table, rcu);
2254#ifdef CONFIG_IP_FIB_TRIE_STATS
2255 struct trie *t = (struct trie *)tb->tb_data;
2256
2257 if (tb->tb_data == tb->__data)
2258 free_percpu(pdata: t->stats);
2259#endif /* CONFIG_IP_FIB_TRIE_STATS */
2260 kfree(objp: tb);
2261}
2262
2263void fib_free_table(struct fib_table *tb)
2264{
2265 call_rcu(head: &tb->rcu, func: __trie_free_rcu);
2266}
2267
2268static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
2269 struct sk_buff *skb, struct netlink_callback *cb,
2270 struct fib_dump_filter *filter)
2271{
2272 unsigned int flags = NLM_F_MULTI;
2273 __be32 xkey = htonl(l->key);
2274 int i, s_i, i_fa, s_fa, err;
2275 struct fib_alias *fa;
2276
2277 if (filter->filter_set ||
2278 !filter->dump_exceptions || !filter->dump_routes)
2279 flags |= NLM_F_DUMP_FILTERED;
2280
2281 s_i = cb->args[4];
2282 s_fa = cb->args[5];
2283 i = 0;
2284
2285 /* rcu_read_lock is hold by caller */
2286 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2287 struct fib_info *fi = fa->fa_info;
2288
2289 if (i < s_i)
2290 goto next;
2291
2292 i_fa = 0;
2293
2294 if (tb->tb_id != fa->tb_id)
2295 goto next;
2296
2297 if (filter->filter_set) {
2298 if (filter->rt_type && fa->fa_type != filter->rt_type)
2299 goto next;
2300
2301 if ((filter->protocol &&
2302 fi->fib_protocol != filter->protocol))
2303 goto next;
2304
2305 if (filter->dev &&
2306 !fib_info_nh_uses_dev(fi, dev: filter->dev))
2307 goto next;
2308 }
2309
2310 if (filter->dump_routes) {
2311 if (!s_fa) {
2312 struct fib_rt_info fri;
2313
2314 fri.fi = fi;
2315 fri.tb_id = tb->tb_id;
2316 fri.dst = xkey;
2317 fri.dst_len = KEYLENGTH - fa->fa_slen;
2318 fri.dscp = fa->fa_dscp;
2319 fri.type = fa->fa_type;
2320 fri.offload = READ_ONCE(fa->offload);
2321 fri.trap = READ_ONCE(fa->trap);
2322 fri.offload_failed = READ_ONCE(fa->offload_failed);
2323 err = fib_dump_info(skb,
2324 NETLINK_CB(cb->skb).portid,
2325 seq: cb->nlh->nlmsg_seq,
2326 RTM_NEWROUTE, fri: &fri, flags);
2327 if (err < 0)
2328 goto stop;
2329 }
2330
2331 i_fa++;
2332 }
2333
2334 if (filter->dump_exceptions) {
2335 err = fib_dump_info_fnhe(skb, cb, table_id: tb->tb_id, fi,
2336 fa_index: &i_fa, fa_start: s_fa, flags);
2337 if (err < 0)
2338 goto stop;
2339 }
2340
2341next:
2342 i++;
2343 }
2344
2345 cb->args[4] = i;
2346 return skb->len;
2347
2348stop:
2349 cb->args[4] = i;
2350 cb->args[5] = i_fa;
2351 return err;
2352}
2353
2354/* rcu_read_lock needs to be hold by caller from readside */
2355int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
2356 struct netlink_callback *cb, struct fib_dump_filter *filter)
2357{
2358 struct trie *t = (struct trie *)tb->tb_data;
2359 struct key_vector *l, *tp = t->kv;
2360 /* Dump starting at last key.
2361 * Note: 0.0.0.0/0 (ie default) is first key.
2362 */
2363 int count = cb->args[2];
2364 t_key key = cb->args[3];
2365
2366 /* First time here, count and key are both always 0. Count > 0
2367 * and key == 0 means the dump has wrapped around and we are done.
2368 */
2369 if (count && !key)
2370 return skb->len;
2371
2372 while ((l = leaf_walk_rcu(tn: &tp, key)) != NULL) {
2373 int err;
2374
2375 err = fn_trie_dump_leaf(l, tb, skb, cb, filter);
2376 if (err < 0) {
2377 cb->args[3] = key;
2378 cb->args[2] = count;
2379 return err;
2380 }
2381
2382 ++count;
2383 key = l->key + 1;
2384
2385 memset(&cb->args[4], 0,
2386 sizeof(cb->args) - 4*sizeof(cb->args[0]));
2387
2388 /* stop loop if key wrapped back to 0 */
2389 if (key < l->key)
2390 break;
2391 }
2392
2393 cb->args[3] = key;
2394 cb->args[2] = count;
2395
2396 return skb->len;
2397}
2398
2399void __init fib_trie_init(void)
2400{
2401 fn_alias_kmem = kmem_cache_create(name: "ip_fib_alias",
2402 size: sizeof(struct fib_alias),
2403 align: 0, SLAB_PANIC | SLAB_ACCOUNT, NULL);
2404
2405 trie_leaf_kmem = kmem_cache_create(name: "ip_fib_trie",
2406 LEAF_SIZE,
2407 align: 0, SLAB_PANIC | SLAB_ACCOUNT, NULL);
2408}
2409
2410struct fib_table *fib_trie_table(u32 id, struct fib_table *alias)
2411{
2412 struct fib_table *tb;
2413 struct trie *t;
2414 size_t sz = sizeof(*tb);
2415
2416 if (!alias)
2417 sz += sizeof(struct trie);
2418
2419 tb = kzalloc(size: sz, GFP_KERNEL);
2420 if (!tb)
2421 return NULL;
2422
2423 tb->tb_id = id;
2424 tb->tb_num_default = 0;
2425 tb->tb_data = (alias ? alias->__data : tb->__data);
2426
2427 if (alias)
2428 return tb;
2429
2430 t = (struct trie *) tb->tb_data;
2431 t->kv[0].pos = KEYLENGTH;
2432 t->kv[0].slen = KEYLENGTH;
2433#ifdef CONFIG_IP_FIB_TRIE_STATS
2434 t->stats = alloc_percpu(struct trie_use_stats);
2435 if (!t->stats) {
2436 kfree(objp: tb);
2437 tb = NULL;
2438 }
2439#endif
2440
2441 return tb;
2442}
2443
2444#ifdef CONFIG_PROC_FS
2445/* Depth first Trie walk iterator */
2446struct fib_trie_iter {
2447 struct seq_net_private p;
2448 struct fib_table *tb;
2449 struct key_vector *tnode;
2450 unsigned int index;
2451 unsigned int depth;
2452};
2453
2454static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
2455{
2456 unsigned long cindex = iter->index;
2457 struct key_vector *pn = iter->tnode;
2458 t_key pkey;
2459
2460 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2461 iter->tnode, iter->index, iter->depth);
2462
2463 while (!IS_TRIE(pn)) {
2464 while (cindex < child_length(tn: pn)) {
2465 struct key_vector *n = get_child_rcu(pn, cindex++);
2466
2467 if (!n)
2468 continue;
2469
2470 if (IS_LEAF(n)) {
2471 iter->tnode = pn;
2472 iter->index = cindex;
2473 } else {
2474 /* push down one level */
2475 iter->tnode = n;
2476 iter->index = 0;
2477 ++iter->depth;
2478 }
2479
2480 return n;
2481 }
2482
2483 /* Current node exhausted, pop back up */
2484 pkey = pn->key;
2485 pn = node_parent_rcu(pn);
2486 cindex = get_index(key: pkey, kv: pn) + 1;
2487 --iter->depth;
2488 }
2489
2490 /* record root node so further searches know we are done */
2491 iter->tnode = pn;
2492 iter->index = 0;
2493
2494 return NULL;
2495}
2496
2497static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
2498 struct trie *t)
2499{
2500 struct key_vector *n, *pn;
2501
2502 if (!t)
2503 return NULL;
2504
2505 pn = t->kv;
2506 n = rcu_dereference(pn->tnode[0]);
2507 if (!n)
2508 return NULL;
2509
2510 if (IS_TNODE(n)) {
2511 iter->tnode = n;
2512 iter->index = 0;
2513 iter->depth = 1;
2514 } else {
2515 iter->tnode = pn;
2516 iter->index = 0;
2517 iter->depth = 0;
2518 }
2519
2520 return n;
2521}
2522
2523static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2524{
2525 struct key_vector *n;
2526 struct fib_trie_iter iter;
2527
2528 memset(s, 0, sizeof(*s));
2529
2530 rcu_read_lock();
2531 for (n = fib_trie_get_first(iter: &iter, t); n; n = fib_trie_get_next(iter: &iter)) {
2532 if (IS_LEAF(n)) {
2533 struct fib_alias *fa;
2534
2535 s->leaves++;
2536 s->totdepth += iter.depth;
2537 if (iter.depth > s->maxdepth)
2538 s->maxdepth = iter.depth;
2539
2540 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
2541 ++s->prefixes;
2542 } else {
2543 s->tnodes++;
2544 if (n->bits < MAX_STAT_DEPTH)
2545 s->nodesizes[n->bits]++;
2546 s->nullpointers += tn_info(kv: n)->empty_children;
2547 }
2548 }
2549 rcu_read_unlock();
2550}
2551
2552/*
2553 * This outputs /proc/net/fib_triestats
2554 */
2555static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2556{
2557 unsigned int i, max, pointers, bytes, avdepth;
2558
2559 if (stat->leaves)
2560 avdepth = stat->totdepth*100 / stat->leaves;
2561 else
2562 avdepth = 0;
2563
2564 seq_printf(m: seq, fmt: "\tAver depth: %u.%02d\n",
2565 avdepth / 100, avdepth % 100);
2566 seq_printf(m: seq, fmt: "\tMax depth: %u\n", stat->maxdepth);
2567
2568 seq_printf(m: seq, fmt: "\tLeaves: %u\n", stat->leaves);
2569 bytes = LEAF_SIZE * stat->leaves;
2570
2571 seq_printf(m: seq, fmt: "\tPrefixes: %u\n", stat->prefixes);
2572 bytes += sizeof(struct fib_alias) * stat->prefixes;
2573
2574 seq_printf(m: seq, fmt: "\tInternal nodes: %u\n\t", stat->tnodes);
2575 bytes += TNODE_SIZE(0) * stat->tnodes;
2576
2577 max = MAX_STAT_DEPTH;
2578 while (max > 0 && stat->nodesizes[max-1] == 0)
2579 max--;
2580
2581 pointers = 0;
2582 for (i = 1; i < max; i++)
2583 if (stat->nodesizes[i] != 0) {
2584 seq_printf(m: seq, fmt: " %u: %u", i, stat->nodesizes[i]);
2585 pointers += (1<<i) * stat->nodesizes[i];
2586 }
2587 seq_putc(m: seq, c: '\n');
2588 seq_printf(m: seq, fmt: "\tPointers: %u\n", pointers);
2589
2590 bytes += sizeof(struct key_vector *) * pointers;
2591 seq_printf(m: seq, fmt: "Null ptrs: %u\n", stat->nullpointers);
2592 seq_printf(m: seq, fmt: "Total size: %u kB\n", (bytes + 1023) / 1024);
2593}
2594
2595#ifdef CONFIG_IP_FIB_TRIE_STATS
2596static void trie_show_usage(struct seq_file *seq,
2597 const struct trie_use_stats __percpu *stats)
2598{
2599 struct trie_use_stats s = { 0 };
2600 int cpu;
2601
2602 /* loop through all of the CPUs and gather up the stats */
2603 for_each_possible_cpu(cpu) {
2604 const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);
2605
2606 s.gets += pcpu->gets;
2607 s.backtrack += pcpu->backtrack;
2608 s.semantic_match_passed += pcpu->semantic_match_passed;
2609 s.semantic_match_miss += pcpu->semantic_match_miss;
2610 s.null_node_hit += pcpu->null_node_hit;
2611 s.resize_node_skipped += pcpu->resize_node_skipped;
2612 }
2613
2614 seq_printf(m: seq, fmt: "\nCounters:\n---------\n");
2615 seq_printf(m: seq, fmt: "gets = %u\n", s.gets);
2616 seq_printf(m: seq, fmt: "backtracks = %u\n", s.backtrack);
2617 seq_printf(m: seq, fmt: "semantic match passed = %u\n",
2618 s.semantic_match_passed);
2619 seq_printf(m: seq, fmt: "semantic match miss = %u\n", s.semantic_match_miss);
2620 seq_printf(m: seq, fmt: "null node hit= %u\n", s.null_node_hit);
2621 seq_printf(m: seq, fmt: "skipped node resize = %u\n\n", s.resize_node_skipped);
2622}
2623#endif /* CONFIG_IP_FIB_TRIE_STATS */
2624
2625static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2626{
2627 if (tb->tb_id == RT_TABLE_LOCAL)
2628 seq_puts(m: seq, s: "Local:\n");
2629 else if (tb->tb_id == RT_TABLE_MAIN)
2630 seq_puts(m: seq, s: "Main:\n");
2631 else
2632 seq_printf(m: seq, fmt: "Id %d:\n", tb->tb_id);
2633}
2634
2635
2636static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2637{
2638 struct net *net = seq->private;
2639 unsigned int h;
2640
2641 seq_printf(m: seq,
2642 fmt: "Basic info: size of leaf:"
2643 " %zd bytes, size of tnode: %zd bytes.\n",
2644 LEAF_SIZE, TNODE_SIZE(0));
2645
2646 rcu_read_lock();
2647 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2648 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2649 struct fib_table *tb;
2650
2651 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2652 struct trie *t = (struct trie *) tb->tb_data;
2653 struct trie_stat stat;
2654
2655 if (!t)
2656 continue;
2657
2658 fib_table_print(seq, tb);
2659
2660 trie_collect_stats(t, s: &stat);
2661 trie_show_stats(seq, stat: &stat);
2662#ifdef CONFIG_IP_FIB_TRIE_STATS
2663 trie_show_usage(seq, stats: t->stats);
2664#endif
2665 }
2666 cond_resched_rcu();
2667 }
2668 rcu_read_unlock();
2669
2670 return 0;
2671}
2672
2673static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2674{
2675 struct fib_trie_iter *iter = seq->private;
2676 struct net *net = seq_file_net(seq);
2677 loff_t idx = 0;
2678 unsigned int h;
2679
2680 for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2681 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2682 struct fib_table *tb;
2683
2684 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2685 struct key_vector *n;
2686
2687 for (n = fib_trie_get_first(iter,
2688 t: (struct trie *) tb->tb_data);
2689 n; n = fib_trie_get_next(iter))
2690 if (pos == idx++) {
2691 iter->tb = tb;
2692 return n;
2693 }
2694 }
2695 }
2696
2697 return NULL;
2698}
2699
2700static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2701 __acquires(RCU)
2702{
2703 rcu_read_lock();
2704 return fib_trie_get_idx(seq, pos: *pos);
2705}
2706
2707static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2708{
2709 struct fib_trie_iter *iter = seq->private;
2710 struct net *net = seq_file_net(seq);
2711 struct fib_table *tb = iter->tb;
2712 struct hlist_node *tb_node;
2713 unsigned int h;
2714 struct key_vector *n;
2715
2716 ++*pos;
2717 /* next node in same table */
2718 n = fib_trie_get_next(iter);
2719 if (n)
2720 return n;
2721
2722 /* walk rest of this hash chain */
2723 h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2724 while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
2725 tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2726 n = fib_trie_get_first(iter, t: (struct trie *) tb->tb_data);
2727 if (n)
2728 goto found;
2729 }
2730
2731 /* new hash chain */
2732 while (++h < FIB_TABLE_HASHSZ) {
2733 struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2734 hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2735 n = fib_trie_get_first(iter, t: (struct trie *) tb->tb_data);
2736 if (n)
2737 goto found;
2738 }
2739 }
2740 return NULL;
2741
2742found:
2743 iter->tb = tb;
2744 return n;
2745}
2746
2747static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2748 __releases(RCU)
2749{
2750 rcu_read_unlock();
2751}
2752
2753static void seq_indent(struct seq_file *seq, int n)
2754{
2755 while (n-- > 0)
2756 seq_puts(m: seq, s: " ");
2757}
2758
2759static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2760{
2761 switch (s) {
2762 case RT_SCOPE_UNIVERSE: return "universe";
2763 case RT_SCOPE_SITE: return "site";
2764 case RT_SCOPE_LINK: return "link";
2765 case RT_SCOPE_HOST: return "host";
2766 case RT_SCOPE_NOWHERE: return "nowhere";
2767 default:
2768 snprintf(buf, size: len, fmt: "scope=%d", s);
2769 return buf;
2770 }
2771}
2772
2773static const char *const rtn_type_names[__RTN_MAX] = {
2774 [RTN_UNSPEC] = "UNSPEC",
2775 [RTN_UNICAST] = "UNICAST",
2776 [RTN_LOCAL] = "LOCAL",
2777 [RTN_BROADCAST] = "BROADCAST",
2778 [RTN_ANYCAST] = "ANYCAST",
2779 [RTN_MULTICAST] = "MULTICAST",
2780 [RTN_BLACKHOLE] = "BLACKHOLE",
2781 [RTN_UNREACHABLE] = "UNREACHABLE",
2782 [RTN_PROHIBIT] = "PROHIBIT",
2783 [RTN_THROW] = "THROW",
2784 [RTN_NAT] = "NAT",
2785 [RTN_XRESOLVE] = "XRESOLVE",
2786};
2787
2788static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
2789{
2790 if (t < __RTN_MAX && rtn_type_names[t])
2791 return rtn_type_names[t];
2792 snprintf(buf, size: len, fmt: "type %u", t);
2793 return buf;
2794}
2795
2796/* Pretty print the trie */
2797static int fib_trie_seq_show(struct seq_file *seq, void *v)
2798{
2799 const struct fib_trie_iter *iter = seq->private;
2800 struct key_vector *n = v;
2801
2802 if (IS_TRIE(node_parent_rcu(n)))
2803 fib_table_print(seq, tb: iter->tb);
2804
2805 if (IS_TNODE(n)) {
2806 __be32 prf = htonl(n->key);
2807
2808 seq_indent(seq, n: iter->depth-1);
2809 seq_printf(m: seq, fmt: " +-- %pI4/%zu %u %u %u\n",
2810 &prf, KEYLENGTH - n->pos - n->bits, n->bits,
2811 tn_info(kv: n)->full_children,
2812 tn_info(kv: n)->empty_children);
2813 } else {
2814 __be32 val = htonl(n->key);
2815 struct fib_alias *fa;
2816
2817 seq_indent(seq, n: iter->depth);
2818 seq_printf(m: seq, fmt: " |-- %pI4\n", &val);
2819
2820 hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
2821 char buf1[32], buf2[32];
2822
2823 seq_indent(seq, n: iter->depth + 1);
2824 seq_printf(m: seq, fmt: " /%zu %s %s",
2825 KEYLENGTH - fa->fa_slen,
2826 rtn_scope(buf: buf1, len: sizeof(buf1),
2827 s: fa->fa_info->fib_scope),
2828 rtn_type(buf: buf2, len: sizeof(buf2),
2829 t: fa->fa_type));
2830 if (fa->fa_dscp)
2831 seq_printf(m: seq, fmt: " tos=%d",
2832 inet_dscp_to_dsfield(dscp: fa->fa_dscp));
2833 seq_putc(m: seq, c: '\n');
2834 }
2835 }
2836
2837 return 0;
2838}
2839
2840static const struct seq_operations fib_trie_seq_ops = {
2841 .start = fib_trie_seq_start,
2842 .next = fib_trie_seq_next,
2843 .stop = fib_trie_seq_stop,
2844 .show = fib_trie_seq_show,
2845};
2846
2847struct fib_route_iter {
2848 struct seq_net_private p;
2849 struct fib_table *main_tb;
2850 struct key_vector *tnode;
2851 loff_t pos;
2852 t_key key;
2853};
2854
2855static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
2856 loff_t pos)
2857{
2858 struct key_vector *l, **tp = &iter->tnode;
2859 t_key key;
2860
2861 /* use cached location of previously found key */
2862 if (iter->pos > 0 && pos >= iter->pos) {
2863 key = iter->key;
2864 } else {
2865 iter->pos = 1;
2866 key = 0;
2867 }
2868
2869 pos -= iter->pos;
2870
2871 while ((l = leaf_walk_rcu(tn: tp, key)) && (pos-- > 0)) {
2872 key = l->key + 1;
2873 iter->pos++;
2874 l = NULL;
2875
2876 /* handle unlikely case of a key wrap */
2877 if (!key)
2878 break;
2879 }
2880
2881 if (l)
2882 iter->key = l->key; /* remember it */
2883 else
2884 iter->pos = 0; /* forget it */
2885
2886 return l;
2887}
2888
2889static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2890 __acquires(RCU)
2891{
2892 struct fib_route_iter *iter = seq->private;
2893 struct fib_table *tb;
2894 struct trie *t;
2895
2896 rcu_read_lock();
2897
2898 tb = fib_get_table(net: seq_file_net(seq), id: RT_TABLE_MAIN);
2899 if (!tb)
2900 return NULL;
2901
2902 iter->main_tb = tb;
2903 t = (struct trie *)tb->tb_data;
2904 iter->tnode = t->kv;
2905
2906 if (*pos != 0)
2907 return fib_route_get_idx(iter, pos: *pos);
2908
2909 iter->pos = 0;
2910 iter->key = KEY_MAX;
2911
2912 return SEQ_START_TOKEN;
2913}
2914
2915static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2916{
2917 struct fib_route_iter *iter = seq->private;
2918 struct key_vector *l = NULL;
2919 t_key key = iter->key + 1;
2920
2921 ++*pos;
2922
2923 /* only allow key of 0 for start of sequence */
2924 if ((v == SEQ_START_TOKEN) || key)
2925 l = leaf_walk_rcu(tn: &iter->tnode, key);
2926
2927 if (l) {
2928 iter->key = l->key;
2929 iter->pos++;
2930 } else {
2931 iter->pos = 0;
2932 }
2933
2934 return l;
2935}
2936
2937static void fib_route_seq_stop(struct seq_file *seq, void *v)
2938 __releases(RCU)
2939{
2940 rcu_read_unlock();
2941}
2942
2943static unsigned int fib_flag_trans(int type, __be32 mask, struct fib_info *fi)
2944{
2945 unsigned int flags = 0;
2946
2947 if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2948 flags = RTF_REJECT;
2949 if (fi) {
2950 const struct fib_nh_common *nhc = fib_info_nhc(fi, nhsel: 0);
2951
2952 if (nhc->nhc_gw.ipv4)
2953 flags |= RTF_GATEWAY;
2954 }
2955 if (mask == htonl(0xFFFFFFFF))
2956 flags |= RTF_HOST;
2957 flags |= RTF_UP;
2958 return flags;
2959}
2960
2961/*
2962 * This outputs /proc/net/route.
2963 * The format of the file is not supposed to be changed
2964 * and needs to be same as fib_hash output to avoid breaking
2965 * legacy utilities
2966 */
2967static int fib_route_seq_show(struct seq_file *seq, void *v)
2968{
2969 struct fib_route_iter *iter = seq->private;
2970 struct fib_table *tb = iter->main_tb;
2971 struct fib_alias *fa;
2972 struct key_vector *l = v;
2973 __be32 prefix;
2974
2975 if (v == SEQ_START_TOKEN) {
2976 seq_printf(m: seq, fmt: "%-127s\n", "Iface\tDestination\tGateway "
2977 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2978 "\tWindow\tIRTT");
2979 return 0;
2980 }
2981
2982 prefix = htonl(l->key);
2983
2984 hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2985 struct fib_info *fi = fa->fa_info;
2986 __be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
2987 unsigned int flags = fib_flag_trans(type: fa->fa_type, mask, fi);
2988
2989 if ((fa->fa_type == RTN_BROADCAST) ||
2990 (fa->fa_type == RTN_MULTICAST))
2991 continue;
2992
2993 if (fa->tb_id != tb->tb_id)
2994 continue;
2995
2996 seq_setwidth(m: seq, size: 127);
2997
2998 if (fi) {
2999 struct fib_nh_common *nhc = fib_info_nhc(fi, nhsel: 0);
3000 __be32 gw = 0;
3001
3002 if (nhc->nhc_gw_family == AF_INET)
3003 gw = nhc->nhc_gw.ipv4;
3004
3005 seq_printf(m: seq,
3006 fmt: "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
3007 "%d\t%08X\t%d\t%u\t%u",
3008 nhc->nhc_dev ? nhc->nhc_dev->name : "*",
3009 prefix, gw, flags, 0, 0,
3010 fi->fib_priority,
3011 mask,
3012 (fi->fib_advmss ?
3013 fi->fib_advmss + 40 : 0),
3014 fi->fib_window,
3015 fi->fib_rtt >> 3);
3016 } else {
3017 seq_printf(m: seq,
3018 fmt: "*\t%08X\t%08X\t%04X\t%d\t%u\t"
3019 "%d\t%08X\t%d\t%u\t%u",
3020 prefix, 0, flags, 0, 0, 0,
3021 mask, 0, 0, 0);
3022 }
3023 seq_pad(m: seq, c: '\n');
3024 }
3025
3026 return 0;
3027}
3028
3029static const struct seq_operations fib_route_seq_ops = {
3030 .start = fib_route_seq_start,
3031 .next = fib_route_seq_next,
3032 .stop = fib_route_seq_stop,
3033 .show = fib_route_seq_show,
3034};
3035
3036int __net_init fib_proc_init(struct net *net)
3037{
3038 if (!proc_create_net("fib_trie", 0444, net->proc_net, &fib_trie_seq_ops,
3039 sizeof(struct fib_trie_iter)))
3040 goto out1;
3041
3042 if (!proc_create_net_single(name: "fib_triestat", mode: 0444, parent: net->proc_net,
3043 show: fib_triestat_seq_show, NULL))
3044 goto out2;
3045
3046 if (!proc_create_net("route", 0444, net->proc_net, &fib_route_seq_ops,
3047 sizeof(struct fib_route_iter)))
3048 goto out3;
3049
3050 return 0;
3051
3052out3:
3053 remove_proc_entry("fib_triestat", net->proc_net);
3054out2:
3055 remove_proc_entry("fib_trie", net->proc_net);
3056out1:
3057 return -ENOMEM;
3058}
3059
3060void __net_exit fib_proc_exit(struct net *net)
3061{
3062 remove_proc_entry("fib_trie", net->proc_net);
3063 remove_proc_entry("fib_triestat", net->proc_net);
3064 remove_proc_entry("route", net->proc_net);
3065}
3066
3067#endif /* CONFIG_PROC_FS */
3068

source code of linux/net/ipv4/fib_trie.c